WO2017043614A1 - 塩化ビニル樹脂組成物及び成形体 - Google Patents

塩化ビニル樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2017043614A1
WO2017043614A1 PCT/JP2016/076548 JP2016076548W WO2017043614A1 WO 2017043614 A1 WO2017043614 A1 WO 2017043614A1 JP 2016076548 W JP2016076548 W JP 2016076548W WO 2017043614 A1 WO2017043614 A1 WO 2017043614A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
vinyl chloride
chloride resin
polymer
parts
Prior art date
Application number
PCT/JP2016/076548
Other languages
English (en)
French (fr)
Inventor
惇 桑原
博幸 西井
八木 健二
慎也 平井
光史 野殿
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201680050407.2A priority Critical patent/CN108026345A/zh
Priority to JP2016561031A priority patent/JP6708129B2/ja
Publication of WO2017043614A1 publication Critical patent/WO2017043614A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles

Definitions

  • the present invention relates to a vinyl chloride resin composition.
  • Vinyl chloride resin is widely used as a general-purpose resin material for various molded products because it is excellent in chemical resistance, weather resistance, flame retardancy, electrical insulation and the like and is inexpensive. In particular, it is widely used as a building material member in terms of thermal conductivity and cost.
  • a filler is used in combination for various purposes.
  • processability gelling characteristics
  • productivity productivity, impact resistance, appearance, and the like at the time of molding the molded body are lowered.
  • Patent Documents 1 and 2 polytetrafluoroethylene is added to the resin composition.
  • the resin composition described in Patent Document 1 has insufficient dispersibility of polytetrafluoroethylene, and the appearance and physical properties of the molded product are likely to be deteriorated.
  • the resin composition described in Patent Document 2 tends to deteriorate in appearance, tends to be insufficient in productivity, and tends to impair the low heat shrinkability of the molded body.
  • An object of the present invention is to provide a vinyl chloride resin composition that is capable of obtaining a molded article that is excellent in productivity and excellent in low heat shrinkage, impact resistance, and molded article surface appearance even when the amount of filler added is increased. And a molded body using the same.
  • the object is achieved by the following present inventions (1) to (12).
  • Vinyl chloride resin (A), Polytetrafluoroethylene (B), Polymers other than polytetrafluoroethylene (C) and filler (D) A vinyl chloride resin composition comprising: For 100 parts by mass of the vinyl chloride resin (A), 0.001 to 3 parts by mass of the polytetrafluoroethylene (B), A vinyl chloride resin composition comprising 1 to 2000 parts by mass of the filler (D).
  • the polymer (C) is at least one monomer selected from the group consisting of (meth) acrylic acid ester monomers, aromatic vinyl monomers, and vinyl cyanide monomers.
  • the vinyl chloride resin composition according to the above (1) comprising 50% by mass or more of structural units derived from the body.
  • the polymer (C) is at least one monomer selected from the group consisting of (meth) acrylic acid ester monomers having an alkyl group having 1 to 12 carbon atoms at the ester site, styrene, and acrylonitrile.
  • the polymer (C) contains 50% by mass or more of a structural unit derived from a (meth) acrylic acid ester monomer having an alkyl group having 1 to 12 carbon atoms at the ester site.
  • the vinyl chloride resin composition according to any one of to (3).
  • the vinyl chloride resin composition according to (6) further comprising 0.1 to 10 parts by mass of an acrylic polymer having a mass average molecular weight (Mw) of 2 to 6 million.
  • the vinyl chloride resin composition according to any one of (1) to (8) above comprising 10 to 2000 parts by mass of the filler (D).
  • the vinyl chloride resin composition of the present invention can provide a vinyl chloride resin molded article having excellent low heat shrinkage, impact resistance, and molded article surface appearance with high productivity even when the amount of filler added is increased. Can do.
  • Vinyl chloride resin (A) The type of vinyl chloride resin (A) used in the present invention is not particularly limited.
  • a vinyl chloride homopolymer, a post-chlorinated vinyl chloride polymer, a partially crosslinked vinyl chloride polymer, or other vinyl compounds examples thereof include copolymers with vinyl chloride, and mixtures thereof.
  • the other vinyl compounds are not particularly limited, but specific examples include vinyl acetate and fatty acid vinyl esters such as vinyl propionate; methyl methacrylate and alkyl methacrylates such as ethyl methacrylate; ethyl acrylate and acrylic Acrylic acid alkyl esters such as butyl acid; ⁇ -olefins such as ethylene, propylene, and styrene; alkyl vinyl ethers such as vinyl methyl ether and vinyl butyl ether; and unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and maleic anhydride Or the acid anhydride is mentioned, You may use these combining 1 type (s) or 2 or more types. If the copolymerization amount of the other vinyl compound is 30% by mass or less, it is preferable because the original characteristics of the vinyl chloride resin are not impaired. Furthermore, these vinyl chloride resins may be used alone or in combination of two or more.
  • the average degree of polymerization of the vinyl chloride resin (A) used in the present invention is preferably in the range of 300 to 5,000, more preferably 500 to 3,000.
  • the average degree of polymerization is 300 or more, the impact strength is improved.
  • a gelling characteristic becomes favorable because an average degree of polymerization shall be 5,000 or less.
  • the production method of the vinyl chloride resin (A) used in the present invention is not particularly limited, and those produced by various polymerization methods such as an emulsion polymerization method, a suspension polymerization method, and a bulk polymerization method can be used.
  • Polytetrafluoroethylene By using polytetrafluoroethylene (hereinafter referred to as “PTFE”) (B), the gelation characteristics of the vinyl chloride resin can be improved, and lubricity can be imparted during heat-melt kneading.
  • PTFE polytetrafluoroethylene
  • the number average molecular weight of PTFE (B) is not particularly limited, but is preferably 1 million to 50 million, more preferably 1 million to 30 million, still more preferably 1.5 million to 20 million, It is particularly preferably from 10,000 to 20,000,000.
  • the number average molecular weight of PTFE (B) By setting the number average molecular weight of PTFE (B) to 1 million or more, the effect of improving the gelling properties when PTFE (B) is blended with vinyl chloride resin (A) is sufficient. Further, by making the number average molecular weight of PTFE (B) 50 million or less, the dispersibility of PTFE (B) when PTFE (B) is blended with the vinyl chloride resin (A) is improved, and the obtained molded product In addition to being excellent in surface appearance, the melt viscosity and melt tension do not become excessive, so that the productivity improvement effect of PTFE (B) is not hindered.
  • the number average molecular weight (Mn) of PTFE is determined according to the method of Suwa et al.
  • PTFE (B) is obtained by emulsion polymerization of a tetrafluoroethylene monomer using a fluorine-containing surfactant.
  • fluorine-containing olefins such as hexafluoropropylene, chlorotrifluoroethylene, fluoroalkylethylene, and perfluoroalkylvinylether as a copolymerization component
  • acrylic acid-containing fluorine-containing alkyl ester such as perfluoroalkyl ester of acrylic acid can be used.
  • the PTFE (B) is added in an amount of 0.001 to 3 parts by mass and 0.001 to 2 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A). It is preferable to add 0.001 to 1.5 parts by mass, more preferably 0.001 to 1 part by mass, and even more preferably 0.001 to 0.75. It is particularly preferred to be added so as to be part by mass, even more preferred to be added so as to be 0.05 to 0.5 part by mass, and even more particularly 0.1 to 0.3 part by mass. preferable.
  • the PTFE component When the PTFE component is 0.001 part by mass or more, an effect of improving gelation properties is exhibited, and the physical properties and appearance of the molded article are improved, and the lubricity of PTFE is exhibited at the time of heat-melt kneading, thereby increasing productivity. improves. In addition, when the PTFE component is 3 parts by mass or less, the lubricity at the time of heat-melt kneading does not become excessive, and in addition, excessive melt tension / melt viscosity is not manifested. Good molded article physical properties and good appearance can be obtained without hindering the effect of improving the characteristics.
  • Polymers other than polytetrafluoroethylene (C) in the resin composition of the present invention, the presence of the polymer (C) together with PTFE (B) can improve the dispersibility of PTFE (B) with respect to the vinyl chloride resin (A), and the molded product surface appearance can be improved. It becomes good.
  • the polymer (C) used in the present invention is not particularly limited, but for the purpose of improving the dispersibility of PTFE (B) when blended with the vinyl chloride resin (A), the polymer (C) is a phase with the vinyl chloride resin. It is preferable that the capacity is high. Since the polymer (C) is excellent in compatibility with the vinyl chloride resin (A), the dispersion of PTFE (B) in the molded body is improved, and the surface appearance of the resulting molded body and the effect of improving the impact strength are improved. Excellent.
  • the monomer constituting the polymer (C) include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, methacrylic acid.
  • (Meth) acrylic acid ester monomers such as -2-ethylhexyl, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl methacrylate, octadecyl acrylate, octadecyl methacrylate, cyclohexyl acrylate, and cyclohexyl methacrylate; Vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; styrene, p-methylstyrene, o-methylstyrene, p-chlorostyrene, o-chlorostyrene, p-methoxystyrene, o-methoxystyrene, and -Aromatic vinyl monomers such as methylstyrene; vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether: vinyl carboxylates such as vinyl
  • the polymer (C) is a (meth) acrylic acid ester monomer, an aromatic vinyl monomer, and a vinyl cyanide monomer. It is preferable to contain 50% by mass or more of structural units derived from one or more monomers selected from the group consisting of bodies. In addition, 50 structural units derived from one or more monomers selected from the group consisting of (meth) acrylic acid ester monomers having an alkyl group having 1 to 12 carbon atoms at the ester site, styrene, and acrylonitrile. It is more preferable to contain it by mass% or more.
  • a structural unit derived from a (meth) acrylic acid ester monomer having an alkyl group having 1 to 12 carbon atoms at the ester site it is particularly preferable to contain 50% by mass or more of a structural unit derived from a (meth) acrylic acid ester monomer having an alkyl group having 1 to 5 carbon atoms at the ester site.
  • the proportion of the structural unit in the polymer is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, particularly preferably 90% by mass or more, and most preferably 100% by mass.
  • examples of the (meth) acrylic acid ester monomer having an alkyl group having 1 to 12 carbon atoms at the ester site include, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate, methyl acrylate. , Ethyl acrylate, and butyl acrylate.
  • the mass average molecular weight (Mw) of the polymer (C) is preferably 10,000 to 1,500,000, more preferably 10,000 to 1,000,000, and particularly preferably 10,000 to 500,000.
  • Dispersibility of PTFE (B) when used as PTFE-containing powder (F) can be increased by setting Mw to 10,000 or more, and dispersibility of polymer (C) can be set to 1.5 million or less. Can be increased.
  • Mw is a value obtained by measuring the tetrahydrofuran-soluble content of the polymer (C) by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • As a method for adjusting the mass average molecular weight (Mw) conventional methods such as adjustment of the amount of chain transfer agent and initiator used during polymerization and adjustment of the polymerization temperature can be used.
  • the polymer (C) can be a non-rubber thermoplastic resin.
  • the ratio of dissolving in THF is 60% by mass or more in 100% by mass of the polymer (C). Is preferably 75% by mass or more, more preferably 90% by mass or more, and most preferably 95% by mass or more.
  • the ratio of the polymer (C) dissolved in THF is 60% by mass or more in 100% by mass of the polymer (C)
  • the dispersion of PTFE (B) in the molded product is improved, and the obtained molded product Excellent surface appearance and impact strength improvement effect.
  • Various methods can be used for the polymerization of the polymer (C).
  • the polymerization method include emulsion polymerization, suspension polymerization, and solution polymerization.
  • emulsion polymerization and soap-free emulsion polymerization are preferable, and emulsion polymerization is more preferable because the production of polytetrafluoroethylene-containing powder described later is facilitated.
  • the emulsifier that can be used when applying the emulsion polymerization method is not particularly limited, and various types of emulsifiers can be used.
  • These emulsifiers can be used alone or in combination.
  • pH adjusters include boric acid-potassium chloride-potassium hydroxide, potassium dihydrogen phosphate-disodium hydrogen phosphate, boric acid-potassium chloride-potassium carbonate, citric acid-potassium hydrogen citrate, potassium dihydrogen phosphate Borax or disodium hydrogen phosphate-citric acid etc. or mixtures thereof can be used.
  • the polymerization initiator may be a water-soluble, oil-soluble single type or redox type, for example, an ordinary inorganic initiator such as persulfate, or a sulfite, bisulfite, Alternatively, it can be used as a redox initiator in combination with thiosulfate or the like.
  • redox system starts using organic peroxides such as t-butyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide or lauroyl peroxide, or azo compounds alone or in combination with sodium formaldehyde sulfoxylate, etc. Although it can be used as an agent, the present invention is not limited to these specific examples.
  • chain transfer agent examples include alkyl mercaptans such as n-octyl mercaptan and t-dodecyl mercaptan.
  • the amount of the chain transfer agent is not particularly limited, but is preferably 0 to 3 parts by weight, more preferably 0.01 to 3 parts by weight, for example, with respect to 100 parts by weight of the polymer (C). More preferably, it is 1 to 3 parts by mass.
  • the polymer (C) is preferably added in an amount of 0.001 to 30 parts by mass, and 0.001 to 15 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A). More preferably, it is added so that it may become 0.001-12 mass parts, It is especially preferable to add so that it may become 0.001-6 mass parts, 0.001 It is particularly preferred to be added to ⁇ 3 parts by mass, even more preferred to be added to 0.05 to 1.5 parts by mass, even more particularly 0.1 to 1 part by mass. preferable.
  • the dispersion of PTFE (B) in the molded body becomes good, and the surface appearance and impact strength improving effect of the obtained molded body are excellent. Moreover, the fall of impact strength can be suppressed because a polymer (C) shall be 30 mass parts or less.
  • filler (D) examples include metal powder, oxide, hydroxide, silicic acid and silicate, carbonate, silicon carbide, vegetable fiber, animal fiber, and synthetic fiber.
  • magnesium hydroxide, silica, clay, zeolite, acetate powder, silk powder, aramid fiber, azodicarbonamide, graphite, and regenerated filler materials may be used alone or in admixture of two or more.
  • a filler for the purpose of improving flame retardancy, for example, metal hydroxide, bromine compound, triazine ring-containing compound, zinc compound, phosphorus compound, halogen compound, silicon compound, intomescent compound Or antimony oxide can be used. These can be used alone or in combination of two or more.
  • the addition amount of the filler (D) is 1 to 2000 parts by weight, preferably 6 to 2000 parts by weight, more preferably 10 to 2000 parts by weight, with respect to 100 parts by weight of the vinyl chloride resin (A). Is more preferably from 500 to 500 parts by weight, particularly preferably from 10 to 200 parts by weight, and even more preferably from 20 to 150 parts by weight. By setting it as 1 mass part or more, while being able to provide moderate rigidity to a molded object, the filler increase effect (a petroleum origin component reduction, raw material cost reduction) is anticipated.
  • Acrylic polymer ( ⁇ ) or acrylic polymer powder (E) may further contain an acrylic polymer ( ⁇ ) or an acrylic polymer powder (E) for the purpose of imparting high gloss and further improving gelling properties.
  • the acrylic polymer powder (E) has a methacrylic acid alkyl ester (e-1) in which the alkyl group of the alkyl ester part is an alkyl group having 1 to 10 carbon atoms (hereinafter referred to as monomer (e-1)). 10 to 100% by weight, other copolymerizable monomer (e-2) (hereinafter referred to as monomer (e-2)) 0 to 90% by weight, obtained by polymerizing alkyl methacrylate ester copolymer This is a polymer powder obtained by collecting a polymer (hereinafter referred to as polymer ( ⁇ )) in powder form.
  • Examples of the monomer (e-1) used in the present invention include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, pentyl methacrylate, 2-ethylhexyl methacrylate, and cyclohexyl methacrylate. It is done. Among them, since the appearance improving ability and powder recoverability of the molded product are improved, an alkyl group having 1 to 5 carbon atoms in the alkyl group, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, Butyl methacrylate and pentyl methacrylate are preferred. These alkyl methacrylates can be used alone or in combination of two or more depending on the purpose.
  • the monomer (e-2) is not particularly limited as long as it is a monomer copolymerizable with the monomer (e-1).
  • ethyl acrylate, butyl acrylate, acrylic acid-2- Acrylic esters such as ethylhexyl, benzyl acrylate, and phenyl acrylate; aromatic methacrylates such as benzyl methacrylate and phenyl methacrylate; aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyltoluene; acrylonitrile And vinyl cyanide compounds such as methacrylonitrile; vinyl esters such as vinyl acetate; and acid anhydrides such as maleic anhydride.
  • acrylic acid-2- Acrylic esters
  • aromatic methacrylates such as benzyl methacrylate and phenyl methacrylate
  • aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and vinyltoluene
  • the amount of the monomer (e-1) used is 10 to 100% by mass, preferably 30 to 100% by mass, based on 100% by mass of all monomers that are the raw materials for the polymer ( ⁇ ). %, More preferably 40 to 100% by mass, still more preferably 50 to 100% by mass, particularly preferably 65 to 100% by mass, and most preferably 75 to 100% by mass.
  • the amount of the monomer (e-1) used is 10% by mass or more, the compatibility with the vinyl chloride resin is improved, and the gloss and gelation characteristics of the molded product can be improved.
  • the amount of the monomer (e-2) used is 0 to 90% by mass, preferably 0 to 70% by mass, based on 100% by mass of the total monomer as a raw material for the polymer ( ⁇ ). More preferably, it is 0 to 60% by mass, still more preferably 0 to 50% by mass, particularly preferably 0 to 35% by mass, and most preferably 0 to 25% by mass.
  • the amount of the monomer (e-2) used is 90% by mass or less, the gelling properties of the vinyl chloride resin composition are not hindered and the appearance of the molded article is improved.
  • a polyfunctional monomer such as divinylbenzene, allyl methacrylate, dimethacrylic acid-1,3-butylene glycol, or triallyl cyanurate may be used.
  • the amount of the monomer used is preferably from 0.1 to 2% by mass, and more preferably from 0.2 to 1% by mass, based on 100% by mass of the total amount of monomers as the raw material for the polymer ( ⁇ ). If the amount of the polyfunctional monomer used is 2% by mass or less, it is preferable because a good molded appearance is not impaired.
  • the mass average molecular weight (Mw) of the polymer ( ⁇ ) is 2 million to 6 million, preferably 2 million to 5 million, more preferably 2 million to 4.5 million, and particularly preferably 2.5 million to 4.5 million.
  • Mw is 2 million or more, the gloss improvement effect of the molded article becomes good, and the gelation property improvement effect is exhibited.
  • Mw is a value obtained by measuring the tetrahydrofuran-soluble content of the polymer ( ⁇ ) by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the polymer ( ⁇ ) can be a non-rubber thermoplastic resin.
  • THF tetrahydrofuran
  • the ratio of dissolving in THF is 60% by mass or more in 100% by mass of the polymer ( ⁇ ). Is preferably 75% by mass or more, more preferably 90% by mass or more, and most preferably 95% by mass or more.
  • the ratio of the polymer ( ⁇ ) dissolved in THF is 60% by mass or more in 100% by mass of the polymer ( ⁇ )
  • the dispersion of the polymer ( ⁇ ) in the molded product becomes good, and the obtained molding Excellent surface gloss and gelling properties.
  • Various methods can be used as a method for producing the polymer ( ⁇ ).
  • the polymerization method include emulsion polymerization, suspension polymerization, and solution polymerization.
  • any method such as batch addition of monomers, dropwise addition, and divided addition of monomers may be used, and methods such as random copolymerization or block copolymerization may be used. Random copolymers obtained by the method of batch addition of are preferred.
  • the emulsifier that can be used when the emulsion polymerization method is applied is not particularly limited, and various types can be used in the same manner as the polymerization of the polymer (C).
  • an appropriate pH regulator can be used to prevent hydrolysis of the alkyl methacrylate.
  • the polymerization initiator may be a water-soluble, oil-soluble single type or redox type, for example, an ordinary inorganic initiator such as persulfate, or a sulfite, bisulfite, Alternatively, it can be used as a redox initiator in combination with thiosulfate or the like.
  • redox system starts using organic peroxides such as t-butyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, and azo compounds alone or in combination with sodium formaldehyde sulfoxylate. Although it can be used as an agent, the present invention is not limited to these specific examples.
  • the method for recovering the polymer ( ⁇ ) in powder form is not particularly limited, but in order to obtain a good molded appearance in the vinyl chloride resin composition, the obtained alkyl methacrylate ester polymer particle dispersion is used. It is preferable that the dispersion is cooled and poured into hot water in which the coagulant is dissolved, and is pulverized by a flocculation method in which it is suspected with stirring and dried as a slurry, or by spray drying.
  • the suspecting agent used in the coagulation method examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as formic acid and acetic acid; and aluminum sulfate, magnesium sulfate, calcium acetate, calcium chloride, and Examples thereof include inorganic salts such as calcium sulfate.
  • the spray drying method refers to a drying method by spraying the particle dispersion of the polymer in the form of fine droplets in a spray drying apparatus and then applying hot air.
  • Examples of the method for spraying the polymer particle dispersion in the spray drying apparatus in the form of fine droplets include a rotating disk type, a pressure nozzle type, a two-fluid nozzle type, and a pressurized two-fluid nozzle type.
  • the capacity of the spray drying apparatus may be any of a small capacity used in a laboratory and a large capacity industrially used. What is necessary is just to select suitably the structure of the supply part of the heating gas for drying in a spray-drying apparatus, and the structure of the discharge part of the heating gas for drying and dry powder according to the objective.
  • the temperature of the heating gas for drying is preferably 200 ° C. or less, and more preferably 120 to 180 ° C.
  • Examples of the chain transfer agent include alkyl mercaptans such as n-octyl mercaptan and t-dodecyl mercaptan.
  • the amount of the chain transfer agent is not particularly limited, but is preferably 0 to 2 parts by weight, more preferably 0 to 1 part by weight, and more preferably 0 to 1 part by weight with respect to 100 parts by weight of the polymer ( ⁇ ). More preferably, it is 0.5 mass part.
  • the addition amount is 0.1 to 10 parts by weight, preferably 0.1 to 7 parts by weight, based on 100 parts by weight of the vinyl chloride resin (A). 0.1 to 5 parts by mass is particularly preferable.
  • 0.1 mass part or more a glossiness can be provided to a molded object and, in addition, the gelatinization characteristic improvement effect expresses.
  • the excessive load to a molding machine is suppressed and productivity is not inhibited.
  • the addition amount is 0.1 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A).
  • the amount is preferably 0.1 to 5 parts by mass.
  • the vinyl chloride resin composition of the present invention may contain various additives such as conventional stabilizers, lubricants, or impact modifiers, as necessary. Can be added.
  • stabilizers include lead-based stabilizers such as tribasic lead sulfate, dibasic lead phosphite, basic lead sulfite, and lead silicate, potassium, magnesium, barium, zinc, cadmium, and lead.
  • lead-based stabilizers such as tribasic lead sulfate, dibasic lead phosphite, basic lead sulfite, and lead silicate, potassium, magnesium, barium, zinc, cadmium, and lead.
  • Metals Metal soaps derived from fatty acids such as 2-ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, hydroxystearic acid, oleic acid, ricinoleic acid, linoleic acid, and behenic acid Agent: Organotin-based stabilizer having an alkyl group, an ester group, a fatty acid group, a maleic acid group, or a sulfide-containing group; Ba-Zn-based, Ca-Zn-based, Ba-Ca-Sn-based, Ca -Mixed metal soap stabilizers such as Mg-Sn, Ca-Zn-Sn, Pb-Sn, and Pb-Ba-Ca; metal groups such as barium and zinc; Branched fatty acids such as ruhexanoic acid, isodecanoic acid, trialkylacetic acid, unsaturated fatty acids such as o
  • the addition amount of the stabilizer is not particularly limited, but is preferably 1 to 15 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A). By setting it as 1 mass part or more, thermal decomposition at the time of a process can be suppressed, and the fall of the impact strength of a molded object can be prevented by setting it as 15 mass parts or less.
  • the lubricant include pure hydrocarbon lubricants such as liquid paraffin, natural paraffin, micro wax, synthetic paraffin, and low molecular weight polyethylene; fatty acid lubricants such as halogenated hydrocarbon lubricants, higher fatty acids, and oxy fatty acids.
  • Fatty acid amide-based lubricants such as fatty acid amides and bis-fatty acid amides; lower alcohol esters of fatty acids and polyhydric alcohol esters of fatty acids such as glycerides; polyglycol esters of fatty acids and esters such as fatty alcohol esters (ester waxes) of fatty acids System soaps; metal soaps, fatty alcohols, polyhydric alcohols, polyglycols, polyglycerols, partial esters of fatty acids and polyhydric alcohols, and partial esters of fatty acids and polyglycols or polyglycerols. is there It may be used in combination of two or more.
  • the addition amount of the lubricant is not particularly limited, but is preferably 0.1 to 15 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A). By setting it as 0.1 mass part or more, adhesion to the molding machine of a resin composition can be reduced, and the gelatinization characteristic fall can be prevented by setting it as 15 mass parts or less.
  • an impact modifier for example, chlorinated polyethylene, polybutadiene, polyisoprene, polychloroprene, fluororubber, styrene-butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, Acrylic core-shell type rubber such as methyl methacrylate-styrene-butadiene copolymer rubber and acrylic ester-methacrylic ester copolymer; silicone-acrylic ester-methacrylic ester copolymer and silicone-acrylic ester -Silicone core-shell type rubber such as acrylonitrile-styrene copolymer; styrene-butadiene-styrene block copolymer rubber, styrene-isoprene-styrene block copolymer rubber, styrene-ethylene-butylene-styrene Lock copolymer
  • EPDM diene of EPDM
  • 1,4-hexadiene, dicyclopentadiene, methylene norbornene, ethylidene norbornene, propenyl norbornene, or the like can be used.
  • These impact modifiers can be used alone or in combination of two or more.
  • the addition amount of the impact modifier is not particularly limited, but is preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the vinyl chloride resin (A). By setting it as 1 mass part or more, the impact strength of a molded object can be improved, and the fall of a molded external appearance can be prevented by setting it as 20 mass parts or less.
  • a release agent a fluidity improver, a colorant, an antistatic agent, a surfactant, an antifogging agent, an antibacterial agent, a plasticizer, or a foaming agent can be used as long as the effects of the present invention are not impaired. Depending on the case, it can be blended arbitrarily.
  • the method for obtaining the vinyl chloride resin composition of the present invention is not particularly limited, and a generally known method can be used.
  • a predetermined amount of vinyl chloride resin (A) and PTFE (B), polymer (C ), A filler (D), and if necessary, an acrylic polymer ( ⁇ ) or an acrylic polymer powder (E) is mixed by a Henschel mixer, a Banbury mixer, a V-type mixer, a ribbon blender or the like. .
  • a polytetrafluoroethylene-containing powder (F) containing PTFE (B) and a polymer (C) is produced, and this is used as the vinyl chloride resin (A), It is preferable to mix with the filler (D) and, if necessary, the acrylic polymer ( ⁇ ) or the acrylic polymer powder (E). According to this method, the dispersion of PTFE (B) in the molded product becomes good, and the surface appearance and impact strength improving effect of the molded product obtained are excellent.
  • Polytetrafluoroethylene-containing powder (F) used in the present invention comprises PTFE (B) and a polymer (C) other than polytetrafluoroethylene.
  • PTFE-containing powder (F) has good powder handling properties such as powder flowability and powder bulk ratio.
  • the content of PTFE (B) is preferably 1 to 90% by mass, more preferably 5 to 85% by mass.
  • the content is more preferably 80% by mass, and particularly preferably 15 to 70% by mass.
  • the content of the polymer (C) is preferably 10 to 99% by mass, more preferably 15 to 95% by mass, and more preferably 20 to 90% in 100% by mass of the PTFE-containing powder (F). More preferably, it is more preferably 30% to 85% by weight.
  • the content of the polymer (C) 10% by mass or more the powder handling property of the PTFE-containing powder (F) becomes good and the dispersibility of the PTFE (B) in the molded product is good.
  • the appearance of the molded body is improved.
  • content of a polymer (C) 99 mass% or less the addition effect of PTFE (B) will express and the physical property of a molded object, an external appearance, and productivity will become favorable.
  • PTFE-containing powder (F) may contain additives as necessary in addition to PTFE (B) and polymer (C).
  • additives include powder fluidity modifiers such as inorganic salts and Aerosil.
  • a method for obtaining an aqueous dispersion of PTFE-containing powder (F) is not particularly limited, but a method of mixing an aqueous dispersion of PTFE (B) and an aqueous dispersion of polymer (C), PTFE (B)
  • Examples thereof include a method of emulsion polymerization of the remaining monomers constituting the polymer (C) in a dispersion obtained by mixing the liquids.
  • PTFE (B) aqueous dispersions examples include “Fluon AD911”, “Fullon AD912”, “Fullon AD915”, “Fullon AD938”, and “Fullon AD939” (trade name, manufactured by Asahi Glass Co., Ltd.), In addition, a commercial product (AD938E or the like) in which E or L follows the above product number is included.
  • PTFE (B) aqueous dispersions may be used alone or in combination of two or more.
  • the method for recovering the PTFE-containing powder (F) is not particularly limited, but the aggregation of PTFE (B) is suppressed. Therefore, the aqueous dispersion is poured into hot water in which the coagulant is dissolved, It is preferable to pulverize the mixture by a coagulation method in which it is suspected while stirring and dried as a slurry, or by a spray drying method. Among these methods, the coagulation method is more preferable.
  • suspecting agent used in the coagulation method examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as formic acid and acetic acid; and aluminum sulfate, magnesium sulfate, calcium acetate, calcium chloride, and Inorganic salts such as calcium sulfate are included.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid
  • organic acids such as formic acid and acetic acid
  • aluminum sulfate, magnesium sulfate, calcium acetate, calcium chloride, and Inorganic salts such as calcium sulfate are included.
  • the obtained vinyl chloride resin composition is applicable not only to extrusion molding using a kneading extruder such as a single-screw extruder or twin-screw extruder but also to ordinary known molding methods such as injection molding, hollow molding, and roll processing. Thus, various desired molded articles can be obtained.
  • the surface hardness (durometer D hardness) of the molded product obtained by molding the vinyl chloride resin composition of the present invention is preferably 65 or more, more preferably 70 or more, and particularly preferably 85 or more. . It becomes suitable for the use as a hard building member because durometer D hardness is 65 or more. As long as the effects of the present invention are not impaired, the surface hardness can be arbitrarily adjusted by generally known methods such as the amount of plasticizer added, the type of plasticizer, and the degree of polymerization of the vinyl chloride resin.
  • Processability evaluation was performed by filling a vinyl chloride resin composition into a Brabender plastic coder (manufactured by Brabender Co.) and evaluating gelation characteristics.
  • Gelation time was defined as the time required to reach the maximum torque from the start of kneading after preheating. It can be said that the faster the gelation time, the better the gelation characteristics and the better the workability.
  • a predetermined amount of various PTFE-containing powders (F) and an acrylic polymer ( ⁇ ) a predetermined amount of calcium carbonate as a filler (D) (Shiraka Hana CCR, manufactured by Shiraishi Calcium Co., Ltd.) 100 parts of vinyl chloride resin (TK-1000, manufactured by Shin-Etsu Chemical Co., Ltd., average polymerization degree 1050) as vinyl chloride resin (A), 3 parts of Ca—Zn composite stabilizer (manufactured by San Ace) as stabilizer, glycerin as lubricant Fatty acid ester (Loxiol GH-4, manufactured by Emery Oleo Co., Ltd.) 1.0 part, polymer composite ester (Loxiol VPN963, manufactured by Emery Oleo Co., Ltd.) 0.6 part, methyl methacrylate-butadiene-styrene as impact strength modifier 5.0 parts of a copo
  • a reaction vessel equipped with a stirring blade, a condenser, a thermocouple, and a nitrogen inlet 225 parts of distilled water, 80 parts of methyl methacrylate, 20 parts of acrylic acid-n-butyl, 0.2 part of n-octyl mercaptan, dodecyl 2.5 parts of sodium benzenesulfonate and 0.2 part of diisopropylbenzene hydroperoxide were charged and the atmosphere in the reaction vessel was replaced with nitrogen by passing through a nitrogen stream. Thereafter, when the temperature inside the system was raised to 60 ° C.
  • PTFE concentration 60 mass%) of PTFE dispersion AD939E (Asahi Glass Co., Ltd.), 239.0 parts of polymer dispersion (C-3) and 0.5 part of sodium dosylbenzenesulfonate were stirred.
  • the mixture was charged into a separable flask equipped with a condenser, a thermocouple, a nitrogen inlet, and a dropping funnel, and stirred at room temperature for 1 hour under a nitrogen stream.
  • the temperature in the system was raised to 80 ° C., and after adding a mixed solution of iron sulfate 0.001 part, ethylenediaminetetraacetic acid disodium 0.003 part, Rongalite salt 0.24 part and distilled water 10 parts, methacrylic acid was added. A mixture of 19 parts of methyl, 1 part of ethyl acrylate and 0.1 part of diisopropylbenzene hydroperoxide was added dropwise over 30 minutes. After completion of the addition, the internal temperature was maintained at 80 ° C. for 1 hour to complete the polymerization. . Through the series of operations, no solid content was observed, and a uniform particle dispersion was obtained. The solid content concentration of the particle dispersion was 28.5% by mass, and the mass average molecular weight (Mw) of the polymer contained in this dispersion was 450,000.
  • Mw mass average molecular weight
  • the temperature in the system was raised to 60 ° C., and a mixed solution of 80 parts of styrene, 20 parts of acrylonitrile and 0.5 part of cumene hydroperoxide was added dropwise over 2 hours.
  • the polymerization was completed by maintaining at 60 ° C. for 90 minutes to obtain a polymer dispersion (C-4).
  • the solid content concentration of the dispersion (C-4) was 28.8%, and the mass average molecular weight (Mw) of the polymer contained in the dispersion (C-4) was 350,000.
  • PTFE-containing powder 200 parts of the previously prepared PTFE dispersion (B-1) (50 parts of polytetrafluoroethylene) was charged into a reaction vessel equipped with a stirring blade, a condenser, a thermocouple, and a nitrogen inlet, and the polymer was dispersed therein.
  • Liquid (C-4) 173.6 parts ((polymer 50 parts) was charged and stirred until the internal liquid temperature reached 80 ° C. The internal liquid temperature reached 80 ° C. for 1 hour. Stirring was continued to obtain a mixture of both dispersions, and 100 parts of the resulting mixture of both dispersions was gradually added dropwise to 150 parts of a 4% by weight aqueous solution of aluminum sulfate to precipitate a solid. Next, the precipitate was separated, filtered, and dried to obtain PTFE-containing powder (F-4).
  • acrylic polymer ( ⁇ ) As the acrylic polymer ( ⁇ ), those shown below were used.
  • Production of acrylic polymer ( ⁇ -1) 150 parts of ion-exchanged water was charged into a reaction vessel equipped with a stirrer and a reflux condenser, to which 0.1 part of anhydrous sodium carbonate, 80 parts of methyl methacrylate and methacrylic acid were added. 20 parts of acid-n-butyl was added, and the inside of the container was replaced with nitrogen. Thereafter, 1.1 parts of sodium dodecyl sulfate was added, the reaction vessel was heated to 43 ° C. with stirring, 0.15 part of potassium persulfate was added to start the polymerization reaction, and the polymerization reaction was carried out by heating and stirring for 2 hours.
  • an acrylic polymer ( ⁇ -1) was obtained.
  • the obtained acrylic polymer ( ⁇ -1) particle dispersion is cooled and then spray-dried under conditions of an inlet temperature of 150 ° C. and an outlet temperature of 65 ° C. to obtain a powdery acrylic polymer powder (E-1 ).
  • the polymerization rate was 99% or more, and the mass average molecular weight was 3.1 million.
  • composition obtained was filled into a Brabender plastic coder (manufactured by Brabender, 160 ° C., preheating: 2 minutes, screw rotation speed: 30 rpm, filling amount: 65 g), and gelation characteristics were evaluated.
  • Each vinyl chloride resin composition was obtained.
  • the obtained pellet-like vinyl chloride resin composition was added to a 30 mm single-screw extruder (manufactured by GM Engineering, 100-150-170-180-180-180-180 ° C. (C1-C2-C3-C4-C5-A- D), melt extrusion was performed at a screw rotation speed of 20 rpm) to obtain a square bar-shaped vinyl chloride resin molded body having a width of 10 mm and a thickness of 4 mm.
  • the discharge amount of each vinyl chloride resin molded body was measured, and productivity was evaluated.
  • the obtained molded body was cut to a length of 8 cm, a test piece with a V-shaped notch having a depth of 2 mm was produced, and subjected to an impact strength test. Moreover, the obtained molded object was cut
  • Table 2 Composition example of vinyl chloride resin composition and properties of the obtained molded body
  • Examples 1 to 7 From the results shown in Table 2, since PTFE-containing powder (F) is contained at a predetermined content, no PTFE-containing powder (Comparative Example 1) and PTFE containing no polymer (C) are contained in any of the Examples. Compared with the example (Comparative Example 2) containing the powder (F) and the example containing the PTFE-containing powder (F) exceeding the predetermined content (Comparative Example 3), productivity (discharge amount), appearance of the molded body It was found that the physical properties of the molded body were remarkably improved. Moreover, in any Example, it turned out that a gelling characteristic improves notably and the influence on a heat contraction rate is also minute.
  • Example 8 By containing PTFE-containing powder (F) at a predetermined content, the productivity (discharge amount), the appearance of the molded body, and the physical properties of the molded body have been remarkably improved, and by further containing an acrylic polymer, molding is achieved. It was found that the appearance of the body was given gloss.
  • Example 13 By containing the PTFE-containing powder (F) at a predetermined content, productivity (discharge amount), appearance of the molded body, and physical properties of the molded body are remarkably improved, and further by containing an acrylic polymer. It can be seen that gloss is imparted to the appearance of the molded body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、充填剤の添加量を増やした場合においても、生産性に優れ、低熱収縮性・耐衝撃性・成形体表面外観に優れる成形体を得ることが可能な塩化ビニル樹脂組成物及びそれを用いた成形体を提供する。具体的には、例えば、塩化ビニル樹脂(A)、ポリテトラフルオロエチレン(B)、前記ポリテトラフルオロエチレン以外の重合体(C)及び充填剤(D)を含有する塩化ビニル樹脂組成物であって、前記塩化ビニル樹脂(A)100質量部に対し、前記ポリテトラフルオロエチレン(B)を0.001~3質量部、前記充填剤(D)を1~2000質量部含む、塩化ビニル樹脂組成物が提供される。

Description

塩化ビニル樹脂組成物及び成形体 関連出願の相互参照
 本願は、特願2015-179794号(出願日:2015年9月11日)の優先権の利益を享受する出願であり、この内容は引用することによりその全体が本明細書に取り込まれる。
 本発明は、塩化ビニル樹脂組成物に関するものである。
 塩化ビニル樹脂は、耐薬品性・耐候性・難燃性・電気絶縁性等に優れ、かつ安価であることから、種々の成形体用の汎用樹脂材料として広く用いられている。特に熱伝導性・コスト等の面から建材部材としても広く普及している。
 このような成形体用の樹脂には、種々の目的で充填剤が併用される。
 近年、環境対応(石油由来原料の削減)、コスト削減の点から、樹脂組成物中の塩化ビニル樹脂の量を減らし、塩化ビニル樹脂より安価である充填剤の添加量を増やすことが望まれている。
 しかし、樹脂組成物中の充填剤の量を増やすと、成形体を成形する際の加工性(ゲル化特性)、生産性、耐衝撃性、外観等が低下する。
 このため、特許文献1,2では、樹脂組成物中にポリテトラフルオロエチレンが添加されている。
特開2007-326908号公報 特開2002-327124号公報
 しかし、特許文献1に記載の樹脂組成物は、ポリテトラフルオロエチレンの分散性が不十分で、成形体の外観、物性が低下しやすい。
 また、特許文献2に記載の樹脂組成物は、外観が低下しやすく、生産性も不十分となりやすく、成形体の低熱収縮性が損なわれやすい。
 本発明の課題は、充填剤の添加量を増やした場合においても、生産性に優れ、低熱収縮性・耐衝撃性・成形体表面外観に優れる成形体を得ることが可能な塩化ビニル樹脂組成物及びそれを用いた成形体を提供することである。
 前記目的は以下の本発明(1)~(12)によって達成される。
(1)塩化ビニル樹脂(A)、
 ポリテトラフルオロエチレン(B)、
 前記ポリテトラフルオロエチレン以外の重合体(C)及び
 充填剤(D)
を含有する塩化ビニル樹脂組成物であって、
前記塩化ビニル樹脂(A)100質量部に対し、
 前記ポリテトラフルオロエチレン(B)を0.001~3質量部、
 前記充填剤(D)を1~2000質量部
含む、塩化ビニル樹脂組成物。
(2)前記重合体(C)が、(メタ)アクリル酸エステル系単量体、芳香族ビニル系単量体、及びシアン化ビニル系単量体からなる群より選ばれる1種以上の単量体に由来する構成単位を50質量%以上含む、上記(1)に記載の塩化ビニル樹脂組成物。
(3)前記重合体(C)が、エステル部位に炭素数1~12のアルキル基を有する(メタ)アクリル酸エステル系単量体、スチレン、アクリロニトリルからなる群より選ばれる1種以上の単量体に由来する構成単位を50質量%以上含む、上記(1)又は(2)に記載の塩化ビニル樹脂組成物。
(4)前記重合体(C)が、エステル部位に炭素数1~12のアルキル基を有する(メタ)アクリル酸エステル系単量体に由来する構成単位を50質量%以上含む、上記(1)~(3)のいずれかに記載の塩化ビニル樹脂組成物。
(5)前記重合体(C)が、エステル部位に炭素数1~5のアルキル基を有する(メタ)アクリル酸エステル系単量体に由来する構成単位を50質量%以上含む、上記(1)~(4)のいずれかに記載の塩化ビニル樹脂組成物。
(6)前記重合体(C)の質量平均分子量(Mw)が1万~150万である、上記(1)~(5)のいずれかに記載の塩化ビニル樹脂組成物。
(7)前記ポリテトラフルオロエチレン(B)の数平均分子量(Mn)が500万~2000万である、上記(1)~(6)のいずれかに記載の塩化ビニル樹脂組成物。
(8)質量平均分子量(Mw)200万~600万のアクリル系重合体0.1~10質量部をさらに含む、上記(6)に記載の塩化ビニル樹脂組成物。
(9)前記充填剤(D)を10~2000質量部含む、上記(1)~(8)のいずれかに記載の塩化ビニル樹脂組成物。
(10)前記ポリテトラフルオロエチレン(B)を0.001~1.5質量部含む、上記(1)~(9)のいずれかに記載の塩化ビニル樹脂組成物。
(11)上記(1)~(10)のいずれかに記載の塩化ビニル樹脂組成物を成形してなる、樹脂成形体。
(12)前記ポリテトラフルオロエチレン(B)と前記重合体(C)とを含むポリテトラフルオロエチレン含有粉体(F)を前記塩化ビニル樹脂(A)及び前記充填剤(D)と混合することを含む、上記(1)~(10)のいずれかに記載の塩化ビニル樹脂組成物の製造方法。
 本発明の塩化ビニル樹脂組成物は、充填剤の添加量を増やした場合においても、優れた低熱収縮性・耐衝撃性・成形体表面外観を有する塩化ビニル樹脂成形体を生産性良く提供することができる。
 以下で本発明を詳細に説明する。
塩化ビニル樹脂(A)
 本発明に用いる塩化ビニル樹脂(A)の種類については特に制限されるものではなく、例えば塩化ビニルの単独重合体、後塩素化塩化ビニル重合体、部分架橋塩化ビニル重合体あるいは他のビニル化合物と塩化ビニルとの共重合体、及びこれらの混合物が挙げられる。
 上記他のビニル化合物は特に限定されないが、具体例としては、酢酸ビニル、及びプロピオン酸ビニル等の脂肪酸ビニルエステル;メタクリル酸メチル、及びメタクリル酸エチル等のメタクリル酸アルキルエステル;アクリル酸エチル、及びアクリル酸ブチル等のアクリル酸アルキルエステル;エチレン、プロピレン、及びスチレン等のα‐オレフィン;ビニルメチルエーテル、及びビニルブチルエーテル等のアルキルビニルエーテル;並びにアクリル酸、メタクリル酸、及び無水マレイン酸等の不飽和カルボン酸又はその酸無水物が挙げられ、これらは1種又は2種以上を組み合わせて用いてもよい。上記の他のビニル化合物の共重合量が30質量%以下であれば、塩化ビニル樹脂の本来の特徴を損なわないので好ましい。
 さらに、これらの塩化ビニル樹脂は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、本発明に用いる塩化ビニル樹脂(A)の平均重合度は、300~5,000の範囲にあることが好ましく、500~3,000のものがより好ましい。平均重合度を300以上とすることで、衝撃強度が良好となる。また、平均重合度を5,000以下とすることで、ゲル化特性が良好となる。
 本発明に用いる塩化ビニル樹脂(A)の製造方法は特に制限はなく、乳化重合法、懸濁重合法、塊状重合法等の種々の重合法で製造したものを使用することができる。
ポリテトラフルオロエチレン(B)
 ポリテトラフルオロエチレン(以下、「PTFE」という)(B)を用いることで、塩化ビニル樹脂のゲル化特性を向上させることができ、加熱溶融混練時に滑性を付与することができる。
 PTFE(B)の数平均分子量は特に制限されないが、100万~5000万であることが好ましく、100万~3000万であることがより好ましく、150万~2000万であることがさらに好ましく、500万~2000万であることが特に好ましい。
 PTFE(B)の数平均分子量を100万以上とすることで、PTFE(B)を塩化ビニル樹脂(A)に配合した際のゲル化特性向上効果が充分となる。また、PTFE(B)の数平均分子量を5000万以下とすることで、PTFE(B)を塩化ビニル樹脂(A)に配合した際のPTFE(B)の分散性が良好となり、得られる成形体の表面外観に優れるとともに、溶融粘度・溶融張力が過剰とならないことで、PTFE(B)の生産性向上効果を妨げない。ここで、PTFEの数平均分子量(Mn)は、Suwaら(Journal of Applied Polymer Science, 17, 3253(1973))の方法に従い、示差走査熱量計(DSC)を用いて結晶化熱ΔHc(cal/g)を測定し、下式に基づいて算出したもので示される。
 Mn=2.1×10^10×ΔHc^(-5.16)
 PTFE(B)は、含フッ素界面活性剤を用いてテトラフルオロエチレンモノマーを乳化重合させることにより得られる。なお、乳化重合の際には、PTFEの特性を損なわない範囲で、共重合成分としてヘキサフルオロプロピレン、クロロトリフルオロエチレン、フルオロアルキルエチレン、及びパーフルオロアルキルビニルエーテル等の含フッ素オレフィン、並びに(メタ)アクリル酸パーフルオロアルキルエステル等の(メタ)アクリル酸含フッ素アルキルエステルを用いることができる。テトラフルオロエチレンと共重合する他の単量体は、PTFEの持つゲル化特性向上効果及び滑性等の特性を損なわない範囲で用いることができ、PTFE 100質量%中、10質量%以下であることが好ましい。
 樹脂組成物において、上記PTFE(B)は、塩化ビニル樹脂(A)100質量部に対して、0.001~3質量部となるよう添加され、0.001~2質量部となるよう添加されることが好ましく、0.001~1.5質量部となるよう添加されることがより好ましく、0.001~1質量部となるよう添加されることがさらに好ましく、0.001~0.75質量部となるよう添加されることがとりわけ好ましく、0.05~0.5質量部となるよう添加されることがさらにとりわけ好ましく、0.1~0.3質量部とすることがさらによりとりわけ好ましい。
 PTFE成分を0.001質量部以上とすることでゲル化特性向上効果が発現し、成形体物性及び外観が良好となるとともに、加熱溶融混練時にPTFEの持つ滑性が発現することで生産性が向上する。また、PTFE成分を3質量部以下とすることで、加熱溶融混練時の滑性が過剰とならず、加えて、過剰な溶融張力・溶融粘度が発現しないことから、生産性向上効果及びゲル化特性向上効果を妨げず、良好な成形体物性と良好な外観を得ることができる。
ポリテトラフルオロエチレン以外の重合体(C)
 本発明の樹脂組成物では、PTFE(B)とともに重合体(C)を存在させることで、PTFE(B)の塩化ビニル樹脂(A)に対する分散性を向上させることができ、成形体表面外観が良好となる。
 本発明に用いる重合体(C)は、特に制限されるものではないが、塩化ビニル樹脂(A)に配合する際のPTFE(B)の分散性を向上させる目的から、塩化ビニル樹脂との相容性が高いものであることが好ましい。重合体(C)が塩化ビニル樹脂(A)との相容性に優れることで、PTFE(B)の成形体中での分散が良好となり、得られる成形体の表面外観及び衝撃強度向上効果に優れる。
 重合体(C)を構成する単量体の具体例としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸-2-エチルヘキシル、メタクリル酸-2-エチルヘキシル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸トリデシル、メタクリル酸トリデシル、アクリル酸オクタデシル、メタクリル酸オクタデシル、アクリル酸シクロヘキシル、及びメタクリル酸シクロヘキシル等の(メタ)アクリル酸エステル系単量体;アクリロニトリル、及びメタクリロニトリル等のシアン化ビニル系単量体;スチレン、p-メチルスチレン、o-メチルスチレン、p-クロルスチレン、o-クロルスチレン、p-メトキシスチレン、o-メトキシスチレン、及びα-メチルスチレン等の芳香族ビニル系単量体;ビニルメチルエーテル、及びビニルエチルエーテル等のビニルエーテル系単量体:酢酸ビニル、及び酪酸ビニル等のカルボン酸ビニル系単量体;エチレン、プロピレン、及びイソブチレン等のオレフィン系単量体;並びにブタジエン、及びイソプレン等のジエン系単量体を挙げることができる。これらの単量体は、目的に応じて1種あるいは2種以上組み合わせて用いることができる。
 例えば、重合体としては、上記1種以上の単量体に由来する構成単位からなる重合体とすることができる。
 中でも、重合体(C)は、塩化ビニル樹脂(A)との相容性の点から、(メタ)アクリル酸エステル系単量体、芳香族ビニル系単量体、及びシアン化ビニル系単量体からなる群より選ばれる1種以上の単量体に由来する構成単位を50質量%以上含有することが好ましい。また、エステル部位に炭素数1~12のアルキル基を有する(メタ)アクリル酸エステル系単量体、スチレン、及びアクリロニトリルからなる群より選ばれる1種以上の単量体に由来する構成単位を50質量%以上含有することがより好ましい。また、エステル部位に炭素数1~12のアルキル基を有する(メタ)アクリル酸エステル系単量体に由来する構成単位を50質量%以上含有することがさらに好ましい。また、エステル部位に炭素数1~5のアルキル基を有する(メタ)アクリル酸エステル系単量体に由来する構成単位を50質量%以上含有することが特に好ましい。重合体における前記構成単位の割合は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましく、100質量%が最も好ましい。
 ここで、エステル部位に炭素数1~12のアルキル基を有する(メタ)アクリル酸エステル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ドデシル、アクリル酸メチル、アクリル酸エチル、及びアクリル酸ブチルが挙げられる。
 (メタ)アクリル酸エステル系単量体、芳香族ビニル系単量体、及びシアン化ビニル系単量体からなる群より選ばれる1種以上の単量体に由来する構成単位を50質量%以上含有することで、塩化ビニル樹脂(A)との相容性が良好となり、PTFE(B)の分散性を高められることから、得られる成形体の表面外観及び衝撃強度向上効果に優れる。
 重合体(C)の質量平均分子量(Mw)は、1万~150万が好ましく、1万~100万がさらに好ましく、1万~50万が特に好ましい。Mwを1万以上とすることでPTFE含有粉体(F)として使用する際のPTFE(B)の分散性を高めることができ、150万以下とすることで、重合体(C)の分散性を高めることができる。ここでMwは、重合体(C)のテトラヒドロフラン可溶分をゲル浸透クロマトグラフィー(GPC)により測定した値である。
 質量平均分子量(Mw)を調節する方法としては、重合時の連鎖移動剤、開始剤の使用量の調節及び重合温度の調節等の常用の方法を用いることができる。
 重合体(C)は、非ゴム系の熱可塑性樹脂であり得る。
 重合体(C)は、重合体(C)0.01gをテトラヒドロフラン(THF)10mLに分散した際に、THFに溶解する比率が、重合体(C)100質量%中60質量%以上であることが好ましく、75質量%以上であることがさらに好ましく、90%質量以上であることが特に好ましく、95質量%以上であることが最も好ましい。
 重合体(C)のTHFに溶解する比率を、重合体(C)100質量%中60質量%以上とすることで、PTFE(B)の成形体中での分散が良好となり、得られる成形体の表面外観及び衝撃強度向上効果に優れる。
 重合体(C)の重合には、種々の方法を用いることができ、例えば重合方法としては、乳化重合、懸濁重合、溶液重合が挙げられる。これらの重合方法の中でも、後述するポリテトラフルオロエチレン含有粉体の製造が容易となることから、乳化重合、ソープフリー乳化重合が好ましく、乳化重合がより好ましい。
 乳化重合法を適用する場合に用いることのできる乳化剤としては、特に限定されるものではなく各種のものが使用でき、例えば、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルリン酸エステル塩、及びジアルキルスルホコハク酸塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン酸脂肪エステル、及びグリセリン脂肪酸エステル等のノニオン性界面活性剤;並びにアルキルアミン塩等カチオン性界面活性剤を使用することができる。また、これらの乳化剤は単独で又は併用して使用することができる。
 また、使用乳化剤の種類により重合系のpHがアルカリ側になるときは、メタクリル酸アルキルエステルの加水分解を防止するために適当なpH調節剤を使用することもできる。pH調節剤としては、ホウ酸-塩化カリウム-水酸化カリウム、リン酸二水素カリウム-リン酸水素二ナトリウム、ホウ酸-塩化カリウム-炭酸カリウム、クエン酸-クエン酸水素カリウム、リン酸二水素カリウム-ホウ砂、若しくはリン酸水素二ナトリウム-クエン酸等又はこれらの混合物を使用することができる。
 また、重合開始剤としては、水溶性、油溶性の単独系もしくはレドックス系のものでよく、例えば、通常の過硫酸塩等の無機開始剤を単独で用いるか、又は亜硫酸塩、亜硫酸水素塩、若しくはチオ硫酸塩等と組み合わせてレドックス系開始剤として用いることもできる。さらにt-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、過酸化ベンゾイル、若しくは過酸化ラウロイル等の有機過酸化物、又はアゾ化合物等を単独で用いるかあるいはナトリウムホルムアルデヒドスルホキシレート等と組み合わせてレドックス系開始剤として用いることもできるが、本発明はこれら具体例のみに限定されるものではない。
 連鎖移動剤としては、例えばn-オクチルメルカプタン、t-ドデシルメルカプタン等のアルキルメルカプタンが挙げられる。
 連鎖移動剤の量は特に制限されないが、例えば重合体(C)100質量部に対して、0~3質量部であることが好ましく、0.01~3質量部であることがより好ましく、0.1~3質量部であることが更に好ましい。
 樹脂組成物において、上記重合体(C)は、塩化ビニル樹脂(A)100質量部に対して、0.001~30質量部となるよう添加されることが好ましく、0.001~15質量部となるよう添加されることがより好ましく、0.001~12質量部となるよう添加されることがさらに好ましく、0.001~6質量部となるよう添加されることが特に好ましく、0.001~3質量部となるよう添加されることがとりわけ好ましく、0.05~1.5質量部となるよう添加されることがさらにとりわけ好ましく、0.1~1質量部とすることがさらによりとりわけ好ましい。
 重合体(C)を0.001質量部以上とすることで、PTFE(B)の成形体中での分散が良好となり、得られる成形体の表面外観及び衝撃強度向上効果に優れる。また、重合体(C)を30質量部以下とすることで、衝撃強度の低下を抑えることができる。
充填剤(D)
 本発明に用いる充填剤(D)としては、金属粉、酸化物、水酸化物、珪酸及び珪酸塩、炭酸塩、炭化珪素、植物性繊維、動物性繊維、並びに合成繊維等が挙げられ、これらの具体的な代表例としては、アルミニウム粉、銅粉、鉄粉、アルミナ、天然木材、紙、炭酸カルシウム、タルク、硝子繊維、炭酸マグネシウム、マイカ、カオリン、硫酸カルシウム、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、シリカ、クレー、ゼオライト、アセテート粉、絹粉、アラミド繊維、アゾジカルボンアミド、グラファイト、及び再生充填剤材料が挙げられる。これらは単独で、又は2種以上を混合して用いることができる。
 また、難燃性向上目的に充填剤を添加する場合、例えば金属水酸化物、臭素系化合物、トリアジン環含有化合物、亜鉛化合物、リン系化合物、ハロゲン系化合物、シリコン系化合物、イントメッセント系化合物、又は酸化アンチモンが使用できる。これらは1種又は2種以上を組み合わせて用いることができる。
 充填剤(D)の添加量については、塩化ビニル樹脂(A)100質量部に対して、1~2000質量部であり、6~2000質量部が好ましく、10~2000質量部がより好ましく、10~500質量部がさらに好ましく、10~200質量部がとりわけ好ましく、20~150質量部がさらにとりわけ好ましい。1質量部以上とすることで、成形体に適度な剛性を付与できるとともに、充填剤増量効果(石油由来成分減量、原料コスト削減)が見込まれる。加えて、充填剤添加量を10質量部以上とすることで充填剤増量要求の高まりに応えることができ、充填剤添加量を30質量部以上とすることで強い充填剤増量要求の高まりに応えることができ、40質量部以上とすることでより強い充填剤増量要求の高まりに応えることができ、50質量部以上とすることでさらなる充填剤増量要求の高まりにも応えることができることから好ましい。また、2000質量部以下とすることで、成形体外観の平滑性低下を防ぐことができる。
アクリル系重合体(δ)またはアクリル系重合体粉体(E)
 本発明の樹脂組成物は、高い光沢付与とさらなるゲル化特性向上を目的にさらにアクリル系重合体(δ)またはアクリル系重合体粉体(E)を含んでもよい。
 アクリル系重合体粉体(E)は、アルキルエステル部のアルキル基が炭素数1~10のアルキル基であるメタクリル酸アルキルエステル(e-1)(以下、単量体(e-1)という)10~100質量%、その他の共重合し得る単量体(e-2)(以下、単量体(e-2)という)0~90質量%を重合して得られるメタクリル酸アルキルエステル系共重合体(以下、重合体(δ)という)を粉体状で回収して得られる重合体粉体である。
 本発明に用いる単量体(e-1)としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ペンチル、メタクリル酸-2-エチルヘキシル、及びメタクリル酸シクロヘキシルが挙げられる。中でも、成形体の外観向上能及び粉体回収性が良好となることから、アルキル基の炭素数が1~5であるメタクリル酸アルキルエステル、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル及びメタクリル酸ペンチルが好ましい。
 これらメタクリル酸アルキルエステルは、目的に応じて1種あるいは2種以上組み合わせて用いることができる。
 単量体(e-2)としては、単量体(e-1)と共重合し得る単量体であれば特に限定されないが、例えば、アクリル酸エチル、アクリル酸ブチル、アクリル酸-2-エチルヘキシル、アクリル酸ベンジル、及びアクリル酸フェニル等のアクリル酸エステル;メタクリル酸ベンジル、及びメタクリル酸フェニル等のメタクリル酸芳香族エステル;スチレン、α-メチルスチレン、及びビニルトルエン等の芳香族ビニル化合物;アクリロニトリル、及びメタクリロニトリル等のシアン化ビニル化合物;酢酸ビニル等のビニルエステル;並びに無水マレイン酸等の酸無水物が挙げられる。これらは1種あるいは2種以上を組み合わせて用いることができる。
 単量体(e-1)の使用量は、上述の重合体(δ)の原料となる全単量体を100質量%としたとき、10~100質量%であり、好ましくは30~100質量%、より好ましくは40~100質量%、さらに好ましくは50~100質量%、特に好ましくは65~100質量%、最も好ましくは75~100質量%である。単量体(e-1)の使用量を10質量%以上とすることで塩化ビニル樹脂との相容性が良好となり、成形体の光沢及びゲル化特性を向上することができる。
 単量体(e-2)の使用量は、重合体(δ)の原料となる全単量体を100質量%としたとき、0~90質量%であり、好ましくは0~70質量%、より好ましくは0~60質量%、さらに好ましくは0~50質量%、特に好ましくは0~35質量%、最も好ましくは0~25質量%である。単量体(e-2)の使用量を90質量%以下とすることで、塩化ビニル樹脂組成物のゲル化特性を阻害せず、成形体外観が良好となる。
 単量体(e-2)として、ジビニルベンゼン、メタクリル酸アリル、ジメタクリル酸-1,3-ブチレングリコール、又はシアヌル酸トリアリル等の多官能性単量体を使用してもよいが、その単量体の使用量は、重合体(δ)の原料となる全単量体を100質量%としたとき、0.1~2質量%が好ましく、0.2~1質量%がより好ましい。この多官能性単量体の使用量が2質量%以下であれば、良好な成形外観を阻害しないので好ましい。
 重合体(δ)の質量平均分子量(Mw)は、200万~600万であり、200万~500万が好ましく、200万~450万がさらに好ましく、250万~450万が特に好ましい。Mwを200万以上とすることで成形体の光沢向上効果が良好となり、またゲル化特性向上効果が発現する。また600万以下とすることで、重合体(δ)の成形体中での分散性が良好となり外観向上を阻害しない。ここでMwは、重合体(δ)のテトラヒドロフラン可溶分をゲル浸透クロマトグラフィー(GPC)により測定した値である。
 質量平均分子量(Mw)を調節する方法としては、重合時の連鎖移動剤、開始剤の使用量の調節及び重合温度の調節等の常用の方法を用いることができる。
 重合体(δ)は、非ゴム系の熱可塑性樹脂であり得る。
 重合体(δ)は、重合体(δ)0.01gをテトラヒドロフラン(THF)10mLに分散した際に、THFに溶解する比率が、重合体(δ)100質量%中60質量%以上であることが好ましく、75質量%以上であることがさらに好ましく、90%質量以上であることが特に好ましく、95質量%以上であることが最も好ましい。
 重合体(δ)のTHFに溶解する比率を、重合体(δ)100質量%中60質量%以上とすることで、重合体(δ)の成形体中での分散が良好となり、得られる成形体の表面光沢及びゲル化特性に優れる。
 重合体(δ)を製造する方法としては、種々の方法を用いることができ、例えば重合方法としては、乳化重合、懸濁重合、及び溶液重合が挙げられる。さらに、単量体の一括添加、滴下、及び単量体の分割添加等いずれの方法も用いてもよく、またランダム共重合、又はブロック共重合等の方法を用いてもよいが、単量体の一括添加による方法で得られるランダム共重合体が好ましい。
 乳化重合法を適用する場合に用いることのできる乳化剤としては、特に限定されるものではなく、上記重合体(C)の重合と同様に各種のものが使用できる。
 また、使用乳化剤の種類により重合系のpHがアルカリ側になるときは、メタクリル酸アルキルエステルの加水分解を防止するために適当なpH調節剤を使用することもできる。
 また、重合開始剤としては、水溶性、油溶性の単独系もしくはレドックス系のものでよく、例えば、通常の過硫酸塩等の無機開始剤を単独で用いるか、又は亜硫酸塩、亜硫酸水素塩、若しくはチオ硫酸塩等と組み合わせてレドックス系開始剤として用いることもできる。さらにt-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、過酸化ベンゾイル、及び過酸化ラウロイル等の有機過酸化物、並びにアゾ化合物等を単独で用いるかあるいはナトリウムホルムアルデヒドスルホキシレート等と組み合わせてレドックス系開始剤として用いることもできるが、本発明はこれら具体例のみに限定されるものではない。
 重合体(δ)を粉体状で回収する方法は、特に制限されないが、塩化ビニル樹脂組成物における良好な成形外観を得るためには、得られたメタクリル酸アルキルエステル系重合体粒子分散液を冷却し、その分散液を、凝析剤を溶解した熱水中に投入し、攪拌しながら疑析させてスラリーとし乾燥する凝析法か、噴霧乾燥法によって粉体化することが好ましい。
 凝析法に用いる疑析剤としては、例えば、塩酸、硫酸、硝酸、及び燐酸等の無機酸;蟻酸、及び酢酸等の有機酸;並びに、硫酸アルミニウム、硫酸マグネシウム、酢酸カルシウム、塩化カルシウム、及び硫駿カルシウム等の無機塩が挙げられる。
 また噴霧乾燥法は、噴霧乾燥装置中に本重合体の粒子分散液を微小液滴状に噴霧した後に熱風を当てることによる乾燥法をいう。
 噴霧乾燥装置中に本重合体の粒子分散液を微小液滴状に噴霧する方法としては、例えば、回転円盤式、圧力ノズル式、二流体ノズル式、及び加圧二流体ノズル式が挙げられる。
 噴霧乾燥装置の容量としては、実験室で使用するような小規模な容量から工業的に使用するような大規模な容量までのいずれであってもよい。
 噴霧乾燥装置における乾燥用加熱ガスの供給部の構造、乾燥用加熱ガス及び乾燥粉末の排出部の構造は、目的に応じて適宜選択すればよい。
 乾燥用加熱ガスの温度は200℃以下が好ましく、120~180℃がより好ましい。
 連鎖移動剤としては、例えばn-オクチルメルカプタン、t-ドデシルメルカプタン等のアルキルメルカプタンが挙げられる。
 連鎖移動剤の量は特に制限されないが、例えば、重合体(δ)100質量部に対して、0~2質量部であることが好ましく、0~1質量部であることがより好ましく、0~0.5質量部であることが更に好ましい。
 アクリル系重合体(δ)を添加する場合、その添加量は、塩化ビニル樹脂(A)100質量部に対して、0.1~10質量部であり、0.1~7質量部が好ましく、0.1~5質量部が特に好ましい。0.1質量部以上とすることで、成形体に光沢を付与することができ、加えてゲル化特性向上効果が発現する。また、10質量部以下とすることで、成形機への過剰な負荷を抑え、生産性を阻害しない。
 アクリル系重合体粉体(E)を添加する場合、その添加量は、塩化ビニル樹脂(A)100質量部に対して、0.1~10質量部であり、0.1~7質量部が好ましく、0.1~5質量部が特に好ましい。0.1質量部以上とすることで、成形体に光沢を付与することができ、加えてゲル化特性向上効果が発現する。また、10質量部以下とすることで、成形機への過剰な負荷を抑え、生産性を阻害しない。
 本発明の塩化ビニル樹脂組成物には、本発明の効果を損なわない限りにおいて、その目的に応じて、慣用の安定剤、滑剤、又は耐衝撃性改質剤等の各種添加剤を必要に応じて添加することができる。
 安定剤としては、例えば、三塩基性硫酸鉛、二塩基性亜リン酸鉛、塩基性亜硫酸鉛、ケイ酸鉛等の鉛系安定剤、カリウム、マグネシウム、バリウム、亜鉛、カドミウム、及び鉛等の金属;2‐エチルヘキサン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、ヒドロキシステアリン酸、オレイン酸、リシノール酸、リノール酸、及びベヘニン酸等の脂肪酸から誘導される金属石けん系安定剤;アルキル基、エステル基、脂肪酸基、マレイン酸基、又は含硫化物基等を有してなる有機スズ系安定剤;Ba-Zn系、Ca-Zn系、Ba-Ca-Sn系、Ca-Mg-Sn系、Ca-Zn-Sn系、Pb-Sn系、及びPb-Ba-Ca系等の複合金属石けん系安定剤;バリウム、及び亜鉛等の金属基;2-エチルヘキサン酸、イソデカン酸、トリアルキル酢酸等の分岐脂肪酸、オレイン酸、リシノール酸、リノール酸等の不飽和脂肪酸、ナフテン酸等の脂環族酸、石炭酸、安息香酸、サリチル酸、及びそれらの置換誘導体等の芳香族酸といった有機酸の通常二種以上から誘導される金属塩系安定剤;これら安定剤を石油系炭化水素、アルコール、又はグリセリン誘導体等の有機溶剤に溶解し、さらに亜リン酸エステル、エポキシ化合物、発色防止剤、透明性改良剤、光安定剤、酸化防止剤、ブリードアウト防止剤、又は滑剤等の安定化助剤を配合してなる金属塩液状安定剤等といった金属系安定剤;エポキシ樹脂、及びエポキシ化脂肪酸アルキルエステル等のエポキシ化合物、並びに有機亜リン酸エステル等の非金属系安定剤が挙げられ、これらは1種又は2種以上組み合わせて用いられる。
 安定剤の添加量については特に制限されないが、塩化ビニル樹脂(A)100質量部に対して、1~15質量部が好ましく、さらに好ましくは1~8質量部である。1質量部以上とすることで、加工時の熱分解を抑制することができ、15質量部以下とすることで、成形体の衝撃強度の低下を防ぐことができる。
 また、滑剤としては、例えば、流動パラフィン、天然パラフィン、マイクロワックス、合成パラフィン、及び低分子量ポリエチレン等の純炭化水素系滑剤;ハロゲン化炭化水素系滑剤、高級脂肪酸、及びオキシ脂肪酸等の脂肪酸系滑剤;脂肪酸アミド、及びビス脂肪酸アミド等の脂肪酸アミド系滑剤;脂肪酸の低級アルコールエステル及びグリセリド等の脂肪酸の多価アルコールエステル;脂肪酸のポリグリコールエステル、及び脂肪酸の脂肪アルコールエステル(エステルワックス)等のエステル系滑剤;金属石けん、脂肪アルコール、多価アルコール、ポリグリコール、ポリグリセロール、脂肪酸と多価アルコールとの部分エステル、及び、脂肪酸とポリグリコール又はポリグリセロールとの部分エステルが挙げられ、これらは1種あるいは2種以上組み合わせて使用することができる。
 滑剤の添加量については特に制限されないが、塩化ビニル樹脂(A)100質量部に対して、0.1~15質量部が好ましく、0.1~5質量部がさらに好ましい。0.1質量部以上とすることで、樹脂組成物の成形機への付着を低減することができ、15質量部以下とすることで、ゲル化特性の低下を防ぐことができる。
 さらに、耐衝撃性改質剤を配合する場合には、例えば、塩素化ポリエチレン、ポリブタジエン、ポリイソプレン、ポリクロロプレン、フッ素ゴム、スチレン‐ブタジエン共重合体ゴム、アクリロニトリル-スチレン-ブタジエン共重合体ゴム、メタクリル酸メチル-スチレン‐ブタジエン共重合体ゴム、及びアクリル酸エステル-メタクリル酸エステル共重合体等のアクリル系コアシェル型ゴム;シリコーン-アクリル酸エステル‐メタクリル酸エステル共重合体、及びシリコーン-アクリル酸エステル-アクリロニトリル-スチレン共重合体等のシリコーン系コアシェル型ゴム;スチレン-ブタジエン-スチレンブロック共重合体ゴム、スチレン-イソプレン-スチレンブロック共重合体ゴム、スチレン-エチレン-ブチレン-スチレンブロック共重合体ゴム、エチレン-プロピレン共重合体ゴム、及びエチレン-プロピレン-ジエン共重合体ゴム(EPDM)が挙げられる。EPDMのジエンとしては、1,4-ヘキサジエン、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、又はプロペニルノルボルネン等が使用できる。これらの耐衝撃性改質剤は1種又は2種以上組み合わせて用いることができる。
 耐衝撃性改質剤の添加量については特に制限されないが、塩化ビニル樹脂(A)100質量部に対して、1~20質量部が好ましく、1~15質量部がさらに好ましい。1質量部以上とすることで、成形体の衝撃強度を向上することができ、20質量部以下とすることで、成形外観の低下を防ぐことができる。
 その他、離型剤、流動性改良剤、着色剤、帯電防止剤、界面活性剤、防曇剤、抗菌剤、可塑剤、又は発泡剤等も、本発明の効果を損なわない限りにおいて、目的に応じて任意に配合することができる。
 本発明の塩化ビニル樹脂組成物を得る方法は特に制限されるものではなく、一般公知の方法を用いることができ、例えば所定量の塩化ビニル樹脂(A)とPTFE(B)、重合体(C)、充填剤(D)及び必要に応じてアクリル系重合体(δ)またはアクリル系重合体粉体(E)をヘンシェルミキサー、バンバリーミキサー、V型ミキサー、リボンブレンダー等で混合することで得られる。
 本発明の塩化ビニル樹脂組成物を得る方法としては、PTFE(B)と重合体(C)とを含むポリテトラフルオロエチレン含有粉体(F)を製造し、これを塩化ビニル樹脂(A)、充填剤(D)及び必要に応じてアクリル系重合体(δ)またはアクリル系重合体粉体(E)と混合することが好ましい。
 この方法によれば、PTFE(B)の成形体中での分散が良好となり、得られる成形体の表面外観及び衝撃強度向上効果に優れる。
ポリテトラフルオロエチレン含有粉体(F)
 本発明に用いるポリテトラフルオロエチレン含有粉体(F)は、PTFE(B)とポリテトラフルオロエチレン以外の重合体(C)とを含んでなる。
 PTFE(B)とともに重合体(C)を存在させることで、PTFE含有粉体(F)は粉体流動性・粉体嵩比等の粉体取扱い性が良好となる。
 本発明に用いるPTFE含有粉体(F)100質量%中、PTFE(B)の含有量は、1~90質量%であることが好ましく、5~85質量%であることがより好ましく、10~80質量%であることがさらに好ましく、15~70質量%であることが特に好ましい。PTFE(B)の含有量を1質量%以上とすることで、ゲル化特性向上効果が高まり、成形体の物性及び外観が良好となるとともに、成形時の滑性が付与され生産性が良好となる。また、PTFE(B)の含有量を90質量%以下とすることで、成形体中でのPTFE(B)の分散性が良好となり、成形体の外観が良好となる。
 また、重合体(C)の含有量は、PTFE含有粉体(F)100質量%中、10~99質量%であることが好ましく、15~95質量%であることがより好ましく、20~90質量%であることがさらに好ましく、30~85質量%であることが特に好ましい。重合体(C)の含有量を10質量%以上とすることで、PTFE含有粉体(F)の粉体取扱い性が良好となるとともに、PTFE(B)の成形体中での分散性が良好となり、成形体の外観が良好となる。また、重合体(C)の含有量を99質量%以下とすることで、PTFE(B)の添加効果が発現し、成形体の物性、外観及び生産性が良好となる。
 PTFE含有粉体(F)は、PTFE(B)及び重合体(C)以外に、必要に応じて添加剤を含有してもよい。添加剤としては、無機塩、アエロジル等の粉体流動性改質剤が挙げられる。
 PTFE含有粉体(F)の水分散液を得る方法は、特に限定されないが、PTFE(B)の水分散液と重合体(C)の水分散液とを混合する方法、PTFE(B)の水分散液の存在下で重合体(C)を構成する単量体を重合する方法、あるいはPTFE(B)の水分散液と重合体(C)を構成する単量体の一部の水分散液を混合した分散液中で、重合体(C)を構成する残りの単量体を乳化重合する方法等が挙げられる。
 市販のPTFE(B)水分散液としては、例えば、「フルオンAD911」、「フルオンAD912」、「フルオンAD915」、「フルオンAD938」、及び「フルオンAD939」(商品名、旭硝子(株)製)、並びに上記品番にE又はLが続く市販品(AD938E等)が挙げられる。
 PTFE(B)の水分散液は、1種を単独で用いてもよく、2種以上を併用してもよい。
 PTFE含有粉体(F)の回収方法としては、特に限定されないが、PTFE(B)の凝集が抑制されることから、その水分散液を、凝析剤を溶解した熱水中に投入し、攪拌しながら疑析させてスラリーとし乾燥する凝析法か、噴霧乾燥法によって粉体化することが好ましい。これらの方法の中でも、凝析法がより好ましい。
 凝析法に用いる疑析剤としては、例えば、塩酸、硫酸、硝酸、及び燐酸等の無機酸;蟻酸、及び酢酸等の有機酸;並びに、硫酸アルミニウム、硫酸マグネシウム、酢酸カルシウム、塩化カルシウム、及び硫酸カルシウム等の無機塩が挙げられる。
 得られた塩化ビニル樹脂組成物は、単軸押出機、二軸押機等の混練押出機による押出成形の他、通常の公知の成形方法、例えば、射出成形、中空成形、ロール加工にも適用して各種所望の成形体を得ることができる。
 本発明の塩化ビニル樹脂組成物を成形して得られる成形体の表面硬度(デュロメータD硬度)は65以上であることが好ましく、70以上であることがより好ましく、85以上であることが特に好ましい。
 デュロメータD硬度が65以上であることで、硬質建築部材としての使用に好適となる。
 表面硬度は、本発明の効果を損なわない限りにおいて、可塑剤添加量、可塑剤種、塩化ビニル樹脂の重合度等の通常公知の方法により任意に調整可能である。
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。
 なお、本実施例、比較例及び参考例において、「部」は「質量部」を示し、「phr」は「塩化ビニル樹脂100質量部に対する質量部」を示す。
 本実施例、比較例及び参考例において得られた塩化ビニル樹脂組成物及びその成形体の評価は下記により行った。
(1)質量平均分子量
 重合体(C)、アクリル系重合体(δ)及びアクリル系重合体粉体(E)のテトラヒドロフラン可溶分を用いて、ゲルパーミエーションクロマトグラフィー(GPC)により分子量を測定した。GPCの測定条件は下記の通りであり、標準ポリスチレンによる検量線から質量平均分子量を求めた。
 装置:東ソー(株)製「HLC8220」
 カラム:東ソー(株)製「TSKgel SuperMultiporeHZ-H」(内径4.6mm×長さ15cm×2本、排除限界4×10^7(推定))
 溶離液:THF
 溶離液流量:0.35ml/分
 測定温度:40℃
 試料注入量:10μl(試料濃度0.1%)
(2)加工性評価
 塩化ビニル樹脂組成物を、ブラベンダープラスチコーダー(ブラベンダー社製)に充填し、ゲル化特性を評価することで、加工性評価を行った。
 ゲル化時間は、予熱後の混練開始から最大トルクに到達するまでに要する時間とした。このゲル化時間が早いほどゲル化特性が良好と言え、加工性に優れると言える。
(3)生産性評価
 塩化ビニル樹脂組成物を溶融押出成形する際の、時間当たりの成形体押出質量(吐出量)を測定した。この時、吐出量が大きいほど生産性が良好であると言える。
(4)外観評価
 塩化ビニル樹脂組成物を溶融押出して得られた成形体表面を目視で観察し、表面外観を観察した。
  ++++:成形体表面が平滑であり、さらに光沢が高い
  +++:成形体表面が平滑である
  ++:成形体表面に若干の凹凸が観られ、平滑でない
  +:成形体表面に多数の凹凸が観られ、平滑でない
(5)衝撃強度試験
 塩化ビニル樹脂組成物を溶融押出して得られた成形体について、JIS K7111に基づき、ノッチ付きシャルピー衝撃強度試験を行い、23℃での衝撃強度を測定した。値が大きいほど強度良好となる。
(6)熱収縮性評価
 塩化ビニル樹脂組成物を溶融押出して得られた成形体について、180℃雰囲気下に1時間静置し、以下の式に基づいて熱収縮率を算出した。
 {(L-L)/L}×100
  L:加熱前の成形体長さ
  L:加熱後の成形体長さ
 値が小さいほど低熱収縮性となり、良好であると言える。
(実施例、比較例)
塩化ビニル樹脂組成物の製造
 所定量の各種PTFE含有粉体(F)及びアクリル系重合体(δ)の他に、充填剤(D)として所定量の炭酸カルシウム(白艶華CCR、白石カルシウム社製)、塩化ビニル樹脂(A)として塩化ビニル樹脂(TK-1000、信越化学工業社製、平均重合度1050)100部、安定剤としてCa-Zn複合安定剤(サンエース社製)3部、滑剤としてグリセリン脂肪酸エステル(Loxiol GH-4、エメリーオレオ社製)1.0部、高分子複合エステル(Loxiol VPN963、エメリーオレオ社製)0.6部、衝撃強度改質剤として、メタクリル酸メチル-ブタジエン-スチレン共重合体(メタブレンC-223A、三菱レイヨン製、テトラヒドロフラン可溶分質量平均分子量84万)5.0部をヘンシェルミキサーに供給して均一に混合し、塩化ビニル樹脂組成物を得た。
ポリテトラフルオロエチレン含有粉体(F)の製造
 PTFE含有粉体(F)としては、以下に示すものを表1に示す組成で用いた。
[製造例1]PTFE含有粉体(F-1)の製造
 PTFE分散液 AD939E(旭硝子社製、数平均分子量:1500万、PTFE濃度60質量%)83.3部に、蒸留水116.7部を添加し、PTFE濃度25.0質量%のPTFE分散液(B-1)を得た。
 一方、攪拌翼、コンデンサー、熱電対、窒素導入口を備えた反応容器に、蒸留水225部、メタクリル酸メチル80部、アクリル酸-n-ブチル20部、n-オクチルメルカプタン0.2部、ドデシルベンゼンスルホン酸ナトリウム2.5部及びジイソプロピルベンゼンハイドロペルオキサイド0.2部を仕込み、窒素気流を通ずることによって反応容器内の雰囲気の窒素置換を行った。その後、系内を60℃に昇温して内部の液温が60℃になった時点で、硫酸鉄(II)0.0005部、エチレンジアミン四酢酸二ナトリウム0.0015部、ロンガリット塩0.3部及び蒸留水5部からなる混合液を加えて、重合を開始した。その後、80℃で90分間保持して重合を完結し、重合体分散液(C-1)を得た。この分散液(C-1)の固形分濃度は30.4%であり、分散液(C-1)に含まれる重合体の質量平均分子量(Mw)は12万であった。
 次いで、攪拌翼、コンデンサー、熱電対、窒素導入口を備えた反応容器に、先に調製したPTFE分散液(B-1)200部(ポリテトラフルオロエチレン50部)を仕込み、そこに重合体分散液(C-1)164.5部((重合体50部)を仕込んで、内部の液温を80℃になるまで加熱、攪拌した。内部の液温が80℃になった状態で1時間攪拌を継続して、両分散液の混合液を得た。撹拌中の硫酸アルミニウム4質量%水溶液150部へ、得られた両分散液の混合液100部を徐々に滴下し、固形物を析出させた。次いで、この析出物を分離、濾過、乾燥しPTFE含有粉体(F-1)を得た。
[製造例2]PTFE含有粉体(F-2)の製造
 用いるPTFE分散液をAD915E(旭硝子社製、数平均分子量:300万、PTFE濃度60質量%)に変更した以外は製造例1と同様にして、PTFE含有粉体(F-2)を得た。
[製造例3]PTFE含有粉体(F-3)の製造
 メタクリル酸ドデシル70部、メタクリル酸メチル25部及びアクリル酸エチル5部の混合液にドシルベンゼンスルホン酸ナトリウム2.0部と蒸留水300部の混合液を添加し、ホモミキサーにて10000rpmで4分間撹拌した後、ホモジナイザーに300kg/cm2 の圧力で2回通し、安定なメタクリル酸ドデシル/メタクリル酸メチル/アクリル酸エチル予備分散液を得た。これを撹拌機、コンデンサー、熱電対、窒素導入口を備えた反応容器に仕込み、ジイソプロピルベンゼンハイドロペルオキサイド0.2部を添加し、窒素気流を通ずることによって反応容器内の雰囲気の窒素置換を行った。その後、系内を60℃に昇温して内部の液温が60℃になった時点で、硫酸鉄(II)0.0005部、エチレンジアミン四酢酸二ナトリウム0.0015部、ロンガリット塩0.3部及び蒸留水5部からなる混合液を加えて、重合を開始した。その後、70℃で90分間保持して重合を完結し、重合体分散液(C-3)を得た。重合体分散液(C-3)の固形分濃度は25.1質量%であった。
 次いで、PTFE分散液 AD939E(旭硝子社製)33.3部(PTFE濃度60質量%)と重合体分散液(C-3)239.0部、ドシルベンゼンスルホン酸ナトリウム0.5部を撹拌機、コンデンサー、熱電対、窒素導入口、滴下ロートを備えたセパラブルフラスコに仕込み、窒素気流下に室温で1時間撹拌した。その後、系内を80℃に昇温し、硫酸鉄0.001部、エチレンジアミン四酢酸二ナトリウム0.003部、ロンガリット塩0.24部、蒸留水10部の混合液を加えた後、メタクリル酸メチル19部、アクリル酸エチル1部及びジイソプロピルベンゼンハイドロペルオキサイド0.1部の混合液を30分かけて滴下し、滴下終了後、内温を80℃で1時間保持し、重合を完了させた。一連の操作を通じて固形分の分離は見られず、均一な粒子分散液を得た。粒子分散液の固形分濃度は28.5質量%であり、この分散液に含まれる重合体の質量平均分子量(Mw)は45万であった。
 撹拌中の酢酸カルシウム7質量%水溶液150部へ、得られた分散液100部を徐々に滴下し、固形物を析出させた。次いで、この析出物を分離、濾過、乾燥しPTFE含有粉体(F-3)を得た。
[製造例4]PTFE含有粉体(F-4)の製造
 攪拌翼、コンデンサー、熱電対、窒素導入口を備えた反応容器に、蒸留水250部、アルケニルコハク酸ジカリウム1.0部、硫酸鉄(II)0.0005部、エチレンジアミン四酢酸二ナトリウム0.0015部及びロンガリット塩0.12部を仕込み、窒素気流を通ずることによって反応容器内の雰囲気の窒素置換を行った。その後、系内を60℃に昇温し、スチレン80部、アクリロニトリル20部、クメンハイドロパーオキサイド0.5部の混合液を2時間で滴下した。滴下終了後、60℃で90分間保持して重合を完結し、重合体分散液(C-4)を得た。この分散液(C-4)の固形分濃度は28.8%であり、分散液(C-4)に含まれる重合体の質量平均分子量(Mw)は35万であった。
 次いで、攪拌翼、コンデンサー、熱電対、窒素導入口を備えた反応容器に、先に調製したPTFE分散液(B-1)200部(ポリテトラフルオロエチレン50部)を仕込み、そこに重合体分散液(C-4)173.6部((重合体50部)を仕込んで、内部の液温を80℃になるまで加熱、攪拌した。内部の液温が80℃になった状態で1時間攪拌を継続して、両分散液の混合液を得た。撹拌中の硫酸アルミニウム4質量%水溶液150部へ、得られた両分散液の混合液100部を徐々に滴下し、固形物を析出させた。次いで、この析出物を分離、濾過、乾燥しPTFE含有粉体(F-4)を得た。
[参考例1]重合体(C)を含まないPTFE含有粉体(F-5)
 重合体(C)を含まないPTFEとして、FLUON CD-1(旭硝子(株)製、数平均分子量:300万)を用いた。
Figure JPOXMLDOC01-appb-T000001
 アクリル系重合体(δ)としては、以下に示すものを用いた。
[製造例5]アクリル系重合体(δ-1)の製造
 攪拌機及び環流冷却器つき反応容器にイオン交換水150部を仕込み、そこに無水炭酸ナトリウム0.1部、メタクリル酸メチル80部及びメタクリル酸‐n‐ブチル20部を加えて、容器内を窒素で置換した。その後、ドデシル硫酸ナトリウム1.1部、を加え、攪拌下で反応容器を43℃まで昇温し過硫酸カリウム0.15部を仕込み重合反応を開始させた後、2時間加熱攪拌して重合を終了し、アクリル系重合体(δ-1)を得た。得られたアクリル系重合体(δ-1)の粒子分散液を冷却後、入口温度150℃及び出口温度65℃の条件で噴霧乾燥を行い、粉末状のアクリル系重合体粉体(E-1)とした。
 この時重合率は99%以上であり、質量平均分子量は310万であった。
 上記製造例より得た各種PTFE含有粉体(F)及びアクリル系重合体(δ)をそれぞれ下記表2の通り添加、混合し、各塩化ビニル樹脂組成物を得た。
 得られた各組成物を、ブラベンダープラスチコーダー(ブラベンダー社製、160℃、予熱:2分、スクリュー回転数:30rpm、充填量:65g)に充填し、ゲル化特性評価を行った。
 また、得られた各組成物を20mmコニカル押出機(東洋精機社製、C1-C2-C3-D=150-165-180-185℃、60rpm(フィーダー:70rpm))に供給し、ペレット状の各塩化ビニル樹脂組成物を得た。
 得られたペレット状の塩化ビニル樹脂組成物を30mm単軸押出機(GMエンジニアリング社製、100-150-170-180-180-180-180℃ (C1-C2-C3-C4-C5-A-D)、スクリュー回転数:20rpm)にて溶融押出を行い、幅10mm、厚み4mmの角棒状の塩化ビニル樹脂成形体を得た。
 各塩化ビニル樹脂成形体の吐出量を測定し、生産性の評価を行った。
 得られた成形体を長さ8cmに切断し、深さ2mmのV型ノッチをつけた試験片を作製し、衝撃強度試験に供した。
 また、得られた成形体を長さ200mmに切断し、熱収縮性評価に供した。
表2:塩化ビニル樹脂組成物の組成例と得られた成形体の特性
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
(実施例1~7)
 表2の結果より、所定の含量でPTFE含有粉体(F)を含有するため、いずれの実施例においても、PTFE含有粉体なし(比較例1)、重合体(C)を含まないPTFE含有粉体(F)を含有する例(比較例2)及び所定の含量を超えてPTFE含有粉体(F)を含有する例(比較例3)に比べ、生産性(吐出量)、成形体外観、成形体物性が顕著に向上していることが分かった。
 また、いずれの実施例においても、ゲル化特性が顕著に向上し、また熱収縮率への影響も微小であることが分かった。
(実施例8)
 PTFE含有粉体(F)を所定含量で含有することよって生産性(吐出量)、成形体外観、成形体物性が顕著に向上したのに加え、アクリル系重合体をさらに含有することで、成形体外観に光沢が付与されていることが分かった。
(比較例2)
 重合体(C)を含有しないPTFE含有粉体(F)を添加したため、PTFE含有粉体(F)の分散性が低位となり、生産性(吐出量)、成形体外観、成形体物性のいずれも改良効果があるとは言えない。
(比較例3)
 ゲル化特性、成形体外観は幾分向上しているものの、PTFE成分が所定の含量を超えて添加したことで、加熱溶融混練時の滑性が過剰となることで混練レベルが顕著に低下し、生産性向上効果、成形体物性向上効果がみられないばかりか、熱収縮率が極めて大きく、実用途には全く適さない。
(比較例4)
 PTFE含有粉体(F)を含有しないため、生産性(吐出量)、成形体外観、成形体物性のいずれも改良効果があるとは言えない。
(実施例9~12)
 実施例1~7に対して充填剤量を増やした場合も、所定の含量でPTFE含有粉体(F)を含有すれば、PTFE含有粉体なし(比較例5)、重合体(C)を含有しないPTFE含有粉体(F)を含有する例(比較例6)及び所定の含量を超えてPTFE含有粉体(F)を含有する例(比較例7)に比べ、生産性(吐出量)、成形体外観、成形体物性が顕著に向上していることが分かる。
 また、いずれの実施例でも所定の含量でPTFE含有粉体(F)を含むため、ゲル化特性が顕著に向上し、また熱収縮率への影響も微小であることが分かる。
(実施例13)
 所定の含量でPTFE含有粉体(F)を含有することで、生産性(吐出量)、成形体外観、成形体物性が顕著に向上したのに加え、さらにアクリル系重合体を含有することで、成形体外観に光沢が付与されていることが分かる。
(比較例6)
 重合体(C)を含有しないPTFE含有粉体(F)を添加したため、PTFE含有粉体(F)の分散性が低位となり、生産性(吐出量)、成形体外観、成形体物性のいずれも改良効果があるとは言えない。
(比較例7)
 ゲル化特性、成形体外観は幾分向上しているものの、PTFE成分を所定の含量を超えて添加したことで、加熱溶融混練時の滑性が過剰となることで混練レベルが顕著に低下し、生産性向上効果、成形体物性向上効果がみられないばかりか、熱収縮率が極めて大きく、実用途には全く適さない。
(比較例8)
 PTFE含有粉体(F)を含有しないため、生産性(吐出量)、成形体外観、成形体物性のいずれも改良効果があるとは言えない。

Claims (12)

  1.  塩化ビニル樹脂(A)、
     ポリテトラフルオロエチレン(B)、
     前記ポリテトラフルオロエチレン以外の重合体(C)及び
     充填剤(D)
    を含有する塩化ビニル樹脂組成物であって、
    前記塩化ビニル樹脂(A)100質量部に対し、
     前記ポリテトラフルオロエチレン(B)を0.001~3質量部、
     前記充填剤(D)を1~2000質量部
    含む、塩化ビニル樹脂組成物。
  2.  前記重合体(C)が、(メタ)アクリル酸エステル系単量体、芳香族ビニル系単量体、及びシアン化ビニル系単量体からなる群より選ばれる1種以上の単量体に由来する構成単位を50質量%以上含む、請求項1に記載の塩化ビニル樹脂組成物。
  3.  前記重合体(C)が、エステル部位に炭素数1~12のアルキル基を有する(メタ)アクリル酸エステル系単量体、スチレン、アクリロニトリルからなる群より選ばれる1種以上の単量体に由来する構成単位を50質量%以上含む、請求項1又は2に記載の塩化ビニル樹脂組成物。
  4.  前記重合体(C)が、エステル部位に炭素数1~12のアルキル基を有する(メタ)アクリル酸エステル系単量体に由来する構成単位を50質量%以上含む、請求項1~3のいずれか1項に記載の塩化ビニル樹脂組成物。
  5.  前記重合体(C)が、エステル部位に炭素数1~5のアルキル基を有する(メタ)アクリル酸エステル系単量体に由来する構成単位を50質量%以上含む、請求項1~4のいずれか1項に記載の塩化ビニル樹脂組成物。
  6.  前記重合体(C)の質量平均分子量(Mw)が1万~150万である、請求項1~5のいずれか1項に記載の塩化ビニル樹脂組成物。
  7.  前記ポリテトラフルオロエチレン(B)の数平均分子量(Mn)が500万~2000万である、請求項1~6のいずれか1項に記載の塩化ビニル樹脂組成物。
  8.  質量平均分子量(Mw)200万~600万のアクリル系重合体0.1~10質量部をさらに含む、請求項6に記載の塩化ビニル樹脂組成物。
  9.  前記充填剤(D)を10~2000質量部含む、請求項1~8のいずれか1項に記載の塩化ビニル樹脂組成物。
  10.  前記ポリテトラフルオロエチレン(B)を0.001~1.5質量部含む、請求項1~9のいずれか1項に記載の塩化ビニル樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の塩化ビニル樹脂組成物を成形してなる、樹脂成形体。
  12.  前記ポリテトラフルオロエチレン(B)と前記重合体(C)とを含むポリテトラフルオロエチレン含有粉体(F)を前記塩化ビニル樹脂(A)及び前記充填剤(D)と混合することを含む、請求項1~10のいずれか1項に記載の塩化ビニル樹脂組成物の製造方法。
PCT/JP2016/076548 2015-09-11 2016-09-09 塩化ビニル樹脂組成物及び成形体 WO2017043614A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680050407.2A CN108026345A (zh) 2015-09-11 2016-09-09 聚氯乙烯树脂组合物以及成形体
JP2016561031A JP6708129B2 (ja) 2015-09-11 2016-09-09 塩化ビニル樹脂組成物及び成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015179794 2015-09-11
JP2015-179794 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043614A1 true WO2017043614A1 (ja) 2017-03-16

Family

ID=58239952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076548 WO2017043614A1 (ja) 2015-09-11 2016-09-09 塩化ビニル樹脂組成物及び成形体

Country Status (3)

Country Link
JP (1) JP6708129B2 (ja)
CN (1) CN108026345A (ja)
WO (1) WO2017043614A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058098A (zh) * 2020-08-03 2022-02-18 Agc株式会社 膜、其制造方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208930A (ja) * 1995-02-01 1996-08-13 Daido Metal Co Ltd 摺動用組成物及びその摺動部材
JPH11199733A (ja) * 1998-01-14 1999-07-27 Mitsubishi Rayon Co Ltd 塩化ビニル系樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208930A (ja) * 1995-02-01 1996-08-13 Daido Metal Co Ltd 摺動用組成物及びその摺動部材
JPH11199733A (ja) * 1998-01-14 1999-07-27 Mitsubishi Rayon Co Ltd 塩化ビニル系樹脂組成物

Also Published As

Publication number Publication date
JP6708129B2 (ja) 2020-06-10
CN108026345A (zh) 2018-05-11
JPWO2017043614A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP3272985B2 (ja) ポリテトラフルオロエチレン含有混合粉体の製造方法
JP6315207B2 (ja) 軟質塩化ビニル系樹脂組成物、成形体、電線被覆材及び被覆された電線
EP0822226B1 (en) Thermoplastic resin composition containing polytetrafluoroethylene powder mixture
JP3568477B2 (ja) 発泡成形用加工助剤およびそれを用いた塩化ビニル系樹脂組成物
WO2015045928A1 (ja) 電線被覆材及び被覆された電線
WO2010061630A1 (ja) 発泡成形用加工助剤、発泡成形用塩化ビニル系樹脂組成物及び発泡成形体
JP4406102B2 (ja) 高モジュラス熱可塑性樹脂組成物
JP5144307B2 (ja) グラフト共重合体、樹脂組成物及びその成形品
WO2011096596A2 (ja) ポリオレフィン系樹脂用添加剤のための分散剤、ポリオレフィン系樹脂組成物及び成形体
JP2019509388A (ja) 光沢度および表面仕上げの改質のための官能化アクリル加工助剤
JP5614283B2 (ja) 非発泡成形用加工助剤、樹脂組成物及び成形体
JP6708129B2 (ja) 塩化ビニル樹脂組成物及び成形体
KR100521005B1 (ko) 폴리염화비닐 수지 조성물의 제조 방법 및 폴리염화비닐수지 조성물
JP2017115043A (ja) 軟質塩化ビニル樹脂組成物
JP2019182890A (ja) 塩化ビニル樹脂組成物及び成形体
JP5308207B2 (ja) 異形押出用ポリオレフィン系樹脂組成物及び異形押出成形品
JPWO2015108101A1 (ja) 塩化ビニル樹脂組成物、及び塩化ビニル樹脂成形体
JP2016216580A (ja) 塩化ビニル樹脂組成物及び成形体
JPH11209549A (ja) ポリテトラフルオロエチレン含有混合粉体、それを含む熱可塑性樹脂組成物およびその成形体
JP2017165826A (ja) 塩化ビニル樹脂組成物及び樹脂成形体
JP2016044226A (ja) 難燃樹脂成形物
JP2018145313A (ja) 軟質塩化ビニル樹脂組成物
JP2007211130A (ja) ポリアセタール系樹脂組成物及びその成形品
JP2005255717A (ja) 発泡成形用加工助剤、塩化ビニル系発泡成形用樹脂組成物、および発泡成形体
JP2019157051A (ja) 軟質塩化ビニル樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016561031

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844475

Country of ref document: EP

Kind code of ref document: A1