WO2017043364A1 - コーティングイネ種子及びその製造方法 - Google Patents

コーティングイネ種子及びその製造方法 Download PDF

Info

Publication number
WO2017043364A1
WO2017043364A1 PCT/JP2016/075281 JP2016075281W WO2017043364A1 WO 2017043364 A1 WO2017043364 A1 WO 2017043364A1 JP 2016075281 W JP2016075281 W JP 2016075281W WO 2017043364 A1 WO2017043364 A1 WO 2017043364A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
alpha starch
powdery composition
range
coating layer
Prior art date
Application number
PCT/JP2016/075281
Other languages
English (en)
French (fr)
Inventor
智子 住田
哲志 小菅
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201680051093.8A priority Critical patent/CN107920464A/zh
Priority to KR1020187008869A priority patent/KR102647453B1/ko
Publication of WO2017043364A1 publication Critical patent/WO2017043364A1/ja
Priority to PH12018500483A priority patent/PH12018500483A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/06Coating or dressing seed
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D103/00Coating compositions based on starch, amylose or amylopectin or on their derivatives or degradation products
    • C09D103/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a coated rice seed and a method for producing the same.
  • Paddy rice direct sowing cultivation is a cultivation method in which rice seeds are sown directly in paddy fields. It also has the disadvantage of being susceptible to (bird damage). Decreasing the seedling establishment rate due to bird damage leads to a decrease in revenue, so bird damage avoidance measures have been eagerly desired.
  • a conventional bird damage avoidance measure for example, a method for preventing bird damage by water management has been proposed, but it is necessary to change the management method according to the type of bird (for example, see Non-Patent Document 1).
  • direct sowing with iron coating is known as a technique for preventing seed damage caused by sparrows by coating rice seeds with iron powder to suppress seed floating during soil surface sowing (for example, Non-Patent Document 2). reference).
  • An object of the present invention is to provide a coated rice seed that is less susceptible to bird damage and has suppressed floating of the seed and reduction of germination rate.
  • the present inventors have determined that rice seeds are composed of 2% water suspension alpha starch having a degree of swelling at 20 ° C. in the range of 10 to 48 mL / g, and zinc oxide. It was found that when the seedlings were coated and seeded in paddy fields, bird damage was reduced and a sufficient seedling establishment rate could be secured in direct seeding cultivation of paddy rice. That is, the present invention is as follows. [Claim 1] Coated rice seed comprising a coating layer, wherein the coating layer comprises alpha starch having a swelling degree of 2% aqueous suspension at 20 ° C. in the range of 10 to 48 mL / g, and zinc oxide. Coated rice seeds.
  • Group 3 Item 3.
  • the coating layer according to Item 2 wherein the coating layer has a first layer containing at least one selected from the group (A) and a second layer containing zinc oxide provided outside the first layer. Coated rice seeds.
  • a powdery composition comprising alpha starch whose degree of swelling at 20 ° C. of a 2% aqueous suspension is in the range of 10 to 48 mL / g, and zinc oxide.
  • Group (A) Group consisting of barium sulfate, titanium oxide, clay, zeolite, and calcium carbonate.
  • [Claim 13] A kit for producing coated rice seeds, comprising alpha starch whose degree of swelling at 20 ° C of a 2% aqueous suspension is in the range of 10 to 48 mL / g, and zinc oxide.
  • [Section 14] Item 14.
  • [Section 15] Item 15.
  • [Section 16] The manufacturing method of the coated rice seed which has the following process. (1) While rolling rice seeds, alpha starch whose degree of swelling at 20 ° C.
  • Group (A) Group consisting of barium sulfate, titanium oxide, clay, zeolite, and calcium carbonate.
  • Group (A) Group consisting of barium sulfate, titanium oxide, clay, zeolite, and calcium carbonate. [Section 18] Item 19.
  • the manufacturing method of the coated rice seed which has the following process. (1) While rolling rice seeds, add alpha starch whose degree of swelling at 20 ° C. of a 2% aqueous suspension is in the range of 10 to 48 mL / g, zinc oxide, iron oxide and water. A step of forming a coating layer containing the alpha starch, zinc oxide and iron oxide, and (2) a step of drying the seed obtained in the step (1).
  • the manufacturing method of the coated rice seed which has the following process. (1) (I) While rolling rice seeds, adding alpha starch whose degree of swelling at 20 ° C.
  • the coated rice seed of the present invention is less susceptible to bird damage, and the suspension of seeds and the reduction of germination rate are suppressed, and a sufficient seedling establishment rate can be ensured in direct seeding cultivation of paddy rice.
  • the coated rice seed of the present invention (hereinafter referred to as the present rice seed) has a coating layer, and the coating layer has a swelling degree of 2% aqueous suspension at 20 ° C. in the range of 10 to 48 mL / g.
  • Alpha starch hereinafter referred to as the present alpha starch
  • zinc oxide are included.
  • the rice seed refers to a seed of a variety that is generally cultivated as rice.
  • examples of such varieties include japonica and indica varieties, but varieties having high lodging resistance and high germination are preferred.
  • the alpha starch is also called gelatinized starch or gelatinized starch, and means a starch having a degree of pregelatinization of 90% or more.
  • the degree of alpha conversion of the alpha starch in the present invention is determined by an analysis method according to Customs Central Analytical Law No. 51.
  • Glucoamylase solution Glucoamylase (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved using deionized water so that the titer is about 15 units per mL.
  • Deproteinized B solution Ba (OH) 2 / 8H 2 O aqueous solution (2.0% (W / V))
  • Glycerin standard solution 1.0 g of glycerol is fixed to 25 mL using deionized water. 2.
  • test solution A uniform suspension (1.25 g of starch sample / 100 mL of deionized water) was prepared, and 4.0 mL of each suspension was placed in two 50 mL Erlenmeyer flasks, each containing phosphate- Add 3.35 mL of citrate buffer solution to make solution I. To the other one, 0.15 mL of 10M aqueous sodium hydroxide solution was added and heated at 37 ° C. for 30 minutes to completely swell and disintegrate the starch particles. Add 1.7 mL of 1M citric acid to make solution II. Both solutions are placed in a 37 ° C.
  • glucoamylase solution 2.0 mL of the glucoamylase solution is added to each solution, and the starch and glucoamylase in each solution are reacted for 120 minutes while shaking. Thereafter, the enzyme is deactivated in a boiling bath, and 5.0 mL of protein removal solution A, 5.0 mL of solution B and 1.0 mL of glycerin standard solution are added to each solution. Each of the obtained solutions is transferred to a 50 mL centrifuge tube and centrifuged at 4000 rpm for 5 minutes. The supernatant liquid is passed through a membrane filter (0.45 ⁇ m), and the obtained liquid is used as a glucose assay liquid (Ia liquid and IIa liquid). 3.
  • the present alpha starch is commercially available. Examples of the commercially available alpha starch include amylox No.
  • the particle size of the alpha starch is a particle size measured by a laser diffraction / scattering particle size distribution measuring device, and indicates a particle size that is 100% in cumulative frequency in the volume-based frequency distribution.
  • the particle size of the alpha starch can be determined by a so-called dry measurement method in which alpha starch particles are dispersed in the air using a MASTERSIZER 2000 (manufactured by MALVERN) as a laser diffraction / scattering type particle size distribution measuring device. .
  • the degree of swelling of the present alpha starch is the degree of swelling measured by the volume method.
  • the degree of swelling of a 2% aqueous suspension at 20 ° C. is the degree of swelling of alpha starch determined from a suspension of 2% alpha starch suspended in water at 20 ° C. A specific method for measuring the degree of swelling will be described below.
  • the content of the present alpha starch in the present rice seed is usually 0.01 to 15% by weight, preferably 0.01 to 10% by weight, more preferably 0.1 to 5% by weight.
  • zinc oxide refers to a compound represented by ZnO
  • commercially available zinc oxide can be used.
  • commercially available zinc oxide include zinc oxide 3N5 (manufactured by Kanto Chemical Co., Inc.) and zinc oxide two types (manufactured by Nippon Chemical Industry Co., Ltd.).
  • the purity of zinc oxide is determined by a test method defined in Japanese Industrial Standard (JIS) K1410.
  • JIS Japanese Industrial Standard
  • powdered zinc oxide is used, and the average particle diameter of the zinc oxide is in the range of 0.01 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the average particle diameter of zinc oxide is a particle diameter measured by a laser diffraction / scattering particle size distribution measuring apparatus, and indicates a particle diameter that is 50% in cumulative frequency in a volume-based frequency distribution.
  • the average particle size of zinc oxide can be obtained by a so-called wet measurement method in which a master sizer 2000 (manufactured by Malvern) is used as a laser diffraction / scattering type particle size distribution measuring device and zinc oxide particles are dispersed in water. it can.
  • the content of zinc oxide in this rice seed is usually in the range of 0.005 to 80% by weight, preferably 0.01 to 70% by weight, more preferably 0.02 to 50% by weight. In consideration of plant growth and environmental impact, a range of 0.02 to 15% by weight is preferable.
  • the coating layer may contain at least one selected from the group (A) (hereinafter referred to as the present inorganic compound).
  • the clay in the inorganic compound include wax and kaolin.
  • at least 1 sort (s) chosen from the group which consists of clay and calcium carbonate is preferable, and calcium carbonate is especially preferable.
  • the powdery inorganic compound it is preferable to use the powdery inorganic compound, and the average particle size thereof is usually 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • the average particle size of the inorganic compound is a particle size measured with a laser diffraction / scattering particle size distribution measuring apparatus, and indicates a particle size that is 50% in cumulative frequency in a volume-based frequency distribution.
  • the average particle size of the inorganic compound is determined by a so-called wet measurement method in which the particle size of the inorganic compound is dispersed in water using a master sizer 2000 (manufactured by Malvern) as a laser diffraction / scattering particle size distribution measuring device. be able to.
  • the coating layer becomes a denser coating layer.
  • the inorganic compounds may be the same or different.
  • the content of the rice seed is usually in the range of 0.5 to 80% by weight, preferably 1 to 70% by weight, more preferably 1 to 50% by weight.
  • the coating layer may contain an agrochemical active ingredient.
  • agrochemical active ingredients include insecticidal active ingredients, bactericidal active ingredients, herbicidal active ingredients, and plant growth regulating active ingredients.
  • insecticidal active ingredients include clothianidin, imidacloprid and thiamethoxam.
  • bactericidal active ingredients include, for example, isotianil and furametopyl.
  • herbicidal active ingredients include imazosulfuron and bromobutide.
  • An example of such a plant growth regulating active ingredient is uniconazole P.
  • a powdery pesticidal active ingredient it is preferable to use a powdery pesticidal active ingredient, and if necessary, it can be mixed with the present inorganic compound and pulverized using a pulverizer such as a dry pulverizer to obtain a pulverized agricultural chemical.
  • the average particle size of the powdery pesticide is usually 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • the average particle size of the powdery pesticide is a particle size measured by a laser diffraction / scattering type particle size distribution measuring device, and indicates a particle size that is 50% in cumulative frequency in the volume-based frequency distribution.
  • the average particle diameter of a powdery pesticide when a powdery pesticide is a mixture with this inorganic compound means the average particle diameter of this mixture.
  • the average particle size of the powdered pesticide is determined by a so-called wet measurement method in which the particle size of the powdered pesticide is dispersed in water using a master sizer 2000 (Malvern) as a laser diffraction / scattering particle size distribution measuring device. be able to.
  • the coating layer contains an agrochemical active ingredient, its content in the present rice seed is usually 0.001 to 3% by weight, preferably 0.005 to 2% by weight, more preferably 0.01 to 2% by weight. It is a range.
  • the coating layer may contain a colorant.
  • a colorant include pigments, pigments, and dyes. Among them, the use of pigments is preferable.
  • a red or blue pigment is preferably used, and examples thereof include Ultramarine Blue Nubix G-58 (blue pigment, manufactured by nubio) and Toda Color 300R (red pigment, manufactured by Toda Kogyo Co., Ltd.).
  • the kit of the present invention comprises the present alpha starch and zinc oxide, which may be contained in one container or in two or more containers. Also good. That is, the kit may include one or more containers. When this kit contains two or more containers, different components may be contained in each container.
  • the kit may contain other components (hereinafter referred to as component ⁇ ) such as iron oxide, the present inorganic compound, and an agrochemical active ingredient.
  • the rice seed is obtained by forming a coating layer (hereinafter referred to as the present coating layer 1) containing the present alpha starch, zinc oxide, and optionally used iron oxide or the present inorganic compound. be able to.
  • This coating layer 1 is formed by performing an operation of adding the present alpha starch and zinc oxide, and optionally used iron oxide or the present inorganic compound while rolling the rice seed, and attaching them to the rice seed.
  • a device for rolling rice seeds a device used in conventional iron coating such as a coating machine can be used.
  • the present alpha starch and zinc oxide, and optionally used iron oxide or the present inorganic compound can be used separately or in combination.
  • component ⁇ when the alpha starch and zinc oxide, and optionally used iron oxide or inorganic compound are used in combination, a powdered composition containing the alpha starch and zinc oxide, optionally used iron oxide or inorganic compound is used.
  • component ⁇ can be used alone, or can be used by adding component ⁇ to a powdery composition containing the present alpha starch and zinc oxide.
  • a method for forming the present coating layer 1 using a powdery composition containing the alpha starch and zinc oxide (hereinafter referred to as a powdery composition Z) will be described below. While rolling the rice seed, the powder composition Z and water are added to form the coating layer 1 on the rice seed.
  • This alpha starch acts as a binder and can attach zinc oxide to rice seeds.
  • the present inorganic compound is mixed and added to the powdered composition Z, or a powdered composition containing the present alpha starch and the present inorganic compound (hereinafter referred to as the powdered composition).
  • Y a powdered composition containing the present alpha starch and the present inorganic compound
  • Y a powdered composition containing the present alpha starch and the present inorganic compound
  • Y a powdered composition containing the present alpha starch and the present inorganic compound
  • Y powdered composition containing the present alpha starch and the present inorganic compound
  • the powdery composition Y and water are added to form a first layer containing the present inorganic compound and the present alpha starch, and then the rolling state of the rice seeds is determined. While maintaining the powder composition Z and water, a second layer containing zinc oxide and the present alpha starch is formed outside the first layer.
  • a powdery composition containing the present alpha starch and zinc oxide (hereinafter sometimes referred to as the present composition (1)) is suitable as a rice seed coating powdery composition.
  • the average particle size of the composition (1) is in the range of 0.01 to 150 ⁇ m, preferably 1 to 150 ⁇ m, more preferably 5 to 150 ⁇ m.
  • the average particle size of the present composition (1) is a particle size measured with a laser diffraction / scattering type particle size distribution measuring device, and a particle size that is 50% in cumulative frequency in a volume-based frequency distribution. Point to.
  • the average particle size of the composition (1) is measured by dispersing the particles of the composition (1) in water using a master sizer 2000 (manufactured by Malvern) as a laser diffraction / scattering particle size distribution measuring device. The method can be determined by so-called wet measurement. Further, the apparent specific gravity of the present composition (1) is 0.30 to 2.50 g / mL and 0.30 to 2.0 g / mL, preferably 0.50 to 1.8 g / mL, more preferably 0.8. It is in the range of 60 to 1.5 g / mL. It is preferable that the apparent specific gravity of the present composition (1) is large because of less scattering during the production of coated rice seeds.
  • the apparent specific gravity of the composition (1) is determined by a method according to the test method prescribed in the official test method for agricultural chemicals (physical test method, Notification No. 71 of the Ministry of Agriculture, Forestry and Agriculture, February 3, 1960). It is done.
  • the powdery composition containing the present alpha starch, zinc oxide, and iron oxide (hereinafter sometimes referred to as the present composition (2)) is suitable as a powdery composition for rice seed coating.
  • the average particle size of the composition (2) is in the range of 0.01 to 150 ⁇ m, preferably 1 to 150 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the average particle size of the composition (2) is a particle size measured with a laser diffraction / scattering type particle size distribution measuring device, and a particle size that is 50% in cumulative frequency in a volume-based frequency distribution. Point to.
  • the average particle diameter of the present composition (2) is measured by dispersing the particles of the present composition (2) in water using a master sizer 2000 (manufactured by Malvern) as a laser diffraction / scattering particle size distribution measuring apparatus.
  • the method can be determined by so-called wet measurement.
  • the apparent specific gravity of the present composition (2) is, for example, 0.30 to 2.50 g / mL and 0.30 to 2.0 g / mL, preferably 0.50 to 2.20 g / mL, more preferably 1
  • the range is 0.000 to 2.20 g / mL. It is preferable that the apparent specific gravity of the present composition (2) is large because scattering during coating rice seed production is small.
  • the apparent specific gravity of the composition (2) is determined by a method according to the test method prescribed in the official test method for agricultural chemicals (physical test method, Notification No. 71 of the Ministry of Agriculture, Forestry and Agriculture, February 3, 1960). It is done.
  • the weight ratio of zinc oxide to iron oxide in the composition (2) is usually in the range of 1: 1000 to 1000: 1, preferably 1: 1000 to 100: 1, more preferably 1: 200 to 10: 1. is there. In consideration of plant growth and environmental impact, a range of 1: 200 to 1: 3 is preferable.
  • the present composition (1) may contain the present inorganic compound.
  • the weight ratio of zinc oxide to the present inorganic compound in the present composition (1) is usually 1: 1000 to 1000: 1, preferably 1: 1000 to 100: 1, more preferably in the range of 1: 200 to 10: 1. In consideration of plant growth and environmental impact, a range of 1: 200 to 1: 3 is preferable.
  • An average particle comprising alpha starch having a swelling degree of 20% at 2 ° C. in a range of 10 to 48 mL / g, zinc oxide, and at least one selected from the group consisting of clay and calcium carbonate A powdery composition having a diameter in the range of 0.01 to 150 ⁇ m and an apparent specific gravity in the range of 0.30 to 2.0 g / mL; An average particle comprising alpha starch having a swelling degree of 2 to 46 mL / g of a 2% aqueous suspension in a range of 12 to 46 mL / g, zinc oxide, and at least one selected from the group consisting of clay and calcium carbonate A powdery composition having a diameter in the range of 1-150 ⁇ m and an apparent specific gravity in the range of 0.50-1.8 g / mL; An average particle comprising alpha starch having a swelling degree of 2 to 46 mL
  • a powdery composition having a particle size in the range of 5 to 150 ⁇ m and an apparent specific gravity in the range of 0.60 to 1.5 g / mL;
  • -An average particle diameter of 5 to 150 ⁇ m which includes alpha starch whose degree of swelling at 20 ° C. of a 2% aqueous suspension is in the range of 12 to 46 mL / g, zinc oxide, and calcium carbonate.
  • the average particle size is in the range of 5 to 150 ⁇ m, including alpha starch whose degree of swelling at 20 ° C. of a 2% aqueous suspension is in the range of 12 to 46 mL / g, zinc oxide, and clay, and has an apparent specific gravity A pulverulent composition in which is in the range 0.60 to 1.5 g / mL; -2% aqueous suspension containing alpha starch whose degree of swelling at 20 ° C. is in the range of 12 to 46 mL / g, zinc oxide and waxy stone, and having an average particle size in the range of 5 to 150 ⁇ m.
  • this composition (2) Some examples of this composition (2) are shown below. In the following examples,% represents% by weight relative to the present composition (2). -2% aqueous suspension containing alpha starch whose degree of swelling at 20 ° C. is in the range of 12 to 46 mL / g, zinc oxide, and iron oxide, and having an average particle size in the range of 1 to 100 ⁇ m.
  • a method for producing the present rice seed (hereinafter referred to as the present production method) will be described.
  • rice seeds are usually used after soaking. Immersion can be performed as follows. First, dry rice seeds are put in a bag such as a seed bag and soaked in water. In order to obtain coated rice seeds with a high germination rate, it is desirable to soak for 3 to 4 days at a water temperature of 15 to 20 ° C. After the rice seeds are taken out of the water, the excess water on the surface is usually removed by standing or applying a dehydrator.
  • this manufacturing method 1 has the following processes. (1) While rolling rice seeds, the present alpha starch, zinc oxide, this inorganic compound, and water are added to form a coating layer containing this alpha starch, zinc oxide, and this inorganic compound. And (2) drying the seeds obtained in the step (1).
  • step 1 a powdered composition containing the present alpha starch, zinc oxide and the present inorganic compound (hereinafter referred to as powdered composition X), water, Is added to form a coating layer containing the present alpha starch, zinc oxide, and the present inorganic compound (hereinafter referred to as step 1).
  • water may be added, and then powdered composition X may be added, or the order may be reversed.
  • you may add water and the powdery composition X simultaneously.
  • Water and the powdery composition X are added so as to be applied to the rolling rice seeds.
  • a method for adding water either dropping or spraying may be used.
  • the total amount of zinc oxide added in production method 1 is usually 0.01 to 200 parts by weight, preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight, based on 100 parts by weight of dry rice seeds.
  • the range is parts by weight. In consideration of plant growth and environmental impact, the range of 0.1 to 25 parts by weight is preferable.
  • the total amount of the inorganic compound added is usually in the range of 1 to 200 parts by weight, preferably 1 to 150 parts by weight, more preferably 1 to 100 parts by weight with respect to 100 parts by weight of the dried rice seed.
  • the total amount of the powdery composition X is usually in the range of 5 to 500 parts by weight, preferably 5 to 300 parts by weight, more preferably 10 to 200 parts by weight with respect to 100 parts by weight of the dried rice seeds.
  • the total amount of the added alpha starch is usually in the range of 0.025 to 40 parts by weight, preferably 0.025 to 20 parts by weight, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of dry rice seeds. It is.
  • the weight ratio of the present alpha starch to the powdery composition X is usually in the range of 1: 200 to 1: 5, preferably 1: 150 to 1:10.
  • Step 1 the powdery composition X is added in portions, and Step 1 is repeatedly performed, whereby a uniform coating layer can be formed.
  • the addition amount of the powdery composition X once is usually about 1 to 1/10, preferably about 1/2 to 1/5 of the total addition amount of the powdery composition X.
  • the total amount of water added is usually about 1/2 to 1/100, preferably about 1/3 to 1/10 of the total amount of the powdery composition X.
  • step 1 when the powdery composition X adheres to the inner wall or the like of the apparatus, it is possible to adhere substantially the entire amount of the added powdery composition X to rice seeds by scraping it off with a scraper or the like.
  • a step of drying the seed obtained in Step 1 is performed to obtain the present rice seed.
  • rice seeds are taken out from the apparatus, placed in a seedling box, spread thinly, left to stand and dried. Usually, it is dried until the water content is 20% or less (% by weight based on the coated rice seed).
  • the moisture content of the coated rice seed means a value measured by drying a 10 g sample at 105 ° C. for 1 hour using an infrared moisture meter.
  • the infrared moisture meter FD-610 manufactured by Kett Science Laboratory can be used.
  • a cocoon or a vinyl sheet may be used and thinly spread on the seedling box and dried.
  • This manufacturing method 2 has the following processes.
  • Step I a step of forming a coating layer containing the present alpha starch and the present inorganic compound.
  • the process I can be implemented similarly to the process 1 of this manufacturing method 1 except using the powdery composition W instead of the powdery composition X.
  • powdery composition V a powdery composition containing the present alpha starch and zinc oxide
  • Step II a step of forming a coating layer containing the present alpha starch and zinc oxide on the outside of the layer formed in Step I.
  • Step II can be carried out in the same manner as Step I except that powdered composition V is used instead of powdered composition W.
  • the total amount of zinc oxide added in production method 2 is usually 0.01 to 200 parts by weight, preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight, based on 100 parts by weight of dry rice seeds.
  • the range is parts by weight. In consideration of plant growth and environmental impact, the range of 0.1 to 25 parts by weight is preferable.
  • the total amount of the inorganic compound added is usually in the range of 1 to 200 parts by weight, preferably 1 to 150 parts by weight, more preferably 1 to 100 parts by weight with respect to 100 parts by weight of the dried rice seed.
  • the total amount of the powdery composition V is usually in the range of 0.1 to 250 parts by weight, preferably 1 to 120 parts by weight, more preferably 1 to 60 parts by weight with respect to 100 parts by weight of the dried rice seeds.
  • the total amount of the powdery composition W is usually in the range of 5 to 250 parts by weight, preferably 5 to 200 parts by weight, more preferably 5 to 150 parts by weight with respect to 100 parts by weight of the dry rice seed.
  • the total amount of the added alpha starch is usually in the range of 0.025 to 40 parts by weight, preferably 0.025 to 20 parts by weight, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of dry rice seeds. It is.
  • the weight ratio of the present alpha starch to the powdery composition V is usually in the range of 1: 200 to 1: 5, preferably 1: 150 to 1:10.
  • the weight ratio of the present alpha starch to the powdery composition W is usually in the range of 1: 200 to 1: 5, preferably 1: 150 to 1:10.
  • this coating layer 1 has a first layer containing iron oxide and a second layer containing zinc oxide provided outside the first layer.
  • a method for producing coated rice seeds (hereinafter referred to as production method 3) will be described.
  • This manufacturing method 3 has the following processes. (1) (I) A step of adding the present alpha starch, iron oxide and water while rolling rice seeds to form a coating layer containing the present alpha starch and iron oxide, and (II) While rolling the seeds obtained in the step (I), the present alpha starch, zinc oxide, and water are added, and the present alpha starch and oxidized outside the layer formed in the step (I). A step of forming a coating layer containing zinc, and (2) a step of drying the seeds obtained in the step (1).
  • step 1 ′ a powder composition containing the present alpha starch and iron oxide (hereinafter referred to as powder composition T) and water are added.
  • a step of forming a coating layer containing the present alpha starch and iron oxide (hereinafter referred to as step 1 ′) is performed.
  • Step 1 ′ can be carried out in the same manner as in Step 1 of Production Method 1, except that powdered composition T is used instead of powdered composition Z.
  • Step 2 ′ After carrying out Step 1 ′, while rolling the seed obtained in Step 1 ′, a powdery composition containing the present alpha starch and zinc oxide (hereinafter referred to as powdery composition U) and water And a step of forming a coating layer containing the present alpha starch and zinc oxide on the outside of the layer formed in step 1 ′ (hereinafter referred to as step 2 ′) is performed.
  • Step 2 ′ can be performed in the same manner as Step 1 ′ except that the powdery composition U is used instead of the powdery composition U.
  • the total amount of zinc oxide added in production method 3 is usually 0.01 to 200 parts by weight, preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight, based on 100 parts by weight of dry rice seeds.
  • the range is parts by weight. In consideration of plant growth and environmental impact, the range of 0.1 to 25 parts by weight is preferable.
  • the total amount of iron oxide added is usually 1 to 200 parts by weight, preferably 1 to 150 parts by weight, and more preferably 1 to 100 parts by weight with respect to 100 parts by weight of dry rice seeds.
  • the total amount of the powdery composition T is usually in the range of 5 to 250 parts by weight, preferably 5 to 200 parts by weight, more preferably 5 to 150 parts by weight with respect to 100 parts by weight of the dry rice seed.
  • the total amount of the powdery composition U is usually in the range of 0.1 to 250 parts by weight, preferably 1 to 120 parts by weight, more preferably 1 to 60 parts by weight with respect to 100 parts by weight of the dried rice seeds. .
  • the total amount of the added alpha starch is usually in the range of 0.025 to 40 parts by weight, preferably 0.025 to 20 parts by weight, more preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of dry rice seeds. It is.
  • the weight ratio of the present alpha starch to the powdery composition U is usually in the range of 1: 200 to 1: 5, preferably 1: 150 to 1:10.
  • the weight ratio of the present alpha starch to the powdery composition U is usually in the range of 1: 200 to 1: 5, preferably 1: 150 to 1:10.
  • This rice seed can be used in direct sowing cultivation of paddy rice, and the method is carried out by directly sowing the rice seed in a paddy field.
  • the paddy field refers to either a flooded paddy field or a drained paddy field.
  • a direct seeding machine for iron coating such as Tekimaki-chan (manufactured by Kubota Corporation) may be used.
  • Tekimaki-chan manufactured by Kubota Corporation
  • good seedling establishment is achieved by sowing by a normal method.
  • rice can be grown by maintaining normal cultivation conditions.
  • agricultural chemicals and fertilizers may be applied before sowing, simultaneously with sowing or after sowing.
  • pesticides include fungicides, insecticides and herbicides.
  • rice seeds are hinokihikari seeds, and iron oxide having an ⁇ -Fe 2 O 3 content of 78% and an average particle size of 42.7 ⁇ m is used. Using. The production was carried out at room temperature (about 20 ° C.). Moreover,% represents weight%. Moreover, the brand name described in the manufacture example and the comparative manufacture example is as follows.
  • Zinc oxide 3N5 Zinc oxide, manufactured by Kanto Chemical Co., Inc., average particle size: 7.7 ⁇ m
  • One kind of zinc oxide zinc oxide, manufactured by Nippon Chemical Industry Co., Ltd., average particle size; 0.26 ⁇ m
  • Two types of zinc oxide zinc oxide, manufactured by Nippon Chemical Industry Co., Ltd., average particle size; 0.24 ⁇ m
  • Calcium carbonate G-100 Calcium carbonate, Sankyo Seimitsu Co., Ltd., average particle size: 46.0 ⁇ m SS # 80: Calcium carbonate, manufactured by Nitto Flour Industry Co., Ltd., average particle size: 4.6 ⁇ m
  • For Tankar granules Calcium carbonate, manufactured by Yakusen Lime Co., Ltd., average particle size: 6.2 ⁇ m
  • Barite Barium sulfate, manufactured by Neolite Kosan Co., Ltd., average particle size: 12.4 ⁇ m
  • Katsuyama clay S wax, manufactured by Katsuyama Mining Co., Ltd., average
  • a simple seed coating machine capable of coating when a small amount of rice seed was used was prepared.
  • a polyethylene cup 2 having a capacity of 500 mL is attached to the tip of the shaft 1 and inserted into the drive shaft of a stirrer 3 (Three-One Motor, Shinto Kagaku) so that the elevation angle is 45 degrees.
  • a simple seed coating machine was prepared by attaching the stirrer 3 to the stand 4 in an oblique manner.
  • 1 g of zinc oxide 2 g and 0.1 g of corn alpha-Y were mixed to obtain a powdery composition (1).
  • the average particle diameter of the powdery composition (1) was 141.3 ⁇ m, and the apparent specific gravity was 0.35 g / mL.
  • the powdery composition (1) adheres to the inner wall of the polyethylene cup 2, by scraping it off with a spatula, substantially the entire amount of the powdery composition (1) added at one time was attached to rice seeds. . Thereafter, the same operation was repeated three times to attach 1.1 g of the powdery composition (1) to rice seeds to form a coating layer. The total amount of water used for coating was 0.2 g.
  • the rice seed taken out from the simple seed coating machine was spread so as not to overlap the stainless steel vat and dried overnight to obtain the coated rice seed (1) of the present invention.
  • Production Example 2 10 g of zinc oxide 3N5 and amylox no. 0.1 g of 1A was mixed to obtain a powdery composition (2).
  • the average particle diameter of the powdery composition (2) was 6.16 ⁇ m, and the apparent specific gravity was 0.54 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.1 g of the above powdery composition (2) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (2) of the present invention. Obtained.
  • the total amount of water used for coating was 2.8 g.
  • Production Example 3 10 g of zinc oxide 3N5 and 0.6 g of amylol W were mixed to obtain a powdery composition (3).
  • the average particle diameter of the powdery composition (3) was 8.77 ⁇ m, and the apparent specific gravity was 0.54 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.6 g of the above powdery composition (3) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (3) of the present invention Obtained.
  • the total amount of water used for coating was 2.8 g.
  • a powdery composition (4) was obtained by mixing 0.02 g of zinc oxide, 13.98 g of calcium carbonate G-100, 6 g of SS # 80, and 0.8 g of amicol W.
  • the average particle diameter of the powdery composition (4) was 48.5 ⁇ m, and the apparent specific gravity was 1.1 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 20.8 g of the above powdery composition (4) was used, and an operation of adding it in four parts was carried out to obtain the coated rice seed (4) of the present invention Obtained.
  • the total amount of water used for coating was 3.6 g.
  • Production Example 5 Two kinds of zinc oxide 0.1 g, 6.9 g of calcium carbonate G-100, 3 g of SS # 80, and 0.8 g of amicol W were mixed to obtain a powdery composition (5).
  • the average particle diameter of the powdery composition (5) was 37.4 ⁇ m, and the apparent specific gravity was 1.0 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.8 g of the above powdery composition (5) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (5) of the present invention. Obtained.
  • the total amount of water used for coating was 1.8 g.
  • a powdery composition (6) was obtained by mixing 1 g of zinc oxide, 13 g of calcium carbonate G-100, 6 g of SS # 80, and 0.8 g of Amicol W.
  • the average particle diameter of the powdery composition (6) was 23.1 ⁇ m, and the apparent specific gravity was 1.1 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 20.8 g of the above powdery composition (6) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (6) of the present invention. Obtained.
  • the total amount of water used for coating was 3.9 g.
  • Production Example 7 A powdery composition (7) was obtained by mixing 2.5 g of zinc oxide, 7.5 g of calcium carbonate G-100, and 0.4 g of amylol W. The average particle diameter of the powdery composition (7) was 27.0 ⁇ m, and the apparent specific gravity was 0.95 g / mL. Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (7) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (7) of the present invention. Obtained. The total amount of water used for coating was 2.0 g.
  • Production Example 8 A powdery composition (8) was obtained by mixing 5 g of zinc oxide 3N5, 5 g for tancal granules, and 0.4 g of Amicol KF. The average particle size of the powdery composition (8) was 45.5 ⁇ m, and the apparent specific gravity was 0.57 g / mL. Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (8) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (8) of the present invention. Obtained. The total amount of water used for coating was 2.6 g.
  • Production Example 9 10 g of zinc oxide 3N5, 10 g for tankal granules, and amylox no. 1A 0.8g was mixed and the powdery composition (9) was obtained.
  • the average particle diameter of the powdery composition (9) was 44.0 ⁇ m, and the apparent specific gravity was 0.58 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 20.8 g of the above powdery composition (9) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (9) of the present invention. Obtained.
  • the total amount of water used for coating was 5.6 g.
  • Production Example 10 1 g of zinc oxide 3N5, 9 g for tankal granule, and 0.4 g of amicol W were mixed to obtain a powdery composition (10).
  • the average particle diameter of the powdery composition (10) was 9.9 ⁇ m, and the apparent specific gravity was 0.61 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (10) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (10) of the present invention. Obtained.
  • the total amount of water used for coating was 1.7 g.
  • Production Example 11 9 g of zinc oxide 3N5, 1 g of barite and 0.4 g of amicol W were mixed to obtain a powdery composition (11).
  • the average particle diameter of the powdery composition (11) was 9.2 ⁇ m, and the apparent specific gravity was 1.00 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (11) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (11) of the present invention. Obtained.
  • the total amount of water used for coating was 2.5 g.
  • Production Example 12 9 g of zinc oxide 3N5, 1 g of Katsuyama Clay S and 0.4 g of Amicol W were mixed to obtain a powdery composition (12).
  • the average particle diameter of the powdery composition (12) was 9.8 ⁇ m, and the apparent specific gravity was 0.49 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (12) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (12) of the present invention. Obtained.
  • the total amount of water used for coating was 2.9 g.
  • Production Example 13 1 g of zinc oxide, 9 g of rutile flour and 0.4 g of amylol W were mixed to obtain a powdery composition (13).
  • the average particle diameter of the powdery composition (13) was 15.5 ⁇ m, and the apparent specific gravity was 1.08 g / mL.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (13) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (13) of the present invention. Obtained.
  • the total amount of water used for coating was 1.2 g.
  • Production Example 14 A powdery composition (14) was obtained by mixing 1 g of zinc oxide 2 g, 9 g of DL for clay powder and 0.4 g of amylol W. The average particle diameter of the powdery composition (14) was 24.2 ⁇ m, and the apparent specific gravity was 0.87 g / mL. Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (14) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (14) of the present invention. Obtained. The total amount of water used for coating was 2.3 g.
  • Production Example 15 A powdery composition (15) was obtained by mixing 1 g of zinc oxide 2 g, 9 g of sun zeolite MGF, and 0.4 g of amylol W. The average particle diameter of the powdery composition (15) was 141.2 ⁇ m. The following operations were performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.4 g of the above powdery composition (15) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (15) of the present invention. Obtained. The total amount of water used for coating was 3.2 g.
  • Coating was performed according to the method described in Production Example 1. In place of 1.1 g of the powdery composition (1), 10.486 g of the above powdery composition (16) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (16) of the present invention. Obtained. The total amount of water used for coating was 1.9 g.
  • Production Example 17 A powdery composition (17-1) was obtained by mixing 9 g of granule tancals and 0.36 g of Amicol W.
  • the powder composition (17-1) had an average particle size of 8.57 ⁇ m and an apparent specific gravity of 0.63 g / mL. Further, 1 g of zinc oxide 3N5 and 0.04 g of amicol W were mixed to obtain a powdery composition (17-2).
  • the powder composition (17-2) had an average particle size of 5.6 ⁇ m and an apparent specific gravity of 0.54 g / mL. Coating was performed according to the method described in Production Example 1.
  • the powdery composition (17-1) After soaking 20g of dry rice seeds, roll it using a simple seed coating machine, spraying water on rice seeds with a spray bottle, and the amount of about 1/4 of 9.36g of powdery composition (17-1) (About 2.3 g) was added and allowed to adhere to rice seeds.
  • the powdery composition (17-1) adheres to the inner wall of the polyethylene cup 2, it is scraped off with a spatula to remove substantially the entire amount of the powdery composition (17-1) added at a time. Adhered to. Thereafter, by repeating the same operation three times, 9.36 g of the powdery composition (17-1) was attached to the rice seed, and the first coating layer containing calcium carbonate (hereinafter referred to as the first layer) Formed.
  • the total amount of water used for coating was 1.9 g.
  • the rolling state of the rice seeds was maintained with the simple seed coating machine kept operating, and while spraying water onto the rice seeds with a spray, 1/44 of 1.04 g of the powdery composition (17-2) A moderate amount (about 0.26 g) was added and adhered to the outside of the first layer.
  • the powdery composition (17-2) adheres to the inner wall of the polyethylene cup 2, it is scraped off with a spatula so that substantially the entire amount of the powdery composition (17-2) added at one time is rice seeds. Adhered to.
  • the powdery composition (17-2) was adhered to the outside of the first layer, and the second coating containing zinc oxide was formed on the outside of the first layer.
  • a layer (hereinafter referred to as a second layer) was formed.
  • the total amount of water used for coating was 1.3 g.
  • the rice seed taken out from the simple seed coating machine was spread so as not to overlap the stainless steel vat and dried overnight to obtain the coated rice seed (17) of the present invention.
  • the rice seeds are rolled by operating the simple seed coating machine in the range of the rotation speed of the stirrer 3 in the range of 130 to 140 rpm, and 10.05 g of 10.05 g of the powdery composition (18) is sprayed on the rice seeds by spraying water.
  • An amount of about 4 (about 2.5 g) was added and allowed to adhere to rice seeds.
  • the powdery composition (18) adheres to the inner wall of the polyethylene cup 2, it is scraped off with a spatula to attach substantially the entire amount of the powdery composition (18) added at one time to the rice seed. . Thereafter, the same operation was repeated three times to attach 10.05 g of the powdery composition (18) to rice seeds to form a coating layer.
  • the total amount of water used for coating was 0.7 g.
  • the rice seed taken out from the simple seed coating machine was spread so as not to overlap the stainless steel vat, and dried overnight to obtain the coated rice seed (18) of the present invention.
  • Production Example 19 5 g of zinc oxide 3N5, 5 g of iron oxide, and amylox no. 1A 0.1g was mixed and the powdery composition (19) was obtained.
  • the average particle diameter of the powdery composition (19) was 19.0 ⁇ m, and the apparent specific gravity was 0.97 g / mL.
  • Coating was performed according to the method described in Production Example 18. In place of 10.05 g of the powdery composition (18), 10.1 g of the above powdery composition (19) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (19) of the present invention Obtained.
  • the total amount of water used for coating was 2.1 g.
  • Production Example 20 9 g of zinc oxide 3N5, 1 g of iron oxide and amylox no. 1A 0.1 was mixed to obtain a powdery composition (20).
  • the average particle diameter of the powdery composition (20) was 13.4 ⁇ m, and the apparent specific gravity was 0.63 g / mL.
  • Coating was performed according to the method described in Production Example 18. In place of 10.05 g of the powdery composition (18), 10.1 g of the above powdery composition (20) was used, and it was added in four portions, and the coated rice seed (20) of the present invention was added. Obtained.
  • the total amount of water used for coating was 2.8 g.
  • a powdery composition (21) was obtained by mixing 2 g of zinc oxide, 18 g of iron oxide and 0.8 g of amylol W.
  • the average particle diameter of the powdery composition (21) was 14.0 ⁇ m, and the apparent specific gravity was 1.7 g / mL.
  • Coating was performed according to the method described in Production Example 18.
  • 20.8 g of the above powdery composition (21) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (21) of the present invention Obtained.
  • the total amount of water used for coating was 2.9 g.
  • a powdery composition (22) was obtained by mixing 2.5 g of zinc oxide, 7.5 g of iron oxide and 0.4 g of amylol W.
  • the average particle diameter of the powdery composition (22) was 3.6 ⁇ m, and the apparent specific gravity was 1.3 g / mL.
  • Coating was performed according to the method described in Production Example 18. In place of 10.05 g of the powdery composition (18), 10.4 g of the above powdery composition (22) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (22) of the present invention Obtained.
  • the total amount of water used for coating was 1.7 g.
  • a powdery composition (23) was obtained by mixing 2.5 g of zinc oxide, 7.5 g of iron oxide and 0.1 g of amicol KF.
  • the average particle diameter of the powdery composition (23) was 22.0 ⁇ m, and the apparent specific gravity was 1.02 g / mL.
  • Coating was performed according to the method described in Production Example 18. In place of 10.05 g of the powdery composition (18), 10.1 g of the above powdery composition (23) was used, and an operation of adding it in four portions was carried out to obtain the coated rice seed (23) of the present invention Obtained.
  • the total amount of water used for coating was 1.9 g.
  • Production Example 24 After mixing 70.0 parts by weight of clothianidin and 30.0 parts by weight of Katsumiyama clay S, the mixture was pulverized by a centrifugal pulverizer to obtain a powdery pesticide B.
  • a powdery composition (24) was obtained by mixing 2.5 g of zinc oxide, 7.5 g of iron oxide, 0.4 g of Amycol W and 0.086 g of powdered pesticide B.
  • the average particle diameter of the powdery composition (24) was 5.3 ⁇ m, and the apparent specific gravity was 0.98 g / mL.
  • Coating was performed according to the method described in Production Example 18. In place of 10.05 g of the powdery composition (18), 10.486 g of the above powdery composition (24) was used, and an operation of adding it in four portions was performed. Obtained.
  • the total amount of water used for coating was 2.0
  • Production Example 25 9 g of iron oxide and amylox no. 0.045 g of 1A was mixed to obtain a powdery composition (25-1). In addition, 1 g of zinc oxide 3N5 and amylox No. 0.005 g of 1A was mixed to obtain a powdery composition (25-2). Coating was performed according to the method described in Production Example 18. After seeding 20 g of dried rice seeds, roll it using a simple seed coating machine, spraying water onto the rice seeds with a mist sprayer, and a quantity of about 1/4 of 9.045 g of the powdery composition (25-1) (About 2.3 g) was added and allowed to adhere to rice seeds.
  • the powdery composition (25-1) adheres to the inner wall of the polyethylene cup 2, it is scraped off with a spatula to remove substantially the entire amount of the powdery composition (25-1) added at one time from rice seeds. Adhered to. Thereafter, by repeating the same operation three times, 9.045 g of the powdery composition (25-1) was attached to the rice seed, and the first coating layer containing iron oxide (hereinafter referred to as the first coating layer). ) was formed. The total amount of water used for coating was 1.0 g.
  • a coating layer (hereinafter referred to as a second coating layer) was formed.
  • the total amount of water used for coating was 2.1 g.
  • the rice seed taken out from the simple seed coating machine was spread so as not to overlap the stainless steel vat and dried overnight to obtain the coated rice seed (25) of the present invention.
  • Production Example 26 1 g of iron oxide and amylox no. 0.01A of 1A was mixed to obtain a powdery composition (26-1). Further, 9 g of zinc oxide 3N5 and amylox No. 0.09 g of 1A was mixed to obtain a powdery composition (26-2). Coating was performed according to the method described in Production Example 18. After soaking 20 g of dried rice seeds, the powdered composition (26-1) is about 1/4 of the amount of 1.01 g while rolling using a simple seed coating machine and spraying water on the rice seeds with a spray. (About 0.25 g) was added and allowed to adhere to rice seeds.
  • the powdery composition (26-1) adheres to the inner wall of the polyethylene cup 2, it is scraped off with a spatula so that substantially the entire amount of the powdery composition (26-1) added at one time is rice seeds. Adhered to. Thereafter, by repeating the same operation three times, 1.01 g of the powdery composition (26-1) was adhered to rice seeds to form a first coating layer. The total amount of water used for coating was 0.2 g. Next, while maintaining the rolling state of the rice seeds while keeping the simple seed coating machine operated, while spraying water onto the rice seeds with a spray, 1/49 of 9.09 g of the powdery composition (26-2) A moderate amount (about 2.3 g) was added and adhered to the outside of the first coating layer.
  • the powdery composition (26-2) adheres to the inner wall of the polyethylene cup 2, it is scraped off with a spatula so that substantially the entire amount of the powdery composition (26-2) added at one time is rice seeds. Adhered to. Thereafter, by repeating the same operation three times, 9.09 g of the powdery composition (26-2) is adhered to the outside of the first coating layer to form the second coating layer on the outside of the first coating layer. I let you. The total amount of water used for coating was 3.4 g. The rice seed taken out from the simple seed coating machine was spread so as not to overlap the stainless steel vat, and dried overnight to obtain the coated rice seed (26) of the present invention.
  • Comparative production example 1 10 g of DAE1K and 1 g of KTS-1 were mixed to obtain 11 g of iron mixture A. Coating was performed according to the method described in Production Example 1. After soaking 20g of dried rice seeds, it is rolled using a simple seed coating machine, and water is sprayed onto the rice seeds using a dropper, while the amount is about 1/4 of the iron mixture A 11g (about 2.8g). And added to rice seeds. When the iron mixture A adheres to the inner wall of the polyethylene cup 2, the entire amount of the iron mixture A added at one time was adhered to rice seeds by scraping it off with a spatula. Then, 11 g of iron mixture A was made to adhere to a rice seed by repeating the same operation 3 times, and the coating layer was formed.
  • the total amount of water used for coating was 1.9 g.
  • the rice seed rolling state was maintained with the simple seed coating machine kept in operation, and 0.5 g of KTS-1 was added to adhere to the outside of the coating layer.
  • the rice seeds taken out from the simple seed coating machine are spread so that they do not overlap the stainless steel vat, and the rice seeds are sprayed with water three times a day to promote iron oxidation for 2 days and then dried. As a result, a coated rice seed (I) for comparison was obtained.
  • Test example 3 Ten pieces of coated rice seeds were put into a petri dish containing 3 mL of hard water with 3 degree and left at room temperature (about 20 ° C.). The presence or absence of peeling of the coating was visually observed after 30 minutes. The results are shown in Table 3.
  • Test Example 6 Ten pieces of coated rice seeds were put into a petri dish containing 3 mL of hard water with 3 degree and left at room temperature (about 20 ° C.). The presence or absence of peeling of the coating was visually observed after 30 minutes. The results are shown in Table 6.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Inorganic Chemistry (AREA)

Abstract

コーティング層を有してなるコーティングイネ種子であって、前記コーティング層が、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とを含むコーティングイネ種子。

Description

コーティングイネ種子及びその製造方法
 本発明は、コーティングイネ種子及びその製造方法に関する。
 水稲直播栽培は、イネ種子を直接水田に播く栽培方法であり、育苗や移植作業が不要であるため農作業の省力化を図ることができる等の利点を有する一方、カモやスズメ等の鳥による食害(鳥害)を受け易いという欠点も有している。鳥害による苗立ち率の低下は減収につながるため、鳥害回避策が切望されてきた。従来の鳥害回避策としては、例えば、水管理により鳥害を防止する方法が提案されているが、鳥の種類に応じて管理方法を変更する必要がある(例えば、非特許文献1参照)。
 また、鉄コーティング湛水直播は、鉄粉でイネ種子をコーティングすることにより、土壌表面播種における種子の浮遊を抑制し、スズメによる食害を防止する技術として知られている(例えば、非特許文献2参照)。しかしながら、該技術は鉄粉が酸化することにより固化することを利用しているため、酸化の際に発生する熱を放散する必要がある等コーティングされたイネ種子の管理が煩わしく、また、コーティングされたイネ種子の管理が不十分な場合には発芽率が低下するという問題があった。このような問題の解決手法としては、例えば、高けん化度のポリビニルアルコールと、酸化鉄等のコーティング資材とを用いてイネ種子をコーティングする技術が知られている(特許文献1参照)。
特開2013-146266号公報
酒井長雄、外3名、「水稲湛水直播栽培における耕種的鳥害防止対策」、北陸作物学会報(The Hokuriku Crop Science)、日本作物学会、1999年3月31日、第34巻、p.59-61 山内稔、「鉄コーティング湛水直播マニュアル 2010」、独立行政法人農業・食品産業技術総合研究機構 近畿中国四国農業研究センター、2010年3月
 しかしながら、酸化鉄でコーティングされたイネ種子の鳥害防止効果は、十分といえるものではなかった。
 本発明は、鳥害を受け難く、且つ種子の浮遊及び発芽率の低下が抑制されたコーティングイネ種子を提供することを課題とする。
 本発明者等は、このような課題を解決すべく検討した結果、イネ種子を、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とでコーティングして水田に播種すると、鳥害が軽減され、水稲直播栽培において十分な苗立ち率を確保し得ることを見出した。
 すなわち、本発明は以下の通りである。
[項1]
コーティング層を有してなるコーティングイネ種子であって、前記コーティング層が、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とを含むコーティングイネ種子。
[項2]
前記コーティング層が、下記群(A)より選ばれる少なくとも1種を含む項1に記載のコーティングイネ種子。
群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
[項3]
前記コーティング層が、前記群(A)より選ばれる少なくとも1種を含む第1層と、前記第1層の外側に設けられた酸化亜鉛を含む第2層とを有してなる項2に記載のコーティングイネ種子。
[項4]
前記コーティング層が、さらに酸化鉄を含む項1または2に記載のコーティングイネ種子。
[項5]
前記コーティング層が、酸化鉄を含む第1層と前記第1層の外側に設けられた酸化亜鉛とを含む第2層とを有してなる項4に記載のコーティングイネ種子。
[項6]
2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とを含む粉状組成物。
[項7]
下記群(A)より選ばれる少なくとも1種を含む項6に記載の粉状組成物。
群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
[項8]
平均粒径が0.01~150μmの範囲である項6または7に記載の粉状組成物。
[項9]
見かけ比重が0.30~2.50g/mLの範囲である項6乃至8のいずれか一項に記載の粉状組成物。
[項10]
見掛け比重が0.30~2.0g/mLの範囲である項6乃至8のいずれか一項に記載の粉状組成物。
[項11]
さらに酸化鉄を含有する項6乃至10のいずれか一項に記載の粉状組成物。
[項12]
前記酸化亜鉛の平均粒径が0.01~100μmの範囲である項6乃至11のいずれか一項に記載の粉状組成物。
[項13]
2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とを含む、コーティングイネ種子製造用のキット。
[項14]
さらに酸化鉄を有してなる項13に記載のキット。
[項15]
下記群(A)より選ばれる少なくとも1種を有してなる項13または14に記載のキット。
群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
[項16]
下記の工程を有するコーティングイネ種子の製造方法。
(1)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、下記群(A)より選ばれる少なくとも1種と、水とを添加し、前記アルファー澱粉と、酸化亜鉛と、下記群(A)より選ばれる少なくとも1種とを含むコーティング層を形成させる工程、及び(2)前記工程(1)で得られた種子を乾燥させる工程。
群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
[項17]
下記の工程を有するコーティングイネ種子の製造方法。
(1)(I)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、下記群(A)より選ばれる少なくとも1種と、水とを添加し、前記アルファー澱粉と、下記群(A)より選ばれる少なくとも1種とを含むコーティング層を形成させる工程、及び(II)前記工程(I)で得られた種子を転動させながら、前記アルファー澱粉と、酸化亜鉛と、水とを添加し、前記工程(I)で形成された層の外側に前記アルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程、並びに(2)前記工程(1)で得られた種子を乾燥させる工程。
群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
[項18]
項17または18に記載の製造方法により製造されたコーティングイネ種子。
[項19]
下記の工程を有するコーティングイネ種子の製造方法。
(1)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、酸化鉄と、水とを添加し、前記アルファー澱粉と、酸化亜鉛と、酸化鉄とを含むコーティング層を形成させる工程、及び(2)前記工程(1)で得られた種子を乾燥させる工程。
[項20]
下記の工程を有するコーティングイネ種子の製造方法。
(1)(I)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化鉄と、水とを添加し、前記アルファー澱粉と、酸化鉄とを含むコーティング層を形成させる工程、及び(II)前記工程(I)で得られた種子を転動させながら、前記アルファー澱粉と、酸化亜鉛と、水とを添加し、前記工程(I)で形成された層の外側に前記アルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程、並びに(2)前記工程(1)で得られた種子を乾燥させる工程。
[項21]
項20または21に記載の製造方法により製造されたコーティングイネ種子。
 本発明のコーティングイネ種子は、鳥害を受け難く、且つ種子の浮遊及び発芽率の低下が抑制されており、水稲直播栽培において十分な苗立ち率を確保することができる。
実施例においてイネ種子のコーティングに用いた簡易種子コーティングマシンについて説明するための説明図である。
 本発明のコーティングイネ種子(以下、本イネ種子と記す)は、コーティング層を有し、前記コーティング層が、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉(以下、本アルファー澱粉と記す)と、酸化亜鉛とを含むことを特徴とする。
 本発明においてイネ種子とは、イネとして一般的に栽培されている品種の種子を指す。
該品種としては、ジャポニカ種やインディカ種等が挙げられるが、耐倒伏性や発芽性の高い品種が好ましい。
 本発明においてアルファー澱粉とは、ゼラチン化澱粉または糊化澱粉とも呼ばれ、90%以上のアルファー化度を有する澱粉を意味する。本発明におけるアルファー澱粉のアルファー化度は、関税中央分析所法 第51号に準じた分析法により求められる。関税中央分析所報 第51号に準じた分析法とは、以下の通りである。
1.試薬の調製
リン酸-クエン酸緩衝溶液(pH=4.0-5.0)
 10M水酸化ナトリウム水溶液1.5mLに1Mリン酸15mL、0.1Mクエン酸17mLを加えて、pH=4.0-5.0に調整する。
グルコアミラーゼ溶液
 グルコアミラーゼ(和光純薬工業株式会社製)を、力価が1mL当たり約15ユニットとなるように、脱イオン水を用いて溶解させる。
除タンパクA液
 ZnSO4・7H2O水溶液(1.8%(W/V))
除タンパクB液
 Ba(OH)2・8H2O水溶液(2.0%(W/V))
グリセリン標準液
 グリセリン1.0gを脱イオン水を用いて25mLに定容する。
2.検液の調製
 均一な懸濁液(澱粉試料1.25g/100mL脱イオン水)を作製し、その懸濁液4.0mLずつを2本の50mL三角フラスコにとり、1本には、リン酸-クエン酸緩衝溶液3.35mLを加えてI液とする。他の1本には、10M水酸化ナトリウム水溶液0.15mLを加えて、37℃で30分間加温して完全に澱粉の粒子を膨潤させて崩壊させた後に、1Mリン酸1.5mLと0.1Mクエン酸1.7mLを加えてII液とする。両液を37℃恒温槽に置き、温度を安定させた後にグルコアミラーゼ溶液2.0mLを各液に加え、振とうさせながら、各液中の澱粉とグルコアミラーゼを120分間反応させる。その後、沸騰浴中で酵素を失活させ、除たんぱくA液5.0mL、B液5.0mL及びグリセリン標準液1.0mLを各液に加える。得られた溶液をそれぞれ50mL遠沈管に移し、4000rpmで5分間遠心分離を行う。その上澄み液をメンブランフィルター(0.45μm)に通し、得られた液をグルコース定量用検液(Ia液及びIIa液)とする。
3.グルコースの定量
 Ia液及びIIa液のグルコース重量を、グルコースキットであるグルコースCII―テストワコー(和光純薬工業株式会社製)にて定量する。
4.アルファー化度の算出
 アルファー化度は、IIa液のグルコース重量(g)を基準としたときの、Ia液のグルコース重量(g)の割合として、次式のように算出する。
 アルファー化度(%)=Ia液のグルコース重量(g)/IIa液のグルコース重量(g)×100
 本アルファー澱粉は市販されており、市販されている本アルファー澱粉としては、例えば、アミロックスNo.1A(日本コーンスターチ株式会社製)及びコーンアルファーY(三和澱粉工業株式会社製)が挙げられる。
 本アルファー澱粉としては、粉状のアルファー澱粉が好ましく、その粒径は通常1000μm以下、好ましくは800μm以下である。本発明においてアルファー澱粉の粒径とは、レーザー回折・散乱式の粒度分布測定装置で測定される粒径であり、体積基準頻度分布において累積頻度で100%となる粒径を指す。アルファー澱粉の粒径は、レーザー回折・散乱式の粒度分布測定装置として、MASTERSIZER2000(MALVERN製)を用い、空気中にアルファー澱粉の粒子を分散させて測定する方法、所謂乾式測定により求めることができる。
 本アルファー澱粉の膨潤度とは、容積法により測定される膨潤度のことである。2%水懸濁液の20℃における膨潤度とは、20℃において、水に2%のアルファー澱粉を懸濁させた懸濁液から求められるアルファー澱粉の膨潤度である。膨潤度の具体的な測定方法を以下に記す。まず、イオン交換水100mLの入った200mLビーカーに、試料2.0gを少しずつ添加し、全量投入した後、5分間室温で撹拌する。その後、100mL共栓付メスシリンダーに得られた液を移し、栓をして20℃の恒温水槽中で24時間静置し、容器内で膨潤した試料の見かけ容積を読み取ることで、膨潤度(mL/g)を算出する。本アルファー澱粉の膨潤度は、10~48mL/g、好ましくは12~46mL/gの範囲である。
 本イネ種子における本アルファー澱粉の含有量は、通常0.01~15重量%、好ましくは0.01~10重量%、より好ましくは重量0.1~5重量%の範囲である。
 本発明において酸化亜鉛とは、ZnOで示される化合物を指し、市販されている酸化亜鉛を用いることができる。市販されている酸化亜鉛としては、例えば酸化亜鉛 3N5(関東化学株式会社製)及び酸化亜鉛二種(日本化学工業株式会社製)が挙げられる。本発明においては、純度が99%以上(該酸化亜鉛に対する重量%)である酸化亜鉛の使用が好ましい。酸化亜鉛の純度は、日本工業規格(JIS)K1410に規定される試験方法により求められる。また、通常は粉状の酸化亜鉛を用い、該酸化亜鉛の平均粒径は、0.01~100μm、好ましくは0.1~50μm、より好ましくは0.1~10μmの範囲である。本発明において酸化亜鉛の平均粒径とは、レーザー回折・散乱式の粒度分布測定装置で測定される粒径であり、体積基準頻度分布において累積頻度で50%となる粒径を指す。酸化亜鉛の平均粒径は、レーザー回折・散乱式の粒度分布測定装置として、マスターサイザー2000(Malvern製)を用い、水中に酸化亜鉛の粒子を分散させて測定する方法所謂湿式測定により求めることができる。
 本イネ種子における酸化亜鉛の含有量は、通常0.005~80重量%、好ましくは0.01~70重量%、より好ましくは0.02~50重量%の範囲である。植物の生育、環境への影響を考慮すると0.02~15重量%の範囲が好ましい。
 前記コーティング層は、前記群(A)より選ばれる少なくとも1種(以下、本無機化合物と記す)を含んでいてもよい。本無機化合物におけるクレーとしては、ロウ石及びカオリンが挙げられる。また、イネ種子への付着性が良好であることから、本無機化合物としては、クレー及び炭酸カルシウムからなる群より選ばれる少なくとも1種が好ましく、特に炭酸カルシウムが好ましい。
 本発明においては、粉状の本無機化合物の使用が好ましく、その平均粒径は、通常200μm以下、好ましくは150μm以下である。本発明において本無機化合物の平均粒径とは、レーザー回折・散乱式の粒度分布測定装置で測定される粒径であり、体積基準頻度分布において累積頻度で50%となる粒径を指す。本無機化合物の平均粒径は、レーザー回折・散乱式の粒度分布測定装置として、マスターサイザー2000(Malvern製)を用い、水中に本無機化合物の粒子を分散させて測定する方法所謂湿式測定により求めることができる。
 前記群(A)より選ばれる、平均粒径が異なる2種以上の無機化合物を、本無機化合物として用いた場合、前記コーティング層はより緻密なコーティング層になる。平均粒径が異なる2種以上の無機化合物において、無機化合物は同じであってもよいし、異なっていてもよい。
 前記コーティング層が本無機化合物を含む場合、本イネ種子におけるその含有量は、通常0.5~80重量%、好ましくは1~70重量%、より好ましくは1~50重量%の範囲である。
 前記コーティング層は、農薬活性成分を含んでいてもよい。かかる農薬活性成分としては、例えば、殺虫活性成分、殺菌活性成分、除草活性成分及び植物生長調節活性成分が挙げられる。
 かかる殺虫活性成分としては、例えば、クロチアニジン、イミダクロプリド及びチアメトキサムが挙げられる。
 かかる殺菌活性成分としては、例えば、イソチアニル及びフラメトピルが挙げられる。
 かかる除草活性成分としては、例えば、イマゾスルフロン及びブロモブチドが挙げられる。
 かかる植物生長調節活性成分としては、例えば、ウニコナゾールPが挙げられる。
 本発明においては、粉状の農薬活性成分の使用が好ましく、必要に応じ本無機化合物と混合し、乾式粉砕機等の粉砕機を用いて粉砕して粉状農薬とすることができる。粉状農薬の平均粒径は、通常200μm以下、好ましくは150μm以下である。本発明において粉状農薬の平均粒径とは、レーザー回折・散乱式の粒度分布測定装置で測定される粒径であり、体積基準頻度分布において累積頻度で50%となる粒径を指す。なお、粉状農薬が本無機化合物との混合物である場合の粉状農薬の平均粒径は、該混合物の平均粒径を意味する。粉状農薬の平均粒径は、レーザー回折・散乱式の粒度分布測定装置として、マスターサイザー2000(Malvern製)を用い、水中に粉状農薬の粒子を分散させて測定する方法所謂湿式測定により求めることができる。
 前記コーティング層が農薬活性成分を含む場合、本イネ種子におけるその含有量は、通常0.001~3重量%、好ましくは0.005~2重量%、より好ましくは0.01~2重量%の範囲である。
 前記コーティング層は、着色剤を含んでいてもよい。かかる着色剤としては、例えば、顔料、色素及び染料が挙げられ、中でも顔料の使用が好ましい。かかる顔料としては、赤色または青色の顔料の使用が好ましく、例えば、ウルトラマリンブルーNubix G-58(青色顔料、nubiola社製)及びトダカラー300R(赤色顔料、戸田工業株式会社製)が挙げられる。
 本イネ種子を製造するために用いられるこれらの成分は、それぞれ別々に用いるか、全部または少なくとも2種の成分を混合して用いることができる。本発明のキット(以下、本キットと記す)は、本アルファー澱粉と酸化亜鉛とを有してなり、これらは1つの容器に入れられていてもよいし、2以上の容器に入れられていてもよい。即ち、本キットは、1以上の容器を含んでいてもよい。本キットが2以上の容器を含む場合、それぞれの容器に異なる成分が入れられていてもよい。また、本キットは、酸化鉄、本無機化合物及び農薬活性成分等のその他の成分(以下、成分αと記す)を含んでいてもよい。
 本イネ種子は、イネ種子に、本アルファー澱粉と、酸化亜鉛と、さらに任意に用いられる酸化鉄または本無機化合物とを含むコーティング層(以下、本コーティング層1と記す)を形成させることにより得ることができる。
 本コーティング層1は、イネ種子を転動させながら、本アルファー澱粉及び酸化亜鉛、さらに任意に用いられる酸化鉄または本無機化合物を添加する操作を行い、これらをイネ種子に付着させることにより形成される。イネ種子を転動させる装置としては、コーティングマシン等の従来の鉄コーティングにおいて用いられる装置を用いることができる。本アルファー澱粉及び酸化亜鉛、さらに任意に用いられる酸化鉄または本無機化合物は、それぞれ別々に用いるか、混合して用いることができる。本アルファー澱粉及び酸化亜鉛、さらに任意に用いられる酸化鉄または本無機化合物を混合して用いる場合、本アルファー澱粉及び酸化亜鉛、さらに任意に用いられる酸化鉄または本無機化合物を含む粉状組成物を用いる。また、成分αを用いる場合、成分αは単独で用いることもできるし、本アルファー澱粉及び酸化亜鉛を含む粉状組成物に成分αを加えて用いることもできる。
 本アルファー澱粉及び酸化亜鉛を含む粉状組成物(以下、粉状組成物Zと記す)を用いて本コーティング層1を形成させる方法について以下に説明する。
 イネ種子を転動させながら、粉状組成物Zと水とを添加し、イネ種子に、本コーティング層1を形成させる。本アルファー澱粉が結合剤(バインダー)として作用し、イネ種子に酸化亜鉛を付着させることができる。
 本無機化合物を用いる場合は、前記の方法において、粉状組成物Zに本無機化合物を混合して添加するか、本アルファー澱粉及び本無機化合物を含む粉状組成物(以下、粉状組成物Yと記す)と粉状組成物Zとを調製し、これらを別々に添加することができる。別々に添加する場合、先に粉状組成物Yを添加し、後で粉状組成物Zを添加することにより、本無機化合物を含む第1層と、前記第1層の外側に設けられた酸化亜鉛を含む第2層とを有してなる本イネ種子を得ることができる。具体的には、イネ種子を転動させながら、粉状組成物Yと水とを添加し、本無機化合物と本アルファー澱粉とを含む第1層を形成させ、次いでイネ種子の転動状態を維持したまま、粉状組成物Zと水とを添加し、前記第1層の外側に、酸化亜鉛と本アルファー澱粉とを含む第2層を形成させる。
 本アルファー澱粉と、酸化亜鉛とを含む粉状組成物(以下、本組成物(1)と記すことがある)は、イネ種子コーティング用粉状組成物として好適である。本組成物(1)の平均粒径は、0.01~150μm、好ましくは1~150μm、より好ましくは5~150μmの範囲である。本発明において本組成物(1)の平均粒径とは、レーザー回折・散乱式の粒度分布測定装置で測定される粒径であり、体積基準頻度分布において累積頻度で50%となる粒径を指す。本組成物(1)の平均粒径は、レーザー回折・散乱式の粒度分布測定装置として、マスターサイザー2000(Malvern製)を用い、水中に本組成物(1)の粒子を分散させて測定する方法所謂湿式測定により求めることができる。
 また、本組成物(1)の見掛け比重は、0.30~2.50g/mLおよび0.30~2.0g/mL、好ましくは0.50~1.8g/mL、より好ましくは0.60~1.5g/mLの範囲である。コーティングイネ種子製造時に飛散が少ないことから、本組成物(1)の見掛け比重は大きい方が好ましい。本発明において本組成物(1)の見掛け比重とは、農薬公定試験法(物理性検定法、昭和35年2月3日農林省告示第71号)に規定される試験方法に準じた方法により求められる。該方法とは、内径50mmの100mLの金属製円筒容器の上に8メッシュの標準ふるい(枠の直径200mm、深さ45mmの日本工業規格(JIS)Z8801-1に規定される試験用ふるい)をおき、これに試料を入れ、ハケで軽くはき落として容器を満たす。ただちにスライドグラスを用いて余剰分をすり落として秤量し、内容物の重量を求め、次の式によって見掛け比重を算出する。ただし、ふるいと容器の上縁との距離を20cmとする。
 見掛け比重(g/mL)=内容物の重量/100
 本アルファー澱粉と、酸化亜鉛と、酸化鉄とを含む粉状組成物(以下、本組成物(2)と記すことがある)は、イネ種子コーティング用粉状組成物として好適である。本組成物(2)の平均粒径は、0.01~150μm、好ましくは1~150μm、より好ましくは1~100μmの範囲である。本発明において本組成物(2)の平均粒径とは、レーザー回折・散乱式の粒度分布測定装置で測定される粒径であり、体積基準頻度分布において累積頻度で50%となる粒径を指す。本組成物(2)の平均粒径は、レーザー回折・散乱式の粒度分布測定装置として、マスターサイザー2000(Malvern製)を用い、水中に本組成物(2)の粒子を分散させて測定する方法所謂湿式測定により求めることができる。
 また、本組成物(2)の見掛け比重は、たとえば0.30~2.50g/mLおよび0.30~2.0g/mL、好ましくは0.50~2.20g/mL、より好ましくは1.00~2.20g/mLの範囲である。コーティングイネ種子製造時に飛散が少ないことから、本組成物(2)の見掛け比重は大きい方が好ましい。本発明において本組成物(2)の見掛け比重とは、農薬公定試験法(物理性検定法、昭和35年2月3日農林省告示第71号)に規定される試験方法に準じた方法により求められる。該方法とは、内径50mmの100mLの金属製円筒容器の上に8メッシュの標準ふるい(枠の直径200mm、深さ45mmの日本工業規格(JIS)Z8801-1に規定される試験用ふるい)をおき、これに試料を入れ、ハケで軽くはき落として容器を満たす。ただちにスライドグラスを用いて余剰分をすり落として秤量し、内容物の重量を求め、次の式によって見掛け比重を算出する。ただし、ふるいと容器の上縁との距離を20cmとする。
 見掛け比重(g/mL)=内容物の重量/100
 本組成物(2)における酸化亜鉛と酸化鉄との重量比は、通常1:1000~1000:1、好ましくは1:1000~100:1、より好ましくは1:200~10:1の範囲である。植物の生育、環境への影響を考慮すると1:200~1:3の範囲が好ましい。
 本組成物(1)は、本無機化合物を含んでいてもよい。本組成物(1)が本無機化合物を含む場合、本組成物(1)における酸化亜鉛と本無機化合物との重量比は、通常1:1000~1000:1、好ましくは1:1000~100:1、より好ましくは1:200~10:1の範囲である。植物の生育、環境への影響を考慮すると1:200~1:3の範囲が好ましい。
 本組成物(1)の例のいくつかを以下に示す。以下の例において、%は本組成物(1)に対する重量%を表す。
・2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、クレー及び炭酸カルシウムからなる群より選ばれる少なくとも1種とを含む、平均粒径が0.01~150μmの範囲であり、見掛け比重が0.30~2.0g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、クレー及び炭酸カルシウムからなる群より選ばれる少なくとも1種とを含む、平均粒径が1~150μmの範囲であり、見掛け比重が0.50~1.8g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、クレー及び炭酸カルシウムからなる群より選ばれる少なくとも1種とを含む、平均粒径が5~150μmの範囲であり、見掛け比重が0.60~1.5g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、ロウ石及び炭酸カルシウムからなる群より選ばれる少なくとも1種とを含む、平均粒径が0.01~150μmの範囲であり、見掛け比重が0.30~2.0g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、ロウ石及び炭酸カルシウムからなる群より選ばれる少なくとも1種とを含む、平均粒径が1~150μmの範囲であり、見掛け比重が0.50~1.8g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、ロウ石及び炭酸カルシウムからなる群より選ばれる少なくとも1種とを含む、平均粒径が5~150μmの範囲であり、見掛け比重が0.60~1.5g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、炭酸カルシウムとを含む、平均粒径が5~150μmの範囲であり、見掛け比重が0.60~1.5g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉2.0~10.0%と、酸化亜鉛0.5~50%と、炭酸カルシウム40~97.5%とを含む、平均粒径が5~50μmの範囲であり、見掛け比重が0.80~1.2g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉2.0~8.0%と、酸化亜鉛0.5~30%と、炭酸カルシウム62~97.5%とを含む、平均粒径が5~50μmの範囲であり、見掛け比重が0.80~1.2g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が46mL/gであるアルファー澱粉7.4%と、酸化亜鉛0.9%と、炭酸カルシウム91.7%とからなる、平均粒径が37.4μm、見掛け比重が1.0g/mLである粉状組成物;
・2%水懸濁液の20℃における膨潤度が46mL/gであるアルファー澱粉3.9%と、酸化亜鉛4.8%と、炭酸カルシウム91.3%とからなる、平均粒径が23.1μm、見掛け比重が1.1g/mLである粉状組成物;
・2%水懸濁液の20℃における膨潤度が46mL/gであるアルファー澱粉3.9%と、酸化亜鉛24.0%と、炭酸カルシウム72.1%とからなる、平均粒径が27.0μm、見掛け比重が0.95g/mLである粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、クレーとを含む、平均粒径が5~150μmの範囲であり、見掛け比重が0.60~1.5g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、ロウ石とを含む、平均粒径が5~150μmの範囲であり、見掛け比重が0.60~1.5g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉2.0~8.0%と、酸化亜鉛0.5~30%と、ロウ石62~97.5%とを含む、平均粒径が5~50μmの範囲であり、見掛け比重が0.80~1.2g/mLの範囲である粉状組成物;および、
・2%水懸濁液の20℃における膨潤度が46mL/gであるアルファー澱粉3.9%と、酸化亜鉛9.6%と、ロウ石86.5%とからなる、平均粒径が24.2μmである粉状組成物。
 本組成物(2)の例のいくつかを以下に示す。以下の例において、%は本組成物(2)に対する重量%を表す。
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、酸化鉄とを含む、平均粒径が1~100μmの範囲であり、見掛け比重が1.0~2.2g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉2.0~10.0%と、酸化亜鉛0.5~50%と、酸化鉄40~97.5%とを含む、平均粒径が1~50μmの範囲であり、見掛け比重が1.0~2.0g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が12~46mL/gの範囲であるアルファー澱粉2.0~8.0%と、酸化亜鉛0.5~30%と、酸化鉄62~97.5%とを含む、平均粒径が1~30μmの範囲であり、見掛け比重が1.2~2.0g/mLの範囲である粉状組成物;
・2%水懸濁液の20℃における膨潤度が46mL/gの範囲であるアルファー澱粉3.9%と、酸化亜鉛24.0%と、酸化鉄72.1%とからなる、平均粒径が3.6μm、見掛け比重が1.31g/mLである粉状組成物;
・2%水懸濁液の20℃における膨潤度が46mL/gの範囲であるアルファー澱粉3.9%と、酸化亜鉛9.6%と、酸化鉄86.5%とからなる、平均粒径が14.0μm、見掛け比重が1.71g/mLである粉状組成物;および、
・2%水懸濁液の20℃における膨潤度が46mL/gの範囲であるアルファー澱粉3.9%と、酸化亜鉛4.8%と、酸化鉄91.3%とからなる、平均粒径が19.9μm、見掛け比重が1.91g/mLである粉状組成物。
 本イネ種子の製造方法(以下、本製造方法と記す)について説明する。本製造方法においては、イネ種子は、通常、浸種してから用いる。浸種は以下のように実施することができる。まず、乾燥イネ種子を種籾袋等の袋に入れて水に浸す。発芽率の高いコーティングイネ種子を得るためには水温を15~20℃として3~4日間浸種することが望ましい。
イネ種子を水中から出した後は、通常、静置するか、または脱水機にかけることにより、その表面の過剰な水分を除去する。
 まず、本アルファー澱粉と酸化亜鉛と本無機化合物とを含むコーティング層を有してなるコーティングイネ種子の製造方法(以下、本製造方法1と記す)について説明する。本製造方法1は、下記の工程を有する。
(1)イネ種子を転動させながら、本アルファー澱粉と、酸化亜鉛と、本無機化合物と、水とを添加し、本アルファー澱粉と、酸化亜鉛と、本無機化合物とを含むコーティング層を形成させる工程、及び(2)前記工程(1)で得られた種子を乾燥させる工程。
 本製造方法1においては、まず、浸種したイネ種子を転動させながら、本アルファー澱粉と酸化亜鉛と本無機化合物とを含む粉状組成物(以下、粉状組成物Xと記す)と水とを添加し、本アルファー澱粉と、酸化亜鉛と、本無機化合物とを含むコーティング層を形成させる工程(以下、工程1と記す)を実施する。工程1においては、水を添加し、次いで粉状組成物Xを添加してもよいし、順番を逆転させても何ら差支えない。また、水及び粉状組成物Xを同時に添加してもよい。水及び粉状組成物Xはいずれも転動状態のイネ種子にかかるように添加する。水の添加方法としては、滴下及び噴霧のいずれでもよい。水及び粉状組成物Xを添加した後は、イネ種子の転動状態を維持し、本アルファー澱粉を結合剤としてイネ種子に酸化亜鉛と、本無機化合物とを付着させる。
 本製造方法1における酸化亜鉛の総添加量は、乾燥イネ種子100重量部に対して、通常0.01~200重量部、好ましくは0.1~100重量部、より好ましくは0.1~50重量部の範囲である。植物の生育、環境への影響を考慮すると、0.1~25重量部の範囲が好ましい。本無機化合物の総添加量は、乾燥イネ種子100重量部に対して、通常1~200重量部、好ましくは1~150重量部、より好ましくは1~100重量部の範囲である。粉状組成物Xの総添加量は、乾燥イネ種子100重量部に対して、通常5~500重量部、好ましくは5~300重量部、より好ましくは10~200重量部の範囲である。本アルファー澱粉の総添加量は、乾燥イネ種子100重量部に対して、通常0.025~40重量部、好ましくは0.025~20重量部、より好ましくは0.01~10重量部の範囲である。また、本アルファー澱粉と粉状組成物Xとの重量比は、通常1:200~1:5、好ましくは1:150~1:10の範囲である。
 工程1において、粉状組成物Xを分割して添加し、工程1を繰り返し実施することにより、均一なコーティング層を形成させることができる。その場合、粉状組成物Xの1回の添加量は、前記粉状組成物Xの総添加量の通常1~1/10、好ましくは1/2~1/5程度である。また、水の総添加量は、前記粉状組成物Xの総添加量の通常1/2~1/100、好ましくは1/3~1/10程度である。
 工程1において、粉状組成物Xが装置の内壁等に付着する場合は、スクレーパー等を用いて掻き落とすことにより、添加した粉状組成物Xの略全量をイネ種子に付着させることができる。
 工程1を実施した後、工程1で得られた種子を乾燥させる工程を実施し、本イネ種子を得る。具体的には、工程1を実施した後、イネ種子を装置から取り出し、苗箱に入れて薄く広げ、静置して乾燥させる。通常、水分含量が20%(コーティングイネ種子に対する重量%)以下になるまで乾燥させる。本発明においては、コーティングイネ種子の水分含量は、赤外線水分計を用い、試料10gを105℃で1時間乾燥させることにより測定される値を意味する。赤外線水分計としては、ケツト科学研究所製のFD-610を用いることができる。また、前記苗箱の代わりに茣蓙やビニールシートを用い、その上に薄く広げて乾燥させてもよい。
 次に、本アルファー澱粉と酸化亜鉛と本無機化合物とを含むコーティング層を有してなり、前記コーティング層が、本無機化合物を含む第1層と、前記第1層の外側に設けられた酸化亜鉛を含む第2層とを有してなるコーティングイネ種子の製造方法(以下、本製造方法2と記す)について説明する。本製造方法2は、下記の工程を有する。
(1)(I)イネ種子を転動させながら、本アルファー澱粉と、本無機化合物と、水とを添加し、本アルファー澱粉と、本無機化合物とを含むコーティング層を形成させる工程、及び(II)前記工程(I)で得られた種子を転動させながら、本アルファー澱粉と、酸化亜鉛と、水とを添加し、前記工程(I)で形成された層の外側にアルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程、並びに(2)前記工程(1)で得られた種子を乾燥させる工程。
 本製造方法2においては、まず、浸種したイネ種子を転動させながら、本アルファー澱粉と本無機化合物とを含む粉状組成物(以下、粉状組成物Wと記す)と水とを添加し、本アルファー澱粉と、本無機化合物とを含むコーティング層を形成させる工程(以下、工程Iと記す)を実施する。工程Iは、粉状組成物Xの代わりに、粉状組成物Wを用いること以外は、本製造方法1の工程1と同様に実施することができる。工程Iを実施した後、工程Iで得られた種子を転動させながら、本アルファー澱粉と酸化亜鉛とを含む粉状組成物(以下、粉状組成物Vと記す)と水とを添加し、工程Iで形成された層の外側に本アルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程(以下、工程IIと記す)を実施する。工程IIは、粉状組成物Wの代わりに、粉状組成物Vを用いること以外は、工程Iと同様に実施することができる。
 本製造方法2における酸化亜鉛の総添加量は、乾燥イネ種子100重量部に対して、通常0.01~200重量部、好ましくは0.1~100重量部、より好ましくは0.1~50重量部の範囲である。植物の生育、環境への影響を考慮すると、0.1~25重量部の範囲が好ましい。本無機化合物の総添加量は、乾燥イネ種子100重量部に対して、通常1~200重量部、好ましくは1~150重量部、より好ましくは1~100重量部の範囲である。粉状組成物Vの総添加量は、乾燥イネ種子100重量部に対して、通常0.1~250重量部、好ましくは1~120重量部、より好ましくは1~60重量部の範囲である。粉状組成物Wの総添加量は、乾燥イネ種子100重量部に対して、通常5~250重量部、好ましくは5~200重量部、より好ましくは5~150重量部の範囲である。本アルファー澱粉の総添加量は、乾燥イネ種子100重量部に対して、通常0.025~40重量部、好ましくは0.025~20重量部、より好ましくは0.01~10重量部の範囲である。また、本アルファー澱粉と粉状組成物Vとの重量比は、通常1:200~1:5、好ましくは1:150~1:10の範囲である。本アルファー澱粉と粉状組成物Wとの重量比は、通常1:200~1:5、好ましくは1:150~1:10の範囲である。
 工程IIを実施した後は、本製造方法1の工程2以降を同様に実施すればよい。
 次に、本コーティング層1を有してなり、本コーティング層1が、酸化鉄を含む第1層と、前記第1層の外側に設けられた酸化亜鉛を含む第2層とを有してなるコーティングイネ種子の製造方法(以下、本製造方法3と記す)について説明する。本製造方法3は、下記の工程を有する。
(1)(I)イネ種子を転動させながら、本アルファー澱粉と、酸化鉄と、水とを添加し、本アルファー澱粉と、酸化鉄とを含むコーティング層を形成させる工程、及び(II)前記工程(I)で得られた種子を転動させながら、本アルファー澱粉と、酸化亜鉛と、水とを添加し、前記工程(I)で形成された層の外側に本アルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程、並びに(2)前記工程(1)で得られた種子を乾燥させる工程。
 本製造方法3においては、まず、浸種したイネ種子を転動させながら、本アルファー澱粉と酸化鉄とを含む粉状組成物(以下、粉状組成物Tと記す)と水とを添加し、本アルファー澱粉と、酸化鉄とを含むコーティング層を形成させる工程(以下、工程1’と記す)を実施する。工程1’は、粉状組成物Zの代わりに、粉状組成物Tを用いること以外は、本製造方法1の工程1と同様に実施することができる。工程1’を実施した後、工程1’で得られた種子を転動させながら、本アルファー澱粉と酸化亜鉛とを含む粉状組成物(以下、粉状組成物Uと記す)と水とを添加し、工程1’で形成された層の外側に本アルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程(以下、工程2’と記す)を実施する。工程2’は、粉状組成物Uの代わりに、粉状組成物Uを用いること以外は、工程1’と同様に実施することができる。
 本製造方法3における酸化亜鉛の総添加量は、乾燥イネ種子100重量部に対して、通常0.01~200重量部、好ましくは0.1~100重量部、より好ましくは0.1~50重量部の範囲である。植物の生育、環境への影響を考慮すると、0.1~25重量部の範囲が好ましい。酸化鉄の総添加量は、乾燥イネ種子100重量部に対して、通常1~200重量部、好ましくは1~150重量部、より好ましくは1~100重量部の範囲である。粉状組成物Tの総添加量は、乾燥イネ種子100重量部に対して、通常5~250重量部、好ましくは5~200重量部、より好ましくは5~150重量部の範囲である。
粉状組成物Uの総添加量は、乾燥イネ種子100重量部に対して、通常0.1~250重量部、好ましくは1~120重量部、より好ましくは1~60重量部の範囲である。本アルファー澱粉の総添加量は、乾燥イネ種子100重量部に対して、通常0.025~40重量部、好ましくは0.025~20重量部、より好ましくは0.01~10重量部の範囲である。また、本アルファー澱粉と粉状組成物Uとの重量比は、通常1:200~1:5、好ましくは1:150~1:10の範囲である。本アルファー澱粉と粉状組成物Uとの重量比は、通常1:200~1:5、好ましくは1:150~1:10の範囲である。
 工程IIを実施した後は、本製造方法1の工程2以降を同様に実施すればよい。
 本イネ種子は、水稲直播栽培において利用することができ、その方法は、本イネ種子を直接水田に播くことにより行われる。本発明において水田とは、湛水された水田及び落水された水田のいずれかを指す。具体的には、「鉄コーティング湛水直播マニュアル 2010」(山内稔、独立行政法人農業・食品産業技術総合研究機構 近畿中国四国農業研究センター、2010年3月、非特許文献1)に記載の方法に準じて播種を行う。その際、鉄まきちゃん(株式会社クボタ製)等の鉄コーティング用直播機を用いてもよい。このように通常の方法により播種することにより、良好な苗立ちが達成される。その後は、通常の栽培条件に保つことによりイネを生育させることができる。
 また、播種前、播種と同時または播種後に農薬及び肥料を施用してもよい。かかる農薬としては殺菌剤、殺虫剤及び除草剤等が挙げられる。
 本発明を実施例により更に詳細に説明する。
 まず、本製造例及び比較製造例を示す。
 以下の製造例及び比較製造例においては、特に断りのない限り、イネ種子はヒノヒカリの種子を用い、α-Fe23含有量が78%、平均粒子径が42.7μmである酸化鉄を用いた。製造は室温下(約20℃)にて実施した。また、%は、重量%を表す。
 また、製造例及び比較製造例に記載された商品名は以下の通りである。
酸化亜鉛3N5:酸化亜鉛、関東化学株式会社製、平均粒径;7.7μm
酸化亜鉛一種:酸化亜鉛、日本化学工業株式会社製、平均粒径;0.26μm
酸化亜鉛二種:酸化亜鉛、日本化学工業株式会社製、平均粒径;0.24μm
炭酸カルシウム G-100:炭酸カルシウム、三共精粉株式会社製、平均粒径;46.0μm
SS#80:炭酸カルシウム、日東粉化工業株式会社製、平均粒径;4.6μm
タンカル粒剤用:炭酸カルシウム、薬仙石灰株式会社製、平均粒径;6.2μm
重晶石:硫酸バリウム、ネオライト興産株式会社製、平均粒径;12.4μm
勝光山クレーS:ロウ石、株式会社勝光山鉱業所製、平均粒径;6.7μm
ルチルフラワー:酸化チタン、キンセイマテック株式会社製、平均粒径;14.6μm
クレー粉剤用DL:ロウ石、株式会社勝光山鉱業所製、平均粒径;30.3μm
サン・ゼオライトMGF:ゼオライト、サン・ゼオライト工業株式会社、平均粒径;116μm
DAE1K:鉄粉、DOWA IPクリエイション製
KTS-1:焼石膏、吉野石膏販売株式会社製
アミロックスNo.1A:アルファー澱粉、2%水懸濁液の20℃における膨潤度;16mL/g、日本コーンスターチ株式会社製
コーンアルファーY:アルファー澱粉、2%水懸濁液の20℃における膨潤度;19mL/g、三和澱粉工業株式会社製
アミコールW:アルファー澱粉、2%水懸濁液の20℃における膨潤度;6mL/g、日澱化學株式会社製
アミコールKF:アルファー澱粉、2%水懸濁液の20℃における膨潤度;45mL/g、日澱化學株式会社製
製造例1
 まず、用いるイネ種子が少量の場合にコーティング可能な簡易種子コーティングマシンを作製した。図1に示すように、シャフト1の先に500mL容量のポリエチレン製カップ2を取りつけ、それを攪拌機3(スリーワンモータ、新東科学製)のドライブシャフトに挿入し、仰角が45度になるように攪拌機3を斜めにしてスタンド4に取りつけることにより、簡易種子コーティングマシンを作製した。
 次に、酸化亜鉛二種1g及びコーンアルファーY 0.1gを混合して粉状組成物(1)を得た。粉状組成物(1)の平均粒径は141.3μm、見掛け比重は0.35g/mLであった。
 200mL容量のポリエチレン製カップに水を100mL程度入れ、そこへ乾燥イネ種子20gを投入し、10分間浸種した。その後、イネ種子を水中から取り出し、表面の過剰な水分を除去した後、作製した簡易種子コーティングマシンに取りつけられたポリエチレン製カップ2に投入した。簡易種子コーティングマシンを攪拌機3の回転数130~140rpmの範囲で作動させることによりイネ種子を転動させ、霧吹きで水をイネ種子に噴霧しながら粉状組成物(1)1.1gの1/4程度の量(約0.28g)を添加し、イネ種子に付着させた。粉状組成物(1)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(1)の略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、粉状組成物(1)1.1gをイネ種子に付着させてコーティング層を形成させた。コーティングに使用した水の全量は0.2gであった。簡易種子コーティングマシンから取り出したイネ種子をステンレス鋼製バットに重ならないよう広げ、一晩乾燥させることにより本発明のコーティングイネ種子(1)を得た。
製造例2
 酸化亜鉛3N5 10g及びアミロックスNo.1A 0.1gを混合して粉状組成物(2)を得た。粉状組成物(2)の平均粒径は6.16μm、見掛け比重は0.54g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(2)10.1gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(2)を得た。また、コーティングに使用した水の全量は2.8gであった。
製造例3
 酸化亜鉛3N5 10g及びアミコールW 0.6gを混合して粉状組成物(3)を得た。粉状組成物(3)の平均粒径は8.77μm、見掛け比重は0.54g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(3)10.6gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(3)を得た。また、コーティングに使用した水の全量は2.8gであった。
製造例4
 酸化亜鉛二種0.02g、炭酸カルシウム G-100 13.98g、SS#80 6g及びアミコールW 0.8gを混合して粉状組成物(4)を得た。粉状組成物(4)の平均粒径は48.5μm、見掛け比重は1.1g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(4)20.8gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(4)を得た。また、コーティングに使用した水の全量は3.6gであった。
製造例5
 酸化亜鉛二種0.1g、炭酸カルシウム G-100 6.9g、SS#80 3g及びアミコールW 0.8gを混合して粉状組成物(5)を得た。粉状組成物(5)の平均粒径は37.4μm、見掛け比重は1.0g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(5)10.8gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(5)を得た。また、コーティングに使用した水の全量は1.8gであった。
製造例6
 酸化亜鉛二種1g、炭酸カルシウム G-100 13g、SS#80 6g及びアミコールW 0.8gを混合して粉状組成物(6)を得た。粉状組成物(6)の平均粒径は23.1μm、見掛け比重は1.1g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(6)20.8gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(6)を得た。また、コーティングに使用した水の全量は3.9gであった。
製造例7
 酸化亜鉛二種2.5g、炭酸カルシウム G-100 7.5g及びアミコールW 0.4gを混合して粉状組成物(7)を得た。粉状組成物(7)の平均粒径は27.0μm、見掛け比重は0.95g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(7)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(7)を得た。また、コーティングに使用した水の全量は2.0gであった。
製造例8
 酸化亜鉛3N5 5g、タンカル粒剤用5g及びアミコールKF 0.4gを混合して粉状組成物(8)を得た。粉状組成物(8)の平均粒径は45.5μm、見掛け比重は0.57g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(8)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(8)を得た。また、コーティングに使用した水の全量は2.6gであった。
製造例9
 酸化亜鉛3N5 10g、タンカル粒剤用10g及びアミロックスNo.1A 0.8gを混合して粉状組成物(9)を得た。粉状組成物(9)の平均粒径は44.0μm、見掛け比重は0.58g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(9)20.8gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(9)を得た。また、コーティングに使用した水の全量は5.6gであった。
製造例10
 酸化亜鉛3N5 1g、タンカル粒剤用9g及びアミコールW 0.4gを混合して粉状組成物(10)を得た。粉状組成物(10)の平均粒径は9.9μm、見掛け比重は0.61g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(10)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(10)を得た。また、コーティングに使用した水の全量は1.7gであった。
製造例11
 酸化亜鉛3N5 9g、重晶石1g及びアミコールW 0.4gを混合して粉状組成物(11)を得た。粉状組成物(11)の平均粒径は9.2μm、見掛け比重は1.00g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(11)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(11)を得た。また、コーティングに使用した水の全量は2.5gであった。
製造例12
 酸化亜鉛3N5 9g、勝光山クレーS 1g及びアミコールW 0.4gを混合して粉状組成物(12)を得た。粉状組成物(12)の平均粒径は9.8μm、見掛け比重は0.49g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(12)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(12)を得た。また、コーティングに使用した水の全量は2.9gであった。
製造例13
 酸化亜鉛二種1g、ルチルフラワー9g及びアミコールW 0.4gを混合して粉状組成物(13)を得た。粉状組成物(13)の平均粒径は15.5μm、見掛け比重は1.08g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(13)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(13)を得た。また、コーティングに使用した水の全量は1.2gであった。
製造例14
 酸化亜鉛二種1g、クレー粉剤用DL 9g及びアミコールW 0.4gを混合して粉状組成物(14)を得た。粉状組成物(14)の平均粒径は24.2μm、見掛け比重は0.87g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(14)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(14)を得た。また、コーティングに使用した水の全量は2.3gであった。
製造例15
 酸化亜鉛二種1g、サン・ゼオライトMGF 9g及びアミコールW 0.4gを混合して粉状組成物(15)を得た。粉状組成物(15)の平均粒径は141.2μmであった。
 以下の操作は製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(15)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(15)を得た。また、コーティングに使用した水の全量は3.2gであった。
製造例16
 70.0重量部のクロチアニジン及び30.0重量部の勝光山クレーSを混合した後、遠心粉砕機で粉砕して、粉状農薬Aを得た。マスターサイザー2000(Malvern製)を用いて湿式測定により求めた粉状農薬Aの平均粒径は13.0μmであった。
 酸化亜鉛二種1g、タンカル粒剤用9g、アミコールW 0.4g及び粉状農薬A0.086gを混合して粉状組成物(16)を得た。粉状組成物(16)の平均粒径は9.1μm、見掛け比重は0.57g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。粉状組成物(1)1.1gに代えて上記の粉状組成物(16)10.486gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(16)を得た。また、コーティングに使用した水の全量は1.9gであった。
製造例17
 粒剤用タンカル9g及びアミコールW 0.36gを混合して粉状組成物(17-1)を得た。粉状組成物(17-1)の平均粒径は8.57μm、見掛け比重は0.63g/mLであった。
 また、酸化亜鉛3N5 1g及びアミコールW 0.04gを混合して粉状組成物(17-2)を得た。粉状組成物(17-2)の平均粒径は5.6μm、見掛け比重は0.54g/mLであった。
 コーティングは製造例1に記載の方法に準じて行った。乾燥イネ種子20gを浸種した後、簡易種子コーティングマシンを用いて転動させ、霧吹きで水をイネ種子に噴霧しながら、粉状組成物(17-1) 9.36gの1/4程度の量(約2.3g)を添加し、イネ種子に付着させた。粉状組成物(17-1)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(17-1)の略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、粉状組成物(17-1) 9.36gをイネ種子に付着させて、炭酸カルシウムを含む第1のコーティング層(以下、第1層と記す)を形成させた。コーティングに使用した水の全量は1.9gであった。
 次いで、簡易種子コーティングマシンを作動させたままにしてイネ種子の転動状態を維持し、霧吹きで水をイネ種子に噴霧しながら、粉状組成物(17-2) 1.04gの1/4程度の量(約0.26g)を添加し、第1層の外側に付着させた。粉状組成物(17-2)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(17-2)の略全量をイネ種子に付着させた。
その後、同様の操作を3回繰り返すことにより、粉状組成物(17-2) 1.04gを第1層の外側に付着させて、第1層の外側に、酸化亜鉛を含む第2のコーティング層(以下、第2層と記す)を形成させた。コーティングに使用した水の全量は1.3gであった。
 簡易種子コーティングマシンから取り出したイネ種子をステンレス鋼製バットに重ならないよう広げ、一晩乾燥させることにより本発明のコーティングイネ種子(17)を得た。
製造例18
 次に、酸化亜鉛3N5 1g、酸化鉄9g及びアミロックスNo.1A 0.05gを混合して粉状組成物(18)を得た。粉状組成物(18)の平均粒径は58.6μm、見掛け比重は1.63g/mLであった。
 200mL容量のポリエチレン製カップに水を100mL程度入れ、そこへ乾燥イネ種子20gを投入し、10分間浸種した。その後、イネ種子を水中から取り出し、表面の過剰な水分を除去した後、作製した簡易種子コーティングマシンに取りつけられたポリエチレン製カップ2に投入した。簡易種子コーティングマシンを攪拌機3の回転数130~140rpmの範囲で作動させることによりイネ種子を転動させ、霧吹きで水をイネ種子に噴霧しながら粉状組成物(18)10.05gの1/4程度の量(約2.5g)を添加し、イネ種子に付着させた。粉状組成物(18)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(18)の略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、粉状組成物(18)10.05gをイネ種子に付着させてコーティング層を形成させた。コーティングに使用した水の全量は0.7gであった。簡易種子コーティングマシンから取り出したイネ種子をステンレス鋼製バットに重ならないよう広げ、一晩乾燥させることにより本発明のコーティングイネ種子(18)を得た。
製造例19
 酸化亜鉛3N5 5g、酸化鉄5g及びアミロックスNo.1A 0.1gを混合して粉状組成物(19)を得た。粉状組成物(19)の平均粒径は19.0μm、見掛け比重は0.97g/mLであった。
 コーティングは製造例18に記載の方法に準じて行った。粉状組成物(18)10.05gに代えて上記の粉状組成物(19)10.1gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(19)を得た。また、コーティングに使用した水の全量は2.1gであった。
製造例20
 酸化亜鉛3N5 9g、酸化鉄1g及びアミロックスNo.1A 0.1を混合して粉状組成物(20)を得た。粉状組成物(20)の平均粒径は13.4μm、見掛け比重は0.63g/mLであった。
 コーティングは製造例18に記載の方法に準じて行った。粉状組成物(18)10.05gに代えて上記の粉状組成物(20)10.1gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(20)を得た。また、コーティングに使用した水の全量は2.8gであった。
製造例21
 酸化亜鉛二種2g、酸化鉄18g及びアミコールW 0.8gを混合して粉状組成物(21)を得た。粉状組成物(21)の平均粒径は14.0μm、見掛け比重は1.7g/mLであった。
 コーティングは製造例18に記載の方法に準じて行った。粉状組成物(18)10.05gに代えて上記の粉状組成物(21)20.8gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(21)を得た。また、コーティングに使用した水の全量は2.9gであった。
製造例22
 酸化亜鉛二種2.5g、酸化鉄7.5g及びアミコールW 0.4gを混合して粉状組成物(22)を得た。粉状組成物(22)の平均粒径は3.6μm、見掛け比重は1.3g/mLであった。
 コーティングは製造例18に記載の方法に準じて行った。粉状組成物(18)10.05gに代えて上記の粉状組成物(22)10.4gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(22)を得た。また、コーティングに使用した水の全量は1.7gであった。
製造例23
 酸化亜鉛二種2.5g、酸化鉄7.5g及びアミコールKF 0.1gを混合して粉状組成物(23)を得た。粉状組成物(23)の平均粒径は22.0μm、見掛け比重は1.02g/mLであった。
 コーティングは製造例18に記載の方法に準じて行った。粉状組成物(18)10.05gに代えて上記の粉状組成物(23)10.1gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(23)を得た。また、コーティングに使用した水の全量は1.9gであった。
製造例24
 70.0重量部のクロチアニジン及び30.0重量部の勝光山クレーSを混合した後、遠心粉砕機で粉砕して、粉状農薬Bを得た。マスターサイザー2000(Malvern製)を用いて湿式測定により求めた粉状農薬Bの平均粒径は13.0μmであった。
 酸化亜鉛二種2.5g、酸化鉄7.5g、アミコールW 0.4g及び粉状農薬B 0.086gを混合して粉状組成物(24)を得た。粉状組成物(24)の平均粒径は5.3μm、見掛け比重は0.98g/mLであった。
 コーティングは製造例18に記載の方法に準じて行った。粉状組成物(18)10.05gに代えて上記の粉状組成物(24)10.486gを用い、それを4分割して添加する操作を行い、本発明のコーティングイネ種子(24)を得た。また、コーティングに使用した水の全量は2.0gであった。
製造例25
 酸化鉄9g及びアミロックスNo.1A 0.045gを混合して粉状組成物(25-1)を得た。
 また、酸化亜鉛3N5 1g及びアミロックスNo.1A 0.005gを混合して粉状組成物(25-2)を得た。
 コーティングは製造例18に記載の方法に準じて行った。乾燥イネ種子20gを浸種した後、簡易種子コーティングマシンを用いて転動させ、霧吹きで水をイネ種子に噴霧しながら、粉状組成物(25-1) 9.045gの1/4程度の量(約2.3g)を添加し、イネ種子に付着させた。粉状組成物(25-1)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(25-1)の略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、粉状組成物(25-1) 9.045gをイネ種子に付着させて、酸化鉄を含む第1のコーティング層(以下、第1コーティング層と記す)を形成させた。コーティングに使用した水の全量は1.0gであった。
 次いで、簡易種子コーティングマシンを作動させたままにしてイネ種子の転動状態を維持し、霧吹きで水をイネ種子に噴霧しながら、粉状組成物(25-2) 1.005gの1/4程度の量(約0.25g)を添加し、第1コーティング層の外側に付着させた。粉状組成物(25-2)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(25-2)の略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、粉状組成物(25-2) 1.005gを第1層の外側に付着させて、第1コーティング層の外側に、酸化亜鉛を含む第2のコーティング層(以下、第2コーティング層と記す)を形成させた。コーティングに使用した水の全量は2.1gであった。
 簡易種子コーティングマシンから取り出したイネ種子をステンレス鋼製バットに重ならないよう広げ、一晩乾燥させることにより本発明のコーティングイネ種子(25)を得た。
製造例26
 酸化鉄1g及びアミロックスNo.1A 0.01gを混合して粉状組成物(26-1)を得た。
 また、酸化亜鉛3N5 9g及びアミロックスNo.1A 0.09gを混合して粉状組成物(26-2)を得た。
 コーティングは製造例18に記載の方法に準じて行った。乾燥イネ種子20gを浸種した後、簡易種子コーティングマシンを用いて転動させ、霧吹きで水をイネ種子に噴霧しながら、粉状組成物(26-1) 1.01gの1/4程度の量(約0.25g)を添加し、イネ種子に付着させた。粉状組成物(26-1)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(26-1)の略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、粉状組成物(26-1) 1.01gをイネ種子に付着させて第1コーティング層を形成させた。コーティングに使用した水の全量は0.2gであった。
 次いで、簡易種子コーティングマシンを作動させたままにしてイネ種子の転動状態を維持し、霧吹きで水をイネ種子に噴霧しながら、粉状組成物(26-2) 9.09gの1/4程度の量(約2.3g)を添加し、第1コーティング層の外側に付着させた。粉状組成物(26-2)がポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した粉状組成物(26-2)の略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、粉状組成物(26-2) 9.09gを第1コーティング層の外側に付着させて、第1コーティング層の外側に、第2コーティング層を形成させた。コーティングに使用した水の全量は3.4gであった。
 簡易種子コーティングマシンから取り出したイネ種子をステンレス鋼製バットに重ならないよう広げ、一晩乾燥させることにより本発明のコーティングイネ種子(26)を得た。
比較製造例1
 DAE1K 10g及びKTS-1 1gを混合して鉄混合物A 11gを得た。
 コーティングは製造例1に記載の方法に準じて行った。乾燥イネ種子20gを浸種した後、簡易種子コーティングマシンを用いて転動させ、スポイトを用いて水をイネ種子に噴霧しながら、鉄混合物A 11gの1/4程度の量(約2.8g)を添加し、イネ種子に付着させた。鉄混合物Aがポリエチレン製カップ2の内壁に付着する場合はスパチュラを用いて掻き落とすことにより、1回に添加した鉄混合物Aの略全量をイネ種子に付着させた。その後、同様の操作を3回繰り返すことにより、鉄混合物A 11gをイネ種子に付着させてコーティング層を形成させた。コーティングに使用した水の全量は1.9gであった。次いで、簡易種子コーティングマシンを作動させたままにしてイネ種子の転動状態を維持し、KTS-1 0.5gを投入し、前記コーティング層の外側に付着させた。簡易種子コーティングマシンから取り出したイネ種子をステンレス鋼製バットに重ならないよう広げ、鉄の酸化を促進させるために1日に3回該イネ種子に水を噴霧する操作を2日間行い、その後乾燥させることにより比較用のコーティングイネ種子(I)を得た。
 次に、試験例を示す。
試験例1
 プラスチックシャーレに土壌約30gを入れて、水で湿らせた後、コーティングイネ種子50粒を土壌表面に播いた。該プラスチックシャーレを屋外に静置し、タイムラプスカメラで撮影することにより該プラスティックシャーレの様子を観察するとともに、播種1日後に残存するコーティングイネ種子を計数し、以下の式より残存率を算出した。
残存率(%)=播種1日後に残存するコーティングイネ種子数/50×100
 結果を表1に示す。なお、表1においてイネ種子(対照)とは、コーティングされていないイネ種子を指し、該種子はスズメ等の鳥により食害されたため、残存率が0%であった。
Figure JPOXMLDOC01-appb-T000001
試験例2
 プラスチックシャーレに水で湿らせたガーゼを敷き、その上にコーティングイネ種子50粒を播いた。該プラスチックシャーレに蓋をして、17℃に設定された恒温機内に静置し、10日後に発芽の有無を調査し、発芽率を以下の式より算出した。
発芽率(%)=発芽した種子数/50×100
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
試験例3
 3度硬水50mLを入れたシャーレに、コーティングイネ種子を10粒投入し、室温(約20℃)にて静置した。30分後にコーティングの剥離の有無を目視により観察した。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
試験例4
 プラスチックシャーレに土壌約30gを入れて、水で湿らせた後、コーティングイネ種子50粒を土壌表面に播いた。該プラスチックシャーレを屋外に静置し、タイムラプスカメラで撮影することにより該プラスティックシャーレの様子を観察するとともに、播種1日後に残存するコーティングイネ種子を計数し、以下の式より残存率を算出した。
残存率(%)=播種1日後に残存するコーティングイネ種子数/50×100
 結果を表4に示す。なお、表4においてイネ種子(対照)とは、コーティングされていないイネ種子を指し、該種子はスズメ等の鳥により食害されたため、残存率が0%であった。












Figure JPOXMLDOC01-appb-T000004
試験例5
 プラスチックシャーレに水で湿らせたガーゼを敷き、その上にコーティングイネ種子50粒を播いた。該プラスチックシャーレに蓋をして、17℃に設定された恒温機内に静置し、10日後に発芽の有無を調査し、発芽率を以下の式より算出した。
発芽率(%)=発芽した種子数/50×100
 結果を表5に示す。














Figure JPOXMLDOC01-appb-T000005
試験例6
 3度硬水50mLを入れたシャーレに、コーティングイネ種子を10粒投入し、室温(約20℃)にて静置した。30分後にコーティングの剥離の有無を目視により観察した。
 結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
1 シャフト
2 ポリエチレン製カップ
3 攪拌機
4 スタンド

Claims (21)

  1. コーティング層を有してなるコーティングイネ種子であって、前記コーティング層が、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とを含むコーティングイネ種子。
  2. 前記コーティング層が、下記群(A)より選ばれる少なくとも1種を含む請求項1に記載のコーティングイネ種子。
    群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
  3. 前記コーティング層が、前記群(A)より選ばれる少なくとも1種を含む第1層と、前記第1層の外側に設けられた酸化亜鉛を含む第2層とを有してなる請求項2に記載のコーティングイネ種子。
  4. 前記コーティング層が、さらに酸化鉄を含む請求項1または2に記載のコーティングイネ種子。
  5. 前記コーティング層が、酸化鉄を含む第1層と前記第1層の外側に設けられた酸化亜鉛とを含む第2層とを有してなる請求項4に記載のコーティングイネ種子。
  6. 2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とを含む粉状組成物。
  7. 下記群(A)より選ばれる少なくとも1種を含む請求項6に記載の粉状組成物。
    群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
  8. 平均粒径が0.01~150μmの範囲である請求項6または7に記載の粉状組成物。
  9. 見かけ比重が0.30~2.50g/mLの範囲である請求項6乃至8のいずれか一項に記載の粉状組成物。
  10. 見掛け比重が0.30~2.0g/mLの範囲である請求項6乃至8のいずれか一項に記載の粉状組成物。
  11. さらに酸化鉄を含有する請求項6乃至10のいずれか一項に記載の粉状組成物。
  12. 前記酸化亜鉛の平均粒径が0.01~100μmの範囲である請求項6乃至11のいずれか一項に記載の粉状組成物。
  13. 2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛とを含む、コーティングイネ種子製造用のキット。
  14. さらに酸化鉄を有してなる請求項13に記載のキット。
  15. 下記群(A)より選ばれる少なくとも1種を有してなる請求項13または14に記載のキット。
    群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
  16. 下記の工程を有するコーティングイネ種子の製造方法。
    (1)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、下記群(A)より選ばれる少なくとも1種と、水とを添加し、前記アルファー澱粉と、酸化亜鉛と、下記群(A)より選ばれる少なくとも1種とを含むコーティング層を形成させる工程、及び(2)前記工程(1)で得られた種子を乾燥させる工程。
    群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
  17. 下記の工程を有するコーティングイネ種子の製造方法。
    (1)(I)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、下記群(A)より選ばれる少なくとも1種と、水とを添加し、前記アルファー澱粉と、下記群(A)より選ばれる少なくとも1種とを含むコーティング層を形成させる工程、及び(II)前記工程(I)で得られた種子を転動させながら、前記アルファー澱粉と、酸化亜鉛と、水とを添加し、前記工程(I)で形成された層の外側に前記アルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程、並びに(2)前記工程(1)で得られた種子を乾燥させる工程。
    群(A):硫酸バリウム、酸化チタン、クレー、ゼオライト及び炭酸カルシウムからなる群。
  18. 請求項17または18に記載の製造方法により製造されたコーティングイネ種子。
  19. 下記の工程を有するコーティングイネ種子の製造方法。
    (1)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化亜鉛と、酸化鉄と、水とを添加し、前記アルファー澱粉と、酸化亜鉛と、酸化鉄とを含むコーティング層を形成させる工程、及び(2)前記工程(1)で得られた種子を乾燥させる工程。
  20. 下記の工程を有するコーティングイネ種子の製造方法。
    (1)(I)イネ種子を転動させながら、2%水懸濁液の20℃における膨潤度が10~48mL/gの範囲であるアルファー澱粉と、酸化鉄と、水とを添加し、前記アルファー澱粉と、酸化鉄とを含むコーティング層を形成させる工程、及び(II)前記工程(I)で得られた種子を転動させながら、前記アルファー澱粉と、酸化亜鉛と、水とを添加し、前記工程(I)で形成された層の外側に前記アルファー澱粉と、酸化亜鉛とを含むコーティング層を形成させる工程、並びに(2)前記工程(1)で得られた種子を乾燥させる工程。
  21. 請求項20または21に記載の製造方法により製造されたコーティングイネ種子。
PCT/JP2016/075281 2015-09-07 2016-08-30 コーティングイネ種子及びその製造方法 WO2017043364A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680051093.8A CN107920464A (zh) 2015-09-07 2016-08-30 包衣水稻种子及其制备方法
KR1020187008869A KR102647453B1 (ko) 2015-09-07 2016-08-30 코팅 벼 종자 및 그 제조 방법
PH12018500483A PH12018500483A1 (en) 2015-09-07 2018-03-06 Coated rice seed and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-175477 2015-09-07
JP2015175476 2015-09-07
JP2015-175476 2015-09-07
JP2015175477 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017043364A1 true WO2017043364A1 (ja) 2017-03-16

Family

ID=58239747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075281 WO2017043364A1 (ja) 2015-09-07 2016-08-30 コーティングイネ種子及びその製造方法

Country Status (5)

Country Link
KR (1) KR102647453B1 (ja)
CN (1) CN107920464A (ja)
PH (1) PH12018500483A1 (ja)
TW (1) TW201715963A (ja)
WO (1) WO2017043364A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109953037B (zh) * 2019-03-15 2020-07-17 浙江大学 一种提高陈种子活力的引发液及其制备方法和应用
TWI787788B (zh) * 2021-04-20 2022-12-21 首立企業股份有限公司 稻種包覆材料、披覆有包覆材料的稻種及披覆方法
TWI821996B (zh) * 2022-04-15 2023-11-11 國立中興大學 氧化鋅用於提高農藥防治其抗藥性病原菌之功效的應用及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050246953A1 (en) * 2004-05-10 2005-11-10 Tom Wedegaertner Coated planting cotton seed and a process for its manufacture
JP2008264003A (ja) * 2008-07-02 2008-11-06 Japan Association For Advancement Of Phytoregulators 化学物質による発芽生育阻害を軽減除去した作物栽培方法
JP2013208106A (ja) * 2012-02-27 2013-10-10 National Agriculture & Food Research Organization 植物繁殖体、及びその栽培方法
JP2014090671A (ja) * 2012-10-31 2014-05-19 National Agriculture & Food Research Organization 被覆種子、およびその利用
WO2015146869A1 (ja) * 2014-03-28 2015-10-01 住友化学株式会社 イネ種子用コーティング資材及びコーティングイネ種子
WO2016167315A1 (ja) * 2015-04-17 2016-10-20 住友化学株式会社 コーティングイネ種子及びその製造方法
WO2016167314A1 (ja) * 2015-04-17 2016-10-20 住友化学株式会社 コーティングイネ種子及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4416896A (en) * 1994-12-07 1996-06-26 Agrotec Corporation Film forming composition effective for promoting seed germination and controlling seed migration
JP2000342017A (ja) * 1999-06-03 2000-12-12 Masashi Watanabe コーティング種子の製法
DE102006027025A1 (de) * 2006-06-08 2007-12-13 Merck Patent Gmbh Silberweiße-Effektpigmente
JP6024972B2 (ja) 2011-12-20 2016-11-16 国立研究開発法人農業・食品産業技術総合研究機構 繁殖体被覆物、栽培方法、及び繁殖体被覆物の製造方法
JP5945433B2 (ja) * 2012-03-08 2016-07-05 株式会社クボタ 種子の金属コーティング方法及び金属コーティング種子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050246953A1 (en) * 2004-05-10 2005-11-10 Tom Wedegaertner Coated planting cotton seed and a process for its manufacture
JP2008264003A (ja) * 2008-07-02 2008-11-06 Japan Association For Advancement Of Phytoregulators 化学物質による発芽生育阻害を軽減除去した作物栽培方法
JP2013208106A (ja) * 2012-02-27 2013-10-10 National Agriculture & Food Research Organization 植物繁殖体、及びその栽培方法
JP2014090671A (ja) * 2012-10-31 2014-05-19 National Agriculture & Food Research Organization 被覆種子、およびその利用
WO2015146869A1 (ja) * 2014-03-28 2015-10-01 住友化学株式会社 イネ種子用コーティング資材及びコーティングイネ種子
WO2016167315A1 (ja) * 2015-04-17 2016-10-20 住友化学株式会社 コーティングイネ種子及びその製造方法
WO2016167314A1 (ja) * 2015-04-17 2016-10-20 住友化学株式会社 コーティングイネ種子及びその製造方法

Also Published As

Publication number Publication date
CN107920464A (zh) 2018-04-17
PH12018500483A1 (en) 2018-09-10
TW201715963A (zh) 2017-05-16
KR102647453B1 (ko) 2024-03-13
KR20180050683A (ko) 2018-05-15

Similar Documents

Publication Publication Date Title
JP6493390B2 (ja) イネ種子用コーティング資材及びコーティングイネ種子
JP6299139B2 (ja) コーティングイネ種子
JP6830815B2 (ja) コーティングイネ種子及びその製造方法
WO2017043364A1 (ja) コーティングイネ種子及びその製造方法
WO2016167315A1 (ja) コーティングイネ種子及びその製造方法
KR102622509B1 (ko) 코팅된 벼 종자 및 그의 제조 방법
JP6786854B2 (ja) コーティングイネ種子及びその製造方法
JP6682978B2 (ja) コーティングイネ種子及びその製造方法
JP6830816B2 (ja) コーティングイネ種子及びその製造方法
JP6862719B2 (ja) コーティングイネ種子及びその製造方法
JP7302941B2 (ja) イネ種子鳥害防止剤及びイネ種子鳥害防止方法
JP6862718B2 (ja) コーティングイネ種子及びその製造方法
JP6969862B2 (ja) コーティングイネ種子及びその製造方法
JP6682977B2 (ja) コーティングイネ種子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018500483

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187008869

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16844225

Country of ref document: EP

Kind code of ref document: A1