WO2017035675A1 - Proceso de remoción de arsénico desde materiales que lo contienen - Google Patents

Proceso de remoción de arsénico desde materiales que lo contienen Download PDF

Info

Publication number
WO2017035675A1
WO2017035675A1 PCT/CL2015/050038 CL2015050038W WO2017035675A1 WO 2017035675 A1 WO2017035675 A1 WO 2017035675A1 CL 2015050038 W CL2015050038 W CL 2015050038W WO 2017035675 A1 WO2017035675 A1 WO 2017035675A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
solid
leaching
stage
process according
Prior art date
Application number
PCT/CL2015/050038
Other languages
English (en)
French (fr)
Inventor
John Patrick GRAELL MOORE
Manuel Enrique GUZMÁN MANZO
Cristián Eduardo PIZARRO HERRERA
Christian Ignacio SOTO INFANTE
Original Assignee
Molibdenos Y Metales S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molibdenos Y Metales S.A. filed Critical Molibdenos Y Metales S.A.
Priority to PCT/CL2015/050038 priority Critical patent/WO2017035675A1/es
Priority to MX2018002213A priority patent/MX2018002213A/es
Priority to AU2015407367A priority patent/AU2015407367B2/en
Priority to CN201580082568.5A priority patent/CN108138258B/zh
Priority to BG112689A priority patent/BG67350B1/bg
Priority to US15/753,827 priority patent/US10865461B2/en
Priority to CA2996328A priority patent/CA2996328C/en
Publication of WO2017035675A1 publication Critical patent/WO2017035675A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/008Leaching or slurrying with non-acid solutions containing salts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • Copper concentrates commercially exploited by large mining companies exhibit an increasingly high arsenic law (> 0.5%) that prevents these materials from being destined directly to the smelting furnace, without violating current environmental regulations regarding arsenic content that is expelled in the gases emitted from the smelter.
  • arsenic law > 0.5% that prevents these materials from being destined directly to the smelting furnace, without violating current environmental regulations regarding arsenic content that is expelled in the gases emitted from the smelter.
  • One way to solve the problem of high arsenic content in the foundry is to mix with concentrates with low arsenic content.
  • concentrates with low arsenic content is increasingly scarce, hindering the mixing ability.
  • Many research and development efforts have been made to overcome this problem and allow mining companies to continue on the path of productivity and competitiveness.
  • there is still no competitive process or dominant technology in the industry that allows copper concentrates to be conditioned with a high arsenic content.
  • the process described in the present application consists in selectively leaching the arsenic present in copper concentrates and other arsenic-containing materials (with an efficiency greater than 90%) obtaining a stable solid compound with a concentration of arsenic less than or equal to 0 ,5%.
  • Leaching is carried out in an alkaline medium, using a reactor with overpressure of air or pure oxygen, at a temperature between 100 ° C and 220 ° C and for times between 0.5 and 2.5 hours.
  • a solid / liquid separation is performed to obtain a solid with low arsenic content that meets commercial specifications or that allows its recirculation or mixing in the production process, and a solution containing dissolved arsenic, in its oxidation state +5, in the form of arsenate (AsO4 3 ).
  • Said solution is subjected to a dissolved arsenic abatement process by the addition of reagents that allow obtaining an environmentally stable precipitate.
  • the process is applicable to materials containing arsenic and / or selenium, leaching them both selectively.
  • Selenium if present, follows the same arsenic route in terms of its presence in the solutions and the abatement methods, remaining in the same precipitates together with the arsenic.
  • the process considers partial or total recirculation of the alkaline solution in order to optimize reagent consumption. Similarly, sodium sulfate is generated in the process, which can be arranged or recovered by crystallization or related process, with the purpose of recycling water and obtaining a byproduct.
  • Arsenic is present in copper ore primarily as Enargita (Cu 3 AsS 4 ), arsenic is also found as Tenantite (Cui 2 As 4 Si 3 ), in less abundance.
  • arsenic in sulfur form, such as AsS, AS2S3 or other arsenic sulfides, as well as in iron ores, such as arsenopyrite (FeAsS).
  • arsenic could be present as an oxide, such as arsenolite (AS2O3).
  • Acid leaching generally uses sulfuric acid (H 2 SO 4 ) as a leaching agent, where leaching in most cases is carried out at atmospheric pressure.
  • H 2 SO 4 sulfuric acid
  • the dissolution of arsenic from the concentrate is not selective, this means that in addition to leaching the arsenic from the sulphided material, elements of interest such as copper are also leached.
  • the reagents that have been most studied to carry out leaching are mixtures of NaOH with the following reagents: NaHS or Na 2 S, obtaining reducing conditions, or with NaCIO, achieving oxidizing conditions.
  • Processes that use NaHS or Na 2 S as leaching agents are characterized by their high selectivity.
  • the results of this process indicate a 99% removal of arsenic at a temperature of 60 ° C, within a residence time range of up to 120 minutes.
  • the concentration of NaCIO is 0.3 M where 0.05 g / l of NaOH is also added, to work with pH close to 12.
  • the liquid / solid ratio in this process is 1600.
  • the problems that this process has are the high consumption of NaCIO, which increases treatment costs, and that it is not possible to use it when the copper concentrate has high grades of covelite (CuS), because this compound is soluble in a CIO7OH medium. " This process It has not had application at the industrial level.
  • alkaline leaching in the case of the removal of arsenic from copper concentrates, the alkaline leaching alternative in an oxidizing environment offers the best chance of successful results.
  • alkaline leaching has the characteristic that it is selective, that is, it only promotes the dissolution of arsenic from the sulphide material, without leaching species of interest such as copper, gold and silver.
  • the environment in which alkaline leaching develops is oxidizing, it will favor the appearance of arsenate ion (AsO 4 "3 ) which is a compound that is possible to precipitate, producing compounds that are chemically stable. which are suitable for safe disposal.
  • the liquors resulting from the alkaline pressure leaching of Cu concentrates and other materials that have a high As content, can reach concentrations of up to 20.0 g / l, which becomes an important problem because The high content of As limits the recirculation of the liquor, due to the evident accumulation of As in the system, nor does it allow its discarding due to environmental impact regulations.
  • the precipitation of As from liquors can be carried out through various techniques. The most used and studied are the following: precipitation-coagulation (or co-precipitation) of insoluble species of As, adsorption, electro-techniques (electrocoagulation, electrodialysis, others), nanofiltration, reduction and oxidation.
  • Precipitation techniques are mainly used to lower large amounts of As in solution (of the order of some g / l) but in general they do not allow to reach by themselves the environmental requirements (in the order of mg / l).
  • Oxidation techniques rather than techniques by themselves, consist of pre-treatments for precipitation techniques. If As is predominantly As +5 , precipitation techniques work effectively eliminating most of it. If As is predominantly As +3 , precipitation techniques do not work well by themselves and require an oxidative pretreatment to convert As +3 to As +5 .
  • Reduction techniques are generally used when the system has very low potentials that allow the reduction of S ° to sulphides (S "2 ) and seek to precipitate the Ace in the form of sodium thioarseniate through the addition of elemental sulfur. they do not have good As removals (around 60%) because the sodium thioarseniate is partially soluble and they are used only when you want to partially remove the Ace to recirculate the alkaline solution avoiding saturation.
  • Mg use There is information in both scientific publications and patents. In the document Park, YY, Tran, T., Lee, YH, Nam, YI, Senanayake, G., Kim, MJ: "Selective removal of arsenic (V) from a molybdate plant liquor by precipitaron of magnesium arsenate", Hydrometallurgy , Volume 104, Issue 2, September 2010, Pages 290-297, remaining concentrations of As ⁇ 5 ppm are reported for a Mg / As molar ratio equal to 2 and pH 10.2.
  • the documents that show good results in terms of As removal always have ammonium in solution, which is not the case of the present invention.
  • the potential for oxide reduction is very low, which allows the use of elemental sulfur to precipitate arsenic as a thioarseniate, compounds considered not stable for final disposal and with an efficiency of relatively low rainfall, close to 60%.
  • the solutions have a relatively high potential, such that arsenic is as arsenate (As +5 ), and a high concentration (up to 20 g / l), which enables effective precipitation of arsenic with different reagents.
  • the precipitation techniques studied in relation to the present application consist in the use of the cations Ce +3 , Fe +3 , Mg +2 and the combination of Fe +3 and Ca +2 , as precipitating agents.
  • the following compounds containing said cations were used as precipitating reagents: CeCl 3, MgSO 4 , Fe 2 (SO 4 ) 3 and Fe 2 (SO 4 ) 3 + Ca (OH) 2 .
  • Figure 1 It is a schematic flow diagram of the process of the present application, wherein the arsenic compounds are selectively solubilized for the removal of the arsenic contained by pressure leaching, through the action of a fresh alkaline solution and a solution of recycle from the filtering stage of sodium sulfate.
  • Figure 2 It is a schematic flow diagram of an alternative process configuration, equally satisfactory, of the present application, in which the liquors with solubilized arsenic are recirculated for use in the alkaline leaching stage and a purge is established, the which is treated to arsenic abatement and crystallize Na 2 SO 4 .
  • the final solution constitutes process water to be recirculated to the plant.
  • Figure 3 It is a schematic flow diagram of an alternative process configuration, equally satisfactory, of the present application, in which liquors with solubilized arsenic are treated to abate the arsenic and subsequently recirculated to be used in the alkaline leaching stage . A purge is established to remove excess Na 2 SO 4 .
  • the present application refers to a process for the selective removal of arsenic from copper concentrates and other materials with high arsenic contents.
  • the present application also refers to the selective removal of arsenic and / or selenium from materials with high arsenic and / or selenium content.
  • the present application also includes the precipitation of arsenic and / or selenium from the resulting alkaline solutions, for its safe and environmentally sustainable disposal.
  • the integral process is based on experimental results at the laboratory and pilot level, in addition to considering technical aspects and industrial criteria for its elaboration.
  • the first figure shows the general process of selective removal and arsenic precipitation
  • Figures 2 and 3 present equally satisfactory alternatives for carrying out the process.
  • the numerical references will be incorporated during the description of the process of the invention, as appropriate.
  • the same numerical references will be used to indicate the same stages or currents in the figures.
  • the present application provides a process for selectively removing arsenic from copper concentrates with a high arsenic content and from other materials containing said element.
  • the present application also refers to the selective removal of arsenic and / or selenium from materials with high arsenic and / or selenium content.
  • This process also includes the steps to treat arsenic and / or selenium removed from the previous material, in order to obtain two main products: a solid material with a low grade of arsenic and / or selenium and a solid material with a high percentage of arsenic and / or selenium that is part of a compound that is stable from the environmental point of view, which allows its safe disposal in duly authorized sites.
  • the material to be treated is preferably a copper concentrate, notwithstanding that it is also applicable to copper cement, smelting and / or roasting filter powders and other materials (sulfides, oxides, metal or others) with high arsenic contents, which contain arsenic in concentrations greater than 0.5% by weight on a dry basis.
  • the arsenic compounds are preferably Enargita (Cu3AsS 4 ) and Tenantite (Cui2As 4 Si3).
  • the copper concentrate may contain iron, silica, alumina, feldspar and similar compounds.
  • the process of the present application comprises a pressure leaching step in a pressure reactor (4), which implies the contact of the material (1) to be leached with an alkaline leaching solution of NaOH (2) in an oxidizing atmosphere ( 3), which dissolves the arsenic from the material to produce a pulp (5) containing the liquor with dissolved arsenic and the solid material with low arsenic content.
  • the reagents are fed to the leaching step (4) by repulping the concentrate of copper or other material (1) containing a high content of arsenic with the alkaline leaching solution of NaOH (2). It must be ensured that the pulp generated is sufficiently homogeneous to maintain the percentage of solid specific for the leaching stage (4), preferably between 10% and 40% by weight.
  • the leaching stage (4) of the material (1) comprises the arsenic solution preferably in the form of arsenate (AsO 4 3 ) as a soluble anion in the pulp (5) obtained in the leaching stage.
  • the chemical reactions that describe the phenomenon that occurs in the leaching stage (4) are the following:
  • the process is equally applicable to other materials (1) containing arsenic in the form of sulphides or oxides, such as copper cements with a high content of arsenic sulphide and smelting or roasting filter powders containing sulfides and arsenic oxides.
  • the conversion of these chemical reactions will depend on factors such as the residence time of the pulp inside the equipment, temperature, pressure and quantity of reagent.
  • the present invention comprises a post-leaching stage (4) which considers a first solid-liquid separation stage (7) of the liquor containing the dissolved arsenic (9) of the low arsenic solid (8).
  • the process involves a stage that involves the precipitation of arsenic (1 1) dissolved in the liquors (mother liquor and washing liquor if it exists), with the help of a precipitating agent (10), forming a precipitate (12) corresponding to a stable compound for disposal.
  • the process considers a second solid-liquid separation stage (13) of the precipitated arsenic solid compound (14) of the alkaline liquors (15). At this stage, a stable arsenic solid compound is obtained as a product for disposal (14).
  • the silica dissolved as sodium silicate co-precipitates becoming part of the solid arsenic precipitate.
  • Alternative 1 comprises a stage consisting of a Na 2 SO 4 (16) crystallization process of the alkaline liquors and a third solid-liquid separation stage (18 ) of the product of the crystallization stage (17).
  • a solid consisting of Na 2 SO 4 crystals (19) and an alkaline liquor (20) will be obtained, which in some cases can serve in its entirety or a part of it ( 20a) as feed for the leaching stage, in the form of a recycle solution.
  • a recycle solution (20a) or a fresh alkaline solution (2) can be supplied to the leaching stage (4).
  • the recycle solution can be used in its entirety (20) or a part of it (20a) as a feed for the leaching stage, the percentage that is not recirculated to the leaching stage can be used for process water ( 20b).
  • the leaching liquor in the present invention is based on the sodium hydroxide compound as the main alkaline compound. Without However, other alkaline compounds such as potassium hydroxide could also be used.
  • the sodium hydroxide content in the leaching liquor (2) is a function of the arsenic content of the material (1) to be leached.
  • the dosage of NaOH to carry out leaching (4) corresponds to a value between 1, 87 and 45 kg NaOH / kg As contained in the material.
  • the temperature used in the leaching stage (4) is in the range of 100 ° C to 220 ° C. This is why the leaching stage (4) must be carried out in a suitable equipment for such an operation, such as an autoclave.
  • the operating base of the autoclave or the autoclaves of this invention can be in batch or continuous format.
  • the autoclave itself can have various designs, such as horizontal or vertical, however, in all these designs the autoclave can have one or more agitators, with one or more compartments separated by loudspeakers, with submerged gas injection or injection above or both.
  • the leaching step (4) must be performed by feeding an oxidizing gas (3).
  • the oxidizing gas (3) can be pure oxygen, enriched air or air.
  • the oxidizing gas (3) is preferably air because it allows a better control of the oxide-reduction potential of the solution, so that the dissolved arsenic remains in the stability domain of arsenate, which facilitates its abatement as a stable compound, and on the other hand allows to increase the dissolution of arsenic, decreasing the solubilization of copper, gold and silver.
  • the overpressure of the oxidizing gas (3) is conditioned by the objectives of the process which are: the removal of arsenic from the solid at a final concentration less than or equal to 0.5%; leave the arsenic in liquors in the form of arsenate (As +5 ); and the non-dissolution of Cu, Au, Ag and / or other valuable metals.
  • the overpressure must be in the range of 0 to 100 psig (0-689.5 KPa). In case of air use, the overpressure should preferably be in the range of 10 to 40 psig (68.95 KPa - 275.8 KPa), more preferably close to 20 psig (137.9 KPa).
  • the pulp (5) formed by the leaching liquor (2) and the solid material (1) in the leaching stage (4) must have a solid content preferably in the range of 10% to 40% by weight, the ratio being solid / liquid ideal that resulting from the combination of technology and know-how available.
  • the residence time of the pulp inside the reactor must be sufficient for the correct development of chemical reactions. It has been found that good arsenic leaching results are obtained for residence times in the range of 30 to 150 minutes. At higher residence times within the aforementioned range a product with arsenic levels lower than 0.5% is obtained, which would allow mixtures with materials of higher arsenic levels, thus obtaining a new material with an acceptable arsenic level for processes industrial later.
  • the process of the present application can be used to treat copper concentrates and all types of material with a high arsenic content (1).
  • the process of the present invention produces good arsenic removal results from these high arsenic materials.
  • the solid obtained from the process of the invention contains at most 0.5% of arsenic, measured on a dry basis
  • the formation of the arsenate anion (AsO 4 3 ) is possible, which would be dissolved in the alkaline solution (2), mainly due to the fact that the conditions pH and liquor potential allow it.
  • the pH values of the resulting pulp (5) of the leaching stage (4) are in a range of 10 to 14, while the oxidation / reduction potential of the same alkaline solution is above -0.5 volts to EHE.
  • any solid / liquid separation process can be used for the separation of the low arsenic solid product (8) from the alkaline liquor with high arsenic content (9).
  • Commonly used techniques include: filtration, sedimentation, clarification, thickened, centrifugation, drainage and decantation. The selection of the solid / liquid separation technique is not critical to the success of the present invention.
  • the solid product with low arsenic content (8) has been separated from the mother liquor with high arsenic content (10)
  • an optional washing of the solid product with washing water (7) can be carried out to carry the mother liquor impregnated in it.
  • the solid product obtained (9) can be stored or taken to a new process for the recovery of its valuable compounds.
  • the mother liquor and washing liquor (10) obtained from the first solid-liquid separation stage (8) must be treated to remove its arsenic content. This removal is done through a stage of precipitation (12) of the arsenic.
  • the way to precipitate the arsenic contained in the liquors is by adding reagents (1 1) for precipitation and subsequent separation in a second solid-liquid separation stage (14).
  • the precipitating agents (1 1) used in the arsenic precipitation stage (12) are Ce +3 , Fe +3 , Mg +2 and the combination of Fe +3 and Ca +2.In addition there are other reagents, such as ⁇ 3 , which could also fulfill the function of precipitating arsenic.
  • the reagent to be used may be cerium chloride (CeCU).
  • CeCU cerium chloride
  • the dosage of CeCU in the precipitating solution corresponds to a value between 1, 80 and 7.50 kg Ce / kg As.
  • the conditions for carrying out this precipitation preferably consider a pH range between 6 and 12, more preferably between 8 and 10.
  • the pH value can preferably be adjusted with H 2 SO 4 .
  • the results show a precipitation of arsenic greater than 99.16%.
  • the precipitating agent (1 1) is Fe
  • the reagent to be used may be ferric sulfate (Fe 2 (SO 4 ) 3).
  • the chemical reaction that explains this precipitation is as follows:
  • the dosage of Fe 2 (SO 4 ) 3 in the precipitating solution corresponds to a value between 0.70 and 8.0 kg Fe +3 / kg As.
  • the conditions for carrying out this precipitation preferably consider a pH range between 6 and 10, more preferably between 7 and 8.
  • the pH value can preferably be adjusted with H 2 SO 4 .
  • the results show a precipitation of arsenic greater than 99.31%.
  • ferric sulfate In the case of the use of ferric sulfate, it is possible to add it directly or prepare it previously using iron oxide (II and III) and sulfuric acid, according to the following chemical reaction:
  • ferric sulfate can be prepared from ferrous sulfate, mixing it with H 2 O 2 or other oxidant, sulfuric acid and hot water.
  • lime milk can be added to the system formed by the ferric solution and the arsenate, in order to obtain a mixed Fe-Ca-As salt.
  • the dosages have values between 0.70 and 8.0 kg Fe +3 / kg As and between 0.5 and 2.5 kg Ca +2 / kg As.
  • the conditions for carrying out this precipitation preferably consider a pH range between 6 and 10, more preferably between 7 and 8.
  • the pH value can preferably be adjusted with H 2 SO 4 .
  • the results show a precipitation of arsenic greater than 99.09%.
  • the reagent to be used may be magnesium sulfate (MgSO 4 ).
  • MgSO 4 magnesium sulfate
  • the dosage of MgSO 4 in the precipitating solution corresponds to a value between 0.45 and 1.50 kg Mg +2 / kg As.
  • the conditions to carry out this precipitation consider pH values in the range of 7 to 14, preferably with a pH value in the range of 8 to 12 and more preferably a pH value close to 10, where the pH can be preferably adjusted with H 2 SO 4 .
  • the results show a maximum arsenic precipitation of 71, 39%.
  • the solid arsenic compound (15) must be separated from the alkaline liquor already free of arsenic (16).
  • the procedure will be by a conventional solid-liquid separation method, such as those already mentioned in the case of the first solid separation stage
  • the crystallization stage (17) is proceeded to crystallize the Na 2 SO 4 dissolved in This alkaline liquor. The process to crystallize
  • Na 2 SO 4 from this alkaline liquor is not critical to the success of the present invention and conventional methods such as constant volume evaporation (continuous or semi-continuous), batch evaporation (cooling crystallization or total solvent evaporation) or evaporation can be used In a solar pool.
  • a third stage of solid-liquid separation (19) of the pulp (18) formed is carried out in the crystallization stage (17).
  • a solid consisting of Na 2 SO 4 crystals (20) and an alkaline liquor (21) will be obtained which can be reused as a part (21 a) of the leaching solution of leaching (5) of materials with high levels of arsenic (1).
  • the leaching stage (5) can be configured to work in the form of an open or closed circuit, where the latter involves the recirculation of alkaline leaching liquor (21).
  • the criterion for setting the purge is based on the control of the saturation of sodium sulfate to prevent its crystallization in the alkaline leaching reactor, carrying the process in batch or continuous form.
  • the criterion for setting the purge is based on the control of the saturation of sodium sulfate to prevent its crystallization in the alkaline leaching reactor, carrying the process in batch or continuous form.
  • EXAMPLE 1 Leaching with pure oxygen. Dosage study of NaOH and liquid / solid ratio.
  • This example shows the experimental tests carried out to define the dosage of NaOH necessary for the leaching stage of a copper concentrate of 31.6% Cu, with arsenic content of 2.75% as enargite. Once the necessary dosage for arsenic leaching was obtained, the influence on the efficiency of arsenic extraction having the percentage of solid in the pulp was studied. In these tests, work was always carried out, leaving constant temperature, residence time and oxygen overpressure.
  • the optimal NaOH dosage is 22.2 kg NaOH / kg As contained in the copper concentrate.
  • the Liquid / solid ratio that delivers the best result in this example is between 2/1 and 4/1.
  • This example shows the experimental tests performed to verify the efficiency of arsenic dissolution of the process from a copper concentrate of 19.7% Cu and with 6.1 1% arsenic as tenantite. In these tests, work was carried out, leaving oxygen overpressure constant.
  • EXAMPLE 5 Leaching with pure oxygen from copper concentrate - Study of the dissolution of copper, gold and silver.
  • test of this example is performed in a non-optimal condition for the removal of arsenic and the dissolution of copper, gold and silver; It shows the selectivity of the process and the low values that are possible to obtain from dissolution of copper, gold and silver.
  • This example shows experimental trials with copper concentrate with 27.6% Cu and 2.1% As as enargite, performed to verify the efficiency of arsenic dissolution of the process when the work overpressure is varied. In this study, the temperature, residence time and liquid / solid ratio of the pulp are kept constant.
  • EXAMPLE 7 Leaching with Air. Study of the kinetics of the process.
  • This example shows the experimental tests carried out with the aim of studying the kinetics of arsenic dissolution, using air as an oxidizing gas and the same copper concentrate as in Example 5. In these tests, work was always carried out, keeping the temperature, the liquid ratio constant / solid pulp and air overpressure system.
  • This example shows an arsenic dissolution test from copper cement with 62% Cu, 0.63% Se and 2.40% As as arsenic sulfide (initial solid).
  • the objective of this test was to verify the effectiveness of the process for a material other than copper concentrate and with an additional contaminant (Se). As you can see, the test was performed according to the following parameters:
  • This example shows an arsenic dissolution test from copper concentrate smelting filter powder, with 25.4% Cu and 7.3% As.
  • the objective of this test was to verify the effectiveness of the process for a different material to the copper concentrate and in which the arsenic is primarily as oxide. As you can see, the test was performed according to the following parameters:
  • the variables that are controlled are: the precipitating reagent, its dosage and the pH.
  • the pH regulation is carried out with NaOH or H 2 SO 4 . Temperature control is not performed during the process. Test

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Proceso de remoción de arsénico desde materiales con alto contenido de arsénico y/o selenio que comprende agregar el material a un reactor de presión, agregar una solución lixiviante alcalina, agregar un gas oxidante, mezclar los componentes en dicho reactor para obtener una pulpa homogénea y someterla a lixiviación a presión selectiva para arsénico. Someter dicha pulpa a primera etapa de separación sólido-líquido obteniendo un licor de arsénico y un sólido de bajo contenido de arsénico. Someter dicho licor con un agente precipitante de Ce+3, Fe+3, Mg+2, y combinación Fe+3 y Ca+2. Someter el producto de precipitación de arsénico a segunda etapa de separación sólido-líquido. Opcionalmente, el proceso además comprende someter el licor alcalino libre de arsénico a etapa de cristalización del sulfato de sodio, y someter el producto de dicha cristalización(Na2S04) a tercera etapa de separación sólido-líquido.

Description

PROCESO DE REMOCION DE ARSENICO DESDE MATERIALES QUE
LO CONTIENEN
CAMPO DE APLICACIÓN:
Tanto elementos como el arsénico y el selenio son considerados contaminantes en la producción del cobre.
Los concentrados de cobre explotados comercialmente por las grandes empresas mineras (sulfuros metálicos) exhiben una ley de arsénico cada vez más alta (>0,5%) que impide destinar estos materiales directamente al horno de fundición, sin vulnerar la normativa ambiental vigente respecto al contenido de arsénico que es expulsado en los gases emitidos de la fundición. Una forma de resolver el problema del alto contenido de arsénico en la fundición es mezclar con concentrados con bajo contenido de arsénico. Sin embargo, la existencia de concentrados con bajo contenido de arsénico es cada vez más escasa, dificultando la capacidad de mezcla. Muchos esfuerzos de investigación y desarrollo se han realizado para sortear este problema y permitir a las empresas mineras continuar por la senda de la productividad y competitividad. No obstante, aún no existe en la industria un proceso competitivo ni una tecnología dominante que permita acondicionar los concentrados de cobre con un alto contenido de arsénico.
Otros materiales con un alto contenido de arsénico en la industria del cobre, tales como cemento y polvos de filtro de fundición o tostación, también requieren de procesos para reducir sus contenidos de arsénico a niveles muy bajos para poder ser vendidos o recirculados, lo que constituye un desafío tecnológico y de proceso para lograrlo.
Otros materiales con un alto contenido de arsénico y con mineralogía similar a la de los compuestos ya señalados, tales como los de la minería del oro, requieren de procesos para reducir sus contenidos de arsénico.
Materiales de la industria del cobre con un alto contenido de selenio, o altos contenidos de selenio y arsénico de forma simultánea, también requieren de procesos que reduzcan sus contenidos de arsénico y/o selenio.
i RESUMEN DE LA INVENCIÓN:
El proceso descrito en la presente solicitud consiste en lixiviar selectivamente el arsénico presente en los concentrados de cobre y en otros materiales que contienen arsénico (con una eficiencia mayor al 90%) obteniendo un compuesto sólido estable con una concentración de arsénico menor o igual a 0,5%. La lixiviación se realiza en un medio alcalino, usando un reactor con sobrepresión de aire u oxígeno puro, a temperatura entre 100°C y 220°C y durante tiempos entre 0,5 y 2,5 horas. Posteriormente, se realiza una separación sólido/líquido para obtener un sólido con bajo contenido de arsénico que cumple con las especificaciones comerciales o que permite su recirculación o mezcla en el proceso productivo, y una solución que contiene el arsénico disuelto, en su estado de oxidación +5, en forma de arseniato (AsO4 3). Dicha solución se somete a un proceso de abatimiento de arsénico disuelto mediante la adición de reactivos que permiten obtener un precipitado ambientalmente estable.
Adicionalmente, el proceso es aplicable a materiales que contienen arsénico y/o selenio, lixiviando a ambos en forma selectiva. El selenio en caso de estar presente, sigue la misma ruta del arsénico en cuanto a su presencia en las soluciones y a los métodos de abatimiento, quedando en los mismos precipitados junto con el arsénico.
El proceso considera la recirculación parcial o total de la solución alcalina con el fin de optimizar el consumo de reactivo. Igualmente, en el proceso se genera sulfato de sodio, el cual puede disponerse o bien recuperarse mediante cristalización o proceso afín, con el propósito de reciclar agua y obtener un subproducto.
ESTADO DEL ARTE:
La creciente demanda de cobre que se ha desarrollado en los últimos años y que se pronostica que siga aumentando, ha impulsado el desarrollo de procesos que permitan tratar concentrados de cobre con leyes de arsénico cada vez más elevadas.
La ley de arsénico en los concentrados de cobre se ha ido incrementando de manera generalizada, por lo que estrategias de realizar mezclas de concentrados para alcanzar niveles bajo un 0,5% de As, que es la máxima concentración admisible en los hornos de fundición, ya no serán posibles. Esta situación afectará negativamente la productividad, rentabilidad y competitividad de las empresas mineras a nivel mundial.
El arsénico se encuentra presente en el mineral de cobre principalmente como Enargita (Cu3AsS4), también se encuentra el arsénico como Tenantita (Cui2As4Si3), en menor abundancia. En otros materiales también es posible encontrar el arsénico en forma sulfurada, tales como AsS, AS2S3 u otros sulfuros de arsénico, así como también en minerales con hierro, como la arsenopirita (FeAsS). Igualmente, en otros materiales como polvos de filtro de tostación o fundición, el arsénico podría encontrarse presente como óxido, tal como arsenolita (AS2O3). Grandes esfuerzos de investigación se han realizado para tratar concentrados que contienen estas especies mineralógicas de arsénico, lo que representa un gran desafío tanto por la limpieza del concentrado como por la estabilización del arsénico que debe disponerse de manera estable. En la literatura se proponen rutas piro metalúrgicas e hidrometalúrgicas. Debido a que los tratamientos pirometalúrgicos producen compuestos volátiles de arsénico que se incorporan a la fase gaseosa del sistema, los cuales son altamente nocivos para el ambiente y económicamente poco factibles de tratar, la industria prefiere el uso de procesos hidrometalúrgicos. En tal sentido, las investigaciones (a escalas de laboratorio y piloto) se han orientado al desarrollo de este tipo de procesos, destacando entre éstos los distintos tipos de lixiviaciones (selectivas, totales, alcalinas, ácidas, a presión atmosférica o a sobrepresión).
Hasta la fecha no hay una tecnología dominante a nivel industrial que permita resolver el problema y aquellas que han sido instaladas no han tenido los resultados esperados.
Dentro de los tratamientos hidrometalúrgicos, existen dos vías de procesamiento del concentrado de cobre con un alto contenido de arsénico: mediante lixiviación ácida y mediante lixiviación alcalina. La lixiviación ácida generalmente utiliza ácido sulfúrico (H2SO4) como agente lixiviante, donde la lixiviación en la mayoría de los casos se lleva a cabo a presión atmosférica. En estas circunstancias donde se utilizan tratamientos con lixiviación ácida, la disolución de arsénico desde el concentrado no es selectiva, esto significa que además de lixiviar el arsénico del material sulfurado, también se lixivian elementos de interés como el cobre. Por ejemplo, en el caso de la patente US 5.993.635, The Albion Process, se llega a lixiviar hasta el 95% del cobre contenido en el mineral, además de lixiviar cobalto, níquel y zinc, utilizando una solución lixiviante compuesta por 30 a 80 g/l de ácido sulfúrico y 5 a 30 g/l de ión férrico, a temperaturas dentro del rango de 60°C hasta la de ebullición de pulpa, burbujeando oxígeno, aire enriquecido o aire a razón de 400 a 1 .000 kg de 02/ton de metal producido. Los tiempos de reacción para este proceso son de aproximadamente 10 horas, comprobándose que la cinética de reacción de estos procesos tiende a ser lenta. Las reacciones químicas predominantes para este proceso son las siguientes:
Cu2S + H2SO4 + 2,5 O2 = 2 CuSO4 + H2O
Cu2S + 2 Fe2(SO4)3 = 2 CuSO4 + 4 FeSO4 + S°
2 Cu3AsS4 + 1 1 Fe2(SO4)3 + 8 H2O = 6 CuSO4 + 2 H3AsO4 + 5 H2SO4 + 8 S° + 22 FeSO4
Debido a que el proceso no disuelve selectivamente el arsénico, si se trabaja con concentrados de cobre, se hace necesario introducir tratamientos adicionales para separar el arsénico de los elementos valiosos del material sulfurado, para luego extraer y refinar el cobre por métodos tradicionales de extracción por solventes (SX) y electrowinning (EW).
De esta forma, si lo que se desea es disolver totalmente el material sulfurado, la alternativa de lixiviación ácida es la más conveniente.
Respecto a los tratamientos hidrometalúrgicos de lixiviación alcalina, existe una cantidad suficiente de evidencias que demuestran su utilidad para procesos donde se busca una disolución selectiva de arsénico desde materiales sulfurados. Los reactivos que más se han estudiado para llevar a cabo la lixiviación son mezclas de NaOH con los siguientes reactivos: NaHS o Na2S, obteniendo condiciones reductoras, o con NaCIO, logrando condiciones oxidantes.
Los procesos que utilizan NaHS o Na2S como agentes lixiviantes se caracterizan por su alta selectividad.
Para procesos donde se utiliza NaHS, la reacción química es la siguiente:
2 Cu3AsS4(s) + 3 NaHS(ac) + 3 NaOH(ac) = 2 Na3AsS4(ac) + 3 Cu2S(s) +
3 H2O Por otro lado, para procesos donde se utiliza Na2S, la reacción química es la siguiente:
2 Cu3AsS4(s) + 3 Na2S(ac) = 3 Cu2S(s) + 2 Na3AsS4(ac)
Para el proceso donde se utiliza NaHS como agente lixiviante, el trabajo de Tongamp, W., Takasaki, Y., Shibayama, A. "Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media" (2009) Hydrometallurgy, 98 (3-4), pp. 213-218, se obtiene una extracción sobre el 95% del arsénico desde el material inicial alimentando NaHS en un rango de 0,68 M a 1 ,35 M respecto al sulfuro y NaOH a 1 ,25 M respecto al hidróxido. Los tiempos estudiados llegan hasta los 120 minutos con una temperatura de trabajo de hasta 90°C.
Para el caso del uso de Na2S, el proceso MELT: "Mechano- chemical leaching in hydrometallurgy of complex sulphides", Peter Baláz, Marcela Achimovicová, (2006), Hydrometallurgy, 84, pp. 60-68, agrega además una etapa de pre-tratamiento del material, realizando una activación mecánica antes de lixiviar. En este estudio la alimentación de Na2S es de 100 g/l y la de NaOH es de 50 g/l, operando a 90°C con una razón líquido/sólido de 400. En 30 minutos la extracción de arsénico es del 67% sin activación mecánica, mientras que realizando el pre- tratamiento, la extracción sube hasta un 92%.
El caso de la patente US 8.771 .619 B2 de Xstrata, "Method for treating arsenic containing materials", las condiciones de alimentación de Na2S y NaOH son de hasta 140 g/l y 250 g/l respectivamente, con un porcentaje de sólido en pulpa de 25% a 50%. Las extracciones son buenas en términos de que el arsénico en el sólido final llega a ser menor a 0,5%, sin embargo para alcanzar este valor los tiempos de residencia están en el rango de 4 a 8 horas, observándose una cinética lenta de las reacciones químicas. En este mismo documento, en la Tabla 2, Ensayos 4, 5 y 6, se ejemplifica el uso de NaOH como único agente lixiviante, buscando mantener una condición muy reductora de la solución, con el objetivo de generar Na2S in situ, lo cual genera soluciones con potenciales muy negativos que mantienen el arsénico en forma reducida. En el proceso de la presente solicitud, el uso de NaOH va siempre acompañado del empleo de O2 gaseoso (aire u oxígeno puro), lo cual favorece la formación de arsénico en su estado de oxidación +5, como arseniato (AsO4 3), diferencia fundamental con el proceso descrito en la patente de Xstrata. Por otro lado, cabe destacar que otra diferencia fundamental entre ambos procesos tiene relación con las cinéticas de disolución exhibidas. Mientras en el proceso descrito en la patente de Xstrata es del orden de 4 a 8 horas, en la presente solicitud se obtienen cinéticas que van entre 0,5 y 2,5 horas.
Como se puede apreciar, la característica principal de estos procesos es que las reacciones químicas tienen altas conversiones, operando generalmente a presión atmosférica y temperaturas bajo los 90°C, lo que favorece un ambiente reductor propicio para la formación del compuesto soluble Na3AsS4. Estos procesos también requieren altas concentraciones de reactivos en la pulpa para la obtención de las condiciones propicias para la ocurrencia de las reacciones químicas, sin embargo, los licores generados pueden ser recirculados luego de su tratamiento de precipitación de arsénico. Aunque la selectividad de estos procesos es alta, aún falta investigar y aclarar como estabilizar de forma confiable y segura el arsénico desde el compuesto Na3AsS4, ya que éste es tóxico y no se puede disponer, según se menciona en el trabajo de Safarzadeh, M.S., Moats, M.S., Miller, J.D. "Recent trends in the processing of enargite concentrates" (2014), Mineral Processing and Extractive Metallurgy Review, 35 (5), pp. 283-367. Para el compuesto Na3AsS4 no existe un método validado industrialmente que permita su precipitación eficiente y donde se forme a partir de él un compuesto de arsénico estable para su disposición segura. Existen trabajos como el de Tongamp, W., Takasaki, Y., Shimbayama, A. "Precipitaron of arsenic as Na3AsS4 from Cu3AsS4-NaHS-NaOH leach solutions", (2010), Hydrometallurgy, 105 (1 -2), pp. 42-46, donde se trata de precipitar Na3AsS4 agregando azufre elemental, obteniéndose eficiencias del orden de un 60%. De acuerdo a esto, NaHS y Na2S todavía no podrían ser usados industrialmente como agentes lixiviantes para abatir arsénico desde materiales sulfurados con su posterior disposición en forma segura.
Otra interesante alternativa es el proceso de lixiviación con NaCIO a presión atmosférica en un ambiente oxidante, como en el trabajo de Mihajlovic, I., Strbac, N., Zivkovik, Z., Kovacevic, R., Stehernik, M., A, "Potential method for arsenic removal from copper concentrates" (2007) Minerals Engineering, 20 (1 ), pp. 26-33. En este trabajo se obtienen buenas cinéticas de disolución. De esta forma se obtiene CuO e iones arseniato que se disuelven completamente en el licor madre. La reacción química que define este proceso es la siguiente: 2 Cu3AsS4(s) + 35 NaCIO(ac) + 22 NaOH(ac) = 6 CuO(s) + 2 Na3AsO4(ac) + 8 Na2SO4(ac) + 35 NaCI(ac) + 1 1 H2O
Los resultados de este proceso indican una remoción del 99% del arsénico a una temperatura de 60°C, dentro de un rango de tiempos de residencia de hasta 120 minutos. La concentración de NaCIO es de 0,3 M donde también se agregan 0,05 g/l de NaOH, para trabajar con pH cercanos a 12. La razón líquido/sólido en este proceso es de 1600. Los problemas que tiene este proceso son el alto consumo de NaCIO, lo que aumenta los costos de tratamiento, y que no es posible utilizarlo cuando el concentrado de cobre tiene altos grados de covelita (CuS), debido a que este compuesto es soluble en un medio de CIO7OH". Este proceso no ha tenido aplicación a nivel industrial.
Se puede concluir que para el caso de la eliminación de arsénico desde concentrados de cobre, la alternativa de lixiviación alcalina en un ambiente oxidante ofrece las mejores posibilidades de resultados exitosos. Por una parte, la lixiviación alcalina tiene como característica que es selectiva, es decir, que solo promueve la disolución de arsénico desde el material sulfurado, sin lixiviar especies de interés como cobre, oro y plata. Por otro lado, si el ambiente en el que se desarrolla la lixiviación alcalina es oxidante, va a favorecer la aparición del ión arseniato (AsO4 "3) el cual es un compuesto que es posible precipitar, produciendo compuestos que son estables químicamente, los cuales son aptos para disponerlos de forma segura.
Por su parte, los licores resultantes de la lixiviación alcalina a presión de concentrados de Cu y otros materiales que presentan un alto contenido de As, pueden llegar a concentraciones de hasta 20,0 g/l, lo que se convierte en un problema importante pues el alto contenido de As limita la recirculación del licor, por la evidente acumulación de As en el sistema, y tampoco permite su descarte debido a normativas de impacto ambiental.
La precipitación de As desde licores puede llevarse a cabo a través de varias técnicas. Las más utilizadas y estudiadas son las siguientes: precipitación-coagulación (o co-precipitación) de especies insolubles de As, adsorción, electro-técnicas (electrocoagulación, electrodiálisis, otras), nanofiltración, reducción y oxidación.
Las técnicas de precipitación se utilizan principalmente para abatir grandes cantidades de As en solución (del orden de algunos g/l) pero en general no permiten alcanzar por si solas los requerimientos ambientales (en el orden de mg/l).
Las técnicas de oxidación, más que técnicas por sí mismas, consisten en pre-tratamientos a las técnicas de precipitación. Si el As es predominantemente As+5, las técnicas de precipitación funcionan de manera efectiva eliminando la mayor parte de él. Si el As es predominantemente As+3, las técnicas de precipitación no funcionan bien por si solas y requieren de un pre tratamiento oxidativo para convertir el As+3 a As+5.
Las técnicas de reducción se utilizan generalmente cuando el sistema posee potenciales muy bajos que permiten la reducción de S° a sulfuros (S"2) y buscan precipitar el As en forma de tioarseniato de sodio a través del añadido de azufre elemental. En general, no poseen buenas remociones de As (en torno a 60%) debido a que el tioarseniato de sodio es parcialmente soluble y se utilizan solo cuando se quiere eliminar parcialmente el As para recircular la solución alcalina evitando alcanzar la saturación.
En los estudios de lixiviación de enargita encontrados en la literatura, en general se usa la reducción como forma de disminuir el As en solución para poder recircular la solución que aun contiene cantidades no despreciables de soda. Lo anterior se debe a que efectivamente el potencial de la solución de salida es muy bajo y además el objetivo no es eliminar por completo el As. Las principales desventajas son el costo de uso de azufre elemental, la baja remoción de As alcanzada por lo que se debe realizar el proceso de eliminación más veces para evitar alcanzar la saturación y finalmente la problemática de qué hacer con el sólido generado.
En cuanto a las técnicas de abatimiento de As analizadas en el presente invento, se puede comentar lo siguiente: Uso de REE (elementos de tierras raras): Existe información tanto en publicaciones científicas como en patentes. En la patente japonesa JP 2006341 139A se incluye un rango de pH óptimo de 8-1 1 . En el documento Ragavan, A.J., Adams, D.V.: "Co-precipitation model coupled with prediction model for the removal of arsenic from ground and surface waters using lanthanides", Nuclear Materials, 201 1 , Pages 1 -46, se concluye acerca de la utilidad del uso de lantánidos para disminuir el As hasta niveles por debajo de lo permitido en agua potable. En los estudios realizados en el presente invento se concluyó que de haber silicio (Si) en la solución, éste precipita junto con el As y las REE. No existe información de esto último en la literatura. No hay información de la estabilidad de los sólidos generados por lo que a la fecha no se puede concluir si se pueden disponer o no.
Uso de Mg: Existe información tanto en publicaciones científicas como en patentes. En el documento Park, Y.Y., Tran, T., Lee, Y.H., Nam, Y.I., Senanayake, G., Kim, M.J.: "Selective removal of arsenic(V) from a molybdate plant liquor by precipitaron of magnesium arsenate", Hydrometallurgy, Volume 104, Issue 2, September 2010, Pages 290-297, se reportan concentraciones remanentes de As < 5 ppm para una razón molar Mg/As igual a 2 y pH 10,2. Los documentos que muestran buenos resultados en cuanto a remoción de As siempre presentan amonio en solución, que no es el caso del presente invento. En los ensayos de laboratorio del presente invento se obtuvo el mismo pH óptimo reportado en la literatura, pero no se lograron las mismas eficiencias de remoción, presumiblemente por ausencia de iones amonio en solución. No hay información de la estabilidad de los sólidos generados por lo que a la fecha no se puede concluir si se pueden disponer o no.
Uso de Fe: Existe información tanto en publicaciones científicas como en patentes. En el documento Pakzadeh, B., Batista, J.R.: "Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride", Journal of Hazardous Materials, Volume 188, Issue 1 -3, 15 April 201 1 , Pages 399-407, se reporta la utilización de una ventana de pH entre 4,5 a 6,5 para soluciones residuales de salmuera de intercambio iónico, utilizando una razón molar Fe/As entre 1 ,3 a 1 ,7. En el documento Pantuzzo, F.L., Ciminelli, V.S.T., De Brito, W.: "New evidences for the role of precipitation and adsorption during Fe(lll)-As(V) coprecipitation", Hydrometallurgy, 2008, Proceedings of the 6th International Symposium 2008, Pages 130-139, se reporta que para una razón molar Fe/As igual a 4 y pH entre 4 y 8 la eliminación de As es mayor a un 99%, variando la cantidad de As precipitado y adsorbido en función del pH. En el documento Laky, D., Licskó, I.: "Arsenic removal by ferric-chloride coagulation - Effect of phosphate, bicarbonate and silicate", Water Science and Technology, Volume 64, Issue 5, 201 1 , Pages 1046- 1055, se reporta que si los contenidos de silicio como silicato son altos en la solución, el sólido generado presenta problemas de filtración, teniendo que aumentar entre 2,5 y 3,5 veces la dosis de coagulante, lo que concuerda con la evidencia experimental obtenida en este invento. Las remociones que se obtuvieron en los ensayos del presente invento fueron mayores a las reportadas para el pH óptimo igual a 8, aunque con una dosificación mayor. La mayoría de los documentos concluye que el sólido precipitado (escorodita) es inestable y requiere algún estabilizador si se pretende disponer.
Uso de Fe y Ca Existe información tanto en publicaciones científicas como en patentes. La mayoría de los documentos consultados reportan un pH óptimo igual a 8. En el documento Guo, L., Cui, J., Chen, D., Du, D.: "A comparative study on treatment of impure acid with low-concentration arsenic", Chínese Journal of Environmental Engineering, Volume 7, Issue 3, March 2013, Pages 1005-1009, se reportan una concentración remanente de As < 1 ppm para una razón molar Ca/As >6 y Fe/As >8. En el presente invento se llegó prácticamente a la misma remoción con una dosificación menor y al mismo pH óptimo. En los documentos Jia, Y., Demopoulos, G.P.: "Coprecipitation of arsenate with iron(lll) in aqueous sulfate media: Effect of time, lime as base and co-ions on arsenic retention", Water Research, Volume 42, Issue 3, February 2008, Pages 661 -668 y Camacho, J., Wee, H.-Y., Kramer, T.A., Autenrieth, R.: "Arsenic stabilization on water treatment residuals by calcium addition", Journal of Hazardous Materials, Volume 165, Issue 1 -3, 15 June 2009, Pages 599- 603, se concluye acerca de la importancia del Ca como estabilizador del sólido precipitado de Fe y As, formando algún tipo de asociación Ca+2Fe+3As+5. El sólido formado es estable y puede disponerse siempre y cuando se evite su contacto directo con el CO2 ambiental, pues este podría descomponerlo en el largo plazo. Si el contacto con el CO2 no se puede evitar, se reporta que el sólido se puede estabilizar utilizando cemento Portland.
Es así como el estudio del estado del arte muestra que existen varias técnicas para abatimiento de arsénico desde soluciones de lixiviación de enargita y tenantita, la mayoría de las cuales parten de soluciones en medio ácido.
En el caso de soluciones de lixiviación de enargita y tenantita en medio alcalino los potenciales de óxido reducción son muy bajos, lo que posibilita el uso de azufre elemental para precipitar el arsénico como tioarseniato, compuestos considerados no estables para su disposición final y con una eficiencia de precipitación relativamente baja, cercana a 60%. En el caso del proceso motivo de la presente solicitud, las soluciones poseen un potencial relativamente alto, tal que el arsénico está como arseniato (As+5), y una concentración alta (de hasta 20 g/l), que posibilita la precipitación efectiva del arsénico con distintos reactivos.
Las técnicas de precipitación estudiadas en relación a la presente solicitud consisten en la utilización de los cationes Ce+3, Fe+3, Mg+2 y la combinación de Fe+3 y Ca+2, como agentes precipitantes. En particular, se utilizaron los siguientes compuestos que contienen dichos cationes como reactivos precipitantes: CeCl3, MgSO4, Fe2(SO4)3 y Fe2(SO4)3 + Ca(OH)2.
De las técnicas de precipitación, el uso de Fe y Ca resultó ser la más prometedora por los bajos niveles de As remanente y mayor estabilidad del precipitado.
La alta eficiencia de la precipitación de arsénico con Fe y Ca, posibilita una alta recirculación de la solución alcalina, sin llegar a la saturación de arsénico, lo que constituye un avance con respecto a procesos reportados en la literatura, donde el abatimiento es menos eficiente, lo que limita la recirculación de la solución alcalina.
Se concluye que la combinación del proceso de lixiviación alcalina de materiales que contienen un alto contenido de arsénico, con control de potencial de óxido reducción para obtener el arsénico en solución como arseniato, posibilita la aplicación de la técnica de precipitación con Fe y Ca, lo que es novedoso en este tipo de lixiviación.
En este sentido, el proceso integral de lixiviación selectiva de arsénico contenido en concentrados de cobre u otros materiales con alto contenido de arsénico, materia de la presente solicitud, no ha sido reportado en la literatura y es por lo tanto, susceptible de ser patentado por ser novedoso, tener grado inventivo y aplicación industrial.
DESCRIPCIÓN DE LAS FIGURAS:
Figura 1 : Es un diagrama de flujo esquemático del proceso de la presente solicitud, en donde los compuestos de arsénico son solubilizados selectivamente para la remoción del arsénico contenido mediante una lixiviación a presión, a través de la acción de una solución alcalina fresca y una solución de reciclo proveniente de la etapa de filtrado del sulfato de sodio. Figura 2: Es un diagrama de flujo esquemático de una configuración alternativa del proceso, igualmente satisfactoria, de la presente solicitud, en la cual los licores con arsénico solubilizado son recirculados para ser usados en la etapa de lixiviación alcalina y se establece una purga, la cual es tratada para abatir arsénico y cristalizar Na2SO4. La solución final constituye agua de proceso para ser recirculada a planta.
Figura 3: Es un diagrama de flujo esquemático de una configuración alternativa del proceso, igualmente satisfactoria, de la presente solicitud, en la cual los licores con arsénico solubilizado son tratados para abatir el arsénico y posteriormente recirculados para ser usados en la etapa de lixiviación alcalina. Se establece una purga para eliminar el exceso de Na2SO4.
Los diagramas representados en las figuras 1 , 2 y 3 son igualmente válidos para materiales que contienen arsénico y/o selenio. El selenio sigue la misma ruta del arsénico, en cuanto a su presencia en las soluciones y a los métodos de abatimiento, quedando en los mismos precipitados junto con el arsénico.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN:
La presente solicitud se refiere a un proceso para la remoción selectiva de arsénico desde concentrados de cobre y otros materiales con altos contenidos de arsénico. La presente solicitud también se refiere a la remoción selectiva de arsénico y/o selenio desde materiales con altos contenidos de arsénico y/o selenio. La presente solicitud comprende además la precipitación de arsénico y/o selenio desde las soluciones alcalinas resultantes, para su disposición segura y sustentable ambientalmente. El proceso integral (remoción y precipitación) se basa en resultados experimentales a nivel de laboratorio y piloto, además de considerar aspectos técnicos y criterios industriales para su elaboración.
Se presentan tres diagramas de bloque y una descripción detallada de cada etapa del proceso. La primera figura muestra el proceso general de remoción selectiva y precipitación de arsénico, las figuras 2 y 3 presentan alternativas igualmente satisfactorias para la realización del proceso. Se incorporarán las referencias numéricas durante la descripción del proceso de la invención, según corresponda. Las mismas referencias numéricas serán utilizadas para indicar las mismas etapas o corrientes en las figuras. La presente solicitud, proporciona un proceso para remover selectivamente arsénico desde concentrados de cobre con un alto contenido de arsénico y desde otros materiales que contienen dicho elemento. La presente solicitud también se refiere a la remoción selectiva de arsénico y/o selenio desde materiales con altos contenidos de arsénico y/o selenio. Este proceso además contempla las etapas para tratar el arsénico y/o selenio removido del material anterior, de forma de obtener dos productos principales: un material sólido con baja ley de arsénico y/o selenio y un material también sólido con un alto porcentaje de arsénico y/o selenio que forma parte de un compuesto que es estable del punto de vista ambiental, lo que permite su disposición segura en sitios debidamente autorizados.
El material a tratar preferentemente es un concentrado de cobre, sin perjuicio que también es aplicable a cemento de cobre, polvos de filtro de fundición y/o tostación y otros materiales (sulfuros, óxidos, metal u otros) con altos contenidos de arsénico, los cuales contienen arsénico en concentraciones mayores a 0,5% en peso en base seca.
Para el caso de concentrados de cobre, los compuestos de arsénico preferentemente son Enargita (Cu3AsS4) y Tenantita (Cui2As4Si3). Adicionalmente a los compuestos sulfurados de cobre y a los compuestos de arsénico, el concentrado de cobre puede contener sulfuros de hierro, sílice, alúmina, feldespatos y compuestos del estilo.
El proceso de la presente solicitud, comprende una etapa de lixiviación a presión en un reactor a presión (4), lo que implica el contacto del material (1 ) a lixiviar con una solución lixiviante alcalina de NaOH (2) en una atmósfera oxidante (3), la cual disuelve el arsénico desde el material para producir una pulpa (5) que contiene el licor con arsénico disuelto y el material sólido con bajo contenido de arsénico.
Los reactivos se alimentan a la etapa de lixiviación (4) mediante un repulpado del concentrado de cobre u otro material (1 ) que contenga un alto contenido de arsénico con la solución lixiviante alcalina de NaOH (2). Se debe asegurar que la pulpa generada sea lo bastante homogénea para así mantener el porcentaje de sólido específico para la etapa de lixiviación (4), preferentemente entre 10% y 40% en peso. La etapa de lixiviación (4) del material (1 ) comprende la disolución de arsénico preferentemente en la forma de arseniato (AsO4 3) como anión soluble en la pulpa (5) obtenida en la etapa de lixiviación. En el caso de la limpieza de concentrados de cobre que contienen enargita y/o tenantita, las reacciones químicas que describen el fenómeno que ocurre en la etapa de lixiviación (4) son las siguientes:
(I) Cu3AsS4 + 8 NaOH + 5 O2 = 1 ,5 Cu2S + Na3AsO4 + 2,5 Na2SO4 + 4 H2O (II) Cu3AsS4 + 5 NaOH + 2,75 O2 = 3 CuS + Na3AsO4 + Na2SO4 + 2,5 H2O (III) Cui2As4Si3 + 26 NaOH + 15,5 O2 (g) = 6 Cu2S + 4 Na3AsO4 + 7 Na2SO4 + 13H2O
(IV) Cui2As4Si3 + 14 NaOH + 6,5 O2 (g)= 12 CuS + 4 Na3AsO4 + Na2SO4 + 7 H2O
Las reacciones químicas anteriores se basan en la formación de arseniato (AsO4 3) y sulfuros de cobre. Sin embargo, existen reacciones químicas que también mostrarían la formación de AsO4 "3, pero formando óxido de cobre (CuO) en vez de sulfuros de cobre. Debido a que no se conocen datos termodinámicos de los compuestos que conforman estas reacciones químicas (enargita, tenantita, arseniato de sodio) la ocurrencia de las reacciones de formación de arseniato y sulfuros de cobre solo se logra confirmar experimentalmente. El mecanismo por el cual se formaría CuO en lugar de CuS es el siguiente:
(V) Cu3AsS4 + 1 1 NaOH + 8,75 O2 = 3 CuO + Na3AsO4 + 4 Na2SO4 + 5,5 H2O (VI) Cui2As4Si3 + 38 NaOH + 30,5 O2 (g) = 12 CuO + 4 Na3AsO4 + 13 Na2SO4 + 19 H2O
Además la soda cáustica usada en el proceso disuelve la ganga del concentrado, tal como se muestra en las siguientes reacciones:
(VII) SiO2 + 2 NaOH = Na2SiO3 + H2O
(VIII) KAISi3O8 + 6 NaOH = KOH + AI(OH)3 + 3 Na2SiO3 + H2O
El proceso es igualmente aplicable a otros materiales (1 ) que contengan arsénico en forma de sulfuros u óxidos, tales como cementos de cobre con alto contenido de sulfuro de arsénico y polvos de filtro de fundición o tostación conteniendo sulfuros y óxidos de arsénico.
La conversión de estas reacciones químicas dependerá de factores como el tiempo de residencia de la pulpa al interior del equipo, temperatura, presión y cantidad de reactivo. El presente invento comprende una etapa posterior a la lixiviación (4) que considera una primera etapa de separación sólido - líquido (7), del licor que contiene el arsénico disuelto (9) del sólido con bajo contenido de arsénico (8).
De acuerdo a la Alternativa 1 , presentada en la Figura 1 el proceso comprende una etapa que implica la precipitación del arsénico (1 1 ) disuelto en los licores (licor Madre y licor de Lavado en caso de que existiera), con la ayuda de un agente precipitante (10), formando un precipitado (12) que corresponde a un compuesto estable para su disposición.
De acuerdo a la Alternativa 1 , el proceso considera una segunda etapa de separación sólido - líquido (13) del compuesto sólido de arsénico precipitado (14) de los licores alcalinos (15). En esta etapa se obtiene como producto un compuesto sólido de arsénico estable para su disposición (14).
En el proceso descrito anteriormente, la sílice disuelta como silicato de sodio co-precipita pasando a formar parte del precipitado sólido de arsénico.
Posterior a la segunda etapa de separación sólido - líquido (7), la Alternativa 1 comprende una etapa que consiste en un proceso de cristalización de Na2SO4 (16) de los licores alcalinos y una tercera etapa de separación sólido - líquido (18) del producto de la etapa de cristalización (17). En esta tercera etapa de separación sólido - líquido (18), se obtendrá un sólido conformado por cristales de Na2SO4 (19) y un licor alcalino (20) que en algunos casos puede servir en su totalidad o una parte de él (20a) como alimentación para la etapa de lixiviación, en forma de solución de reciclo.
Se puede suministrar a la etapa de lixiviación (4), una solución de reciclo (20a) o una solución alcalina fresca (2). Como la solución de reciclo puede ser utilizada en su totalidad (20) o una parte de ella (20a) como alimentación para la etapa de lixiviación, el porcentaje que no se recircula a la etapa de lixiviación, se puede destinar a agua de proceso (20b).
El licor lixiviante en el presente invento tiene como base el compuesto hidróxido de sodio como principal compuesto alcalino. Sin embargo, también podrían utilizarse otros compuestos alcalinos como por ejemplo hidróxido de potasio.
El contenido de hidróxido de sodio en el licor lixiviante (2) es función del contenido de arsénico del material (1 ) a lixiviar. De esta forma, la dosificación de NaOH para llevar a cabo la lixiviación (4), corresponde a un valor entre 1 ,87 y 45 kg NaOH/kg As contenido en el material.
La temperatura utilizada en la etapa de lixiviación (4) está en el rango de 100°C a 220°C. Es por esto que la etapa de lixiviación (4) debe ser realizada en un equipo adecuado para tal operación, como una autoclave. La base de operación de la autoclave o las autoclaves de este invento puede ser en formato batch o continuo. La autoclave en sí misma puede tener diversos diseños, como horizontal o vertical, no obstante, en todos estos diseños la autoclave puede tener uno o varios agitadores, con uno o más compartimientos separados por bafles, con inyección de gas sumergida o inyección por encima o ambas.
Adicionalmente, la etapa de lixiviación (4) debe ser realizada alimentando un gas oxidante (3). El gas oxidante (3) puede ser oxígeno puro, aire enriquecido o aire. En el caso de este invento se ha encontrado que el gas oxidante (3) de preferencia es aire debido a que éste permite un mejor control del potencial de óxido-reducción de la solución, de manera que el arsénico disuelto permanece en el dominio de estabilidad del arseniato, lo que facilita su abatimiento como compuesto estable, y por otro lado permite aumentar la disolución del arsénico, disminuyendo la solubilización del cobre, oro y plata.
La sobrepresión del gas oxidante (3) está condicionada por los objetivos del proceso que son: la eliminación de arsénico desde el sólido a una concentración final menor o igual que 0,5%; dejar el arsénico en licores en forma de arseniato (As+5); y la no disolución de Cu, Au, Ag y/u otros metales valiosos. Para el caso de la correcta operación de la etapa de lixiviación (4) del presente invento la sobrepresión debe estar en el rango de 0 a 100 psig (0 - 689,5 KPa). En caso de uso de aire la sobrepresión debe estar preferentemente en el rango de 10 a 40 psig (68,95 KPa - 275,8 KPa), más preferentemente cercano a 20 psig (137,9 KPa).
La pulpa (5) formada por el licor lixiviante (2) y el material sólido (1 ) en la etapa de lixiviación (4) debe tener un contenido de sólido preferentemente en el rango de 10% a 40% en peso, siendo la relación sólido/líquido idónea aquella resultante de la combinación de tecnología y know-how disponible.
El tiempo de residencia de la pulpa al interior del reactor debe ser el suficiente para el correcto desarrollo de las reacciones químicas. Se ha encontrado que para tiempos de residencia en el rango de 30 a 150 minutos se obtienen buenos resultados de lixiviación de arsénico. A mayores tiempos de residencia dentro del rango mencionado se obtiene un producto con niveles de arsénico más bajos que 0,5%, que permitirían realizar mezclas con materiales de mayores niveles de arsénico, obteniendo así un nuevo material con un nivel de arsénico aceptable para procesos industriales posteriores.
El proceso de la presente solicitud puede ser usado para tratar concentrados de cobre y todo tipo de material con un alto contenido de arsénico (1 ). Esto incluye materiales tales como: menas, concentrados, cementos de cobre, polvos de filtros de fundición y/o tostación y/o materiales por el estilo. El proceso de la presente invención produce buenos resultados de remoción de arsénico desde estos materiales con alto contenido de arsénico.
Cuando se menciona "buenos resultados de remoción de arsénico" y "niveles de arsénico aceptables para procesos industriales posteriores" se hace mención a que el sólido que se obtiene del proceso de la invención, contiene a lo más 0,5% de arsénico, medido en base seca.
Como resultado de los valores operacionales a utilizar en la etapa de lixiviación (4) mencionados anteriormente, es posible la formación del anión arseniato (AsO4 3), el cual estaría disuelto en la solución alcalina (2), debido principalmente a que las condiciones de pH y potencial del licor así lo permiten. Los valores de pH de la pulpa resultante (5) de la etapa de lixiviación (4) están en un rango de 10 a 14, mientras que el potencial de oxidación/reducción de la misma solución alcalina está sobre los -0,5 volts respecto a EHE.
El proceso de la presente invención es eficiente en la remoción de arsénico, pudiendo también disolver otros elementos, como selenio y silicio, pero no aquellos elementos de interés como cobre, plata y oro. Respecto a la primera etapa de separación sólido - líquido (7), cualquier proceso de separación sólido/líquido puede ser utilizado para la separación del producto sólido de bajo contenido de arsénico (8) del licor alcalino con alto contenido de arsénico (9). Las técnicas comúnmente utilizadas, incluyen: filtración, sedimentación, clarificación, espesado, centrifugación, desaguado y decantación. La selección de la técnica de separación sólido/líquido no es crítica para el éxito de la presente invención.
Una vez que el producto sólido con bajo contenido de arsénico (8) ha sido separado del licor madre de alto contenido de arsénico (10), se puede llevar a cabo un lavado opcional del producto sólido con agua de lavado (7), para arrastrar el licor madre impregnado en él. Finalmente el producto sólido obtenido (9) puede ser almacenado o ser llevado a un nuevo proceso para la recuperación de sus compuestos valiosos.
El licor madre y licor de lavado (10) obtenidos de la primera etapa de separación sólido - líquido (8) deben ser tratados para remover su contenido de arsénico. Esta remoción se realiza a través de una etapa de precipitación (12) del arsénico. La forma de precipitar el arsénico contenido en los licores, el cual está preferentemente como arseniato (AsO4 "3), es agregando reactivos (1 1 ) para su precipitación y posterior separación en una segunda etapa de separación sólido - líquido (14). Los agentes precipitantes (1 1 ) utilizados en la etapa de precipitación de arsénico (12) son Ce+3, Fe+3, Mg+2 y la combinación de Fe+3 y Ca+2. Además existen otros reactivos, como Α 3, que también podría cumplir la función de precipitar el arsénico.
Cuando el agente precipitante (1 1 ) es Ce+3, el reactivo a utilizar puede ser cloruro de cerio (CeCU). La reacción química que explica esta precipitación es la siguiente:
Na3AsO4 + CeCI3 = CeAsO4 + 3 NaCI
La dosificación de CeCU en la solución precipitante corresponde a un valor entre 1 ,80 y 7,50 kg Ce/kg As. Las condiciones para llevar a cabo esta precipitación consideran preferentemente un rango de pH entre 6 y 12, más preferentemente entre 8 y 10. El valor de pH se puede ajustar preferentemente con H2SO4. Los resultados muestran una precipitación de arsénico superior a 99,16%. Cuando el agente precipitante (1 1 ) es Fe , el reactivo a utilizar puede ser sulfato férrico (Fe2(SO4)3). La reacción química que explica esta precipitación es la siguiente:
(X) 2 Na3AsO4 + Fe2(SO4)3 = 2 FeAsO4 + 3 Na2SO4
La dosificación de Fe2(SO4)3 en la solución precipitante corresponde a un valor entre 0,70 y 8,0 kg Fe+3/kg As. Las condiciones para llevar a cabo esta precipitación consideran preferentemente un rango de pH entre 6 y 10, más preferentemente entre 7 y 8. El valor de pH se puede ajustar preferentemente con H2SO4. Los resultados muestran una precipitación de arsénico superior a 99,31 %.
Para el caso del uso del sulfato férrico, existe la posibilidad de agregarlo directamente o prepararlo previamente utilizando óxido de hierro (II y III) y ácido sulfúrico, de acuerdo a la siguiente reacción química:
(XI) Fe3O4 + 4 H2SO4 = Fe2(SO4)3 + FeSO4 + 4 H2O
Adicionalmente, se puede preparar el sulfato férrico a partir de sulfato ferroso, mezclándolo con H2O2 u otro oxidante, ácido sulfúrico y agua caliente.
(XII) 2FeSO4 + H2O2 + H2SO4 = Fe2(SO4)3 + 2H2O
Adicionalmente, se puede agregar lechada de cal al sistema conformado por la solución férrica y el arseniato, para así obtener una sal mixta de Fe-Ca-As. En caso de que se utilice la opción de precipitación de arsénico con Fe y Ca, las dosificaciones tienen valores entre de 0,70 y 8,0 kg Fe+3/kg As y entre 0,5 y 2,5 kg Ca+2/kg As. Las condiciones para llevar a cabo esta precipitación consideran preferentemente un rango de pH entre 6 y 10, más preferentemente entre 7 y 8. El valor de pH se puede ajustar preferentemente con H2SO4. Los resultados muestran una precipitación de arsénico superior a 99,09%.
Cuando el agente precipitante (1 1 ) es Mg+2, el reactivo a utilizar puede ser sulfato de magnesio (MgSO4). La reacción química que explica esta precipitación es la siguiente:
(XIII) 3 MgSO4 + 2 Na3AsO4 = 3 Na2SO4 + Mg3(AsO4)2
La dosificación de MgSO4 en la solución precipitante corresponde a un valor entre 0,45 y 1 ,50 kg Mg+2/kg As. Las condiciones para llevar a cabo esta precipitación consideran valores de pH en el rango de 7 a 14, preferentemente con un valor de pH en el rango de 8 a 12 y más preferentemente un valor de pH cercano a 10, donde el pH se puede ajustar preferentemente con H2SO4. Los resultados muestran una precipitación de arsénico máxima de 71 ,39%.
De esta forma, en la segunda etapa de separación sólido - líquido (14), se debe separar el compuesto sólido de arsénico (15) del licor alcalino ya libre de arsénico (16). La forma de proceder será mediante un método de separación sólido - líquido convencional, como los ya mencionados para el caso de la primera etapa de separación sólido
- líquido.
Una vez obtenido el filtrado de la segunda etapa de separación sólido - líquido (14), correspondiente a un licor alcalino libre de arsénico (16), se procede en la etapa de cristalización (17), a cristalizar el Na2SO4 disuelto en este licor alcalino. El proceso para cristalizar
Na2SO4 desde este licor alcalino no es crítico para el éxito de la presente invención y pueden ser usados métodos convencionales tales como evaporación a volumen constante (continuo o semicontinuo), evaporación batch (cristalización por enfriamiento o evaporación total del solvente) o evaporación en una piscina solar.
Una vez formada la pulpa (18) compuesta por cristales de Na2SO4 y por un licor alcalino libre de Na2SO4, se procede a realizar una tercera etapa de separación sólido - líquido (19) de la pulpa (18) formada en la etapa de cristalización (17). De esta forma en la tercera etapa de separación sólido - líquido (19) se obtendrá un sólido conformado por cristales de Na2SO4 (20) y un licor alcalino (21 ) que puede ser reutilizado como una parte (21 a) de la solución lixiviante de la lixiviación (5) de los materiales con altos niveles de arsénico (1 ).
Hasta el 100% de la solución lixiviante alcalina libre de arsénico (21 ) es reciclada para ser utilizada en la etapa de lixiviación (5).
De acuerdo a lo anterior, la etapa de lixiviación (5) puede ser configurada para trabajar en la forma de circuito abierto o cerrado, donde la última implica la recirculación de licor lixiviante alcalino (21 ).
Se debe tener en consideración que para el licor que no es recirculado (21 b) a la etapa de lixiviación (5), el nivel de arsénico puede seguir disminuyendo a través de una etapa secundaria de eliminación de arsénico como adsorción o intercambio iónico. En otra configuración del proceso, igualmente satisfactoria, definida como Alternativa 2 y mostrada en la Figura 2, la pulpa de lixiviación alcalina (6) se somete a una primera etapa de separación sólido
- líquido (8) y una fracción del filtrado (10a) es recirculado a la lixiviación alcalina (5) para uso del hidróxido de sodio contenido. La otra fracción (10b) (purga) se conduce al proceso de precipitación de arsénico (12), una segunda etapa de separación sólido - líquido (14) y el nuevo filtrado (16) es sometido a un proceso de recuperación de sulfato de sodio mediante cristalización (17) u otro proceso afín. La pulpa (18) formada en la etapa de cristalización (17) se somete a una tercera etapa de separación sólido - líquido (19) y el filtrado de esta última etapa (21 ) se utiliza como agua de proceso destinada a recirculación en planta.
El criterio para fijar la purga se basa en el control de la saturación del sulfato de sodio para impedir su cristalización en el reactor de lixiviación alcalina, llevando el proceso en forma batch o continuo.
En otra configuración del proceso, igualmente satisfactoria, definida como Alternativa 3 y mostrada en la Figura 3, la pulpa de lixiviación alcalina (6) se somete a una primera etapa de separación sólido
- líquido (8) y el filtrado (10) se conduce al proceso de precipitación de arsénico (12), luego a una segunda etapa de separación sólido - líquido (14) y una fracción (16a) del nuevo filtrado se recircula a la lixiviación alcalina (5) y la otra fracción (16b) (purga) es sometida a un proceso de recuperación de sulfato de sodio mediante cristalización u otro proceso afín o es descartada a relave.
El criterio para fijar la purga se basa en el control de la saturación del sulfato de sodio para impedir su cristalización en el reactor de lixiviación alcalina, llevando el proceso en forma batch o continuo.
Estas descripciones del proceso son aplicables también a materiales que contienen arsénico y/o selenio. El selenio en caso de estar presente, sigue la misma ruta del arsénico en cuanto a su presencia en las soluciones y a los métodos de abatimiento, quedando en los mismos precipitados junto con el arsénico. EJEMPLOS:
EJEMPLO 1 . Lixiviación con oxígeno puro. Estudio de la dosificación de NaOH y razón líquido/sólido.
En este ejemplo se muestran los ensayos experimentales realizados para definir la dosificación de NaOH necesaria para la etapa de lixiviación de un concentrado de cobre de 31 ,6% Cu, con contenido de arsénico de 2,75% como enargita. Una vez obtenida la dosificación necesaria para la lixiviación de arsénico, se estudió la influencia en la eficiencia de extracción de arsénico que tiene el porcentaje de sólido en la pulpa. En estos ensayos se trabajó siempre dejando constante la temperatura, el tiempo de residencia y la sobrepresión de oxígeno.
Figure imgf000024_0001
De este ejemplo se concluye que la dosificación de NaOH óptima es 22,2 kg NaOH/kg As contenido en el concentrado de cobre. La razón líquido/sólido que entrega mejor resultado en este ejemplo se encuentra entre 2/1 y 4/1 .
EJEMPLO 2. Lixiviación con oxígeno puro. Estudio de la cinética del proceso.
En este ejemplo se muestran los ensayos experimentales realizados con el objetivo de estudiar la cinética de disolución de arsénico desde el mismo concentrado de cobre del ejemplo 1 . En estos ensayos se trabajó siempre dejando constante la temperatura, la razón líquido/sólido de la pulpa y la sobrepresión de oxígeno.
Figure imgf000025_0001
De este ejemplo se concluye que se logran resultados con un tiempo de lixiviación entre 60 y 180 minutos.
EJEMPLO 3. Estudio Reciclo.
En estos ensayos, se estudia el efecto del uso de licores generados en ensayos anteriores (Ensayos N° 1 1 y N°12 respectivamente) en la disolución de arsénico desde un concentrado de cobre (en los ensayos N°13 y N°14, respectivamente). En estos ensayos se trabajó siempre dejando constante la temperatura, el tiempo de residencia, la razón líquido/sólido de la pulpa, la sobrepresión de oxígeno y fijando la concentración de hidróxido de sodio según los ensayos N°1 1 y N°12. Ensayos
Variables Unidades 13 14
As en sólido inicial % 2,8 2,8
Razón líquido/sólido ml/gr 4 4
Volumen licor madre reciclo % 67 18
Volumen licor lavado reciclo % 16 7
Volumen de solución lixiviante fresca % 17 75
Temperatura de Lixiviación °C 160 160
Gas Oxidante ***
O2 O2
Sobrepresión Gas Oxidante psig 80 80
KPa 551 ,6 551 ,6
Resultados Unidades
As en sólido final % 0,4 0,4
Remoción de As % 86,8 85,2
En este ejemplo se muestra que se puede utilizar eficientemente una solución de reciclo.
EJEMPLO 4. Estudio del proceso con concentrado de cobre de distinta mineralogía y con mayor concentración de arsénico.
En este ejemplo se muestran los ensayos experimentales realizados para verificar la eficiencia de disolución de arsénico del proceso desde un concentrado de cobre de 19,7% Cu y con 6,1 1 % de arsénico como tenantita. En estos ensayos se trabajó dejando constante la sobrepresión de oxígeno.
Figure imgf000026_0001
En este ejemplo, se muestra que el proceso es igualmente eficiente para un material que contiene arsénico en forma de tenantita.
EJEMPLO 5. Lixiviación con oxígeno puro de concentrado de cobre- Estudio de la disolución de cobre, oro y plata.
El ensayo de este ejemplo está realizado en una condición no óptima para la remoción de arsénico y la disolución de cobre, oro y plata; muestra la selectividad del proceso y los bajos valores que son posibles de obtener de disolución de cobre, oro y plata.
Figure imgf000027_0001
En este ejemplo se muestra que la disolución de cobre es despreciable y que la disolución de oro y plata es muy baja.
EJEMPLO 6. Lixiviación con Aire. Estudio del efecto de la presión de trabajo.
En este ejemplo se estudia el uso de aire como agente oxidante en lugar de oxígeno puro dado que a nivel industrial este último presenta una serie de dificultades que encarecen el proceso y la inversión, tales como plantas complejas y un control más fino de la operación.
En este ejemplo se muestran los ensayos experimentales con concentrado de cobre con 27,6% Cu y 2,1 % As como enargita, realizados para verificar la eficiencia de disolución de arsénico del proceso cuando se varía la sobrepresion de trabajo. En este estudio se mantiene constante la temperatura, el tiempo de residencia y la razón líquido/sólido de la pulpa.
Figure imgf000028_0001
En este ejemplo se muestra que el proceso opera de forma satisfactoria en todo el rango de sobrepresion estudiado.
EJEMPLO 7. Lixiviación con Aire. Estudio de la cinética del proceso.
En este ejemplo se muestran los ensayos experimentales realizados con el objetivo de estudiar la cinética de disolución de arsénico, utilizando aire como gas oxidante y el mismo concentrado de cobre del Ejemplo 5. En estos ensayos se trabajó siempre dejando constante la temperatura, la razón líquido/sólido de la pulpa y la sobrepresion de aire del sistema.
Figure imgf000028_0002
Lixiviación
Gas Oxidante *** Aire Aire Aire Aire Aire Aire
Sobrepresión psig 20 20 20 20 20 20 gas oxidante KPa 137,9 137,9 137,9 137,9 137,9 137,9
Resultados Unidades
As en sólido % 0,9 0,5 0,3 0,2 0,2 0,1 final
Remoción de % 60,4 78,3 84,4 91 ,2 92,4 95,7 As
De este ejemplo se concluye que se logran buenos resultados con un tiempo de lixiviación entre 60 y 180 minutos, utilizando aire como gas oxidante.
EJEMPLO 8. Cemento de Cobre.
En este ejemplo se muestra un ensayo de disolución de arsénico desde cemento de cobre con 62% Cu, 0,63% de Se y 2,40% As como sulfuro de arsénico (sólido inicial). El objetivo de este ensayo fue verificar la efectividad del proceso para un material distinto al concentrado de cobre y con un contaminante adicional (Se). Como se puede ver, el ensayo se realizó de acuerdo a los siguientes parámetros:
Figure imgf000029_0001
En este ejemplo, donde el sólido final corresponde al sólido inicial ya tratado con el proceso de la presente invención, se muestra que el proceso abate eficientemente tanto arsénico como selenio en el cemento de cobre y que la disolución de cobre es despreciable respecto de la lixiviación selectiva del arsénico y del selenio.
EJEMPLO 9. Polvos de filtro de fundición.
En este ejemplo se muestra un ensayo de disolución de arsénico desde polvo de filtro de fundición de concentrado de cobre, con 25,4% Cu y 7,3% As. El objetivo de este ensayo fue verificar la efectividad del proceso para un material distinto al concentrado de cobre y en el que el arsénico está principalmente como óxido. Como se puede ver, el ensayo se realizó de acuerdo a los siguientes parámetros:
Figure imgf000030_0001
En este ejemplo, se muestra que el proceso es igualmente satisfactorio para la remoción de arsénico desde polvos de filtro de fundición.
EJEMPLO 10. Precipitación de arsénico desde licores de desarsenización de materiales.
Para la precipitación de arsénico desde una solución alcalina de desarsenización de un material, las variables que se controlan son: el reactivo precipitante, su dosificación y el pH. La regulación de pH se lleva a cabo con NaOH o H2SO4. No se realiza control de temperatura durante el proceso. Ensayo
Variables Unidades 31 32 33 34
As en solución g/i 2,35 2,35 2,35 2,35 inicial
***
Reactivo Ce+a Fe+a Fe+a y Mg+¿
Precipitante Ca+2
Temperatura inicial °C 25 25 25 25
Resultados
pH Remoción de Arsénico
1 2 52,89% 36,31 % 51 ,89% 44,20%
1 1 81 ,28% 64,1 5% 95,60% 53,1 8%
1 0 99,1 6% 77,06% 91 ,1 3% 71 ,39%
9 97,73% 97,37% 93,20% 54,09%
8 99,73% 99,31 % 99,09% 44,47%
7 91 ,32% 99,99% 99,99% 32,1 9%
En este ejemplo, se muestra que es posible precipitar eficientemente arsénico desde licores alcalinos utilizando distintos agentes precipitantes.
VENTAJAS DE LA INVENCIÓN:
En el presente invento se ha logrado desarrollar un proceso integral que permite: La eliminación selectiva del arsénico contenido en los concentrados de cobre y otros materiales que contienen arsénico, con disolución despreciable de cobre (menor que 0,1 %) y también con una muy baja disolución de oro y plata, dejando los concentrados y otros materiales en condición de ser utilizados sin vulnerar la normativa ambiental vigente. La disolución de otros contaminantes tales como selenio. Una cinética relativamente rápida (0,5 a 2,5 horas), comparada con otros procesos descritos en la literatura (4 a 8 horas). La precipitación eficiente del arsénico desde licores provenientes de la lixiviación alcalina (con una eficiencia mayor al 99%), en forma de un compuesto estable que puede disponerse de manera segura en recintos autorizados, en forma de escorodita o de sales mixtas de As+5, Fe+3 y

Claims

REIVINDICACIONES
1 . Proceso para la remoción de arsénico desde materiales con un alto contenido de arsénico o materiales con un alto contenido de arsénico y selenio, CARACTERIZADO porque comprende:
- Agregar el material a un reactor a presión,
- Agregar al reactor una solución lixiviante alcalina de una base fuerte disuelta en agua,Agregar al reactor un gas oxidante,
- Mezclar los componentes anteriores en el reactor para obtener una pulpa homogénea y someterla a una lixiviación a presión, la cual es selectiva para el arsénico con respecto a los demás elementos de interés presentes en el material tratado,
- Someter la pulpa obtenida de la etapa de lixiviación a una primera etapa de separación sólido - líquido, obteniendo un licor con arsénico disuelto y un sólido con bajo contenido de arsénico,
- Someter el licor con arsénico disuelto a una precipitación del arsénico con un agente precipitante, seleccionado de compuestos que aportan los siguientes cationes: Ce+3, Fe+3, Mg+2, y una combinación de Fe+3 y Ca+2,
- Someter el producto de la etapa de precipitación del arsénico a una segunda etapa de separación sólido - líquido, obteniendo un producto sólido de arsénico y un licor alcalino libre de arsénico.
2. Proceso para la remoción de arsénico de acuerdo a la reivindicación 1 , CARACTERIZADO porque además comprende:
- Someter el licor alcalino libre de arsénico a una etapa de cristalización del sulfato de sodio (Na2SO4) disuelto, obteniendo una pulpa compuesta por cristales de Na2SO4 y un licor alcalino libre de Na2SO4,
- Someter el producto de la etapa de cristalización del Na2SO4 a una tercera etapa de separación sólido - líquido, obteniendo un sólido formado por cristales de Na2SO4 y un licor alcalino.
3. Proceso para la remoción de arsénico de acuerdo a la reivindicación 2, CARACTERIZADO porque el licor alcalino libre de arsénico de la tercera etapa de separación sólido - líquido puede ser recirculado en su totalidad o una parte de ella, como parte de la solución lixiviante de la etapa de lixiviación y el licor que no sea recirculado es sometido a etapas secundarias de eliminación de arsénico como adsorción o intercambio iónico, o es destinado como agua de proceso.
4. Proceso para la remoción de arsénico de acuerdo a la reivindicación 2, CARACTERIZADO porque opcionalmente una fracción del licor con arsénico disuelto de la primera etapa de separación sólido - líquido es recirculada a la etapa de lixiviación alcalina, la otra fracción se conduce a la etapa de precipitación de arsénico y el licor alcalino libre de arsénico de la tercera etapa de separación sólido - líquido es destinado como agua de proceso a recirculación en la planta.
5. Proceso para la remoción de arsénico de acuerdo a la reivindicación 1 , CARACTERIZADO porque opcionalmente una fracción del licor alcalino libre de arsénico de la segunda etapa de separación sólido - líquido es recirculada a la etapa de lixiviación alcalina y la otra fracción se conduce a una etapa de cristalización del Na2SO4 o es descartada hacia relave.
6. Proceso para la remoción de arsénico de acuerdo a cualquiera de las reivindicaciones 1 a 5, CARACTERIZADO porque la base fuerte de la solución lixiviante alcalina es hidróxido de sodio (NaOH) o hidróxido de potasio (KOH).
7. Proceso para la remoción de arsénico de acuerdo a cualquiera de las reivindicaciones 1 a 6, CARACTERIZADO porque los compuestos que aportan los iones: Ce+3, Fe+3, Mg+2, y una combinación de Fe+3 y Ca+2, se seleccionan de cloruro de cerio (CeCl3), sulfato férrico (Fe2(SO4)3), sulfato de magnesio (MgSO4) y sulfato férrico (Fe2(SO4)3) con adición de lechada de cal.
8. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 7, CARACTERIZADO porque la etapa de cristalización del Na2SO4 puede ser una de las siguientes técnicas: evaporación a volumen constante (continuo o semicontinuo), evaporación batch (cristalización por enfriamiento o evaporación total del solvente) o evaporación en una piscina solar.
9. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 8, CARACTERIZADO porque el material a tratar es un material con un contenido de arsénico superior a 0,5% en peso en base seca y se selecciona de: concentrados de cobre, cemento de cobre, polvos de filtro de fundición, polvos de filtro de tostación, sulfuros u óxidos.
10. Proceso para la remoción de arsénico de acuerdo a la reivindicación 9, CARACTERIZADO porque el material a tratar además contiene un alto contenido de selenio y en la etapa de lixiviación, la disolución de arsénico y selenio es selectiva con respecto a los demás elementos de interés presentes en el material tratado.
1 1 . Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 10, CARACTERIZADO porque el gas oxidante se selecciona de: oxígeno puro, aire enriquecido o aire, preferentemente aire.
12. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 1 1 , CARACTERIZADO porque el reactor a presión es una autoclave, horizontal o vertical, con uno o varios agitadores, con uno o más compartimentos separados por bailes, con inyección de gas sumergido o por encima o ambos.
13. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 12, CARACTERIZADO porque en la etapa de mezclado se realiza un repulpado del material con la solución lixiviante alcalina, homogenizando la pulpa para mantener el porcentaje de sólido en un rango entre 10% y 40% en peso.
14. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 13, CARACTERIZADO porque las condiciones de operación de la etapa de lixiviación son: temperatura entre 100°C y 220°C, tiempo de residencia de la pulpa al interior del reactor de lixiviación entre 30 y 150 minutos, cantidad de agente lixiviante entre 1 ,87 y 45,0 kg NaOH/kg As contenido en el material, sobrepresión del gas oxidante entre 0 y 100 psig (0 y 689,5 KPa), en donde en dicha etapa de lixiviación la disolución del cobre presente en el material es menor a 0,05% del cobre total, la disolución del oro presente en el material es menor a 4% del oro total y la disolución de la plata presente en el material es menor a 0,4% de la plata total.
15. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 1 y 14, CARACTERIZADO porque cuando el gas oxidante es aire, la sobrepresión en el reactor de lixiviación va desde 10 a 40 psig (68,95 a 275,8 KPa), preferentemente 20 psig (137,9 KPa).
16. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 15, CARACTERIZADO porque la pulpa resultante de la etapa de lixiviación posee un pH entre 10 y 14 y un potencial de oxidación/reducción mayor a -0,5 volts vs EHE.
17. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 16, CARACTERIZADO porque las etapas de separación sólido - líquido pueden llevarse a cabo mediante: filtración, sedimentación, clarificación, espesado, centrifugación, desaguado o decantación.
18. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 1 a 17, CARACTERIZADO porque después de la primera etapa de separación sólido - líquido, se genera un sólido húmedo con bajo contenido de arsénico y un licor con arsénico disuelto, el cual está en forma de arseniato (AsO4 "3), lo que facilita su precipitación y disposición en forma segura, en donde opcionalmente se somete el sólido obtenido a un lavado, donde dicho licor de lavado se lleva a la etapa de precipitación del arsénico junto con el licor madre y el sólido lavado se almacena o se lleva a un proceso de recuperación de compuestos valiosos que permanezcan en él.
19. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 7 a 18, CARACTERIZADO porque en el caso de que el agente de precipitación sea el CeCI3, la dosificación del agente va desde 1 ,80 a 7,50 kg Ce+3/kg As, la precipitación se realiza a un pH de 6 a 12, preferentemente a un pH de 8 a 10, pudiendo ajustarse el valor del pH con H2SO4.
20. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 7 a 18, CARACTERIZADO porque en el caso de que el agente de precipitación sea el Fe2(SO4)3, la dosificación del agente va desde 0,70 a 8,0 kg Fe+3/kg As, la precipitación se realiza a un pH de 6 a 10, preferentemente a un pH de 7 a 8, pudiendo ajustarse el valor del pH con H2SO4.
21 . Proceso para la remoción de arsénico de acuerdo a la reivindicación 20, CARACTERIZADO porque el Fe2(SO4)3 se puede agregar directamente o preparar previamente a partir de óxido de hierro (II y III) con H2SO4, o a partir de sulfato ferroso (FeSO4) con H2O2, H2SO4 y agua caliente.
22. Proceso para la remoción de arsénico de acuerdo a la reivindicación 20, CARACTERIZADO porque adicionalmente se puede agregar lechada de cal al agente precipitante de Fe2(SO4)3 en una dosificación de 0,50 a 2,5 kg Ca+2/kg As.
23. Proceso para la remoción de arsénico de acuerdo a las reivindicaciones 7 a 18, CARACTERIZADO porque en el caso de que el agente de precipitación sea el MgSO4, la dosificación del agente va desde 0,45 a
1 ,50 kg Mg+2/kg As, la precipitación se realiza a un pH de 7 a 14, preferentemente a un pH de 8 a 12, y preferentemente a un pH cercano a 10, pudiendo ajustarse el valor del pH con H2SO4.
PCT/CL2015/050038 2015-09-02 2015-09-02 Proceso de remoción de arsénico desde materiales que lo contienen WO2017035675A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CL2015/050038 WO2017035675A1 (es) 2015-09-02 2015-09-02 Proceso de remoción de arsénico desde materiales que lo contienen
MX2018002213A MX2018002213A (es) 2015-09-02 2015-09-02 Proceso de remocion de arsenico desde materiales que lo contienen.
AU2015407367A AU2015407367B2 (en) 2015-09-02 2015-09-02 Method for removing arsenic from materials containing same
CN201580082568.5A CN108138258B (zh) 2015-09-02 2015-09-02 从含砷材料中除砷的方法
BG112689A BG67350B1 (bg) 2015-09-02 2015-09-02 Метод за отстраняване на арсен от медни концентрати и циментна мед
US15/753,827 US10865461B2 (en) 2015-09-02 2015-09-02 Method for removing arsenic from materials containing same
CA2996328A CA2996328C (en) 2015-09-02 2015-09-02 Process for removal of arsenic from materials containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2015/050038 WO2017035675A1 (es) 2015-09-02 2015-09-02 Proceso de remoción de arsénico desde materiales que lo contienen

Publications (1)

Publication Number Publication Date
WO2017035675A1 true WO2017035675A1 (es) 2017-03-09

Family

ID=58186448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2015/050038 WO2017035675A1 (es) 2015-09-02 2015-09-02 Proceso de remoción de arsénico desde materiales que lo contienen

Country Status (7)

Country Link
US (1) US10865461B2 (es)
CN (1) CN108138258B (es)
AU (1) AU2015407367B2 (es)
BG (1) BG67350B1 (es)
CA (1) CA2996328C (es)
MX (1) MX2018002213A (es)
WO (1) WO2017035675A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950200B (zh) * 2018-08-21 2020-02-14 紫金矿业集团股份有限公司 一种载金高砷铜精矿脱砷回收伴生金的方法
CN109930004A (zh) * 2019-04-12 2019-06-25 江西铜业股份有限公司 一种砷滤饼资源化利用的方法
CN110606512B (zh) * 2019-10-21 2022-03-22 中国科学院沈阳应用生态研究所 一种砷钙渣的稳定化方法
CN110627179B (zh) * 2019-11-05 2022-02-22 深圳市长隆科技有限公司 一种利用可回收的复合盐沉淀剂处理含砷废水的方法
CN111533228A (zh) * 2020-05-19 2020-08-14 宁夏大学 一种分级调控处理含砷废水且减量稳定化砷渣的方法
CN113528146B (zh) * 2021-08-19 2022-01-28 河南大学 一种表面改性掺杂二氧化硅的硫化亚铁土壤重金属钝化剂的制备和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911078A (en) * 1972-09-20 1975-10-07 Little Inc A Method for removing arsenic and antimony from copper ore concentrates
US20070253877A1 (en) * 2006-04-28 2007-11-01 Dowa Metals & Mining Co., Ltd. Method for treating arsenic containing solution
EP2042472A1 (en) * 2006-07-27 2009-04-01 Dowa Metals & Minings Co., Ltd. Iron arsenate powder
CN104120274A (zh) * 2014-08-06 2014-10-29 锡矿山闪星锑业有限责任公司 砷碱渣处理方法及装置
CN103849782B (zh) * 2012-11-28 2014-12-10 湖南宇腾有色金属股份有限公司 一种高砷锑白粉高压碱性浸出脱砷方法
CN104451198A (zh) * 2013-09-16 2015-03-25 中国科学院过程工程研究所 一种含砷钴镍渣中砷强化氧化浸出的方法
CN103255289B (zh) * 2013-05-22 2015-04-22 昆明理工大学 一种氧压碱浸砷冰铜脱除和回收砷的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093755A (zh) * 1994-02-19 1994-10-19 云南专利冶化研究所 高砷物料安全脱砷工艺
AUPN191395A0 (en) 1995-03-22 1995-04-27 M.I.M. Holdings Limited Atmospheric mineral leaching process
JP2006341139A (ja) 2005-06-07 2006-12-21 Nihon Kaisui:Kk 有害な無機性陰イオンの固定化除去方法及びそれに使用する固定化薬剤
PT2630266T (pt) 2010-10-20 2019-03-14 Toowong Process Pty Ltd Método para tratar materiais contendo arsénio
CN102351294B (zh) * 2011-07-14 2014-01-08 中国科学院沈阳应用生态研究所 一种处理废水中砷的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911078A (en) * 1972-09-20 1975-10-07 Little Inc A Method for removing arsenic and antimony from copper ore concentrates
US20070253877A1 (en) * 2006-04-28 2007-11-01 Dowa Metals & Mining Co., Ltd. Method for treating arsenic containing solution
EP2042472A1 (en) * 2006-07-27 2009-04-01 Dowa Metals & Minings Co., Ltd. Iron arsenate powder
CN103849782B (zh) * 2012-11-28 2014-12-10 湖南宇腾有色金属股份有限公司 一种高砷锑白粉高压碱性浸出脱砷方法
CN103255289B (zh) * 2013-05-22 2015-04-22 昆明理工大学 一种氧压碱浸砷冰铜脱除和回收砷的方法
CN104451198A (zh) * 2013-09-16 2015-03-25 中国科学院过程工程研究所 一种含砷钴镍渣中砷强化氧化浸出的方法
CN104120274A (zh) * 2014-08-06 2014-10-29 锡矿山闪星锑业有限责任公司 砷碱渣处理方法及装置

Also Published As

Publication number Publication date
AU2015407367B2 (en) 2021-10-14
CA2996328A1 (en) 2017-03-09
CA2996328C (en) 2022-08-16
BG112689A (bg) 2018-06-15
CN108138258A (zh) 2018-06-08
CN108138258B (zh) 2020-10-30
US10865461B2 (en) 2020-12-15
US20180245179A1 (en) 2018-08-30
BG67350B1 (bg) 2021-06-30
MX2018002213A (es) 2018-03-23
AU2015407367A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
WO2017035675A1 (es) Proceso de remoción de arsénico desde materiales que lo contienen
ES2392155T3 (es) Método para procesar materia prima portadora de níquel en lixiviación a base de cloruro
ES2380996T3 (es) Método para el tratamiento de intermediarios de fundición no ferrosos que contienen arsénico
CN106148705A (zh) 从酸性含砷溶液中去除砷的方法
ES2380995T3 (es) Método de tratamiento de intermediarios de fundición no ferrosos que contienen arsénico
ES2743275T3 (es) Proceso para la recuperación de cobre a partir de concentrados de sulfuro de cobre portadores de arsénico y/o antimonio
CN105753218A (zh) 一种去除三价砷的方法
ES2565492T3 (es) Procedimiento de purificación de óxido de cinc
ES2289157T3 (es) Proceso para el tratamiento de un concentrado de molibdeno que tambien contiene cobre.
KR101462847B1 (ko) 레늄과 비소의 분리 방법, 및 레늄의 정제 방법
US5711922A (en) Preferential hydrometallurgical conversion of zinc sulfide to sulfate from zinc sulfide containing ores and concentrates
ES2713518T3 (es) Método para tratar arsénicos que contiene materiales
CA2854778A1 (en) Recovery of zinc and manganese from pyrometalurgy sludge or residues
CA2949036C (en) Hydrometallurgical process for the recovery of copper, lead and/or zinc
US5290338A (en) Antimony separation process
AU2017279746B2 (en) Beneficiation of Lead Sulphide Bearing Material
JP5062111B2 (ja) 脱銅スライムからの高純度亜砒酸水溶液の製造方法
ES2794298B2 (es) Procedimiento de extracción de metales a partir de minerales o concentrados de sulfuros polimetálicos
WO2014022946A1 (es) Procedimiento para procesar polvos de fundición mediante acido tricarboxílico
AU2016224142B2 (en) Processing of sulfidic ores
WO1991000931A1 (es) Procedimiento para la recuperacion de cinc, cobre y plomo de minerales y materiales oxidados y/o sulfurados
US11584975B1 (en) Integrated pressure oxidative leach of copper sulphidic feed with copper heap leach
WO2018187855A1 (en) Low acidity, low solids pressure oxidative leaching of sulphidic feeds
ES2211316B1 (es) Procedimiento hidrometalurgico para la disolucion y separacion de molibdeno y otros metales de concentrados de molibdenita.
ES2674440B2 (es) Planta hidrometalúrgica para el tratamiento de sulfuros complejos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 000248-2018

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 15753827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002213

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2996328

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015407367

Country of ref document: AU

Date of ref document: 20150902

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15902486

Country of ref document: EP

Kind code of ref document: A1