WO2017033758A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2017033758A1
WO2017033758A1 PCT/JP2016/073698 JP2016073698W WO2017033758A1 WO 2017033758 A1 WO2017033758 A1 WO 2017033758A1 JP 2016073698 W JP2016073698 W JP 2016073698W WO 2017033758 A1 WO2017033758 A1 WO 2017033758A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection line
wiring
wiring layer
line
region
Prior art date
Application number
PCT/JP2016/073698
Other languages
English (en)
French (fr)
Inventor
小笠原 功
近間 義雅
義仁 原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017536738A priority Critical patent/JP6462135B2/ja
Priority to CN201680047229.8A priority patent/CN107924652B/zh
Priority to US15/754,089 priority patent/US10551682B2/en
Publication of WO2017033758A1 publication Critical patent/WO2017033758A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a display device.
  • Patent Document 1 discloses a liquid crystal display device with a touch detection function that divides a common electrode into a plurality of parts and uses the divided plurality of common electrodes as touch electrodes.
  • a plurality of divided common electrodes and a controller are connected by a plurality of signal wires in order to detect a touch position by the controller.
  • a liquid crystal layer is sandwiched between a pair of substrates, and the outer periphery of the liquid crystal layer is sealed with a sealing material so that the liquid crystal material does not leak outside.
  • a sealing material for example, a photo-curing resin that is cured by irradiation with light is used.
  • the seal material is formed, at least a gate lead line for connecting the display control gate line and the controller and a source lead line for connecting the display control source line and the controller are arranged.
  • a signal lead line for connecting a signal line for detecting a touch position and a controller is further arranged in a region where a seal material is formed. For this reason, when a photo-curing resin is used as the sealing material, the light transmission region in which the gate lead-out line, the source lead-out line, and the signal lead-out line are not arranged becomes narrow. Insufficient light may cause poor curing.
  • An object of the present invention is to provide a display device capable of ensuring a wide light transmission region in a region where a sealing material is disposed.
  • a display device irradiates light with an active matrix substrate, a counter substrate facing the active matrix substrate, a display function layer disposed between the active matrix substrate and the counter substrate, and light.
  • a sealant that encapsulates the display function layer between the active matrix substrate and the counter substrate, and the active matrix substrate includes a first wiring formed in the first wiring layer, A second wiring formed in a second wiring layer different from the first wiring layer, and a third wiring layer different from the first wiring layer and the second wiring layer, the first wiring and the A third wiring to which a signal different from a signal supplied to the second wiring is supplied; a first terminal electrically connected to the first wiring or the second wiring; A second terminal electrically connected to three wirings, a first connection line connecting the first wiring or the second wiring and the first terminal, the third wiring and the second terminal, One of the two first connection lines connected to the two adjacent first wirings or the two adjacent second wirings, respectively.
  • At least a part is formed in one of the first wiring layer and the second wiring layer, and at least a part of the other of the two first connection lines is at least a part of the first wiring layer and the second wiring layer. It is formed in the other wiring layer of the second wiring layers, and the first connection line and the second connection line partially overlap in a plan view in the seal region where the seal material is disposed. The seal region, wherein the first connection line and the second connection line overlap each other. In the region, at least a portion of said two of said first connecting line is superimposed in plan view.
  • the two first connection lines that are arranged in different layers and are adjacent to each other are provided. Since at least a portion is overlapped in plan view, a wide light transmission region can be secured.
  • FIG. 1 is a plan view illustrating an example of a schematic configuration of the display device according to the first embodiment.
  • FIG. 2 is a diagram illustrating an arrangement example of the counter electrode.
  • FIG. 3 is an enlarged view of a region surrounded by a one-dot chain line in FIG.
  • FIG. 4 is an enlarged plan view of a region including a region where the first connection line and the second connection line partially overlap in plan view in the seal region.
  • 5 is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6 is a plan view showing a light transmission region of the present embodiment.
  • FIG. 7 is an enlarged plan view of a region including a region where the first connection line and the second connection line partially overlap in a plan view in the seal region in the second embodiment.
  • FIG. 8 is an enlarged plan view of a region including a region where the first connection line and the second connection line are partially overlapped in plan view in the seal region in the third embodiment.
  • 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 10 is a plan view showing the arrangement position of the source line inspection pattern in the fourth embodiment.
  • FIG. 11 is a plan view showing the arrangement positions of the source line inspection pattern and the touch sensor inspection pattern in the modified configuration of the fourth embodiment.
  • FIG. 12 is an enlarged view of a test pattern for a touch sensor.
  • FIG. 13 is a plan view showing a light transmission region in a comparative configuration in which two types of first connection lines formed in different layers do not overlap in a plan view.
  • a display device irradiates an active matrix substrate, a counter substrate facing the active matrix substrate, a display functional layer disposed between the active matrix substrate and the counter substrate, and light. And a sealing material that encapsulates the display function layer between the active matrix substrate and the counter substrate, and the active matrix substrate includes a first wiring formed in a first wiring layer.
  • a second wiring formed in a second wiring layer different from the first wiring layer, and a third wiring layer different from the first wiring layer and the second wiring layer, the first wiring and A third wiring to which a signal different from a signal supplied to the second wiring is supplied; a first terminal electrically connected to the first wiring or the second wiring; A second terminal electrically connected to a third wiring; a first connection line connecting the first wiring or the second wiring and the first terminal; the third wiring and the second terminal; One of the two first connection lines connected to the two adjacent first wirings or the two adjacent second wirings, respectively.
  • At least a portion is formed in one of the first wiring layer and the second wiring layer, and at least a portion of the other of the two first connection lines is at least a portion of the first wiring layer and the second wiring layer. It is formed in the other wiring layer of the second wiring layers, and the first connection line and the second connection line partially overlap in a plan view in the seal region where the seal material is disposed. In the seal area, the first connection line and the second connection line overlap each other. In that area, at least a portion of said two of said first connecting line is superimposed in plan view (first configuration).
  • two adjacent first connection lines formed in different wiring layers are seal regions, and in a region where the first connection line and the second connection line overlap each other.
  • a wide light transmission region where the first connection line and the second connection line are not arranged can be secured. Thereby, it can suppress that a sealing material becomes insufficiently hardened.
  • the two first connection lines In the first configuration, in the seal region, where the first connection line and the second connection line overlap, the two first connection lines have an entire line width in a plan view.
  • a superposed configuration may be used (second configuration).
  • the two first connection lines overlap the entire line width in plan view, a wider light transmission region can be secured. Thereby, it can suppress more effectively that a sealing material becomes inadequate hardening.
  • At least a part of the third wiring and the second connection line may be formed of a transparent conductive film (third configuration).
  • the light transmission region can be widened by forming at least a part of the second connection line with the transparent conductive film.
  • the third configuration at least a part of the third wiring and the second connection line is formed by laminating a metal film and the transparent conductive film, and the line width of the metal film is set to be transparent.
  • a configuration narrower than the line width of the conductive film may be employed (fourth configuration).
  • the resistance can be reduced as compared with the configuration formed by only the transparent conductive film.
  • a light transmission part is securable by making the line
  • At least a part of the second connection line is formed in the first wiring layer or the second wiring layer between the seal region and the second terminal.
  • the second connection line formed in the third wiring layer can be replaced with the first wiring layer or the second wiring layer.
  • the sixth configuration since at least a part of the two adjacent second connection lines are alternately formed in different wiring layers, a short circuit between the lines is suppressed as compared with the configuration configured in the same wiring layer. be able to.
  • the two adjacent second connection lines may have a configuration in which at least a part of portions alternately formed in the first wiring layer and the second wiring layer overlap in a plan view. Good (seventh configuration).
  • the light transmission region can be further widened.
  • a boundary between the portion formed in the third wiring layer and the portion formed in the first wiring layer or the second wiring layer in the second connection line is Further, a configuration may be adopted in which the seal region or a region between the seal region and the display region is present (eighth configuration).
  • the portion of the second connection line formed in the third wiring layer is in a region where the counter substrate is on the counter surface side. Therefore, even when the third wiring layer is above the first wiring layer and the second wiring layer and there are few protective layers, the possibility of wiring corrosion is reduced.
  • the active matrix substrate includes the second connection line formed in the third wiring layer and the second connection line formed in the first wiring layer or the second wiring layer. It is good also as a structure further provided with the switching element for 2nd connection lines formed in the boundary with (9th structure).
  • the active matrix substrate further includes a first connection line switching element electrically connected to the first terminal, and the first connection line switching element includes: The first terminal may be disposed on the opposite side of the first connection line (tenth configuration).
  • the first connection line switching element is located in a region near the display region. Therefore, the frame area can be reduced.
  • a boundary between a portion of the second connection line formed in the third wiring layer and a portion formed in the first wiring layer or the second wiring layer is the seal.
  • a configuration may be adopted in which the region is on the opposite side of the display region from the region (eleventh configuration).
  • the second connection line formed in the third wiring layer in the seal region is the first in the seal region as compared to the configuration in which the first connection layer or the second wiring layer is connected. A wide area for forming the connection line can be secured.
  • the active matrix substrate further includes a second connection line switching element electrically connected to the second terminal, and the second connection line switching element includes the second connection line switching element. It is good also as a structure arrange
  • the light transmission region can be widened compared to the configuration in which the second connection line switching element is formed in the seal region.
  • the active matrix substrate includes the first connection line and the second connection in a region where the first connection line and the second connection line overlap in plan view.
  • An insulating film provided between the wiring and the insulating film may be further provided, and the insulating film may be an organic film (a thirteenth configuration).
  • the active matrix substrate may further include a plurality of touch sensor electrodes, and the third wiring may be connected to the touch sensor electrodes. 14 configuration).
  • a wide light transmission region can be secured in the display device including the touch sensor electrode. Thereby, it can suppress that a sealing material becomes insufficiently hardened.
  • the line width of the two first connection lines may be 3 ⁇ m, and at least a part of the two first connection lines may be overlapped by 2 ⁇ m or more in plan view.
  • the fifteenth configuration it is possible to secure a sufficiently wide light transmission region where the sealing material does not become insufficiently cured.
  • FIG. 1 is a plan view illustrating an example of a schematic configuration of a display device 100 according to the first embodiment.
  • the display device 100 has a touch position detection function, and is a display used for, for example, a mobile phone, a portable information terminal, a game machine, a digital camera, a printer, a car navigation, an information home appliance, and the like.
  • the display device 100 includes an active matrix substrate 1, a counter substrate 2, a liquid crystal layer (not shown) that is a display functional layer sandwiched between the active matrix substrate 1 and the counter substrate 2, It is a liquid crystal display provided with the sealing material 3 (refer FIG. 5) enclosed with the opposing board
  • FIG. 1 the display device 100 has a vertically long rectangular shape as a whole. The long side direction of the display device 100 coincides with the Y-axis direction, and the short side direction coincides with the X-axis direction.
  • a region surrounded by a dotted line is a display region 10 capable of displaying an image.
  • the outside of the display area 10 is a non-display area where an image cannot be displayed.
  • the active matrix substrate 1 and the counter substrate 2 are provided with a substantially transparent glass substrate.
  • the long side dimension of the counter substrate 2 is shorter than the long side dimension of the active matrix substrate 1.
  • the drive circuit 11 is disposed in this region.
  • the drive circuit 11 is connected to an external control circuit via an FPC (Flexible Printed Circuit) (not shown).
  • a plurality of gate lines (first wirings) 12 and a plurality of source lines (second wirings) 13 are arranged on the active matrix substrate 1.
  • the gate lines 12 extend in the X-axis direction, and a plurality of gate lines 12 are arranged in the Y-axis direction.
  • the source line 13 extends in the Y-axis direction, and a plurality of source lines 13 are arranged in the X-axis direction.
  • the gate line 12 is formed in the first wiring layer, and the source line 13 is formed in a second wiring layer different from the first wiring layer.
  • Each of the gate line 12 and the source line 13 is formed of, for example, a metal film such as aluminum, copper, titanium, molybdenum, or chromium, or an alloy or laminated film thereof.
  • the gate line 12 and the source line 13 intersect.
  • a thin film transistor (not shown) as a switching element is arranged.
  • the gate electrode of the thin film transistor is connected to the gate line 12, and the source electrode is connected to the source line 13.
  • the drain electrode of the thin film transistor is connected to a pixel electrode (not shown).
  • the driving method of the liquid crystal molecules included in the liquid crystal layer is a lateral electric field driving method such as an IPS method or an FFS method.
  • a pixel electrode and a counter electrode (sometimes referred to as a common electrode) for forming an electric field are formed on the active matrix substrate 1.
  • FIG. 2 is a diagram illustrating an arrangement example of the counter electrode 31.
  • the counter electrode 31 has a rectangular shape, and a plurality of counter electrodes 31 are arranged in a matrix in the display area 10.
  • the counter electrode 31 also functions as a touch sensor electrode for detecting the touch position.
  • the counter electrode 31 is provided with a plurality of slits for generating a lateral electric field.
  • Each counter electrode 31 is connected to the drive circuit 11 via a touch sensor wiring (third wiring) 14 and a second connection line 24 extending in the Y-axis direction.
  • the touch sensor wiring 14 is formed in a third wiring layer different from the first wiring layer and the second wiring layer, and a signal different from the signal supplied to the gate line 12 and the source line 13 is supplied.
  • the touch sensor wiring 14 and the second connection line 24 are formed of, for example, a metal film such as copper, titanium, molybdenum, aluminum, or chromium, or an alloy or laminated film thereof.
  • the second connection line 24 is shown in a straight line shape, but actually, as shown in FIG. 1, it is not a straight line shape.
  • Briefly describe how to detect the touch position.
  • a parasitic capacitance is formed between the counter electrode 31 and the adjacent counter electrode 31 or the like, but when a human finger or the like touches the display screen of the display device 100, a capacitance is formed between the counter electrode 31 or the human finger or the like. As a result, the capacitance increases.
  • the drive circuit 11 supplies a touch drive signal to the counter electrode 31 via the touch sensor wiring 14 and receives the touch detection signal via the touch sensor wiring 14. Thereby, a change in capacitance is detected, and a touch position is detected.
  • This touch position detection method is a so-called self-capacitance method.
  • a pair of gate drivers 15 are arranged on both outer sides in the short side direction of the display area 10.
  • Each gate line 12 is connected to a gate driver 15.
  • the gate driver 15 is connected to a gate driver driving signal terminal 17 through a gate driver driving wiring 16.
  • the gate driver 15 supplies a scanning signal input from an external control circuit via the gate driver driving wiring 16 to each gate line 12 at a predetermined timing, and scans each gate line 12 sequentially.
  • the sealing material 3 is provided to enclose the liquid crystal layer in the active matrix substrate 1 and the counter substrate 2.
  • a photo-curing resin that is cured by irradiation with light is used.
  • the photocurable resin may be a resin that is cured by irradiating ultraviolet rays, or may be a resin that is cured by irradiating visible light. Alternatively, a resin that is cured by irradiation with light other than ultraviolet light or visible light may be used.
  • the sealing material which has both photocurability and thermosetting property may be sufficient.
  • seal region 20 the region where the sealing material 3 is disposed is referred to as a seal region 20.
  • the seal area 20 is formed outside the display area 10 and surrounding the display area 10.
  • FIG. 3 is an enlarged view of a region surrounded by a one-dot chain line in FIG.
  • the active matrix substrate 1 is provided with a source line inspection pattern 18.
  • the source line inspection pattern 18 is provided with a plurality of switching elements (inspection TFTs) for controlling the supply of signals to the source line 13 in order to detect a short circuit or disconnection of the source line 13.
  • the source line inspection pattern 18 is connected to a source line inspection signal input terminal 19.
  • a source line inspection signal is input to the source line inspection signal input terminal 19 from an external control circuit.
  • the source line 13 is provided in the display area 10.
  • a first connection line 21 is provided in a non-display area outside the display area 10.
  • the first connection line 21 is a line for connecting the source line 13 and the source line signal output terminal (first terminal) 26 in the non-display region. That is, the source line 13 is electrically connected to the source line signal output terminal 26 via the first connection line 21.
  • the first connection line 21 is formed of, for example, a metal film such as aluminum, copper, titanium, molybdenum, or chromium, or an alloy or laminated film thereof.
  • first connection line 21 a portion between the source line 13 and the source line inspection pattern 18 is formed in the same second wiring layer as the source line 13.
  • portions of the first connection line 21 between the source line inspection pattern 18 and the source line signal output terminal 26 are formed on the same second wiring layer as the source line 13 and the gate line.
  • the first connection line 21 formed in the first wiring layer is referred to as a first connection line 21a, and is connected to the second wiring layer.
  • the formed first connection line 21 is referred to as a first connection line 21b.
  • the 1st connection line 21 generically.
  • the first connection lines 21a and the first connection lines 21b are alternately arranged. That is, one of the two adjacent source lines 13 is connected to the first connection line 21a, and the other is connected to the first connection line 21b.
  • the adjacent first connection line 21a and the first connection line 21b are shown separated from each other. However, as will be described later, in the present embodiment, the adjacent first connection line 21a and A part of the first connection line 21b overlaps in plan view.
  • the active matrix substrate 1 is provided with an inspection pattern 22 for touch sensors.
  • the touch sensor test patterns 22 are arranged in two places, but the invention is not limited to two places.
  • the touch sensor inspection pattern 22 is provided with a plurality of switching elements (inspection TFTs) for controlling the supply of signals to the touch sensor wiring 14 in order to detect a short circuit or disconnection of the touch sensor wiring 14. ing.
  • the touch sensor test pattern 22 is connected to a touch sensor test signal input terminal 23.
  • the touch sensor inspection signal input terminal 23 receives a touch sensor inspection signal from an external control circuit. In each of the two touch sensor test patterns 22, wirings for inputting the same touch sensor test signal may be connected to each other.
  • this connection wiring is formed by using the third wiring layer, and can be manufactured without adding a process.
  • the touch sensor wiring 14 is provided in the display area 10.
  • a second connection line 24 is provided in the non-display area outside the display area 10.
  • the second connection line 24 is a line for connecting the touch sensor wiring 14 and the touch sensor signal output terminal (second terminal) 25 in the non-display area. That is, the touch sensor wiring 14 is electrically connected to the touch sensor signal output terminal 25 via the second connection line 24.
  • the second connection line 24 a portion between the touch sensor wiring 14 and the touch sensor inspection pattern 22 is formed in the same third wiring layer as the touch sensor wiring 14.
  • the portion of the second connection line 24 between the touch sensor test pattern 22 and the touch sensor signal output terminal 25 is a line formed in the same first wiring layer as the gate line 12 and a source line.
  • the second connection line 24 formed in the first wiring layer is referred to as a second connection line 24a
  • the second wiring layer is formed in the second wiring layer.
  • the formed second connection line 24 is referred to as a second connection line 24b.
  • the second connection line 24 formed in the third wiring layer is referred to as a second connection line 24c.
  • a second connection line 24c When it is not necessary to distinguish the second connection line 24a, the second connection line 24b, and the second connection line 24c, they are collectively referred to as the second connection line 24.
  • the second connection line 24c connected to the touch sensor wiring 14 is the touch sensor test pattern 22 formed on the second connection line 24a formed on the first wiring layer or the second wiring layer.
  • the second connection line 24b is connected.
  • the line formed in the first wiring layer, the line formed in the second wiring layer, and the line formed in the third wiring layer are distinguished by the thickness of the line. That is, the lines are illustrated so as to become thicker in the order of the line formed in the third wiring layer, the line formed in the first wiring layer, and the line formed in the second wiring layer.
  • the second connection lines 24a and the second connection lines 24b are alternately arranged. That is, one of the two adjacent second connection lines 24c is connected to the second connection line 24a, and the other is connected to the second connection line 24b.
  • connection lines such as the first connection line 21 and the second connection line 24 may be referred to as lead-out lines.
  • the touch sensor test pattern 22 is formed in a seal region 20, that is, a region where the counter substrate 2 facing the active matrix substrate 1 is provided. That is, the second connection line 24 c formed in the third wiring layer is not formed in a region where the counter substrate 2 is not present.
  • the second connection line 24a formed in the first wiring layer and the second connection line 24b formed in the second wiring layer are also formed in a region without the counter substrate 2, as shown in FIG. ing.
  • the third wiring layer in which the second connection line 24c is formed is farthest from the glass substrate of the active matrix substrate 1 as compared with the first wiring layer and the second wiring layer. It is in. Since the second insulating film 55 (see FIG. 5) is the only insulating film that protects the second connecting line 24c, if the second connecting line 24c is formed in a region where the counter substrate 2 is not present, there is a concern that wiring corrosion may occur. In addition, when it is necessary to replace the drive circuit 11 due to a defect in the drive circuit 11 after the drive circuit 11 is mounted, if the second connection line 24c is formed in a region where the counter substrate 2 is not present, the second connection line 24c is formed. The connection line 24c is easily lost.
  • the second connection line 24c is not formed in a region where the counter substrate 2 is not present, it is possible to suppress the occurrence of the above-described problems such as wiring corrosion and defects. Further, since the adjacent second connection lines 24c are alternately connected to the second connection lines 24a and the second connection lines 24b formed in different layers, only the second connection lines 24a or the second connection lines are connected. Compared with the case where only the line 24b is connected, the line width and the line interval can be increased. Thereby, since a disconnection and a short circuit can be reduced, the yield at the time of manufacture can be improved.
  • the second connection line 24a formed in the first wiring layer and the second connection line 24b formed in the second wiring layer include the first insulating film 53, the planarizing film 54, and the second insulating film 55. (See FIG. 5), even if it is formed in a region where the counter substrate 2 is not present, the above-described problems such as wiring corrosion and defects are unlikely to occur.
  • connection from the second connection line 24c to the second connection line 24a or the second connection line 24b is performed in the seal region 20, but may be performed between the seal region 20 and the display region 10.
  • the second connection line 24c formed in the third wiring layer may be connected to only the second connection line 24a formed in the first wiring layer, or may be formed in the second wiring layer. It is good also as a structure which can be switched only to the 2nd connection line 24b which is. Which layer line the second connection line 24c is connected to can be determined as appropriate depending on the number of the second connection lines 24, the size of the drive circuit 11, and the outer shape of the liquid crystal display (the size of the frame region). . For example, as described later with reference to FIG. 5, the second connection line 24a formed in the first wiring layer has more protective layers than the second connection line 24b formed in the second wiring layer. When the second connection line 24c is replaced with only the second connection line 24a, concerns such as wiring corrosion can be further reduced.
  • the touch sensor test pattern 22 is formed in the seal region 20, that is, the region where the counter substrate 2 facing the active matrix substrate 1 is provided.
  • a black matrix is provided in a region on the counter substrate 2 side facing the region where the touch sensor inspection pattern 22 is formed.
  • the drive circuit 11 is not mounted, and a plurality of switching elements (inspection TFTs) included in the touch sensor inspection pattern 22 are included in the drive circuit chip. It is not covered with. For this reason, in the case where the black matrix is not formed in the region on the counter substrate 2 facing the region where the touch sensor test pattern 22 is formed, the external light may be switched by the switching element (test TFT) depending on the test environment.
  • the characteristics of the switching element may fluctuate.
  • the black matrix is provided in the area on the counter substrate 2 side that faces the area where the touch sensor test pattern 22 is formed, the characteristics of the switching element during the test are not changed. Can be suppressed.
  • the first connection line 21a, the first connection line 21b, and the second connection line 24c intersect each other. That is, in the seal region, the first connection line 21a, the first connection line 21b, and the second connection line 24c partially overlap in plan view.
  • FIG. 4 is an enlarged plan view of a region including a region where the first connection line 21a, the first connection line 21b, and the second connection line 24c partially overlap in plan view in the seal region 20.
  • the first connection line 21 a and the first connection line 21 b formed in different layers in the region where the first connection line 21 a and the first connection line 21 b overlap the second connection line 24 in the seal region 20.
  • the first connection line 21b partially overlaps in plan view.
  • the line width of the first connection line 21a is 3 ⁇ m, and the interval h1 between the adjacent first connection lines 21a is 6 ⁇ m.
  • the line width of the first connection line 21b is 3 ⁇ m, and the interval h2 between the adjacent first connection lines 21b is 6 ⁇ m.
  • the first connection line 21a and the first connection line 21b are parallel and partly overlapped.
  • the overlapping width h3 of the first connection line 21a and the first connection line 21b is 1 ⁇ m.
  • the line width of the second connection line 24c is 3 ⁇ m, and the interval h4 between the adjacent second connection lines 24c is 9.5 ⁇ m.
  • the overlapping width h3 of the first connection line 21a and the first connection line 21b may be less than 1 ⁇ m, or may be 1 ⁇ m or more and less than 3 ⁇ m. Further, the line widths of the first connection line 21a and the first connection line 21b may not be the same. Furthermore, the line width of the first connection line 21a, the first connection line 21b, and the second connection line 24c and the interval between adjacent lines are not limited to the above-described numerical values.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • a first connection line 21 a is formed on the glass substrate 51 of the active matrix substrate 1.
  • the first connection line 21a is formed in the same first wiring layer as the gate line 12 and the gate electrode.
  • the gate insulating film 52 is formed so as to cover the first connection line 21a.
  • the gate insulating film 52 is made of, for example, silicon nitride (SiNx) or silicon oxide (SiOx).
  • the first connection line 21b is formed on the gate insulating film 52.
  • the first connection line 21b is formed in the same second wiring layer as the source line 13 and the source electrode.
  • the first connection line 21a and the first connection line 21b partially overlap in plan view, and the overlap width h3 is, for example, 1 ⁇ m.
  • the first insulating film 53 is formed so as to cover the first connection line 21b.
  • the first insulating film 53 is made of, for example, silicon nitride (SiNx) or silicon oxide (SiOx).
  • a planarizing film 54 which is an insulating film is formed.
  • the planarization film 54 is an organic film, and is made of, for example, a photosensitive acrylic resin material.
  • the planarization film 54 is made of a material having a low relative dielectric constant (for example, 2 to 4) in order to reduce the capacitance between the first connection line 21a, the first connection line 21b, and the second connection line 24. It is preferable to form a thick film (for example, 1 to 4 ⁇ m).
  • a second connection line 24 c is formed on the planarizing film 54.
  • the second insulating film 55 is formed so as to cover the second connection line 24c.
  • the second insulating film 55 is made of, for example, silicon nitride (SiNx) or silicon oxide (SiOx).
  • the counter electrode 31 is formed on the second insulating film 55.
  • the counter electrode 31 is connected to the touch sensor wiring 14 through a contact hole formed in the second insulating film 55.
  • the pixel electrode provided in the display region 10 is formed on the planarizing film 54 and covered with the second insulating film 55 in the same manner as the second connection line 24c.
  • the sealing material 3 is provided on the second insulating film 55.
  • the spacers disposed in the seal region 20 are omitted.
  • a counter substrate 2 is provided on the opposite side of the active matrix substrate 1 with the sealing material 3 interposed therebetween.
  • a black matrix 57 is formed on the glass substrate 56 of the counter substrate 2, and an overcoat layer 58 is formed between the black matrix 57 and the sealing material 3.
  • a color filter (not shown) is formed in the display area 10 of the counter substrate 2.
  • the sealing material 3 is made of a photo-curing resin that cures when irradiated with light.
  • Light is irradiated from the glass substrate 51 side of the active matrix substrate 1. Since the first connection line 21a, the first connection line 21b, and the second connection line 24 are formed of an opaque metal film with low light transmittance, the light irradiated from the glass substrate 51 side is the first connection line.
  • the seal material 3 is reached via the region S1 where the line 21a, the first connection line 21b, and the second connection line 24 are not formed. As shown in FIG. 5, the first connection line 21a and the first connection line 21b are partially overlapped, so that the first connection line 21a and the first connection line 21b are not overlapped with each other.
  • the region S1 in which the connection line 21a, the first connection line 21b, and the second connection line 24 are not formed (hereinafter referred to as the light transmission region S1) can be widened. Thereby, since sufficient light can be irradiated to the sealing material 3, it can suppress that the sealing material 3 becomes insufficiently cured at the time of manufacturing the display device 100.
  • FIG. 6 is a plan view showing the light transmission region S1 of the present embodiment.
  • FIG. 13 is a plan view showing the light transmission region S2 in the comparative configuration in which the first connection line 131a and the first connection line 131b do not overlap in plan view.
  • the light transmission region S2 is a region surrounded by the first connection line 131a, the first connection line 131b, and the second connection line 132c.
  • the ratio of the light transmission region S2 in the seal region is about 25%.
  • the ratio of the light transmission region S1 in the seal region 20 is about 33%. This value of 33% is equivalent to the ratio of the light transmission region when the second connection line 132c is excluded in the comparative configuration shown in FIG. 13, and the inventor of the present application causes insufficient curing of the sealing material 3. It has been confirmed that there is no.
  • the touch sensor wiring 14 and the second connection line 24 that are configurations for detecting a touch position are arranged on a display device without a touch detection function. Even if it exists, in the seal
  • region S1 in order to ensure wide light transmission area
  • the active matrix substrate 1 when the active matrix substrate 1 is manufactured, there may be a misalignment of about 1 ⁇ m in the second wiring layer in which the first connection line 21b is formed with respect to the first wiring layer in which the first connection line 21a is formed.
  • the overlapping width h3 of the first connection line 21a and the first connection line 21b is preferably at least 1 ⁇ m or more. More preferably, the overlapping width h3 of the first connection line 21a and the first connection line 21b is 2 ⁇ m or more.
  • a second connection line 24a formed in the first wiring layer and a second connection line 24b formed in the second wiring layer are formed in the seal region 20 .
  • a second connection line 24 a and a second connection line 24 b are formed in a region between the touch sensor test pattern 22 and the touch sensor signal output terminal 25. In this region, if a part of the adjacent second connection line 24a and second connection line 24b is overlapped, the light transmission region S1 can be further widened, and the curing of the sealing material 3 is more effectively prevented. Can be suppressed.
  • FIG. 7 is an enlarged view of a region including a region where the first connection line 21a, the first connection line 21b, and the second connection line 24c partially overlap in plan view in the seal region 20 in the second embodiment. It is a top view.
  • the first connection line 21a and the first connection line 21b respectively connected to the two adjacent source lines 13 are completely overlapped. That is, the line width of the first connection line 21a and the first connection line 21b is 3 ⁇ m as in the first embodiment, but the overlap width h3 of the first connection line 21a and the first connection line 21b is 3 ⁇ m. .
  • the ratio of the light transmission region S1 in the seal region 20 is about 50%. That is, according to the configuration of the second embodiment, the light transmission region S1 can be widened compared to the configuration of the first embodiment, so that the insufficient curing of the sealing material 3 can be more effectively suppressed. Can do.
  • the sealing material 3 is not insufficiently cured. Therefore, in the configuration in which the first connection line 21a and the first connection line 21b respectively connected to the two adjacent source lines 13 are completely overlapped, the line width of the first connection line 21a and the first connection line 21b is increased. However, the area ratio of the light transmission region may be maintained at 33%. Since the disconnection of the first connection line 21a and the first connection line 21b can be suppressed by widening the line widths of the first connection line 21a and the first connection line 21b, it is possible to improve the manufacturing yield. it can. Instead of increasing the line width of the first connection line 21a and the first connection line 21b, the line width of the second connection line 24 may be increased.
  • the seal region 20 is formed with a second connection line 24a formed in the first wiring layer and a second connection line 24b formed in the second wiring layer. There is an area. In this region, if the second connection line 24a and the second connection line 24b respectively connected to two adjacent second connection lines 24c are completely overlapped, the light transmission region S1 can be further widened. And insufficient curing of the sealing material 3 can be more effectively suppressed.
  • FIG. 8 is an enlarged view of a region including a region where the first connection line 21a, the first connection line 21b, and the second connection line 24c partially overlap in plan view in the seal region 20 in the third embodiment. It is a top view. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • the second connection line 24 c is formed of two layers of a metal film 81 and a transparent conductive film 82.
  • a transparent conductive film 82 is formed under the metal film 81.
  • the metal film 81 is an opaque metal film with low light transmittance, and is made of, for example, copper, titanium, molybdenum, aluminum, chromium, or an alloy thereof.
  • the transparent conductive film 82 is, for example, ITO.
  • the transparent conductive film 82 is not limited to ITO, and may be formed of other transparent conductive materials such as IZO. Since the transparent conductive film 82 is formed in the same layer as the pixel electrode, a pattern can be formed in the same process using the same material as the pixel electrode.
  • the touch sensor wiring 14 formed in the third wiring layer is also formed of two layers of a metal film and a transparent conductive film.
  • the line width of the metal film 81 is narrower than the line width of the transparent conductive film 82.
  • the metal film 81 has a line width of 3 ⁇ m
  • the transparent conductive film 82 has a line width of 5 ⁇ m.
  • these numerical values are examples, and for example, the line width of the transparent conductive film may be 5 ⁇ m or more (for example, 7 ⁇ m or more).
  • the resistance of ITO is one digit higher. Therefore, when all of the touch sensor wiring 14 and the second connection line 24c are formed of a transparent conductive film such as ITO, the signal transmission is lowered. However, in this embodiment, since the touch sensor wiring 14 and the second connection line 24c are configured by two layers of the metal film 81 and the transparent conductive film 82, low resistance and redundancy are ensured while ensuring a translucent portion. The wiring can be excellent.
  • the line width of the metal film 81 of the second connection line 24c in the seal region 20 is narrowed (for example, 2 ⁇ m), and the metal film 81 in the region inside the display region 20 (display region 10 side).
  • the line width may be increased (for example, 4 ⁇ m).
  • FIG. 10 is a plan view showing the arrangement position of the source line inspection pattern 18 in the fourth embodiment. 10, the same components as those in FIG. 3 are denoted by the same reference numerals.
  • the source line inspection pattern 18 is formed inside the seal region 20, but in this embodiment, it is formed in the region 101 where the drive circuit 11 is mounted. More specifically, the source line inspection pattern 18 is formed on the opposite side of the source line signal output terminal 26 from the first connection lines 21a and 21b.
  • the source line inspection pattern 18 is arranged in the mounting area 101 of the drive circuit 11, it is not necessary to arrange the source line inspection pattern 18 in an area close to the display area 10, so that the frame area can be reduced. it can. Further, since it is not necessary to form the wiring 102 connecting the source line inspection pattern 18 and the source line inspection signal input terminal 19 in the seal region 20, the connection lines (first connection lines 21a, 21b, second The degree of freedom of layout of the connection line 24c) is improved.
  • the portion where the disconnection of the connection line cannot be detected (the source line inspection pattern 18 and the source line signal output). Terminal 26).
  • disconnection of the connection line between the source line inspection pattern 18 and the source line signal output terminal 26 can also be detected.
  • the touch sensor test pattern 22 is not arranged in the region 101 where the drive circuit 11 is mounted.
  • a region below the touch sensor signal output terminal 25 (a region opposite to the second connection lines 24a and 24b with respect to the touch sensor signal output terminal 25) is provided as a region where the source line inspection pattern 18 is disposed. ) Can also be used.
  • the source line inspection pattern 18 can be arranged in a wide region in the X-axis direction, defects such as disconnection and short circuit in the source line inspection pattern 18 can be suppressed.
  • a high-definition display device having a large number of source lines 13 can be inspected.
  • FIG. 11 is a plan view showing the arrangement positions of the source line inspection pattern 18 and the touch sensor inspection pattern 22 in the modified configuration of the fourth embodiment. 11, the same components as those in FIGS. 3 and 10 are denoted by the same reference numerals.
  • the touch sensor test pattern 22 is formed on the side opposite to the second connection lines 24 a and 24 b with respect to the touch sensor signal output terminal 25.
  • the second connection line 24 c is connected to the second connection line 24 a or the second connection line 24 b in a region opposite to the display region 10 with respect to the seal region 20.
  • the second connection line 24c formed in the third wiring layer is connected to the second connection line 24a or the second wiring layer formed in the first wiring layer in a region where the counter substrate 2 is not present. It is connected to the formed second connection line 24b.
  • region which forms 1st connection line 21a, 21b can be ensured widely.
  • the first wiring layer in which the first connection line 21a is formed has the first wiring layer.
  • the second connection line 24 arranged in the seal region 20 is only the second connection line 24 c formed in the third wiring layer. Thereby, the space
  • the formation region is limited to the size of the drive circuit 11.
  • the width of the drive circuit 11 is narrower than the width of the display region 10, for example, it is necessary to arrange switching elements (inspection TFTs) in a staggered manner over a plurality of stages.
  • FIG. 12 is a partially enlarged view of the test pattern 22 for the touch sensor.
  • a plurality of switching elements (inspection TFTs) 121 included in the touch sensor inspection pattern 22 are arranged in a staggered manner over four stages.
  • a plurality of switching elements (inspection TFTs) included in the source line inspection pattern 18 are similarly arranged in a staggered manner over a plurality of stages.
  • a voltage is applied from the first common wiring 122a and / or the second common wiring 122b to the counter electrode 31 via a predetermined touch sensor wiring 14 to display a specific pattern.
  • One of the adjacent touch sensor wirings 14 is connected to the first common wiring 122 a through the switching element 121, and the other is connected to the second common wiring 122 b through the switching element 121.
  • a disconnection or a short circuit failure is detected by confirming whether the specific pattern is normally displayed by visual determination by an inspector or determination by image processing.
  • a reference potential is supplied to the pixel electrode using the gate driver 15 and the source line inspection pattern 18.
  • Specified patterns include, for example, a stripe pattern and a checkered pattern.
  • the stripe pattern is a display pattern in which white display and black display are alternately displayed for each row with respect to pixels corresponding to the counter electrode 31 arranged over a plurality of rows.
  • the checkered pattern is a pixel corresponding to one of the two adjacent counter electrodes in either the row direction or the column direction in the pixel corresponding to the counter electrode 31 arranged in a matrix.
  • This is a display pattern in which display is performed and pixels corresponding to the other display are black.
  • the white display is a display that transmits light from a light source (backlight) disposed on the back surface (the glass substrate side of the active matrix substrate 1) of the display device, and the black display is from the light source. It is a display that does not transmit the light.
  • the common wiring 122 connected to the switching element 121 should be at least two like the first common wiring 122a and the second common wiring 122b in FIG. good.
  • an on / off control wiring 123 for controlling on / off of the switching element 121 is shown separately from the first common wiring 122a and the second common wiring 122b. At the time of inspection, the same signal is input to the on / off control wiring 123.
  • the number of common wirings 122 for inputting inspection signals to the switching element 121 is increased, various patterns can be displayed, and the inspection accuracy can be increased. For example, when the number of common wirings 122 is four, a short circuit between adjacent wirings formed in the same wiring layer can also be detected. On the other hand, when the number of the common wirings 122 is increased, in order to secure the arrangement area, it may not be possible to cope with the narrowing of the frame or the layout of the connection line width may be difficult. For this reason, the number of common wirings 122 is appropriately set according to the FPC terminal area, the outer shape of the liquid crystal display (the size of the frame area), and the like.
  • the liquid crystal display with a touch sensor function has been described as an example of the display device 100.
  • the display device 100 is not limited to the liquid crystal display with a touch sensor function.
  • the display device 100 may be an organic electroluminescence (organic EL) display that does not include a touch panel.
  • the first wiring can correspond to the gate line, the second wiring to the source line, and the third wiring to the wiring that supplies current to the organic EL layer during the light emission period.
  • the gate bus line 113, the data bus line 112, and the light emission control line 121 are respectively connected to the first wiring and the second wiring. This can correspond to the third wiring.
  • the gate line 12 extends in the X-axis direction and is arranged in the Y-axis direction
  • the source line 13 extends in the Y-axis direction and is arranged in the X-axis direction. It was. However, even if the gate line 12 extends in the Y-axis direction, a plurality of gate lines 12 are arranged in the X-axis direction, and the source line 13 extends in the X-axis direction, and a plurality of source lines 13 are arranged in the Y-axis direction. good.
  • the first wiring is the gate line 12
  • the second wiring is the source line 13
  • the third wiring is the touch sensor wiring 14, but the first wiring to the third wiring are these. You are not limited to lines.
  • the driving method of the liquid crystal molecules contained in the liquid crystal layer of the liquid crystal display has been described as a horizontal electric field driving method of horizontal alignment such as the IPS method or the FFS method, other methods may be used.
  • a lateral electric field driving method using a liquid crystal having a negative dielectric anisotropy and a vertical alignment film may be used.
  • a method of forming an alignment support layer of a polymer on an alignment film is known.
  • a VA (vertical alignment) liquid crystal display for example, PSA (Polymer Sustained Alignment) technology has been put to practical use.
  • a photopolymerizable monomer is added to the liquid crystal, and the monomer is polymerized by light or heat in a state where a voltage is applied to the liquid crystal (a state where the liquid crystal molecules are inclined from the vertical direction).
  • a polymer layer is formed on the alignment film (vertical alignment film in the case of the VA method) so that the initial alignment direction of the liquid crystal molecules is slightly inclined (2 to 3 degrees) from the vertical alignment.
  • Such an alignment method using a polymer is also used in the case of a lateral electric field driving method such as an IPS method or an FFS method.
  • a lateral electric field driving method such as an IPS method or an FFS method.
  • the horizontal electric field method a polymer is formed on a horizontal alignment film that has been subjected to alignment treatment by rubbing or photo-alignment, but the monomer is polymerized without applying a voltage to the liquid crystal. If charges are accumulated in the pixel electrode or the counter electrode during the polymerization, the liquid crystal is polymerized in an unfavorable alignment state, which causes display unevenness and contrast reduction.
  • the charge of the pixel electrode and the counter electrode 31 is obtained by using the switching element 121 included in the touch sensor wiring 14, the second connection line 24, and the touch sensor test pattern 22 so that no voltage is applied to the liquid crystal.
  • the touch position detection method is a so-called self-capacitance method, but may be a mutual capacitance method. That is, the present invention can be applied to a display device having a mutual capacitive touch position detection function.
  • the specific pattern displayed at the time of inspection is not limited to the above-described stripe pattern or checkered pattern.
  • the source line 13 is provided in the display area 10, and the first connection line 21 connected to the source line 13 is provided in the non-display area.
  • the source line 13 may have a length arranged not only in the display area 10 but also in the non-display area.
  • the source line 13 has been described as being connected to the source line signal output terminal 26 via the first connection line 21, but the source line 13 and the first connection line 21 are all not distinguished. Can also be referred to as source lines. The same applies to the gate line 12 and the touch sensor wiring 14.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

シール材が配置されている領域において、広い光透過領域を確保する。アクティブマトリクス基板は、第1配線層に形成された第1配線と、第1配線層とは異なる第2配線層に形成された第2配線と、第1配線層及び第2配線層とは異なる第3配線層に形成され、第1配線及び第2配線に供給される信号とは異なる信号が供給される第3配線と、第1配線または第2配線と第1端子との間を接続する第1接続線21a、21bと、第3配線と第2端子との間を接続する第2接続線24cと、を備える。隣接する2本の第1接続線21a、21bの一方は、少なくとも一部が第1配線層及び第2配線層のうちの一方の配線層に形成され、他方は、少なくとも一部が他方の配線層に形成されている。シール領域であって、第1接続線21a、21b及び第2接続線24cが重畳している領域において、2本の第1接続線21a、21bの少なくとも一部は、平面視で重畳している。

Description

表示装置
 本発明は、表示装置に関する。
 特許文献1には、共通電極を複数に分割して、分割した複数の共通電極をタッチ電極として活用するタッチ検出機能付き液晶表示装置が開示されている。特許文献1のタッチ検出機能付き液晶表示装置では、コントローラでタッチ位置を検出するために、分割された複数の共通電極とコントローラとの間を、複数の信号配線で接続している。
特開2015-64854号公報
 液晶表示装置は、一対の基板で液晶層を挟み込み、液晶材料が外部に漏れ出ないように、液晶層の外周をシール材で封止している。シール材としては、例えば光を照射することによって硬化する光硬化樹脂が用いられる。このシール材を形成する領域には、表示制御用のゲート線とコントローラとを接続するゲート引き出し線、及び表示制御用のソース線とコントローラとを接続するソース引き出し線が少なくとも配置されている。
 特許文献1のタッチ検出機能付き液晶表示装置では、シール材を形成する領域にさらに、タッチ位置を検出するための信号配線とコントローラとを接続する信号引き出し線が配置される。このため、シール材として光硬化樹脂を用いた場合、ゲート引き出し線、ソース引き出し線、及び信号引き出し線が配置されていない光透過領域が狭くなるため、シール材の形成工程において、光硬化樹脂に光が十分当たらずに、硬化不良が生じる場合がある。
 本発明は、シール材が配置されている領域において、広い光透過領域を確保可能な表示装置を提供することを目的とする。
 本発明の一実施形態における表示装置は、アクティブマトリクス基板と前記アクティブマトリクス基板に対向する対向基板と、前記アクティブマトリクス基板及び前記対向基板の間に配置された表示機能層と、光を照射することによって硬化する材料からなり、前記アクティブマトリクス基板及び前記対向基板の間に前記表示機能層を封入するシール材と、を備え、前記アクティブマトリクス基板は、第1配線層に形成された第1配線と、前記第1配線層とは異なる第2配線層に形成された第2配線と、前記第1配線層及び前記第2配線層とは異なる第3配線層に形成され、前記第1配線及び前記第2配線に供給される信号とは異なる信号が供給される第3配線と、前記第1配線または前記第2配線に電気的に接続された第1端子と、前記第3配線と電気的に接続された第2端子と、前記第1配線または前記第2配線と前記第1端子との間を接続する第1接続線と、前記第3配線と前記第2端子との間を接続する第2接続線と、を備え、隣接する2本の前記第1配線または隣接する2本の前記第2配線にそれぞれ接続される2本の前記第1接続線の一方は、少なくとも一部が前記第1配線層及び前記第2配線層のうちの一方の配線層に形成され、前記2本の前記第1接続線の他方は、少なくとも一部が前記第1配線層及び前記第2配線層のうちの他方の配線層に形成されており、前記第1接続線及び前記第2接続線は、前記シール材が配置されているシール領域において、平面視で一部が重畳しており、前記シール領域であって、前記第1接続線及び前記第2接続線が重畳している領域において、前記2本の前記第1接続線の少なくとも一部は、平面視で重畳している。
 本実施形態の開示によれば、シール領域であって、第1接続線及び第2接続線が重畳している領域において、異なる層に配置され、隣接している2本の第1接続線の少なくとも一部は、平面視で重畳しているので、広い光透過領域を確保することができる。
図1は、第1の実施形態における表示装置の概略構成の一例を示す平面図である。 図2は、対向電極の配置例を示す図である。 図3は、図1の一点鎖線で囲まれた領域の拡大図である。 図4は、シール領域において、第1接続線と第2接続線が平面視で一部重畳している領域を含む領域の拡大平面図である。 図5は、図4のV-V切断線における断面図である。 図6は、本実施形態の光透過領域を示す平面図である。 図7は、第2の実施形態において、シール領域において、第1接続線と第2接続線が平面視で一部重畳している領域を含む領域の拡大平面図である。 図8は、第3の実施形態において、シール領域において、第1接続線と第2接続線が平面視で一部重畳している領域を含む領域の拡大平面図である。 図9は、図8のIX-IX切断線における断面図である。 図10は、第4の実施形態において、ソース線用検査パターンの配置位置を示す平面図である。 図11は、第4の実施形態の変形構成において、ソース線用検査パターン及びタッチセンサ用検査パターンの配置位置を示す平面図である。 図12は、タッチセンサ用検査パターンの拡大図である。 図13は、異なる層に形成されている2種類の第1接続線が平面視で重なっていない比較構成における光透過領域を示す平面図である。
 本発明の一実施形態における表示装置は、アクティブマトリクス基板と、前記アクティブマトリクス基板に対向する対向基板と、前記アクティブマトリクス基板及び前記対向基板の間に配置された表示機能層と、光を照射することによって硬化する材料からなり、前記アクティブマトリクス基板及び前記対向基板の間に前記表示機能層を封入するシール材と、を備え、前記アクティブマトリクス基板は、第1配線層に形成された第1配線と、前記第1配線層とは異なる第2配線層に形成された第2配線と、前記第1配線層及び前記第2配線層とは異なる第3配線層に形成され、前記第1配線及び前記第2配線に供給される信号とは異なる信号が供給される第3配線と、前記第1配線または前記第2配線に電気的に接続された第1端子と、前記第3配線と電気的に接続された第2端子と、前記第1配線または前記第2配線と前記第1端子との間を接続する第1接続線と、前記第3配線と前記第2端子との間を接続する第2接続線と、を備え、隣接する2本の前記第1配線または隣接する2本の前記第2配線にそれぞれ接続される2本の前記第1接続線の一方は、少なくとも一部が前記第1配線層及び前記第2配線層のうちの一方の配線層に形成され、前記2本の前記第1接続線の他方は、少なくとも一部が前記第1配線層及び前記第2配線層のうちの他方の配線層に形成されており、前記第1接続線及び前記第2接続線は、前記シール材が配置されているシール領域において、平面視で一部が重畳しており、前記シール領域であって、前記第1接続線及び前記第2接続線が重畳している領域において、前記2本の前記第1接続線の少なくとも一部は、平面視で重畳している(第1の構成)。
 第1の構成によれば、異なる配線層に形成されている、隣接する2本の第1接続線は、シール領域であって、第1接続線及び第2接続線が重畳している領域において、平面視で一部が重畳しているので、第1接続線及び第2接続線が配置されていない広い光透過領域を確保することができる。これにより、シール材が硬化不足となることを抑制することができる。
 第1の構成において、前記シール領域であって、前記第1接続線及び前記第2接続線が重畳している領域において、前記2本の前記第1接続線は、平面視で線幅全体が重畳している構成としても良い(第2の構成)。
 第2の構成によれば、2本の第1接続線は平面視で線幅全体が重畳しているので、より広い光透過領域を確保することができる。これにより、シール材が硬化不足となることをより効果的に抑制することができる。
 第1または第2の構成において、前記第3配線及び前記第2接続線は、少なくとも一部が透明導電膜により形成されている構成としても良い(第3の構成)。
 第3の構成によれば、第2接続線の少なくとも一部を透明導電膜により形成することにより、光透過領域を広くすることができる。
 第3の構成において、前記第3配線及び前記第2接続線は、少なくとも一部が金属膜及び前記透明導電膜が積層されることによって形成されており、前記金属膜の線幅は、前記透明導電膜の線幅よりも狭い構成としても良い(第4の構成)。
 第4の構成によれば、金属膜と透明導電膜の積層構造とすることにより、透明導電膜のみで形成する構成と比べて、抵抗を小さくすることができる。また、金属膜の線幅を透明導電膜の線幅よりも狭くすることにより、透光部分を確保することができる。
 第1から第4のいずれかの構成において、前記第2接続線は、前記シール領域と前記第2端子との間において、少なくとも一部が前記第1配線層または前記第2配線層に形成されている構成としても良い(第5の構成)。
 第5の構成によれば、第3配線層に形成されている第2接続線を、第1配線層または第2配線層の線に繋ぎ換えて構成することができる。
 第5の構成において、前記シール領域と前記第2端子との間において隣接する2本の前記第2接続線の少なくとも一部は、前記第1配線層及び前記第2配線層に交互に形成されている構成としても良い(第6の構成)。
 第6の構成によれば、隣接する2本の第2接続線の少なくとも一部を異なる配線層に交互に形成するので、同じ配線層に構成する構成と比べて、線間の短絡を抑制することができる。
 第6の構成において、隣接する2本の前記第2接続線は、前記第1配線層及び前記第2配線層に交互に形成されている部分の少なくとも一部が平面視で重畳する構成としても良い(第7の構成)。
 第7の構成によれば、光透過領域をさらに広くすることができる。
 第6または第7の構成において、前記第2接続線のうち、前記第3配線層に形成されている部分と、前記第1配線層または前記第2配線層に形成されている部分の境界は、前記シール領域、または前記シール領域と表示領域の間の領域にある構成としても良い(第8の構成)。
 第8の構成によれば、第2接続線のうち第3配線層に形成されている部分は、対向面側に対向基板がある領域にある。従って、第3配線層が第1配線層や第2配線層よりも上層にあり、保護層が少ない場合であっても、配線腐食が生じる可能性は低くなる。
 第8の構成において、前記アクティブマトリクス基板は、前記第3配線層に形成されている前記第2接続線と、前記第1配線層または前記第2配線層に形成されている前記第2接続線との境界に形成されている第2接続線用スイッチング素子をさらに備える構成としても良い(第9の構成)。
 第1から第9のいずれかの構成において、前記アクティブマトリクス基板は、前記第1端子と電気的に接続されている第1接続線用スイッチング素子をさらに備え、前記第1接続線用スイッチング素子は、前記第1端子を挟んで前記第1接続線とは反対側に配置されている構成としても良い(第10の構成)。
 第10の構成によれば、シール領域やシール領域よりも内側(表示領域側)に第1接続線用スイッチング素子を配置する構成と比べると、表示領域に近い領域に第1接続線用スイッチング素子を配置する必要がないので、額縁領域を縮小することができる。
 第5の構成において、前記第2接続線のうち、前記第3配線層に形成されている部分と、前記第1配線層または前記第2配線層に形成されている部分の境界は、前記シール領域に対して表示領域とは反対側の領域にある構成としても良い(第11の構成)。
 第11の構成によれば、シール領域で第3配線層に形成されている第2接続線を、第1配線層または第2配線層の線に繋ぎ換える構成と比べて、シール領域において第1接続線を形成する領域を広く確保することができる。
 第10または第11の構成において、前記アクティブマトリクス基板は、前記第2端子と電気的に接続されている第2接続線用スイッチング素子をさらに備え、前記第2接続線用スイッチング素子は、前記第2端子を挟んで前記第2接続線とは反対側に配置されている構成としても良い(第12の構成)。
 第12の構成によれば、第2接続線用スイッチング素子をシール領域に形成する構成と比べて、光透過領域を広くすることができる。
 第1から第12のいずれかの構成において、前記アクティブマトリクス基板は、前記第1接続線と前記第2接続線が平面視で重畳している領域において、前記第1接続線と前記第2接続線との間に設けられている絶縁膜をさらに備え、前記絶縁膜は有機膜としても良い(第13の構成)。
 第1から第13のいずれかの構成において、前記アクティブマトリクス基板は、複数のタッチセンサ用電極をさらに備え、前記第3配線は、前記タッチセンサ用電極と接続されている構成としても良い(第14の構成)。
 第14の構成によれば、タッチセンサ用電極を備えた表示装置において、広い光透過領域を確保することができる。これにより、シール材が硬化不足となることを抑制することができる。
 第1の構成において、前記2本の前記第1接続線の線幅は3μmであり、前記2本の前記第1接続線の少なくとも一部は、平面視で2μm以上重畳している構成としても良い(第15の構成)。
 第15の構成によれば、シール材が硬化不足とならない十分な広さの光透過領域を確保することができる。
 [実施の形態]
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [第1の実施形態]
 図1は、第1の実施形態における表示装置100の概略構成の一例を示す平面図である。この表示装置100は、タッチ位置検出機能を有し、例えば携帯電話機、携帯情報端末、ゲーム機、デジタルカメラ、プリンタ、カーナビゲーション、情報家電等に用いられるディスプレイである。
 この表示装置100は、アクティブマトリクス基板1と、対向基板2と、アクティブマトリクス基板1及び対向基板2に挟まれた表示機能層である液晶層(不図示)と、液晶層をアクティブマトリクス基板1及び対向基板2に封入するシール材3(図5参照)とを備える液晶ディスプレイである。図1に示すように、表示装置100は全体として縦長な矩形状である。表示装置100の長辺方向はY軸方向と一致しており、短辺方向はX軸方向と一致している。
 図1において、点線で囲まれた領域が画像を表示可能な表示領域10である。表示領域10の外側は、画像を表示不可能な非表示領域である。
 アクティブマトリクス基板1及び対向基板2は、ほぼ透明なガラス基板を備えている。図1に示すように、対向基板2の長辺寸法は、アクティブマトリクス基板1の長辺寸法よりも短い。このため、アクティブマトリクス基板1の長辺方向における一方の端部(図2に示す下側の端部)には、所定範囲にわたって対向基板2が重なり合わない領域が存在する。この領域に、駆動回路11が配置されている。駆動回路11は、図示しないFPC(Flexible Printed Circuits)を介して、外部の制御回路に接続されている。
 アクティブマトリクス基板1には、複数のゲート線(第1配線)12及び複数のソース線(第2配線)13が配置されている。ゲート線12は、X軸方向に延在し、Y軸方向に複数配置されている。ソース線13は、Y軸方向に延在し、X軸方向に複数配置されている。ゲート線12は第1配線層に形成されており、ソース線13は、第1配線層とは異なる第2配線層に形成されている。ゲート線12及びソース線13はそれぞれ、例えばアルミニウム、銅、チタン、モリブデン、クロム等の金属膜、あるいはこれらの合金や積層膜により形成される。
 図1に示すように、ゲート線12とソース線13は交差している。ゲート線12とソース線13とが交差する位置の近くには、スイッチング素子としての薄膜トランジスタ(不図示)が配置されている。薄膜トランジスタのゲート電極は、ゲート線12に接続され、ソース電極はソース線13に接続されている。また、薄膜トランジスタのドレイン電極は、画素電極(不図示)に接続されている。
 本実施形態における表示装置100は、液晶層に含まれる液晶分子の駆動方式がIPS方式やFFS方式などの横電界駆動方式である。横電界駆動方式を実現するため、電界を形成するための画素電極及び対向電極(共通電極と呼ばれることもある)は、アクティブマトリクス基板1に形成されている。
 図2は、対向電極31の配置例を示す図である。対向電極31は、矩形状であり、表示領域10に、マトリクス状に複数配置されている。この対向電極31は、タッチ位置を検出するためのタッチセンサ電極としても機能する。なお、図示は省略するが、対向電極31には、横電界を生じさせるためのスリットが複数設けられている。
 各対向電極31は、Y軸方向に延びるタッチセンサ用配線(第3配線)14、及び第2接続線24を介して、駆動回路11と接続されている。タッチセンサ用配線14は、第1配線層及び第2配線層とは異なる第3配線層に形成されており、ゲート線12及びソース線13に供給される信号とは異なる信号が供給される。タッチセンサ用配線14及び第2接続線24は、例えば銅、チタン、モリブデン、アルミニウム、クロム等の金属膜、あるいはこれらの合金や積層膜により形成される。なお、図2では、第2接続線24を直線形状で示しているが、実際には、図1に示すように、直線形状ではない。
 タッチ位置の検出方法について簡単に説明しておく。対向電極31は、隣接する対向電極31等との間に寄生容量が形成されているが、人の指等が表示装置100の表示画面に触れると、人の指等との間で容量が形成されるため、静電容量が増加する。タッチ位置検出制御の際、駆動回路11は、タッチセンサ用配線14を介して、タッチ駆動信号を対向電極31に供給し、タッチセンサ用配線14を介してタッチ検出信号を受信する。これにより、静電容量の変化を検出して、タッチ位置を検出する。このタッチ位置検出方法は、いわゆる自己容量方式である。
 アクティブマトリクス基板1には、表示領域10の短辺方向の両外側に、一対のゲートドライバ15が配置されている。各ゲート線12は、ゲートドライバ15と接続されている。ゲートドライバ15は、ゲートドライバ駆動用配線16を介して、ゲートドライバ駆動用信号端子17と接続されている。ゲートドライバ15は、外部の制御回路からゲートドライバ駆動用配線16を介して入力される走査信号を、各ゲート線12に所定のタイミングで供給して各ゲート線12を順次に走査する走査回路を有している。
 上述したように、液晶層をアクティブマトリクス基板1及び対向基板2に封入するために、シール材3が設けられている。シール材3には、光を照射することによって硬化する光硬化樹脂が用いられている。光硬化樹脂は、紫外線を照射することによって硬化する樹脂であっても良いし、可視光を照射することによって硬化する樹脂でも良い。また、紫外線や可視光以外の光を照射することによって硬化する樹脂でも良い。さらに、光硬化性及び熱硬化性の両方を有するシール材であっても良い。
 ここでは、シール材3が配置されている領域をシール領域20と呼ぶ。図1では、一部しか示していないが、シール領域20は、表示領域10の外側であって、表示領域10を取り囲むように形成されている。
 図3は、図1の一点鎖線で囲まれた領域の拡大図である。アクティブマトリクス基板1には、ソース線用検査パターン18が設けられている。ソース線用検査パターン18には、ソース線13の短絡や断線を検出するために、ソース線13への信号の供給を制御するためのスイッチング素子(検査用TFT)が複数設けられている。ソース線用検査パターン18は、ソース線検査信号入力用端子19と接続されている。ソース線検査信号入力用端子19には、外部の制御回路から、ソース線検査信号が入力される。
 ソース線13は、表示領域10内に設けられている。表示領域10の外側である非表示領域には、第1接続線21が設けられている。第1接続線21は、非表示領域において、ソース線13とソース線用信号出力端子(第1端子)26とを接続するための線である。すなわち、ソース線13は、第1接続線21を介してソース線用信号出力端子26と電気的に接続されている。第1接続線21は、例えばアルミニウム、銅、チタン、モリブデン、クロム等の金属膜、あるいはこれらの合金や積層膜により形成される。
 第1接続線21のうち、ソース線13とソース線用検査パターン18との間の部分は、ソース線13と同じ第2配線層に形成されている。一方、第1接続線21のうち、ソース線用検査パターン18とソース線用信号出力端子26との間の部分は、ソース線13と同じ第2配線層に形成されている線と、ゲート線12と同じ第1配線層に形成されている線が存在する。ここでは、ソース線用検査パターン18とソース線用信号出力端子26との間において、第1配線層に形成されている第1接続線21を第1接続線21aと呼び、第2配線層に形成されている第1接続線21を第1接続線21bと呼ぶ。また、第1接続線21aと第1接続線21bを区別する必要が無い場合には、第1接続線21と総称する。
 第1接続線21aと第1接続線21bは、交互に配置されている。すなわち、隣接する2本のソース線13の一方は、第1接続線21aと接続されており、他方は第1接続線21bと接続されている。図1及び図3では、便宜上、隣接する第1接続線21aと第1接続線21bを離間した状態で示しているが、後述するように、本実施形態では、隣接する第1接続線21aと第1接続線21bの一部は平面視で重畳している。
 アクティブマトリクス基板1には、タッチセンサ用検査パターン22が設けられている。本実施形態では、タッチセンサ用検査パターン22を2箇所に配置しているが、2箇所に限定されることはない。タッチセンサ用検査パターン22には、タッチセンサ用配線14の短絡や断線を検出するために、タッチセンサ用配線14への信号の供給を制御するためのスイッチング素子(検査用TFT)が複数設けられている。タッチセンサ用検査パターン22は、タッチセンサ検査信号入力用端子23と接続されている。タッチセンサ検査信号入力用端子23には、外部の制御回路から、タッチセンサ検査信号が入力される。なお、2箇所のタッチセンサ用検査パターン22のそれぞれにおいて、同じタッチセンサ検査信号を入力するための配線は、互いに接続されていても良い。このような構成にすると、2箇所のタッチセンサ用検査パターン22において、タッチセンサ検査信号の伝達性の差を抑制できるため、検査時の表示ムラを低減することができる。さらに、タッチセンサ用検査パターン22や対向電極31の特定部分が帯電しないように、電荷を分散させやすくする効果もある。このとき、この接続配線を、第3配線層を用いて形成することで、工程を追加することなく製造することができる。
 タッチセンサ用配線14は、表示領域10内に設けられている。表示領域10の外側である非表示領域には、第2接続線24が設けられている。第2接続線24は、非表示領域において、タッチセンサ用配線14とタッチセンサ用信号出力端子(第2端子)25とを接続するための線である。すなわち、タッチセンサ用配線14は、第2接続線24を介してタッチセンサ用信号出力端子25と電気的に接続されている。
 第2接続線24のうち、タッチセンサ用配線14とタッチセンサ用検査パターン22との間の部分は、タッチセンサ用配線14と同じ第3配線層に形成されている。一方、第2接続線24のうち、タッチセンサ用検査パターン22とタッチセンサ用信号出力端子25との間の部分は、ゲート線12と同じ第1配線層に形成されている線と、ソース線13と同じ第2配線層に形成されている線が存在する。ここでは、タッチセンサ用検査パターン22とタッチセンサ用信号出力端子25との間において、第1配線層に形成されている第2接続線24を第2接続線24aと呼び、第2配線層に形成されている第2接続線24を第2接続線24bと呼ぶ。また、第3配線層に形成されている第2接続線24を第2接続線24cと呼ぶ。第2接続線24a、第2接続線24b、及び第2接続線24cを区別する必要が無い場合には、第2接続線24と総称する。
 すなわち、タッチセンサ用配線14と接続されている第2接続線24cは、タッチセンサ用検査パターン22で、第1配線層に形成されている第2接続線24aまたは第2配線層に形成されている第2接続線24bに繋ぎ換えられている。
 図3では、第1配線層に形成されている線、第2配線層に形成されている線、及び第3配線層に形成されている線を、線の太さによって区別している。すなわち、第3配線層に形成されている線、第1配線層に形成されている線、第2配線層に形成されている線の順に、線が太くなるように図示している。
 第2接続線24aと第2接続線24bは、交互に配置されている。すなわち、隣接する2本の第2接続線24cの一方は、第2接続線24aと接続されており、他方は第2接続線24bと接続されている。
 なお、第1接続線21や第2接続線24のような接続線は、引き出し線と呼ばれることもある。
 図3に示すように、タッチセンサ用検査パターン22は、シール領域20、すなわち、アクティブマトリクス基板1と対向する対向基板2が設けられている領域に形成されている。すなわち、第3配線層に形成されている第2接続線24cは、対向基板2の無い領域には形成されていない。一方、第1配線層に形成されている第2接続線24a及び第2配線層に形成されている第2接続線24bは、図3に示すように、対向基板2の無い領域にも形成されている。
 図5を用いて後述するように、第2接続線24cが形成されている第3配線層は、第1配線層及び第2配線層と比べて、アクティブマトリクス基板1のガラス基板から最も遠い位置にある。第2接続線24cを保護する絶縁膜は、第2絶縁膜55(図5参照)だけなので、対向基板2の無い領域に第2接続線24cを形成すると、配線腐食が生じる懸念がある。また、駆動回路11を実装した後に、駆動回路11の不良等によって駆動回路11を交換する必要が生じた場合、対向基板2の無い領域に第2接続線24cが形成されていると、第2接続線24cは欠損しやすい。
 しかしながら、本実施形態では、第2接続線24cは、対向基板2の無い領域には形成されていないので、上述した配線腐食や欠損等の不具合の発生を抑制することができる。また、隣接する第2接続線24cは、異なる層に形成されている第2接続線24a及び第2接続線24bに交互に繋ぎ換えられているので、第2接続線24aだけ、または第2接続線24bだけに繋ぎ換えられた場合と比べて、線幅や線の間隔を広くすることができる。これにより、断線や短絡を低減することができるので、製造時の歩留まりを向上させることができる。
 一方、第1配線層に形成されている第2接続線24a及び第2配線層に形成されている第2接続線24bは、第1絶縁膜53、平坦化膜54、及び第2絶縁膜55により保護されているので(図5参照)、対向基板2の無い領域に形成されていても、上述した配線腐食や欠損等の不具合は発生しにくい。
 なお、第2接続線24cから第2接続線24aまたは第2接続線24bへの繋ぎ換えは、シール領域20で行っているが、シール領域20と表示領域10との間で行っても良い。
 また、第3配線層に形成されている第2接続線24cは、第1配線層に形成されている第2接続線24aだけに繋ぎ換えられる構成としても良いし、第2配線層に形成されている第2接続線24bだけに繋ぎ換えられる構成としても良い。第2接続線24cをどの層の線に繋ぎ換えるかは、第2接続線24の本数や、駆動回路11のサイズ、液晶ディスプレイの外形(額縁領域の大きさ)によって、適宜決定することができる。例えば、図5を用いて後述するように、第1配線層に形成されている第2接続線24aは、第2配線層に形成されている第2接続線24bよりも保護層が多いため、第2接続線24cを第2接続線24aだけに繋ぎ換えると、配線腐食等の懸念をより低減することができる。
 上述したように、タッチセンサ用検査パターン22は、シール領域20、すなわち、アクティブマトリクス基板1と対向する対向基板2が設けられている領域に形成されている。タッチセンサ用検査パターン22が形成されている領域と対向する対向基板2側の領域には、ブラックマトリクスが設けられている。タッチセンサ用配線14の断線や短絡の検査を行う際には、駆動回路11は実装されておらず、タッチセンサ用検査パターン22に含まれる複数のスイッチング素子(検査用TFT)は、駆動回路チップに覆われていない。このため、タッチセンサ用検査パターン22が形成されている領域と対向する対向基板2側の領域にブラックマトリクスが形成されていない場合には、検査環境によっては、外光がスイッチング素子(検査用TFT)に入射し、スイッチング素子の特性が変動する可能性がある。しかしながら、本実施形態では、タッチセンサ用検査パターン22が形成されている領域と対向する対向基板2側の領域には、ブラックマトリクスが設けられているので、検査時のスイッチング素子の特性の変動を抑制することができる。
 図3に示すように、シール領域20において、第1接続線21a及び第1接続線21bと、第2接続線24cは交差している。すなわち、シール領域において、第1接続線21a及び第1接続線21bと、第2接続線24cは、平面視で一部が重畳している。
 図4は、シール領域20において、第1接続線21a及び第1接続線21bと、第2接続線24cが平面視で一部重畳している領域を含む領域の拡大平面図である。本実施形態では、シール領域20内で第1接続線21a及び第1接続線21bと、第2接続線24とが重畳している領域において、異なる層に形成されている第1接続線21a及び第1接続線21bが平面視で一部が重畳している。
 ここでは、第1接続線21aの線幅は3μmであり、隣接する第1接続線21a間の間隔h1は6μmである。また、第1接続線21bの線幅は3μmであり、隣接する第1接続線21b間の間隔h2は6μmである。第1接続線21a及び第1接続線21bは平行であり、一部が重畳している。第1接続線21a及び第1接続線21bの重なり幅h3は1μmである。また、第2接続線24cの線幅は3μmであり、隣接する第2接続線24c間の間隔h4は9.5μmである。
 ただし、第1接続線21a及び第1接続線21bの重なり幅h3は1μm未満でも良いし、1μm以上3μm未満であっても良い。また、第1接続線21a及び第1接続線21bの線幅は、同じでなくても良い。さらに、第1接続線21a、第1接続線21b、及び第2接続線24cの線幅や隣接する線間の間隔が上述した数値に限定されることはない。
 図5は、図4のV-V切断線における断面図である。アクティブマトリクス基板1のガラス基板51の上には、第1接続線21aが形成されている。第1接続線21aは、ゲート線12及びゲート電極と同じ第1配線層に形成されている。
 ゲート絶縁膜52は、第1接続線21aを覆うように形成されている。ゲート絶縁膜52は、例えば窒化ケイ素(SiNx)や酸化ケイ素(SiOx)からなる。
 ゲート絶縁膜52の上には、第1接続線21bが形成されている。第1接続線21bは、ソース線13及びソース電極と同じ第2配線層に形成されている。
 上述したように、第1接続線21a及び第1接続線21bは、平面視で一部が重なっており、その重なり幅h3は、例えば1μmである。
 第1絶縁膜53は、第1接続線21bを覆うように形成されている。第1絶縁膜53は、例えば窒化ケイ素(SiNx)や酸化ケイ素(SiOx)からなる。
 第1絶縁膜53の上には、絶縁膜である平坦化膜54が形成されている。平坦化膜54は有機膜であって、例えば感光性を有するアクリル系樹脂材料などからなる。平坦化膜54は、第1接続線21a、第1接続線21bと第2接続線24との間の静電容量を低減するために、比誘電率が低い(例えば2~4)材料で、厚膜(例えば1~4μm)に形成することが好ましい。
 平坦化膜54の上には、第2接続線24cが形成されている。
 第2絶縁膜55は、第2接続線24cを覆うように形成されている。第2絶縁膜55は、例えば窒化ケイ素(SiNx)や酸化ケイ素(SiOx)からなる。表示領域10では、第2絶縁膜55の上に対向電極31が形成されている。対向電極31は、第2絶縁膜55に形成されているコンタクトホールを介して、タッチセンサ用配線14と接続されている。また、表示領域10に設けられている画素電極は、第2接続線24cと同様に平坦化膜54の上に形成され、第2絶縁膜55で覆われている。
 第2絶縁膜55の上には、シール材3が設けられている。なお、図5では、シール領域20に配置されているスペーサは省略している。
 シール材3を挟んでアクティブマトリクス基板1と反対側には対向基板2が設けられている。対向基板2のガラス基板56にはブラックマトリクス57が形成されており、ブラックマトリクス57とシール材3との間には、オーバーコート層58が形成されている。なお、対向基板2の表示領域10には、カラーフィルタ(不図示)が形成されている。
 上述したように、シール材3には、光を照射することによって硬化する光硬化樹脂が用いられている。光は、アクティブマトリクス基板1のガラス基板51側から照射する。第1接続線21a、第1接続線21b、及び第2接続線24は、光透過性の低い不透明な金属膜により形成されているため、ガラス基板51側から照射された光は、第1接続線21a、第1接続線21b、及び第2接続線24が形成されていない領域S1を介してシール材3に到達する。図5に示すように、第1接続線21a及び第1接続線21bの一部が重なっていることにより、第1接続線21a及び第1接続線21bが重なっていない構成と比べて、第1接続線21a、第1接続線21b、及び第2接続線24が形成されていない領域S1(以下、光透過領域S1と呼ぶ)を広くすることができる。これにより、シール材3に十分な光を照射することができるので、表示装置100の製造時に、シール材3が硬化不足となるのを抑制することができる。
 異なる層に形成されている第1接続線21a及び第1接続線21bが平面視で一部重なっている本実施形態における光透過領域S1の広さと、第1接続線21a及び第1接続線21bが平面視で重なっていない比較構成における光透過領域S2の広さの違いについて説明する。図6は、本実施形態の光透過領域S1を示す平面図である。また、図13は、第1接続線131a及び第1接続線131bが平面視で重なっていない比較構成における光透過領域S2を示す平面図である。光透過領域S2は、第1接続線131a、第1接続線131b、及び第2接続線132cで囲まれた領域である。
 図13に示す比較構成において、シール領域における光透過領域S2の割合は約25%である。一方、図6に示す本実施形態の構成によれば、シール領域20における光透過領域S1の割合は約33%である。この33%という値は、図13に示す比較構成において、第2接続線132cを除外した場合の光透過領域の割合と同等であり、本出願の発明者によって、シール材3の硬化不足は生じないことが確認されている。
 すなわち、本実施形態における表示装置100によれば、タッチ検出機能の無い表示装置に対して、タッチ位置を検出するための構成であるタッチセンサ用配線14及び第2接続線24を配置した構成であっても、シール領域20において、タッチ検出機能の無い表示装置と同等の光透過領域の割合を維持することができる。これにより、シール材3の硬化不足を抑制することができるので、高品質の表示装置を提供することができる。
 なお、比較構成と比べて広い光透過領域S1を確保するためには、平面視で隣接する第1接続線21a及び第1接続線21bの少なくとも一部が重畳していれば良い。しかしながら、アクティブマトリクス基板1を製造する際に、第1接続線21aが形成される第1配線層に対する、第1接続線21bが形成される第2配線層のアライメントずれが1μm程度生じる場合がある。また、第1接続線21a及び第1接続線21bの線幅のばらつきが1μm程度生じる場合がある。このアライメントずれや線幅のばらつきは、表示装置の製造時に、液晶パネルを多面取りできる、大きいマザーガラスにおいて顕著となる。
 第1接続線21aと第1接続線21bの重なり幅h3を1μm未満とした場合、上述したアライメントずれや線幅のばらつき等によって、光透過領域を十分に確保できない可能性がある。従って、第1接続線21aと第1接続線21bの重なり幅h3は少なくとも1μm以上であることが好ましい。より好ましくは、第1接続線21aと第1接続線21bの重なり幅h3は、2μm以上である。
 なお、図3に示すように、シール領域20には、第1配線層に形成されている第2接続線24a、及び第2配線層に形成されている第2接続線24bが形成されている領域がある。具体的には、シール領域20のうち、タッチセンサ用検査パターン22とタッチセンサ用信号出力端子25との間の領域には、第2接続線24a及び第2接続線24bが形成されている。この領域において、隣接する第2接続線24a及び第2接続線24bの一部を重畳させる構成とすれば、光透過領域S1をさらに広くすることができ、シール材3の硬化不足をより効果的に抑制することができる。
 <第2の実施形態>
 図7は、第2の実施形態において、シール領域20において、第1接続線21a及び第1接続線21bと、第2接続線24cが平面視で一部重畳している領域を含む領域の拡大平面図である。第2の実施形態では、隣接する2本のソース線13とそれぞれ接続されている第1接続線21a及び第1接続線21bは完全に重なっている。すなわち、第1接続線21a及び第1接続線21bの線幅は、第1の実施形態と同様に3μmであるが、第1接続線21a及び第1接続線21bの重なり幅h3は3μmである。
 この場合のシール領域20における光透過領域S1の割合は、約50%である。すなわち、第2の実施形態の構成によれば、第1の実施形態の構成と比べて、光透過領域S1を広くすることができるので、シール材3の硬化不足をより効果的に抑制することができる。
 なお、本出願の発明者による実験によれば、光透過領域S1の割合が33%あれば、シール材3の硬化不足は生じないという結果が得られている。従って、隣接する2本のソース線13とそれぞれ接続されている第1接続線21a及び第1接続線21bを完全に重ねる構成において、第1接続線21a及び第1接続線21bの線幅を広くしつつ、光透過領域の面積比率を33%に維持する構成とすることもできる。第1接続線21a及び第1接続線21bの線幅を広くすることにより、第1接続線21a及び第1接続線21bの断線を抑制することができるので、製造時の歩留まりを向上させることができる。なお、第1接続線21a及び第1接続線21bの線幅を広くする代わりに、第2接続線24の線幅を広くするようにしても良い。
 また、図3に示すように、シール領域20には、第1配線層に形成されている第2接続線24a、及び第2配線層に形成されている第2接続線24bが形成されている領域がある。この領域において、隣接する2本の第2接続線24cとそれぞれ接続されている第2接続線24a及び第2接続線24bを完全に重ねる構成とすれば、光透過領域S1をさらに広くすることができ、シール材3の硬化不足をより効果的に抑制することができる。
 <第3の実施形態>
 図8は、第3の実施形態において、シール領域20において、第1接続線21a及び第1接続線21bと、第2接続線24cが平面視で一部重畳している領域を含む領域の拡大平面図である。図9は、図8のIX-IX切断線における断面図である。
 本実施形態では、図9に示すように、第2接続線24cは、金属膜81と透明導電膜82の二層により形成されている。具体的には、金属膜81の下に透明導電膜82が形成されている。金属膜81は、光透過性が低い不透明な金属の膜であって、例えば銅、チタン、モリブデン、アルミニウム、クロム等やこれらの合金である。透明導電膜82は、例えばITOである。ただし、透明導電膜82がITOに限定されることはなく、IZO等の他の透明導電材料により形成されていても良い。透明導電膜82は、画素電極と同じ層に形成されるため、画素電極と同じ材料を用いて、同じ工程でパターン形成することができる。
 また、第2接続線24cと同様に、第3配線層に形成されているタッチセンサ用配線14も金属膜と透明導電膜の二層により形成されている。
 金属膜81の線幅は、透明導電膜82の線幅よりも狭い。例えば、金属膜81の線幅は3μmであり、透明導電膜82の線幅は5μmである。ただし、これらの数値は一例であって、例えば、透明導電膜の線幅は5μm以上(例えば7μm以上)であっても良い。
 銅やアルミニウムのような金属と比べて、ITOの抵抗は1桁以上高い。従って、タッチセンサ用配線14及び第2接続線24cの全てをITOのような透明導電膜で形成した場合には、信号の伝達性が低くなる。しかしながら、本実施形態では、金属膜81と透明導電膜82の二層によりタッチセンサ用配線14及び第2接続線24cを構成しているので、透光部分を確保しつつ、低抵抗かつ冗長性に優れた配線とすることができる。
 ここで、冗長性を活かして、シール領域20における第2接続線24cの金属膜81の線幅を細くし(例えば2μm)、シール領域20より内側(表示領域10側)の領域の金属膜81の線幅を太く(例えば4μm)しても良い。シール領域20における金属膜81の線幅を細くすることにより、シール材3に光を照射することができる光透過領域S1を広くすることができる。また、シール領域20より内側の領域の金属膜81の線幅を太くすることにより、抵抗を低くすることができ、また、金属膜81の断線を抑制することができるので、製造時の歩留まりを向上させることができる。
 <第4の実施形態>
 図10は、第4の実施形態において、ソース線用検査パターン18の配置位置を示す平面図である。図10において、図3と同じ構成部分については、同じ符号を付している。第1の実施形態では、ソース線用検査パターン18は、シール領域20の内側に形成されていたが、本実施形態では、駆動回路11を実装する領域101に形成されている。より詳細には、ソース線用信号出力端子26を挟んで第1接続線21a、21bとは反対側に、ソース線用検査パターン18が形成されている。
 ソース線用検査パターン18を駆動回路11の実装領域101に配置する構成によれば、表示領域10に近い領域にソース線用検査パターン18を配置する必要がないので、額縁領域を縮小することができる。また、ソース線用検査パターン18とソース線検査信号入力用端子19との間を接続する配線102をシール領域20に形成する必要がないので、接続線(第1接続線21a、21b、第2接続線24c)のレイアウトの自由度が向上する。
 さらに、図3に示すように、ソース線用検査パターン18を表示領域10に近い領域に形成した場合には、接続線の断線を検出できない部分(ソース線用検査パターン18とソース線用信号出力端子26との間)がある。しかしながら、本実施形態の構成によれば、ソース線用検査パターン18とソース線用信号出力端子26との間の接続線の断線も検出することができる。
 なお、図10に示す構成では、タッチセンサ用検査パターン22は、駆動回路11を実装する領域101には配置していない。これにより、ソース線用検査パターン18を配置する領域として、タッチセンサ用信号出力端子25の下の領域(タッチセンサ用信号出力端子25に対して第2接続線24a、24bとは反対側の領域)も使用することができる。このため、ソース線用検査パターン18をX軸方向の広い領域に配置することができるため、ソース線用検査パターン18内の断線や短絡等の不良を抑制することができる。また、ソース線13の本数が多い高精細な表示装置の検査も実施することが可能となる。
  <第4の実施形態の変形構成>
 図11は、第4の実施形態の変形構成において、ソース線用検査パターン18及びタッチセンサ用検査パターン22の配置位置を示す平面図である。図11において、図3及び図10と同じ構成部分については、同じ符号を付している。この変形構成例では、ソース線用検査パターン18だけでなく、タッチセンサ用検査パターン22も駆動回路11を実装する領域101に形成されている。より詳細には、タッチセンサ用検査パターン22は、タッチセンサ用信号出力端子25に対して、第2接続線24a、24bとは反対側に形成されている。すなわち、第2接続線24cは、第2接続線24aまたは第2接続線24bと、シール領域20に対して表示領域10とは反対側の領域で繋ぎ換えられている。
 この構成によれば、第3配線層に形成されている第2接続線24cは、対向基板2の無い領域で、第1配線層に形成されている第2接続線24aまたは第2配線層に形成されている第2接続線24bに繋ぎ換えられている。これにより、シール領域20で第2接続線24cを第2接続線24aまたは第2接続線24bに繋ぎ換える構成と比べて、第1接続線21a、21bを形成する領域を広く確保することができる。
 すなわち、シール領域20で第2接続線24cを第2接続線24aまたは第2接続線24bに繋ぎ換える構成(図3参照)では、第1接続線21aが形成されている第1配線層に第2接続線24aが存在し、第1接続線21bが形成されている第2配線層に第2接続線24bが存在する。しかし、図11に示す構成によれば、シール領域20に配置される第2接続線24は、第3配線層に形成されている第2接続線24cだけとなる。これにより、第1接続線21a、21bの間隔を広げたり、額縁領域を縮小することができる。
 ソース線用検査パターン18及びタッチセンサ用検査パターン22を駆動回路11の実装領域101に形成する場合、その形成領域は、駆動回路11のサイズに制限される。駆動回路11の幅が表示領域10の幅よりも狭い場合、例えば、スイッチング素子(検査用TFT)を複数段にわたって千鳥配置する必要がある。
 図12は、タッチセンサ用検査パターン22の部分拡大図である。図12に示す例では、タッチセンサ用検査パターン22に含まれる複数のスイッチング素子(検査用TFT)121が4段にわたって千鳥配置されている。なお、図示は省略するが、ソース線用検査パターン18に含まれる複数のスイッチング素子(検査用TFT)についても同様に、複数段にわたって千鳥配置される。
 ここで、タッチセンサ用配線14及び第2接続線24の断線や短絡不良を検出する検査方法の一例について説明しておく。まず初めに、第1共通配線122a及び/または第2共通配線122bから、所定のタッチセンサ用配線14を介して対向電極31に電圧を印加して、特定パターンを表示させる。隣接するタッチセンサ用配線14の一方は、スイッチング素子121を介して第1共通配線122aと接続されており、他方は、スイッチング素子121を介して第2共通配線122bと接続されている。そして、検査員による目視判定または画像処理による判定により、特定パターンが正常に表示されているかを確認することにより、断線や短絡不良を検出する。なお、この検査を行う際には、ゲートドライバ15とソース線用検査パターン18とを用いて、画素電極に基準電位を供給する。
 特定パターンとしては、例えば、ストライプ状のパターンや市松模様のパターンがある。ストライプ状のパターンとは、複数行にわたって配置されている対向電極31に対応する画素について、1行毎に白表示と黒表示を交互に表示する表示パターンである。また、市松模様パターンとは、マトリクス状に配置されている対向電極31に対応する画素について、行方向及び列方向のいずれの方向においても、隣接する2つの対向電極の一方に対応する画素は白表示とし、他方に対応する画素は黒表示とする表示パターンである。ここで、白表示とは、表示装置の背面(アクティブマトリクス基板1のガラス基板側)に配置した光源(バックライト)からの光を透過させるような表示であり、黒表示用とは、光源からの光を透過させない表示である。
 ストライプ状のパターンや市松模様のパターンを表示するためには、スイッチング素子121に接続する共通配線122は、図12の第1共通配線122a及び第2共通配線122bのように、少なくとも2本あれば良い。図12では、第1共通配線122a及び第2共通配線122bとは別に、スイッチング素子121のオン/オフを制御するためのオン/オフ制御配線123を示している。検査時に、オン/オフ制御配線123には、同じ信号が入力される。
 なお、スイッチング素子121に検査信号を入力するための共通配線122の本数を増やせば、種々のパターンを表示させることができ、検査精度を高くすることができる。例えば、共通配線122を4本にすると、同じ配線層で形成した隣接配線の短絡も検出することができる。一方、共通配線122の本数を増やすと、その配置領域を確保するために、狭額縁化に対応できなくなったり、接続線幅のレイアウトが困難になる可能性がある。このため、共通配線122の本数は、FPC端子領域や液晶ディスプレイの外形(額縁領域の大きさ)等によって、適宜設定する。
 以上、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。例えば、各実施形態及びその変形構成における技術的特徴は、適宜組み合わせることができる。
 上述した各実施形態では、表示装置100として、タッチセンサ機能付き液晶ディスプレイを例に挙げて説明したが、タッチセンサ機能付き液晶ディスプレイに限定されることはない。例えば、表示装置100は、タッチパネルを内蔵しない有機エレクトロルミネッセンス(有機EL)ディスプレイであっても良い。表示装置100が有機ELディスプレイの場合、第1配線はゲート線、第2配線はソース線、第3配線は、発光期間中に有機EL層に電流を供給する配線にそれぞれ対応させることができる。例えば、国際公開第2013/157285号の実施形態8に開示されているアクティブマトリクス型有機ELディスプレイにおいて、ゲートバスライン113、データバスライン112、発光制御線121をそれぞれ、第1配線、第2配線、第3配線に対応させることができる。
 上述した各実施形態において、ゲート線12は、X軸方向に延在し、Y軸方向に複数配置されており、ソース線13は、Y軸方向に延在し、X軸方向に複数配置されていた。しかし、ゲート線12がY軸方向に延在し、X軸方向に複数配置されており、ソース線13がX軸方向に延在し、Y軸方向に複数配置されている構成であっても良い。
 上述した各実施形態において、第1配線はゲート線12、第2配線はソース線13、第3配線はタッチセンサ用配線14であるものとして説明したが、第1配線~第3配線がこれらの線に限定されることはない。
 液晶ディスプレイの液晶層に含まれる液晶分子の駆動方式は、IPS方式やFFS方式などの水平配向の横電界駆動方式として説明したが、他の方式であっても良い。例えば、誘電率異方性が負の液晶と垂直配向膜を用いた横電界駆動方式であっても良い。
 ここで、液晶の配向方法として、配向膜上にポリマーによる配向支持層を形成する方法が知られている。VA方式(垂直配向方式)の液晶ディスプレイでは、例えばPSA(Polymer Sustained Alignment)技術として実用化されている。詳しくは、液晶中に光重合性のモノマーを添加しておき、液晶に電圧を印加した状態(液晶分子を垂直方向から傾斜させた状態)で、光または熱によりモノマーをポリマー化させる。このとき、配向膜(VA方式の場合は垂直配向膜)上に、液晶分子の初期配向の方向をわずかに(2~3度)垂直配向から傾斜させるようなポリマー層が形成される。
 このようなポリマーを利用した配向方法は、IPS方式やFFS方式などの横電界駆動方式の場合にも利用されている。横電界方式の場合は、ラビングや光配向によって配向処理された水平配向膜上にポリマーを形成するが、モノマーのポリマー化は、液晶に電圧を印加しない状態で行う。このポリマー化の際に画素電極や対向電極に電荷が蓄積されていると、液晶が好ましくない配向状態でポリマー化されることになり、表示ムラやコントラスト低下の原因となる。このため、液晶に電圧が印加されないように、タッチセンサ用配線14、第2接続線24、及びタッチセンサ用検査パターン22に含まれるスイッチング素子121を用いて、画素電極や対向電極31の電荷を分散させることができる。すなわち、タッチセンサ用配線14、第2接続線24、及びタッチセンサ用検査パターン22に含まれるスイッチング素子121は、タッチセンサ用配線14及び第2接続線24の断線や短絡不良等の検査のためだけでなく、上述した画素電極や対向電極31の電荷の分散のためにも用いることができる。
 タッチ位置の検出方法は、いわゆる自己容量方式であったが、相互容量方式であっても良い。すなわち、相互容量方式のタッチ位置検出機能を有する表示装置にも、本発明を適用することができる。
 検査時に表示する特定パターンは、上述したストライプパターンや市松模様パターンに限定されることはない。
 上述した説明では、ソース線13は、表示領域10内に設けられており、ソース線13と接続される第1接続線21は、非表示領域に設けられているものとした。しかし、ソース線13は、表示領域10内だけでなく、非表示領域にも配置される長さであっても良い。また、ソース線13は、第1接続線21を介してソース線用信号出力端子26と接続されているものとして説明したが、ソース線13と第1接続線21とを区別せずに、全てをソース線と呼ぶこともできる。ゲート線12及びタッチセンサ用配線14についても同様である。
 1…アクティブマトリクス基板、2…対向基板、3…シール材、10…表示領域、11…駆動回路、12…ゲート線、13…ソース線、14…タッチセンサ用配線、18…ソース線用検査パターン、20…シール領域、21a、21b…第1接続線、22…タッチセンサ用検査パターン、23…タッチセンサ検査信号入力用端子、24a、24b、24c…第2接続線、25…タッチセンサ用信号出力端子、26…ソース線用信号出力端子、81…金属膜、82…透明導電膜、100…表示装置

Claims (15)

  1.  アクティブマトリクス基板と、
     前記アクティブマトリクス基板に対向する対向基板と、
     前記アクティブマトリクス基板及び前記対向基板の間に配置された表示機能層と、
     光を照射することによって硬化する材料からなり、前記アクティブマトリクス基板及び前記対向基板の間に前記表示機能層を封入するシール材と、
    を備え、
     前記アクティブマトリクス基板は、
      第1配線層に形成された第1配線と、
      前記第1配線層とは異なる第2配線層に形成された第2配線と、
      前記第1配線層及び前記第2配線層とは異なる第3配線層に形成され、前記第1配線及び前記第2配線に供給される信号とは異なる信号が供給される第3配線と、
      前記第1配線または前記第2配線に電気的に接続された第1端子と、
      前記第3配線と電気的に接続された第2端子と、
      前記第1配線または前記第2配線と前記第1端子との間を接続する第1接続線と、
      前記第3配線と前記第2端子との間を接続する第2接続線と、
     を備え、
     隣接する2本の前記第1配線または隣接する2本の前記第2配線にそれぞれ接続される2本の前記第1接続線の一方は、少なくとも一部が前記第1配線層及び前記第2配線層のうちの一方の配線層に形成され、前記2本の前記第1接続線の他方は、少なくとも一部が前記第1配線層及び前記第2配線層のうちの他方の配線層に形成されており、
     前記第1接続線及び前記第2接続線は、前記シール材が配置されているシール領域において、平面視で一部が重畳しており、
     前記シール領域であって、前記第1接続線及び前記第2接続線が重畳している領域において、前記2本の前記第1接続線の少なくとも一部は、平面視で重畳している、表示装置。
  2.  前記シール領域であって、前記第1接続線及び前記第2接続線が重畳している領域において、前記2本の前記第1接続線は、平面視で線幅全体が重畳している、請求項1に記載の表示装置。
  3.  前記第3配線及び前記第2接続線は、少なくとも一部が透明導電膜により形成されている、請求項1または2に記載の表示装置。
  4.  前記第3配線及び前記第2接続線は、少なくとも一部が金属膜及び前記透明導電膜が積層されることによって形成されており、
     前記金属膜の線幅は、前記透明導電膜の線幅よりも狭い、請求項3に記載の表示装置。
  5.  前記第2接続線は、前記シール領域と前記第2端子との間において、少なくとも一部が前記第1配線層または前記第2配線層に形成されている、請求項1から4のいずれか一項に記載の表示装置。
  6.  前記シール領域と前記第2端子との間において隣接する2本の前記第2接続線の少なくとも一部は、前記第1配線層及び前記第2配線層に交互に形成されている、請求項5に記載の表示装置。
  7.  隣接する2本の前記第2接続線は、前記第1配線層及び前記第2配線層に交互に形成されている部分の少なくとも一部が平面視で重畳している、請求項6に記載の表示装置。
  8.  前記第2接続線のうち、前記第3配線層に形成されている部分と、前記第1配線層または前記第2配線層に形成されている部分の境界は、前記シール領域、または前記シール領域と表示領域の間の領域にある、請求項6または7に記載の表示装置。
  9.  前記アクティブマトリクス基板は、前記第3配線層に形成されている前記第2接続線と、前記第1配線層または前記第2配線層に形成されている前記第2接続線との境界に形成されている第2接続線用スイッチング素子をさらに備える、請求項8に記載の表示装置。
  10.  前記アクティブマトリクス基板は、前記第1端子と電気的に接続されている第1接続線用スイッチング素子をさらに備え、
     前記第1接続線用スイッチング素子は、前記第1端子を挟んで前記第1接続線とは反対側に配置されている、請求項1から9のいずれか一項に記載の表示装置。
  11.  前記第2接続線のうち、前記第3配線層に形成されている部分と、前記第1配線層または前記第2配線層に形成されている部分の境界は、前記シール領域に対して表示領域とは反対側の領域にある、請求項5に記載の表示装置。
  12.  前記アクティブマトリクス基板は、前記第2端子と電気的に接続されている第2接続線用スイッチング素子をさらに備え、
     前記第2接続線用スイッチング素子は、前記第2端子を挟んで前記第2接続線とは反対側に配置されている、請求項10または11に記載の表示装置。
  13.  前記アクティブマトリクス基板は、前記第1接続線と前記第2接続線が平面視で重畳している領域において、前記第1接続線と前記第2接続線との間に設けられている絶縁膜をさらに備え、
     前記絶縁膜は有機膜である、請求項1から12のいずれか一項に記載の表示装置。
  14.  前記アクティブマトリクス基板は、複数のタッチセンサ用電極をさらに備え、
     前記第3配線は、前記タッチセンサ用電極と接続されている、請求項1から13のいずれか一項に記載の表示装置。
  15.  前記2本の前記第1接続線の線幅は3μmであり、前記2本の前記第1接続線の少なくとも一部は、平面視で2μm以上重畳している、請求項1に記載の表示装置。
PCT/JP2016/073698 2015-08-21 2016-08-12 表示装置 WO2017033758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017536738A JP6462135B2 (ja) 2015-08-21 2016-08-12 表示装置
CN201680047229.8A CN107924652B (zh) 2015-08-21 2016-08-12 显示装置
US15/754,089 US10551682B2 (en) 2015-08-21 2016-08-12 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-163657 2015-08-21
JP2015163657 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033758A1 true WO2017033758A1 (ja) 2017-03-02

Family

ID=58100445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073698 WO2017033758A1 (ja) 2015-08-21 2016-08-12 表示装置

Country Status (4)

Country Link
US (1) US10551682B2 (ja)
JP (1) JP6462135B2 (ja)
CN (1) CN107924652B (ja)
WO (1) WO2017033758A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244603A1 (ja) * 2018-06-20 2019-12-26 株式会社ジャパンディスプレイ 表示装置
JP2020030312A (ja) * 2018-08-22 2020-02-27 株式会社ジャパンディスプレイ 表示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491222A (zh) * 2017-09-01 2017-12-19 业成科技(成都)有限公司 触控面板
KR102403730B1 (ko) * 2018-01-22 2022-05-30 삼성전자주식회사 반도체 칩 및 이를 포함하는 반도체 패키지
JP7160643B2 (ja) * 2018-11-16 2022-10-25 株式会社ジャパンディスプレイ 表示装置
CN118363216A (zh) * 2019-04-10 2024-07-19 武汉华星光电技术有限公司 显示面板及显示装置
KR20220016407A (ko) 2020-07-31 2022-02-09 삼성디스플레이 주식회사 디스플레이 장치
US11550194B2 (en) * 2020-10-02 2023-01-10 Sharp Kabushiki Kaisha Active matrix substrate and display panel
US11494039B1 (en) * 2021-05-10 2022-11-08 Tpk Advanced Solutions Inc. Touch sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152261A (ja) * 2006-12-15 2008-07-03 Samsung Electronics Co Ltd 表示装置及びその製造方法
JP2010032859A (ja) * 2008-07-30 2010-02-12 Sharp Corp 液晶表示装置
JP2011082130A (ja) * 2009-10-07 2011-04-21 Samsung Mobile Display Co Ltd シート検査が可能な有機電界発光表示装置のマザー基板及びシート検査方法
WO2011080861A1 (ja) * 2009-12-28 2011-07-07 シャープ株式会社 表示装置
JP2013122752A (ja) * 2011-12-09 2013-06-20 Lg Display Co Ltd タッチスクリーン一体型表示装置
WO2014024783A1 (ja) * 2012-08-09 2014-02-13 シャープ株式会社 表示装置
JP2015046036A (ja) * 2013-08-28 2015-03-12 大日本印刷株式会社 タッチパネルセンサおよびタッチ位置検出機能付き表示装置
JP2015064854A (ja) * 2013-09-25 2015-04-09 エルジー ディスプレイ カンパニー リミテッド タッチスクリーン一体型表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462981B2 (ja) * 2004-03-29 2010-05-12 Nec液晶テクノロジー株式会社 アクティブマトリクス基板及び該基板を備える液晶表示装置
KR101555967B1 (ko) 2013-02-22 2015-09-25 엘지디스플레이 주식회사 터치스크린 일체형 표시장치 및 그 구동 방법
JP2015072663A (ja) 2013-10-04 2015-04-16 株式会社ジャパンディスプレイ 表示装置
JP6219659B2 (ja) 2013-10-04 2017-10-25 株式会社ジャパンディスプレイ 表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152261A (ja) * 2006-12-15 2008-07-03 Samsung Electronics Co Ltd 表示装置及びその製造方法
JP2010032859A (ja) * 2008-07-30 2010-02-12 Sharp Corp 液晶表示装置
JP2011082130A (ja) * 2009-10-07 2011-04-21 Samsung Mobile Display Co Ltd シート検査が可能な有機電界発光表示装置のマザー基板及びシート検査方法
WO2011080861A1 (ja) * 2009-12-28 2011-07-07 シャープ株式会社 表示装置
JP2013122752A (ja) * 2011-12-09 2013-06-20 Lg Display Co Ltd タッチスクリーン一体型表示装置
WO2014024783A1 (ja) * 2012-08-09 2014-02-13 シャープ株式会社 表示装置
JP2015046036A (ja) * 2013-08-28 2015-03-12 大日本印刷株式会社 タッチパネルセンサおよびタッチ位置検出機能付き表示装置
JP2015064854A (ja) * 2013-09-25 2015-04-09 エルジー ディスプレイ カンパニー リミテッド タッチスクリーン一体型表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244603A1 (ja) * 2018-06-20 2019-12-26 株式会社ジャパンディスプレイ 表示装置
JPWO2019244603A1 (ja) * 2018-06-20 2021-05-13 株式会社ジャパンディスプレイ 表示装置
JP6993507B2 (ja) 2018-06-20 2022-01-13 株式会社ジャパンディスプレイ 表示装置
US11640092B2 (en) 2018-06-20 2023-05-02 Japan Display Inc. Display device
US11966136B2 (en) 2018-06-20 2024-04-23 Japan Display Inc. Display device
JP2020030312A (ja) * 2018-08-22 2020-02-27 株式会社ジャパンディスプレイ 表示装置
JP7150523B2 (ja) 2018-08-22 2022-10-11 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
CN107924652A (zh) 2018-04-17
US10551682B2 (en) 2020-02-04
US20180239180A1 (en) 2018-08-23
JP6462135B2 (ja) 2019-01-30
CN107924652B (zh) 2020-02-07
JPWO2017033758A1 (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6469233B2 (ja) 表示装置
JP6462135B2 (ja) 表示装置
US10795514B2 (en) Display device having touch detection function
US8866782B2 (en) Display device
KR102320514B1 (ko) 터치 방식 액정표시장치
US10152931B2 (en) Display device
US20110222016A1 (en) Liquid crystal display panel
US10725354B2 (en) Wiring substrate and display device
US20140313439A1 (en) Display device
US10520761B2 (en) Method of producing substrate having alignment mark
US10073311B2 (en) Display device and electronic apparatus
WO2014129272A1 (ja) 表示装置
JP2014222483A (ja) 電子部品
JP2017146767A (ja) 表示装置
JP2014222438A (ja) 電子部品及び電子機器
US11106316B2 (en) Display panel having overlapping position detection lead-out lines disposed in different layers
JP6013854B2 (ja) 表示装置
JP2020091335A (ja) 薄膜トランジスタ基板及び表示パネル
WO2019021924A1 (ja) 表示パネル
US20190079358A1 (en) Display device
JP6095100B2 (ja) 液晶表示装置
EP4394565A1 (en) Display device with repairable touch lines
WO2019031298A1 (ja) 表示パネル
JP2020091318A (ja) 薄膜トランジスタ基板及び表示パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536738

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754089

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839105

Country of ref document: EP

Kind code of ref document: A1