WO2017033713A1 - プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法 - Google Patents

プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法 Download PDF

Info

Publication number
WO2017033713A1
WO2017033713A1 PCT/JP2016/073212 JP2016073212W WO2017033713A1 WO 2017033713 A1 WO2017033713 A1 WO 2017033713A1 JP 2016073212 W JP2016073212 W JP 2016073212W WO 2017033713 A1 WO2017033713 A1 WO 2017033713A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
base film
printed wiring
metal layer
board substrate
Prior art date
Application number
PCT/JP2016/073212
Other languages
English (en)
French (fr)
Inventor
佑一郎 山中
岡 良雄
聡志 木谷
淑文 内田
誠 中林
Original Assignee
住友電気工業株式会社
住友電工プリントサーキット株式会社
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工プリントサーキット株式会社, 住友電工ファインポリマー株式会社 filed Critical 住友電気工業株式会社
Priority to CN201680041829.3A priority Critical patent/CN107852828B/zh
Priority to US15/753,017 priority patent/US11375615B2/en
Priority to EP16839060.7A priority patent/EP3340755B1/en
Priority to JP2017536723A priority patent/JP6717835B2/ja
Publication of WO2017033713A1 publication Critical patent/WO2017033713A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to a printed wiring board substrate, a printed wiring board, and a method for manufacturing a printed wiring board substrate.
  • a printed wiring board substrate in which a copper thin layer is laminated on a heat-resistant insulating base film without using an adhesive layer has been proposed (see JP-A-9-136378).
  • a copper thin film layer having a thickness of 0.25 to 0.30 ⁇ m is formed on both surfaces of a heat-resistant insulating base film using a sputtering method, and a copper thickness is formed thereon using an electroplating method. A film layer is formed.
  • a printed wiring board substrate is a printed wiring board substrate including a base film and a metal layer disposed on at least one surface of the base film, and an acidic solution is used.
  • Another printed wiring board is a printed wiring board comprising a base film and a metal pattern disposed on at least one surface of the base film, and etching using an acidic solution
  • the abundance per unit area of nitrogen determined based on the peak area of the N1s spectrum in the XPS analysis of the surface of the base film exposed after removing the metal pattern is 1 atomic% or more and 10 atomic% or less.
  • polyimide it is set as the value which deducted the unit area of nitrogen calculated
  • the method for manufacturing a printed wiring board substrate according to another aspect of the present invention includes a step of applying a coupling agent containing nitrogen to one surface of the metal layer, and a surface to which the coupling agent of the metal layer is applied.
  • a method for producing a printed wiring board substrate comprising: a step of superimposing a base film on the substrate; and a step of hot pressing the superposed body of the metal layer and the base film.
  • the printed wiring board substrate proposed in the above publication can be said to be a substrate that meets the demand for high-density printed wiring in that the adhesion between the metal layer and the base film can be increased.
  • the conventional printed wiring board substrate forms a copper thin film layer using a sputtering method in order to bring the metal layer into close contact with the base film, it requires vacuum equipment, construction, maintenance, operation, etc. of the equipment. The cost in As a result, the manufacturing cost of the printed wiring board substrate increases.
  • a printed wiring board substrate, a printed wiring board, and a printed wiring board substrate that can improve the adhesion between the metal layer and the base film at low cost.
  • An object is to provide a manufacturing method.
  • the inventors have improved the adhesion between these base films and the metal layer of the printed wiring board substrate, and the presence of this nitrogen. It has been found that the adhesion tends to increase as the amount increases. From this, the inventors have found that the metal layer can be brought into close contact with the base film without using vacuum equipment by controlling the amount of nitrogen present between the base film and the metal layer.
  • the printed wiring board substrate and printed wiring board of the present invention can improve the adhesion between the metal layer and the base film at low cost. Moreover, the printed wiring board board
  • a printed wiring board substrate is a printed wiring board substrate including a base film and a metal layer disposed on at least one surface of the base film, and uses an acidic solution.
  • the amount of nitrogen per unit area determined based on the peak area of the N1s spectrum in the XPS (X-ray Photoelectron Spectroscopy) analysis of the base film surface exposed after removing the metal layer by etching It is a printed wiring board substrate that is 1 atomic% or more and 10 atomic% or less.
  • the carbon and the base in the resin are decomposed and radicalized by partial decomposition and radicalization of the resin constituting the base film due to the heating temperature during hot pressing.
  • a CN bond is formed between the film and the nitrogen between the metal layers.
  • the substrate for a printed wiring board has such a CN bond on the surface of the base film because the abundance of nitrogen on the surface of the base film exposed after removal of the metal layer by etching using an acidic solution is within the above range.
  • a predetermined amount or more is formed, and a large adhesion can be obtained between the base film and the metal layer.
  • the printed wiring board substrate needs to have nitrogen at least between the base film and the metal layer in order to ensure adhesion between the base film and the metal layer, it can be used for physical vapor deposition such as sputtering. There is no need for expensive vacuum equipment to be used, and the manufacturing cost can be reduced.
  • the abundance per unit area of silicon obtained based on the peak area of the Si2p spectrum in the XPS analysis of the exposed base film surface is preferably 1 atomic% or more and 10 atomic% or less.
  • Nitrogen in the CN bond has a large bonding force with silicon, and since this silicon is easily bonded to the metal layer through oxygen, the amount of silicon within the above range allows the base film and the metal layer to be bonded together. The adhesion between them can be further improved.
  • the upper limit of the ratio of the abundance per unit area of silicon on the exposed base film surface to the abundance per unit area of nitrogen is preferably 4.
  • a coupling agent containing nitrogen or a group derived from this coupling agent is preferably present in the vicinity of the interface between the base film and the metal layer.
  • the presence of a coupling agent containing nitrogen or a group derived from this coupling agent in the vicinity of the interface makes it possible to easily form the CN bond, and between the base film and the metal layer. It is possible to further improve the adhesive strength.
  • the coupling agent is preferably a silane coupling agent.
  • a silane coupling agent it becomes easy to couple
  • the ten-point average roughness Rz of the surface of the metal layer on the base film side is preferably 0.01 ⁇ m or more and 5.0 ⁇ m or less.
  • the printed wiring board has low transmission delay and transmission loss of the metal pattern and excellent high frequency characteristics and circuit formability. Can be obtained.
  • the base film is preferably made of a fluororesin as a main component.
  • the main component is a base film made of a fluororesin, the dielectric constant of the base film can be easily lowered, so that transmission delay and transmission loss in the metal layer can be easily reduced.
  • a printed wiring board according to another aspect of the present invention is a printed wiring board comprising a base film and a metal pattern disposed on at least one surface of the base film, and etching using an acidic solution
  • the abundance per unit area of nitrogen determined based on the peak area of the N1s spectrum in the XPS analysis of the surface of the base film exposed after removing the metal pattern is 1 atomic% or more and 10 atomic% or less.
  • the printed wiring board uses the printed wiring board substrate, the adhesion between the base film and the metal pattern is large and can be manufactured at low cost.
  • the method for manufacturing a printed wiring board substrate according to still another aspect of the present invention includes a step of applying a coupling agent containing nitrogen on one surface of a metal layer, and a surface on which the coupling agent of the metal layer is applied.
  • a method for producing a printed wiring board substrate comprising: a step of superimposing a base film on the substrate; and a step of hot pressing the superposed body of the metal layer and the base film.
  • substrate for printed wiring boards which has a big adhesive force between a base film and a metal layer is obtained by using the manufacturing method of the said board
  • the printed wiring board substrate is manufactured by applying a nitrogen-containing coupling agent and then performing hot pressing, an expensive vacuum facility used for physical vapor deposition such as sputtering is not necessary, and manufacturing is possible. Cost can be reduced.
  • “near the interface” means a region close to the interface between the base film and the metal layer, for example, a region of 500 nm or less from the interface between the base film and the metal layer.
  • the “group derived from a coupling agent” means a group formed by removing at least one organic functional group or hydrolyzable group from the coupling agent.
  • “10-point average roughness (Rz)” is a value measured in accordance with JIS-B0601: 2013 with an evaluation length (l) of 3.2 mm and a cutoff value ( ⁇ c) of 0.8 mm.
  • the “main component” is a component having the largest content, for example, a component having a content of 50% by mass or more.
  • the printed wiring board substrate in FIG. 1 includes a base film 1 and a metal layer 2 disposed on one surface of the base film 1. Further, nitrogen exists in the vicinity of the interface between the base film 1 and the metal layer 2.
  • the base film 1 constituting the printed wiring board substrate has an insulating property.
  • the material of the base film 1 include polyethylene terephthalate (PET), polyimide (PI), and fluororesin.
  • PET polyethylene terephthalate
  • PI polyimide
  • fluororesin refers to an organic group in which at least one hydrogen atom bonded to the carbon atom constituting the repeating unit of the polymer chain has a fluorine atom or a fluorine atom (hereinafter also referred to as “fluorine atom-containing group”). The one replaced with.
  • the fluorine atom-containing group is a group in which at least one hydrogen atom in a linear or branched organic group is substituted with a fluorine atom, and examples thereof include a fluoroalkyl group, a fluoroalkoxy group, and a fluoropolyether group.
  • fluororesins include tetrafluoroethylene / hexafluoropropylene copolymer (FEP), polytetrafluoroethylene (PTFE), polytetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoro (tetrafluoride).
  • Ethylene / ethylene copolymer Ethylene / ethylene copolymer
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • PVF polyvinyl fluoride
  • FEP, PFA, PTFE and the like are preferable from the viewpoint of heat resistance.
  • the thickness of the said base film 1 is set by the printed wiring board using the said board
  • the upper limit of the average thickness of the base film 1 is preferably 2 mm, more preferably 1.6 mm. If the average thickness of the base film 1 is less than the lower limit, the strength of the base film 1 may be insufficient. Conversely, if the average thickness of the base film 1 exceeds the above upper limit, it may be difficult to make the printed wiring board thinner.
  • Metal layer 2 is disposed on one surface of the base film 1 as shown in FIG.
  • the main component of the metal layer 2 is preferably a highly conductive metal, such as copper, nickel, aluminum, gold, silver, and alloys thereof. Among these, copper or a copper alloy is preferable as a metal having good conductivity and excellent adhesion to the base film 1.
  • the lower limit of the average thickness of the metal layer 2 is preferably 0.05 ⁇ m, more preferably 0.1 ⁇ m.
  • the upper limit of the average thickness of the metal layer 2 is preferably 2 ⁇ m, and more preferably 1.5 ⁇ m. If the average thickness of the metal layer 2 is less than the lower limit, the metal layer 2 may be easily damaged. Conversely, if the average thickness of the metal layer 2 exceeds the upper limit, it may be difficult to make the printed wiring board thinner.
  • the lower limit of the ten-point average roughness Rz of the surface of the metal layer 2 on the base film 1 side is preferably 0.01 ⁇ m, more preferably 0.05 ⁇ m.
  • the upper limit of the ten-point average roughness Rz is preferably 5.0 ⁇ m, and more preferably 3.0 ⁇ m. If the ten-point average roughness Rz is less than the lower limit, the production cost of the printed wiring board may increase. On the other hand, if the ten-point average roughness Rz exceeds the upper limit, the skin effect may cause a decrease in transmission speed or an increase in transmission loss.
  • a rust prevention treatment layer may be formed on the surface of the metal layer 2.
  • the antirust treatment layer suppresses a decrease in adhesion force due to oxidation of the surface of the metal layer 2.
  • the rust prevention treatment layer preferably contains cobalt, chromium or copper, and more preferably contains cobalt or a cobalt alloy as a main component.
  • the antirust treatment layer may be formed as a single layer or a plurality of layers.
  • This plating layer is formed as a single metal plating layer or an alloy plating layer.
  • Cobalt is preferable as the metal constituting the single metal plating layer. Examples of the alloy constituting the alloy plating layer include cobalt alloys such as cobalt-molybdenum, cobalt-nickel-tungsten, and cobalt-nickel-germanium.
  • Nitrogen is present near the interface between the base film 1 and the metal layer 2. Since this nitrogen forms a CN bond with carbon in the resin constituting the base film 1, a large adhesion between the metal layer 2 and the base film 1 can be obtained by the presence of this nitrogen.
  • the amount of nitrogen present in the vicinity of the interface can be confirmed by the amount of nitrogen per unit area on the surface of the base film 1 exposed after removing the metal layer 2 by etching using an acidic solution.
  • the amount of nitrogen present per unit area is determined by N1s using an X-ray photoelectron spectrometer that irradiates the surface of the base film 1 with X-rays and analyzes the kinetic energy of photoelectrons emitted from the surface of the base film. It can be determined based on the peak area of the spectrum.
  • the lower limit of the amount of nitrogen per unit area thus determined is 1 atomic%, preferably 3 atomic%, and more preferably 5 atomic%.
  • the upper limit of the abundance of nitrogen per unit area is 10 atomic%, preferably 9 atomic%, more preferably 8 atomic%. If the abundance per unit area of nitrogen is less than the lower limit, the number of CN bonds formed on the surface of the base film 1 is reduced, so that a predetermined adhesion between the base film 1 and the metal layer 2 cannot be obtained. The metal layer 2 may be easily peeled off. Conversely, if the amount of nitrogen per unit area exceeds the above upper limit, the amount of nitrogen present increases, which may increase the manufacturing cost of the printed wiring board substrate.
  • silicon is preferably present in the vicinity of the interface between the base film 1 and the metal layer 2.
  • nitrogen forming the CN bond is easily bonded to oxygen in the metal layer 2 through silicon, and the effect of improving the adhesion due to the presence of nitrogen is enhanced.
  • the abundance of silicon in the vicinity of the interface can be confirmed by the abundance per unit area of silicon on the surface of the base film 1 exposed after removing the metal layer 2 by etching using an acidic solution.
  • the abundance per unit area of silicon can be determined by a method similar to the method for determining the abundance per unit area of nitrogen described above. That is, the abundance per unit area of silicon can be obtained based on the peak area of the Si2p spectrum using an X-ray photoelectron spectrometer.
  • the lower limit of the abundance of silicon per unit area thus determined is preferably 1 atomic%, and more preferably 3.5 atomic%.
  • the upper limit of the amount of silicon present per unit area is preferably 10 atomic%, and more preferably 5.5 atomic%. If the abundance of silicon per unit area is less than the lower limit, the effect of improving the adhesion due to the presence of nitrogen may not be sufficiently enhanced. Conversely, if the amount of silicon present per unit area exceeds the above upper limit, the increase in the amount of silicon added becomes excessive for improving the adhesion due to the presence of nitrogen. May increase.
  • the lower limit of the ratio of the abundance per unit area of silicon to the abundance per unit area of nitrogen in the XPS analysis is preferably 0.1, and more preferably 0.3.
  • the upper limit of the ratio is preferably 4, and more preferably 1.5. If the above ratio is less than the above lower limit, the improvement effect by silicon may not be sufficiently obtained with respect to the adhesion obtained by the presence of nitrogen. On the other hand, when the ratio exceeds the upper limit, the amount of silicon added is excessive with respect to the effect of improving the adhesion due to the presence of nitrogen, which may increase the manufacturing cost of the printed wiring board substrate.
  • Examples of a method for causing nitrogen to exist in the vicinity of the interface of the printed wiring board substrate include a method of laminating the base film 1 and the metal layer 2 using a coupling agent containing nitrogen. Specifically, for example, after a coupling agent is applied to the metal foil to be the metal layer 2, the base film 1 is superimposed on the application surface of the metal foil, and the superimposed body is hot-pressed.
  • the coupling agent containing nitrogen or this coupling agent is a group formed by removing at least one organic functional group or hydrolyzable group from the coupling agent.
  • an alkoxy group is used as the hydrolyzable group.
  • a silane coupling agent is preferable.
  • silicon can also be present in the vicinity of the interface between the base film 1 and the metal layer 2, and the adhesion between the base film 1 and the metal layer 2 can be further improved.
  • silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltrimethoxy.
  • the metal layer 2 to which the coupling agent is applied may be a commercially available metal foil, for example, electroplating, electroless plating, sputtering, physical vapor deposition (PVD), chemical vapor deposition. You may use what was created by peeling of the metal thin film formed on the board
  • CVD chemical vapor deposition
  • oxygen plasma treatment may be used as another method for causing nitrogen to exist in the vicinity of the interface of the printed wiring board substrate. Specifically, for example, oxygen plasma treatment is performed on the surface of the base film 1 to introduce an oxygen element (carbonyl group), and then a nucleophilic addition reaction is caused to the carbonyl group using a primary amine to cause the base film 1. Nitrogen can be introduced into the vicinity of the interface of the printed wiring board substrate by introducing nitrogen into the surface and then superimposing the base film 1 and the metal layer 2 into which the nitrogen has been introduced.
  • oxygen plasma treatment is performed on the surface of the base film 1 to introduce an oxygen element (carbonyl group), and then a nucleophilic addition reaction is caused to the carbonyl group using a primary amine to cause the base film 1.
  • Nitrogen can be introduced into the vicinity of the interface of the printed wiring board substrate by introducing nitrogen into the surface and then superimposing the base film 1 and the metal layer 2 into which the nitrogen has been introduced.
  • the lower limit of the peel strength between the metal layer 2 and the base film 1 is preferably 0.5 N / cm, more preferably 2 N / cm, and even more preferably 5 N / cm. If the peel strength is less than the lower limit, the metal layer 2 may be easily peeled off.
  • the “peel strength” is a value measured according to JIS-K6854-2: 1999.
  • the printed wiring board substrate manufacturing method includes a step of applying a coupling agent containing nitrogen on one surface of a metal layer (coupling agent applying step), and a base on the surface of the metal layer where the coupling agent is applied. A step of superimposing the film (superimposition step), and a step of hot pressing the superposed body of the metal layer and the base film (hot pressing step).
  • a coupling agent S containing nitrogen is applied to one surface of the metal layer 2 such as a copper foil and dried.
  • the coupling agent S can be applied by a known method such as spray spraying, coater coating, dipping or pouring.
  • the coating amount of the coupling agent S As a minimum of the application quantity of coupling agent S, 0.1 mg / m ⁇ 2 > is preferable and 1 mg / m ⁇ 2 > is more preferable. On the other hand, as an upper limit of the coating amount of the coupling agent S, 30 mg / m 2 is preferable, and 8 mg / m 2 is more preferable. If the coating amount of the coupling agent S is less than the lower limit, the effect of improving the adhesion by the coupling agent S may not be sufficiently obtained. On the contrary, when the coating amount of the coupling agent S exceeds the above upper limit, the cohesive force of the coupling agent S itself may be reduced, and the coating film may be easily peeled off.
  • ⁇ Hot press process> In the hot pressing step, as shown in FIG. 2C, the metal layer 2 and the base film 1 are joined together by hot pressing the metal layer 2 and the base film 1. A part of the resin constituting the base film 1 is decomposed and radicalized by the heating temperature at the time of this hot pressing, so that the carbon in the resin and the nitrogen contained in the coupling agent or the group derived from the coupling agent A CN bond is formed between them.
  • the lower limit of the heating temperature in the hot press is preferably 150 ° C, more preferably 160 ° C.
  • the upper limit of the heating temperature is preferably 500 ° C, more preferably 450 ° C. If the heating temperature is less than the lower limit, the generation of the radicals described above is insufficient, and the adhesion between the metal layer 2 and the base film 1 may be reduced. Conversely, if the heating temperature exceeds the upper limit, the base film 1 may be deteriorated.
  • the lower limit of the pressure in the hot press is preferably 0.8 MPa, and more preferably 1.0 MPa.
  • the upper limit of the pressure is preferably 8 MPa, and more preferably 3 MPa. If the pressure is less than the lower limit, the metal layer 2 and the base film 1 are not sufficiently bonded, and a predetermined adhesion may not be obtained. On the other hand, when the pressure exceeds the upper limit, shear stress in the surface direction at the interface between the base film 1 and the metal layer 2 increases, so that a good bonded state may not be maintained during pressing.
  • the lower limit of the pressurization time during the hot press is preferably 1 minute, and more preferably 10 minutes.
  • the upper limit of the pressurization time is preferably 1.5 hours, and more preferably 1 hour. If the pressurization time is less than the lower limit, sufficient adhesion between the metal layer 2 and the base film 1 may not be obtained. Conversely, if the pressurization time exceeds the upper limit, the base film 1 may be deteriorated.
  • the printed wiring board includes a base film 1 and a metal pattern 11 disposed on one surface of the base film 1. Since the printed wiring board is formed using the printed wiring board substrate, the peak area of the N1s spectrum in the XPS analysis of the surface of the base film 1 exposed after removing the metal pattern 11 by etching using an acidic solution is obtained. The abundance per unit area of nitrogen determined based on this is 1 atomic% or more and 10 atomic% or less.
  • polyimide it is set as the value which deducted the unit area of nitrogen calculated
  • a photosensitive resist 10 is formed on one surface of the printed wiring board substrate prepared to have a predetermined size.
  • patterning corresponding to the metal pattern is performed on the resist 10 by exposure, development, or the like.
  • the metal layer 2 other than the metal pattern is removed by etching using the resist 10 as a mask.
  • FIG. 3D by removing the remaining resist 10, a printed wiring board in which the metal pattern 11 is formed on the base film 1 is obtained.
  • the manufacturing method of the printed wiring board which forms a circuit by subtractive method was demonstrated, the said printed wiring board can be manufactured even if it forms a circuit using other well-known manufacturing methods, such as a semi-additive method. Since the printed wiring board is manufactured using the printed wiring board substrate, the adhesion between the base film 1 and the metal layer 2 is large, and the metal pattern 11 is difficult to peel off from the base film 1.
  • the said printed wiring board board when nitrogen exists between the base film and the metal layer, a CN bond is formed between carbon in the resin constituting the base film and the nitrogen. Thereby, the said printed wiring board board
  • substrate can obtain big adhesive force between a base film and a metal layer.
  • the printed wiring board substrate can be manufactured at low cost because it can be manufactured without using expensive vacuum equipment necessary for physical vapor deposition such as sputtering.
  • the metal layer is disposed on one surface of the base film, but a double-sided printed wiring board substrate having a structure in which the metal layer is disposed on both surfaces of the base film may be used.
  • a metal layer may be formed on both sides by the same formation method as in the above embodiment, or the other surface of the printed wiring board substrate obtained in the above embodiment.
  • the metal layer may be formed by other methods.
  • a metal layer may be formed on the other surface of the printed wiring board substrate by electroplating.
  • a rust prevention treatment layer is formed on both surfaces of a PI (polyimide) film having an average thickness of 50 ⁇ m (“Apical” from Kaneka Corporation) as a base film and a copper foil having an average thickness of 17 ⁇ m, and the surface of one rust prevention treatment layer
  • PI polyimide
  • Two sheets coated with N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane as a silane coupling agent were prepared.
  • the laminated body is subjected to hot pressing using a hot press machine.
  • the hot press conditions were a pressure of 6.0 MPa, a heating temperature of 320 ° C., and a pressing time of 40 minutes. Moreover, as a temperature profile at the time of hot pressing, the temperature was increased from 25 ° C. to 320 ° C. in about 90 minutes, held at a temperature of 320 ° C. for 40 minutes, and then decreased from 320 ° C. to 25 ° C.
  • PTFE polytetrafluoroethylene film (manufactured by Chuko Kasei Kogyo Co., Ltd.) having an average thickness of 50 ⁇ m was used as the base film, 3-aminopropyltriethoxysilane was used as the silane coupling agent, heating during hot pressing No. except that the temperature and temperature profile were changed as follows.
  • No. 1 was used as an example. 3 printed wiring board substrates were obtained.
  • the heating temperature at the time of hot pressing is 400 ° C.
  • the temperature profile is raised from 25 ° C. to 400 ° C. in about 90 minutes, held at 400 ° C. for 40 minutes, and then lowered from 400 ° C. to 25 ° C. It was.
  • a PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) film (“AF-0050” from Daikin Industries, Ltd.) with an average thickness of 50 ⁇ m was used as the base film, and the heating temperature and temperature profile during hot pressing were as follows: No. except for different.
  • No. 3 was used as an example. 4 printed wiring board substrates were obtained.
  • the heating temperature at the time of hot pressing is set to 300 ° C., and the temperature profile is raised from the temperature 25 ° C. to 300 ° C. in about 90 minutes, held at the temperature 300 ° C. for 40 minutes, and then dropped from the temperature 300 ° C. to 25 ° C. I let you.
  • No. 6 No. except that the pressure during hot pressing was 1.2 MPa. In the same manner as in the printed wiring board substrate of No. 1, No. 1 was used as an example. A printed wiring board substrate No. 6 was obtained.
  • the heating temperature at the time of hot pressing was 280 ° C., and the temperature profile was raised from 25 ° C. to 280 ° C. in about 90 minutes, held at 280 ° C. for 40 minutes, and then lowered from 280 ° C. to 25 ° C. , No.
  • No. 1 was used as an example. Eleven printed wiring board substrates were obtained.
  • the heating temperature at the time of hot pressing was 280 ° C., and the temperature profile was raised from 25 ° C. to 280 ° C. in about 90 minutes, held at 280 ° C. for 40 minutes, and then lowered from 280 ° C. to 25 ° C. , No.
  • No. 5 was used as an example. Fifteen printed wiring board substrates were obtained.
  • No. 17 As a base film, No. No. 16 was prepared by introducing nitrogen element into the surface of a PET film having an average thickness of 50 ⁇ m by the same method as in No. 16. No. 2 except that the hot pressing was performed under the same hot pressing conditions and temperature profile as in No. 2. In the same manner as for the printed wiring board substrate of No. 16, as an example, no. 17 printed wiring board substrates were obtained.
  • No. 18 As a base film, No. No. 16 was prepared by introducing nitrogen element into the surface of PTFE film having an average thickness of 50 ⁇ m by the same method as in No. 16. No. 3 except that the hot pressing was performed under the same hot pressing conditions and temperature profile as in No. 3. In the same manner as for the printed wiring board substrate of No. 16, as an example, no. 18 printed wiring board substrates were obtained.
  • No. 19 As a base film, No. No. 16 was prepared by introducing nitrogen element into the surface of a PFA film having an average thickness of 50 ⁇ m by the same method as in No. 16. No. 4 except that the hot pressing was performed under the same hot pressing conditions and temperature profile as in No. 4. In the same manner as for the printed wiring board substrate of No. 16, as an example, no. 19 printed wiring board substrates were obtained.
  • No. 20 As a base film, No. No. 16 was prepared by introducing nitrogen element into the surface of an FEP film having an average thickness of 50 ⁇ m by the same method as in No. 16. No. 5 except that the hot pressing was performed under the same hot pressing conditions and temperature profile as in No. 5. In the same manner as for the printed wiring board substrate of No. 16, as an example, no. 20 printed wiring board substrates were obtained.
  • No. 21 No. 3 except that 3-glycidoxypropyltriethoxysilane containing no nitrogen was used as a silane coupling agent to be applied to the surface of one rust-proofing layer of the copper foil.
  • No. 1 as a comparative example by the same method as the printed wiring board substrate of No. 1. 21 printed wiring board substrates were obtained.
  • Table 1 shows the ratio of silicon abundance to nitrogen abundance obtained by these measurements (Si abundance / N abundance). In addition, No. 21-No. For No. 25, since the abundance of nitrogen was 0, the abundance ratio was not calculated.
  • polyimide it is set as the value which deducted the unit area of nitrogen calculated

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本発明の一態様に係るプリント配線板用基板は、ベースフィルムと、このベースフィルムの少なくとも一方の面に配設されている金属層とを備え、酸性溶液を用いたエッチングにより金属層除去後に露出するベースフィルム表面のXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量が1atomic%以上10atomic%以下である。

Description

プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
 本発明は、プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法に関する。本出願は、2015年8月21日出願の日本出願第2015-164234号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 近年、電子機器の小型化及び高性能化に伴い、プリント配線板の高密度化が要求されている。高密度化されたプリント配線板は、金属パターンの微細化に伴って金属パターンがベースフィルムから剥離し易くなるため、このような高密度化の要求を満たすプリント配線板用基板として、金属層とベースフィルムとの密着性に優れたプリント配線板用基板が求められている。
 このような要求に対し、耐熱性絶縁ベースフィルムに接着剤層を介することなく銅薄層を積層したプリント配線板用基板が提案されている(特開平9-136378号公報参照)。この従来のプリント配線板用基板は、耐熱性絶縁ベースフィルムの両面にスパッタリング法を用いて厚み0.25~0.30μmの銅薄膜層を形成し、その上に電気メッキ法を用いて銅厚膜層を形成している。
特開平9-136378号公報
 発明の一態様に係るプリント配線板用基板は、ベースフィルムと、このベースフィルムの少なくとも一方の面に配設されている金属層とを備えるプリント配線板用基板であって、酸性溶液を用いたエッチングにより上記金属層除去後に露出するベースフィルム表面のXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量が1atomic%以上10atomic%以下であるプリント配線板用基板である。
 別の本発明の一態様に係るプリント配線板は、ベースフィルムと、このベースフィルムの少なくとも一方の面に配設されている金属パターンとを備えるプリント配線板であって、酸性溶液を用いたエッチングにより上記金属パターン除去後に露出するベースフィルム表面のXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量が1atomic%以上10atomic%以下であるプリント配線板である。なお、ポリイミドについては、無処理ポリイミド単体でXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積を差し引いた値とする。差し引いた値がマイナスとなる場合は0%と規定する。
 さらに別の本発明の一態様に係るプリント配線板用基板の製造方法は、金属層の一方の面に窒素を含有するカップリング剤を塗布する工程と、上記金属層のカップリング剤の塗布面にベースフィルムを重畳する工程と、上記金属層及びベースフィルムの重畳体を熱プレスする工程とを備えるプリント配線板用基板の製造方法である。
本発明の一実施形態に係るプリント配線板用基板の模式的斜視図である。 図1のプリント配線板用基板の製造方法のカップリング剤塗布工程を説明する模式的部分断面図である。 図1のプリント配線板用基板の製造方法の図2Aの次の工程を説明する模式的部分断面図である。 図1のプリント配線板用基板の製造方法の図2Bの次の工程を説明する模式的部分断面図である。 図1のプリント配線板用基板を用いるプリント配線板の製造方法のレジスト被覆工程を説明する模式的部分断面図である。 図1のプリント配線板用基板を用いるプリント配線板の製造方法の図3Aの次の工程を説明する模式的部分断面図である。 図1のプリント配線板用基板を用いるプリント配線板の製造方法の図3Bの次の工程を説明する模式的部分断面図である。 図1のプリント配線板用基板を用いるプリント配線板の製造方法の図3Cの次の工程を説明する模式的部分断面図である。
 [本開示が解決しようとする課題]
 上記公報で提案されているプリント配線板用基板は、金属層とベースフィルムとの間の密着力を大きくできる点で高密度プリント配線の要求に沿う基板であるといえる。しかし、上記従来のプリント配線板用基板は、金属層をベースフィルムに密着させるためスパッタリング法を用いて銅薄膜層を形成しているので、真空設備を必要とし、設備の建設、維持、運転等におけるコストが高くなる。その結果、プリント配線板用基板の製造コストが高くなる。
 本発明は以上のような事情に基づいてなされたものであり、低コストで金属層とベースフィルムとの間の密着力を向上できるプリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法を提供することを目的とする。
 発明者らは、上記課題を解決すべく鋭意検討した結果、プリント配線板用基板のベースフィルムと金属層との間に窒素が存在することでこれらの密着力が向上し、さらにこの窒素の存在量が多くなると上記密着力が大きくなる傾向があることを知見した。このことより、発明者らは、ベースフィルム及び金属層間の窒素の存在量を制御することで、真空設備を使用しなくても金属層をベースフィルムに密着させられることを見出した。
 [本開示の効果]
 本発明のプリント配線板用基板及びプリント配線板は、低コストで金属層とベースフィルムとの間の密着力を向上できる。また、本発明のプリント配線板用基板の製造方法により、金属層とベースフィルムとの間の密着力が大きいプリント配線板用基板を低コストで製造できる。
[本発明の実施形態の説明]
 本発明の一態様に係るプリント配線板用基板は、ベースフィルムと、このベースフィルムの少なくとも一方の面に配設されている金属層とを備えるプリント配線板用基板であって、酸性溶液を用いたエッチングにより上記金属層除去後に露出するベースフィルム表面のXPS(X線光電分光法:X-ray Photoelectron Spectroscopy)分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量が1atomic%以上10atomic%以下であるプリント配線板用基板である。
 当該プリント配線板用基板は、ベースフィルム及び金属層間に窒素が存在するため、熱プレス時の加熱温度によるベースフィルムを構成する樹脂の一部の分解及びラジカル化により、上記樹脂中の炭素とベースフィルム及び金属層間の窒素との間でCN結合が形成されている。つまり、当該プリント配線板用基板は、酸性溶液を用いたエッチングにより金属層除去後に露出するベースフィルム表面における窒素の存在量が上記範囲内であることで、ベースフィルム表面にこのようなCN結合が所定量以上形成され、ベースフィルム及び金属層間に大きな密着力が得られる。また、当該プリント配線板用基板は、ベースフィルムと金属層との間の密着力を確保するために少なくともベースフィルム及び金属層間に窒素が存在していればよいので、スパッタリング等の物理的蒸着に用いる高価な真空設備が必要なく、製造コストを低減できる。
 上記露出するベースフィルム表面のXPS分析におけるSi2pのスペクトルのピーク面積に基づいて求められるケイ素の単位面積当たりの存在量としては、1atomic%以上10atomic%以下が好ましい。上記CN結合における窒素はケイ素との結合力が大きく、さらにこのケイ素は酸素を介して金属層と結合し易いので、ケイ素の存在量を上記範囲内とすることで、ベースフィルムと金属層との間の密着力をより向上できる。
 上記露出するベースフィルム表面のケイ素の単位面積当たりの存在量の窒素の単位面積当たりの存在量に対する比の上限としては、4が好ましい。このように、窒素の存在量に対するケイ素の存在量の比を上記上限以下とすることで、ケイ素の添加量を過大とすることなく窒素の存在による密着力を向上できるので、製造コストの増加を抑制しつつ密着力を向上させ易い。
 上記ベースフィルムと金属層との界面近傍に窒素を含有するカップリング剤又はこのカップリング剤に由来する基が存在するとよい。このように、上記界面近傍に窒素を含有するカップリング剤又はこのカップリング剤に由来する基が存在することで、容易に上記CN結合を形成させることができ、ベースフィルムと金属層との間の密着力をより向上できる。
 上記カップリング剤がシランカップリング剤であるとよい。このように、シランカップリング剤を用いることで、ケイ素を介してCN結合における窒素と金属層とが結合し易くなるので、ベースフィルムと金属層との間の密着力をより向上させ易くなる。
 上記金属層のベースフィルム側の面の十点平均粗さRzとしては、0.01μm以上5.0μm以下が好ましい。このように、金属層のベースフィルム側の面の十点平均粗さRzを上記範囲内とすることで、金属パターンの伝送遅延及び伝送損失が低く高周波特性及び回路形成性に優れたプリント配線板を得ることができる。
 上記ベースフィルムがフッ素樹脂を主成分とするとよい。このように、主成分がフッ素樹脂のベースフィルムとすることで、ベースフィルムの誘電率を低下させ易いので、金属層における伝送遅延及び伝送損失を低減し易くなる。
 本発明の他の一態様に係るプリント配線板は、ベースフィルムと、このベースフィルムの少なくとも一方の面に配設されている金属パターンとを備えるプリント配線板であって、酸性溶液を用いたエッチングにより上記金属パターン除去後に露出するベースフィルム表面のXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量が1atomic%以上10atomic%以下であるプリント配線板である。
 当該プリント配線板は、上記プリント配線板用基板を用いるので、ベースフィルムと金属パターンとの密着力が大きく、かつ低コストで製造できる。
 本発明のさらに他の一態様に係るプリント配線板用基板の製造方法は、金属層の一方の面に窒素を含有するカップリング剤を塗布する工程と、上記金属層のカップリング剤の塗布面にベースフィルムを重畳する工程と、上記金属層及びベースフィルムの重畳体を熱プレスする工程とを備えるプリント配線板用基板の製造方法である。
 当該プリント配線板用基板の製造方法は、金属層のカップリング剤の塗布面にベースフィルムを重畳した重畳体を熱プレスするので、この熱プレス時の加熱温度によりベースフィルムを構成する樹脂の一部が分解及びラジカル化し、上記樹脂中の炭素とベースフィルム及び金属層間の窒素との間でCN結合が形成される。これにより、当該プリント配線板用基板の製造方法を用いることで、ベースフィルム及び金属層間に大きな密着力を有するプリント配線板用基板が得られる。また、当該プリント配線板用基板の製造方法は、窒素を含有するカップリング剤を塗布した後、熱プレスを行えばよいので、スパッタリング等の物理的蒸着に用いる高価な真空設備が必要なく、製造コストを低減できる。
 ここで「界面近傍」とは、ベースフィルム及び金属層の界面に近い領域であり、例えばベースフィルム及び金属層の界面から500nm以下の領域を意味する。「カップリング剤に由来する基」とは、カップリング剤から少なくとも1つの有機官能基や加水分解性基などが取り除かれて形成される基を意味する。「十点平均粗さ(Rz)」とは、JIS-B0601:2013に準拠し、評価長さ(l)を3.2mm、カットオフ値(λc)を0.8mmとして測定される値である。「主成分」とは、最も含有量が多い成分であり、例えば含有量が50質量%以上の成分をいう。
[本発明の実施形態の詳細]
 以下、本発明の実施形態に係るプリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法を図面を参照しつつ説明する。
〔プリント配線板用基板〕
 図1の当該プリント配線板用基板は、ベースフィルム1と、このベースフィルム1の一方の面に配設されている金属層2とを備える。また、ベースフィルム1及び金属層2の界面近傍には窒素が存在する。
<ベースフィルム>
 当該プリント配線板用基板を構成するベースフィルム1は絶縁性を有する。このベースフィルム1の材料としては、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、フッ素樹脂等が挙げられる。ここで「フッ素樹脂」とは、高分子鎖の繰り返し単位を構成する炭素原子に結合する水素原子の少なくとも1つが、フッ素原子又はフッ素原子を有する有機基(以下「フッ素原子含有基」ともいう)で置換されたものをいう。フッ素原子含有基は、直鎖状又は分岐状の有機基中の水素原子の少なくとも1つがフッ素原子で置換されたものであり、例えばフルオロアルキル基、フルオロアルコキシ基、フルオロポリエーテル基等を挙げることができる。フッ素樹脂としては、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリテトラフルオロエチレン(PTFE)、ポリテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロ(四フッ化)エチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)、フルオロエラストマー、並びにテトラフルオロエチレン、ヘキサフルオロプロピレン及びビニリデンフルオライドの3種類のモノマーからなる熱可塑性フッ素樹脂(THV)等が挙げられる。これらのフッ素樹脂の中でも、耐熱性の観点より、FEP、PFA、PTFE等が好ましい。
 上記ベースフィルム1の厚みは、当該プリント配線板用基板を利用するプリント配線板によって設定されるものであり特に限定されないが、例えば上記ベースフィルム1の平均厚みの下限としては、5μmが好ましく、12μmがより好ましい。一方、上記ベースフィルム1の平均厚みの上限としては、2mmが好ましく、1.6mmがより好ましい。上記ベースフィルム1の平均厚みが上記下限に満たないと、ベースフィルム1の強度が不十分となるおそれがある。逆に、ベースフィルム1の平均厚みが上記上限を超えると、プリント配線板の薄板化が困難となるおそれがある。
<金属層>
 金属層2は、図1に示すようにベースフィルム1の一方の面に配設されている。
 上記金属層2の主成分としては、導電性の高い金属が好ましく、例えば銅、ニッケル、アルミニウム、金、銀、これらの合金等が挙げられる。これらの中でも、導電性がよく、ベースフィルム1との密着性に優れる金属として、銅又は銅合金が好ましい。
 上記金属層2の平均厚みの下限としては、0.05μmが好ましく、0.1μmがより好ましい。一方、上記金属層2の平均厚みの上限としては、2μmが好ましく、1.5μmがより好ましい。上記金属層2の平均厚みが上記下限に満たないと、金属層2が損傷し易くなるおそれがある。逆に、上記金属層2の平均厚みが上記上限を超えると、プリント配線板の薄板化が困難となるおそれがある。
 金属層2のベースフィルム1側の面の十点平均粗さRzの下限としては、0.01μmが好ましく、0.05μmがより好ましい。一方、上記十点平均粗さRzの上限としては、5.0μmが好ましく、3.0μmがより好ましい。上記十点平均粗さRzが上記下限に満たないと、当該プリント配線板の製造コストが増加するおそれがある。逆に、上記十点平均粗さRzが上記上限を超えると、表皮効果により伝送速度の低下や伝送損失の増大を招くおそれがある。
 また、金属層2の表面に防錆処理層を形成してもよい。防錆処理層は、金属層2の表面が酸化することによる密着力の低下を抑制するものである。この防錆処理層としては、コバルト、クロム又は銅を含むことが好ましく、コバルト又はコバルト合金を主成分として含むことがさらに好ましい。また、防錆処理層は、1層として形成しても複数層として形成してもよい。また、防錆処理層は、メッキ層として形成してもよい。このメッキ層は、単一金属メッキ層又は合金メッキ層として形成される。単一金属メッキ層を構成する金属としてはコバルトが好ましい。また、合金メッキ層を構成する合金としては、例えばコバルト-モリブデン、コバルト-ニッケル-タングステン、コバルト-ニッケル-ゲルマニウム等のコバルト系合金などが挙げられる。
(ベースフィルム及び金属層の界面)
 ベースフィルム1及び金属層2の界面近傍には、窒素が存在している。この窒素は、ベースフィルム1を構成する樹脂中の炭素とCN結合を形成しているので、この窒素の存在により金属層2及びベースフィルム1間の大きな密着力が得られる。
 上記界面近傍における窒素の存在量は、酸性溶液を用いたエッチングにより金属層2を除去した後に露出するベースフィルム1表面における窒素の単位面積当たりの存在量により確認することができる。この窒素の単位面積当たりの存在量は、上記ベースフィルム1表面へのX線の照射、及びベースフィルム表面から放出される光電子の運動エネルギーの分析を行うX線光電子分光分析装置を用いて、N1sのスペクトルのピーク面積に基づいて求めることができる。
 このようにして求められる窒素の単位面積当たりの存在量の下限としては、1atomic%であり、3atomic%が好ましく、5atomic%がより好ましい。一方、上記窒素の単位面積当たりの存在量の上限としては、10atomic%であり、9atomic%が好ましく、8atomic%がより好ましい。上記窒素の単位面積当たりの存在量が上記下限に満たないと、ベースフィルム1表面に形成されるCN結合の数が少なくなるためベースフィルム1及び金属層2間に所定の密着力が得られず、金属層2が剥離し易くなるおそれがある。逆に、上記窒素の単位面積当たりの存在量が上記上限を超えると、窒素の存在量を増加させるために当該プリント配線板用基板の製造コストが過大となるおそれがある。
 ベースフィルム1及び金属層2の界面近傍には、窒素に加えてケイ素が存在していることが好ましい。上記界面近傍にケイ素が存在すると、上記CN結合を形成する窒素がケイ素を介して金属層2内の酸素と結合し易くなり、窒素の存在による密着力の向上効果が高められる。
 上記界面近傍におけるケイ素の存在量は、酸性溶液を用いたエッチングにより金属層2を除去した後に露出するベースフィルム1表面におけるケイ素の単位面積当たりの存在量により確認することができる。このケイ素の単位面積当たりの存在量は、上述の窒素の単位面積当たりの存在量を求める方法と同様の方法により求めることができる。つまり、ケイ素の単位面積当たりの存在量は、X線光電子分光分析装置を用いてSi2pのスペクトルのピーク面積に基づいて求めることができる。
 このようにして求められるケイ素の単位面積当たりの存在量の下限としては、1atomic%が好ましく、3.5atomic%がより好ましい。一方、上記ケイ素の単位面積当たりの存在量の上限としては、10atomic%が好ましく、5.5atomic%がより好ましい。上記ケイ素の単位面積当たりの存在量が上記下限に満たないと、窒素の存在による密着力の向上効果を十分に高められないおそれがある。逆に、上記ケイ素の単位面積当たりの存在量が上記上限を超えると、窒素の存在による密着力向上に対し、ケイ素の添加量の増加が過大となるために当該プリント配線板用基板の製造コストが増加するおそれがある。
 上記XPS分析における窒素の単位面積当たりの存在量に対するケイ素の単位面積当たりの存在量の比の下限としては、0.1が好ましく、0.3がより好ましい。一方、上記比の上限としては、4が好ましく、1.5がより好ましい。上記比が上記下限に満たないと、窒素の存在により得られる密着力に対してケイ素による向上効果が十分に得られないおそれがある。逆に、上記比が上記上限を超えると、窒素の存在による密着力の向上効果に対し、ケイ素の添加量が過大となるために当該プリント配線板用基板の製造コストが増加するおそれがある。
 当該プリント配線板用基板の上記界面近傍に窒素を存在させる方法として、例えば窒素を含有するカップリング剤を用いてベースフィルム1と金属層2とを積層する方法が挙げられる。具体的には、例えば金属層2となる金属箔にカップリング剤を塗布した後、この金属箔の塗布面にベースフィルム1を重畳し、この重畳体を熱プレスする。このように窒素を含有するカップリング剤を用いて当該プリント配線板用基板を作製した場合、ベースフィルム1と金属層2との界面近傍には、窒素を含有するカップリング剤又はこのカップリング剤に由来する基が存在する。ここで「カップリング剤に由来する基」とは、カップリング剤から少なくとも1つの有機官能基や加水分解性基などが取り除かれて形成される基であり、例えば加水分解性基としてアルコキシ基を有するシランカップリング剤からアルコキシ基が取り除かれて形成される基などである。
 上記窒素を含有するカップリング剤としては、シランカップリング剤が好ましい。シランカップリング剤を用いることにより、ベースフィルム1及び金属層2の界面近傍にケイ素も存在させることができ、ベースフィルム1及び金属層2間の密着力をより向上させることができる。このようなシランカップリング剤として、例えばN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、γ-アミノプロピルトリメトキシシラン等を用いることができる。
 また、上記カップリング剤を塗布する金属層2は、市販の金属箔を用いてもよいし、例えば電気メッキ、無電解メッキ、スパッタリング法、物理気相蒸着法(PVD)、化学気相蒸着法(CVD)等の公知の方法で基板上に形成された金属薄膜の剥離により作成したものを用いてもよい。
 また、当該プリント配線板用基板の上記界面近傍に窒素を存在させる他の方法として、酸素プラズマ処理を用いてもよい。具体的には、例えばベースフィルム1表面に酸素プラズマ処理を施して酸素元素(カルボニル基)を導入した後、一級アミンを用いてこのカルボニル基に対して求核付加反応を生じさせてベースフィルム1表面へ窒素を導入しておき、その後、この窒素を導入したベースフィルム1と金属層2とを重畳することで、当該プリント配線板用基板の上記界面近傍に窒素を存在させることができる。
 金属層2及びベースフィルム1間の剥離強度の下限としては、0.5N/cmが好ましく、2N/cmがより好ましく、5N/cmがさらに好ましい。上記剥離強度が上記下限に満たないと、金属層2が剥離し易くなるおそれがある。ここで「剥離強度」とは、JIS-K6854-2:1999に準拠し測定される値である。
〔プリント配線板用基板の製造方法〕
 当該プリント配線板用基板の製造方法は、金属層の一方の面に窒素を含有するカップリング剤を塗布する工程(カップリング剤塗布工程)と、上記金属層のカップリング剤の塗布面にベースフィルムを重畳する工程(重畳工程)と、上記金属層及びベースフィルムの重畳体を熱プレスする工程(熱プレス工程)とを備える。
<カップリング剤塗布工程>
 カップリング剤塗布工程では、図2Aに示すように、銅箔などの金属層2の一方の面に窒素を含有するカップリング剤Sを塗布し、乾燥させる。カップリング剤Sの塗布は、スプレー吹付け、コーター塗布、浸漬、流しかけ等の公知の方法を用いることができる。
 カップリング剤Sの塗布量の下限としては、0.1mg/mが好ましく、1mg/mがより好ましい。一方、カップリング剤Sの塗布量の上限としては、30mg/mが好ましく、8mg/mがより好ましい。カップリング剤Sの塗布量が上記下限に満たないと、カップリング剤Sによる密着力向上効果が十分に得られないおそれがある。逆に、カップリング剤Sの塗布量が上記上限を超えると、カップリング剤S自体の凝集力が低下する場合があり、塗膜が剥離し易くなるおそれがある。
<重畳工程>
 重畳工程では、図2Bに示すように、金属層2のカップリング剤Sを塗布した面にベースフィルム1を重畳する。
<熱プレス工程>
 熱プレス工程では、図2Cに示すように、上記金属層2及びベースフィルム1の重畳体に熱プレスを行い、金属層2及びベースフィルム1を接合する。この熱プレス時の加熱温度によりベースフィルム1を構成する樹脂の一部が分解及びラジカル化することで、上記樹脂中の炭素とカップリング剤又はカップリング剤に由来する基に含まれる窒素との間でCN結合が形成される。
 上記熱プレスにおける加熱温度の下限としては、150℃が好ましく、160℃がより好ましい。一方、上記加熱温度の上限としては、500℃が好ましく、450℃がより好ましい。上記加熱温度が上記下限に満たないと、上述のラジカルの生成が不十分となり、金属層2及びベースフィルム1間の密着力が低下するおそれがある。逆に、上記加熱温度が上記上限を超えると、ベースフィルム1が劣化するおそれがある。
 上記熱プレスにおける圧力の下限としては、0.8MPaが好ましく、1.0MPaがより好ましい。一方、上記圧力の上限としては、8MPaが好ましく、3MPaがより好ましい。上記圧力が上記下限に満たないと、金属層2及びベースフィルム1が十分に接着されず、所定の密着力が得られないおそれがある。逆に、上記圧力が上記上限を超えると、ベースフィルム1と金属層2との界面における面方向へのせん断応力が増大するため、プレス時に良好な結合状態を維持できなくなるおそれがある。
 上記熱プレス時の加圧時間の下限としては、1分が好ましく、10分がより好ましい。一方、上記加圧時間の上限としては、1.5時間が好ましく、1時間がより好ましい。上記加圧時間が上記下限に満たないと、金属層2及びベースフィルム1間の十分な密着力が得られないおそれがある。逆に、上記加圧時間が上記上限を超えると、ベースフィルム1が劣化するおそれがある。
〔プリント配線板〕
 当該プリント配線板は、図3Dに示すように、ベースフィルム1と、このベースフィルム1の一方の面に配設されている金属パターン11とを備える。当該プリント配線板は、上記プリント配線板用基板を用いて形成されるので、酸性溶液を用いたエッチングにより上記金属パターン11除去後に露出するベースフィルム1表面のXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量は、1atomic%以上10atomic%以下である。なお、ポリイミドについては、ポリイミド単体でXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積を差し引いた値とする。差し引いた値がマイナスとなる場合は0%と規定する。
〔プリント配線板の製造方法〕
 次に、上記プリント配線板用基板を用いる当該プリント配線板の製造方法の実施形態について説明する。ここでは、サブトラクティブ法により金属パターンを形成する場合について説明する。
 まず、図3Aに示すように、所定の大きさに調製された上記プリント配線板用基板の一方の面に、感光性のレジスト10を被覆形成する。次に、図3Bに示すように、露光、現像等により、レジスト10に対して金属パターンに対応するパターニングを行う。次に、図3Cに示すように、レジスト10をマスクとしてエッチングにより金属パターン以外の部分の金属層2を除去する。最後に、図3Dに示すように、残ったレジスト10を除去することにより、金属パターン11がベースフィルム1上に形成されたプリント配線板が得られる。
 ここでは、サブトラクティブ法により回路を形成するプリント配線板の製造方法について説明したが、セミアディティブ法等、他の公知の製造方法を用いて回路を形成しても当該プリント配線板を製造できる。当該プリント配線板は、上記プリント配線板用基板を用いて製造されるので、ベースフィルム1と金属層2との密着力が大きく、ベースフィルム1から金属パターン11が剥離し難い。
〔利点〕
 当該プリント配線板用基板は、ベースフィルム及び金属層間に窒素が存在することで、ベースフィルムを構成する樹脂中の炭素と上記窒素との間でCN結合が形成される。これにより、当該プリント配線板用基板は、ベースフィルム及び金属層間に大きな密着力が得られる。
 また、当該プリント配線板用基板は、スパッタリング等の物理的蒸着に必要な高価な真空設備を使用せずに製造できるので、低コストで製造できる。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 上記実施形態では、ベースフィルムの一方の面に金属層が配設されている構成としたが、ベースフィルムの両面に金属層が配設されている構成の両面プリント配線板用基板としてもよい。このような両面プリント配線板用基板の製造方法は、上記実施形態と同様の形成方法により両面に金属層を形成してもよいし、上記実施形態で得たプリント配線板用基板の他方の面に他の方法で金属層を形成してもよい。例えば、上記プリント配線板用基板の他方の面に、電気メッキにより金属層を形成してもよい。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [No.1]
 まず、ベースフィルムとして平均厚み50μmのPI(ポリイミド)フィルム(株式会社カネカの「アピカル」)と、平均厚み17μmの銅箔の両面に防錆処理層を形成し、一方の防錆処理層の表面にシランカップリング剤としてN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランを塗布したもの2枚とを準備した。次に、シランカップリング剤を塗布した面がPIフィルム側となるようにして上記銅箔、PIフィルム、銅箔の順に積層した後、この重畳体に対し、ホットプレス機を用いて熱プレスを実施し、実施例としてNo.1のプリント配線板用基板を得た。ここで、熱プレス条件は、圧力6.0MPa、加熱温度320℃、加圧時間40分とした。また、熱プレス時の温度プロファイルとして、温度25℃から320℃まで約90分間で上昇させ、温度320℃で40分間保持した後、温度320℃から25℃まで降下させた。
 [No.2]
 ベースフィルムとして平均厚み50μmのPET(ポリエチレンテレフタレート)フィルム(帝人株式会社の「G2」)を用い、熱プレス時の加熱温度及び温度プロファイルを以下のように異ならせた以外は、No.1のプリント配線板用基板と同様の方法により、実施例としてNo.2のプリント配線板用基板を得た。ここで、熱プレス時の加熱温度は210℃とし、温度プロファイルとして、温度25℃から210℃まで約90分間で上昇させ、温度210℃で40分間保持した後、温度210℃から25℃まで降下させた。
 [No.3]
 ベースフィルムとして平均厚み50μmのPTFE(ポリテトラフルオロエチレン)フィルム(中興化成工業株式会社製)を用いたこと、シランカップリング剤として3-アミノプロピルトリエトキシシランを用いたこと、熱プレス時の加熱温度及び温度プロファイルを以下のように異ならせた以外は、No.1のプリント配線板用基板と同様の方法により、実施例としてNo.3のプリント配線板用基板を得た。ここで、熱プレス時の加熱温度は400℃とし、温度プロファイルとして温度25℃から400℃まで約90分間で上昇させ、温度400℃で40分間保持した後、温度400℃から25℃まで降下させた。 
 [No.4]
 ベースフィルムとして平均厚み50μmのPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)フィルム(ダイキン工業株式会社の「AF-0050」)を用い、熱プレス時の加熱温度及び温度プロファイルを以下のように異ならせた以外は、No.3のプリント配線板用基板と同様の方法により、実施例としてNo.4のプリント配線板用基板を得た。ここで、熱プレス時の加熱温度は300℃とし、温度プロファイルとして、温度25℃から300℃まで約90分間で上昇させ、温度300℃で40分間保持した後、温度300℃から25℃まで降下させた。
 [No.5]
 ベースフィルムとして平均厚み50μmのFEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)フィルム(ダイキン工業株式会社の「NF-0050」)を用い、熱プレス時の加熱温度及び温度プロファイルを以下のように異ならせた以外は、No.3のプリント配線板用基板と同様の方法により、実施例としてNo.5のプリント配線板用基板を得た。ここで、熱プレス時の加熱温度は320℃とし、温度プロファイルとして、温度25℃から320℃まで約90分間で上昇させ、温度320℃で40分間保持した後、温度320℃から25℃まで降下させた。
 [No.6]
 熱プレス時の圧力を1.2MPaとした以外は、No.1のプリント配線板用基板と同様の方法により、実施例としてNo.6のプリント配線板用基板を得た。
 [No.7]
 熱プレス時の圧力を1.2MPaとした以外は、No.2のプリント配線板用基板と同様の方法により、実施例としてNo.7のプリント配線板用基板を得た。
 [No.8]
 熱プレス時の圧力を1.2MPaとした以外は、No.3のプリント配線板用基板と同様の方法により、実施例としてNo.8のプリント配線板用基板を得た。
 [No.9]
 熱プレス時の圧力を1.2MPaとした以外は、No.4のプリント配線板用基板と同様の方法により、実施例としてNo.9のプリント配線板用基板を得た。
 [No.10]
 熱プレス時の圧力を1.2MPaとした以外は、No.5のプリント配線板用基板と同様の方法により、実施例としてNo.10のプリント配線板用基板を得た。
 [No.11]
 熱プレス時の加熱温度を280℃とし、温度プロファイルとして温度25℃から280℃まで約90分間で上昇させ、温度280℃で40分間保持した後、温度280℃から25℃まで降下させた以外は、No.1のプリント配線板用基板と同様の方法により、実施例としてNo.11のプリント配線板用基板を得た。
 [No.12]
 熱プレス時の加熱温度を170℃とし、温度プロファイルとして温度25℃から170℃まで約90分間で上昇させ、温度170℃で40分間保持した後、温度170℃から25℃まで降下させた以外は、No.2のプリント配線板用基板と同様の方法により、実施例としてNo.12のプリント配線板用基板を得た。
 [No.13]
 熱プレス時の加熱温度を360℃とし、温度プロファイルとして温度25℃から360℃まで約90分間で上昇させ、温度360℃で40分間保持した後、温度360℃から25℃まで降下させた以外は、No.3のプリント配線板用基板と同様の方法により、実施例としてNo.13のプリント配線板用基板を得た。
 [No.14]
 熱プレス時の加熱温度を260℃とし、温度プロファイルとして温度25℃から260℃まで約90分間で上昇させ、温度260℃で40分間保持した後、温度260℃から25℃まで降下させた以外は、No.4のプリント配線板用基板と同様の方法により、実施例としてNo.14のプリント配線板用基板を得た。
 [No.15]
 熱プレス時の加熱温度を280℃とし、温度プロファイルとして温度25℃から280℃まで約90分間で上昇させ、温度280℃で40分間保持した後、温度280℃から25℃まで降下させた以外は、No.5のプリント配線板用基板と同様の方法により、実施例としてNo.15のプリント配線板用基板を得た。
 [No.16]
 まず、ベースフィルムとして、平均厚み50μmのPIフィルムに対して酸素プラズマ処理を施すことによりPIフィルム表面のフッ素元素を脱離させ酸素元素(カルボニル基)を導入し、その後、一級アミンを用いてこの導入したカルボニル基に対して求核付加反応を生じさせることにより窒素元素を導入したものと、平均厚み17μmの銅箔の両面に防錆処理層を形成したもの2枚とを準備した。次に、上記銅箔、PIフィルム、銅箔の順に積層した後、この重畳体に対し、ホットプレス機を用いてNo.1と同様の熱プレス条件及び温度プロファイルで熱プレスを実施し、実施例としてNo.16のプリント配線板用基板を得た。
 [No.17]
 ベースフィルムとして、No.16と同様の方法により平均厚み50μmのPETフィルム表面に窒素元素を導入したものを用い、No.2と同様の熱プレス条件及び温度プロファイルで熱プレスを実施した以外は、No.16のプリント配線板用基板と同様の方法により、実施例としてNo.17のプリント配線板用基板を得た。
 [No.18]
 ベースフィルムとして、No.16と同様の方法により平均厚み50μmのPTFEフィルム表面に窒素元素を導入したものを用い、No.3と同様の熱プレス条件及び温度プロファイルで熱プレスを実施した以外は、No.16のプリント配線板用基板と同様の方法により、実施例としてNo.18のプリント配線板用基板を得た。
 [No.19]
 ベースフィルムとして、No.16と同様の方法により平均厚み50μmのPFAフィルム表面に窒素元素を導入したものを用い、No.4と同様の熱プレス条件及び温度プロファイルで熱プレスを実施した以外は、No.16のプリント配線板用基板と同様の方法により、実施例としてNo.19のプリント配線板用基板を得た。
 [No.20]
 ベースフィルムとして、No.16と同様の方法により平均厚み50μmのFEPフィルム表面に窒素元素を導入したものを用い、No.5と同様の熱プレス条件及び温度プロファイルで熱プレスを実施した以外は、No.16のプリント配線板用基板と同様の方法により、実施例としてNo.20のプリント配線板用基板を得た。
 [No.21]
 銅箔の一方の防錆処理層の表面に塗布するシランカップリング剤として、窒素を含有しない3-グリシドキシプロピルトリエトキシシランを用いたこと以外は、No.1のプリント配線板用基板と同様の方法により、比較例としてNo.21のプリント配線板用基板を得た。
 [No.22]
 銅箔の一方の防錆処理層の表面に塗布するシランカップリング剤として、窒素を含有しない3-グリシドキシプロピルトリエトキシシランを用いたこと以外は、No.2のプリント配線板用基板と同様の方法により、比較例としてNo.22のプリント配線板用基板を得た。
 [No.23]
 銅箔の一方の防錆処理層の表面に塗布するシランカップリング剤として、窒素を含有しない3-グリシドキシプロピルトリエトキシシランを用いたこと以外は、No.3のプリント配線板用基板と同様の方法により、比較例としてNo.23のプリント配線板用基板を得た。
 [No.24]
 銅箔の一方の防錆処理層の表面に塗布するシランカップリング剤として、窒素を含有しない3-グリシドキシプロピルトリエトキシシランを用いたこと以外は、No.4のプリント配線板用基板と同様の方法により、比較例としてNo.24のプリント配線板用基板を得た。
 [No.25]
 銅箔の一方の防錆処理層の表面に塗布するシランカップリング剤として、窒素を含有しない3-グリシドキシプロピルトリエトキシシランを用いたこと以外は、No.5のプリント配線板用基板と同様の方法により、比較例としてNo.25のプリント配線板用基板を得た。
<窒素及びケイ素の存在量の測定>
 酸性溶液を用いたエッチング液によりNo.1~No.25のプリント配線板用基板の銅箔を除去し、X線光電子分光分析装置(ULVAC-PHI社の「QuanteraSXM」)を用いて銅箔除去後のベースフィルム表面にX線を照射し、ベースフィルム表面から放出される光電子の運動エネルギーに基づいてベースフィルム表面における窒素及びケイ素の存在量を測定した。具体的には、N1sのスペクトルのピーク面積に基づいて窒素の単位面積当たりの存在量[atomic%]を求め、Si2pのスペクトルのピーク面積に基づいて求められるケイ素の単位面積当たりの存在量[atomic%]を求めた。窒素及びケイ素の存在量の測定結果を表1に示す。また、これらの測定で得られた窒素の存在量に対するケイ素の存在量の比(Si存在量/N存在量)も表1に示す。なお、No.21~No.25については、窒素の存在量が0であったため、上記存在量の比は算出していない。なお、ポリイミドについては、ポリイミド単体でXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積を差し引いた値とする。差し引いた値がマイナスとなる場合は0%と規定する。
<密着力評価>
 No.1~No.25のプリント配線板用基板について、ベースフィルム及び銅箔間の剥離強度(N/cm)を測定し、ベースフィルムと銅箔との密着力を評価した。剥離強度は、JIS-K6854-2:1999「接着剤-はく離接着強さ試験方法-2部:180度はく離」に準じた方法により測定した。剥離強度の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[評価結果]
 表1の結果より、ベースフィルム表面に窒素が存在することによりベースフィルム及び銅箔間の密着力が顕著に向上し、また、この窒素の存在量が多いと密着力が向上することがわかる。
 すなわち、窒素が存在しない比較例のNo.21~No.25では剥離強度が0.4N/cm以下と非常に小さいのに対し、単位面積当たりの窒素の存在量が1atomic%以上である実施例のNo.1~No.20では、5.1N/cm以上という顕著に大きい剥離強度が得られることがわかる。また、No.1~No.5、No.6~No.10、No.11~No.15のそれぞれの同じベースフィルムのプリント配線板用基板同士を比較すると、窒素の存在量が多いほど上記密着力が向上することがわかる。
 また、No.1~No.5とNo.6~No.10とを比較すると、熱プレス時の圧力を1.2MPaとしたNo.6~No.10の方が、熱プレス時の圧力を6.0MPaとしたNo.1~No.5よりも窒素の存在量が多く、剥離強度が大きいことがわかる。これは、熱プレス時の圧力が大きくなると、ベースフィルムと銅箔との界面での面方向のせん断応力が増大するため、No.1~No.5では熱プレス時にベースフィルム及び銅箔間の良好な結合状態が維持できなったと考えられる。
 また、No.1~No.5とNo.11~No.15とを比較すると、熱プレス時の加熱温度がそれそれ40℃高いNo.1~No.5の方が、No.11~No.15よりも窒素の存在量が多く、剥離強度が大きいことがわかる。これにより、熱プレス時の温度を制御することにより上記窒素の存在量を調整できると考えられる。
 また、No.21~No.25の結果より、窒素が存在しない場合には、ケイ素が存在しても上記密着力の向上に寄与しないと考えられる。これに対し、No.1~No.5とNo.16~No.20とを比較すると、これらの窒素の存在量はほぼ同じであるが、ケイ素が存在するNo.1~No.5の方が剥離強度が大きいことがわかる。これらのことより、窒素が存在しなければケイ素は密着力向上に寄与しないが、窒素が存在する場合には、ケイ素の存在が密着力向上に寄与すると考えられる。
 1 ベースフィルム  2 金属層  10 レジスト
 11 金属パターン  S カップリング剤

Claims (9)

  1.  ベースフィルムと、このベースフィルムの少なくとも一方の面に配設されている金属層とを備えるプリント配線板用基板であって、
     酸性溶液を用いたエッチングにより上記金属層除去後に露出するベースフィルム表面のXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量が1atomic%以上10atomic%以下であるプリント配線板用基板。
  2.  上記露出するベースフィルム表面のXPS分析におけるSi2pのスペクトルのピーク面積に基づいて求められるケイ素の単位面積当たりの存在量が1atomic%以上10atomic%以下である請求項1に記載のプリント配線板用基板。
  3.  上記露出するベースフィルム表面のケイ素の単位面積当たりの存在量の窒素の単位面積当たりの存在量に対する比が4以下である請求項1又は請求項2に記載のプリント配線板用基板。
  4.  上記ベースフィルムと金属層との界面近傍に窒素を含有するカップリング剤又はこのカップリング剤に由来する基が存在する請求項1、請求項2又は請求項3に記載のプリント配線板用基板。
  5.  上記カップリング剤がシランカップリング剤である請求項4に記載のプリント配線板用基板。
  6.  上記金属層のベースフィルム側の面の十点平均粗さRzが0.01μm以上5.0μm以下である請求項1から請求項5のいずれか1項に記載のプリント配線板用基板。
  7.  上記ベースフィルムがフッ素樹脂を主成分とする請求項1から請求項6のいずれか1項に記載のプリント配線板用基板。
  8.  ベースフィルムと、このベースフィルムの少なくとも一方の面に配設されている金属パターンとを備えるプリント配線板であって、
     酸性溶液を用いたエッチングにより上記金属パターン除去後に露出するベースフィルム表面のXPS分析におけるN1sのスペクトルのピーク面積に基づいて求められる窒素の単位面積当たりの存在量が1atomic%以上10atomic%以下であるプリント配線板。
  9.  金属層の一方の面に窒素を含有するカップリング剤を塗布する工程と、
     上記金属層のカップリング剤の塗布面にベースフィルムを重畳する工程と、
     上記金属層及びベースフィルムの重畳体を熱プレスする工程と
     を備えるプリント配線板用基板の製造方法。
PCT/JP2016/073212 2015-08-21 2016-08-06 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法 WO2017033713A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680041829.3A CN107852828B (zh) 2015-08-21 2016-08-06 印刷线路板用基板、印刷线路板以及印刷线路板用基板的制造方法
US15/753,017 US11375615B2 (en) 2015-08-21 2016-08-06 Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
EP16839060.7A EP3340755B1 (en) 2015-08-21 2016-08-06 Printed-wiring board substrate, printed-wiring board, and method for producing printed-wiring board substrate
JP2017536723A JP6717835B2 (ja) 2015-08-21 2016-08-06 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015164234 2015-08-21
JP2015-164234 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033713A1 true WO2017033713A1 (ja) 2017-03-02

Family

ID=58099911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073212 WO2017033713A1 (ja) 2015-08-21 2016-08-06 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法

Country Status (5)

Country Link
US (1) US11375615B2 (ja)
EP (1) EP3340755B1 (ja)
JP (2) JP6717835B2 (ja)
CN (1) CN107852828B (ja)
WO (1) WO2017033713A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717835B2 (ja) * 2015-08-21 2020-07-08 住友電気工業株式会社 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063560A (ja) * 2006-07-04 2008-03-21 Nippon Steel Chem Co Ltd ポリイミド樹脂層の表面改質方法及び金属張積層板の製造方法
JP2015115422A (ja) * 2013-12-10 2015-06-22 住友電工プリントサーキット株式会社 プリント配線板
JP2015127660A (ja) * 2013-12-27 2015-07-09 住友電工プリントサーキット株式会社 歪ゲージ用プリント配線板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570802B2 (ja) 1995-11-14 2004-09-29 三井化学株式会社 銅薄膜基板及びプリント配線板
KR20070073998A (ko) * 2002-03-05 2007-07-10 히다치 가세고교 가부시끼가이샤 수지 부착 금속박, 금속 피복 적층판, 그를 이용한 프린트배선판 및 그의 제조 방법
TW200721932A (en) * 2004-01-30 2007-06-01 Hitachi Chemical Co Ltd Adhesion assisting agent-bearing metal foil, printed wiring board, and production method of printed wiring board
JP4734837B2 (ja) * 2004-03-23 2011-07-27 宇部興産株式会社 接着性の改良されたポリイミドフィルム、その製造方法および積層体
KR101451264B1 (ko) * 2006-07-04 2014-10-15 신닛테츠 수미킨 가가쿠 가부시키가이샤 폴리이미드수지층의 표면개질방법 및 금속장 적층판의 제조방법
JP5251508B2 (ja) * 2006-07-27 2013-07-31 宇部興産株式会社 耐熱性フィルム金属箔積層体、およびその製造方法
JP5638951B2 (ja) * 2008-07-22 2014-12-10 古河電気工業株式会社 フレキシブル銅張積層板
JP5232823B2 (ja) * 2010-03-30 2013-07-10 Jx日鉱日石金属株式会社 エッチング性に優れたプリント配線板用銅箔及びそれを用いた積層体
WO2013147115A1 (ja) * 2012-03-29 2013-10-03 Jx日鉱日石金属株式会社 表面処理銅箔
JP5362899B1 (ja) * 2012-09-10 2013-12-11 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板
TWI482882B (zh) * 2012-09-10 2015-05-01 Jx Nippon Mining & Metals Corp Surface treatment of copper foil and the use of its laminated board
CN105339166B (zh) * 2013-05-31 2018-06-22 住友电气工业株式会社 金属-树脂复合体、配线材料、以及金属-树脂复合体的制造方法
JP2015065388A (ja) * 2013-09-26 2015-04-09 大日本印刷株式会社 太陽電池モジュール用の集電シート及びその製造方法
EP3056343B1 (en) 2013-10-11 2020-05-06 Sumitomo Electric Printed Circuits, Inc. Fluororesin base material, printed wiring board, and circuit module
JP6809771B2 (ja) * 2013-10-11 2021-01-06 住友電工プリントサーキット株式会社 フッ素樹脂基材、プリント配線板、及び回路モジュール
JP6717835B2 (ja) * 2015-08-21 2020-07-08 住友電気工業株式会社 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063560A (ja) * 2006-07-04 2008-03-21 Nippon Steel Chem Co Ltd ポリイミド樹脂層の表面改質方法及び金属張積層板の製造方法
JP2015115422A (ja) * 2013-12-10 2015-06-22 住友電工プリントサーキット株式会社 プリント配線板
JP2015127660A (ja) * 2013-12-27 2015-07-09 住友電工プリントサーキット株式会社 歪ゲージ用プリント配線板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340755A4 *

Also Published As

Publication number Publication date
CN107852828A (zh) 2018-03-27
CN107852828B (zh) 2020-03-17
EP3340755A1 (en) 2018-06-27
JP6717835B2 (ja) 2020-07-08
JP2020120122A (ja) 2020-08-06
US11375615B2 (en) 2022-06-28
EP3340755B1 (en) 2024-02-14
JPWO2017033713A1 (ja) 2018-06-07
US20180242450A1 (en) 2018-08-23
JP6950036B2 (ja) 2021-10-13
EP3340755A4 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6905157B2 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2017179416A1 (ja) 表面処理銅箔、キャリア付銅箔、並びにそれらを用いた銅張積層板及びプリント配線板の製造方法
KR101510366B1 (ko) 다층 프린트 배선판의 제조 방법
JP6393619B2 (ja) 多層プリント配線基板の製造方法及びベース基材
WO2016063757A1 (ja) 樹脂フィルム、プリント配線板用カバーレイ、プリント配線板用基板及びプリント配線板
JP6687765B2 (ja) キャリア付金属箔
TW201811557A (zh) 附脫模層的銅箔、積層體、印刷配線板的製造方法及電子機器的製造方法
JP5470487B1 (ja) 銅箔、それを用いた半導体パッケージ用銅張積層体、プリント配線板、プリント回路板、樹脂基材、回路の形成方法、セミアディティブ工法、半導体パッケージ用回路形成基板及び半導体パッケージ
JP6950036B2 (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
JP6104260B2 (ja) キャリア付金属箔
JP2010218905A (ja) 基板用金属材料、基板用金属材料の表面粗化処理方法および基板用金属材料の製造方法
JP6522974B2 (ja) キャリア付銅箔、積層体、積層体の製造方法、及び、プリント配線板の製造方法
JP6266965B2 (ja) 多層プリント配線基板の製造方法及びベース基材
WO2020162068A1 (ja) 表面処理銅箔、並びに、それを用いた銅張積層板、樹脂付銅箔および回路基板
JP2012186211A (ja) プリント配線板用銅箔及びそれを用いた積層板
JP4468890B2 (ja) 多層配線基板製造方法および多層配線基板
WO2021166513A1 (ja) 表面処理金属箔及び金属張積層板
WO2022014647A1 (ja) 銅張積層板及びプリント配線板の製造方法
JP2017088970A (ja) キャリア付銅箔、キャリア付銅箔の製造方法、積層体、プリント配線板の製造方法及び電子機器の製造方法
KR20170042871A (ko) 연성동박적층필름 및 그 제조방법
KR20230161954A (ko) 조화 처리 구리박, 동장 적층판 및 프린트 배선판
JP5746876B2 (ja) 電子回路の形成方法
KR20180111660A (ko) 이형층 부착 동박, 적층체, 프린트 배선판의 제조 방법 및 전자기기의 제조 방법
TW202244330A (zh) 粗化處理銅箔、銅箔積層板及印刷佈線板
JP2004014584A (ja) 表面処理金属板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536723

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016839060

Country of ref document: EP