WO2017030101A1 - 光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法 - Google Patents

光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法 Download PDF

Info

Publication number
WO2017030101A1
WO2017030101A1 PCT/JP2016/073804 JP2016073804W WO2017030101A1 WO 2017030101 A1 WO2017030101 A1 WO 2017030101A1 JP 2016073804 W JP2016073804 W JP 2016073804W WO 2017030101 A1 WO2017030101 A1 WO 2017030101A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
sheet
light
guide sheet
surface side
Prior art date
Application number
PCT/JP2016/073804
Other languages
English (en)
French (fr)
Inventor
宏紀 中嶋
辻 孝弘
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Publication of WO2017030101A1 publication Critical patent/WO2017030101A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to an optical laminate, a backlight unit, a liquid crystal display device, and a method for producing the optical laminate.
  • the edge light type backlight unit 110 generally includes a reflection sheet 115 disposed on the surface of the top plate 116 and a light guide sheet 111 disposed on the surface of the reflection sheet 115.
  • the optical sheet 112 disposed on the surface of the light guide sheet 111 and the light source 117 for irradiating light toward the end surface of the light guide sheet 111 are provided.
  • the light emitted from the light source 117 and incident on the light guide sheet 111 propagates in the light guide sheet 111.
  • a part of the propagating light is emitted from the back surface of the light guide sheet 111, reflected by the reflection sheet 115, and incident on the light guide sheet 111 again.
  • a liquid crystal display device having such a liquid crystal display unit is required to be thin and light in order to enhance its portability and convenience, and accordingly, the liquid crystal display unit is also required to be thin.
  • an ultra-thin portable terminal having a casing with a maximum thickness of 21 mm or less has been proposed.
  • the thickness of the liquid crystal display unit is 4 mm. Therefore, it is desired that the edge light type backlight unit incorporated in the liquid crystal display unit be thinner.
  • the present inventor has found that when such a liquid crystal display device is used, there is a defect (brightness unevenness) in which the luminance of the liquid crystal display surface becomes uneven.
  • a defect whiteness unevenness
  • the back surface of the light guide sheet is in close contact (sticking) with a reflection sheet or the like disposed on the back surface side of the light guide sheet, and light is incident on the contact portion.
  • luminance unevenness occurs.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an optical laminate, a backlight unit, and a liquid crystal display device capable of suppressing luminance unevenness and reducing the thickness. There is. Another object of the present invention is to provide a method for producing an optical laminate that can suppress luminance unevenness and can be thinned.
  • An optical layered body according to the present invention made to solve the above problems is a plate-shaped optical layered body used for an edge light type backlight unit, and a light beam incident from an end face is directed to the surface side.
  • a light guide sheet that emits light, and one or a plurality of optical sheets laminated on the front surface side of the light guide sheet, wherein the light guide sheet has a plurality of recesses recessed on the front surface side, It has a plurality of raised portions that exist around the recess and project to the back surface side.
  • the light guide sheet since the light guide sheet has a plurality of raised portions protruding on the back surface side, the light guide sheet and other members disposed on the back surface side of the light guide sheet have a plurality of raised portions. By a scattered point. Therefore, the said optical laminated body can suppress contact
  • the light guide sheet since the light guide sheet has a plurality of recesses recessed on the front surface side on the back surface, the light incident on the plurality of recesses can be scattered on the surface side.
  • the optical layered body can prevent the concave portion and the vicinity of the concave portion from being closely adhered by the presence of the raised portion around the concave portion, and therefore, uneven brightness caused by the light beam scattered by the concave portion. Can be suitably prevented.
  • the optical laminated body includes one or a plurality of optical sheets laminated on the surface side of the light guide sheet, and other members disposed on the back side of the light guide sheet on the light guide sheet. Since it is not necessary to separately provide an anti-sticking layer for preventing adhesion, the thickness can be reduced.
  • the average depth (L) of the recesses is preferably 1 ⁇ m or more and 10 ⁇ m or less. Thus, when the average depth (L) of the recesses is within the above range, a recess having an excellent scattering function with respect to incident light can be easily and reliably formed.
  • the average diameter (D) of the recesses is preferably 10 ⁇ m or more and 50 ⁇ m or less. Thus, when the average diameter (D) of the recesses is within the above range, a recess having an excellent scattering function with respect to incident light can be easily and reliably formed.
  • the average height (H) of the raised portions is preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the average height (H) of the raised portion is preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • it is easy to accurately suppress the scratches on the surfaces of the other members disposed on the back side of the light guide sheet.
  • the concave portion and the vicinity of the concave portion are more reliably prevented from coming into close contact with other members disposed on the back side of the light guide sheet. It is possible to prevent the occurrence of uneven brightness due to the light scattered by the plurality of recesses.
  • the raised portion is formed in a substantially annular shape so as to surround the concave portion, and the average width (W) of the raised portion is preferably 1 ⁇ m or more and 15 ⁇ m or less.
  • the raised portion is formed in a substantially annular shape so as to surround the recessed portion, so that the recessed portion and the vicinity of the recessed portion are in close contact with other members disposed on the back surface side of the light guide sheet. Can be more reliably prevented.
  • the average width (W) of the raised portion is within the above range, the contact area between the light guide sheet and other members disposed on the back side of the light guide sheet is suppressed from increasing. Further, it is possible to accurately prevent the surface of other members from being damaged.
  • the height ratio (H / W) of the average height (H) to the average width (W) of the raised portion is preferably 0.05 or more and 0.5 or less. As described above, when the height ratio (H / W) of the average height (H) of the raised portion to the average width (W) is within the above range, it is disposed on the back side of the light guide sheet. It is possible to accurately prevent the surface of the member from being damaged.
  • the optical laminate includes a light diffusion sheet laminated on the surface of the light guide sheet, and a prism sheet laminated on the surface of the light diffusion sheet.
  • the light diffusion sheet includes a base material layer and the base material.
  • the light incident on the light diffusion sheet from the light guide sheet can be diffused by the air that exists other than the contact portion of the light guide sheet and the light diffusion sheet. Can be improved. Further, when the light sufficiently diffused in this way is incident on the prism sheet, for example, a distribution having a peak in the normal direction toward the entire surface of the liquid crystal panel disposed on the surface side of the optical laminated body. A light beam can be emitted.
  • the plurality of convex portions may be composed of a plurality of printing dots. As described above, since the plurality of convex portions are composed of a plurality of printing dots, it is easy to keep the height of the plurality of convex portions uniform, thereby easily bonding the light guide sheet and the plurality of convex portions. .
  • the edge light type backlight unit according to the present invention made to solve the above-described problems includes the optical layered body and a light source that irradiates light to an end face of the light guide sheet.
  • the backlight unit includes the optical layered body, luminance unevenness can be suppressed and the thickness can be reduced as described above.
  • a liquid crystal display device made to solve the above problems includes the backlight unit.
  • the liquid crystal display device includes the backlight unit, luminance unevenness can be suppressed and the thickness can be reduced as described above.
  • an optical laminate manufacturing method made to solve the above-described problems is a method for manufacturing a plate-like optical laminate used in an edge light type backlight unit, on one surface.
  • a step of forming a light guide sheet having a plurality of recesses recessed on the other surface side, and a plurality of raised portions that are present around the plurality of recesses and project on one surface side, and the light guide sheet A step of laminating one or a plurality of optical sheets on the other surface side.
  • a light guide sheet having a plurality of recesses recessed on the front surface side, and a plurality of raised portions existing around the plurality of recesses and projecting on the back surface side
  • stacked on the surface side of a light guide sheet can be manufactured. Therefore, the manufacturing method of the optical layered body can manufacture an optical layered body that can suppress luminance unevenness and can be thinned.
  • front side means the viewer side in the liquid crystal display device
  • back side means the opposite.
  • the “front surface” refers to the surface on the front surface side
  • the “back surface” refers to the opposite surface.
  • Plate refers to a structure having two opposing surfaces (the outermost surface and the outermost surface), and 70% or more of the two opposing surfaces in a plan view are parallel, preferably 80%, Preferably, 90% or more of the regions are parallel.
  • the two faces facing each other being “parallel” means that the angle formed by the average interfaces of the two faces facing each other is 5 ° or less, preferably 3 ° or less, more preferably 1 °. It means the following.
  • the “average depth of the recesses” refers to the average depth from the back surface average interface of the light guide sheet, and any 20 recesses are extracted, of which 5 are the deepest and the depth is small. The average value of 10 depths excluding 5 from the thing.
  • the “back surface average interface of the light guide sheet” refers to a flat surface interface on the back surface of the light guide sheet where a plurality of concave portions and a plurality of raised portions are not present.
  • the “diameter of the concave portion” refers to a diameter at the back surface average interface of the light guide sheet, and means an intermediate value between the maximum diameter of the concave portion and the diameter in the direction orthogonal to the maximum radial direction.
  • the “average diameter of the recesses” refers to an average value of 10 diameters obtained by extracting 20 arbitrary recesses and excluding 5 from those having a larger diameter and 5 from those having a smaller diameter.
  • the “average height of the raised portions” refers to the average height from the back surface average interface of the light guide sheet, and refers to the average value of the heights of any ten raised portions.
  • the “width of the raised portion” refers to the width at the back average interface of the light guide sheet, and refers to the difference between the outer radius and the inner radius of the raised portion.
  • the width of the raised portion can be obtained, for example, by subtracting a value of 1 ⁇ 2 of the inner diameter from a value of 1 ⁇ 2 of the outer diameter at a portion where the outer diameter of the raised portion is maximum.
  • the “average width of the raised portions” refers to an average value of the widths of any ten raised portions.
  • the optical layered body, the backlight unit, and the liquid crystal display device according to the present invention can suppress uneven brightness and can be thinned.
  • the manufacturing method of the optical laminated body which concerns on this invention can manufacture the optical laminated body which can aim at thickness reduction while suppressing brightness nonuniformity.
  • FIG. 1 is a schematic perspective view of a liquid crystal display device according to an embodiment of the present invention, where (a) shows a state in which a liquid crystal display unit is opened, and (b) shows a state in which the liquid crystal display unit is closed.
  • FIG. 2 is a schematic end view showing a backlight unit of the liquid crystal display device of FIG. 1. It is a typical back view of the light guide sheet of the backlight unit of FIG. It is a typical enlarged view which shows the recessed part and the protruding part of the light guide sheet
  • the liquid crystal display device 1 of FIG. 1 is configured as a portable terminal.
  • the liquid crystal display device 1 includes an operation unit 2 and a liquid crystal display unit 3 connected to the operation unit 2 so as to be rotatable (openable and closable).
  • the thickness of the casing (casing) that entirely accommodates the components of the liquid crystal display device 1 is 21 mm or less, and is ultra-thin. It is a laptop computer (hereinafter sometimes referred to as “ultra-thin computer 1”).
  • the liquid crystal display unit 3 of the ultra-thin computer 1 includes a liquid crystal panel 4 and an edge light type ultra-thin backlight unit that irradiates light toward the liquid crystal panel 4 from the back side.
  • the liquid crystal panel 4 is held around the back surface, side surfaces, and front surface by a casing 5 for a liquid crystal display portion of the housing.
  • the casing 5 for the liquid crystal display unit includes a top plate 6 disposed on the back surface (and the back surface) of the liquid crystal panel 4, and a surface support member 7 disposed on the surface side around the surface of the liquid crystal panel 4.
  • the casing of the ultra-thin computer 1 is provided with a casing 5 for the liquid crystal display section and the casing 5 for the liquid crystal display section so as to be pivotable via a hinge section 8, and a central processing unit (ultra-low voltage CPU). And the like.
  • the average thickness of the liquid crystal display unit 3 is not particularly limited as long as the thickness of the casing is in a desired range, but the lower limit of the average thickness of the liquid crystal display unit 3 is preferably 2 mm, more preferably 3 mm, and further 4 mm preferable.
  • the upper limit of the average thickness of the liquid crystal display unit 3 is preferably 7 mm, more preferably 6 mm, and even more preferably 5 mm. If the average thickness of the liquid crystal display unit 3 is less than the lower limit, the strength of the liquid crystal display unit 3 may be reduced or the luminance may be reduced. On the other hand, if the average thickness of the liquid crystal display unit 3 exceeds the above upper limit, there is a possibility that the demand for thinning the ultra-thin computer 1 cannot be met.
  • the backlight unit 11 of FIG. 2 is provided in the liquid crystal display unit 3 of the ultra-thin computer 1.
  • the backlight unit 11 includes an optical laminate 12, a light source 18, and a reflection sheet 19.
  • the backlight unit 11 is configured as an edge light type backlight unit.
  • the optical laminated body 12 is configured in a plate shape as shown in FIG.
  • the optical laminate 12 includes a light guide sheet 13 that emits light incident from the end face toward the surface side, and a plurality of optical sheets laminated on the surface side of the light guide sheet 13.
  • the optical laminated body 12 is integrally formed by adhering contact portions of the light guide sheet 13 and the plurality of optical sheets with an adhesive.
  • arbitrary optical sheets such as a light diffusion sheet, a prism sheet, and a microlens sheet can be selectively combined to meet the needs of optical characteristics.
  • the optical laminate 12 is formed on the surface of the light diffusion sheet 14 and the light diffusion sheet 14 laminated on the surface of the light guide sheet 13 as the plurality of optical sheets.
  • the first prism sheet 15 to be laminated, the second prism sheet 16 to be laminated on the surface of the first prism sheet 15, and the light diffusion sheet (upper light diffusion sheet 17) to be laminated on the surface of the second prism sheet 16 And have.
  • the light guide sheet 13 emits light incident from the end face substantially uniformly from the surface.
  • the lower diffusion sheet 14 condenses (condenses and diffuses) the light incident from the back surface side while diffusing it.
  • the prism sheets 15 and 16 refract the light incident from the back side toward the normal direction side.
  • first prism sheet 15 and the second prism sheet 16 are perpendicular to the ridge line direction of the protruding prism portion, and the first prism sheet 15 normalizes the light incident from the lower light diffusion sheet 14.
  • a light beam emitted from the first prism sheet 15 is refracted so that the second prism sheet 16 travels substantially perpendicular to the back surface of the liquid crystal display element.
  • the upper light diffusing sheet 17 diffuses the light incident from the back side to some extent to prevent the occurrence of moire.
  • the light guide sheet 13 emits light incident from the end face substantially uniformly from the surface.
  • the light guide sheet 13 is disposed on the backmost surface of the optical laminate 12.
  • the light guide sheet 13 is formed in a substantially square shape in plan view, and is formed in a plate shape (non-wedge shape) having a substantially uniform thickness.
  • the light guide sheet 13 has a plurality of recesses 21 that are recessed on the front surface side on the back surface.
  • the light guide sheet 13 has a sticking prevention part on the back surface.
  • the light guide sheet 13 has a plurality of raised portions 22 that exist around the plurality of recesses 21 and protrude to the back surface side as the sticking prevention portion.
  • the raised portion 22 is provided adjacent to the recessed portion 21, and the inner surface of the raised portion 22 is continuous with the formation surface of the recessed portion 21.
  • the light guide sheet 13 is configured as a single layer body mainly composed of a synthetic resin.
  • the lower limit of the average thickness of the light guide sheet 13 is preferably 100 ⁇ m, more preferably 150 ⁇ m, and even more preferably 200 ⁇ m.
  • the upper limit of the average thickness of the light guide sheet 13 is preferably 600 ⁇ m, more preferably 580 ⁇ m, and further preferably 550 ⁇ m. If the average thickness of the light guide sheet 13 is less than the lower limit, the strength of the light guide sheet 13 may be insufficient, and the light from the light source 18 may not be sufficiently incident on the light guide sheet 13. is there. On the contrary, if the average thickness of the light guide sheet 13 exceeds the above upper limit, it cannot be used as a thin light guide film desired in an ultra-thin portable terminal, and may not meet the demand for thin backlight unit 11. There is.
  • the lower limit of the essential light guide distance from the end surface of the light guide sheet 13 on the light source 18 side is preferably 7 cm, more preferably 9 cm, and even more preferably 11 cm.
  • the upper limit of the essential light guide distance from the end surface on the light source 18 side in the light guide sheet 13 is preferably 45 cm, more preferably 43 cm, and even more preferably 41 cm. If the essential light guide distance is less than the lower limit, it may not be usable for a large terminal other than a small mobile terminal. On the other hand, when the essential light guide distance exceeds the upper limit, when used as a thin light guide film having an average thickness of 600 ⁇ m or less, the light guide film is likely to be bent and the light guide property may not be sufficiently obtained.
  • the essential light guide distance from the end face on the light source 18 side of the light guide sheet 13 is a light beam emitted from the light source 18 and incident on the end face of the light guide sheet 13 is propagated from this end face toward the opposite end face. It means the distance that requires.
  • the essential light guide distance from the end surface on the light source 18 side of the light guide sheet 13 is the distance from the end surface on the light source side of the light guide sheet to the opposite end surface, for example, for a one-side edge light type backlight unit.
  • the distance from the light source side end face of the light guide sheet to the central portion is referred to.
  • the upper limit of the surface area of the light guide sheet 13, preferably 1000 cm 2, more preferably 950 cm 2, more preferably 900 cm 2. If the surface area of the light guide sheet 13 is less than the lower limit, it may not be usable for large terminals other than small mobile terminals. On the contrary, when the surface area of the light guide sheet 13 exceeds the above upper limit, the light guide sheet 13 is likely to be bent when used as a thin light guide film having an average thickness of 600 ⁇ m or less, and sufficient light guide properties may not be obtained. .
  • the plurality of concave portions 21 function as light scattering portions that scatter incident light to the surface side.
  • Each recess 21 is formed in a substantially circular shape in plan view as shown in FIGS. Moreover, each recessed part 21 is formed so that a diameter may be gradually reduced toward the surface side.
  • the shape of the recess 21 is not particularly limited, and may be a hemispherical shape, a semi-ellipsoidal shape, a conical shape, a truncated cone shape, or the like. Especially, as a shape of the recessed part 21, a hemispherical shape or a semi-ellipsoidal shape is preferable.
  • the concave portion 21 is hemispherical or semi-ellipsoidal, the moldability of the concave portion 21 can be improved and light incident on the concave portion 21 can be suitably scattered.
  • the arrangement pattern of the plurality of recesses 21 is preferably formed so that the density gradually decreases from one end side to the other end side.
  • the arrangement pattern of the plurality of recesses 21 is more preferably formed so that the density gradually decreases from the edge on the side opposite to the light source 18 to the edge on the light source 18 side.
  • average depth (L) of crevice 21 As a minimum of average depth (L) of crevice 21 (refer to Drawing 4 (a)), 1 micrometer is preferred, 2 micrometers is more preferred, and 4 micrometers is still more preferred. On the other hand, as an upper limit of the average depth (L) of the recessed part 21, 10 micrometers is preferable, 9 micrometers is more preferable, and 7 micrometers is more preferable. If the average depth (L) of the recess 21 is less than the lower limit, the light scattering function may not be sufficiently obtained. Conversely, if the average depth (L) of the recesses 21 exceeds the upper limit, there is a risk of uneven brightness.
  • the lower limit of the average diameter (D) of the recess 21 is preferably 10 ⁇ m, more preferably 12 ⁇ m, and even more preferably 15 ⁇ m.
  • the upper limit of the average diameter of the recesses 21 is preferably 50 ⁇ m, more preferably 40 ⁇ m, and even more preferably 30 ⁇ m. If the average diameter (D) of the recess 21 is less than the lower limit, the light scattering function may not be sufficiently obtained. Conversely, if the average diameter (D) of the recesses 21 exceeds the above upper limit, uneven brightness may occur.
  • the raised portion 22 is formed continuously from a surface perpendicular to the thickness direction of the light guide sheet 12 on the back surface of the light guide sheet 13. Specifically, the raised portion 22 is formed continuously from the flat surface on the back surface of the light guide sheet 13. As shown in FIGS. 3 and 4, the raised portion 22 is formed in a substantially annular shape in plan view so as to surround the recess 21.
  • the light guide sheet 13 is formed in a substantially annular shape in plan view so that the raised portions 22 surround the recesses 21, so that the recesses 21 and the vicinity of the recesses 21 are disposed on the back side of the light guide sheet 13. Can be easily and reliably prevented.
  • the optical laminated body 12 is formed in a substantially annular shape in plan view so that the raised portion 22 surrounds the concave portion 21, so that the light scattered by the concave portion 21 adheres to the light guide sheet 13 and the reflective sheet 19. It is possible to suppress the occurrence of luminance unevenness by entering the portion.
  • the top part is curving.
  • the light guide sheet 13 can improve the scratch resistance to the surface of the reflection sheet 19 disposed on the back surface side by curving the top of the raised portion 22.
  • the raised portion 22 is preferably formed continuously with the recessed portion 21. Specifically, it is preferable that the raised portion 22 protrudes from the lower surface side so as to extend from the lower end of the concave portion 21, and the inner side surface of the raised portion 22 and the formation surface of the concave portion 21 are smoothly continuous. More preferably. By forming the raised portion 22 continuously with the recess 21, it is possible to improve the function of suppressing luminance unevenness caused by the light scattered by the recess 21.
  • the lower limit of the average height (H) of the raised portion 22 is preferably 0.1 ⁇ m, more preferably 0.3 ⁇ m, and even more preferably 0.5 ⁇ m.
  • the upper limit of the average height (H) of the raised portions 22 is preferably 5 ⁇ m, more preferably 4 ⁇ m, and even more preferably 3 ⁇ m. If the average height (H) of the raised portions 22 is less than the lower limit, the light guide sheet 13 and the reflection sheet 19 disposed on the back side of the light guide sheet 13 cannot be sufficiently prevented, and the light guide There is a risk of uneven brightness due to the light rays incident on the close contact portion between the sheet 13 and the reflection sheet 19.
  • the plurality of raised portions 22 have a uniform height.
  • the upper limit of the coefficient of variation of the height (H) of the plurality of raised portions 22 is preferably 0.2, more preferably 0.1, and even more preferably 0.05.
  • the variation coefficient of the height (H) of the plurality of raised portions 22 exceeds the above upper limit, the height of the plurality of raised portions 22 becomes uneven, and the load is biased to the tall raised portions 22, and based on that, the reflective sheet 19 May be damaged.
  • the variation coefficient of the height (H) of the several protruding part 22 it is not specifically limited, For example, it can be set to 0.
  • the “variation coefficient” of the heights (H) of the plurality of raised portions 22 is a value obtained by dividing the standard deviation of the heights of any 10 raised portions 22 by the average height.
  • the lower limit of the average width (W) of the raised portion 22 is preferably 1 ⁇ m, more preferably 3 ⁇ m, and even more preferably 5 ⁇ m.
  • the upper limit of the average width (W) of the raised portions 22 is preferably 15 ⁇ m, more preferably 12 ⁇ m, and even more preferably 10 ⁇ m. If the average width (W) of the raised portion 22 is less than the lower limit, the tip of the raised portion 22 is sharpened, and the surface of the reflective sheet 19 disposed on the back side of the light guide sheet 13 is prevented from being damaged. May decrease.
  • the lower limit of the height ratio (H / W) of the average height (H) of the raised portion 22 to the average width (W) is preferably 0.05, more preferably 0.06, and even more preferably 0.08.
  • the upper limit of the height ratio (H / W) of the average height (H) of the raised portion 22 to the average width (W) is preferably 0.5, more preferably 0.45, and further 0.4. preferable. If the height ratio (H / W) of the average height (H) of the raised portion 22 to the average width (W) is less than the lower limit, the reflection disposed on the back side of the raised portion 22 and the light guide sheet 13.
  • the contact area with the sheet 19 becomes large, and there is a risk of uneven brightness due to light rays incident on the contact portion.
  • the height ratio (H / W) of the average height (H) of the raised portion 22 to the average width (W) exceeds the upper limit, the tip of the raised portion 22 is sharpened, and the light guide sheet 13 There exists a possibility that the damage prevention property with respect to the surface of the reflective sheet 19 arrange
  • the lower limit of the ratio (W / D) of the average width (W) of the raised portion 22 to the average diameter (D) of the recess 21 is preferably 0.1, more preferably 0.2, and even more preferably 0.3.
  • the upper limit of the ratio (W / D) of the average width (W) of the raised portions 22 to the average diameter (D) of the recesses 21 is preferably 1, more preferably 0.8, and even more preferably 0.6. If the ratio (W / D) is less than the lower limit, the effect of preventing adhesion between the light guide sheet 13 and the reflective sheet 19 disposed on the back side of the light guide sheet 13 may not be sufficiently obtained. Conversely, when the ratio (W / D) exceeds the upper limit, the contact area between the raised portion 22 and the reflective sheet 19 disposed on the back side of the light guide sheet 13 increases, There is a risk of uneven brightness due to incident light rays.
  • the light guide sheet 13 has flexibility. By having flexibility, the light guide sheet 13 can suppress damage to the reflection sheet 19 disposed on the back side of the light guide sheet 13. Since the light guide sheet 13 needs to transmit light, it is configured to be transparent, particularly colorless and transparent.
  • the main components of the light guide sheet 13 are polycarbonate, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, polystyrene, methyl (meth) acrylate-styrene copolymer, polyolefin, cycloolefin polymer, cycloolefin copolymer, cellulose acetate, weather resistance And reactive vinyl chloride, active energy ray-curable resin, and the like.
  • polycarbonate or acrylic resin is preferable.
  • Polycarbonate is excellent in transparency and has a high refractive index.
  • the light guide sheet 13 contains polycarbonate as a main component, total reflection is likely to occur on the front and back surfaces of the light guide sheet 13, and light can be propagated efficiently. it can.
  • polycarbonate has heat resistance, it is difficult for the light source 18 to be deteriorated by heat generation.
  • polycarbonate has less water absorption than acrylic resin, dimensional stability is high. Therefore, the light guide sheet 13 can suppress deterioration over time by including polycarbonate as a main component.
  • acrylic resin has high transparency, it is possible to reduce light wear in the light guide sheet 13.
  • the “main component” means a component having the largest content, for example, a component having a content of 50% by mass or more, preferably a content of 70% by mass or more, more preferably 90% by mass. It refers to the above ingredients.
  • the polycarbonate is not particularly limited, and may be either a linear polycarbonate or a branched polycarbonate, or a polycarbonate including both a linear polycarbonate and a branched polycarbonate.
  • linear polycarbonate there is a linear aromatic polycarbonate produced by a known phosgene method or a melting method, and it comprises a carbonate component and a diphenol component.
  • the precursor for introducing the carbonate component include phosgene and diphenyl carbonate.
  • the diphenol include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, and 1,1-bis (4-hydroxyphenyl).
  • Examples of the branched polycarbonate include polycarbonate produced using a branching agent.
  • Examples of the branching agent include phloroglucin, trimellitic acid, 1,1,1-tris (4-hydroxyphenyl) ethane, and 1,1,2-tris.
  • the acrylic resin is a resin having a skeleton derived from acrylic acid or methacrylic acid.
  • acrylic resins include, but are not limited to, poly (meth) acrylic acid esters such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymers, methyl methacrylate- (meth) acrylic acid ester copolymers.
  • Polymer methyl methacrylate-acrylic ester- (meth) acrylic acid copolymer, methyl (meth) acrylate-styrene copolymer, polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-methacrylic acid) Acid cyclohexyl copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer), and the like.
  • acrylic resins poly (meth) acrylate C1-6 alkyl such as poly (meth) methyl acrylate is preferable, and methyl methacrylate resin is more preferable.
  • the active energy ray curable resin examples include an active energy ray curable acrylic resin and an active energy ray curable epoxy resin.
  • an active energy ray hardening-type resin what contains at least 1 sort (s) among a photopolymerizable prepolymer, an oligomer, and a monomer, a photopolymerizable initiator, etc. is used, for example.
  • Examples of the prepolymer and oligomer in the active energy ray-curable acrylic resin include epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, and polyether (meth) acrylate.
  • Examples of the monomer in the active energy ray-curable acrylic resin include methyl (meth) acrylate, lauryl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, and phenoxyethyl (meth).
  • Monofunctional acrylates such as acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxy (meth) acrylate , Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, penta Rithritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) Multifunctional
  • photopolymerizable initiator examples include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, benzyl, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone, Michler's ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methyl benzoylformate, p-isopropyl- ⁇ -hydroxyisobutylphenone, ⁇ -hydroxyisobutylphenone, 2,2- Carbonyl compounds such as dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosulfide, tetramethyl And sulfur compounds such as thiuram disulfide,
  • Examples of the active energy ray-curable epoxy resin include cured products such as bisphenol A type epoxy resin and glycidyl ether type epoxy resin.
  • the light guide sheet 13 is composed of an ultraviolet absorber, a flame retardant, a stabilizer, a lubricant, a processing aid, a plasticizer, an impact aid, a phase difference reducing agent, a matting agent, an antibacterial agent, an antifungal agent, and an antioxidant. Further, optional components such as a release agent and an antistatic agent may be included.
  • the lower light diffusing sheet 14 includes a base material layer 23, a light diffusing layer 24 stacked on the front surface side of the base material layer 23, and a plurality of convex portions 25 protruding from the back surface side of the base material layer 23.
  • the light guide sheet 13 and the lower light diffusion sheet 14 are partially bonded by an adhesive, and in detail, are bonded at the contact portion between the surface of the light guide sheet 13 and the convex portion 25.
  • the adhesive is not particularly limited, and examples thereof include a hot melt adhesive and a photocurable adhesive. Further, as the adhesive, a pressure sensitive adhesive can be used.
  • the base material layer 23 is formed of a transparent, particularly colorless and transparent synthetic resin as a main component.
  • the main component of the base material layer 23 is not particularly limited, and examples thereof include polyethylene terephthalate, polyethylene naphthalate, acrylic resin, polycarbonate, polystyrene, polyolefin, cellulose acetate, and weather resistant vinyl chloride. Among them, polyethylene terephthalate having excellent transparency and high strength is preferable, and polyethylene terephthalate having improved bending performance is particularly preferable.
  • the lower limit of the average thickness of the base material layer 23 is preferably 10 ⁇ m, more preferably 35 ⁇ m, and even more preferably 50 ⁇ m.
  • the upper limit of the average thickness of the base material layer 23 is preferably 500 ⁇ m, more preferably 250 ⁇ m, and even more preferably 188 ⁇ m. If the average thickness of the base material layer 23 is less than the lower limit, curling may occur when the light diffusion layer 24 and the convex portion 25 are formed by coating. On the contrary, if the average thickness of the base material layer 23 exceeds the above upper limit, the luminance of the liquid crystal display device may be lowered, and the thickness of the optical laminate 12 becomes large, and a request for thinning of the liquid crystal display device is requested. There is a risk of not being able to follow.
  • the light diffusion layer 24 is laminated on the surface of the base material layer 23.
  • the light diffusing layer 24 includes a light diffusing agent and a binder thereof.
  • the light diffusion layer 24 contains a light diffusing agent in a substantially uniform density.
  • the light diffusing agent is surrounded by a binder.
  • the light diffusing layer 24 includes a light diffusing agent in a dispersed manner to diffuse light that is transmitted from the back side to the front side substantially uniformly. Further, the light diffusing layer 24 has fine irregularities formed substantially uniformly on the surface by a light diffusing agent, and each concave and convex portion of the fine irregularities is formed in a lens shape.
  • the light diffusing layer 24 exhibits an excellent light diffusing function due to the lens action of such fine unevenness, and the refractive function that refracts the transmitted light to the normal direction side due to the light diffusing function and the transmitted light as normal. It has a light condensing function that condenses macroscopically in the direction.
  • the light diffusing agent is a particle having a property of diffusing light, and is roughly classified into an inorganic filler and an organic filler.
  • the inorganic filler include silica, aluminum hydroxide, aluminum oxide, zinc oxide, barium sulfide, magnesium silicate, and a mixture thereof.
  • the organic filler include acrylic resin, acrylonitrile resin, polyurethane, polyvinyl chloride, polystyrene, polyamide, polyacrylonitrile, and the like. Among them, an acrylic resin having high transparency is preferable, and polymethyl methacrylate (PMMA) is particularly preferable.
  • the shape of the light diffusing agent is not particularly limited, and examples thereof include a spherical shape, a cubic shape, a needle shape, a rod shape, a spindle shape, a plate shape, a scale shape, and a fiber shape. Spherical beads are preferred.
  • the lower limit of the average particle size of the light diffusing agent is preferably 1 ⁇ m, more preferably 2 ⁇ m, and even more preferably 5 ⁇ m.
  • the upper limit of the average particle diameter of the light diffusing agent is preferably 50 ⁇ m, more preferably 20 ⁇ m, and even more preferably 15 ⁇ m. If the average particle diameter of the light diffusing agent is less than the lower limit, the irregularities on the surface of the light diffusing layer 24 become small, and the light diffusibility necessary for the light diffusing sheet may not be satisfied. Conversely, if the average particle diameter of the light diffusing agent exceeds the upper limit, the thickness of the lower light diffusing sheet 14 may increase, and uniform diffusion may be difficult.
  • the compounding quantity of the above-mentioned light diffusing agent (the compounding quantity of solid content conversion with respect to 100 mass parts of polymers in the polymer composition which is a formation material of a binder), 10 mass parts are preferred, and 20 mass parts are more preferred, 50 parts by mass is more preferable.
  • the upper limit of the amount of the light diffusing agent is preferably 500 parts by mass, more preferably 300 parts by mass, and even more preferably 200 parts by mass. If the blending amount of the light diffusing agent is less than the lower limit, the light diffusibility may be insufficient. On the other hand, when the blending amount of the light diffusing agent exceeds the upper limit, the light diffusing agent may not be fixed accurately by the binder.
  • the binder is formed by curing (crosslinking or the like) a polymer composition containing a base polymer.
  • the light diffusing agent is disposed and fixed on the entire surface of the base material layer 23 at a substantially equal density by a binder.
  • the polymer composition for forming the binder includes, for example, a fine inorganic filler, a curing agent, a plasticizer, a dispersant, various leveling agents, an antistatic agent, an ultraviolet absorber, an antioxidant, and a viscosity modifier.
  • An agent, a lubricant, a light stabilizer and the like may be appropriately blended.
  • the plurality of convex portions 25 are composed of a plurality of printing dots.
  • the plurality of printing dots are arranged in a scattered manner over the entire back surface of the base material layer 23.
  • the plurality of printing dots are substantially uniformly disposed on the entire back surface of the base material layer 23.
  • the lower light diffusing sheet 14 is easy to keep the height of the plurality of convex portions 25 uniform by the plurality of convex portions 25 being composed of a plurality of printing dots. Thereby, the said optical laminated body 12 is easy to adhere
  • the plurality of printing dots include a binder component as a main component.
  • the binder component include thermosetting resins and active energy ray curable resins.
  • thermosetting resin examples include epoxy resins, silicone resins, phenol resins, urea resins, unsaturated polyester resins, melamine resins, alkyd resins, polyimide resins, acrylic resins, amide functional copolymers, urethane resins, and the like. It is done.
  • Examples of the active energy ray-curable resin include the above-described active energy ray-curable resins that can be used as a main component of the light guide sheet 13.
  • the said printing dot can also contain an additive other than the said binder component.
  • the additive include a silicone-based additive, a fluorine-based additive, and an antistatic agent.
  • content of solid content conversion of the said additive with respect to 100 mass parts of said binder components it is 0.05 mass part or more and 5 mass parts or less, for example.
  • the plurality of printing dots are formed by a printing method using printing dot ink containing a binder component.
  • Examples of the printing method include a screen printing method, an ink jet printing method, a gravure printing method, an offset printing method, a flexographic printing method, and a dispenser printing method.
  • offset printing that can form small-diameter printing dots with high accuracy
  • flexographic printing that can easily form small-diameter printing dots with high accuracy
  • easy formation of tall printing dots by thickening the ink overlay Screen printing is preferred.
  • the printing dots are formed in a substantially circular shape when viewed from the back side.
  • substantially circular includes a complete circle, an arc is continuously formed in an annular shape, and the maximum diameter (the maximum length of the virtual straight line passing through the center of gravity) is the minimum diameter (the center of gravity is 2) or less, preferably 1.5 times or less of the minimum length of the imaginary straight line that passes through.
  • the lower limit of the average diameter of the printing dots is preferably 1 ⁇ m, more preferably 3 ⁇ m, further preferably 10 ⁇ m, and particularly preferably 20 ⁇ m.
  • the upper limit of the average diameter (d) of the printing dots is preferably 200 ⁇ m, more preferably 100 ⁇ m, and even more preferably 50 ⁇ m. If the average diameter of the printing dots is less than the lower limit, the adhesion with the base material layer 23 may be reduced. On the other hand, if the average diameter of the printing dots exceeds the upper limit, the printing dots become unnecessarily large, which may adversely affect the optical characteristics of the backlight unit 11.
  • the lower limit of the average height of the printing dots is preferably 0.5 ⁇ m, more preferably 1 ⁇ m, further preferably 3 ⁇ m, and particularly preferably 5 ⁇ m.
  • the upper limit of the average height of the printing dots is preferably 100 ⁇ m, more preferably 50 ⁇ m, and even more preferably 10 ⁇ m. If the average height of the printing dots is less than the lower limit, sticking may not be sufficiently prevented. Conversely, if the average height of the printing dots exceeds the upper limit, it becomes difficult to form the printing dots and the productivity may be reduced.
  • the upper limit of the variation coefficient of the print dot height is preferably 0.2, more preferably 0.1, and even more preferably 0.05.
  • the lower limit of the variation coefficient of the print dot height is not particularly limited, and may be 0, for example.
  • the “variation coefficient” of the height of the print dots refers to a value obtained by dividing the standard deviation of the height of any 10 print dots by the average height.
  • the lower limit of the ratio of the average height of the printing dots to the average diameter is preferably 0.01, more preferably 0.05, and still more preferably 0.1. If the height ratio is less than the lower limit, the printed dots may be unnecessarily large.
  • the upper limit of the height ratio of the average height of the print dots to the average diameter can be set to 1, for example.
  • the plurality of printing dots are arranged substantially uniformly on the back surface of the base material layer 24 as described above.
  • the average pitch of these printing dots 20 micrometers is preferred, 30 micrometers is more preferred, and 40 micrometers is still more preferred.
  • the upper limit of the average pitch of the printing dots is preferably 300 ⁇ m, more preferably 150 ⁇ m, and even more preferably 70 ⁇ m. If the average pitch of the print dots is less than the lower limit, there are too many print dots, which may adversely affect the optical characteristics of the backlight unit 11. On the other hand, if the average pitch of the printing dots exceeds the upper limit, the sticking prevention function may not be sufficiently obtained.
  • the lower limit of the density of the printed dots on the back surface of the base material layer 23 is preferably 10 pieces / mm 2, more preferably 60 pieces / mm 2 , further preferably 100 pieces / mm 2 , and 200 pieces / mm 2. Particularly preferred.
  • the upper limit of the density of the printed dots on the back side of the base layer 23 is preferably 2500 / mm 2, more preferably 1000 particles / mm 2, more preferably 600 pieces / mm 2, 450 pieces / mm 2 is particularly preferred. If the density of the printed dots is less than the lower limit, the sticking prevention effect may not be sufficiently obtained. Conversely, if the density of the printed dots exceeds the upper limit, the optical characteristics of the backlight unit 11 may be adversely affected.
  • the first prism sheet 15 refracts the light incident from the lower light diffusion sheet 14 toward the normal direction and emits it to the second prism sheet 16.
  • the second prism sheet 16 emits the light incident from the first prism sheet 15 to the front side so that the emitted light travels substantially perpendicular to the back surface of the liquid crystal display element. Since the first prism sheet 15 and the second prism sheet 16 need to transmit light, they are formed of a synthetic resin that is transparent, particularly colorless and transparent, as a main component.
  • the 1st prism sheet 15 and the 2nd prism sheet 16 have a base material layer and the projection row
  • the ridge line directions of the plurality of ridge prism portions of the first prism sheet 15 and the ridge line directions of the plurality of ridge prism portions of the second prism sheet 16 are substantially orthogonal to each other.
  • the first prism sheet 15 and the lower light diffusion sheet 14 are partially bonded by an adhesive, and more specifically, the contact portion between the back surface of the base material layer of the first prism sheet 15 and the surface of the light diffusion layer 24. It is glued with.
  • the second prism sheet 16 and the first prism sheet 15 are partially bonded with an adhesive, and more specifically, the back surface of the base material layer of the second prism sheet 16 and the plurality of surfaces on the first prism sheet 15 surface. Bonded at the contact portion of the ridge portion of the protruding prism portion.
  • the adhesive for adhering the first prism sheet 15 and the lower light diffusion sheet 14 and the adhesive for adhering the second prism sheet 16 and the first prism sheet 15 are not particularly limited. An adhesive similar to the adhesive that bonds the sheet 13 and the lower light diffusion sheet 14 can be used.
  • the lower limit of the thickness of the first prism sheet 15 and the second prism sheet 16 (height from the back surface of the base material layer to the apex of the protruding prism portion) is preferably 20 ⁇ m, and more preferably 40 ⁇ m.
  • the upper limit of the thickness of the first prism sheet 15 and the second prism sheet 16 is preferably 300 ⁇ m, more preferably 200 ⁇ m, and even more preferably 180 ⁇ m.
  • the average height of the plurality of protruding prism portions of the first prism sheet 15 and the second prism sheet 16 (average height from the base to the apex of the plurality of protruding prism portions) is preferably 8 ⁇ m or more and 200 ⁇ m or less. .
  • the pitch of the protrusion prism part in the 1st prism sheet 15 and the 2nd prism sheet 16 4 micrometers is preferable, 10 micrometers is more preferable, and 20 micrometers is more preferable.
  • the upper limit of the pitch of the protruding prism portions in the first prism sheet 15 and the second prism sheet 16 is preferably 100 ⁇ m, and more preferably 60 ⁇ m.
  • the refractive index of the 1st prism sheet 15 and the 2nd prism sheet 16 1.5 is preferred and 1.55 is more preferred.
  • the upper limit of the refractive index of the first prism sheet 15 and the second prism sheet 16 is preferably 1.7.
  • the “refractive index of the prism sheet” refers to the refractive index of the protruding prism portion.
  • the projecting prism portions of the first prism sheet 15 and the second prism sheet 16 have a substantially triangular prism shape.
  • the apex angle of the protruding prism portion is preferably 75 ° to 95 °.
  • the protruding prism portion of the first prism sheet 15 and / or the second prism sheet 16 is a triangular prism
  • the protruding prism portion may have a constant height in the axial direction, but the height in the axial direction is continuous. May vary.
  • the plurality of protruding prism portions of the first prism sheet 15 and / or the second prism sheet 16 are triangular prisms, these protruding prism portions may all have the same height. The height of the prism portion may be different. Further, the protruding prism portion of the first prism sheet 15 and / or the second prism sheet 16 may have a convex portion protruding in the height direction from the apex portion of the triangular prism. Although this convex part may be formed only in a part of the axial direction of the ridge prism part, it is preferable that it is formed in a rod shape across both ends in the axial direction.
  • the first prism sheet 15 and / or the second prism sheet 16 and another optical sheet are bonded with the convex portion embedded in an adhesive. Therefore, by suppressing the triangular prism portion from being embedded in the adhesive, it is easy to improve the adhesive force while sufficiently exhibiting the optical characteristics exhibited by the protruding prism portion.
  • the protruding prism portion of the first prism sheet 15 and / or the second prism sheet 16 may have a concave groove at the apex portion.
  • the specific configuration of the concave groove is not particularly limited, but is preferably formed so as to extend from one end to the other end of the apex portion of the protruding prism portion.
  • the concave groove 33 may be formed so as to divide the convex portion 34 into two in the direction perpendicular to the axial direction.
  • the concave groove 35 may be formed so as to cross the convex portion 36 in a direction intersecting the axial direction. In this case, it is preferable that a plurality of concave grooves 35 are formed at regular intervals. Since the optical laminated body 12 has the concave groove, it is easy to fill the concave groove with an adhesive by utilizing a capillary phenomenon, and thereby the adhesive is applied to the inclined surface of the triangular prism portion of the ridge prism portion. It is easy to reduce the amount of adhesion. Therefore, the optical layered body 12 can easily improve the adhesive force while sufficiently exhibiting optical characteristics exhibited by the protruding prism portion.
  • the upper light diffusion sheet 17 has a base material layer and a light diffusion layer laminated on the surface side of the base material layer.
  • the upper light diffusing sheet 17 suppresses the generation of moire by diffusing the light incident from the second prism sheet 16 to some extent.
  • the upper light diffusion sheet 17 and the second prism sheet 16 are partially bonded by an adhesive, and more specifically, the back surface of the base material layer of the upper light diffusion sheet 17 and the plurality of second prism sheets 16. It is bonded in a stripe shape at the contact portion of the ridge line portion of the ridge prism portion.
  • the adhesive for adhering the upper light diffusion sheet 17 and the second prism sheet 16 is not particularly limited, and the same adhesive as the adhesive for adhering the light guide sheet 13 and the lower light diffusion sheet 14 is used. An agent can be used.
  • the base material layer of the upper light diffusion sheet 17 can have the same configuration as the base material layer of the lower light diffusion sheet 14 described above. Further, the light diffusion layer of the upper light diffusion sheet 17 includes a light diffusing agent and a binder thereof, like the light diffusion layer of the lower light diffusion sheet 14. However, since the upper light diffusion sheet 17 does not require the same high light diffusibility as the lower light diffusion sheet 14, the lower limit of the amount of the light diffusing agent is preferably 5 parts by mass. More preferably, the upper limit is preferably 40 parts by mass, and more preferably 30 parts by mass.
  • the light source 18 is disposed such that the irradiation surface faces (or abuts) the end surface of the light guide sheet 13.
  • Various light sources 18 can be used.
  • a light emitting diode (LED) can be used.
  • a light source 18 in which a plurality of light emitting diodes are disposed along the end surface of the light guide sheet 13 can be used.
  • the reflection sheet 19 is disposed on the back surface side of the light guide sheet 13 so as to come into contact with the plurality of raised portions 22 formed on the back surface of the light guide sheet 13.
  • the reflection sheet 19 reflects the light beam emitted from the back surface side of the light guide sheet 13 to the front surface side.
  • regular reflection is enhanced by vapor-depositing a metal such as aluminum or silver on the surface of a white sheet obtained by dispersing a filler in a base resin such as polyester or a film formed from polyester. Specular sheet etc. are mentioned.
  • the manufacturing method of the optical laminated body 12 includes, on one surface, a plurality of recessed portions that are recessed on the other surface side, and a plurality of raised portions that exist around the plurality of recessed portions and project on one surface side.
  • the light guide sheet forming step can be performed, for example, by the following method.
  • A An injection molding method in which a molten light guide sheet forming material is injected into a mold having a plurality of recesses and a reversal shape of a plurality of raised portions present around the recesses
  • B A method of re-heating a sheet body made of a light guide sheet forming material and sandwiching it between a mold having the above inverted shape and a metal plate or roll to transfer the shape
  • C supplying a molten light guide sheet forming material to a T die and extruding the forming material from the extruder and the T die to form a sheet body; A method using an extrusion method in which a shape is transferred by pressing between metal plates or rolls
  • D A casting method (solution casting method) in which a solution (dope) in which a light guide sheet forming material is melted in a solvent to have fluidity is poured into a
  • Molding mold As described above, as the mold, (i) a plurality of recesses arranged in a predetermined pattern, a mold having a reverse shape of a plurality of raised portions existing around these recesses on the surface, or (ii) A mold having only the inverted shape of a plurality of concave portions arranged in a predetermined pattern on the surface is used.
  • the mold (i) can be manufactured by using a prototype having a plurality of concave portions arranged in a predetermined pattern and a plurality of raised portions present around the plurality of concave portions on the surface.
  • the method for producing the prototype for example, (A) a method of simultaneously forming the plurality of concave portions and the plurality of raised portions by performing laser irradiation on the surface of the base material forming the prototype, (B) The method of forming the said several recessed part and several bulge part simultaneously by cutting the surface of the base material which forms a prototype using a cemented carbide tool, a diamond tool, an end mill, etc. is mentioned.
  • Examples of the original forming material manufactured by the method (A) include metals such as SUS.
  • examples of the original forming material manufactured by the method (B) include relatively hard synthetic resins such as polycarbonate and acrylic resin, in addition to metals such as SUS.
  • the laser irradiation portion is melted.
  • the melted material is deposited around the recess to form a raised portion.
  • the cutting is performed, the cut portion of the base material is deposited around the concave portion formed by the cutting to form a raised portion.
  • the depth and diameter of the recess, the height, width, and shape of the raised portion are adjusted by laser irradiation, cutting strength, angle, diameter, and the like.
  • the laser irradiated to form a plurality of concave portions and a plurality of raised portions on the prototype surface is not particularly limited.
  • carbon dioxide laser carbon monoxide laser, semiconductor laser, YAG (yttrium (Aluminum garnet) laser and the like.
  • a carbon dioxide laser having a wavelength of 9.3 ⁇ m to 10.6 ⁇ m is suitable for forming a fine shape.
  • the carbon dioxide laser include a lateral atmospheric pressure excitation (TEA) type, a continuous oscillation type, and a pulse oscillation type.
  • an inverted shape of the prototype is formed on the surface of the prototype having a plurality of recesses arranged in a predetermined pattern and a plurality of raised portions present around the plurality of recesses.
  • a step (S1) of forming a plating layer on the surface by electroforming, and a step (S2) of peeling the plating layer from the original mold are provided.
  • examples of the forming material of the mold when using the above-described prototype include metals such as nickel, gold, silver, copper, and aluminum.
  • the plating layer forming step (S1) is performed, for example, by depositing metal nickel as an anode and the prototype as a cathode in a plating bath to deposit a plating layer on the surface of the prototype.
  • the plating layer peeling step (S2) is performed by peeling the plating layer deposited on the surface of the prototype in the plating layer forming step (S1) from the prototype.
  • a plating layer peeling process (S2) in order to raise the intensity
  • the mold (ii) can be manufactured without using a prototype.
  • Examples of the manufacturing method of the mold (ii) include a method of forming inverted shapes of a plurality of concave portions on the surface of a base material constituting the mold using, for example, a photolithography method and an etching method.
  • a relatively hard synthetic resin such as polycarbonate or acrylic resin can be used as the forming material of the mold.
  • the laminating step includes a step of partially bonding the other surface of the light guide sheet 13 formed in the light guide sheet forming step and the plurality of convex portions 25 of the lower light diffusion sheet 14, and a lower light diffusion sheet.
  • a step of partially adhering the front surface of the light diffusion layer 24 and the back surface of the base material layer of the first prism sheet 15, the surfaces of the plurality of protruding prism portions of the first prism sheet 15, and the second prism sheet 16 A step of partially adhering the back surface of the base material layer, and a step of partially adhering the surface of the plurality of protruding prism portions of the second prism sheet 16 and the back surface of the base material layer of the upper light diffusion sheet 17.
  • the adhesive is applied to the entire other surface of the light guide sheet 13, and then the lower light diffusion sheet 14 is applied on the adhesive application surface.
  • the plurality of convex portions 25 are overlapped, and the contact portions of the light guide sheet 13 and the plurality of convex portions 25 are adhered by this adhesive.
  • the bonding process of the lower light diffusion sheet 14 and the first prism sheet 15 is performed by, for example, applying the adhesive to the entire back surface of the base material layer of the first prism sheet 15 and then applying the adhesive applied surface to the lower light diffusion surface. This is performed by overlapping the surface of the light diffusion layer 24 of the sheet 14 and bonding the contact portions of the lower light diffusion sheet 14 and the first prism sheet 15 with this adhesive.
  • the adhesive is applied to the entire back surface of the base material layer of the second prism sheet 16, and the coated surface of the adhesive is applied to the first prism sheet 15.
  • the first prism sheet 15 and the second prism sheet 16 are bonded to each other with the adhesive so as to overlap the ridge line portions of the plurality of protruding prism portions.
  • the bonding process of the second prism sheet 16 and the upper light diffusion sheet 17 is performed by, for example, applying the adhesive to the entire back surface of the base material layer of the upper light diffusion sheet 17 and then applying the adhesive application surface to the second prism. This is performed by overlapping the ridge line portions of the plurality of protruding prism portions of the sheet 16 and bonding the contact portions of the second prism sheet 16 and the upper light diffusion sheet 17 with this adhesive.
  • the optical laminated body 12 includes the light guide sheet 13 and other members disposed on the back surface side of the light guide sheet 13 because the light guide sheet 13 has a plurality of raised portions 22 protruding on the back surface side. Are abutted in a scattered manner by the plurality of raised portions 22. Therefore, the optical laminated body 12 can suppress adhesion between the light guide sheet 13 and other members disposed on the back side of the light guide sheet 13.
  • the light guide sheet 13 has a plurality of concave portions 21 recessed on the front surface side on the back surface, so that light incident on the plurality of concave portions 21 can be scattered on the front surface side.
  • the optical laminated body 12 is scattered by the concave portion 21 because the raised portion 22 is present around the concave portion 21 so that the close contact between the concave portion 21 and the vicinity of the concave portion 21 can be accurately prevented. Luminance unevenness caused by light rays can be suitably prevented.
  • the optical laminated body 12 includes one or more optical sheets laminated on the front surface side of the light guide sheet 13, and the other disposed on the back side of the light guide sheet 13 on the light guide sheet 13. Since it is not necessary to separately provide an anti-sticking layer for preventing adhesion with the member, the thickness can be reduced.
  • the optical laminate 12 includes a lower light diffusion sheet 14 laminated on the surface of the light guide sheet 13 and a prism sheet (first prism sheet 15 and second prism sheet) laminated on the surface of the lower light diffusion sheet 14. 16), and the light guide sheet 13 and the lower light diffusion sheet 14 are bonded at the contact portion between the surface of the light guide sheet 13 and the plurality of convex portions 25. It is possible to prevent unevenness of brightness by preventing the diffusion sheet 14 from sticking.
  • the optical layered body 12 diffuses light incident on the lower light diffusing sheet 14 from the light guiding sheet 13 by air existing at locations other than the contact portions of the light guiding sheet 13 and the lower light diffusing sheet 14. Therefore, the diffusion function can be improved.
  • the optical layered body 12 is, for example, on the surface side of the optical layered body 12. It is possible to emit a light beam having a distribution having a peak in the normal direction toward the entire surface of the liquid crystal panel.
  • the backlight unit 11 includes the optical layered body 12, it is possible to suppress the occurrence of luminance unevenness due to the incidence of light rays on the close contact portion between the light guide sheet 13 and other members. Further, since the backlight unit 11 includes the optical laminate 12, the thickness can be reduced.
  • the liquid crystal display device 1 includes the backlight unit 11, as described above, luminance unevenness can be suppressed and the thickness can be reduced.
  • the method for manufacturing the optical layered body can easily and surely manufacture the optical layered body 12 that can suppress luminance unevenness and can be thinned.
  • a light guide sheet 31 in FIG. 6 is used in the optical laminate 12 in FIG. 2 instead of the light guide sheet 13.
  • the light guide sheet 31 emits light incident from the end face substantially uniformly toward the surface side.
  • the light guide sheet 31 is formed in a substantially rectangular shape in plan view, and is formed in a plate shape (non-wedge shape) having a substantially uniform thickness.
  • the light guide sheet 31 has, on the back surface, a plurality of concave portions 21 that are recessed on the front surface side, and a plurality of raised portions 22 that exist around the plurality of concave portions 21 and protrude on the back surface side.
  • the light guide sheet 31 has a plurality of convex portions 32 arranged in a scattered manner in a region where the plurality of raised portions 22 do not exist on the back surface.
  • the light guide sheet 31 has a sticking prevention part on the back surface.
  • the light guide sheet 31 has a plurality of raised portions 22 and a plurality of convex portions 32 as the sticking prevention portion.
  • the light guide sheet 31 is configured in the same manner as the light guide sheet 13 of FIG. 2 except that the light guide sheet 31 has a plurality of convex portions 32. Therefore, only the plurality of convex portions 32 will be described below.
  • the plurality of convex portions 32 prevent the light guide sheet 31 and the other member disposed on the back side of the light guide sheet 31 from being in close contact with each other.
  • the plurality of convex portions 32 are formed continuously from the flat surface on the back surface of the light guide sheet 31. As shown in FIG. 7, the convex portion 32 is formed in a substantially circular shape in plan view. Further, the top of the convex portion 32 is curved.
  • the shape of the convex portion 32 is preferably a hemispherical shape or a semi-ellipsoidal shape.
  • the moldability of the convex part 32 can be improved and the surface of another member disposed on the back side of the light guide sheet 31 can be improved. Scratch prevention can be improved.
  • the arrangement pattern of the plurality of convex portions 32 is preferably formed so that the density gradually increases from one end side to the other end side.
  • the arrangement pattern of the plurality of convex portions 32 is preferably formed so that the density gradually increases from the edge on the opposite side to the light source side to the edge on the light source side.
  • the plurality of convex portions 32 are arranged so that the total existence density of the plurality of raised portions 22 and the plurality of convex portions 32 on the entire back surface of the light guide sheet 31 is substantially uniform.
  • the lower limit of the total density of the raised portions 22 and the convex portions 32 on the back surface of the light guide sheet 31 is preferably 40 pieces / mm 2 , more preferably 60 pieces / mm 2, and still more preferably 80 pieces / mm 2 .
  • the upper limit of the total existence density of the raised portions 22 and the convex portions 32 on the back surface of the light guide sheet 31 is preferably 500 pieces / mm 2 , more preferably 400 pieces / mm 2 , and even more preferably 300 pieces / mm 2. .
  • the total density of the raised portions 22 and the convex portions 32 is less than the lower limit, the light guide sheet 31 and the other members disposed on the back surface side of the light guide sheet 31 are brought into close contact with the entire back surface of the light guide sheet 31. There is a risk that it cannot be prevented accurately. Conversely, if the total density of the raised portions 22 and the convex portions 32 exceeds the above upper limit, the surface of other members disposed on the back surface side of the light guide sheet 31 is likely to be damaged.
  • the total density of the raised portions 22 and the convex portions 32 was calculated by measuring the number of the raised portions 22 and the convex portions 32 in the field of view observed with a laser microscope magnified 1000 times and using the visual field area. Value. Moreover, when the some protruding part 22 exists around the one recessed part 21, these protruding parts 22 are calculated as one piece in total.
  • convex part 32 As a minimum of average height (average height from the back average interface) of convex part 32, 2 micrometers is preferred, 3 micrometers is more preferred, and 4 micrometers is still more preferred. On the other hand, as an upper limit of the average height of the convex part 32, 7 micrometers is preferable, 6 micrometers is more preferable, and 5 micrometers is further more preferable. If the average height of the convex part 32 is less than the said minimum, there exists a possibility that contact
  • the plurality of convex portions 32 have a uniform height.
  • the upper limit of the coefficient of variation in the height of the plurality of convex portions 32 is preferably 0.2, more preferably 0.1, and even more preferably 0.05.
  • the variation coefficient of the height of the plurality of convex portions 32 exceeds the upper limit, the height of the plurality of convex portions 32 becomes uneven, the load is biased to the tall convex portions 32, and based on this, the back surface of the light guide sheet 31 There is a possibility that the surface of another member disposed on the side may be damaged.
  • the lower limit of the coefficient of variation in height of the plurality of convex portions 32 is not particularly limited, and can be set to 0, for example.
  • the lower limit of the height ratio of the average height of the convex portion 32 to the average diameter (average diameter at the back average interface) is preferably 0.05, more preferably 0.07, and even more preferably 0.1.
  • the upper limit of the height ratio is preferably 0.5, more preferably 0.3, and still more preferably 0.2. If the height ratio is less than the lower limit, the contact area between the light guide sheet 31 and the other member disposed on the back side of the light guide sheet 31 is increased, and the light incident on the contact portion is increased. This may cause uneven brightness. On the contrary, if the height ratio exceeds the upper limit, the tip of the convex portion 32 is sharpened, and the damage prevention property to the surface of another member disposed on the back surface side of the light guide sheet 31 may be reduced. There is.
  • the lower limit of the height ratio of the average height of the convex portions 32 to the average height of the raised portions 22 is preferably 0.5, more preferably 0.65, and even more preferably 1.
  • the upper limit of the height ratio is preferably 7, more preferably 5, and even more preferably 3. If the height ratio is out of the above range, the difference between the average height of the convex portions 32 and the average height of the raised portions 22 becomes large, and the load is biased to either the plurality of convex portions 32 or the plurality of raised portions 22. Based on this, the surface of another member disposed on the back side of the light guide sheet 31 may be damaged.
  • the method for forming the plurality of convex portions 32 is not particularly limited, and may be formed at the same time as the plurality of concave portions 21 and the plurality of raised portions 22, and after the formation of the plurality of concave portions 21 and the plurality of raised portions 22. It may be formed separately. Examples of a method for forming the plurality of convex portions 32 after the formation of the plurality of concave portions 21 and the plurality of raised portions 22 include a known printing method such as screen printing and ink jet printing, a method using a photolithography method and an etching method, and the like. Can be mentioned.
  • the light guide sheet 31 is present around the plurality of concave portions 21 recessed on the front surface side and the plurality of concave portions 21 on the back surface, and in addition to the plurality of raised portions 22 protruding to the back surface side, the plurality of raised portions 22 are not present. Since it has the some convex part 32 arrange
  • the manufacturing method of the optical laminated body, backlight unit, liquid crystal display device, and optical laminated body according to the present invention can be implemented in variously modified and improved aspects in addition to the above aspect.
  • the light guide sheet is not necessarily a single layer structure as long as the back side has a predetermined shape, and may be a multilayer structure having two or more layers.
  • the light guide sheet may have a lenticular shape on the surface so that the emitted light can be controlled. Further, the light guide sheet has a plurality of notches such as a V shape and a trapezoidal shape formed continuously or at predetermined intervals on the end surface on the light source side in order to suppress luminance unevenness in the vicinity of the light source. May be.
  • the arrangement pattern of the plurality of raised portions is not particularly limited. As an arrangement pattern of the plurality of raised portions, for example, when used in a double-sided edge light type backlight unit in which a light source is provided on both side ends opposed to the light guide sheet, gradually from the both side ends toward the center. It may be arranged so as to increase the density. Furthermore, the arrangement pattern of the plurality of convex portions is not particularly limited as long as the plurality of convex portions are arranged in a scattered manner in an area where the plurality of raised portions do not exist.
  • the planar shape of the plurality of recesses is not limited to a substantially circular shape, and may be a polygonal shape or the like. Moreover, the planar view shape of a some protruding part is not restricted to a substantially annular shape, A polygonal annular shape etc. may be sufficient. Furthermore, the plurality of raised portions need not necessarily be disposed so as to completely surround the outer periphery of the recess.
  • the shapes of the plurality of concave portions and the plurality of raised portions other than the above embodiment are illustrated in FIG. In FIG. 8A, a plurality of partially annular raised portions 42 are disposed around a concave portion 41 having a circular shape in plan view. In FIG.
  • a square annular raised portion 52 is disposed around a concave portion 51 having a circular shape in plan view.
  • one raised portion 62 having an annular shape in plan view is disposed so as to surround the plurality of recessed portions 61.
  • a raised portion 72 having an annular shape in plan view is disposed around a concave portion 71 having a square shape in plan view.
  • the combination of the optical sheets is not particularly limited.
  • the optical laminate may be composed of only a light guide sheet and a light diffusion sheet laminated on the surface of the light guide sheet.
  • the configuration of the light diffusion sheet is not particularly limited. For example, whether or not the light diffusion sheet has a plurality of convex portions is arbitrary.
  • the light guide sheet and the optical sheet, or the optical sheets do not necessarily have to be adhered in a scattered manner.
  • the optical laminate is filled with an adhesive layer so as to fill a gap between the light guide sheet and the optical sheet, or between the optical sheets, and the light guide sheet and the optical sheet, or the optical sheets are bonded together by the adhesive layer. Also good.
  • the mold (ii) may be manufactured by electroforming using a prototype having a plurality of recesses on the surface.
  • Examples of the method for producing a prototype having a plurality of recesses on the surface include a method of forming a plurality of recesses on the surface of a substrate constituting the prototype using a photolithography method and an etching method.
  • the light guide sheet is manufactured using an extrusion molding method in which a molten forming material is supplied to a T die and the forming material is extruded from the extruder and the T die to form a sheet body.
  • One of the pair of pressing rolls that sandwich the body may be used as a mold having a plurality of recesses and a reversal shape of a plurality of raised portions present around the recesses.
  • a method for forming such a reverse shape on the surface of one pressing roll for example, plating having a plurality of concave portions arranged in a predetermined pattern and a plurality of raised portions existing around these concave portions on the surface. Examples thereof include a method of laminating the layer on the surface of the pressing roll, and a method of forming the above inverted shape on the surface of the pressing roll using a laser or cutting.
  • the backlight unit is not necessarily provided with a reflective sheet on the back side of the light guide sheet.
  • the reflection surface may be formed instead of the reflection sheet.
  • the backlight unit can promote thinning except for the reflective sheet by forming the top plate surface as the backmost surface of the backlight unit in this way.
  • liquid crystal display device in addition to the laptop computer as described above, various configurations such as a mobile phone terminal such as a smartphone, a portable terminal such as a portable information terminal such as a tablet terminal, a desktop computer, and a thin TV Can be adopted. Even if the liquid crystal display device is configured as a laptop computer, the thickness of the casing of the laptop computer does not necessarily have to be 21 mm or less.
  • the optical layered body of the present invention is suitably used for a liquid crystal display device in which luminance unevenness is prevented and thinning is promoted.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

輝度ムラを抑制すると共に薄型化を図ることができる光学積層体の提供を目的とする。本発明の光学積層体は、エッジライト型のバックライトユニットに用いられる板状の光学積層体であって、端面から入射される光線を表面側に向けて出射する導光シートと、この導光シートの表面側に積層される1又は複数の光学シートとを備え、上記導光シートが、裏面に、表面側に陥没する複数の凹部と、この複数の凹部の周囲に存在し、裏面側に突出する複数の隆起部とを有する。上記凹部の平均深さ(L)としては、1μm以上10μm以下が好ましい。上記凹部の平均径(D)としては、10μm以上50μm以下が好ましい。上記隆起部の平均高さ(H)としては、0.1μm以上5μm以下が好ましい。上記隆起部が上記凹部を囲むように平面視略円環状に形成され、上記隆起部の平均幅(W)が1μm以上15μm以下であるとよい。

Description

光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法
 本発明は、光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法に関する。
 液晶表示装置は、液晶パネルを裏面側から照らして発光させるバックライト方式が普及し、エッジライト型、直下型等のバックライトユニットが液晶パネルの下面側に装備されている。かかるエッジライト型バックライトユニット110は、一般的には図9に示すように、天板116の表面に配設される反射シート115、この反射シート115の表面に配設される導光シート111、この導光シート111の表面に配設される光学シート112及びこの導光シート111の端面に向けて光を照射する光源117を備える。この図9のエッジライト型バックライトユニット110にあっては、光源117が照射し導光シート111に入射した光は、導光シート111内を伝搬する。この伝搬する光の一部は、導光シート111の裏面から出射し反射シート115で反射され、再度導光シート111に入射する。
 このような液晶表示部を備える液晶表示装置は、その携帯性、利便性を高めるために薄型化及び軽量化が求められ、これに伴い液晶表示部も薄型化が求められている。特に近年では、筐体の最厚部が21mm以下である超薄型の携帯型端末が提案されており、このような超薄型の携帯型端末にあっては、液晶表示部の厚みは4mmから5mmほどであることが望まれ、液晶表示部に組み込まれるエッジライト型バックライトユニットにはより一層の薄型化が求められている。
 このようなエッジライト型バックライトユニットの薄型化の要請に鑑みて、複数の光学シートを接着剤で積層接着した光学積層体が発案されている(特開2013-15833号公報参照)。さらに、上記超薄型の携帯型コンピュータにあっては、液晶表示部の厚みが上記程度とされていることから、平均厚みが600μm以下程度の導光シート(ライドガイドフィルム)も用いられるようになってきている。
特開2013-15833号公報
 本発明者は、このような液晶表示装置を使用すると液晶表示面の輝度が不均一となる不具合(輝度ムラ)が生じることを見出した。この不具合の原因について本発明者が鋭意検討した結果、導光シートの裏面がこの導光シートの裏面側に配設される反射シート等と密着(スティッキング)し、この密着部分に光が入射することに起因して輝度ムラが生じていることが判明した。
 本発明は、このような事情に鑑みてなされたものであり、本発明の目的は、輝度ムラを抑制すると共に薄型化を図ることができる光学積層体、バックライトユニット及び液晶表示装置を提供することにある。また、本発明の別の目的は、輝度ムラを抑制すると共に薄型化を図ることができる光学積層体の製造方法を提供することにある。
 上記課題を解決するためになされた本発明に係る光学積層体は、エッジライト型のバックライトユニットに用いられる板状の光学積層体であって、端面から入射される光線を表面側に向けて出射する導光シートと、この導光シートの表面側に積層される1又は複数の光学シートとを備え、上記導光シートが、裏面に、表面側に陥没する複数の凹部と、この複数の凹部の周囲に存在し、裏面側に突出する複数の隆起部とを有する。
 当該光学積層体は、導光シートが裏面に、裏面側に突出する複数の隆起部を有するので、導光シートと導光シートの裏面側に配設される他の部材とが複数の隆起部によって散点的に当接する。そのため、当該光学積層体は、導光シートと導光シートの裏面側に配設される他の部材との密着を抑制することができる。また、当該光学積層体は、導光シートが、裏面に、表面側に陥没する複数の凹部を有するので、この複数の凹部に入射した光線を表面側に散乱させることができる。特に、当該光学積層体は、隆起部が凹部の周囲に存在していることによって、凹部及び凹部近辺の密着を的確に防止することができるので、この凹部によって散乱された光線に起因する輝度ムラを好適に防止することができる。さらに、当該光学積層体は、導光シートの表面側に1又は複数の光学シートが積層されていること、及び導光シートにこの導光シートの裏面側に配設される他の部材との密着を防止するためのスティッキング防止層を別途設ける必要がないことから、薄型化を図ることができる。
 上記凹部の平均深さ(L)としては、1μm以上10μm以下が好ましい。このように、上記凹部の平均深さ(L)が上記範囲内であることによって、入射光に対する散乱機能に優れる凹部を容易かつ確実に形成することができる。
 上記凹部の平均径(D)としては、10μm以上50μm以下が好ましい。このように、上記凹部の平均径(D)が上記範囲内であることによって、入射光に対する散乱機能に優れる凹部を容易かつ確実に形成することができる。
 上記隆起部の平均高さ(H)としては、0.1μm以上5μm以下が好ましい。このように、上記隆起部の平均高さ(H)が上記範囲内であることによって、導光シートの裏面側に配設される他の部材の表面の傷付きを的確に抑制し易い。また、上記隆起部の平均高さ(H)が上記範囲内であることにより、凹部及び凹部近辺が導光シートの裏面側に配設される他の部材と密着するのをより確実に防止することができ、複数の凹部によって散乱された光線に起因する輝度ムラの発生をさらに確実に防止することができる。
 上記隆起部が上記凹部を囲むように平面視略円環状に形成されていることが好ましく、上記隆起部の平均幅(W)としては、1μm以上15μm以下が好ましい。このように、上記隆起部が上記凹部を囲むように平面視略円環状に形成されていることによって、凹部及び凹部近辺が導光シートの裏面側に配設される他の部材と密着するのをさらに確実に防止することができる。また、上記隆起部の平均幅(W)が上記範囲内であることによって、導光シートと導光シートの裏面側に配設される他の部材との当接面積が大きくなるのを抑えつつ、他の部材の表面の傷付きを的確に防止することができる。
 上記隆起部の平均高さ(H)の平均幅(W)に対する高さ比(H/W)としては、0.05以上0.5以下が好ましい。このように、上記隆起部の平均高さ(H)の平均幅(W)に対する高さ比(H/W)が上記範囲内であることによって、導光シートの裏面側に配設される他の部材の表面の傷付きを的確に防止することができる。
 当該光学積層体は、上記導光シートの表面に積層される光拡散シート、及びこの光拡散シートの表面に積層されるプリズムシートを備え、上記光拡散シートが、基材層と、この基材層の表面側に積層される光拡散層と、この基材層の裏面側に突設される複数の凸部とを有し、上記導光シート及び光拡散シートが、上記導光シート表面と複数の凸部との当接箇所で接着されているとよい。このように、上記導光シートが光拡散シートの複数の凸部との当接箇所で接着されていることによって、導光シート及び光拡散シートの密着を防止して輝度ムラを抑制することができる。また、かかる構成によると、導光シート及び光拡散シートの当接箇所以外に存在する空気によって導光シートから光拡散シートに入射される光線を拡散することができ、当該光学積層体の拡散機能を向上することができる。さらに、このように十分に拡散された光線がプリズムシートに入射されることによって、例えば当該光学積層体の表面側に配設される液晶パネルの全面に向けて法線方向にピークを示す分布の光線を出射することができる。
 上記複数の凸部が複数の印刷ドットから構成されているとよい。このように、上記複数の凸部が複数の印刷ドットから構成されていることによって、複数の凸部の高さを均一に保ち易く、これにより導光シートと複数の凸部とを接着し易い。
 上記課題を解決するためになされた本発明に係るエッジライト型のバックライトユニットは、当該光学積層体と、上記導光シートの端面に光を照射する光源とを備える。
 当該バックライトユニットは、当該光学積層体を備えるので、既述のように輝度ムラを抑制すると共に薄型化を図ることができる。
 また、上記課題を解決するためになされた本発明に係る液晶表示装置は、当該バックライトユニットを備える。
 当該液晶表示装置は、当該バックライトユニットを備えるので、既述のように輝度ムラを抑制すると共に薄型化を図ることができる。
 また、上記課題を解決するためになされた本発明に係る光学積層体の製造方法は、エッジライト型のバックライトユニットに用いられる板状の光学積層体の製造方法であって、一方の面に、他方の面側に陥没する複数の凹部と、この複数の凹部の周囲に存在し、一方の面側に突出する複数の隆起部とを有する導光シートを形成する工程、及び上記導光シートの他方の面側に、1又は複数の光学シートを積層する工程を備える。
 当該光学積層体の製造方法によると、裏面に、表面側に陥没する複数の凹部、及びこの複数の凹部の周囲に存在し、裏面側に突出する複数の隆起部を有する導光シートと、この導光シートの表面側に積層される1又は複数の光学シートとを備える当該光学積層体を製造することができる。従って、当該光学積層体の製造方法は、輝度ムラを抑制すると共に薄型化を図ることができる光学積層体を製造することができる。
 なお、本発明において、「表面側」とは液晶表示装置における視認者側を意味し、「裏面側」とはその逆を意味する。また、「表面」とは、表面側の面をいい、「裏面」とはその逆の面をいう。「板状」とは、対向する2面(最表面及び最裏面)を有し、この対向する2面の平面視における70%以上の領域が平行である構成をいい、好ましくは80%、さらに好ましくは90%以上の領域が平行である構成をいう。また、対向する2面が「平行」とは、対向する2面の平均界面同士のなす角度が5°以下であることをいい、好ましくは3°以下であることをいい、より好ましくは1°以下であることをいう。「凹部の平均深さ」とは、導光シートの裏面平均界面からの平均深さをいい、任意の20個の凹部を抽出し、このうち深さが大きいものから5つ及び深さが小さいものから5つを除いた10個の深さの平均値をいう。また、「導光シートの裏面平均界面」とは、導光シートの裏面のうち複数の凹部及び複数の隆起部が存在していない平坦面の界面をいう。「凹部の径」とは、導光シートの裏面平均界面における径をいい、凹部の最大径と、その最大径方向に直交する方向の径との中間値を意味する。また、「凹部の平均径」とは、任意の20個の凹部を抽出し、このうち径が大きいものから5つ及び径が小さいものから5つを除いた10個の径の平均値をいう。「隆起部の平均高さ」とは、導光シートの裏面平均界面からの平均高さをいい、任意の10個の隆起部の高さの平均値をいう。「隆起部の幅」とは、導光シートの裏面平均界面における幅をいい、隆起部の外半径と内半径との差をいう。この隆起部の幅は、例えば隆起部の外径が最大となる部分における外径の1/2の値から内径の1/2の値を差し引くことで求めることができる。「隆起部の平均幅」とは、任意の10個の隆起部の幅の平均値をいう。
 以上説明したように、本発明に係る光学積層体、バックライトユニット及び液晶表示装置は、輝度ムラを抑制すると共に薄型化を図ることができる。また、本発明に係る光学積層体の製造方法は、輝度ムラを抑制すると共に薄型化を図ることができる光学積層体を製造することができる。
本発明の一実施形態に係る液晶表示装置の概略的斜視図で、(a)は液晶表示部を開いた状態、(b)は液晶表示部を閉じた状態を示す。 図1の液晶表示装置のバックライトユニットを示す模式的端面図である。 図2のバックライトユニットの導光シートの模式的裏面図である。 図3の導光シートの凹部及び隆起部を示す模式的拡大図であり、(a)は端面図、(b)は底面図である。 図2のバックライトユニットの光学積層体を示す模式的端面図である。 図5の光学積層体の導光シートとは異なる形態に係る導光シートを示す模式的端面図である。 図6の導光シートの模式的裏面図である。 図3及び図6の導光シートの凹部及び隆起部とは異なる形態に係る凹部及び隆起部を示す模式的裏面図である。 従来のエッジライト型のバックライトユニットを示す模式的端面図である。 図5の光学積層体の第1プリズムシート及び第2プリズムシートの凹溝の一構成例を示す模式的断面図である。 図5の光学積層体の第1プリズムシート及び第2プリズムシートの凹溝の図10とは異なる構成例を示す模式的斜視図である。
 以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。
[第一実施形態]
<液晶表示装置>
 図1の液晶表示装置1は、携帯型端末として構成されている。当該液晶表示装置1は、操作部2と、この操作部2に回動可能(開閉可能)に連結された液晶表示部3とを有する。当該液晶表示装置1は、液晶表示装置1の構成部分を全体的に収容する筐体(ケーシング)の厚み(液晶表示部3の閉塞時の最厚部)が21mm以下であり、超薄型のラップトップコンピュータである(以下「超薄型コンピュータ1」ということがある)。
 当該超薄型コンピュータ1の液晶表示部3は、液晶パネル4と、この液晶パネル4に向けて裏面側から光を照射するエッジライト型の超薄型バックライトユニットとを有する。この液晶パネル4は、筐体の液晶表示部用ケーシング5により、裏面、側面及び表面の周囲が保持されている。ここで、液晶表示部用ケーシング5は、液晶パネル4の裏面(及び背面)に配設される天板6と、液晶パネル4の表面の周囲の表面側に配設される表面支持部材7とを有する。当該超薄型コンピュータ1の筐体は、液晶表示部用ケーシング5と、この液晶表示部用ケーシング5にヒンジ部8を介して回動可能に設けられ、中央演算処理装置(超低電圧CPU)等が内蔵される操作部用ケーシング9を有する。
 この液晶表示部3の平均厚みとしては、筐体の厚みが所望範囲であれば特に限定されないが、液晶表示部3の平均厚みの下限としては、2mmが好ましく、3mmがより好ましく、4mmがさらに好ましい。一方、液晶表示部3の平均厚みの上限としては、7mmが好ましく、6mmがより好ましく、5mmがさらに好ましい。液晶表示部3の平均厚みが上記下限に満たないと、液晶表示部3の強度の低下や輝度低下等を招くおそれがある。逆に、液晶表示部3の平均厚みが上記上限を超えると、超薄型コンピュータ1の薄型化の要求に沿うことができないおそれがある。
<バックライトユニット>
 図2のバックライトユニット11は、超薄型コンピュータ1の液晶表示部3に備えられる。バックライトユニット11は、光学積層体12と、光源18と、反射シート19とを備える。バックライトユニット11は、エッジライト型のバックライトユニットとして構成されている。
(光学積層体)
 光学積層体12は、図5に示すように、板状に構成されている。光学積層体12は、端面から入射される光線を表面側に向けて出射する導光シート13と、導光シート13の表面側に積層される複数の光学シートとを備える。光学積層体12は、導光シート13及び複数の光学シートの当接箇所が接着剤によって接着されることで一体的に形成されている。上記複数の光学シートとしては、光学特性のニーズに合わせ、光拡散シート、プリズムシート、マイクロレンズシート等の任意の光学シートを選択的に組み合わせて用いることができる。本実施形態では、光学積層体12は、上記複数の光学シートとして、導光シート13の表面に積層される光拡散シート(下用光拡散シート14)と、下用光拡散シート14の表面に積層される第1プリズムシート15と、第1プリズムシート15の表面に積層される第2プリズムシート16と、第2プリズムシート16の表面に積層される光拡散シート(上用光拡散シート17)とを有する。導光シート13は、端面から入射される光線を表面から略均一に出射する。下用拡散シート14は、裏面側から入射された光線を拡散させつつ法線方向側へ集光させる(集光拡散させる)。プリズムシート15,16は、裏面側から入射された光線を法線方向側に屈折させる。具体的には、第1プリズムシート15及び第2プリズムシート16は突条プリズム部の稜線方向が直交しており、下用光拡散シート14から入射された光線を第1プリズムシート15が法線方向側に屈折させ、かつ第1プリズムシート15から出射される光線を第2プリズムシート16が液晶表示素子の裏面に対して略垂直に進行するように屈折させる。上用光拡散シート17は、裏面側から入射された光線を若干程度拡散させてモアレの発生を防止する。
(導光シート)
 導光シート13は、端面から入射される光線を表面から略均一に出射する。導光シート13は、当該光学積層体12の最裏面に配設されている。導光シート13は、平面視略方形状に形成されており、厚みが略均一の板状(非楔形状)に形成されている。導光シート13は、裏面に表面側に陥没する複数の凹部21を有している。また、導光シート13は、裏面にスティッキング防止部を有している。具体的には、導光シート13は、上記スティッキング防止部として、複数の凹部21の周囲に存在し、裏面側に突出する複数の隆起部22を有している。隆起部22は、凹部21に隣接して設けられ、隆起部22の内側面は凹部21の形成面と連続している。導光シート13は合成樹脂を主成分とする単層体として構成されている。
 導光シート13の平均厚みの下限としては、100μmが好ましく、150μmがより好ましく、200μmがさらに好ましい。一方、導光シート13の平均厚みの上限としては、600μmが好ましく、580μmがより好ましく、550μmがさらに好ましい。導光シート13の平均厚みが上記下限に満たないと、導光シート13の強度が不十分となるおそれがあり、また光源18の光を導光シート13に十分に入射させることができないおそれがある。逆に、導光シート13の平均厚みが上記上限を超えると、超薄型の携帯型端末において望まれる薄膜のライトガイドフィルムとして使用できず、バックライトユニット11の薄型化の要望に沿えないおそれがある。
 導光シート13における光源18側の端面からの必須導光距離の下限としては、7cmが好ましく、9cmがより好ましく、11cmがさらに好ましい。一方、導光シート13における光源18側の端面からの必須導光距離の上限としては、45cmが好ましく、43cmがより好ましく、41cmがさらに好ましい。上記必須導光距離が上記下限に満たないと、小型モバイル端末以外の大型端末に使用できないおそれがある。逆に、上記必須導光距離が上記上限を超えると、平均厚みが600μm以下の薄膜のライトガイドフィルムとして用いた場合に撓みが生じやすく、また導光性が十分に得られないおそれがある。なお、導光シート13における光源18側の端面からの必須導光距離とは、光源18から出射され導光シート13の端面に入射する光線が、この端面から対向端面方向に向けて伝搬されることを要する距離を意味する。具体的には、導光シート13における光源18側の端面からの必須導光距離とは、例えば片側エッジライト型のバックライトユニットについては、導光シートの光源側の端面から対向端面までの距離をいい、両側エッジライト型のバックライトユニットについては、導光シートの光源側の端面から中央部までの距離をいう。
 導光シート13の表面積の下限としては、150cmが好ましく、180cmがより好ましく、200cmがさらに好ましい。一方、導光シート13の表面積の上限としては、1000cmが好ましく、950cmがより好ましく、900cmがさらに好ましい。導光シート13の表面積が上記下限に満たないと、小型モバイル端末以外の大型端末に使用できないおそれがある。逆に、導光シート13の表面積が上記上限を超えると、平均厚みが600μm以下の薄膜のライトガイドフィルムとして用いた場合に撓みが生じやすく、また導光性が十分に得られないおそれがある。
 複数の凹部21は、入射光を表面側に散乱させる光散乱部として機能する。各凹部21は、図3及び図4に示すように平面視略円形状に形成されている。また、各凹部21は、表面側に向けて徐々に縮径するように形成されている。凹部21の形状としては、特に限定されるものではなく、半球状、半楕円体状、円錐状、円錐台形状等とすることが可能である。なかでも、凹部21の形状としては、半球状又は半楕円体状が好ましい。凹部21が半球状又は半楕円体状であることによって、凹部21の成形性を向上することができると共に、凹部21に入射した光線を好適に散乱させることができる。
 複数の凹部21の配設パターンとしては、図3に示すように、一端側から他端側にかけて徐々に密度が小さくなるように形成されていることが好ましい。特に、複数の凹部21の配設パターンとしては、光源18側と反対側の端縁から光源18側の端縁にかけて徐々に密度が小さくなるように形成されていることがより好ましい。このように複数の凹部21を形成することで、光源18近傍の光散乱率を抑え、光源18から離れた部分の光散乱率を上げることにより出射光の面均一性を向上することができる。複数の凹部21の光源18からの距離による密度の調整は、例えば各凹部21の大きさを略均一に保ちつつ、複数の凹部21の配設個数を調整することで行うことができる。
 凹部21の平均深さ(L)(図4(a)参照)の下限としては、1μmが好ましく、2μmがより好ましく、4μmがさらに好ましい。一方、凹部21の平均深さ(L)の上限としては、10μmが好ましく、9μmがより好ましく、7μmがさらに好ましい。凹部21の平均深さ(L)が上記下限に満たないと、光散乱機能が十分に得られないおそれがある。逆に、凹部21の平均深さ(L)が上記上限を超えると、輝度ムラを生じるおそれがある。
 凹部21の平均径(D)(図4(b)参照)の下限としては、10μmが好ましく、12μmがより好ましく、15μmがさらに好ましい。一方、凹部21の平均径の上限としては、50μmが好ましく、40μmがより好ましく、30μmがさらに好ましい。凹部21の平均径(D)が上記下限に満たないと、光散乱機能が十分に得られないおそれがある。逆に、凹部21の平均径(D)が上記上限を超えると、輝度ムラが生じるおそれがある。
 隆起部22は、導光シート13の裏面における当該導光シート12の厚み方向と垂直な面から連続して形成されている。詳細には、隆起部22は、導光シート13の裏面の平坦面から連続して形成されている。隆起部22は、図3及び図4に示すように、凹部21を囲むように平面視略円環状に形成されている。導光シート13は、隆起部22が凹部21を囲むように平面視略円環状に形成されることによって、凹部21及び凹部21近辺が導光シート13の裏面側に配設される反射シート19と密着するのを容易かつ確実に防止することができる。従って、当該光学積層体12は、隆起部22が凹部21を囲むように平面視略円環状に形成されることによって、凹部21で散乱された光線が導光シート13と反射シート19との密着部分に入射することで輝度ムラが生じるのを抑制することができる。
 隆起部22は、頂部が湾曲していることが好ましい。導光シート13は、隆起部22の頂部が湾曲していることによって、裏面側に配設される反射シート19の表面に対する傷付き防止性を高めることができる。
 隆起部22は、凹部21と連続して形成されることが好ましい。具体的には、隆起部22は、凹部21の下端から延出するように裏面側に突出されていることが好ましく、隆起部22の内側面と凹部21の形成面とが滑らかに連続していることがより好ましい。隆起部22が、凹部21と連続して形成されることによって、凹部21によって散乱された光に起因する輝度ムラの抑制機能を向上することができる。
 隆起部22の平均高さ(H)(図4(a)参照)の下限としては、0.1μmが好ましく、0.3μmがより好ましく、0.5μmがさらに好ましい。一方、隆起部22の平均高さ(H)の上限としては、5μmが好ましく、4μmがより好ましく、3μmがさらに好ましい。隆起部22の平均高さ(H)が上記下限に満たないと、導光シート13と導光シート13の裏面側に配設される反射シート19との密着を十分に防止できず、導光シート13と反射シート19との密着部に入射した光線に起因して輝度ムラを生じるおそれがある。逆に、隆起部22の平均高さ(H)が上記上限を超えると、複数の隆起部22の先端が先鋭化され、導光シート13の裏面側に配設される反射シート19の表面に対する傷付き防止性が低下するおそれがある。
 複数の隆起部22は、高さが均一であることが好ましい。複数の隆起部22の高さ(H)の変動係数の上限としては、0.2が好ましく、0.1がより好ましく、0.05がさらに好ましい。複数の隆起部22の高さ(H)の変動係数が上記上限を超えると、複数の隆起部22の高さが不均一となり、背の高い隆起部22に荷重が偏り、それに基づき反射シート19に傷付きが生じるおそれがある。なお、複数の隆起部22の高さ(H)の変動係数の下限としては、特に限定されるものではなく、例えば0とすることができる。また、複数の隆起部22の高さ(H)の「変動係数」とは、任意の10個の隆起部22の高さの標準偏差を平均高さで割った値をいう。
 隆起部22の平均幅(W)(図4(b)参照)の下限としては、1μmが好ましく、3μmがより好ましく、5μmがさらに好ましい。一方、隆起部22の平均幅(W)の上限としては、15μmが好ましく、12μmがより好ましく、10μmがさらに好ましい。隆起部22の平均幅(W)が上記下限に満たないと、隆起部22の先端が先鋭化され、導光シート13の裏面側に配設される反射シート19の表面に対する傷付き防止性が低下するおそれがある。逆に、隆起部22の平均幅(W)が上記上限を超えると、隆起部22と導光シート13の裏面側に配設される反射シート19との当接面積が大きくなり、この当接部分に入射した光線に起因して輝度ムラが生じるおそれがある。
 隆起部22の平均高さ(H)の平均幅(W)に対する高さ比(H/W)の下限としては、0.05が好ましく、0.06がより好ましく、0.08がさらに好ましい。一方、隆起部22の平均高さ(H)の平均幅(W)に対する高さ比(H/W)の上限としては、0.5が好ましく、0.45がより好ましく、0.4がさらに好ましい。隆起部22の平均高さ(H)の平均幅(W)に対する高さ比(H/W)が上記下限に満たないと、隆起部22と導光シート13の裏面側に配設される反射シート19との当接面積が大きくなり、この当接部分に入射した光線に起因して輝度ムラが生じるおそれがある。逆に、隆起部22の平均高さ(H)の平均幅(W)に対する高さ比(H/W)が上記上限を超えると、隆起部22の先端が先鋭化され、導光シート13の裏面側に配設される反射シート19の表面に対する傷付き防止性が低下するおそれがある。
 隆起部22の平均幅(W)の凹部21の平均径(D)に対する比(W/D)の下限としては、0.1が好ましく、0.2がより好ましく、0.3がさらに好ましい。一方、隆起部22の平均幅(W)の凹部21の平均径(D)に対する比(W/D)の上限としては、1が好ましく、0.8がより好ましく、0.6がさらに好ましい。上記比(W/D)が上記下限に満たないと、導光シート13と導光シート13の裏面側に配設される反射シート19との密着防止効果が十分に得られないおそれがある。逆に、上記比(W/D)が上記上限を超えると、隆起部22と導光シート13の裏面側に配設される反射シート19との当接面積が大きくなり、この当接部分に入射した光線に起因して輝度ムラが生じるおそれがある。
 導光シート13は、可撓性を有する。導光シート13は、可撓性を有することによって、導光シート13の裏面側に配設される反射シート19の傷付きを抑制することができる。導光シート13は、光線を透過させる必要があるため、透明、特に無色透明に構成されている。
 導光シート13の主成分としては、ポリカーボネート、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、(メタ)アクリル酸メチル-スチレン共重合体、ポリオレフィン、シクロオレフィンポリマー、シクロオレフィンコポリマー、セルロースアセテート、耐候性塩化ビニル、活性エネルギー線硬化型樹脂等が挙げられる。なかでも、導光シート13の主成分としては、ポリカーボネート又はアクリル樹脂が好ましい。ポリカーボネートは透明性に優れると共に屈折率が高いため、導光シート13が主成分としてポリカーボネートを含むことによって、導光シート13の表裏面において全反射が起こりやすく、光線を効率的に伝搬させることができる。また、ポリカーボネートは耐熱性を有するため、光源18の発熱による劣化等が生じ難い。さらに、ポリカーボネートはアクリル樹脂等に比べて吸水性が少ないため、寸法安定性が高い。従って、導光シート13は、ポリカーボネートを主成分として含むことによって経年劣化を抑止することができる。一方、アクリル樹脂は透明度が高いので導光シート13における光の損耗を少なくすることができる。なお、「主成分」とは、最も含有量の多い成分をいい、例えば含有量が50質量%以上の成分をいい、好ましくは含有量が70質量%以上、より好ましくは含有量が90質量%以上の成分をいう。
 上記ポリカーボネートとしては、特に限定されず、直鎖ポリカーボネート又は分岐ポリカーボネートのいずれかのみであってもよく、直鎖ポリカーボネートと分岐ポリカーボネートとの双方を含むポリカーボネートであってもよい。
 直鎖ポリカーボネートとしては、公知のホスゲン法又は溶融法によって製造された直鎖の芳香族ポリカーボネートがあり、カーボネート成分とジフェノール成分とからなる。カーボネート成分を導入するための前駆物質としては、例えばホスゲン、ジフェニルカーボネート等が挙げられる。また、ジフェノールとしては、例えば2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロデカン、1,1-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロドデカン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-チオジフェノール、4,4’-ジヒドロキシ-3,3-ジクロロジフェニルエーテル等が挙げられる。これらは、単独又は2種以上を組合わせて使用することができる。
 分岐ポリカーボネートとしては、分岐剤を用いて製造したポリカーボネートがあり、分岐剤としては、例えばフロログルシン、トリメリット酸、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,2-トリス(4-ヒドロキシフェニル)エタン、1,1,2-トリス(4-ヒドロキシフェニル)プロパン、1,1,1-トリス(4-ヒドロキシフェニル)メタン、1,1,1-トリス(4-ヒドロキシフェニル)プロパン、1,1,1-トリス(2-メチル-4-ヒドロキシフェニル)メタン、1,1,1-トリス(2-メチル-4-ヒドロキシフェニル)エタン、1,1,1-トリス(3-メチル-4-ヒドロキシフェニル)メタン、1,1,1-トリス(3-メチル-4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、1,1,1-トリス(3-クロロ-4-ヒドロキシフェニル)メタン、1,1,1-トリス(3-クロロ-4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジクロロ-4-ヒドロキシフェニル)メタン、1,1,1-トリス(3,5-ジクロロ-4-ヒドロキシフェニル)エタン、1,1,1-トリス(3-ブロモ-4-ヒドロキシフェニル)メタン、1,1,1-トリス(3-ブロモ-4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジブロモ-4-ヒドロキシフェニル)メタン、1,1,1-トリス(3,5-ジブロモ-4-ヒドロキシフェニル)エタン、4,4’-ジヒドロキシ-2,5-ジヒドロキシジフェニルエーテル等が挙げられる。
 上記アクリル樹脂としては、アクリル酸又はメタクリル酸に由来する骨格を有する樹脂である。アクリル樹脂の例としては、特に限定されないが、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体)等が挙げられる。これらのアクリル樹脂の中でも、ポリ(メタ)アクリル酸メチル等のポリ(メタ)アクリル酸C1-6アルキルが好ましく、メタクリル酸メチル樹脂がより好ましい。
 上記活性エネルギー線硬化型樹脂としては、例えば活性エネルギー線硬化型アクリル樹脂、活性エネルギー線硬化型エポキシ樹脂等が挙げられる。上記活性エネルギー線硬化型樹脂としては、例えば光重合性のプレポリマー、オリゴマー及びモノマーのうち少なくとも1種と光重合性開始剤等とを含んだものが用いられる。
 上記活性エネルギー線硬化型アクリル樹脂における上記プレポリマー及びオリゴマーとしては、例えばエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート等が挙げられる。
 また、上記活性エネルギー線硬化型アクリル樹脂における上記モノマーとしては、例えばメチル(メタ)アクリレート、ラウリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシ(メタ)アクリレート等の単官能アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)トリアクリレート、トリメチロールプロパン(メタ)アクリル酸安息香酸エステル、トリメチロールプロパン安息香酸エステル等の多官能アクリレート、グリセリンジ(メタ)アクリレートヘキサメチレンジイソシアネート、ペンタエリスリトールトリ(メタ)アクリレートヘキサメチレンジイソシアネート等のウレタンアクリレート等が挙げられる。
 上記光重合性開始剤としては、例えばアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ベンゾフェノン、ベンジル、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、メチルベンゾイルフォルメート、p-イソプロピル-α-ヒドロキシイソブチルフェノン、α-ヒドロキシイソブチルフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン等の硫黄化合物などが挙げられる。これらの光重合開始剤は単独で使用してもよく、2種以上組み合せて用いてもよい。
 上記活性エネルギー線硬化型エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂等の硬化物が挙げられる。
 なお、導光シート13は、紫外線吸収剤、難燃剤、安定剤、滑剤、加工助剤、可塑剤、耐衝撃助剤、位相差低減剤、艶消し剤、抗菌剤、防かび、酸化防止剤、離型剤、帯電防止剤等の任意成分を含んでもよい。
(下用光拡散シート)
 下用光拡散シート14は、基材層23と、基材層23の表面側に積層される光拡散層24と、基材層23の裏面側に突設される複数の凸部25とを有する。導光シート13及び下用光拡散シート14は、接着剤によって部分的に接着されており、詳細には導光シート13表面と凸部25との当接箇所で接着されている。上記接着剤としては、特に限定されるものではなく、例えばホットメルト接着剤、光硬化型接着剤等が挙げられる。また、上記接着剤としては、感圧型接着剤を用いることも可能である。
 基材層23は、光線を透過させる必要があるので透明、特に無色透明の合成樹脂を主成分として形成されている。基材層23の主成分としては、特に限定されるものではなく、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル樹脂、ポリカーボネート、ポリスチレン、ポリオレフィン、セルロースアセテート、耐候性塩化ビニル等が挙げられる。なかでも、透明性に優れ、強度が高いポリエチレンテレフタレートが好ましく、撓み性能が改善されたポリエチレンテレフタレートが特に好ましい。
 基材層23の平均厚みの下限としては、10μmが好ましく、35μmがより好ましく、50μmがさらに好ましい。一方、基材層23の平均厚みの上限としては、500μmが好ましく、250μmがより好ましく、188μmがさらに好ましい。基材層23の平均厚みが上記下限に満たないと、光拡散層24及び凸部25を塗工によって形成した場合にカールを発生するおそれがある。逆に、基材層23の平均厚みが上記上限を超えると、液晶表示装置の輝度が低下するおそれがあると共に、当該光学積層体12の厚みが大きくなって液晶表示装置の薄型化の要請に沿えないおそれがある。
 光拡散層24は、基材層23の表面に積層されている。光拡散層24は、光拡散剤と、そのバインダーと有する。光拡散層24は、光拡散剤を略等密度で分散含有している。光拡散剤は、バインダーに囲繞されている。光拡散層24は、光拡散剤を分散含有することによって、裏面側から表面側に透過する光を略均一に拡散させる。また、光拡散層24は、光拡散剤によって表面に微細凹凸が略均一に形成され、この微細凹凸の各凹部及び凸部がレンズ状に形成されている。光拡散層24は、かかる微細凹凸のレンズ的作用によって、優れた光拡散機能を発揮し、この光拡散機能に起因して透過光線を法線方向側へ屈折させる屈折機能及び透過光線を法線方向に巨視的に集光させる集光機能を有している。
 上記光拡散剤は、光線を拡散させる性質を有する粒子であり、無機フィラーと有機フィラーに大別される。無機フィラーとしては、例えばシリカ、水酸化アルミニウム、酸化アルミニウム、酸化亜鉛、硫化バリウム、マグネシウムシリケート、又はこれらの混合物が挙げられる。有機フィラーの具体的な材料としては、例えばアクリル樹脂、アクリロニトリル樹脂、ポリウレタン、ポリ塩化ビニル、ポリスチレン、ポリアミド、ポリアクリロニトリル等が挙げられる。なかでも、透明性が高いアクリル樹脂が好ましく、ポリメチルメタクリレート(PMMA)が特に好ましい。
 上記光拡散剤の形状は、特に限定されるものではなく、例えば球状、立方状、針状、棒状、紡錘形状、板状、鱗片状、繊維状などが挙げられ、なかでも光拡散性に優れる球状のビーズが好ましい。
 上記光拡散剤の平均粒子径の下限としては、1μmが好ましく、2μmがより好ましく、5μmがさらに好ましい。一方、上記光拡散剤の平均粒子径の上限としては、50μmが好ましく、20μmがより好ましく、15μmがさらに好ましい。上記光拡散剤の平均粒子径が上記下限に満たないと、光拡散層24表面の凹凸が小さくなり、光拡散シートとして必要な光拡散性を満たさないおそれがある。逆に、上記光拡散剤の平均粒子径が上記上限を超えると、下用光拡散シート14の厚さが増大し、かつ、均一な拡散が困難になるおそれがある。
 上記光拡散剤の配合量(バインダーの形成材料であるポリマー組成物中のポリマー分100質量部に対する固形分換算の配合量)の下限としては、10質量部が好ましく、20質量部がより好ましく、50質量部がさらに好ましい。一方、上記光拡散剤の配合量の上限としては、500質量部が好ましく、300質量部がより好ましく、200質量部がさらに好ましい。上記光拡散剤の配合量が上記下限に満たないと、光拡散性が不十分となるおそれがある。逆に、上記光拡散剤の配合量が上記上限を超えると、光拡散剤がバインダーによって的確に固定されないおそれがある。
 上記バインダーは、基材ポリマーを含むポリマー組成物を硬化(架橋等)させることで形成される。上記光拡散剤は、バインダーによって、基材層23の表面全面に略等密度で配置固定される。なお、上記バインダーを形成するためのポリマー組成物は、その他に例えば微小無機充填剤、硬化剤、可塑剤、分散剤、各種レベリング剤、帯電防止剤、紫外線吸収剤、抗酸化剤、粘性改質剤、潤滑剤、光安定化剤等が適宜配合されていてもよい。
 複数の凸部25は、複数の印刷ドットから構成されている。複数の印刷ドットは、基材層23の裏面全面に亘って散点的に配設されている。複数の印刷ドットは、基材層23の裏面全面に略均一に配設されている。下用光拡散シート14は、複数の凸部25が複数の印刷ドットから構成されることによって、複数の凸部25の高さを均一に保ち易い。これにより、当該光学積層体12は、導光シート13と複数の凸部25とを接着し易い。
 複数の印刷ドットは、バインダー成分を主成分として含む。このバインダー成分としては、例えば熱硬化性樹脂や活性エネルギー線硬化型樹脂が挙げられる。
 上記熱硬化性樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、フェノール樹脂、ユリア樹脂、不飽和ポリエステル樹脂、メラミン樹脂、アルキド樹脂、ポリイミド樹脂、アクリル樹脂、アミド官能性共重合体、ウレタン樹脂等が挙げられる。
 上記活性エネルギー線硬化型樹脂としては、例えば導光シート13の主成分として使用可能な上述の活性エネルギー線硬化型樹脂が挙げられる。
 なお、上記印刷ドットは、上記バインダー成分の他に添加材を含むことも可能である。添加剤としては、例えばシリコーン系添加剤、フッ素系添加剤、帯電防止剤等が挙げられる。また、上記バインダー成分100質量部に対する上記添加剤の固形分換算の含有量としては、例えば0.05質量部以上5質量部以下とすることができる。
 複数の印刷ドットは、バインダー成分を含む印刷ドット用インクを用いた印刷法により形成されている。
 上記印刷法としては、例えばスクリーン印刷法、インクジェット印刷法、グラビア印刷法、オフセット印刷法、フレキソ印刷法、ディスペンサ印刷法等が挙げられる。なかでも、小径の印刷ドットを高精度に形成可能なオフセット印刷、小径の印刷ドットの精度よく容易に形成可能なフレキソ印刷、又はインクの肉盛りを厚くすることで背の高い印刷ドットを形成容易なスクリーン印刷が好ましい。
 上記印刷ドットは、裏面から見て略円形に形成されている。なお、「略円形」とは、完全な円形を含むほか、円弧が連続して環状に形成されると共に最大径(重心を通る仮想直線の長さのうち最大のもの)が最小径(重心を通る仮想直線の長さのうち最小のもの)の2倍以下、好ましくは1.5倍以下の形状であるものを含む。
 上記印刷ドットの平均径の下限としては、1μmが好ましく、3μmがより好ましく、10μmがさらに好ましく、20μmが特に好ましい。一方、上記印刷ドットの平均径(d)の上限としては、200μmが好ましく、100μmがより好ましく、50μmがさらに好ましい。上記印刷ドットの平均径が上記下限に満たないと、基材層23との接着性が低下するおそれがある。逆に、上記印刷ドットの平均径が上記上限を超えると、印刷ドットが不必要に大きくなり、バックライトユニット11の光学特性に悪影響を与えるおそれがある。
 上記印刷ドットの平均高さの下限としては、0.5μmが好ましく、1μmがより好ましく、3μmがさらに好ましく、5μmが特に好ましい。一方、上記印刷ドットの平均高さの上限としては、100μmが好ましく、50μmがより好ましく、10μmがさらに好ましい。上記印刷ドットの平均高さが上記下限に満たないと、スティッキングを十分に防止できないおそれがある。逆に、上記印刷ドットの平均高さが上記上限を超えると、印刷ドットの形成が困難となり、生産性が低下するおそれがある。
 印刷ドットの高さの変動係数の上限としては、0.2が好ましく、0.1がより好ましく、0.05がさらに好ましい。上記印刷ドットの高さの変動係数が上記上限を超えると、複数の印刷ドットの高さが不均一となり、背の高い印刷ドットに荷重が偏り、それに基づく導光シート3の傷付きの発生のおそれがある。なお、上記印刷ドットの高さの変動係数の下限としては、特に限定されるものではなく、例えば0とすることができる。また、印刷ドットの高さの「変動係数」とは、任意の10個の印刷ドットの高さの標準偏差を平均高さで割った値をいう。
 上記印刷ドットの平均高さの平均径に対する高さ比の下限としては、0.01が好ましく、0.05がより好ましく、0.1がさらに好ましい。上記高さ比が上記下限に満たないと、印刷ドットが不必要に大きくなるおそれがある。一方、上記印刷ドットの平均高さの平均径に対する高さ比の上限としては、例えば1とすることができる。
 複数の印刷ドットは、上述のように基材層24の裏面に略均一に配設されている。この複数の印刷ドットの平均ピッチの下限としては、20μmが好ましく、30μmがより好ましく、40μmがさらに好ましい。一方、上記印刷ドットの平均ピッチの上限としては、300μmが好ましく、150μmがより好ましく、70μmがさらに好ましい。上記印刷ドットの平均ピッチが上記下限に満たないと、印刷ドットが多すぎ、バックライトユニット11の光学特性に悪影響を与えるおそれがある。逆に、上記印刷ドットの平均ピッチが上記上限を超えると、スティッキング防止機能が十分に得られないおそれがある。
 基材層23の裏面における上記印刷ドットの存在密度の下限としては、10個/mmが好ましく、60個/mmがより好ましく、100個/mmがさらに好ましく、200個/mmが特に好ましい。一方、基材層23の裏面における上記印刷ドットの存在密度の上限としては、2500個/mmが好ましく、1000個/mmがより好ましく、600個/mmがさらに好ましく、450個/mmが特に好ましい。上記印刷ドットの存在密度が上記下限に満たないと、スティッキング防止効果が十分に得られないおそれがある。逆に、上記印刷ドットの存在密度が上記上限を超えると、バックライトユニット11の光学特性に悪影響を与えるおそれがある。
(第1プリズムシート,第2プリズムシート)
 第1プリズムシート15は、下用光拡散シート14から入射される光線を法線方向側に屈折させて第2プリズムシート16に出射する。第2プリズムシート16は、出射する光線が液晶表示素子の裏面に対して略垂直に進行するように、第1プリズムシート15から入射される光線を表面側に出射する。第1プリズムシート15及び第2プリズムシート16は、光線を透過させる必要があるので透明、特に無色透明の合成樹脂を主成分として形成されている。第1プリズムシート15及び第2プリズムシート16は、基材層と、この基材層の表面に積層される複数の突条プリズム部からなる突起列とを有する。第1プリズムシート15の複数の突条プリズム部の稜線方向と第2プリズムシート16の複数の突条プリズム部の稜線方向とは略直交している。第1プリズムシート15と下用光拡散シート14とは、接着剤によって部分的に接着されており、詳細には第1プリズムシート15の基材層の裏面及び光拡散層24表面の当接箇所で接着されている。また、第2プリズムシート16と第1プリズムシート15とは、接着剤で部分的に接着されており、詳細には第2プリズムシート16の基材層の裏面及び第1プリズムシート15表面の複数の突条プリズム部の稜線部分の当接箇所で接着されている。第1プリズムシート15と下用光拡散シート14とを接着する接着剤、及び第2プリズムシート16と第1プリズムシート15とを接着する接着剤としては、特に限定されるものではなく、導光シート13と下用光拡散シート14とを接着する接着剤と同様の接着剤を用いることができる。
 第1プリズムシート15及び第2プリズムシート16の厚み(基材層の裏面から突条プリズム部の頂点までの高さ)の下限としては、20μmが好ましく、40μmがより好ましい。一方、第1プリズムシート15及び第2プリズムシート16の厚みの上限としては、300μmが好ましく、200μmがより好ましく、180μmがさらに好ましい。また、第1プリズムシート15及び第2プリズムシート16の複数の突条プリズム部の平均高さ(複数の突条プリズム部の基底から頂点までの平均高さ)としては、8μm以上200μm以下が好ましい。また、第1プリズムシート15及び第2プリズムシート16における突条プリズム部のピッチの下限としては、4μmが好ましく、10μmがより好ましく、20μmがさらに好ましい。一方、第1プリズムシート15及び第2プリズムシート16における突条プリズム部のピッチの上限としては、100μmが好ましく、60μmがより好ましい。第1プリズムシート15及び第2プリズムシート16の屈折率の下限としては、1.5が好ましく、1.55がより好ましい。一方、第1プリズムシート15及び第2プリズムシート16の屈折率の上限としては、1.7が好ましい。なお、「プリズムシートの屈折率」とは、突条プリズム部の屈折率をいう。
 第1プリズムシート15及び第2プリズムシート16の突条プリズム部は、概略三角柱状である。第1プリズムシート15及び/又は第2プリズムシート16の突条プリズム部が三角柱である場合、突条プリズム部の頂角としては、75°以上95°以下が好ましい。また、第1プリズムシート15及び/又は第2プリズムシート16の突条プリズム部が三角柱である場合、この突条プリズム部は軸方向における高さが一定でもよいが、軸方向における高さが連続的に変化してもよい。また、第1プリズムシート15及び/又は第2プリズムシート16の複数の突条プリズム部が三角柱である場合、これらの突条プリズム部は、全て高さが等しくてもよいが、例えば隣接する突条プリズム部の高さが異なっていてもよい。また、第1プリズムシート15及び/又は第2プリズムシート16の突条プリズム部は、三角柱の頂点部から高さ方向に突出する凸部を有していてもよい。この凸部は、突条プリズム部の軸方向の一部にのみ形成されていてもよいが、軸方向の両端に亘って棒状に形成されていることが好ましい。当該光学積層体12は、このような凸部を有する場合、この凸部を接着剤に埋め込んだ状態で第1プリズムシート15及び/又は第2プリズムシート16と他の光学シートとを接着することができるので、三角柱部分が接着剤に埋め込まれることを抑制することで突条プリズム部によって奏される光学特性を十分に発揮しつつ、接着力を向上し易い。さらに、第1プリズムシート15及び/又は第2プリズムシート16の突条プリズム部は、頂点部分に凹溝を有していてもよい。この凹溝の具体的構成は特に限定されるものではないが、突条プリズム部の頂点部分の一端から他端に亘って伸びるよう形成されていることが好ましい。また、図10に示すように、この凹溝33は、凸部34を軸方向と垂直方向において2分するように形成されていてもよい。さらに、図11に示すように、凹溝35は、凸部36を軸方向と交差する方向に横断するよう形成されていてもよい。また、この場合、一定間隔をおいて複数の凹溝35が形成されることが好ましい。当該光学積層体12は、上記凹溝を有することによって毛細血管現象を利用してこの凹溝中に接着剤を充填し易く、これにより突条プリズム部の三角柱部分の傾斜面への接着剤の付着量を減少させ易い。そのため、当該光学積層体12は、突条プリズム部によって奏される光学特性を十分に発揮しつつ、接着力を向上し易い。
(上用光拡散シート)
 上用光拡散シート17は、基材層と、基材層の表面側に積層される光拡散層とを有する。上用光拡散シート17は、第2プリズムシート16から入射される光線を若干程度拡散させることで、モアレの発生を抑制する。上用光拡散シート17と第2プリズムシート16とは、接着剤によって部分的に接着されており、詳細には上用光拡散シート17の基材層の裏面及び第2プリズムシート16の複数の突条プリズム部の稜線部分の当接箇所でストライプ状に接着されている。上用光拡散シート17と第2プリズムシート16とを接着する接着剤としては、特に限定されるものではなく、導光シート13と下用光拡散シート14とを接着する接着剤と同様の接着剤を用いることができる。
 上用光拡散シート17の基材層は、上述の下用光拡散シート14の基材層と同様の構成とすることができる。また、上用光拡散シート17の光拡散層は、下用光拡散シート14の光拡散層と同様、光拡散剤と、そのバインダーとを有する。但し、上用光拡散シート17は、下用光拡散シート14と同様の高い光拡散性を必要とされないため、光拡散剤の配合量の下限としては、5質量部が好ましく、10質量部がより好ましく、また上限としては40質量部が好ましく、30質量部がより好ましい。
(光源)
 光源18は、照射面が導光シート13の端面に対向(又は当接)するよう配設されている。光源18としては、種々のものを用いることが可能であり、例えば発光ダイオード(LED)を用いることができる。具体的には、この光源18として、複数の発光ダイオードが導光シート13の端面に沿って配設されたものを用いることができる。
(反射シート)
 反射シート19は、導光シート13の裏面に形成される複数の隆起部22と当接するように導光シート13の裏面側に配設される。反射シート19は、導光シート13の裏面側から出射された光線を表面側に反射させる。反射シート19としては、ポリエステル等の基材樹脂にフィラーを分散含有させた白色シートや、ポリエステルから形成されるフィルムの表面に、アルミニウム、銀等の金属を蒸着させることで正反射性が高められた鏡面シート等が挙げられる。
<光学積層体の製造方法>
 当該光学積層体12の製造方法は、一方の面に、他方の面側に陥没する複数の凹部と、この複数の凹部の周囲に存在し、一方の面側に突出する複数の隆起部とを有する導光シート13を形成する工程と、導光シート13の他方の面に、複数の光学シートを積層する工程とを備える。
(導光シート形成工程)
 上記導光シート形成工程は、例えば以下の方法によって行うことができる。
(a)複数の凹部及びこの凹部の周囲に存在する複数の隆起部の反転形状を有する成形型に溶融状態の導光シート形成材料を注入する射出成形法、
(b)導光シート形成材料からなるシート体を再加熱して上記反転形状を有する成形型と金属板又はロールとの間に挟んでプレスして形状を転写する方法、
(c)溶融状態の導光シート形成材料をTダイに供給してこの形成材料を押出機及びTダイから押し出すことでシート体を成形したうえ、このシート体を上記反転形状を有する成形型と金属板又はロールとの間に挟んでプレスして形状を転写する押出成形法を用いる方法、
(d)導光シート形成材料を溶媒に溶融させ流動性を持たせた溶液(ドープ)を上記反転形状を有する成形型に流し込んだうえ、溶媒を蒸発させるキャスト法(溶液流延法)、
(e)上記反転形状を有する成形型に未硬化の活性エネルギー線硬化型樹脂を充填し、紫外線等の活性エネルギー線を照射する方法、
(f)複数の凹部の反転形状のみを有する成形型を用い、上記(a)~(e)と同様の方法によってこの複数の凹部をシート体の一方の面に形成したうえ、このシート体の一方の面の複数の凹部の周囲にフォトリソグラフィ法及びエッチング法を用いて複数の隆起部を形成する方法、
(g)導光シート形成材料からなるシート体の一方の面への超硬バイト、ダイヤモンドバイト、エンドミル等を用いた切削によって複数の凹部及びこの凹部の周囲に存在する複数の隆起部を形成する方法
(成形型)
 上記成形型としては、上述のように
(i)所定パターンで配設される複数の凹部、これらの凹部の周囲に存在する複数の隆起部の反転形状を表面に有する成形型、又は
(ii)所定パターンで配設される複数の凹部の反転形状のみを表面に有する成形型
が用いられる。
(原型を用いた成形型の製造方法)
 上記(i)の成形型は、所定パターンで配設される複数の凹部及び複数の凹部の周囲に存在する複数の隆起部を表面に有する原型を用いて製造することができる。
 上記原型の製造方法としては、例えば
(A)原型を形成する基材の表面にレーザー照射を行うことで上記複数の凹部及び複数の隆起部を同時に形成する方法、
(B)原型を形成する基材の表面を超硬バイト、ダイヤモンドバイト、エンドミル等を用いて切削することで上記複数の凹部及び複数の隆起部を同時に形成する方法
が挙げられる。
 上記(A)の方法によって製造される原型の形成材料としては、例えばSUS等の金属が挙げられる。一方、上記(B)の方法によって製造される原型の形成材料としては、SUS等の金属の他、ポリカーボネート、アクリル樹脂等の比較的硬質な合成樹脂が挙げられる。
 なお、上記レーザー照射が行われると、レーザー照射部分が溶融する。その結果、凹部が形成される際に、溶融した材料が凹部の周囲に堆積して隆起部が形成される。一方、上記切削が行われると、切削された部分の基材がこの切削によって形成される凹部の周囲に堆積して隆起部が形成される。凹部の深さや径、隆起部の高さ、幅、形状等は、レーザーの照射や切削強度、角度、径等によって調整される。なお、このように溶融した材料が凹部の周囲に堆積することで、隆起部を凹部を囲うように円環状に形成しやすい。
 また、原型表面に複数の凹部及び複数の隆起部を形成するために照射されるレーザーとしては、特に限定されるものではなく、例えば炭酸ガスレーザー、一酸化炭素レーザー、半導体レーザー、YAG(イットリウム・アルミニウム・ガーネット)レーザー等が挙げられる。なかでも波長が9.3μmから10.6μmである炭酸ガスレーザーが精細な形状を形成するのに好適である。上記炭酸ガスレーザーとしては、横方向大気圧励起(TEA)型、連続発振型、パルス発振型等が挙げられる。
(成形型の製造方法)
 上記原型を用いた成形型の製造方法としては、所定パターンで配設される複数の凹部及びこの複数の凹部の周囲に存在する複数の隆起部を有する上記原型の表面にこの原型の反転形状を表面に有するめっき層を電鋳によって形成する工程(S1)と、上記原型からめっき層を剥離する工程(S2)とを備える。また、上記原型を用いる場合の成形型の形成材料としては、例えばニッケル、金、銀、銅、アルミニウム等の金属が挙げられる。
 めっき層形成工程(S1)は、例えば、めっき浴中で、陽極として金属ニッケル、陰極として上記原型に通電し、上記原型の表面にめっき層を析出させることで行われる。
 めっき層剥離工程(S2)は、めっき層形成工程(S1)で上記原型の表面に析出されためっき層を上記原型から剥離することで行われる。なお、めっき層剥離工程(S2)としては、上記原型から剥離されためっき層の強度を高めるため、このめっき層を補強部材によって補強する工程をさらに有していてもよい。
(原型を用いない成形型の製造方法)
 上記(ii)の成形型は、原型を用いずに製造することが可能である。上記(ii)の成形型の製造方法としては、例えばフォトリソグラフィ法及びエッチング法を用いて成形型を構成する基材の表面に複数の凹部の反転形状を形成する方法が挙げられる。また、この場合、この成形型の形成材料としては、ポリカーボネート、アクリル樹脂等の比較的硬質な合成樹脂を用いることが可能である。
(積層工程)
 上記積層工程は、上記導光シート形成工程で形成された導光シート13の他方の面及び下用光拡散シート14の複数の凸部25を部分的に接着する工程と、下用光拡散シート14の光拡散層24の表面及び第1プリズムシート15の基材層の裏面を部分的に接着する工程と、第1プリズムシート15の複数の突条プリズム部の表面及び第2プリズムシート16の基材層の裏面を部分的に接着する工程と、第2プリズムシート16の複数の突条プリズム部の表面及び上用光拡散シート17の基材層の裏面を部分的に接着する工程とを有する。
 導光シート13及び下用光拡散シート14の接着工程は、例えば導光シート13の他方の面の全面に上記接着剤を塗布した上、この接着剤の塗布面上に下用光拡散シート14の複数の凸部25を重ね合わせ、導光シート13及び複数の凸部25の当接箇所をこの接着剤によって接着することで行われる。
 下用光拡散シート14及び第1プリズムシート15の接着工程は、例えば第1プリズムシート15の基材層の裏面全面に上記接着剤を塗布した上、この接着剤の塗布面を下用光拡散シート14の光拡散層24表面に重ね合わせ、下用光拡散シート14及び第1プリズムシート15の当接箇所をこの接着剤によって接着することで行われる。
 第1プリズムシート15及び第2プリズムシート16の接着工程は、例えば第2プリズムシート16の基材層の裏面全面に上記接着剤を塗布した上、この接着剤の塗布面を第1プリズムシート15の複数の突条プリズム部の稜線部分に重ね合わせ、第1プリズムシート15及び第2プリズムシート16の当接箇所をこの接着剤によって接着することで行われる。
 第2プリズムシート16及び上用光拡散シート17の接着工程は、例えば上用光拡散シート17の基材層の裏面全面に上記接着剤を塗布した上、この接着剤の塗布面を第2プリズムシート16の複数の突条プリズム部の稜線部分に重ね合わせ、第2プリズムシート16及び上用光拡散シート17の当接箇所をこの接着剤によって接着することで行われる。
<利点>
 当該光学積層体12は、導光シート13が裏面に、裏面側に突出する複数の隆起部22を有するので、導光シート13と導光シート13の裏面側に配設される他の部材とが複数の隆起部22によって散点的に当接する。そのため、当該光学積層体12は、導光シート13と導光シート13の裏面側に配設される他の部材との密着を抑制することができる。また、当該光学積層体12は、導光シート13が、裏面に、表面側に陥没する複数の凹部21を有するので、この複数の凹部21に入射した光線を表面側に散乱させることができる。特に、当該光学積層体12は、隆起部22が凹部21の周囲に存在していることによって、凹部21及び凹部21近辺の密着を的確に防止することができるので、この凹部21によって散乱された光線に起因する輝度ムラを好適に防止することができる。さらに、当該光学積層体12は、導光シート13の表面側に1又は複数の光学シートが積層されていること、及び導光シート13にこの導光シート13の裏面側に配設される他の部材との密着を防止するためのスティッキング防止層を別途設ける必要がないことから、薄型化を図ることができる。
 当該光学積層体12は、導光シート13の表面に積層される下用光拡散シート14及びこの下用光拡散シート14の表面に積層されるプリズムシート(第1プリズムシート15及び第2プリズムシート16)を有し、導光シート13及び下用光拡散シート14が、導光シート13表面と複数の凸部25との当接箇所で接着されているので、導光シート13及び下用光拡散シート14の密着を防止して輝度ムラを抑制することができる。また、当該光学積層体12は、導光シート13及び下用光拡散シート14の当接箇所以外に存在する空気によって導光シート13から下用光拡散シート14に入射される光線を拡散することができるので、拡散機能を向上することができる。さらに、当該光学積層体12は、このように十分に拡散された光線がプリズムシート(第1プリズムシート15及び第2プリズムシート16)に入射されるので、例えば当該光学積層体12の表面側に配設される液晶パネルの全面に向けて法線方向に法線方向にピークを示す分布の光線を出射することができる。
 当該バックライトユニット11は、当該光学積層体12を備えるので、導光シート13と他の部材との密着部分に光線が入射して輝度ムラが生じるのを抑制することができる。また、当該バックライトユニット11は、当該光学積層体12を備えるので、薄型化を図ることができる。
 当該液晶表示装置1は、当該バックライトユニット11を備えるので、既述のように輝度ムラを抑制すると共に薄型化を図ることができる。
 当該光学積層体の製造方法は、輝度ムラを抑制すると共に薄型化を図ることができる当該光学積層体12を容易かつ確実に製造することができる。
[第二実施形態]
(導光シート)
 図6の導光シート31は、導光シート13に代えて図2の光学積層体12に用いられる。導光シート31は、端面から入射される光線を表面側に向けて略均一に出射する。導光シート31は、平面視略方形状に形成されており、厚みが略均一の板状(非楔形状)に形成されている。導光シート31は、裏面に、表面側に陥没する複数の凹部21と、この複数の凹部21の周囲に存在し、裏面側に突出する複数の隆起部22とを有する。さらに、導光シート31は、裏面における複数の隆起部22の存在しない領域に散点的に配設される複数の凸部32を有する。導光シート31は、裏面にスティッキング防止部を有している。具体的には、導光シート31は、上記スティッキング防止部として、複数の隆起部22と複数の凸部32とを有している。なお、導光シート31は、複数の凸部32を有する以外は、図2の導光シート13と同様に構成される。そのため、以下では、複数の凸部32についてのみ説明する。
 複数の凸部32は、導光シート31と導光シート31の裏面側に配設される他の部材との密着を防止する。複数の凸部32は、導光シート31の裏面の平坦面から連続して形成されている。凸部32は、図7に示すように、平面視略略円形状に形成されている。また、凸部32は、頂部が湾曲している。凸部32の形状としては、半球状又は半楕円体状が好ましい。凸部32の形状が半球状又は半楕円体状であることにより、凸部32の成形性を向上することができると共に、導光シート31の裏面側に配設される他の部材の表面に対する傷付き防止性を高めることができる。複数の凸部32の配設パターンとしては、図7に示すように、一端側から他端側にかけて徐々に密度が大きくなるように形成されていることが好ましい。特に、複数の凸部32の配設パターンとしては、光源側と反対側の端縁から光源側の端縁にかけて徐々に密度が大きくなるように形成されていることが好ましい。
 複数の凸部32は、導光シート31の裏面全面における複数の隆起部22及び複数の凸部32の合計存在密度が略均一となるように配設されている。
 導光シート31の裏面における隆起部22及び凸部32の合計存在密度の下限としては、40個/mmが好ましく、60個/mmがより好ましく、80個/mmがさらに好ましい。一方、導光シート31の裏面における隆起部22及び凸部32の合計存在密度の上限としては、500個/mmが好ましく、400個/mmがより好ましく、300個/mmがさらに好ましい。隆起部22及び凸部32の合計存在密度が上記下限に満たないと、導光シート31と導光シート31の裏面側に配設される他の部材との密着を導光シート31の裏面全面において的確に防止できないおそれがある。逆に、隆起部22及び凸部32の合計存在密度が上記上限を超えると、導光シート31の裏面側に配設される他の部材の表面に傷付きが生じるおそれが高くなる。なお、隆起部22及び凸部32の合計存在密度は、レーザー顕微鏡において1000倍に拡大して観察した視野内の隆起部22及び凸部32の個数を計測し、その視野面積を用いて算出した値をいう。また、一つの凹部21の周囲に複数の隆起部22が存在している場合、これらの隆起部22は合わせて1個として計算する。
 凸部32の平均高さ(裏面平均界面からの平均高さ)の下限としては、2μmが好ましく、3μmがより好ましく、4μmがさらに好ましい。一方、凸部32の平均高さの上限としては、7μmが好ましく、6μmがより好ましく、5μmがさらに好ましい。凸部32の平均高さが上記下限に満たないと、導光シート31の裏面側に配設される他の部材との密着を十分に防止できないおそれがある。逆に、凸部32の平均高さが上記上限を超えると、凸部32との当接に起因して導光シート31の裏面側に配設される他の部材の表面に傷付きが生じるおそれがある。
 複数の凸部32は、高さが均一であることが好ましい。複数の凸部32の高さの変動係数の上限としては、0.2が好ましく、0.1がより好ましく、0.05がさらに好ましい。複数の凸部32の高さの変動係数が上記上限を超えると、複数の凸部32の高さが不均一となり、背の高い凸部32に荷重が偏り、それに基づき導光シート31の裏面側に配設される他の部材の表面に傷付きが生じるおそれがある。なお、複数の凸部32の高さの変動係数の下限としては、特に限定されるものではなく、例えば0とすることができる。
 凸部32の上記平均高さの平均径(裏面平均界面における平均径)に対する高さ比の下限としては、0.05が好ましく、0.07がより好ましく、0.1がさらに好ましい。一方、上記高さ比の上限としては、0.5が好ましく、0.3がより好ましく、0.2がさらに好ましい。上記高さ比が上記下限に満たないと、導光シート31と導光シート31の裏面側に配設される他の部材との当接面積が大きくなり、この当接部分に入射した光線に起因して輝度ムラが生じるおそれがある。逆に、上記高さ比が上記上限を超えると、凸部32の先端が先鋭化され、導光シート31の裏面側に配設される他の部材の表面に対する傷付き防止性が低下するおそれがある。
 凸部32の平均高さの隆起部22の平均高さに対する高さ比の下限としては、0.5が好ましく、0.65がより好ましく、1がさらに好ましい。一方、上記高さ比の上限としては、7が好ましく、5がより好ましく、3がさらに好ましい。上記高さ比が上記範囲外であると、凸部32の平均高さと隆起部22の平均高さとの差が大きくなり、複数の凸部32又は複数の隆起部22のいずれかに荷重が偏り、それに基づき導光シート31の裏面側に配設される他の部材の表面に傷付きが生じるおそれがある。
 複数の凸部32の形成方法としては、特に限定されるものではなく、複数の凹部21及び複数の隆起部22と同時に形成してもよく、複数の凹部21及び複数の隆起部22の形成後に別途形成してもよい。複数の凹部21及び複数の隆起部22の形成後に複数の凸部32を形成する方法としては、例えばスクリーン印刷、インクジェット印刷等の公知の印刷方法や、フォトリソグラフィ法及びエッチング法を用いる方法等が挙げられる。
<利点>
 導光シート31は、裏面に表面側に陥没する複数の凹部21、及び複数の凹部21の周囲に存在し、裏面側に突出する複数の隆起部22に加え、複数の隆起部22の存在しない領域に散点的に配設される複数の凸部32を有するので、導光シート31と導光シート31の裏面側に配設される他の部材との密着をさらに的確に防止することができる。そのため、導光シート31を備える光学積層体は、導光シート31と導光シート31の裏面側に配設される他の部材との密着部分に光が入射して輝度ムラが生じることをより確実に防止することができる。
[その他の実施形態]
 なお、本発明に係る光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法は、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば上記導光シートは、裏面側が所定の形状を有する限り必ずしも単層構造体である必要はなく、二層以上の多層構造体であってもよい。
 上記導光シートは、出射光を制御できるよう表面にレンチキュラー形状等を有してもよい。また、上記導光シートは、光源近傍の輝度ムラを抑制するため、光源側の端面に連続して又は所定の間隔をおいて形成されるV字状、台形状等の複数の切欠きを有してもよい。複数の隆起部の配設パターンとしては、特に限定されるものではない。複数の隆起部の配設パターンとしては、例えば上記導光シートが対向する両側端に光源が配設される両側エッジライト型のバックライトユニットに用いられる場合、この両側端から中央に向けて徐々に密度が高くなるように配設されてもよい。さらに、複数の凸部は、複数の隆起部の存在しない領域に散点的に配設される限り、その配設パターンは特に限定されるものではない。
 複数の凹部の平面視形状は、略円形状に限られるものではなく、多角形状等であってもよい。また、複数の隆起部の平面視形状は、略円環状に限られるものではなく、多角環状等であってもよい。さらに、複数の隆起部は、必ずしも凹部の外周を完全に囲うように配設される必要はない。複数の凹部及び複数の隆起部の上記実施形態以外の形状を図8に例示する。図8(a)では、平面視円形状の凹部41の周囲に部分円環状の複数の隆起部42が配設されている。図8(b)では、平面視円形状の凹部51の周囲に四角環状の隆起部52が配設されている。図8(c)では、平面視円環状の1個の隆起部62が複数の凹部61を囲うように配設されている。図8(d)では、平面視四角形状の凹部71の周囲に平面視円環状の隆起部72が配設されている。当該光学積層体は、導光シートの凹部及び隆起部がこのように配設されている場合でも、輝度ムラを抑制しつつ高輝度化を図ることができる。
 当該光学積層体は、導光シートの表面側に1又は複数の光学シートが積層されている限り、この光学シートの組み合わせは特に限定されるものではない。例えば、当該光学積層体は、導光シート及びこの導光シートの表面に積層される光拡散シートのみから構成されてもよい。
 当該光学積層体が、1又は複数の光学シートとして光拡散シートを有する場合、この光拡散シートの構成は特に限定されるものではない。例えばこの光拡散シートが複数の凸部を有するか否かは任意である。
 当該光学積層体は、導光シートと光学シート、又は光学シート同士が、必ずしも散点的に接着される必要はない。当該光学積層体は、導光シートと光学シート、又は光学シート同士の隙間を埋めるように接着剤層が充填され、導光シートと光学シート、又は光学シート同士がこの接着剤層によって接着されてもよい。
 上記(ii)の成形型は、複数の凹部を表面に有する原型を用いた電鋳によって製造されてもよい。このような複数の凹部を表面に有する原型の製造方法としては、例えばフォトリソグラフィ法及びエッチング法を用いて原型を構成する基材の表面に複数の凹部を形成する方法が挙げられる。
 上記導光シートは、溶融状態の形成材料をTダイに供給してこの形成材料を押出機及びTダイから押し出すことでシート体を成形する押出成形法を用いて製造される場合、この押出シート体を挟み込む一対の押圧ロールの一方を複数の凹部及びこの凹部の周囲に存在する複数の隆起部の反転形状を有する成形型として用いてもよい。かかる反転形状を一方の押圧ロールの表面に形成する方法としては、例えば、所定パターンで配設される複数の凹部及びこれらの凹部の周囲に存在する複数の隆起部の反転形状を表面に有するめっき層を押圧ロールの表面に積層する方法や、押圧ロールの表面に上記反転形状をレーザーや切削を用いて形成する方法が挙げられる。
 当該バックライトユニットは、必ずしも導光シートの裏面側に反射シートが配設されている必要はなく、例えば、導光シートの裏面側に配設される天板の表面が研磨された反射面として形成され、この反射面が反射シートに代えて用いられてもよい。当該バックライトユニットは、このように天板表面をバックライトユニットの最裏面として形成することで、反射シートを除いて薄型化を促進することができる。
 当該液晶表示装置としては、上述のようなラップトップコンピュータの他、スマートフォン等の携帯電話端末や、タブレット端末等の携帯型情報端末等の携帯型端末や、デスクトップコンピュータ、薄型テレビ等、種々の構成を採用することができる。また、当該液晶表示装置がラップトップコンピュータとして構成される場合であっても、このラップトップコンピュータの筐体の厚みは必ずしも21mm以下である必要はない。
 以上のように、本発明の光学積層体は、輝度ムラが防止され、かつ薄型化が促進された液晶表示装置に好適に用いられる。
 1 液晶表示装置、超薄型コンピュータ
 2 操作部
 3 液晶表示部
 4 液晶パネル
 5 液晶表示部用ケーシング
 6 天板
 7 表面支持部材
 8 ヒンジ部
 9 操作部用ケーシング
 11 バックライトユニット
 12 光学積層体
 13,31 導光シート
 14,17 光拡散シート
 15 第1プリズムシート
 16 第2プリズムシート
 18 光源
 19 反射シート
 21,41,51,61,71 凹部
 22,42,52,62,72 隆起部
 23 基材層
 24 光拡散層
 25 凸部
 32 凸部
 33,35 凹溝
 34,36 凸部
 110 エッジライト型バックライトユニット
 111 導光シート
 112 光学シート
 115 反射シート
 116 天板
 117 光源

Claims (11)

  1.  エッジライト型のバックライトユニットに用いられる板状の光学積層体であって、
     端面から入射される光線を表面側に向けて出射する導光シートと、この導光シートの表面側に積層される1又は複数の光学シートとを備え、
     上記導光シートが、裏面に、表面側に陥没する複数の凹部と、この複数の凹部の周囲に存在し、裏面側に突出する複数の隆起部とを有する光学積層体。
  2.  上記凹部の平均深さ(L)が1μm以上10μm以下である請求項1に記載の光学積層体。
  3.  上記凹部の平均径(D)が10μm以上50μm以下である請求項1又は請求項2に記載の光学積層体。
  4.  上記隆起部の平均高さ(H)が0.1μm以上5μm以下である請求項1、請求項2又は請求項3に記載の光学積層体。
  5.  上記隆起部が上記凹部を囲むように平面視略円環状に形成され、上記隆起部の平均幅(W)が1μm以上15μm以下である請求項1から請求項4のいずれか1項に記載の光学積層体。
  6.  上記隆起部の平均高さ(H)の平均幅(W)に対する高さ比(H/W)が0.05以上0.5以下である請求項5に記載の光学積層体。
  7.  上記導光シートの表面に積層される光拡散シート、及びこの光拡散シートの表面に積層されるプリズムシートを備え、
     上記光拡散シートが、基材層と、この基材層の表面側に積層される光拡散層と、この基材層の裏面側に突設される複数の凸部とを有し、
     上記導光シート及び光拡散シートが、上記導光シート表面と複数の凸部との当接箇所で接着されている請求項1から請求項6のいずれか1項に記載の光学積層体。
  8.  上記凸部が、印刷ドットから構成されている請求項7に記載の光学積層体。
  9.  請求項1から請求項8のいずれか1項に記載の光学積層体と、
     上記導光シートの端面に光を照射する光源と
     を備えるエッジライト型のバックライトユニット。
  10.  請求項9に記載のバックライトユニットを備える液晶表示装置。
  11.  エッジライト型のバックライトユニットに用いられる板状の光学積層体の製造方法であって、
     一方の面に、他方の面側に陥没する複数の凹部と、この複数の凹部の周囲に存在し、一方の面側に突出する複数の隆起部とを有する導光シートを形成する工程、及び
     上記導光シートの他方の面側に、1又は複数の光学シートを積層する工程
     を備える光学積層体の製造方法。
     
PCT/JP2016/073804 2015-08-17 2016-08-12 光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法 WO2017030101A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015160732 2015-08-17
JP2015-160732 2015-08-17

Publications (1)

Publication Number Publication Date
WO2017030101A1 true WO2017030101A1 (ja) 2017-02-23

Family

ID=58050921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073804 WO2017030101A1 (ja) 2015-08-17 2016-08-12 光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法

Country Status (2)

Country Link
TW (1) TW201712373A (ja)
WO (1) WO2017030101A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107089003A (zh) * 2017-05-31 2017-08-25 山西宇皓新型光学材料有限公司 导光板模具、导光板及其制备方法
WO2018225463A1 (ja) * 2017-06-06 2018-12-13 恵和株式会社 上用光拡散シートおよびそれを備えたバックライトユニット
CN109507831A (zh) * 2017-09-15 2019-03-22 三星电子株式会社 显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171641A (ja) * 1998-12-10 2000-06-23 Hitachi Ltd バックライト装置および液晶表示装置並びに導光板の製造方法
JP2002022909A (ja) * 2000-07-06 2002-01-23 Keiwa Inc 光学シート及びこれを用いたバックライトユニット
JP2004004599A (ja) * 2002-03-26 2004-01-08 Keiwa Inc 光拡散シート及びこれを用いたバックライトユニット
JP2006302569A (ja) * 2005-04-18 2006-11-02 Skg:Kk 導光板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171641A (ja) * 1998-12-10 2000-06-23 Hitachi Ltd バックライト装置および液晶表示装置並びに導光板の製造方法
JP2002022909A (ja) * 2000-07-06 2002-01-23 Keiwa Inc 光学シート及びこれを用いたバックライトユニット
JP2004004599A (ja) * 2002-03-26 2004-01-08 Keiwa Inc 光拡散シート及びこれを用いたバックライトユニット
JP2006302569A (ja) * 2005-04-18 2006-11-02 Skg:Kk 導光板

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107089003A (zh) * 2017-05-31 2017-08-25 山西宇皓新型光学材料有限公司 导光板模具、导光板及其制备方法
WO2018225463A1 (ja) * 2017-06-06 2018-12-13 恵和株式会社 上用光拡散シートおよびそれを備えたバックライトユニット
KR20190128731A (ko) * 2017-06-06 2019-11-18 케이와 인코포레이티드 상부용 광 확산 시트 및 그를 구비한 백라이트 유닛
CN110651202A (zh) * 2017-06-06 2020-01-03 惠和株式会社 上方用光扩散片及具备该上方用光扩散片的背光单元
TWI684050B (zh) * 2017-06-06 2020-02-01 日商惠和股份有限公司 上方用光擴散片及具備其之背光單元
JPWO2018225463A1 (ja) * 2017-06-06 2020-03-19 恵和株式会社 上用光拡散シートおよびそれを備えたバックライトユニット
KR102265369B1 (ko) * 2017-06-06 2021-06-16 케이와 인코포레이티드 상부용 광 확산 시트 및 그를 구비한 백라이트 유닛
CN110651202B (zh) * 2017-06-06 2021-08-20 惠和株式会社 上方用光扩散片及具备该上方用光扩散片的背光单元
US11287694B2 (en) 2017-06-06 2022-03-29 Keiwa Inc. Upper side light diffuser sheet and backlight unit including the same
CN109507831A (zh) * 2017-09-15 2019-03-22 三星电子株式会社 显示装置

Also Published As

Publication number Publication date
TW201712373A (zh) 2017-04-01

Similar Documents

Publication Publication Date Title
JP6021292B2 (ja) エッジライト型バックライトユニット
JP2016028275A (ja) 光学シート、エッジライト型のバックライトユニット及び光学シートの製造方法
JP5767419B1 (ja) 導光シート、バックライトユニット及び携帯型端末
WO2015186842A1 (ja) エッジライト型バックライトユニット及び反射テープ部材
JP5767418B1 (ja) 導光シート、バックライトユニット及び携帯型端末
JP2017107193A (ja) 上用光拡散シート及びバックライトユニット
TWI575258B (zh) Optical sheet and edge light type backlight unit
WO2017030101A1 (ja) 光学積層体、バックライトユニット、液晶表示装置及び光学積層体の製造方法
WO2018225463A1 (ja) 上用光拡散シートおよびそれを備えたバックライトユニット
JP5724527B2 (ja) 導光板積層体およびその製造方法
JP6700689B2 (ja) 導光シート、バックライトユニット、液晶表示装置及びバックライトユニット用導光シートの製造方法
JP6744759B2 (ja) 光学ユニット及び光学ユニットの製造方法
JP2017091892A (ja) 導光シート、エッジライト型バックライトユニット及び液晶表示装置
KR101986761B1 (ko) 백라이트 유닛용 프리즘 시트 및 액정 표시 장치용 백라이트 유닛
JP6516580B2 (ja) ライトガイドフィルム、バックライトユニット及び携帯型端末
TWI518378B (zh) Light diffusing flakes and the use of this backlight
WO2017030102A1 (ja) 導光体、バックライトユニット、液晶表示装置、スティッキング防止シート及びバックライトユニット用導光体の製造方法
JP6599169B2 (ja) 導光シート、バックライトユニット、液晶表示装置及び導光シートの製造方法
JP6516581B2 (ja) ライトガイドフィルム、バックライトユニット及び携帯型端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16837091

Country of ref document: EP

Kind code of ref document: A1