WO2017028656A1 - 一种防水透气纸尿裤底膜及其制备方法 - Google Patents

一种防水透气纸尿裤底膜及其制备方法 Download PDF

Info

Publication number
WO2017028656A1
WO2017028656A1 PCT/CN2016/091526 CN2016091526W WO2017028656A1 WO 2017028656 A1 WO2017028656 A1 WO 2017028656A1 CN 2016091526 W CN2016091526 W CN 2016091526W WO 2017028656 A1 WO2017028656 A1 WO 2017028656A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
waterproof
base film
nanofiber
resin
Prior art date
Application number
PCT/CN2016/091526
Other languages
English (en)
French (fr)
Inventor
夏建华
董祥
徐卫红
徐晓东
Original Assignee
博裕纤维科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博裕纤维科技(苏州)有限公司 filed Critical 博裕纤维科技(苏州)有限公司
Publication of WO2017028656A1 publication Critical patent/WO2017028656A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C15/00Calendering, pressing, ironing, glossing or glazing textile fabrics
    • D06C15/02Calendering, pressing, ironing, glossing or glazing textile fabrics between co-operating press or calender rolls

Definitions

  • the invention belongs to the technical field of waterproof and breathable products, and particularly relates to a waterproof and breathable diaper base film and a preparation method thereof.
  • the so-called gas permeability actually means water vapor permeability, which can be expressed by the amount of water vapor permeation (g/cm 2 ⁇ 24h), and the air per unit area can also be used (CFM). )To represent.
  • the diaper base film sold on the market generally adopts a PP microporous film or a hot rolled non-woven PE composite film, and the water droplets are impervious by the difference in diameters of water droplets (minimum droplet diameter 10 ⁇ m) and water vapor molecules (0.4 nm diameter). The water vapor molecules can pass through to achieve a waterproof and breathable effect.
  • the diaper base film is the main influencing factor of the diaper breathability, which directly affects the breathability of the entire diaper, thereby affecting the comfort of the baby when wearing the diaper.
  • the diapers currently on the market mainly use PP or PE stretch microporous membrane to realize the waterproof and breathable function of the diaper base film, but the PP or PE microporous membrane is difficult to satisfy both high water repellency and good gas permeability.
  • the best-selling Pampers, Curious, Kao and other high-end diapers on the market use PP or PE microporous membrane to realize the waterproof and breathable function of diapers.
  • Each of the diaper base films has been tested for permeability and water pressure resistance.
  • the water pressure does not exceed 1600mmH 2 0, and the gas permeability is preferably not more than 0.1CFM; in fact, only when the gas permeability of the base film reaches or exceeds 0.5CFM, or the water vapor permeability reaches 8000g/cm 2 ⁇ 24h, the diaper can be guaranteed to be good. Breathability. According to daily use, after the absorbent core layer in the commercially available breathable diaper fully absorbs urine, the baby will penetrate the trousers and stain the trousers through the base film while sitting. Therefore, a good diaper base film not only needs to satisfy good air permeability, but also satisfies good waterproof penetration performance.
  • the present invention provides a waterproof and breathable diaper base film and a preparation method thereof, and the obtained water pressure of the base film can reach 4000 mmH 2 O or more, and the gas permeability reaches 3 CFM or more, and the water vapor transmission rate reaches 10000 g/cm. 2 ⁇ 24h or more, fills the blank of the production of high waterproof and breathable diaper base film in China, completely solves the problem of leakage of urine and redness of the buttocks when the baby wears the diaper.
  • a waterproof breathable diaper base film comprising a base material layer and a waterproof gas permeable layer composited therewith, wherein the base material layer has a gas permeability of 100 to 700 CFM, A nonwoven fabric layer having a thickness of 5 to 20 GSM, and the waterproof gas-permeable layer is a nanofiber deposition layer.
  • a method for preparing a waterproof and breathable diaper base film which comprises the following steps:
  • the spinning solution prepared in step 2) is sprayed on the smooth attachment surface of the non-woven fabric layer in step 1) through the spinneret of the multi-head high-pressure electrospinning apparatus, in the non-woven fabric layer.
  • the spinning solution of the spinning solution on the attachment surface is deposited to form a nanofiber accumulation layer, and is combined with the non-woven fiber layer to form a loose nanofiber non-woven composite film, which is sprayed by controlling the spinning parameters of the multi-nozzle high-voltage electrospinning equipment.
  • the nanofiber accumulation layer formed by filament accumulation has a fiber diameter of 100 nm to 500 nm, and the nanofiber
  • the thickness of the deposited body layer is 1 GSM to 10 GSM;
  • the composite film formed in the step 3) is baked in an oven, and the oven temperature is controlled to be 50 ° C to 130 ° C, and the baking time is ensured that the composite film does not contain any organic solvent residue;
  • the composite film after baking is calendered by a pressure roller to obtain a nanofiber non-woven base film, and the pressure of the pressure roller is controlled to be 0.1 MPa to 10 MPa, and the temperature of the pressure roller is 30 to 130 ° C.
  • the hydrophobic polymer resin further comprises TPU resin, polyamide resin (PA), polylactic acid resin (PLA), polyethylene terephthalate (PET), One of polymethyl methacrylate (PMMA).
  • a hydrophobic resin added during solution preparation is one of polyamide resin (PA), polylactic acid resin (PLA), polyethylene terephthalate (PET), and polymethyl methacrylate (PMMA).
  • the organic solvent to be added is one or a mixture of tetrahydrofuran solvent (THF), methyl ethyl ketone, acetone, dimethylformamide solvent (DMF), dimethylacetamide solvent (DMAc).
  • the method further comprises the steps of: adding a hydrophobic resin and an organic solvent in the preparation process of the spinning solution in the step 2), and uniformly stirring the two to add a silicon or fluorine-containing hydrophobic agent to the mixed liquid, the quality A percentage of each of 100 parts of the mixture is added with 0.1 to 2 parts of a hydrophobic agent.
  • the material further comprising the nonwoven fabric fiber layer in the step 1) is a microfiber nonwoven fabric.
  • the process for preparing a nonwoven fabric fiber layer by using a microfiber nonwoven fabric is as follows: a skin-friendly polymer resin is selected, and the melt-spray spinning mechanism is used for the spin-jet deposition.
  • a nonwoven fabric fiber layer having a fiber diameter of 1 ⁇ m to 10 ⁇ m and a thickness of 5 to 20 GSM is formed on the conveyor belt.
  • the skin-friendly polymer resin further comprises polypropylene resin (PP), polyethylene terephthalate (PET), polyamide grease (PA), polylactic acid. (PLA), one of thermoplastic polyurethane (TPU).
  • PP polypropylene resin
  • PET polyethylene terephthalate
  • PA polyamide grease
  • PVA polylactic acid.
  • TPU thermoplastic polyurethane
  • spinning parameters of the equipment are: spinning voltage is 25KV ⁇ 80KV, spinning distance is 5 ⁇ 30CM, spinning solution flow rate is controlled at 0.5 ⁇ 2ml/h per nozzle, and electrospinning environment temperature is 10 ⁇ 40°C, static electricity.
  • the spinning environment humidity is below 45%.
  • the material of the nonwoven fabric fiber layer in the step 1) is one of a cellulose fiber, a regenerated cellulose fiber and a chitosan fiber, and the non-woven fabric is formed by a calender roll.
  • the nonwoven fabric fiber layer is subjected to tying or printing treatment, and a pattern representing the company culture is printed on the nonwoven fabric layer.
  • the invention has the beneficial effects that the waterproof breathable diaper base film and the preparation method thereof are provided by the invention, and the high-frequency electrospinning device is mass-produced by using the hydrophobic polymer resin, and the static electricity is directly performed on the microfiber nonwoven fabric.
  • Spinning forms a nanofiber stack, and produces a diaper base film of nanofiber and microfiber nonwoven fabric.
  • the water pressure resistance can reach 4000mmH 2 O or more, and the gas permeability reaches 3CFM or more, and the water vapor transmission rate reaches 10000g/cm 2 . More than 24h, it fills the gap in the production of high waterproof and breathable base film in China, completely solves the problem of leakage of urine and redness of the buttocks when the baby wears the diaper.
  • the nanofiber and non-woven fiber composite base film can also be applied to adults.
  • the market for diapers and feminine napkins has a good market development prospect.
  • 1 is a SEM image of a cross section of a base film and a surface thereof in a preferred embodiment of the present invention
  • Figure 2 is a schematic view showing the structure of a production apparatus for producing a base film of the present invention in the first embodiment of the present invention
  • FIG. 3 is a schematic structural view of a nanofiber melt-blown nonwoven composite base film according to a first embodiment of the present invention
  • Figure 4 is a schematic view showing the structure of a production apparatus for producing a base film of the present invention in a third embodiment of the present invention
  • Fig. 5 is a structural schematic view showing a nanofiber nonwoven fabric composite base film according to a third embodiment of the present invention.
  • SEM image of a-nanofiber deposited body layer SEM image of b-nonwoven fiber layer, SEM image of surface of c-nanofiber deposited body layer;
  • 2-unwinding device 4-winding device, 6-multi-head high-pressure electrospinning equipment, 8-calender roll, 10-stripping roller, 12-belt, 14-transfer roller, 20-oven, 30-meltblown Spinning mechanism, 100-nanofiber non-woven composite base film, 101-nano fiber film layer, 102-nonwoven fiber layer, 200-nano fiber melt-blown non-woven composite base film, 201-nano fiber stack layer , 202- meltblown nonwoven fiber layer.
  • a waterproof and breathable diaper base film comprising a high-voltage electrospinning nanofiber deposition layer 201 and a melt-blown non-woven fiber layer 202 is disclosed.
  • the nonwoven fabric fiber layer 202 has a gas permeability of 100 to 700 CFM and a nonwoven fabric layer having a thickness of 5 to 20 GSM.
  • the method of preparing the above base film comprises the following steps:
  • a skin-friendly polymer resin is selected, wherein the skin-friendly polymer resin is a polypropylene resin (PP) or a polyphenylene terephthalate.
  • the skin-friendly polymer resin is added as a raw material to the melt-blown spinning mechanism 30, and the conveying roller 14 drives the conveyor belt 12 to move while melt-blown spinning
  • the filament mechanism 30 melts the raw material and deposits the spinner on the moving conveyor belt 12 to form a microfiber nonwoven fabric having a fiber diameter of 1 micrometer to 10 micrometers, and selects a microfiber nonwoven fabric having a thickness of 5-20 GSM as a non-woven fabric.
  • the fiber layer is to be used, and the control ensures that the gas permeability of the nonwoven fiber layer is 100-700 CFM;
  • the calendered fiber layer is calendered by the calender roll 8 to obtain a non-woven fabric layer having a smooth adhering surface, wherein the pressure of the calender roll 8 is controlled to be 0.1 MPa to 1 MPa, and the calender roll is used.
  • the temperature is 60 ° C ⁇ 130 ° C;
  • preparing a spinning solution adding 1 part by mass of hydrophobic TPU resin and 8 to 12 parts of organic solvent in a closed container, wherein the organic solvent may be a methyl ethyl ketone solvent or an acetone solvent, of which a butanone solvent is preferred. After the two ingredients are added, stir evenly in a closed container to speed up the TPU tree. Dissolving the fat (thermoplastic polyurethane) in an organic solvent, heating the stirred tank during the stirring process, and controlling the heating temperature to be within 100 ° C.
  • the fat thermoplastic polyurethane
  • the silicon is added to the mixed solution or a fluorine-containing hydrophobic agent to obtain a spinning solution to be used, wherein 0.1 to 2 parts of a hydrophobic agent is added per 100 parts by mass of the mixture, and the addition of the hydrophobic agent is used to reduce the TPU nanofiber in the electrospinning process.
  • the surface tension accelerates the evaporation rate of the solvent; on the other hand, the surface tension of the nanofiber is lowered, and the water contact angle of the nanofiber membrane is increased. According to the Lapus equation, the water contact pressure increases to increase the water pressure resistance of the nanofiber membrane. .
  • the spinning voltage is 25KV ⁇ 80KV
  • the spinning distance is 7 ⁇ 30CM
  • the spinning solution flow rate is controlled.
  • Each nozzle is 0.5 ⁇ 2ml/h
  • the electrospinning environment temperature is 10 ⁇ 40°C
  • the electrospinning environment humidity is below 45%
  • the configured spinning solution is sprayed into the non-woven fabric through the multi-nozzle high-voltage electrostatic device 6.
  • the spinning solution is spun on the non-woven fabric layer to form a nanofiber deposit layer, and is laminated with the non-woven fabric layer and peeled off by the peeling roller 10 to form a loose layer.
  • the nanofiber non-woven composite film, the fiber diameter of the nanofiber deposition layer formed by the spin pile deposition is 100 nm to 500 nm by controlling the spinning parameters of the multi-nozzle high-voltage electrospinning device 6, and the nanofiber accumulation layer
  • the thickness is 1GSM ⁇ 10GSM;
  • the formed nanofiber non-woven composite film is baked in an oven, and the oven temperature is controlled to be 50 ° C to 130 ° C, and the baking time is ensured that the composite film does not contain any organic solvent residue;
  • the composite film after baking is calendered by a pressure roller to obtain a nanofiber non-woven base film, and the pressure of the pressure roller is controlled to be 0.1 MPa to 10 MPa, and the temperature of the pressure roller is 30 to 130 ° C.
  • Example 2 differs from Example 1 only in that the composition of the hydrophobic resin and the organic solvent is different.
  • a waterproof and breathable diaper base film comprising a nanofiber deposition layer 201 and a melt-blown nonwoven fabric layer 202 formed by spinning and spinning is disclosed, wherein the gas permeability of the melt-blown nonwoven fabric layer 202 is A nonwoven fabric layer of 100 to 700 CFM and a thickness of 5 to 20 GSM.
  • the method of preparing the above base film comprises the following steps:
  • a skin-friendly polymer resin wherein the skin-friendly polymer resin is one of a polypropylene resin (PP), a polyethylene terephthalate (PET), and a polyamide resin (PA), which will be skin-friendly.
  • the polymer resin is added as a raw material to the melt-blown spinning mechanism 30, and the conveying roller 14 drives the conveyor belt 12 to move, and the melt-blown spinning mechanism 30 melts the raw material and deposits the spinning filament on the moving conveyor belt 12 to form a fiber diameter of 1 ⁇ m.
  • microfiber nonwoven fabric with a thickness of 5-20 GSM is selected as a non-woven fiber layer to be used, and the air permeability of the nonwoven fabric fiber layer is controlled to be 100-700 CFM;
  • the calendered fiber layer is calendered by the calender roll 8 to obtain a non-woven fabric layer having a smooth adhering surface, wherein the pressure of the calender roll 8 is controlled to be 0.1 MPa to 1 MPa, and the calender roll is used.
  • the temperature is 60 ° C ⁇ 130 ° C;
  • the stirring kettle is heated during the stirring process, and the heating temperature is controlled within 100 ° C.
  • a silicon or fluorine-containing hydrophobic agent is added to the mixture to obtain a spinning solution.
  • 0.1 to 2 parts of a hydrophobic agent is added per 100 parts by mass of the mass percentage, and the addition of the hydrophobic agent is used to reduce the surface tension of the TPU nanofibers in the electrospinning process and accelerate the evaporation rate of the solvent; The other side The surface tension of the nanofiber is reduced, and the water contact angle of the nanofiber membrane is increased. According to the Lapus equation, the water contact pressure increases to increase the water pressure resistance of the nanofiber membrane.
  • the spinning voltage is 25KV ⁇ 80KV
  • the spinning distance is 5 ⁇ 30CM
  • the spinning solution flow rate is controlled.
  • Each nozzle is 0.5 ⁇ 2ml/h
  • the electrospinning environment temperature is 10 ⁇ 40°C
  • the electrospinning environment humidity is below 45%
  • the configured spinning solution is sprayed into the non-woven fabric through the multi-nozzle high-voltage electrostatic device 6.
  • the spinning solution is sprayed on the non-woven fabric layer
  • the nanofiber accumulation layer is laminated and laminated with the non-woven fiber layer and peeled off by the peeling roller 10 to form a loose nanofiber non-woven composite film.
  • the present invention controls the spinning of the multi-nozzle high-voltage electrospinning device 6 by the present invention.
  • the parameter is such that the nanofiber stack layer formed by the spin-blasting has a fiber diameter of 100 nm to 500 nm, and the nanofiber stack layer has a thickness of 1 GSM to 10 GSM;
  • the formed nanofiber non-woven composite film is baked in an oven, and the oven temperature is controlled to be 50 ° C to 130 ° C, and the baking time is ensured that the composite film does not contain any organic solvent residue;
  • the composite film after baking is calendered by a pressure roller to obtain a nanofiber non-woven base film, and the pressure of the pressure roller is controlled to be 0.1 MPa to 10 MPa, and the temperature of the pressure roller is 30 to 130 ° C.
  • Example 3 The difference between Example 3 and Example 1 is that the composition of the nonwoven fabric fiber layer is different, and the spinning parameters of the multi-head high-pressure electrostatic spinning device are different.
  • the present embodiment discloses a waterproof and breathable diaper base film, comprising a nanofiber deposition layer 101 and a non-woven fiber layer 102 formed by high-voltage electrospinning, wherein the non-woven fabric is non-woven.
  • the cloth fiber layer 102 has a gas permeability of 100 to 700 CFM and a thickness of 5 to 20 GSM.
  • the method of preparing the above base film comprises the following steps:
  • a silicon-containing or fluorine-containing hydrophobic agent is added to the mixed solution to obtain a spinning solution to be used, wherein each percentage by mass 1 to 20 parts of hydrophobic agent is added to 100 parts of the mixture.
  • the addition of the hydrophobic agent is used to reduce the surface tension of the TPU nanofibers during the electrospinning process and accelerate the evaporation rate of the solvent; on the other hand, reduce the surface tension of the nanofibers. Increase the water contact angle of the nanofiber membrane. According to the Lapus equation, the water contact pressure increases to increase the water pressure resistance of the nanofiber membrane.
  • the spinning voltage is 25KV ⁇ 80KV
  • the spinning distance is 5 ⁇ 30CM
  • the spinning solution flow rate is controlled.
  • Each nozzle is 0.5 ⁇ 2ml/h
  • the electrospinning environment temperature is 10 ⁇ 40°C
  • the electrospinning environment humidity is below 45%
  • the configured spinning solution is sprayed into the non-woven fabric through the multi-nozzle high-voltage electrostatic device 6.
  • the spinning solution is spun on the non-woven fiber layer to form a nanofiber deposit layer, and laminated with the non-woven fiber layer to form a loose nanofiber nonwoven composite.
  • the present invention controls the spinning parameters of the multi-nozzle high-voltage electrospinning device 6 such that the nanofiber-accumulating layer formed by the spin-on-stacking has a fiber diameter of 100 nm to 500 nm, and the nanofiber-stacking layer has a thickness of 1 GSM to 10 GSM;
  • the formed nanofiber non-woven composite film is baked in an oven, and the temperature of the oven is controlled to be 50 ° C to 130 ° C, and the baking time is ensured that the composite film does not contain any organic solvent residue;
  • the pressure of the control pressure roller is 0.1 Mpa to 10 Mpa, and the temperature of the pressure roller is 30 ° C to 130 ° C.
  • Example 4 differs from Example 3 only in that the composition of the hydrophobic resin and the organic solvent is different.
  • a waterproof and breathable diaper base film comprising a nanofiber film layer 101 and a non-woven fiber layer 102 formed by spinning composite, wherein the nonwoven fabric fiber layer 102 has a gas permeability of 10 to 15 CFM and a thickness It is 5-20 GSM.
  • the method of preparing the above base film comprises the following steps:
  • a spinning solution adding 1 part by mass of a hydrophobic resin and 8 to 12 parts of an organic solvent in a closed container, wherein the hydrophobic resin is a polyamide resin (PA), a polylactic acid resin (PLA),
  • the organic solvent is one of polyethylene terephthalate (PET) and ultrafine polymethyl methacrylate (PMMA).
  • the organic solvent is tetrahydrofuran solvent (THF), acetone, methyl ethyl ketone, dimethyl ketone.
  • THF tetrahydrofuran solvent
  • DMF dimethylacetamide solvent
  • DMAc dimethylacetamide solvent
  • the mixture is uniformly stirred in a closed container to accelerate the hydrophobic resin in the organic solvent. Dissolving, heating the stirred tank during the stirring process, and controlling the heating temperature to be within 100 ° C.
  • a silicon or fluorine-containing hydrophobic agent is added to the mixed solution to obtain a spinning
  • the solution is to be used, wherein 0.1 to 2 parts of the hydrophobic agent is added per 100 parts by mass of the mass percentage, and the addition of the hydrophobic agent is used to reduce the surface tension of the TPU nanofibers during the electrospinning process and accelerate the evaporation rate of the solvent. ;another In terms of reducing the surface tension of the nanofibers and increasing the water contact angle of the nanofiber membrane, according to the Lapus equation, the water contact pressure increases to increase the water pressure resistance of the nanofiber membrane.
  • the spinning voltage is 25KV ⁇ 80KV
  • the spinning distance is 5 ⁇ 30CM
  • the spinning solution flow rate is controlled.
  • Each nozzle is 0.5 ⁇ 2ml/h
  • the electrospinning environment temperature is 10 ⁇ 40°C
  • the electrospinning environment humidity is below 45%
  • the configured spinning solution is sprayed into the non-woven fabric through the multi-nozzle high-voltage electrostatic device 6.
  • the spinning solution is spun on the non-woven fiber layer to form a nanofiber deposit layer, and laminated with the non-woven fiber layer to form a loose nanofiber nonwoven composite.
  • the present invention controls the spinning parameters of the multi-nozzle high-voltage electrospinning device 6 such that the nanofiber-accumulating layer formed by the spin-on-stacking has a fiber diameter of 100 nm to 500 nm, and the nanofiber-stacking layer has a thickness of 1 GSM to 10 GSM;
  • the formed nanofiber non-woven composite film is baked in an oven, and the temperature of the oven is controlled to be 50 ° C to 130 ° C, and the baking time is ensured that the composite film does not contain any organic solvent residue;
  • the composite film after baking is calendered by a pressure roller to obtain a nanofiber non-woven base film, and the pressure of the pressure roller is controlled to be 0.1 MPa to 10 MPa, and the temperature of the pressure roller is 30 to 130 ° C.
  • the TPU resin is an optimum choice for the hydrophobic resin in the process of producing the base film in combination with the preparation method of the present invention
  • the ultrafine fiber nonwoven fabric is an optimum choice for the nonwoven fabric layer.
  • the present invention provides a waterproof and breathable diaper base film and a preparation method thereof, which use a hydrophobic polymer resin to mass-produce high-voltage electrospinning equipment, and directly perform electrospinning on a microfiber nonwoven fabric to form nanofibers.
  • the stacking body produces a diaper base film made of nanofiber and microfiber non-woven fabric.
  • the water pressure resistance can reach 4000mmH 2 O or more, and the gas permeability reaches 3CFM or more, and the water vapor transmission rate reaches 10000g/cm 2 .24h or more.
  • the blank of domestic high waterproof and breathable base film production, the performance of the product is much higher than the PP or PE base film used by Europe, America, Japan and South Korea, completely solve the problem of leakage of urine and redness of the buttocks when the baby is wearing the diaper;
  • the fiber and non-woven fiber composite base film is applied to the adult diaper and feminine sanitary napkin market, and has a good market development prospect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Laminated Bodies (AREA)

Abstract

一种防水透气纸尿裤底膜(100, 200),包括基材层和与之复合的防水透气层,基材层为透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层(102, 202),所述防水透气层为纳米纤维堆积体层(101,201)。一种防水透气纸尿裤底膜的制备方法,利用疏水性高分子树脂经过量产化高压静电纺丝设备,在超细纤维无纺布上直接进行静电纺丝形成纳米纤维堆积体,生产的纳米纤维和超细纤维无纺布复合的纸尿裤底膜,耐水压可以达到4000mmH 2O以上,同时透气性达到3CFM以上,水蒸气透过量达到10000g/cm 2.24h以上。

Description

一种防水透气纸尿裤底膜及其制备方法 技术领域
本发明属于防水透气性产品技术领域,具体涉及一种防水透气纸尿裤底膜及其制备方法。
背景技术
经市场调研,透气性、吸水性、舒适性、干爽性、安全性等因素是妈妈们选购纸尿裤时考虑的五大主要因素,其中,透气性尤为重要。宝宝皮肤汗腺排汗孔很小,不能很好地控制皮肤的温度,如纸尿裤透气性不佳,尿液被吸收后,热气和湿气被聚集在纸尿裤里,易使宝宝产生闷热感,并可能使小屁屁红肿、发炎,导致尿布疹。由于有尿液产生时,纸尿裤内部为湿热环境,所谓透气性实际是指透水蒸气性,可用水蒸气透过量(g/cm2·24h)来表示,同时也可以使用单位面积空气透过量(CFM)来表示。
目前纸尿裤的最新结构主要分为表层、瞬吸导流层、吸收芯层、底膜及其他功能组件。市场上销售的纸尿裤底膜一般采用PP微孔膜或热轧非织造布PE复合膜,利用水滴(最小雾滴直径10μm)和水蒸气分子(直径0.4nm)的直径的差异,实现水滴不能透过而水蒸气分子可以透过,达到防水透气的效果。纸尿裤底膜是纸尿裤透气性的主要影响因素,直接影响整个纸尿裤的透气性能,从而影响婴幼儿穿着纸尿裤时的舒适性。
目前市场上销售的纸尿裤主要利用PP或者PE拉伸微多孔膜来实现纸尿裤底膜的防水透气功能,但是PP或者PE微多孔膜很难同时满足很高的防水性和很好的透气性。目前市场上销售最好的帮宝适、好奇、花王等几款高端纸尿裤均采用PP或PE微多孔膜实现纸尿裤的防水透气功能,其中每款纸尿裤底膜经过透气性和耐水压测试,最大承受水压不超过1600mmH20,透气性最好也不超过0.1CFM;事实上只有当底膜的透气性达到或超过0.5CFM情况下,或者透水蒸气量达到8000g/cm2·24h才能保证纸尿裤良好的透气性。根据日 常使用情况,目前市面上销售的透气性纸尿裤中的吸收芯层充分吸收尿液以后,小宝宝在坐姿状态下,尿液会透过底膜渗透至裤子上而弄脏裤子。因此,一种好的纸尿裤底膜,不仅要满足好的透气性能,也要满足很好的防水渗透性能。
而且,目前国内纸尿裤底膜的生产技术还处在一个较低的水平,国产高端尿不湿使用的底膜还主要依赖国外进口。
发明内容
为解决上述技术问题,本发明提供了一种防水透气纸尿裤底膜及其制备方法,获得的底膜耐水压可以达到4000mmH2O以上,同时透气性达到3CFM以上,水蒸气透过量达到10000g/cm2·24h以上,填补了国内高防水透气性纸尿裤底膜生产的空白,彻底解决小宝宝穿着纸尿裤时的漏尿和屁股红肿的问题。
为达到上述目的,本发明的技术方案如下:一种防水透气纸尿裤底膜,包括基材层和与之复合的防水透气层,其特征在于:所述基材层为透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层,所述防水透气层为纳米纤维堆积体层。
一种防水透气纸尿裤底膜的制备方法,其特征在于:其包括以下步骤:
1)获得透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层,利用压光辊对无纺布纤维层进行压光处理,获得具有光滑附着面的无纺布纤维层,控制压光辊的压力为0.1MPa~1MPa,压光辊的温度为60℃~130℃;
2)配制纺丝溶液,在密闭容器内加入质量百分比为1份的疏水性高分子树脂、8~13份的有机溶剂,边搅拌均匀边加热获得纺丝溶液待用,控制加热温度在100℃以内;
3)通过多喷头高压静电纺丝设备的喷丝头将步骤2)中配制好的纺丝溶液喷丝堆积在步骤1)中的无纺布纤维层光滑附着面上,在无纺布纤维层附着面上纺丝溶液喷丝堆积形成纳米纤维堆积体层,并与无纺布纤维层复合形成疏松的纳米纤维无纺布复合膜,通过控制多喷头高压静电纺丝设备的纺丝参数使得喷丝堆积形成的纳米纤维堆积体层的纤维直径为100nm~500nm,纳米纤维 堆积体层的厚度为1GSM~10GSM;
4)将步骤3)中形成的复合膜放入烘箱烘烤,控制烘箱温度为50℃~130℃,烘烤时间以确保复合膜中不含有任何有机溶剂残留为准;
5)利用压力辊对烘烤后的复合膜进行压光处理获得纳米纤维无纺布底膜,控制压力辊的压力为0.1MPa~10MPa,压力辊的温度为30℃~130℃。
本发明的一个较佳实施例中,进一步包括所述疏水性高分子树脂为TPU树脂、聚酰胺树脂(PA)、聚乳酸树脂(PLA)、聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(PMMA)中的一种。
本发明的一个较佳实施例中,进一步包括步骤2)中纺丝溶液配制过程中加入的疏水性树脂为TPU树脂时,加入的有机溶剂为丁酮溶剂或者丙酮溶剂,步骤2)中纺丝溶液配制过程中加入的疏水性树脂为聚酰胺树脂(PA)、聚乳酸树脂(PLA)、聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(PMMA)中的一种时,加入的有机溶剂为四氢呋喃溶剂(THF)、丁酮、丙酮、二甲基甲酰胺溶剂(DMF)、二甲基乙酰胺溶剂(DMAc)中的一种或者两种混合。
本发明的一个较佳实施例中,进一步包括步骤2)中纺丝溶液配制过程中加入疏水性树脂和有机溶剂,两者搅拌均匀后向混合液中加入含硅或者含氟的疏水剂,质量百分比的每100份的混合液中加入0.1~2份疏水剂。
本发明的一个较佳实施例中,进一步包括步骤1)中无纺布纤维层的材料为超细纤维无纺布。
本发明的一个较佳实施例中,进一步包括通过超细纤维无纺布制备无纺布纤维层的过程为:选用亲肤性高分子树脂,利用熔喷纺丝机构对其进行喷丝堆积在传送带上,形成纤维直径为1微米~10微米、厚度为5~20GSM的无纺布纤维层。
本发明的一个较佳实施例中,进一步包括所述亲肤性高分子树脂为聚丙烯树脂(PP)、聚对苯二甲酸乙二醇酯(PET)、聚酰胺脂(PA)、聚乳酸(PLA)、热塑性聚氨酯(TPU)中的一种。
本发明的一个较佳实施例中,进一步包括步骤3)中多喷头高压静电纺丝 设备的纺丝参数为:纺丝电压为25KV~80KV、纺丝距离为5~30CM、纺丝溶液流量控制在每个喷头0.5~2ml/h,静电纺丝环境温度为10~40℃、静电纺丝环境湿度在45%以下。
本发明的一个较佳实施例中,进一步包括步骤1)中无纺布纤维层的材料为纤维素纤维、再生纤维素纤维、壳聚糖纤维中的一种,利用压光辊对无纺布纤维层进行压光处理之前,对无纺布纤维层进行扎花或者印花处理,将代表公司文化的图案印制在无纺布纤维层上。
本发明的有益效果是:本发明提供的一种防水透气纸尿裤底膜及其制备方法,利用疏水性高分子树脂经过量产化高压静电纺丝设备,在超细纤维无纺布上直接进行静电纺丝形成纳米纤维堆积体,生产纳米纤维和超细纤维无纺布复合的纸尿裤底膜,耐水压可以达到4000mmH2O以上,同时透气性达到3CFM以上,水蒸气透过量达到10000g/cm2.24h以上,填补了国内高防水透气性底膜生产的空白,彻底解决小宝宝穿着纸尿裤时的漏尿和屁股红肿的问题;同时也可以将该纳米纤维和无纺布纤维复合底膜应用于成人纸尿裤和女性卫生巾市场,具有很好的市场开发前景。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明优选实施例底膜的横截面及其表面的SEM图;
图2是本发明第一实施例中生产本发明底膜的生产设备的结构示意图;
图3是本发明第一实施例的纳米纤维熔喷无纺布复合底膜的结构示意图;
图4是本发明第三实施例中生产本发明底膜的生产设备的结构示意图;
图5是本发明第三实施例的纳米纤维无纺布复合底膜的结构示意图。
其中:a-纳米纤维堆积体层SEM图,b-无纺布纤维层SEM图,c-纳米纤维堆积体层表面SEM图;
2-退绕装置,4-卷绕装置,6-多喷头高压静电纺丝设备,8-压光辊,10-剥离辊,12-传送带,14-传送辊,20-烘箱,30-熔喷纺丝机构,100-纳米纤维无纺布复合底膜,101-纳米纤维膜层,102-无纺布纤维层,200-纳米纤维熔喷无纺布复合底膜,201-纳米纤维堆积体层,202-熔喷无纺布纤维层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1、2、3所示,本实施例中公开了一种防水透气纸尿裤底膜,包括高压静电纺丝而成的纳米纤维堆积体层201和熔喷无纺布纤维层202,其中熔喷无纺布纤维层202的透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层。
制备上述底膜的方法包括以下步骤:
1)制备获得透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层:选用亲肤性高分子树脂,其中亲肤性高分子树脂为聚丙烯树脂(PP)、聚对苯二甲酸乙二醇酯(PET)、聚酰胺树脂(PA)中的一种,将亲肤性高分子树脂作为原料加入熔喷纺丝机构30中,传送辊14带动传送带12移动,同时熔喷纺丝机构30将原料熔融后喷丝堆积在移动的传送带12上,形成纤维直径为1微米~10微米的超细纤维无纺布,选取厚度为5~20GSM的超细纤维无纺布作为无纺布纤维层待用,控制确保无纺布纤维层的透气性为100~700CFM;
2)利用压光辊8对无纺布纤维层进行压光处理,获得具有光滑附着面的无纺布纤维层待用,其中控制压光辊8的压力为0.1MPa~1MPa,压光辊的温度为60℃~130℃;
3)配制纺丝溶液:在密闭容器内加入质量百分比为1份的疏水性TPU树脂、8~12份的有机溶剂,其中有机溶剂可以是丁酮溶剂、或者丙酮溶剂,其中优选丁酮溶剂,两种成份加入后,在密闭容器中搅拌均匀,为加快TPU树 脂(热塑性聚氨酯)在有机溶剂中的溶解,在搅拌过程中对搅拌釜进行加热,并控制加热温度在100℃以内,待TPU树脂完全溶于有机溶剂中时,向混合液中加入含硅或者含氟的疏水剂,获得纺丝溶液待用,其中,质量百分比的每100份的混合液中加入0.1~2份疏水剂,疏水剂的加入一方面用于降低静电纺丝过程中TPU纳米纤维的表面张力,加快溶剂的挥发速度;另一方面降低纳米纤维的表面张力,增大纳米纤维膜的水接触角,根据拉普斯方程,水接触角增大后会提高纳米纤维膜的耐水压。
4)启动多喷头高压静电纺丝设备6,并设置多喷头高压静电纺丝设备6的纺丝参数如下:纺丝电压为25KV~80KV、纺丝距离为7~30CM、纺丝溶液流量控制在每个喷头0.5~2ml/h,静电纺丝环境温度为10~40℃、静电纺丝环境湿度在45%以下,通过多喷头高压静电设备6将配置好的纺丝溶液喷丝堆积在无纺布纤维层的光滑附着面上,在无纺布纤维层附着面上纺丝溶液喷丝堆积形成纳米纤维堆积体层,并与无纺布纤维层层压复合经剥离辊10进行剥离,形成疏松的纳米纤维无纺布复合膜,本发明通过控制多喷头高压静电纺丝设备6的纺丝参数使得喷丝堆积形成的纳米纤维堆积体层的纤维直径为100nm~500nm,纳米纤维堆积体层的厚度为1GSM~10GSM;
5)将形成的纳米纤维无纺布复合膜放入烘箱烘烤,控制烘箱温度为50℃~130℃,烘烤时间以确保复合膜中不含有任何有机溶剂残留为准;
6)利用压力辊对烘烤后的复合膜进行压光处理获得纳米纤维无纺布底膜,控制压力辊的压力为0.1MPa~10MPa,压力辊的温度为30℃~130℃。
实施例2
实施例2区别于实施例1仅在于:疏水性树脂和有机溶剂的成份不同。
本实施例中公开了一种防水透气纸尿裤底膜,包括喷丝复合而成的纳米纤维堆积体层201和熔喷无纺布纤维层202,其中熔喷无纺布纤维层202的透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层。
制备上述底膜的方法包括以下步骤:
1)制备获得透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层:选用 亲肤性高分子树脂,其中亲肤性高分子树脂为聚丙烯树脂(PP)、聚对苯二甲酸乙二醇酯(PET)、聚酰胺树脂(PA)中的一种,将亲肤性高分子树脂作为原料加入熔喷纺丝机构30中,传送辊14带动传送带12移动,同时熔喷纺丝机构30将原料熔融后喷丝堆积在移动的传送带12上,形成纤维直径为1微米~10微米的超细纤维无纺布,选取厚度为5~20GSM的超细纤维无纺布作为无纺布纤维层待用,控制确保无纺布纤维层的透气性为100~700CFM;
2)利用压光辊8对无纺布纤维层进行压光处理,获得具有光滑附着面的无纺布纤维层待用,其中控制压光辊8的压力为0.1MPa~1MPa,压光辊的温度为60℃~130℃;
3)配制纺丝溶液:在密闭容器内加入质量百分比为1份的疏水性树脂、8~12份的有机溶剂,其中疏水性树脂为聚酰胺树脂(PA)、聚乳酸树脂(PLA)、有机溶剂为聚对苯二甲酸乙二醇酯(PET)、超细聚甲基丙烯酸甲酯(PMMA)中的一种,有机溶剂为四氢呋喃溶剂(THF)、丁酮、丙酮、二甲基甲酰胺溶剂(DMF)、二甲基乙酰胺溶剂(DMAc)中的一种或者两种混合,疏水性树脂和有机溶剂加入后,在密闭容器中搅拌均匀,为加快疏水性树脂在有机溶剂中的溶解,在搅拌过程中对搅拌釜进行加热,并控制加热温度在100℃以内,待疏水性树脂完全溶于有机溶剂中时,向混合液中加入含硅或者含氟的疏水剂,获得纺丝溶液待用,其中,质量百分比的每100份的混合液中加入0.1~2份疏水剂,疏水剂的加入一方面用于降低静电纺丝过程中TPU纳米纤维的表面张力,加快溶剂的挥发速度;另一方面降低纳米纤维的表面张力,增大纳米纤维膜的水接触角,根据拉普斯方程,水接触角增大后会提高纳米纤维膜的耐水压。
4)启动多喷头高压静电纺丝设备6,并设置多喷头高压静电纺丝设备6的纺丝参数如下:纺丝电压为25KV~80KV、纺丝距离为5~30CM、纺丝溶液流量控制在每个喷头0.5~2ml/h,静电纺丝环境温度为10~40℃、静电纺丝环境湿度在45%以下,通过多喷头高压静电设备6将配置好的纺丝溶液喷丝堆积在无纺布纤维层的光滑附着面上,在无纺布纤维层附着面上纺丝溶液喷丝堆积形 成纳米纤维堆积体层,并与无纺布纤维层层压复合经剥离辊10进行剥离,形成疏松的纳米纤维无纺布复合膜,本发明通过控制多喷头高压静电纺丝设备6的纺丝参数使得喷丝堆积形成的纳米纤维堆积体层的纤维直径为100nm~500nm,纳米纤维堆积体层的厚度为1GSM~10GSM;
5)将形成的纳米纤维无纺布复合膜放入烘箱烘烤,控制烘箱温度为50℃~130℃,烘烤时间以确保复合膜中不含有任何有机溶剂残留为准;
6)利用压力辊对烘烤后的复合膜进行压光处理获得纳米纤维无纺布底膜,控制压力辊的压力为0.1MPa~10MPa,压力辊的温度为30℃~130℃。
实施例3
实施例3的与实施例1的区别为:无纺布纤维层的成份不同、多喷头高压静电喷丝设备的纺丝参数不同。
如图1、4、5所示,本实施例中公开了一种防水透气纸尿裤底膜,包括高压静电纺丝复合而成的纳米纤维堆积体层101和无纺布纤维层102,其中无纺布纤维层102的透气性为100~700CFM、厚度为5~20GSM。
制备上述底膜的方法包括以下步骤:
1)选用易降解、吸湿性好的纤维素纤维、再生纤维素纤维、壳聚糖纤维中的一种作为材料制成厚度为5~20GSM的无纺布纤维层,对无纺布纤维层进行扎花或者印花处理,将代表公司文化的图案印制在无纺布纤维层上,然后利用压光辊8对无纺布纤维层进行压光处理,获得具有光滑附着面的无纺布纤维层待用,其中控制压光辊8的压力为0.1MPa~1Mpa,压光辊的温度为60℃~130℃;
2)配制纺丝溶液:在密闭容器内加入质量百分比为1份的疏水性TPU树脂、8~12份的有机溶剂,其中有机溶剂可以是丁酮溶剂、或者丙酮溶剂,其中优选丁酮溶剂,两种成份加入后,在密闭容器中搅拌均匀,为加快TPU树脂(热塑性聚氨酯)在有机溶剂中的溶解,在搅拌过程中对搅拌釜进行加热,并控制加热温度在100℃以内,待TPU树脂完全溶于有机溶剂中时,向混合液中加入含硅或者含氟的疏水剂,获得纺丝溶液待用,其中,质量百分比的每 100份的混合液中加入1~20份疏水剂,疏水剂的加入一方面用于降低静电纺丝过程中TPU纳米纤维的表面张力,加快溶剂的挥发速度;另一方面降低纳米纤维的表面张力,增大纳米纤维膜的水接触角,根据拉普斯方程,水接触角增大后会提高纳米纤维膜的耐水压。
3)启动多喷头高压静电纺丝设备6,并设置多喷头高压静电纺丝设备6的纺丝参数如下:纺丝电压为25KV~80KV、纺丝距离为5~30CM、纺丝溶液流量控制在每个喷头0.5~2ml/h,静电纺丝环境温度为10~40℃、静电纺丝环境湿度在45%以下,通过多喷头高压静电设备6将配置好的纺丝溶液喷丝堆积在无纺布纤维层的光滑附着面上,在无纺布纤维层附着面上纺丝溶液喷丝堆积形成纳米纤维堆积体层,并与无纺布纤维层层压复合形成疏松的纳米纤维无纺布复合膜,本发明通过控制多喷头高压静电纺丝设备6的纺丝参数使得喷丝堆积形成的纳米纤维堆积体层的纤维直径为100nm~500nm,纳米纤维堆积体层的厚度为1GSM~10GSM;
4)将形成的纳米纤维无纺布复合膜放入烘箱烘烤,控制烘箱温度为50℃~130℃,烘烤时间以确保复合膜中不含有任何有机溶剂残留为准;
5)利用压力辊对烘烤后的复合膜进行压光处理获得纳米纤维无纺布底膜,控制压力辊的压力为0.1Mpa~10Mpa,压力辊的温度为30℃~130℃。
实施例4
实施例4区别于实施例3仅在于:疏水性树脂和有机溶剂的成份不同。
本实施例中公开了一种防水透气纸尿裤底膜,包括喷丝复合而成的纳米纤维膜层101和无纺布纤维层102,其中无纺布纤维层102的透气性为10~15CFM、厚度为5~20GSM。
制备上述底膜的方法包括以下步骤:
1)选用易降解的纤维素纤维、再生纤维素纤维、壳聚糖纤维中的一种作为材料制成厚度为5~20GSM的无纺布纤维层,对无纺布纤维层进行扎花或者印花处理,将代表公司文化的图案印制在无纺布纤维层上,然后利用压光辊8对无纺布纤维层进行压光处理,获得具有光滑附着面的无纺布纤维层待用, 其中控制压光辊8的压力为0.1MPa~1MPa,压光辊的温度为60℃~130℃;
2)配制纺丝溶液:在密闭容器内加入质量百分比为1份的疏水性树脂、和8~12份的有机溶剂,其中疏水性树脂为聚酰胺树脂(PA)、聚乳酸树脂(PLA)、有机溶剂为聚对苯二甲酸乙二醇酯(PET)、超细聚甲基丙烯酸甲酯(PMMA)中的一种,有机溶剂为四氢呋喃溶剂(THF)、丙酮、丁酮、二甲基甲酰胺溶剂(DMF)、二甲基乙酰胺溶剂(DMAc)中的一种或者两种混合,疏水性树脂和有机溶剂加入后,在密闭容器中搅拌均匀,为加快疏水性树脂在有机溶剂中的溶解,在搅拌过程中对搅拌釜进行加热,并控制加热温度在100℃以内,待疏水性树脂完全溶于有机溶剂中时,向混合液中加入含硅或者含氟的疏水剂,获得纺丝溶液待用,其中,质量百分比的每100份的混合液中加入0.1~2份疏水剂,疏水剂的加入一方面用于降低静电纺丝过程中TPU纳米纤维的表面张力,加快溶剂的挥发速度;另一方面降低纳米纤维的表面张力,增大纳米纤维膜的水接触角,根据拉普斯方程,水接触角增大后会提高纳米纤维膜的耐水压。
3)启动多喷头高压静电纺丝设备6,并设置多喷头高压静电纺丝设备6的纺丝参数如下:纺丝电压为25KV~80KV、纺丝距离为5~30CM、纺丝溶液流量控制在每个喷头0.5~2ml/h,静电纺丝环境温度为10~40℃、静电纺丝环境湿度在45%以下,通过多喷头高压静电设备6将配置好的纺丝溶液喷丝堆积在无纺布纤维层的光滑附着面上,在无纺布纤维层附着面上纺丝溶液喷丝堆积形成纳米纤维堆积体层,并与无纺布纤维层层压复合形成疏松的纳米纤维无纺布复合膜,本发明通过控制多喷头高压静电纺丝设备6的纺丝参数使得喷丝堆积形成的纳米纤维堆积体层的纤维直径为100nm~500nm,纳米纤维堆积体层的厚度为1GSM~10GSM;
4)将形成的纳米纤维无纺布复合膜放入烘箱烘烤,控制烘箱温度为50℃~130℃,烘烤时间以确保复合膜中不含有任何有机溶剂残留为准;
5)利用压力辊对烘烤后的复合膜进行压光处理获得纳米纤维无纺布底膜,控制压力辊的压力为0.1MPa~10MPa,压力辊的温度为30℃~130℃。
通过各实施例中的制备方法生产的底膜性能比较如下:
表1
Figure PCTCN2016091526-appb-000001
从表1中可以看出配合使用本发明的制备方法,生产底膜的过程中TPU树脂是疏水性树脂的最优选择,超细纤维无纺布是无纺布纤维层的最优选择。
因此,本发明提供的一种防水透气纸尿裤底膜及其制备方法,利用疏水性高分子树脂经过量产化高压静电纺丝设备,在超细纤维无纺布上直接进行静电纺丝形成纳米纤维堆积体,生产纳米纤维和超细纤维无纺布复合的纸尿裤底膜,耐水压可以达到4000mmH2O以上,同时透气性达到3CFM以上,水蒸气透过量达到10000g/cm2.24h以上,填补了国内高防水透气性底膜生产的空白,产品性能远远高于欧美日韩使用的PP或者PE底膜,彻底解决小宝宝穿着纸尿裤时的漏尿和屁股红肿的问题;同时也可以将该纳米纤维和无纺布纤维复合底膜应用于成人纸尿裤和女性卫生巾市场,具有很好的市场开发前景。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种防水透气纸尿裤底膜,包括基材层和与之复合的防水透气层,其特征在于:所述基材层为透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层,所述防水透气层为纳米纤维堆积体层。
  2. 一种防水透气纸尿裤底膜的制备方法,其特征在于:其包括以下步骤:
    1)获得透气性为100~700CFM、厚度为5~20GSM的无纺布纤维层,利用压光辊对无纺布纤维层进行压光处理,获得具有光滑附着面的无纺布纤维层,控制压光辊的压力为0.1MPa~1MPa,压光辊的温度为60℃~130℃;
    2)配制纺丝溶液,在密闭容器内加入质量百分比为1份的疏水性高分子树脂、8~13份的有机溶剂,边搅拌均匀边加热获得纺丝溶液待用,控制加热温度在100℃以内;
    3)通过多喷头高压静电纺丝设备的喷丝头将步骤2)中配制好的纺丝溶液喷丝堆积在步骤1)中的无纺布纤维层光滑附着面上,在无纺布纤维层附着面上纺丝溶液喷丝堆积形成纳米纤维堆积体层,并与无纺布纤维层复合形成疏松的纳米纤维无纺布复合膜,通过控制多喷头高压静电纺丝设备的纺丝参数使得喷丝堆积形成的纳米纤维堆积体层的纤维直径为100nm~500nm,纳米纤维堆积体层的厚度为1GSM~10GSM;
    4)将步骤3)中形成的复合膜放入烘箱烘烤,控制烘箱温度为50℃~130℃,烘烤时间以确保复合膜中不含有任何有机溶剂残留为准;
    5)利用压力辊对烘烤后的复合膜进行压光处理获得纳米纤维无纺布底膜,控制压力辊的压力为0.1MPa~10MPa,压力辊的温度为30℃~130℃。
  3. 根据权利要求2所述的一种防水透气纸尿裤底膜的制备方法,其特征在于:所述疏水性高分子树脂为TPU树脂、聚酰胺树脂(PA)、聚乳酸树脂(PLA)、聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(PMMA)中的一种或几种。
  4. 根据权利要求3所述的一种防水透气纸尿裤底膜的制备方法,其特征 在于:步骤2)中纺丝溶液配制过程中加入的疏水性树脂为TPU树脂时,加入的有机溶剂为丁酮溶剂或者丙酮溶剂,步骤2)中纺丝溶液配制过程中加入的疏水性树脂为聚酰胺树脂(PA)、聚乳酸树脂(PLA)、聚对苯二甲酸乙二醇酯(PET)、聚甲基丙烯酸甲酯(PMMA)中的一种或两种时,加入的有机溶剂为四氢呋喃溶剂(THF)、丙酮溶剂、丁酮溶剂、二甲基甲酰胺溶剂(DMF)、二甲基乙酰胺溶剂(DMAc)中的一种或者两种混合。
  5. 根据权利要求2所述的一种防水透气纸尿裤底膜的制备方法,其特征在于:步骤2)中纺丝溶液配制过程中加入疏水性树脂和有机溶剂,两者搅拌均匀后向混合液中加入含硅或者含氟的疏水剂,质量百分比的每100份的混合液中加入0.1~2份疏水剂。
  6. 根据权利要求2所述的一种防水透气纸尿裤底膜的制备方法,其特征在于:步骤1)中无纺布纤维层的材料为超细纤维无纺布。
  7. 根据权利要求6所述的一种防水透气纸尿裤底膜的制备方法,其特征在于:通过超细纤维无纺布制备无纺布纤维层的过程为:选用亲肤性高分子树脂,利用熔喷纺丝机构对其进行喷丝堆积在传送带上,形成纤维直径为1微米~10微米、厚度为5~20GSM的无纺布纤维层。
  8. 根据权利要求7所述的一种防水透气纸尿裤底膜的制备方法,其特征在于:所述亲肤性高分子树脂为聚丙烯树脂(PP)、聚对苯二甲酸乙二醇酯(PET)、聚酰胺树脂(PA)、聚乳酸(PLA)、热塑性聚氨酯(TPU)中的一种。
  9. 根据权利要求2所述的一种防水透气纸尿裤底膜的制备方法,其特征在于:步骤3)中多喷头高压静电纺丝设备的纺丝参数为:纺丝电压为25KV~80KV、纺丝距离为5~30CM、纺丝溶液流量控制在每个喷头0.5~2ml/h,静电纺丝环境温度为10~40℃、静电纺丝环境湿度在45%以下。
  10. 根据权利要求2所述的一种防水透气纸尿裤底膜的制备方法,其特征在于:步骤1)中无纺布纤维层的材料为纤维素纤维、再生纤维素纤维、壳聚糖纤维中的一种,利用压光辊对无纺布纤维层进行压光处理之前,对无纺布纤维层进行扎花或者印花处理,将代表公司文化的图案印制在无纺布纤维层 上。
PCT/CN2016/091526 2015-08-17 2016-07-25 一种防水透气纸尿裤底膜及其制备方法 WO2017028656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510505147.0A CN105063896B (zh) 2015-08-17 2015-08-17 一种防水透气纸尿裤底膜的制备方法
CN201510505147.0 2015-08-17

Publications (1)

Publication Number Publication Date
WO2017028656A1 true WO2017028656A1 (zh) 2017-02-23

Family

ID=54493384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091526 WO2017028656A1 (zh) 2015-08-17 2016-07-25 一种防水透气纸尿裤底膜及其制备方法

Country Status (2)

Country Link
CN (1) CN105063896B (zh)
WO (1) WO2017028656A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989127A (zh) * 2017-12-31 2019-07-09 福建恒安集团有限公司 一种热风无纺布材料
EP3533429A1 (en) * 2018-03-02 2019-09-04 LEMON Co., Ltd. Sanitary napkin for women
US10952169B2 (en) * 2014-09-15 2021-03-16 Samsung Electronics Co., Ltd. Signal transmitting/receiving method and apparatus
CN112695456A (zh) * 2020-12-18 2021-04-23 苏州谷原生物科技有限公司 一种聚乳酸纳米纤维高阻隔无纺布及可降解纸尿裤
CN112998958A (zh) * 2021-02-26 2021-06-22 福建省明辉机械制造有限公司 一种具有自呼吸的卫生巾制备方法
CN113545921A (zh) * 2021-07-30 2021-10-26 福建恒安集团有限公司 一种三段式透气卫生巾
CN114619731A (zh) * 2020-12-10 2022-06-14 财团法人纺织产业综合研究所 透气防水膜
CN115501764A (zh) * 2022-10-19 2022-12-23 盐城海普润科技股份有限公司 具有梯度孔结构的防水透气膜及其制备方法和应用
WO2024098440A1 (zh) * 2022-11-09 2024-05-16 电子科技大学长三角研究院(湖州) 一种高强度静电纺丝聚氨酯防水透湿膜及其制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063896B (zh) * 2015-08-17 2017-04-26 博裕纤维科技(苏州)有限公司 一种防水透气纸尿裤底膜的制备方法
CN106079760A (zh) * 2016-07-12 2016-11-09 浙江金三发非织造布有限公司 一种防渗高透气超柔尿不湿复合底膜及其制备工艺
CN106109103A (zh) * 2016-07-15 2016-11-16 浙江优全护理用品科技有限公司 一种防渗高透气的尿不湿及其制备工艺
CN106087447B (zh) * 2016-08-10 2018-12-04 孚日集团股份有限公司 一种护理用三层覆膜提花布及其制备工艺
CN106691697A (zh) * 2017-01-06 2017-05-24 上海护理佳实业有限公司 一种吸水性卫生制品的复合弹性材料结构及其制备工艺
CN106902379B (zh) * 2017-03-01 2019-06-07 福建农林大学 一种魔芋葡甘聚糖环保尿不湿及其制备方法
CN106821605B (zh) * 2017-04-07 2020-05-29 南京云佳纳米科技有限公司 卫生用品防水透气底膜及其制备方法
CN109009679B (zh) * 2018-07-11 2021-07-13 山东爱舒乐卫生用品有限责任公司 一种纸尿裤透气膜及其制备方法
CN109938926A (zh) * 2019-03-01 2019-06-28 百润(中国)有限公司 一种用于一次性吸收用品的高透气不透液性片材
CN110318161B (zh) * 2019-05-13 2020-09-08 山东寿光鲁清石化有限公司 一种用于尿不湿的基底材料及其制备方法
CN110478132A (zh) * 2019-08-27 2019-11-22 江苏宝姿实业有限公司 一种纳米纤维膜全透气卫生巾与护垫
CN111020885A (zh) * 2019-12-27 2020-04-17 福建恒安集团有限公司 一种透气不透水聚氨酯纳米纤维无纺布的制备方法
CN111516324B (zh) * 2020-04-21 2022-07-12 东莞市雄林新材料科技股份有限公司 一种尿不湿用无气味tpu薄膜及其制备方法
CN112709001B (zh) * 2020-12-18 2022-06-10 苏州谷原生物科技有限公司 一种一次成型完全降解的平面口罩本体及其制备方法
CN112622374B (zh) * 2020-12-18 2022-09-06 苏州谷原生物科技有限公司 一种聚乳酸纳米纤维无纺布面层及其制备的可降解卫生巾
CN114795664B (zh) * 2021-01-27 2023-05-26 宁波方太厨具有限公司 一种卫生护理用品及其制备方法
CN113293510A (zh) * 2021-05-26 2021-08-24 深圳市戈埃尔科技有限公司 一种环保型防水网及其加工方法
CN115142192A (zh) * 2021-08-18 2022-10-04 张家港市宏裕新材料有限公司 一种宽门幅纳米纤维薄膜及其制备方法
CN114703559A (zh) * 2022-04-22 2022-07-05 上海水星家用纺织品股份有限公司 纳米纤维纺丝溶液的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728394A (en) * 1985-03-29 1988-03-01 Firma Carl Freudenberg Semipermeable membrane support and process for preparation thereof
CN1942619A (zh) * 2004-04-19 2007-04-04 宝洁公司 包含由高玻璃化转变温度聚合物生产的纳米纤维的纤维、非织造材料和制品
JP2009057655A (ja) * 2007-08-31 2009-03-19 Japan Vilene Co Ltd 極細繊維不織布及びその製造方法、並びにその製造装置
CN102014826A (zh) * 2008-04-29 2011-04-13 宝洁公司 制造具有抗应变芯覆盖件的吸收芯的方法
CN102245378A (zh) * 2008-12-26 2011-11-16 花王株式会社 纳米纤维薄片的附着方法
CN103290615A (zh) * 2012-02-23 2013-09-11 合肥杰事杰新材料股份有限公司 一种防水透气膜及其制备方法
CN105063896A (zh) * 2015-08-17 2015-11-18 博裕纤维科技(苏州)有限公司 一种防水透气纸尿裤底膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090124293A (ko) * 2008-05-29 2009-12-03 (주)나노필 나노섬유를 이용한 투습방수성 웹 및 그 제조방법
CN101851830B (zh) * 2010-05-05 2011-11-09 豆丁乐园(南京)婴儿用品有限公司 全降解聚乳酸纤维sms复合非织造布及其制造方法
KR20120086149A (ko) * 2011-01-25 2012-08-02 (주)성욱 투습방수 원단 및 그 제조방법
US9237973B2 (en) * 2012-01-31 2016-01-19 Kimberly-Clark Worldwide, Inc. Treated apertures
EP2987895A4 (en) * 2013-04-17 2017-03-29 Finetex Ene, Inc. Electrospinning apparatus
CN103437072B (zh) * 2013-08-16 2016-06-08 浙江伟星实业发展股份有限公司 防水透湿织膜的制备方法、防水透湿织物及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728394A (en) * 1985-03-29 1988-03-01 Firma Carl Freudenberg Semipermeable membrane support and process for preparation thereof
CN1942619A (zh) * 2004-04-19 2007-04-04 宝洁公司 包含由高玻璃化转变温度聚合物生产的纳米纤维的纤维、非织造材料和制品
JP2009057655A (ja) * 2007-08-31 2009-03-19 Japan Vilene Co Ltd 極細繊維不織布及びその製造方法、並びにその製造装置
CN102014826A (zh) * 2008-04-29 2011-04-13 宝洁公司 制造具有抗应变芯覆盖件的吸收芯的方法
CN102245378A (zh) * 2008-12-26 2011-11-16 花王株式会社 纳米纤维薄片的附着方法
CN103290615A (zh) * 2012-02-23 2013-09-11 合肥杰事杰新材料股份有限公司 一种防水透气膜及其制备方法
CN105063896A (zh) * 2015-08-17 2015-11-18 博裕纤维科技(苏州)有限公司 一种防水透气纸尿裤底膜及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952169B2 (en) * 2014-09-15 2021-03-16 Samsung Electronics Co., Ltd. Signal transmitting/receiving method and apparatus
CN109989127A (zh) * 2017-12-31 2019-07-09 福建恒安集团有限公司 一种热风无纺布材料
EP3533429A1 (en) * 2018-03-02 2019-09-04 LEMON Co., Ltd. Sanitary napkin for women
JP2019150572A (ja) * 2018-03-02 2019-09-12 レモン カンパニー リミテッド 女性用の生理用ナプキン
CN114619731A (zh) * 2020-12-10 2022-06-14 财团法人纺织产业综合研究所 透气防水膜
CN112695456A (zh) * 2020-12-18 2021-04-23 苏州谷原生物科技有限公司 一种聚乳酸纳米纤维高阻隔无纺布及可降解纸尿裤
CN112998958A (zh) * 2021-02-26 2021-06-22 福建省明辉机械制造有限公司 一种具有自呼吸的卫生巾制备方法
CN113545921A (zh) * 2021-07-30 2021-10-26 福建恒安集团有限公司 一种三段式透气卫生巾
CN115501764A (zh) * 2022-10-19 2022-12-23 盐城海普润科技股份有限公司 具有梯度孔结构的防水透气膜及其制备方法和应用
WO2024098440A1 (zh) * 2022-11-09 2024-05-16 电子科技大学长三角研究院(湖州) 一种高强度静电纺丝聚氨酯防水透湿膜及其制备方法

Also Published As

Publication number Publication date
CN105063896A (zh) 2015-11-18
CN105063896B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2017028656A1 (zh) 一种防水透气纸尿裤底膜及其制备方法
KR101197363B1 (ko) 복합 나노섬유 재료 및 그의 제조 방법
EP3063323B1 (en) Nonwoven web material including fibers formed of recycled polyester, and methods for producing
US9850603B2 (en) Nonwoven fabric, a laminated fabric, a nonwoven fabric product, a multicomponent fibre, a web, and a method of producing the nonwoven fabric
JP6973616B2 (ja) 繊維径分布を有する不織セルロース繊維布帛
CN108179549A (zh) 一种聚丙烯基长丝弹性超柔非织造材料及其生产方法
TWI762608B (zh) 非織纖維素纖維織物、用於製造彼之方法及裝置、使用彼之方法、及包含彼之產品或複合物
CN110983628B (zh) 一种亲肤柔软无纺布
US11224545B2 (en) Sanitary pad for women
KR102109727B1 (ko) 투습방수 원단의 제조방법
CN109594200B (zh) 一种高阻隔纺熔混合型透气新材料、制备方法及其应用
CN102934963B (zh) 一种环保可降解湿纸巾材料的制备方法
CN102733096B (zh) 一种不易致敏、可调节湿气的全降解医疗卫生用无纺材料
CN110179593A (zh) 超柔吸液芯体及其制备系统和工艺
JPWO2012046694A1 (ja) 積層不織布とその製品
CN107460641B (zh) 一种柔性非织造布及其制作方法
TWI627321B (zh) Polypropylene non-woven fabric, manufacturing method thereof and sanitary material
RU2518657C2 (ru) Новые поливинилспиртовые изделия
CN208362631U (zh) 一种高透气、除异味的热风无纺布
JP6633832B2 (ja) ナノファイバーシート部材の製造方法
TWI717037B (zh) 抑制熱熔透印之不織布
CN209260324U (zh) 水刺超纤复合无纺布
TW201240651A (en) Manufacturing method of non-woven fabric thin-layer article
CN107160756B (zh) 用于纸尿裤的抗菌无纺布及其制备方法
KR102533129B1 (ko) 투습방수 나노섬유 멤브레인, 이의 제조방법 및 이를 포함하는 제품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836520

Country of ref document: EP

Kind code of ref document: A1