WO2017026483A1 - 半導体検査装置 - Google Patents

半導体検査装置 Download PDF

Info

Publication number
WO2017026483A1
WO2017026483A1 PCT/JP2016/073445 JP2016073445W WO2017026483A1 WO 2017026483 A1 WO2017026483 A1 WO 2017026483A1 JP 2016073445 W JP2016073445 W JP 2016073445W WO 2017026483 A1 WO2017026483 A1 WO 2017026483A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
semiconductor
liquid
inspection apparatus
semiconductor inspection
Prior art date
Application number
PCT/JP2016/073445
Other languages
English (en)
French (fr)
Inventor
大村 一郎
渡邉 晃彦
正則 附田
Original Assignee
国立大学法人 九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 九州工業大学 filed Critical 国立大学法人 九州工業大学
Priority to JP2017534466A priority Critical patent/JP6718626B2/ja
Publication of WO2017026483A1 publication Critical patent/WO2017026483A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Definitions

  • the present invention relates to a semiconductor inspection apparatus that detects a state of a semiconductor element.
  • failure analysis FA: Failure Analysis
  • power semiconductor elements such as IGBTs and SiC devices
  • the cause of the failure has been identified mainly by disassembly investigation performed by destroying the power semiconductor elements. Yes.
  • power semiconductor elements are expected to be used in a wide range of products such as electric vehicles, home appliances, and energy-saving devices as miniaturization and high integration progress. For this reason, it is predicted that factors causing defects in the power semiconductor element are complicated, and there is a concern that the cause of the defect cannot be elucidated by analysis performed by destroying the power semiconductor element.
  • Non-Patent Documents 1 to 14 describe techniques for performing ultrasonic flaw detection with the power semiconductor element operated.
  • the power semiconductor element generates heat when activated by energization, and bubbles are generated in the liquid by this heat. Bubbles generated in the liquid hinder the propagation of the ultrasonic wave, which causes a problem that the internal state of the power semiconductor element cannot be stably detected by the ultrasonic wave.
  • This problem is not limited to power semiconductor elements, but is a problem common to other semiconductor elements.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a semiconductor inspection apparatus that stably detects an abnormality of a semiconductor element in operation using ultrasonic waves.
  • a semiconductor inspection apparatus based on an ultrasonic probe that transmits an ultrasonic wave that propagates through a liquid in a liquid tank and reaches a semiconductor element, and the received ultrasonic wave.
  • a semiconductor inspection apparatus having an analyzing means for detecting an abnormality of the semiconductor element, a current applying means connected to the semiconductor element and energizing the semiconductor element to operate the semiconductor element; and a liquid in the liquid tank Flow generating means for generating a flow.
  • the flow generating means may include a blow nozzle that arranges a blow outlet of the liquid in the liquid.
  • the semiconductor inspection apparatus includes a probe transfer mechanism that moves the ultrasonic probe relative to the semiconductor element, and the blowing nozzle moves together with the ultrasonic probe. preferable.
  • the semiconductor inspection apparatus it is preferable to further include a liquid temperature measuring means for measuring the temperature of the liquid in the liquid tank.
  • the semiconductor inspection apparatus preferably further comprises probe temperature measuring means for measuring the temperature of the ultrasonic probe.
  • the flow generating means may include a suction nozzle that arranges a suction port for the liquid in the liquid.
  • the semiconductor inspection apparatus includes a probe transfer mechanism that moves the ultrasonic probe relative to the semiconductor element, and the suction nozzle moves together with the ultrasonic probe. preferable.
  • a semiconductor inspection apparatus based on an ultrasonic probe that transmits an ultrasonic wave that propagates through a liquid in a liquid tank and reaches a semiconductor element, and the received ultrasonic wave.
  • a semiconductor inspection apparatus having an analyzing means for detecting an abnormality of the semiconductor element, a current applying means connected to the semiconductor element and energizing the semiconductor element to operate the semiconductor element, and heat generated by the operation of the semiconductor element And a contact piece that comes into contact with bubbles generated in the semiconductor element. The contact piece is moved to remove the bubbles from the semiconductor element.
  • the semiconductor inspection apparatus includes a probe transfer mechanism that moves the ultrasonic probe relative to the semiconductor element, and the contact piece moves together with the ultrasonic probe. preferable.
  • the semiconductor inspection apparatus it is preferable to further include a liquid temperature measuring means for measuring the temperature of the liquid in the liquid tank.
  • probe temperature measuring means for measuring the temperature of the ultrasonic probe.
  • a semiconductor inspection apparatus based on an ultrasonic probe that transmits an ultrasonic wave that propagates in a liquid in a liquid tank and reaches a semiconductor element, and the received ultrasonic wave.
  • a semiconductor inspection apparatus having an analysis means for detecting an abnormality of the semiconductor element, a current applying means connected to the semiconductor element and energizing the semiconductor element to operate the semiconductor element, and a vibration is applied to the semiconductor element Vibration generating means.
  • the semiconductor inspection apparatus it is preferable to further include a liquid temperature measuring means for measuring the temperature of the liquid in the liquid tank.
  • probe temperature measuring means for measuring the temperature of the ultrasonic probe.
  • the analyzing means derives an internal image of the semiconductor element based on the received ultrasonic wave, and the semiconductor element of the semiconductor element is based on the internal image. It is preferable to detect an abnormality.
  • the analyzing means derives the internal image derived from the semiconductor element in an operating state as a target, and derives the internal image from the semiconductor element before the operation as a target. Compared with the internal image, if the area of the semiconductor element that has changed from the internal image of the semiconductor element before the operation is larger than a predetermined size in the internal image of the semiconductor element in operation, the semiconductor element is abnormal. It is preferable to determine that there is.
  • the analyzing means derives the internal image derived for the semiconductor element after operation for the semiconductor element before operation. Compared with the internal image, if the area of the semiconductor element that has changed from the internal image before operation in the internal image of the semiconductor element after operation is greater than or equal to a predetermined size, the semiconductor element is abnormal. It is preferable to determine that there is.
  • an opening is formed in the bottom of the liquid tank, and the semiconductor element is in close contact with the bottom of the liquid tank from the outside of the liquid tank. It is preferable to close the opening.
  • the semiconductor inspection apparatus further includes a cooling means for cooling the liquid.
  • the semiconductor inspection apparatus further comprises element temperature measuring means for measuring the temperature of the semiconductor element, and based on the output value of the element temperature measuring means, An abnormality is preferably detected.
  • an imaging unit that captures an appearance of the semiconductor element, and a warp that occurs in the semiconductor element due to energization are obtained from an image captured by the imaging unit. It is preferable to further include a required deformation detection means, and to detect an abnormality of the semiconductor element based on the warpage of the semiconductor element.
  • the semiconductor inspection apparatus is provided with the flow generation means for generating a flow in the liquid in the liquid tank, it is possible to remove bubbles generated in the liquid and stably detect abnormalities in the operating semiconductor element. Is possible.
  • the semiconductor inspection apparatus includes a contact piece that comes into contact with bubbles generated in the semiconductor element due to heat generated by the operation of the semiconductor element, and moves the contact piece to remove the bubble from the semiconductor element. Can be detected stably.
  • the semiconductor inspection apparatus includes the vibration generating means for applying vibration to the semiconductor element, it is possible to remove bubbles generated in the semiconductor element and stably detect abnormality of the semiconductor element in operation.
  • a semiconductor inspection apparatus 10 transmits an ultrasonic wave that propagates through a liquid 12 in a liquid tank 11 and reaches a semiconductor element 13.
  • an analyzer an example of analysis means 27 that detects an abnormality of the semiconductor element 13 based on the received ultrasonic waves.
  • the semiconductor inspection apparatus 10 includes a liquid tank 11 that contains a liquid 12, an ultrasonic probe 14 that transmits ultrasonic waves, a probe transfer mechanism 15 that moves the ultrasonic probe 14, A blowing nozzle 16 that blows out the liquid 12 and a current applying unit 17 that applies a current to the semiconductor element 13 are provided.
  • the liquid tank 11 is open at the top and has an opening 18 at the center of the bottom.
  • the semiconductor element 13 provided with a plurality of external terminals 19 on the front surface side is disposed outside the liquid tank 11 with the back surface side and the front surface side arranged vertically, and the back surface side from the liquid tank 11 is connected to the liquid tank. 11 is in close contact with the center of the bottom, and the opening 18 is closed.
  • the semiconductor element 13 is a power semiconductor element such as an IGBT, but is not limited thereto.
  • the liquid tank 11 has a seal structure on the outer periphery of the opening 18 and prevents the liquid 12 in the liquid tank 11 from leaking from the portion where the semiconductor element 13 and the bottom of the liquid tank 11 are in close contact.
  • the ultrasonic probe 14 can transmit ultrasonic waves downward from the tip portion immersed in the liquid 12, and can receive ultrasonic waves at the tip portion.
  • the probe transfer mechanism 15 can hold the ultrasonic probe 14 and can move the ultrasonic probe 14 relative to the semiconductor element 13 by driving a plurality of motors (not shown).
  • the blowing nozzle 16 is fixed to the tip of the ultrasonic probe 14, and the ultrasonic probe is operated by the operation of the probe transfer mechanism 15. 14 and move.
  • the blowout nozzle 16 has hollow bodies 20 and 21 that are widened upward, and the hollow bodies 20 and 21 are fixed to the distal end portion of the ultrasonic probe 14 and arranged to face each other. .
  • Each of the hollow bodies 20 and 21 includes a plurality of ejection ports 22 on the lower side, and is connected to a pump 24 via a pipe 23.
  • a region where a plurality of ejection ports 22 are formed is arranged (immersed) in the liquid 12.
  • the pump 24 is connected to the other end of the pipe 25 having one end immersed in the liquid 12.
  • the liquid 12 in the liquid tank 11 is sucked from the pipe 25 by the operation of the pump 24, and passes through the pipe 25, the pump 24, and the pipe 23 from the ejection ports 22 of the hollow bodies 20 and 21.
  • the liquid 12 is blown out.
  • a flow generating means for generating a flow in the liquid 12 in the liquid tank 11 is mainly constituted by the blowing nozzle 16, the pump 24 and the pipes 23 and 25.
  • the current application unit 17 is connected to an external terminal 19 of the semiconductor element 13, and can apply a current pulse to the semiconductor element 13. Is activated.
  • An analyzer 27 that can be configured by a computer is connected to the ultrasonic probe 14 and the probe transfer mechanism 15.
  • the analyzer 27 includes an interface 28 that acquires ultrasonic information (hereinafter also referred to as “ultrasonic reception information”) received by the ultrasonic probe 14 from the ultrasonic probe 14.
  • the interface 28 acquires position information (hereinafter also simply referred to as “position information”) of the ultrasonic probe 14 from the probe transfer mechanism 15 in addition to reception information of the ultrasonic wave from the ultrasonic probe 14. can do.
  • the analyzer 27 includes a state detection unit 29 connected to the interface 28, and the state detection unit 29 acquires ultrasonic reception information and position information from the interface 28, and obtains ultrasonic reception information and position information. Based on this, the internal state of the semiconductor element 13 is detected.
  • the probe transfer mechanism 15 places the ultrasonic probe 14 in an upper position on the back side of the semiconductor element 13, and reaches the back side of the semiconductor element 13.
  • the ultrasonic probe 14 is stopped at a height position at which the distance is a predetermined value (0.5 to 2 cm in the present embodiment) (at this time, a plurality of ejection openings of each of the hollow bodies 20 and 21) 22 is disposed in the liquid 12).
  • a predetermined current pulse is applied from the current application means 17 to the semiconductor element 13 to operate the semiconductor element 13 and the pump 24 is operated, as shown in FIG.
  • the liquid 12 is ejected from the ejection port 22 to the back side of the semiconductor element 13.
  • the ultrasonic probe 14 that has started transmitting ultrasonic waves moves in the horizontal direction by the operation of the probe transfer mechanism 15.
  • the ultrasonic wave transmitted from the probe 14 enters the inside from the back side of the semiconductor element 13, is reflected inside the semiconductor element 13, and travels upward.
  • the ultrasonic wave reflected inside the semiconductor element 13 is received by the ultrasonic probe 14 and sent to the state detection unit 29 via the interface 28.
  • the state detection unit 29 can derive an internal image obtained by imaging the inside of the semiconductor element 13 based on the acquired ultrasonic reception information and position information. Since the waveform of the ultrasonic wave reflected inside the semiconductor element 13 and the internal image of the semiconductor element 13 differ according to the internal state of the semiconductor element 13, the state detection unit 29 determines that the semiconductor image from the internal image of the semiconductor element 13 It is possible to detect the presence / absence of an abnormality such as a crack in the element 13 or a void (void).
  • the state detection unit 29 stores in advance an internal image (hereinafter also referred to as “reference internal image”) targeting the semiconductor element 13 before operation (that is, the semiconductor element 13 having no abnormality).
  • reference internal image an internal image of the semiconductor element 13 by the state detection unit 29 (hereinafter referred to as “for determination”) from the transmission of the ultrasonic wave from the ultrasonic probe 14 to the semiconductor element 13 in the activated state.
  • for determination an internal image of the semiconductor element 13 by the state detection unit 29 (hereinafter referred to as “for determination”) from the transmission of the ultrasonic wave from the ultrasonic probe 14 to the semiconductor element 13 in the activated state.
  • an internal image of the semiconductor element 13 by the state detection unit 29 (hereinafter referred to as “for determination”) from the transmission of the ultrasonic wave from the ultrasonic probe 14 to the semiconductor element 13 in the activated state.
  • an internal image of the semiconductor element 13 by the state detection unit 29 (hereinafter referred to as “for determination”) from the transmission of the ultrasonic wave from
  • Whether or not there is an abnormality inside the semiconductor element 13 is determined by comparing the internal image for determination with the reference internal image, and whether or not the area of the region changed from the reference internal image in the internal determination image is greater than or equal to a predetermined size. Is done by.
  • the state detection unit 29 determines that the semiconductor element 13 is abnormal if the area of the region changed from the reference internal image in the determination internal image is equal to or larger than a predetermined size.
  • a semiconductor element abnormality detection method by the semiconductor inspection apparatus 10 according to the present embodiment and a conventional method for detecting an abnormality by monitoring a change in electrical characteristics will be compared below.
  • V means a voltage value serving as a reference for abnormality detection
  • T means a timing at which the semiconductor element stops operating (T in FIG. 2B also has the same meaning).
  • the semiconductor element 13 has an abnormality when the area of the region changed in the internal image of the semiconductor element becomes equal to or larger than a predetermined area (the value indicated by S in FIG. 2B). It is possible to detect an abnormality of the semiconductor element at an earlier stage than the conventional method.
  • the determination of whether or not there is an abnormality in the semiconductor element 13 is not limited to the target semiconductor element 13 that is in operation. After the semiconductor element 13 that has been operating is stopped, the semiconductor element 13 (after operation) 13 internal images are compared with the reference internal image, and the area of the region changed from the internal image of the semiconductor element 13 before operation is greater than or equal to a predetermined size in the internal image of the semiconductor element 13 after operation. It can also be determined that the semiconductor element 13 is abnormal.
  • the semiconductor element 13 since the semiconductor element 13 generates heat when it operates, when the semiconductor element 13 operates, as shown in FIG. 3A, in the liquid 12 in the liquid tank 11, a region in contact with the back surface side of the semiconductor element 13. As a result, bubbles 30 are generated.
  • the bubble 30 becomes noise when the inside of the semiconductor element 13 is imaged, and becomes a factor that lowers the abnormality detection level of the semiconductor element 13. Therefore, when detecting the internal state of the semiconductor element 13, it is necessary to reduce the number of bubbles 30 existing between the ultrasonic probe 14 and the semiconductor element 13.
  • the liquid 12 is blown out from the ejection ports 22 of the hollow bodies 20 and 21 to the back surface side of the semiconductor element 13 to generate a flow in the liquid 12 in the liquid tank 11 and adhere to the back surface side of the semiconductor element 13.
  • the bubbles 30 are lifted from the semiconductor element 13 to reduce the bubbles 30 existing between the ultrasonic probe 14 and the semiconductor element 13.
  • either one of the hollow bodies 20 and 21 is disposed on the front side in the moving direction of the distal end portion of the ultrasonic probe 14, and Since it moves together with the contact 14, the bubbles 30 are removed in advance from the places where the ultrasonic waves on the back surface of the semiconductor element 13 are applied (transmitted).
  • the hollow bodies 20 and 21 are directly fixed to the distal end portion of the ultrasonic probe 14, but the hollow bodies 20 and 21 are separated from the ultrasonic probe 14 by the support member. You may make it provide in a position.
  • the distal end portion of the ultrasonic probe 14 is caused by the liquid 12 passing through the hollow bodies 20 and 21. There is an advantage that it is cooled. Since the temperature of the liquid 12 rises around the liquid 12 around the semiconductor element 13 due to heat generation of the semiconductor element 13, it is preferable to cool the tip of the ultrasonic probe 14.
  • the semiconductor inspection apparatus includes a liquid temperature measuring means (for example, a temperature sensor) for measuring the temperature of the liquid in the liquid tank, and the temperature of the ultrasonic probe 52 shown in FIG.
  • a probe temperature measuring means 53 for measuring the lens or the vicinity of the lens, and the probe temperature measuring means 53 measures a temperature higher than a predetermined temperature (for example, 50 ° C.).
  • a predetermined temperature for example, 50 ° C.
  • the probe transfer mechanism may move the ultrasonic probe 52 to the vicinity of the liquid temperature measuring means.
  • One or a plurality of liquid temperature measuring means may be provided. In the case of a plurality of liquid temperature measuring means, it is desirable that each liquid temperature measuring means is arranged so that the temperature of the liquid can be measured at a different location.
  • the temperature of the ultrasonic probe 52 When the temperature of the ultrasonic probe 52 reaches a predetermined temperature or more due to heat generation of the semiconductor element, a difference occurs between the actual position of the focal point of the ultrasonic probe 52 and the assumed position. Cooling the child 52 is preferable from the viewpoint of stably receiving ultrasonic waves.
  • a resin lens of the ultrasonic probe 52 when the temperature of the ultrasonic probe 52 rises, a resin lens of the ultrasonic probe 52 is deformed or deteriorated, thereby causing a focus shift. Instead of moving the ultrasonic probe 52 to a low temperature position, a water flow is generated in the liquid in the liquid tank to cool the ultrasonic probe 52 or to stop energization of the semiconductor element. You may do it.
  • a hollow body having a shape different from that of the hollow bodies 20 and 21 may be adopted, or only one hollow body may be used.
  • the distance from the hollow bodies 20 and 21 to the semiconductor element 13, the distance from the ultrasonic probe 14 to the semiconductor element 13, or the direction in which the liquid 12 in the hollow bodies 20 and 21 is blown out is determined by the ultrasonic probe. It is preferable to adjust appropriately in consideration of the focal length of the ultrasonic wave transmitted from 14, the efficiency of removing the bubbles 30, and the like.
  • the layer for detecting an abnormality of the semiconductor element 13 does not need to be a single layer, and a plurality of layers (for example, a solder layer and a bonding layer) may be targeted for detecting an abnormality.
  • a plurality of ultrasonic probes in which the focal positions of the ultrasonic waves are respectively aligned with the target layers may be used.
  • the suction nozzle 31 shown in FIG. 5 or the inlet / outlet nozzle 32 shown in FIG. 5 (B) that blows and sucks the liquid 12 to generate a flow in the liquid 12 in the liquid tank 11 can also be used.
  • the suction nozzle 31 includes hollow bodies 33 and 34 that are fixed to and opposed to the distal end portion of the ultrasonic probe 14.
  • a plurality of suction ports 35 for sucking the liquid 12 are formed on the lower sides of the hollow bodies 33 and 34 that are formed wider toward the upper side, and are connected to a pump (not shown) via a pipe 36.
  • the suction port 35 is disposed in the liquid 12.
  • the hollow bodies 33 and 34 suck the bubbles 30 together with the liquid 12 in the liquid tank 11 from the suction port 35 by the operation of the connected pump.
  • the bubbles 30 and the liquid 12 sucked into the hollow bodies 33 and 34 are sent to the pump via the pipe 36, and are separated from the semiconductor element 13 in the liquid tank 11 via a pipe (not shown) connected to the pump. Or is discharged out of the liquid tank 11.
  • the hollow bodies 33 and 34 are arranged on the front side in the moving direction of the distal end portion of the ultrasonic probe 14, and a probe transfer mechanism (not shown) is used. By the operation, the bubbles 30 are removed in advance from the location where the ultrasonic wave of the semiconductor element 13 is applied by moving together with the ultrasonic probe 14.
  • the access nozzle 32 includes hollow bodies 37 and 38 that are fixed to and opposed to the distal end portion of the ultrasonic probe 14.
  • the hollow bodies 37 and 38 are formed so as to widen upward, and are connected to pumps (not shown) via pipes 39 and 40, respectively.
  • a plurality of openings 41 and a plurality of openings 42 are respectively formed on the lower side.
  • the pipes 39 and 40 are provided with switching valves for switching the flow, and one of the plurality of openings 41 of the hollow body 37 or the plurality of openings 42 of the hollow body 38 depending on the state of the switching valve by the operation of the pump.
  • the bubble 30 is sucked together with the liquid 12 in the liquid tank 11, and the other blows the liquid 12 into the liquid 12 in the liquid tank 11.
  • the liquid 12 and the bubbles 30 sucked from the plurality of openings 41 of the hollow body 37 or the plurality of openings 42 of the hollow body 38 are removed by the gas-liquid separation mechanism (not shown), and then the hollow body 38 is removed.
  • the plurality of openings 42 or the plurality of openings 41 of the hollow body 37 are discharged.
  • the ultrasonic probe is operated by the operation of the probe transfer mechanism (not shown) in a state in which the liquid 12 suction side of the hollow bodies 37 and 38 is disposed on the front side in the moving direction of the distal end portion of the ultrasonic probe 14.
  • the bubble 30 is removed in advance from the location where the ultrasonic wave of the semiconductor element 13 is applied along with the contact 14.
  • the flow generating means When the suction nozzle 31 is used, the flow generating means has the suction nozzle 31, and when the inlet / outlet nozzle 32 is adopted, the flow generating means has the inlet / outlet nozzle 32.
  • the flow generating means is not limited to the one that sucks in the liquid 12 in the liquid tank 11 or blows out the liquid 12 into the liquid tank 11, for example, a screw is attached to a motor, and the screw in the liquid tank 11 is rotated by rotating the screw.
  • the flow may be generated in the liquid 12, or the flow may be generated by moving a plate material in the liquid 12 in the liquid tank 11.
  • the speed of the flow generated in the liquid 12 in the liquid tank 11 by the operation of the flow generating means is, for example, 15 m / s or less.
  • the bubble 30 can also be removed.
  • the plate-like contact pieces 43 and 44 are arranged vertically, are fixed to the tip of the ultrasonic probe 14, and are superposed along the moving direction of the ultrasonic probe 14. They are provided on the upstream side and the downstream side of the acoustic probe 14, respectively.
  • Each of the contact pieces 43 and 44 is arranged such that the width direction is perpendicular to the moving direction of the ultrasonic probe 14, and the lower end portion of the contact pieces 43 and 44 is in direct contact with the bubble 30 generated on the back surface side of the semiconductor element 13. It is provided in the position. Therefore, the contact pieces 43 and 44 can be moved together with the ultrasonic probe 14 by the operation of a probe transfer mechanism (not shown), and the contact pieces 43 or the contacts arranged on the front side in the moving direction of the ultrasonic probe 14. The piece 44 can previously remove the bubbles 30 existing at the destination of the ultrasonic probe 14. A bunch of hairs may be attached to the lower ends of the contact pieces 43 and 44.
  • the vibrator 45 can be used together with the flow generating means having the blowing nozzle 16, and has another flow generating means (for example, a flow generating means having the suction nozzle 31 and an inlet / outlet nozzle 32. It can be used with a flow generating means), with a contact piece, or can be used alone.
  • the vibrator 45 is directly attached to the semiconductor element 13 to generate vibration and transmit the vibration to the semiconductor element 13.
  • the semiconductor element 13 to which the vibration is transmitted can remove the bubbles 30 attached to the semiconductor element 13 by vibrating.
  • the vibrator 45 may be attached to a support member (not shown) that supports the semiconductor element 13 or may be attached to the liquid tank 11.
  • a cooling means 46 for cooling the liquid 12 in the liquid tank 11 is attached to the liquid tank 11.
  • the cooling unit 46 suppresses the temperature rise of the liquid 12 in the liquid tank 11 due to the heat generated by the semiconductor element 13 by cooling, and suppresses the generation of the bubbles 30.
  • the cooling means 46 of the present embodiment can keep the temperature of the liquid 12 in the liquid tank 11 at 50 ° C. or lower.
  • the semiconductor inspection apparatus 10 includes element temperature measuring means (in this embodiment, a radiation thermometer) 47 that measures the temperature of the semiconductor element 13 and imaging means 48 and 49 that image the appearance of the semiconductor element 13. Yes.
  • the element temperature measuring means 47 measures the temperature distribution of the entire surface side of the semiconductor element 13 from below the semiconductor element 13, and provides information on the temperature distribution of the semiconductor element 13 via the interface 50 provided in the analyzer 27. This is given to the state detector 29. Instead of measuring the surface temperature of the semiconductor element 13, the temperature on the back side or inside of the semiconductor element 13 may be measured.
  • the imaging units 48 and 49 respectively image the semiconductor element 13 from obliquely below the semiconductor element 13. Since the semiconductor element 13 is bent (warped) so that the center protrudes downward due to heat generated by energization, the imaging means 48 and 49 can take an image of the curvature of the semiconductor element 13. Each of the imaging units 48 and 49 sends an image of the appearance of the semiconductor element 13 to the state detection unit 29 via an interface 51 provided in the analyzer 27.
  • the state detection unit 29 can obtain the magnitude of the warp generated in the semiconductor element 13 by energization from the images captured by the image capturing units 48 and 49, respectively.
  • the state detection unit 29 is also a deformation detection unit, and the semiconductor element 13 protrudes downward in the center on the order of ⁇ m.
  • the state detection unit 29 includes information on the temperature distribution of the semiconductor element 13 acquired from the element temperature measurement unit 47 via the interface 50 ( That is, the abnormality of the semiconductor element 13 is detected based on the output value of the element temperature measuring means 47) and the warpage of the semiconductor element 13 obtained from the images taken by the imaging means 48 and 49.
  • an ultrasonic probe may be one in which an ultrasonic wave transmission unit and an ultrasonic wave reception unit are separated, or one in which an ultrasonic wave transmission unit and an ultrasonic wave reception unit are separated.
  • an analysis means for directly detecting the internal state of the semiconductor element from the received ultrasonic waveform without deriving the internal image may be employed.
  • the whole semiconductor element may be immersed in the liquid in the liquid tank, and in that case, an insulating liquid (for example, fluorinate) is adopted as the liquid.
  • an insulating liquid for example, fluorinate
  • the cooling means, various temperature measuring means, and imaging means are not always necessary.
  • the imaging means does not need to be two, for example, may be one.
  • a mechanism for moving the semiconductor element 13 and the liquid tank 11 may be adopted, and the ultrasonic probe may be moved relative to the semiconductor element.
  • the semiconductor inspection apparatus can stably detect abnormalities in the semiconductor element in the operating state, it is possible to efficiently conduct development of the semiconductor element and product test before shipment, and the industry for manufacturing the semiconductor element. Can be used in
  • SYMBOLS 10 Semiconductor inspection apparatus, 11: Liquid tank, 12: Liquid, 13: Semiconductor element, 14: Ultrasonic probe, 15: Probe transfer mechanism, 16: Blowing nozzle, 17: Current application means, 18: Opening , 19: external terminal, 20, 21: hollow body, 22: ejection port, 23: tube, 24: pump, 25: tube, 27: analyzer, 28: interface, 29: state detection unit, 30: bubble, 31: suction nozzle, 32: inlet / outlet nozzle, 33, 34: hollow body, 35: suction port, 36: pipe, 37, 38: hollow body, 39, 40: pipe, 41, 42: opening, 43, 44: Contact piece, 45: vibrator, 46: cooling means, 47: element temperature measuring means, 48, 49: imaging means, 50, 51: interface, 52: ultrasonic probe, 53: probe temperature measuring means

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

液体槽11内の液体12中を伝播して半導体素子13に到達する超音波を発信する超音波探触子14と、受信された超音波を基に半導体素子13の異常を検出する解析手段27とを有する半導体検査装置10において、半導体素子13に接続され、半導体素子13に通電して半導体素子13を作動させる電流印加手段17と、液体槽11内の液体12に流れを発生させる流れ発生手段16、23、24、25とを備える。

Description

半導体検査装置
本発明は、半導体素子の状態を検出する半導体検査装置に関する。
従来、IGBTやSiCデバイス等の電力用半導体素子を対象とする故障解析(FA:Failure Analysis)においては、主として、電力用半導体素子を破壊して行われる分解調査によって、故障の要因が特定されている。
一方、電力用半導体素子は、小型化、高集積化が進むことで、電気自動車や家電製品や省エネルギー機器等、幅広い製品において利用されることが予想される。そのため、電力用半導体素子に不具合を生じさせる要因の複雑化が予測され、電力用半導体素子を破壊して行う解析では、不具合の原因を解明できないという懸念がある。
そこで、電力用半導体素子を作動させた状態で、どのように不具合が生じるかを検証する技術が求められている。
電力用半導体素子を破壊することなく、欠陥等を検出する方法としては、例えば、特許文献1、2に開示されている超音波探傷法が挙げられる。この方法は、電力用半導体素子以外の半導体素子にも適用可能で、液体中を伝播させた超音波を半導体素子に到達させ、半導体素子で反射した反射波や半導体素子を透過した透過波を基に、半導体素子内部の状態を検査するものである。
また、電力用半導体素子を作動させた状態で、超音波探傷を行う技術が、非特許文献1~14に記載されている。
特開2011-227018号公報 特開2003-232780号公報
A.Watanabe,I.Omura,"Real-time failure imaging system under power stress for power semiconductors using Scanning Acoustic Tomography (SAT)",Microelectronics Relaiability 52(2012)2081-2086 Akihiko Watanabe, Ichiro Omura,"Real Time Failure Imaging of Power Semiconductors under Power Stress using Scanning Acoustic Tomography", Extended Abstracts of the 2012 International Conference on Solid State Devices and Materials, Kyoto, 2012, pp1233-1234 Akihiko Watanabe,Masanori Tsukuda,Ichiro Omura, "Real Time Failure Imaging System under Power Stress for Power Semiconductors using Scanning Acoustic Tomography (SAT)" ,23rd European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, October 1-5,2012 Cagliari,Italy 渡邉晃彦、外5名、「講演4:その他の環境エレクトロニクス研究紹介」北九州市学研都市第12回産学連携フェア、産総研・九工大・北九州市によるセミナー「環境エレクトロニクス分野」の現状と展開 Akihiko Watanabe,Masanori Tsukuda, Ichiro Omura,"Real time degradation monitoring system for high power IGBT module under power cycling test" , Microelectronics Relaiability 53(2013)1692-1696 Akihiko Watanabe,Masanori Tsukuda,Ichiro Omura,"Real Time Monitoring System for Internal Process to Failure of High Power IGBT" ,Extended Abstracts of the 2013 International Conference on Solid State Devices and Materials, Fukuoka, 2013, pp1046-1047 A.Watanabe,M.Tsukuda,I.Omura,"Failure Analysis of Power Semiconductor Devices Based on Real Time Monitoring", 2013 UPM-KyutechSymposium of Applied Engineering and Sciences (UKSAES2103) Universiti Putra Malaysia.30th Sept-1st Oct 2013 A.Watanabe,M.Tsukuda,I.Omura,"Real time degradation monitoring system for high power IGBT module under power cycling test",24th EUROPEAN SYMPOSIUM ON RELIABILITY OF ELECTRON DEVICES, FAILURE PHYSICS AND ANALYSIS, 30 September-4 October 2013, Arcachon-France 渡邉晃彦、「講演2:5 パワーデバイス高信頼性技術」北九州市学研都市第13回産学連携フェア、産総研・九工大・北九州市によるセミナー「オープンリサーチによる環境エレクトロニクス研究と拠点化構想」-「パワーデバイス高信頼化に向けたリアルタイム評価技術」 渡邉晃彦、「パワーエレクトロニクスのユビキタス化を支える故障メカニズム特定技術」第5回次世代ユビキタス・パワーエレクトロニクスのための信頼性科学ワークショップ Akihiko Watanabe, Masahiro Tsukuda ,Ichiro Omura,"Internal degradation monitoring of power devices during power cycling test" , 8th International Conference on Integrated Power Electronics System (CIPS2014) Akihiko Watanabe, Ichiro Omura,"Real-time failure monitoring system for high power IGBT under acceleration test up to 500 A stress", The 26th International Symposium on Power Semiconductor Devices & IC’s,June 15-19,2014 Waikoloa,Hawaii 渡邉晃彦、「パワーデバイス故障の原因に迫る新しい評価技術」北九州市学研都市第14回産学連携フェア、産総研・九工大・北九州市によるセミナー「ここまできた ひびきのにおける環境エレクトロニクス研究」 大村一朗、渡邉晃彦、「パワーデバイス用高信頼化評価技術:リアルタイム故障モニタリングシステム」北九州市学研都市第14回産学連携フェア、産学官連携研究開発成果発表会「北九州発!新技術・新製品と先端研究シーズを紹介」
しかしながら、電力用半導体素子は、通電による作動により、発熱することとなり、この熱によって、液体内には気泡が発生する。液体内に生じた気泡は、超音波の伝播を妨げるため、電力用半導体素子内部の状態を超音波によって安定的に検出することができなくなるという問題が招来する。また、この問題は、電力用半導体素子に限定されず、他の半導体素子においても共通する問題である。
本発明は、かかる事情に鑑みてなされるもので、超音波を利用して、作動中の半導体素子の異常を安定的に検出する半導体検査装置を提供することを目的とする。
前記目的に沿う第1の発明に係る半導体検査装置は、液体槽内の液体中を伝播して半導体素子に到達する超音波を発信する超音波探触子と、受信された超音波を基に前記半導体素子の異常を検出する解析手段とを有する半導体検査装置において、前記半導体素子に接続され、該半導体素子に通電して該半導体素子を作動させる電流印加手段と、前記液体槽内の液体に流れを発生させる流れ発生手段とを備える。
第1の発明に係る半導体検査装置において、前記流れ発生手段は、前記液体内に、該液体の噴出し口を配する吹出ノズルを有してもよい。
第1の発明に係る半導体検査装置において、前記超音波探触子を前記半導体素子に対して移動させる探触子移送機構を備え、前記吹出ノズルは、前記超音波探触子と共に移動するのが好ましい。
第1の発明に係る半導体検査装置において、前記液体槽内の液体の温度を計測する液体温度測定手段を更に備えるのが好ましい。
第1の発明に係る半導体検査装置において、前記超音波探触子の温度を計測する探触子温度測定手段を更に備えるのが好ましい。
第1の発明に係る半導体検査装置において、前記流れ発生手段は、前記液体内に、該液体の吸込み口を配する吸引ノズルを有してもよい。
第1の発明に係る半導体検査装置において、前記超音波探触子を前記半導体素子に対して移動させる探触子移送機構を備え、前記吸引ノズルは、前記超音波探触子と共に移動するのが好ましい。
前記目的に沿う第2の発明に係る半導体検査装置は、液体槽内の液体中を伝播して半導体素子に到達する超音波を発信する超音波探触子と、受信された超音波を基に前記半導体素子の異常を検出する解析手段とを有する半導体検査装置において、前記半導体素子に接続され、該半導体素子に通電して該半導体素子を作動させる電流印加手段と、前記半導体素子の作動による発熱により該半導体素子に生じる気泡に触れる接触片とを備え、前記接触片を移動させて、前記気泡を前記半導体素子から取り除く。
第2の発明に係る半導体検査装置において、前記超音波探触子を前記半導体素子に対して移動させる探触子移送機構を備え、前記接触片は、前記超音波探触子と共に移動するのが好ましい。
第2の発明に係る半導体検査装置において、前記液体槽内の液体の温度を計測する液体温度測定手段を更に備えるのが好ましい。
第2の発明に係る半導体検査装置において、前記超音波探触子の温度を計測する探触子温度測定手段を更に備えるのが好ましい。
前記目的に沿う第3の発明に係る半導体検査装置は、液体槽内の液体中を伝播して半導体素子に到達する超音波を発信する超音波探触子と、受信された超音波を基に前記半導体素子の異常を検出する解析手段とを有する半導体検査装置において、前記半導体素子に接続され、該半導体素子に通電して該半導体素子を作動させる電流印加手段と、振動を前記半導体素子に与える振動発生手段とを備える。
第3の発明に係る半導体検査装置において、前記液体槽内の液体の温度を計測する液体温度測定手段を更に備えるのが好ましい。
第3の発明に係る半導体検査装置において、前記超音波探触子の温度を計測する探触子温度測定手段を更に備えるのが好ましい。
第1、第2、第3の発明に係る半導体検査装置において、前記解析手段は、受信した超音波を基に前記半導体素子の内部画像を導出し、該内部画像を基にして該半導体素子の異常を検出するのが好ましい。
第1、第2、第3の発明に係る半導体検査装置において、前記解析手段は、作動状態の前記半導体素子を対象に導出した前記内部画像を、作動前の該半導体素子を対象に導出した前記内部画像と比較し、作動中の該半導体素子の該内部画像内で、作動前の該半導体素子の該内部画像から変化した領域の面積が所定の大きさ以上である場合に該半導体素子に異常有りと判定するのが好ましい。
第1、第2、第3の発明に係る半導体検査装置において、前記解析手段は、作動後の前記半導体素子を対象に導出した前記内部画像を、作動前の該半導体素子を対象に導出した前記内部画像と比較し、作動後の該半導体素子の該内部画像内で、作動前の該半導体素子の該内部画像から変化した領域の面積が所定の大きさ以上である場合に該半導体素子に異常有りと判定するのが好ましい。
第1、第2、第3の発明に係る半導体検査装置において、前記液体槽の底部には開口が形成され、前記半導体素子は、前記液体槽外から該液体槽の底部に密着して、前記開口を塞ぐのが好ましい。
第1、第2、第3の発明に係る半導体検査装置において、前記液体を冷却する冷却手段を、更に備えるのが好ましい。
第1、第2、第3の発明に係る半導体検査装置において、前記半導体素子の温度を計測する素子温度測定手段を、更に備え、該素子温度測定手段の出力値を基に、前記半導体素子の異常を検出するが好ましい。
第1、第2、第3の発明に係る半導体検査装置において、前記半導体素子の外観を撮像する撮像手段と、通電によって前記半導体素子に生じる反りの大きさを、前記撮像手段が撮像した画像から求める変形検出手段とを、更に備え、前記半導体素子の反りの大きさを基に、該半導体素子の異常を検出するのが好ましい。
第1の発明に係る半導体検査装置は、液体槽内の液体に流れを発生させる流れ発生手段を備えるので、液体内に発生する気泡を除去でき、作動中の半導体素子の異常を安定的に検出可能である。
第2の発明に係る半導体検査装置は、半導体素子の作動による発熱により半導体素子に生じる気泡に触れる接触片を備え、接触片を移動させて、気泡を半導体素子から取り除くので、作動中の半導体素子の異常を安定的に検出可能である。
第3の発明に係る半導体検査装置は、振動を半導体素子に与える振動発生手段を備えるので、半導体素子に生じる気泡を除去でき、作動中の半導体素子の異常を安定的に検出可能である。
本発明の一実施例に係る半導体検査装置の説明図である。 (A)は従来方法による異常検出までの時間を示す説明図であり、(B)は同実施例に係る半導体検査装置による異常検出までの時間を示す説明図である。 (A)、(B)はそれぞれ、吹出ノズルの側面図及び底面図である。 変形例に係る超音波探触子の説明図である。 (A)、(B)はそれぞれ、吸込ノズルの説明図及び出入ノズルの説明図である。 接触片の説明図である。
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施例に係る半導体検査装置10は、液体槽11内の液体12中を伝播して半導体素子13に到達する超音波を発信する超音波探触子14と、受信された超音波を基に半導体素子13の異常を検出する解析機(解析手段の一例)27を有する装置である。以下、これらについて詳細に説明する。
半導体検査装置10は、図1に示すように、液体12を収容する液体槽11、超音波を発信する超音波探触子14、超音波探触子14を移動させる探触子移送機構15、液体12を吹き出す吹出ノズル16、及び、半導体素子13に電流を印加する電流印加手段17を備えている。
液体槽11は、上部が開放され、底部の中央に、開口18が形成されている。
表面側に複数の外部端子19が設けられた半導体素子13は、裏面側及び表面側を上下にそれぞれ配した状態で、液体槽11の外側に配置され、液体槽11外から裏面側を液体槽11の底部の中央に密着させて、開口18を塞いでいる。本実施例においては、半導体素子13がIGBT等の電力用半導体素子であるが、これに限定されない。
液体槽11は、開口18の外周にシール構造を有し、半導体素子13と液体槽11の底部が密着した部分から、液体槽11内の液体12が漏れるのを防止している。
超音波探触子14は、液体12に浸漬される先端部から、下方に向かって超音波を発信でき、更に、先端部で超音波を受信することができる。
探触子移送機構15は、超音波探触子14を把持可能で、図示しない複数のモータを駆動することによって、超音波探触子14を半導体素子13に対して移動させることができる。
吹出ノズル16は、図1、図3(A)、(B)に示すように、超音波探触子14の先端部に固定され、探触子移送機構15の作動によって、超音波探触子14と共に移動する。
吹出ノズル16は、上方に向かって拡幅に形成された中空体20、21を有し、中空体20、21は、超音波探触子14の先端部に固定され、対向して配置されている。中空体20、21はそれぞれ、複数の噴出し口22を下側に具備し、管23を介してポンプ24に接続されている。中空体20、21はそれぞれ、複数の噴出し口22が形成された領域が、液体12内に配されている(浸漬されている)。
ポンプ24には、中空体20、21それぞれに連結された2本の管23に加え、一端が液体12内に浸漬された管25の他端が連結されている。
液体槽11内の液体12は、ポンプ24の作動により、管25から吸い込まれ、管25、ポンプ24及び管23を経由して、中空体20、21それぞれの噴出し口22から、液体槽11内の液体12内に吹き出される。中空体20、21それぞれの噴出し口22から、液体槽11内の液体12内に液体12が吹き出されることによって、液体槽11内の液体12に流れが発生する。
本実施例では、主として、吹出ノズル16、ポンプ24及び管23、25によって、液体槽11内の液体12に流れを発生させる流れ発生手段が構成されている。
電流印加手段17は、図1に示すように、半導体素子13の外部端子19に接続され、半導体素子13に対して、電流パルスを与えることが可能で、半導体素子13に通電して半導体素子13を作動させる。
また、超音波探触子14及び探触子移送機構15には、コンピュータによって構成可能な解析機27が接続されている。解析機27は、超音波探触子14が受信した超音波の情報(以下、「超音波の受信情報」とも言う)を超音波探触子14から取得するインターフェース28を具備している。インターフェース28は、超音波探触子14からの超音波の受信情報に加え、探触子移送機構15から、超音波探触子14の位置情報(以下、単に「位置情報」とも言う)を取得することができる。
解析機27は、インターフェース28に接続された状態検出部29を具備し、状態検出部29は、インターフェース28から超音波の受信情報及び位置情報を取得して、超音波の受信情報及び位置情報を基に半導体素子13の内部の状態を検出する。
半導体素子13の内部の状態を検出するにあたっては、まず、探触子移送機構15が、超音波探触子14を半導体素子13の裏面側の上位置に配し、半導体素子13の裏面側までの距離が所定の値(本実施例では、0.5~2cm)となる高さ位置で、超音波探触子14を停止させる(このとき、中空体20、21それぞれの複数の噴出し口22は、液体12内に配される)。
次に、電流印加手段17から半導体素子13に所定の電流パルスを与えて、半導体素子13を作動させると共に、ポンプ24を作動させて、図3(A)に示すように、中空体20、21の噴出し口22から半導体素子13の裏面側に液体12を吹き出させる。その後、超音波の発信を開始した超音波探触子14は、探触子移送機構15の作動によって、水平方向に移動する。探触子14から発信された超音波は、半導体素子13の裏面側から内部に進入し、半導体素子13の内部で反射して上方に向かうこととなる。
半導体素子13の内部で反射した超音波は、超音波探触子14で受信され、インターフェース28を介して、状態検出部29に送られる。状態検出部29は、取得した超音波の受信情報及び位置情報を基に、半導体素子13の内部を画像化した内部画像を導出することができる。半導体素子13の内部で反射した超音波の波形及び半導体素子13の内部画像は、半導体素子13の内部の状態に応じて異なることから、状態検出部29は、半導体素子13の内部画像から、半導体素子13内のクラック(割れ)やボイド(空隙)等の異常の有無を検出可能である。
本実施例において、状態検出部29には、事前に、作動前の半導体素子13(即ち、異常の無い半導体素子13)を対象にした内部画像(以下、「基準内部画像」とも言う)が記憶されている。
半導体素子13に作動を開始させた後、超音波探触子14から作動状態の半導体素子13への超音波の発信から、状態検出部29による当該半導体素子13の内部画像(以下、「判定用内部画像」とも言う)の導出を経て、当該半導体素子13の内部の異常の有無の判定までの一連の処理が所定の時間間隔で行われる。この一連の処理は、半導体素子13の作動時間が所定時間に達するまで、あるいは、半導体素子13に異常が検出されるまで繰り返される。
半導体素子13の内部の異常の有無の判定は、判定用内部画像を基準内部画像と比較し、判定内部画像内で基準内部画像から変化した領域の面積が所定の大きさ以上であるか否かによって行われる。状態検出部29は、判定内部画像内において基準内部画像から変化した領域の面積が所定の大きさ以上であれば半導体素子13に異常ありと判定する。
本実施例に係る半導体検査装置10による半導体素子の異常検出方法と、電気特性の変化をモニタリングして異常を検出する従来方法を以下、比較する。
半導体素子の電気特性の変化は、図2(A)に示すように、半導体素子の異常がかなり進行してから生じることから、半導体素子の異常が検出されるタイミングは、半導体素子が異常により作動しなくなる直前である。なお、図2(A)において、Vは異常検出の基準となる電圧値を意味し、Tは半導体素子が作動しなくなるタイミングを意味する(図2(B)のTも同様の意味)。
これに対し、半導体素子内の内部画像で変化した領域の面積は、図2(B)に示すように、半導体素子が作動しなくなるタイミングに向けて緩やかに拡大する傾向がある。
従って、本実施例では、半導体素子の内部画像で変化した領域の面積が、予め定めた面積(図2(B)においてSはとして示した値)以上となった際に半導体素子13に異常有りとの判定を行うことで、従来方法に比べ早い段階で半導体素子の異常を検出することができる。
そして、半導体素子が作動しなくなるまで、変化した領域の面積がどのように拡大するかの実験データを蓄積しておくことによって、変化した領域の大きさを基に、半導体素子が作動しなくなるまでの時間を推測することができる。従って、本実施例では、従来方法に比べ、半導体素子の寿命試験を効率的に行うことが可能である。
半導体素子13の内部の異常の有無の判定は、作動中の半導体素子13を対象としたものに限定されず、作動していた半導体素子13を停止させた後に、その(作動後の)半導体素子13の内部画像を、基準内部画像と比較し、作動後の半導体素子13の内部画像内で、作動前の半導体素子13の内部画像から変化した領域の面積が所定の大きさ以上である場合に半導体素子13に異常有りと判定することもできる。
また、半導体素子13は、作動することによって発熱するので、半導体素子13が作動すると、図3(A)に示すように、液体槽11内の液体12において、半導体素子13の裏面側に接する領域で気泡30が発生する。気泡30は、半導体素子13の内部を画像化する際にノイズとなり、半導体素子13の異常検出レベルを低下させる要因となる。
そのため、半導体素子13の内部の状態を検出する際には、超音波探触子14と半導体素子13の間に存在する気泡30を少なくする必要がある。
そこで、中空体20、21の噴出し口22から半導体素子13の裏面側に液体12を吹き出して、液体槽11内の液体12に流れを発生させて、半導体素子13の裏面側に付着している気泡30を、半導体素子13から浮き上がらせ、超音波探触子14と半導体素子13の間に存在する気泡30を少なくするようにしている。
本実施例では、中空体20、21のいずれか一方が、図3(A)に示すように、超音波探触子14の先端部の移動方向の前側に配された状態で、超音波探触子14と共に移動するので、半導体素子13の裏面の超音波が当てられる(透過する)箇所は、予め、気泡30が除去される。
本実施例では、中空体20、21が、直接、超音波探触子14の先端部に固定されているが、中空体20、21は、支持部材により、超音波探触子14から離れた位置に設けられるようにしてもよい。
但し、中空体20、21が、直接、超音波探触子14の先端部に固定されている場合、中空体20、21内を通過する液体12によって、超音波探触子14の先端部が冷却されるという利点がある。半導体素子13の発熱により、半導体素子13周辺の液体12を中心に、液体12の温度が上昇することから、超音波探触子14の先端部を冷却するのは好ましい。
なお、半導体検査装置は、液体槽内の液体の温度を計測する液体温度測定手段(例えば、温度センサ)と、図4に示す超音波探触子52の温度(より好ましくは、探触子のレンズ、もしくは、レンズ近傍)を計測する探触子温度測定手段53とを、更に備えるようにし、探触子温度測定手段53が予め定められた温度(例えば、50℃)より高い温度を計測した際で、液体温度測定手段の計測値が所定の温度以下である際は、探触子移送機構が、超音波探触子52を液体温度測定手段近傍に移動させるようにしてもよい。なお、液体温度測定手段は1つでも複数でもよく、複数の場合、各液体温度測定手段はそれぞれ異なる箇所で液体の温度を計測できるように配置されるのが望ましい。
半導体素子の発熱によって、超音波探触子52が所定以上の温度となると、超音波探触子52の焦点の実際の位置と想定位置の間に差異が生じることとなるため、超音波探触子52を冷却することは、安定的に超音波を受信する点で好適である。なお、超音波探触子52の温度が上昇すると、超音波探触子52の樹脂製レンズに変形や劣化が生じ、これにより、焦点のずれが発生する。
なお、超音波探触子52を低温の位置に移動させる代わりに、液体槽内の液体に水流を発生させて超音波探触子52を冷却したり、半導体素子への通電を停止したりするようにしてもよい。
また、中空体20、21とは異なる形状の中空体を採用してもよいし、1つの中空体のみを用いるようにしてもよい。そして、中空体20、21から半導体素子13までの距離や、超音波探触子14から半導体素子13までの距離、あるいは、中空体20、21の液体12を吹き出す方向は、超音波探触子14から発信される超音波の焦点距離や、気泡30の除去の効率等を考慮して、適宜、調整されるのが好ましい。
超音波探触子14から半導体素子13までの距離、あるいは、超音波探触子14から超音波の焦点までの距離を調整することで、半導体素子13の異なる層の内部画像を得ることができる。
半導体素子13の異常検出を行う層は、1つの層である必要はなく、複数の層(例えば、はんだ層やボンディング層)を異常を検出する対象にしてもよい。複数の層を検出の対象にする場合、超音波の焦点位置を対象の層にそれぞれ合わせた複数の超音波探触子を用いればよい。
ここまで、気泡30の除去に、吹出ノズル16を用いる例について説明したが、吹出ノズル16の代わりに、液体12を吸い込んで、液体槽11内の液体12に流れを発生させる、図5(A)に示す吸引ノズル31や、液体12の吹き出しと吸い込みを行って、液体槽11内の液体12に流れを発生させる、図5(B)に示す出入ノズル32を用いることもできる。
吸引ノズル31は、図5(A)に示すように、超音波探触子14の先端部に固定されて対向配置された中空体33、34を備えている。上方に向かって拡幅に形成された中空体33、34は、それぞれ、液体12を吸い込む複数の吸込み口35が下側に形成され、図示しないポンプに、管36を介して、接続されている。吸込み口35は液体12内に配されている。
中空体33、34は、接続されているポンプの作動によって、吸込み口35から液体槽11内の液体12と共に気泡30を吸い込む。中空体33、34内に吸い込まれた気泡30及び液体12は、管36を介してポンプに送られ、ポンプに接続された図示しない管を経由して、液体槽11内の半導体素子13から距離を有する位置、あるいは、液体槽11外に吐き出される。
中空体33、34も、中空体20、21と同様に、いずれか一方が、超音波探触子14の先端部の移動方向の前側に配された状態で、図示しない探触子移送機構の作動によって、超音波探触子14と共に移動し、半導体素子13の超音波が当てられる箇所から、予め、気泡30を除去する。
出入ノズル32は、図5(B)に示すように、超音波探触子14の先端部に固定されて対向配置された中空体37、38を備えている。中空体37、38は、上方に向かって拡幅に形成され、図示しないポンプに、それぞれ管39、40を介して接続されている。
中空体37、38には、下側に、複数の開口部41及び複数の開口部42がそれぞれ形成されている。
管39、40には、流れを切り替える切替え弁が設けられ、ポンプの作動により、切替え弁の状態に応じて、中空体37の複数の開口部41又は中空体38の複数の開口部42の一方が、液体槽11内の液体12と共に気泡30を吸い込み、他方が、液体12を液体槽11内の液体12内に吹き出す。中空体37の複数の開口部41又は中空体38の複数の開口部42から吸い込まれた液体12及び気泡30は、図示しない気液分離機構によって、気泡30のみが除去された後、中空体38の複数の開口部42又は中空体37の複数の開口部41から吐き出される。
中空体37の複数の開口部41又は中空体38の複数の開口部42のいずれから液体12及び気泡30を吸込み、いずれから液体12を吹き出すかは、気泡30の除去の状況を鑑みて、適宜、決定される。そして、中空体37、38の、液体12を吸込む側が、超音波探触子14の先端部の移動方向の前側に配された状態で、図示しない探触子移送機構の作動によって、超音波探触子14と共に移動し、半導体素子13の超音波が当てられる箇所から、予め、気泡30を除去する。
吸引ノズル31を用いる場合、流れ発生手段は、吸引ノズル31を有することとなり、出入ノズル32を採用する場合、流れ発生手段は、出入ノズル32を有することとなる。
流れ発生手段は、液体槽11内の液体12を吸い込んだり、液体槽11内に液体12を吹き出したりするものに限定されず、例えば、モータにスクリュを取り付け、スクリュの回転により液体槽11内の液体12に流れを発生させるものや、液体槽11内の液体12内で板材を移動させて流れを発生させるものであってもよい。
流れ発生手段の作動によって液体槽11内の液体12内に発生する流れの速さは、例えば、15m/s以下である。
また、流れ発生手段を用いる代わりに、気泡30に直接触れる図6に示す接触片43、44や、振動を半導体素子13に与える図1に示す振動子(振動発生手段の一例)45を用いて、気泡30を除去することもできる。
板状の接触片43、44は、図6に示すように、鉛直に配されて、超音波探触子14の先端部に固定され、超音波探触子14の移動方向に沿って、超音波探触子14の上流側及び下流側にそれぞれ設けられている。
接触片43、44はそれぞれ、幅方向が、超音波探触子14の移動方向に対して垂直に配置され、半導体素子13の裏面側に生じる気泡30に、下端部が、直接、接触する高さ位置に設けられている。従って、接触片43、44は、図示しない探触子移送機構の作動により、超音波探触子14と共に移動でき、超音波探触子14の移動方向の前側に配された接触片43又は接触片44は、超音波探触子14の移動先に存在する気泡30を、予め、除去することができる。なお、接触片43、44の下端部には、毛の束を取り付けてもよい。
振動子45は、図1に示すように、吹出ノズル16を有する流れ発生手段と共に用いることができる他、別の流れ発生手段(例えば、吸引ノズル31を有する流れ発生手段や、出入ノズル32を有する流れ発生手段)と共に用いることや、接触片と共に用いること、あるいは、単独で用いることが可能である。
振動子45は、半導体素子13に、直接、取り付けられ、振動を発生させ、その振動を半導体素子13に伝える。振動が伝えられた半導体素子13は、振動することによって、半導体素子13に付着した気泡30を取り除くことができる。
なお、振動子45は、半導体素子13を支持する図示しない支持部材に取り付けられていてもよいし、液体槽11に取り付けられていてもよい。
また、本実施例においては、図1に示すように、液体槽11内の液体12を冷却する冷却手段46が、液体槽11に取り付けられている。冷却手段46は、冷却によって、半導体素子13の発熱による液体槽11内の液体12の温度上昇を抑制し、気泡30の発生を抑える。本実施例の冷却手段46は、液体槽11内の液体12の温度を50℃以下に保つことができる。
更に、半導体検査装置10は、半導体素子13の温度を計測する素子温度測定手段(本実施例では、放射温度計)47、及び、半導体素子13の外観を撮像する撮像手段48、49を備えている。
素子温度測定手段47は、半導体素子13の下方から、半導体素子13の表面側全体の温度分布を計測し、解析機27に設けられたインターフェース50を介して、半導体素子13の温度分布の情報を状態検出部29に与える。
なお、半導体素子13の表面温度を計測する代わりに、半導体素子13の裏面側や、内部の温度を計測するようにしてもよい。
撮像手段48、49は、それぞれ、半導体素子13の斜め下から、半導体素子13を撮像する。半導体素子13は、通電による発熱により中央が下向きに突出するように湾曲する(反る)ので、撮像手段48、49は、半導体素子13が湾曲する様子を撮像することができる。撮像手段48、49は、それぞれ、解析機27に設けられたインターフェース51を介して、半導体素子13の外観の像を状態検出部29に送る。状態検出部29は、撮像手段48、49がそれぞれ撮像した画像から、通電によって半導体素子13に生じる反りの大きさを求めることができる。本実施例では、状態検出部29が変形検出手段でもあり、半導体素子13は、μmオーダーで中央が下向きに突出する。
半導体素子13内にクラックやボイド等の異常が存在する場合は、それらが存在しない場合と比較して、半導体素子13の温度分布が異なり、反りの大きさ(レベル)も異なることが検証の結果、判明している。そこで、状態検出部29は、超音波探触子14から取得した超音波の受信情報及び位置情報に加え、素子温度測定手段47からインターフェース50を介して取得した半導体素子13の温度分布の情報(即ち、素子温度測定手段47の出力値)と、撮像手段48、49が撮像した画像から求めた半導体素子13の反りの大きさも基にして、半導体素子13の異常を検出する。
以上、本発明の実施例を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、超音波探触子は、超音波の発信部と超音波の受信部が分離しているものであってもよく、超音波の発信部と超音波の受信部が分離しているものを採用することで、半導体素子を透過した透過波を受信することが可能となる。
内部画像を導出する解析手段を採用する代わりに、内部画像を導出せず、受信した超音波の波形から直接的に半導体素子の内部の状態を検出する解析手段を採用してもよい。
また、半導体素子は、全体が液体槽内の液体に浸漬していてもよく、その場合、液体には、絶縁液(例えば、フロリナート)が採用される。
更に、冷却手段や、各種温度測定手段や、撮像手段は、必ずしも必要ではない。そして、撮像手段を設ける場合、撮像手段は2つである必要がなく、例えば、1つであってもよい。
また、探触子移送機構を設ける代わりに、半導体素子13及び液体槽11を移動させる機構を採用し、超音波探触子を半導体素子に対して相対的に移動するようにしてもよい。
本発明に係る半導体検査装置は、作動状態の半導体素子の異常を安定的に検出できるので、半導体素子の開発や出荷前の製品試験を効率的に行うことが可能となり、半導体素子を製造する産業での利用が期待できる。
10:半導体検査装置、11:液体槽、12:液体、13:半導体素子、14:超音波探触子、15:探触子移送機構、16:吹出ノズル、17:電流印加手段、18:開口、19:外部端子、20、21:中空体、22:噴出し口、23:管、24:ポンプ、25:管、27:解析機、28:インターフェース、29:状態検出部、30:気泡、31:吸引ノズル、32:出入ノズル、33、34:中空体、35:吸込み口、36:管、37、38:中空体、39、40:管、41、42:開口部、43、44:接触片、45:振動子、46:冷却手段、47:素子温度測定手段、48、49:撮像手段、50、51:インターフェース、52:超音波探触子、53:探触子温度測定手段

Claims (21)

  1. 液体槽内の液体中を伝播して半導体素子に到達する超音波を発信する超音波探触子と、受信された超音波を基に前記半導体素子の異常を検出する解析手段とを有する半導体検査装置において、
    前記半導体素子に接続され、該半導体素子に通電して該半導体素子を作動させる電流印加手段と、
    前記液体槽内の液体に流れを発生させる流れ発生手段とを備えることを特徴とする半導体検査装置。
  2. 請求項1記載の半導体検査装置において、前記流れ発生手段は、前記液体内に、該液体の噴出し口を配する吹出ノズルを有することを特徴とする半導体検査装置。
  3. 請求項2記載の半導体検査装置において、前記超音波探触子を前記半導体素子に対して移動させる探触子移送機構を備え、前記吹出ノズルは、前記超音波探触子と共に移動することを特徴とする半導体検査装置。
  4. 請求項3記載の半導体検査装置において、前記液体槽内の液体の温度を計測する液体温度測定手段を更に備えることを特徴とする半導体検査装置。
  5. 請求項3又は4記載の半導体検査装置において、前記超音波探触子の温度を計測する探触子温度測定手段を更に備えることを特徴とする半導体検査装置。
  6. 請求項1記載の半導体検査装置において、前記流れ発生手段は、前記液体内に、該液体の吸込み口を配する吸引ノズルを有することを特徴とする半導体検査装置。
  7. 請求項6記載の半導体検査装置において、前記超音波探触子を前記半導体素子に対して移動させる探触子移送機構を備え、前記吸引ノズルは、前記超音波探触子と共に移動することを特徴とする半導体検査装置。
  8. 液体槽内の液体中を伝播して半導体素子に到達する超音波を発信する超音波探触子と、受信された超音波を基に前記半導体素子の異常を検出する解析手段とを有する半導体検査装置において、
    前記半導体素子に接続され、該半導体素子に通電して該半導体素子を作動させる電流印加手段と、
    前記半導体素子の作動による発熱により該半導体素子に生じる気泡に触れる接触片とを備え、前記接触片を移動させて、前記気泡を前記半導体素子から取り除くことを特徴とする半導体検査装置。
  9. 請求項8記載の半導体検査装置において、前記超音波探触子を前記半導体素子に対して移動させる探触子移送機構を備え、前記接触片は、前記超音波探触子と共に移動することを特徴とする半導体検査装置。
  10. 請求項9記載の半導体検査装置において、前記液体槽内の液体の温度を計測する液体温度測定手段を更に備えることを特徴とする半導体検査装置。
  11. 請求項9又は10記載の半導体検査装置において、前記超音波探触子の温度を計測する探触子温度測定手段を更に備えることを特徴とする半導体検査装置。
  12. 液体槽内の液体を伝播して半導体素子に到達する超音波を発信する超音波探触子と、受信された超音波を基に前記半導体素子の異常を検出する解析手段とを有する半導体検査装置において、
    前記半導体素子に接続され、該半導体素子に通電して該半導体素子を作動させる電流印加手段と、
    振動を前記半導体素子に与える振動発生手段とを備えることを特徴とする半導体検査装置。
  13. 請求項12記載の半導体検査装置において、前記液体槽内の液体の温度を計測する液体温度測定手段を更に備えることを特徴とする半導体検査装置。
  14. 請求項12又は13記載の半導体検査装置において、前記超音波探触子の温度を計測する探触子温度測定手段を更に備えることを特徴とする半導体検査装置。
  15. 請求項1~14のいずれか1項に記載の半導体検査装置において、前記解析手段は、受信した超音波を基に前記半導体素子の内部画像を導出し、該内部画像を基にして該半導体素子の異常を検出することを特徴とする半導体検査装置。
  16. 請求項15記載の半導体検査装置において、前記解析手段は、作動状態の前記半導体素子を対象に導出した前記内部画像を、作動前の該半導体素子を対象に導出した前記内部画像と比較し、作動中の該半導体素子の該内部画像内で、作動前の該半導体素子の該内部画像から変化した領域の面積が所定の大きさ以上である場合に該半導体素子に異常有りと判定することを特徴とする半導体検査装置。
  17. 請求項15記載の半導体検査装置において、前記解析手段は、作動後の前記半導体素子を対象に導出した前記内部画像を、作動前の該半導体素子を対象に導出した前記内部画像と比較し、作動後の該半導体素子の該内部画像内で、作動前の該半導体素子の該内部画像から変化した領域の面積が所定の大きさ以上である場合に該半導体素子に異常有りと判定することを特徴とする半導体検査装置。
  18. 請求項1~17のいずれか1項に記載の半導体検査装置において、前記液体槽の底部には開口が形成され、前記半導体素子は、前記液体槽外から該液体槽の底部に密着して、前記開口を塞ぐことを特徴とする半導体検査装置。
  19. 請求項1~18のいずれか1項に記載の半導体検査装置において、前記液体を冷却する冷却手段を、更に備えることを特徴とする半導体検査装置。
  20. 請求項1~19のいずれか1項に記載の半導体検査装置において、前記半導体素子の温度を計測する素子温度測定手段を、更に備え、該素子温度測定手段の出力値を基に、前記半導体素子の異常を検出することを特徴とする半導体検査装置。
  21. 請求項1~20のいずれか1項に記載の半導体検査装置において、前記半導体素子の外観を撮像する撮像手段と、通電によって前記半導体素子に生じる反りの大きさを、前記撮像手段が撮像した画像から求める変形検出手段とを、更に備え、前記半導体素子の反りの大きさを基に、該半導体素子の異常を検出することを特徴とする半導体検査装置。
PCT/JP2016/073445 2015-08-10 2016-08-09 半導体検査装置 WO2017026483A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017534466A JP6718626B2 (ja) 2015-08-10 2016-08-09 半導体検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015158228 2015-08-10
JP2015-158228 2015-08-10

Publications (1)

Publication Number Publication Date
WO2017026483A1 true WO2017026483A1 (ja) 2017-02-16

Family

ID=57983914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073445 WO2017026483A1 (ja) 2015-08-10 2016-08-09 半導体検査装置

Country Status (2)

Country Link
JP (1) JP6718626B2 (ja)
WO (1) WO2017026483A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618194A (zh) * 2018-06-19 2019-12-27 株式会社日立电力解决方案 超声波检查装置、控制装置以及检查方法
CN112557869A (zh) * 2020-11-19 2021-03-26 头领科技(昆山)有限公司 一种音频芯片的检测方法及检测设备
CN113884857A (zh) * 2021-09-29 2022-01-04 上海阵量智能科技有限公司 芯片、芯片压力测试方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772128A (ja) * 1993-09-02 1995-03-17 Hitachi Ltd アレイ探触子の駆動方法及びその装置
JPH0783645A (ja) * 1993-09-10 1995-03-28 Sumitomo Metal Ind Ltd 接合幅測定検査方法及びその装置
JP2003156452A (ja) * 2001-11-22 2003-05-30 Kawasaki Heavy Ind Ltd 浸透探傷検査方法及び装置
JP2007139546A (ja) * 2005-11-17 2007-06-07 Showa Denko Kk 金属棒状材の製造装置、金属棒状材の製造方法、アルミニウム合金連続鋳造棒の製造方法および非破壊検査装置
JP2010025678A (ja) * 2008-07-17 2010-02-04 Mitsubishi Heavy Ind Ltd 超音波探傷装置
JP2013148384A (ja) * 2012-01-17 2013-08-01 Ryoden Shonan Electronics Kk 超音波探傷装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772128A (ja) * 1993-09-02 1995-03-17 Hitachi Ltd アレイ探触子の駆動方法及びその装置
JPH0783645A (ja) * 1993-09-10 1995-03-28 Sumitomo Metal Ind Ltd 接合幅測定検査方法及びその装置
JP2003156452A (ja) * 2001-11-22 2003-05-30 Kawasaki Heavy Ind Ltd 浸透探傷検査方法及び装置
JP2007139546A (ja) * 2005-11-17 2007-06-07 Showa Denko Kk 金属棒状材の製造装置、金属棒状材の製造方法、アルミニウム合金連続鋳造棒の製造方法および非破壊検査装置
JP2010025678A (ja) * 2008-07-17 2010-02-04 Mitsubishi Heavy Ind Ltd 超音波探傷装置
JP2013148384A (ja) * 2012-01-17 2013-08-01 Ryoden Shonan Electronics Kk 超音波探傷装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIHIKO WATANABE ET AL.: "Power Handotai no Ko Shinraika o Sokushin suru Real Time·Monitoring Gijutsu", SCAS NEWS, 27 February 2015 (2015-02-27), pages 3 - 6 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618194A (zh) * 2018-06-19 2019-12-27 株式会社日立电力解决方案 超声波检查装置、控制装置以及检查方法
KR20190143378A (ko) * 2018-06-19 2019-12-30 가부시키가이샤 히타치 파워 솔루션즈 초음파 검사 장치, 제어 장치 및 검사 방법
TWI699531B (zh) * 2018-06-19 2020-07-21 日商日立電力解決方案股份有限公司 超音波檢查裝置、控制裝置及檢查方法
KR102143460B1 (ko) 2018-06-19 2020-08-12 가부시키가이샤 히타치 파워 솔루션즈 초음파 검사 장치, 제어 장치 및 검사 방법
CN112557869A (zh) * 2020-11-19 2021-03-26 头领科技(昆山)有限公司 一种音频芯片的检测方法及检测设备
CN113884857A (zh) * 2021-09-29 2022-01-04 上海阵量智能科技有限公司 芯片、芯片压力测试方法、装置、电子设备及存储介质
CN113884857B (zh) * 2021-09-29 2024-03-08 上海阵量智能科技有限公司 芯片、芯片压力测试方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
JP6718626B2 (ja) 2020-07-08
JPWO2017026483A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017026483A1 (ja) 半導体検査装置
JP5405686B1 (ja) 超音波検査装置
US10121672B2 (en) Cutting method for cutting processing-target object and cutting apparatus that cuts processing-target object
JP2018151369A (ja) 載置台及び電子デバイス検査装置
WO2018100881A1 (ja) 載置台及び電子デバイス検査装置
JP6359545B2 (ja) 密封パック製品の検査装置及び検査方法
CN102654481A (zh) 微细结构体检测装置以及微细结构体检测方法
KR102143460B1 (ko) 초음파 검사 장치, 제어 장치 및 검사 방법
JP2012083246A (ja) 接合検査方法
JP5919884B2 (ja) ドライ式超音波探傷検査装置とその方法
JP2009206272A (ja) 半導体装置の検査方法及びプローバ装置
US10823710B2 (en) Scanning acoustic microscopy system and method
JP2011222717A (ja) 半導体製造装置、及び半導体装置の製造方法
US6941811B2 (en) Method and apparatus for detecting wafer flaw
JP2015064329A (ja) 絶縁寿命評価方法および絶縁寿命評価装置
WO2003088296A1 (fr) Tube cathodique a panneau en verre, procede et dispositif d'inspection associes
JP2008003014A (ja) 超音波検査方法と超音波検査装置
JP7308577B2 (ja) 音響式不良検出装置及び不良検出方法
JP2014085161A (ja) 構造物欠陥の非破壊検査方法および構造物欠陥の非破壊検査装置
Arjmand et al. Methodology for identifying wire bond process quality variation using ultrasonic current frequency spectrum
CN109839438A (zh) 有机发光二极管面板的气泡检测装置
Ke et al. The Simulation and Detection of Copper/Polyimide Delamination of Fan-Out Package Trace/Passivation Interface
Allen et al. Metrology for 3D integration
Delrue et al. Simulations of nonlinear air-coupled emission (NACE)
Watanabe et al. Real Time Monitoring System for Internal Process to Failure of High Power IGBT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835180

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017534466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835180

Country of ref document: EP

Kind code of ref document: A1