WO2017018641A1 - 인슐린 수용체 압타머 및 이를 포함하는 약학적 조성물 - Google Patents

인슐린 수용체 압타머 및 이를 포함하는 약학적 조성물 Download PDF

Info

Publication number
WO2017018641A1
WO2017018641A1 PCT/KR2016/004665 KR2016004665W WO2017018641A1 WO 2017018641 A1 WO2017018641 A1 WO 2017018641A1 KR 2016004665 W KR2016004665 W KR 2016004665W WO 2017018641 A1 WO2017018641 A1 WO 2017018641A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
insulin receptor
insulin
seq
receptor
Prior art date
Application number
PCT/KR2016/004665
Other languages
English (en)
French (fr)
Other versions
WO2017018641A8 (ko
Inventor
류성호
윤나오
임종훈
고아라
오은주
박세훈
이지윤
장승기
한승민
김윤동
안나래
Original Assignee
주식회사 포스코
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 포항공과대학교 산학협력단 filed Critical 주식회사 포스코
Priority to EP16830674.4A priority Critical patent/EP3330379B1/en
Priority to JP2018503571A priority patent/JP6514825B2/ja
Priority to US15/746,654 priority patent/US10724039B2/en
Priority to ES16830674T priority patent/ES2899917T3/es
Publication of WO2017018641A1 publication Critical patent/WO2017018641A1/ko
Publication of WO2017018641A8 publication Critical patent/WO2017018641A8/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/51Physical structure in polymeric form, e.g. multimers, concatemers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/62Insulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones

Definitions

  • Insulin receptor aptamer and pharmaceutical composition comprising the same
  • the present invention relates to aptamers that specifically bind to insulin receptors, and may be used as insulin agents using the same, or to pharmaceutical compositions for the treatment or diagnosis of diseases related to insulin receptors. [Technique to become background of invention]
  • Insul in receptor is a tyrosine kinase receptor that is a transmembrane receptor that is activated by insulin, IGF-1 or IGF-2.
  • Two ⁇ chains (719 residues) including an insulin binding portion and two ⁇ chains (620 residues) including a membrane penetration portion have a tetrameric structure connected by S-S bonds.
  • tyrosine kinase activity in the intracellular region of the ⁇ chain becomes active, and phosphorylation of the receptor tyrosine residue occurs. This autophosphorylation leads to phosphorylation of other proteins.
  • glucose uptake is induced.
  • glucose uptake is inhibited, which may cause second diabetes or related complications and hyperglycemia.
  • Aptamers unlike antibodies made of peptides, are made of four types of nucleic acids (nuc lei c acid) and are substances that show specificity for the target protein according to the combination of the sequences.
  • Aptamers specific for the protein of interest are made in vitro through Systemat ic Evolut ion of Ligands by Exponent i al enr i chment (SELEX), which is specific for purified proteins from a pool of random combinations of aptamers. Aptamers are identified and amplified by PCR.
  • Pegaptanib a representative single-stranded DNA aptamer drug, is used to target the vascular epidermal growth factor. As an anticancer agent that prevents growth factor from binding to vascular epidermal growth factor receptor, it has been approved by the FDA and used in clinical practice.
  • aptamers Most of the current efforts to discover functional aptamers focus on the ability of aptamers to inhibit targets. In particular, various types of inhibitory aptamers that interfere with the activity of target molecules for clinical use have been developed for the treatment of diseases (e.g. Macgen, AS1411). However, given that intermolecular interactions inevitably involve structural changes, it is believed that if aptamer-protein bonds can induce the appropriate structural changes of the protein, the activation of protein function will be possible. Thus, in theory, aptamers have the potential to act as functional Agoni st by mimicking specific protein-protein bonds. However, the development of Agoni st aptamers, which are currently key to activating target functions, remains a difficult problem.
  • insulin derivatives have been developed and used to regulate the blood sugar of diabetic patients today, but insulin induces cell division in addition to glucose uptake, and changes in the amino acid sequence introduced in some insulin derivatives may affect the IGF-1 receptor. Increase binding and activation. Therefore, long-term administration of insulin for the treatment of diabetes can increase the incidence of cancer, and concerns about side effects caused by insulin, such as atherosclerosis, have been continuously raised.
  • Several epidemiological studies have also reported a significant correlation between sustained insulin administration and increased cancer incidence. Therefore, the development of bi ased agoni st for insulin receptors that increase glucose uptake only without inducing cell division would suggest a good alternative to insulin administration.
  • an object of the present invention is to provide an insulin receptor aptamer that specifically binds to an insulin receptor and contains a modified deoxyribose uracil by being substituted with a hydrophobic functional group at the 5-position.
  • the present invention also provides a composition for treating diabetes comprising the insulin receptor aptamer as an active ingredient, a method for treating diabetes and a method for treating diabetes comprising administering a pharmaceutically effective amount of the insulin receptor aptamer to a diabetic patient. It aims to provide.
  • an object of the present invention is to provide a diabetic diagnostic composition comprising the insulin receptor aptamer as an active ingredient, and uses for diagnosing diabetes.
  • the present invention provides an insulin receptor aptamer that specifically binds to the extracellular region of the insulin receptor and promotes phosphorylation of the insulin receptor.
  • the insulin receptor aptamer means an aptamer capable of binding to insulin with a specific affinity.
  • the insulin receptor may be derived from human insulin receptor protein, but is not limited thereto.
  • the insulin receptor aptamer may comprise a modified base where the 5'-position is substituted with a hydrophobic functional group.
  • the aptamer consists of 25 to 90, preferably 27 to 80, more preferably 27 to 33 bases, characterized in that it specifically binds to the insulin receptor.
  • Bases used in the insulin receptor aptamer of the present invention other than the modified bases are selected from the group consisting of A, G, C, T, and their deoxy bases, unless otherwise specified.
  • the modified base number of the insulin receptor aptamer may be 5 to 15, preferably 6 to 8.
  • the aptamer comprises a base sequence of SEQ ID NO: 2 in the base sequence of SEQ ID NO: 1 designated IR-A48 and 33 to the side consecutive
  • 27 nucleotides of 80 nucleotides an insulin receptor aptamer or essentially comprising the nucleotide sequence of SEQ ID NO: 7 in the nucleotide sequence of SEQ ID NO: 6 designated IR-A62, and consecutively flanked by both sides of the nucleotide sequence of SEQ ID NO: 7 Insulin receptor aptamer, further comprising from 79 to 27 or 27 to 80 nucleotides.
  • the aptamer comprises a base sequence of SEQ ID NO: 2 in the nucleotide sequence of SEQ ID NO: 1 and consists of 33 to 80 base sequences consecutively next to each other, or an nucleotide sequence of SEQ ID NO: 6 It may be an insulin receptor aptamer consisting of 27 to 79, or 27 to 80 nucleotide sequences essentially including the nucleotide sequence of SEQ ID NO. 7 in the.
  • the base sequence may be a 5-position of the base of the nucleotide contained in the aptamer in order to increase the binding force and specificity of the aptamer may be substituted with a hydrophobic functional group.
  • the 5-position of the variable thymine base is substituted with a hydrophobic functional group to modify deoxyribose uracil, such as 5- [ ⁇ - (1-naphthylmethyl) carboxamide] -2'-deoxyur idine (Nap— Eight dU) is included in the variable region.
  • the hydrophobic functional group may include a naphthyl group, benzyl group, pirbenzyl group, or tryptophan, more preferably the hydrophobic functional group is a naphthyl group.
  • the insulin receptor aptamer may form a stem-loop structure composed of nucleotides therein. More preferably, the stem-loop structure may be composed of 27 or 33 nucleotides.
  • the stem-loop structure composed of 33 nucleotides may be formed by 15 to 47 bases in the nucleotide sequence of SEQ ID NO. 1 designated I-A48F, and the base sequence consisting of 15 to 47 nucleotides. May be SEQ ID NO: 2.
  • the stem-loop structure consisting of 27 nucleotides may be formed by the nucleotide sequence of SEQ ID NO: 6 of SEQ ID NO: 6 to 45 bases named IR-A62F, the step-loop consisting of 26 to 45 bases Containing additional nucleotides across both ends
  • the nucleotide sequence may be SEQ ID NO: 7 including bases 22 to 48 of SEQ ID NO: 1.
  • the insulin receptor aptamer specifically binds to the insulin receptor without binding to the IGF—K insul in-ike growth factor (IGF) receptor having a structure very similar to the insulin receptor.
  • IGF insulin insul in-ike growth factor
  • the insulin receptor aptamer named IR-A48 of the present invention may bind non-competitively at a different position from insulin, and the dissociation constant (Kd) upon binding to the insulin receptor is 1 nm to 20 nM, preferably about 3.5 to 6.9 nM.
  • Insulin receptor aptamer, designated IR-A62 can increase the binding of insulin through posi tive cooperat ivi ty, and has a dissociation constant (Kd) of 0.5 when bound to the insulin receptor. nM to 40 nM and preferably about 2.4 to 26.9 nM.
  • the inventors have discovered that the aptamer binding to the insulin receptor using the SELEX method and confirmed that the found aptamers phosphorylated the insulin receptor by binding to the insulin receptor.
  • LY29400 a known PI3K inhibitor, completely blocks AKT-induced cellular functions such as glucose uptake as well as phosphorylation of AKT.
  • the insulin receptor aptamer according to the present invention promotes phosphorylation of the insulin receptor, specifically phosphorylates Y1150 of the insulin receptor and promotes phosphorylation of the Ahu AKT S473 to absorb glucose at insulin levels.
  • the inventors confirmed that the phosphorylation and glucose uptake are induced through PI3K.
  • the MAP pathway is a representative signaling pathway induced through insulin receptors and plays an important role in cell division, and insulin is also well known to induce cell division in some cancer cell lines.
  • the inventors said Insulin receptor aptamers can perform glucose uptake as an agonist of insulin, but unlike insulin, it did not affect cell division. Therefore, insulin receptor aptamer according to the present invention, unlike insulin, does not activate the MAPK pathway, preferably does not affect insulin disease by activating the MAPK pathway, and more preferably increases the incidence of cancer caused by the growth of cancer cells and blood vessels. It can be useful for controlling blood glucose without affecting atherosclerosis caused by the growth of smooth muscle cells.
  • the aptamer may modify at least one or more bases located at the 5 ′ end, 3 ′ end, middle or both ends to enhance serum stability or to regulate renal clearance.
  • the modifications include PEG (polyethylene glycol), biotin, inverted deoxy thymidine (IDT), Locked Nucleic Acid (LNA), 2'- mesophilic nucleoside, 2'- One subphase selected from the group consisting of amino nucleosides, 2'F-nucleosides, amine linkers, thiol linkers, and cholesters may be modified.
  • 2'-methoxy nucleosides, 2'-amino nucleosides, or 2'F—nucleosides bind nucleoase resistance by binding to a base contained in an aptamer to provide a modified base do
  • the aptamer may include a base modified to ensure nuclease resistance and optimized in vivo administration, more preferably, the modification is 2 '-OMe (methoxy) or 2'- F (fluor).
  • Two or more aptamers according to the invention can be linked so that dimer blacks can exist as multimers.
  • the term “agonist of insulin receptor” refers to a pharmaceutically acceptable agent that selectively binds to an insulin receptor.
  • Insulin receptor agonists typically represent a new class of diabetes therapies developed to effectively regulate blood glucose.
  • Insulin Receptor of the Invention The agents not only bind specifically to the insulin receptor but are also characterized by no side effects of cancer development.
  • the agonist of the insulin receptor can be used for the diagnosis or treatment of various diseases related to insulin.
  • another embodiment of the present invention relates to a pharmaceutical composition for preventing or treating insulin and related diseases including the aptamer as an insulin receptor agonist.
  • Another example relates to a composition for diagnosing insulin and related diseases comprising the aptamer as an insulin receptor agonist.
  • the composition may further comprise insulin.
  • the insulin-related diseases may include diabetes, diabetes complications, metabolic syndrome, obesity, cardiovascular diseases, and the like.
  • the pharmaceutical compositions can be formulated in various oral or parenteral dosage forms.
  • it may be in any oral dosage form such as tablets, pills, hard / soft capsules, solutions, suspensions, emulsifiers, syrups, granules, elixirs, and the like.
  • Such oral dosage forms may contain, for example, lactose, textrose, sucrose, manny, sorbobi, cellulose and / or glycine donuts, or silica, in addition to the active ingredients, depending on the conventional composition of each formulation. It may include talc, stearic acid and a pharmaceutically acceptable carrier, such as a glidant, such as its magnesium or calcium salt, and / or polyethylene glycol.
  • the oral dosage form when it is a tablet, it may include a binder of magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylsalose, sodium carboxymethylcellose and / or polyvinylpyridine. And may optionally contain disintegrants such as starch, agar, alginic acid or sodium salts thereof, boiling mixtures and / or absorbents, colorants, flavors or sweeteners.
  • the pharmaceutical composition may be formulated in a parenteral dosage form, such as subcutaneous injection, intravenous injection, intramuscular. It is administered by a parenteral administration method such as injection or intrathoracic injection.
  • a parenteral administration method such as injection or intrathoracic injection.
  • the pharmaceutical composition is an active ingredient, that is, Derivatives of I or pharmaceutically acceptable salts thereof can be mixed in water with stabilizers or laxatives to form solutions or suspensions, which solutions or suspensions can be prepared in unit dosage forms of ampoules or vials.
  • the pharmaceutical composition may be sterilized, or may further include adjuvants such as preservatives, stabilizers, hydrating or emulsifying accelerators, salts and / or buffers for controlling osmotic pressure, and may further include other therapeutically useful substances. And can be formulated according to conventional methods of mixing, granulating or coating.
  • the subject of administration of the pharmaceutical composition of the present invention may be a mammal, including a human, preferably a rodent or a human.
  • the present invention provides a method for providing information for diagnosing diabetes using the insulin receptor aptamer.
  • the method for providing information for diagnosing diabetes includes
  • the diagnosis may be characterized as diabetes.
  • Measuring the degree of binding of the insulin receptor aptamer in the biological sample may be performed using DNA aptamer binding measuring techniques commonly used in the art, for example, fluorescent or Labeling a radioactive material may be used to measure fluorescence or radioactive intensity, or image and observe, but is not limited thereto. ⁇ Effects of the Invention]
  • Insulin receptor aptamers of the present invention promote the phosphorylation of insulin receptors, thereby increasing glucose uptake, but also the metabolic function of insulin receptors. It can function as a selective derivation of Biased Agoni st.
  • blood sugar can be regulated through insulin receptors without causing various insulin-induced diseases by activation of the MAPK pathway, such as increasing cancer incidence.
  • La shows the sequences of IR-A48F and IR-A48 aptamers.
  • Lb is the secondary structure of the aptamer predicted by the Mfold program of Example 1.6, showing that the nucleotides of IR-A48 form a stem-structure.
  • Lc shows that the IR-A48F or IR-A48 of Example 2.3 is an insulin receptor or
  • ID shows the sequences of IR-A62F and IR-A62 aptamers.
  • FIG. Le is the secondary structure of the aptamer predicted by the Mfold program of Example 1.6, showing that the nucleotides of IR-A62 form a stem-structure.
  • Figure 2a is treated with rat-1 f ibroblast (Rat-l / hIR) ⁇ l FITC-insulin (lOOnmol / L) and IR-A48 at concentrations of 0.1, 0.25, and ⁇ overexpressing the insulin receptor.
  • the FITC fluorescence change is shown by the experimental results of the specific Example 2.2.
  • Figure 2b shows the results confirmed whether phosphorylation of IRS, AKT, ERK by insulin and IR-A48 in Rat-1 / hIR cells of Example 3.2.
  • FIG. 2C shows the concentration of 0.02, 0.1, 0.25 0.5 and 1 micrometers of FT C-insulin (100 nmol / L) and IR-A62 in Rat1 1 f ibroblast (Rat-l / hIR) overexpressing insulin receptor
  • the FITC fluorescence change is shown as the experimental results of the specific Example 2.2.
  • Figure 2d shows the results confirming the phosphorylation of IRS, AKT, ERK by insulin and IR-A62 in Rat-1 / hIR cells of Example 3.2.
  • Figure 3a shows the results of confirming the phosphorylation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322 in the insulin receptor by the insulin, IR-A48 and IR-A62 of Example 3.3.
  • Figure 3b is the result of measuring the binding specificity of YC1, Y1151 and Y1150 / Y1151 phosphorylation of the antibody 10C3 and pAb to the insulin receptor of Example 3.3.
  • Figure 3c is the result of observing the phosphorylation of IGF-1 receptor in HeLa cells.
  • Figure 4a shows the results of confirming whether the phosphorylation of the insulin receptor protein in 3T3-L1 adipocytes treated with insulin (50nmol / L) of Example 3.4.
  • FIG. 5A shows the results of treating insulin and IR-A48 on MCF-7 cells of Example 5, respectively, to confirm the effect on cell growth.
  • FIG. 5B shows a mixture of insulin, insulin, and IR-A48 on MCF-7 cells. The results showed that the effects of IR A48 on insulin-induced cell growth were investigated.
  • FIG. 5C shows whether insulin and IR-A48 phosphorylate Y1150 and MT S473 of the insulin receptor in MCF-7 cells. Will show
  • Figure 6a is a graph showing the glucose uptake over time after treatment with the insulin, IR-A48 and insulin and IR-A48 mixture to the 3T3-L1 adipocytes of Example 4.1.
  • Figure 6b is the result of Example 4.1 observed the glucose uptake after 30 minutes and 4 hours to measure the activity according to the concentration of insulin and IR-A48.
  • 6C shows that IR-A48 (2 hours treatment) and insulin (30 minutes) after pretreatment of PI3K inhibitor (LY294002) in 3T3-L1 for 1 hour to see if the activity of IR-A48 of Example 4.2 is delivered via PI3K 6) shows the pretreatment of PI3K inhibitor (LY294002) in 3T3-L1 for 1 hour to confirm whether IR-A48 activity is transmitted through PI3K.
  • PI3K inhibitor LY294002
  • FIG. 7 shows the results of observing blood glucose changes for 120 minutes after administration of 0.6 U / kg of insulin and 2.5, 5, 10 mg / kg of IR-A48 of Example 6 to mice.
  • Human insulin receptor proteins were purchased from R & D system (Minneapol ie, MN) and used.
  • the aptamer used was Aptamer Science, Inc. (Pohang, Korea) and ST Pharm (Siheung, Korea).
  • Antibodies used by western blot were as follows: Ant i-phosphor—ERK (T202 / Y204), Anti-AKT, Ant i-phosphor-AKT (S473), Ant i-phosphor-AKT (T308), ant i-phospho -Fox01 / 3a (T24 / T32), and anti-phospho-AS160 (T642) (signal ing, Beverly, MA).
  • Anti— IR ⁇ -subunit (C-19), anti-IGF-lR ⁇ -subunit (C-20), ant i-phospho-IR (10C3, Y1150 / Y1151), ant i— phospho— IRS1 (Y632), And ant i-phospho-Shc (Y239 / Y240) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz Biotechmology, Snata Cruz, CA). Ant i-phospho-tyrosine (4G10), anti-phospho-IRSl (Y612) human / (Y608) mouse, and ant i -phospho— IR (Y1146) (Mi 11 ipore, Darmstadt, Germany).
  • Ant i-phospho-IR (Y960), ant i -phospho-IR (pAb, Y1150 / Y1151), ant i-phospho-IR (Y1316), ant i-phospho-IR (Y1322), ant i-phospho-IR (Y1146 / Y1150 / Y1151) (Invitrogen, Carlsbad, CA).
  • MCF7 human breast cancer cell lines human embryonic kidney cells HE 293, mouse adipocytes 3T3-L1 are American Type Culture Collection (Manassas, VA, USA).
  • Rat-1 fibroblasts (Rat-1 / hIR) overexpressed insulin receptors were provided by Dr. Nicholas JG Webster of the University of California.
  • MCF7, HEK293, Rat-1 / hIR were 37 ° C and 5 in Dulbecco's modified Eagle's medium (Lonza) supplemented with 10% fetal bovine serum (Gibco), penicillin C100 units / ml), and streptomycin (100 units / ml). Incubated under% CO2 conditions.
  • 3T3-L1 was incubated under 37 ° C and 5% C0 2 conditions in Dulbecco's modified Eagle's medium (Lonza) supplemented with 0% Bovine serum (Gibco), penicillin (100 units / ml), and streptomycin (100 units / ml). It was.
  • DMEM containing 1 ⁇ dexamethasone 500 nM IBMX, 850 nM insulin and 10% FBS for 2 days. Thereafter, DMEM containing 850 nM insulin and 10% FBS was treated for 2 days, and DMEM containing 1OT FBS was treated for 5-6 days until differentiation into adipocytes was completed.
  • SELEX was used to identify aptamers that bind to the extracellular domain of the insulin receptor. Using the phrase as a non-variable sequences present 20mer by a variable sequence with each side of the 40mer 'generated in the single-stranded DNA library (SEQ ID NO: 3) was carried out for SELEX.
  • Antisense libraries were 0.5 mM dNTP (ATP, GTP, CTP, Bz-dU), 0.25 U / ul of K0D XL (Invitrogen), 10X extension buffer (1.2M Tris-HCl pH7.8, 100 mM KC1, 60 mM ( Double helix DNA was prepared by reacting with 50 uM reverse primer (SEQ ID NO: 4) on 70 ° C.
  • the synthesized library lnmole was added to a select ion buffer (200mM HEPES, 510mM NaCl, 25mM KC1, 25mM MgC12) and reacted at 95 ° C, 70 ° C, 48 ° C and 37 ° C for 5 minutes each. Later, 10X protein competition buffer (10 ⁇ prothrombin, 10 ⁇ casein, 0.1 l (w / v) HSA (human serum albumin, SIGMA) lOyL was combined for negative select ion.
  • a select ion buffer 200mM HEPES, 510mM NaCl, 25mM KC1, 25mM MgC12
  • 10X protein competition buffer (10 ⁇ prothrombin, 10 ⁇ casein, 0.1 l (w / v) HSA (human serum albumin, SIGMA) lOyL was combined for negative select ion.
  • Dynabeads TALON bound to insulin receptors was washed five times with 100 uL of selected complete fluid (200 mM HEPES, 510 mM NaCl, 25 mM KC1, 25 mM MgC12). At the fifth wash, the plates were transferred to a new plate for washing. The 2mM NaOH solution 85 was added to elute the library bound to the target and neutralized with 20yL of 8mM HC1 solution.
  • Library DNA binding to the target was amplified using QPCR (quantitative PCR, IQ5 multicolor real time PCR detect ion system, Bi rad).
  • the reverse primer (SEQ ID NO: 4) and antisense library (SEQ ID NO: 3) previously used for library preparation were respectively 5uM (5 X QPCR master Mix, Novagen), 0.075 U / ul KOD (Novagen), and ImM dNTP (Roche Applied science).
  • eDNA refers to aptamers produced using DNA template and polymerase as enzymatic DNA.
  • the DNA library prepared through the QPCR was mixed and fixed to 25 ii L Myone SA bead (Invi trogen) for 10 minutes at room temperature. The amount of DNA mixed at this time was 60 ul as the QPCR product. 20 raM NaOH solution was added to make single stranded DNA. And DNA containing the nucleic acid modified in the same manner as in the library preparation of Example 1. 1 was synthesized and used in the next round.
  • the SELEX round was performed a total of eight times and DNA and protein (Integr in a Vp 3) complexes were added in 10 mM-DxS04 (s igma) solution 1 to 4 to 6 and 7 to 8 for more selective binding.
  • DNA aptamer was selected by diluting with / 200, 1/400.
  • IR-A48F and IR-A62F aptamers significantly increased phosphorylation of AKT.
  • the sequences of IR-A48F and IR-A62F consist of 80mers containing eight Nap-dUs in the variable region (Fig. La, Fig. Id), in order to find the minimum sequence of aptamers necessary for binding to the target. Aptamer sequence minimization was performed based on the secondary structure of.
  • the secondary structure of the IR-A48F aptamer predicted by the Mfold program is shown in FIG. Lb and contains 33 internal aptamers containing 6 Nap-dU. The nucleotides form a stable stem-loop structure.
  • the secondary structure of the IR-A62F aptamer predicted by the Mfold program is shown in Figure le and 27 nucleotides inside the aptamer containing 6 Nap-dU form a stable stem-loop structure.
  • IR-A48 this internal stem-loop sequence (IR-A48) (3.5 nM Kd) binds to the insulin receptor at a level similar to that of IR-A48F (6.9 nM Kd).
  • IGF-1 insulin-like growth factor 1
  • 10-C3 antibody was used to investigate the effect of IR-A48 on the phosphorylation of IGF-1 receptor. According to binding specificity, IR-A48 had no effect on phosphorylation of IGF-1 receptor, unlike insulin. The results are shown in FIGS. Lc and 3c.
  • this internal stem-loop sequence (IR-A62) was determined by binding to the target.
  • IR-A62 binds to the insulin receptor at a level similar to IR-A48F (26.9 nM Kd).
  • IGF-1 insulin-like growth factor 1
  • 10C3 antibody was used to investigate the effect of IR-A62 on the phosphorylation of IGF-1 receptor. According to binding specificity, IR-A62 had no effect on phosphorylation of IGF-1 receptor, unlike insulin. The results are shown in Figures If and 3c.
  • Aptamers were synthesized by Solid Phase Ol igo Synthesis using the Mermade 12 synthesizer manufactured by Bioautomat ion, a nucleic acid-specific fixed-synthesizer. Solide by using a ligigonucleotide synthesizer (Bioautomat ion, Mermadel2) Phase b-cyanoethyl phosphor ami dite chemistry was synthesized, and the synthesis ⁇ CPG (200 nmole synthesis column, 1000A ( ⁇ 1-1000-)) was prepared by cleavage solution [t— butylamine: methanol: water (l: l: 2 Volume ratio)] and then vacuum-dried after cleavage / deprotection at 70 ° C.
  • a ligigonucleotide synthesizer Bioautomat ion, Mermadel2
  • Phase b-cyanoethyl phosphor ami dite chemistry was synthesized, and the synthesis ⁇ CPG (200 nmole
  • Insulin competition assay was performed using flow cytometry to investigate the binding properties of IR-A48 and IR-A62 to insulin receptors discovered in Example 1.
  • Rat-1 / hIR cells were removed from the cell culture vessel using PBS containing 5 mM EDTA. The prepared cells were treated with blocking buffer (PBS, 1% BSA, and 0.1% NaN3) and reacted by rotating at 20 rpm for 20 minutes at 4 ° C. FITC-bound insulin was then treated with various concentrations of IR-A48 Each bond was reacted at 4 ° C for 1 hour to reach equilibrium. The cells were washed twice with PBS, and then fixed at room temperature for 30 minutes with PBS containing 4% paraformaldehyde. The amount of insulin bound to the cells was observed by measuring the fluorescence of FTTC through flow cytometry (BD FACSCanto TM 11).
  • IR-A48 does not interfere with the binding of insulin despite having an active allol as an agonist (FIG. 2A). This means that IR-A48 binds to a completely different allosteric site, not the orthohosteric site to which insulin binds. IR-A62 was found to have a positive cooperativity that increases the binding of insulin despite having activity as an agonist (FIG. 2C).
  • a filter binding assay was performed. First, a _P32ATP (PerkinElmer) was labeled with TdT (Terminal deoxynucleotidyl transferase, NEB) at the 5 'end of the aptamer. Reaction was repeated at 37 ° C for 30 minutes with aptamer ⁇ 0.25uL, ⁇ - ⁇ 32 ⁇ (5 ⁇ M, perkinelmer), 0.25 uL, TdT and 10X NEB buffer4 10 uL reaction volume and incubated at 70 ° C for 10 minutes. Inactivated. The labeled DNA pool was purified using a Micro spin G-50 column (GE healthcare).
  • TdT Terminal deoxynucleotidyl transferase
  • Labeled aptamer 20,000cpm in 100 IxSB buf fer (200mM HEPES, 510mM NaCl, 25raM KCl, 25mM MgC12) was slowly cooled from 95 ° C to 37 ° C by 0.1 ° C in 1 second.
  • the insulin receptor protein was sequentially diluted to 12 points in ⁇ ⁇ ⁇ using buffer (200mM HEPES, 510mM NaCl, 25mM KCl, 25mM MgCl2), and 30L of the heated and skewed DNA pool was added 37 The reaction was carried out for 30 minutes at ° C.
  • Lysis buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 20 mM NaF, 10 mM ⁇ -glycerophosphate, 2 mM Na3V04, 1 to observe the phosphorylation of insulin receptors and signaling proteins
  • Cells were lysed in mM PMSF, 10% glycerol, 1% Triton-X, and protease inhibitor cocktails. Cell lysates were separated by centrifugation at 14,000 rpm for 15 minutes at 95 ° C. The prepared cell lysates were electrophoresed on 6% -16% SDS-PAGE and transferred to nitrocellulose membrane. After reacting the primary antibody to the membrane at 4 ° C.
  • phosphorylation of the insulin receptor by IR-A48 or IR-A62 was different from insulin. Phosphorylation of Y1150 / Y1151 in the insulin receptor kinase region was increased by both insulin and IR-A48 or IR-A62. Phosphorylation of Y1150 / Y1151 cooperatively increased when I-A48 and insulin were co-treated, and phosphorylation of Y1150 / Y1151 was greatly amplified when IR-A48 and insulin were co-treated. Total tyrosine phosphorylation was significantly increased only by insulin and the effects of IR-A48 and IR-A62 were minimal. Taken together, the results show that IR-A48 acts independently of insulin and that IR-A62 amplifies the activity of insulin, but that activity is biased to specific tyrosine (Y1150 / Y1151) in the kinase region.
  • ELISA was performed to examine the antigen specificity of the antibody.
  • three peptides (MTRDIYETD-pY-pY-RKGGKGLL, MTRDIYETD-pY-YRKGGKGLL, MTRDIYETDY-pY-RKGGKGLL) to be used as antigens were obtained from Sel leckchem (Houston, TX). Synthesized. 20 pmol / 100 ⁇ peptide dissolved in PBS was covalently linked to a 96 plate (Corning, MA) coded with N-oxysuccinimide ester groups at 4 ° C for 12 hours.
  • TTBS complete solution [50 mM Tr i s-HCl (pH 7.6), 150 mM NaCl, and 0.05% Tween-20].
  • the antibody was diluted 1: 1000 in TTBS buffer and bound to the antigen bound to 96 plates for 1 hour at room temperature.
  • AP Alkal ine phosphatase
  • lOOul CSPD was added. After adding and reacting for 30 minutes at room temperature, chemiluminescence was measured using a photometer (Luminoskan Ascent).
  • insulin is Y960, Y1146, Y1150,
  • IR-A48 activated a signal level similar to insulin. Phosphorylation of insulin receptors and proteins such as IRS, AKT, and ERK increased rapidly for 5 minutes and gradually decreased over time in 3T3-L1 adipocytes treated with insulin (50nmol / L). In contrast to insulin IR-A48 (200 nmol / L) supports phosphorylation of RS (Y608, Y632), AKT (T308, S473), AS160 (T642), GS 3 ⁇ / ⁇ (S21 / S9), F0X01 / 3a (T24 / T32) Slowly increased over 2 hours and phosphorylation continued for 4 hours. The results are shown in Figure 4a.
  • Phosphorylation of insulin receptors plays two roles in signaling, firstly phosphorylation of kinase domains (Y1146, Y1150, Y1151) regulates kinase activity, and second, signaling that Y960 and Y1322 phosphorylation binds to insulin receptors. Used as a binding site for proteins. Considering this Y1150-biased phosphorylation, although IR-A48 was not expected to significantly increase insulin signaling due to the low phosphorylation of other tyrosine, IR-A48 exhibited insulin-level signal transduction, an unexpected effect. It was confirmed that was shown.
  • IR-A48 showed attenuated activity in specific insulin signaling.
  • the phosphorylation of AKT T308 was only 37% ( Figures 4A, 4B, and 4C), although the phosphorylation of AKT T308 was 98% higher than that of AKT S483.
  • IR-A48 also had little effect on the phosphorylation of E (FIGS. 4A and 4D). As such, IR-A48 activates the signaling of the insulin receptor, but has distinctly different characteristics from that of insulin.
  • Example 4 Glucose Absorption of Insulin Receptor Aptamers
  • Example 1 Since IR-48 exfoliated in Example 1 increased phosphorylation of AKT S473, the activity of IR-A48 on glucose uptake was investigated in 3T3-L1 adipocytes.
  • IR-A48 sufficiently increased glucose uptake at high concentrations. Glucose uptake was observed at the treatment time with the highest response, respectively, to measure the activity according to the concentration of insulin and IR-A48 (30 minutes for insulin and 4 hours for IR-A48). Insulin and IR-A48 showed similar saturated glucose uptake at the highest concentrations. Insulin showed glucose uptake which gradually increased with concentration (Hi U coeff icient: 0.77), but IR-A48 increased rapidly between 20 nraol / L and 200 nmol / L (Hi ll coef). f icient: 0.77).
  • Example 5 Cancer Cell Growth Induction
  • Example 1 In order to investigate the effect of IR-A48 discovered in Example 1 on cell division, the MCF-7 cancer cell line which is widely used to test the cell division induction ability of insulin was used.
  • Insulin and IR-A48 were treated with MCF-7 alone. Insulin increased cell division by 2.1 times but IR-A48 had no effect. In addition, treatment with IR-A48 (lumol / L) with insulin also did not affect cell division by insulin. In order to exclude the possibility that IR-A48 failed to activate the insulin receptor present in MCF-7 cells, insulin signaling by IR-A48 was confirmed in MCF-7 cells. As a result, it was confirmed that MCF-7 cells phosphorylate insulin receptors Y1150 and AKT S473 as well as 3T3-L1 adipocytes. The results are shown in Figures 5a to 5c, it was found that the signaling induced by IR-A48 has a completely separate function from the induction of cell division by the insulin receptor.
  • Example 6 in vivo blood glucose test
  • Example 1 Inverted deoxythymidine (idT) was added to the 3 'end of IR-A48 to prevent rapid degradation of IR-A48 by 3' exonuc lases in the blood.
  • idT Inverted deoxythymidine
  • mice After 8-week-old male C57B1 / 6J mice were fasted for 12 hours, 10 rag / kg, 5 mg / kg, and 2.5 mg / kg of IR-A48 were dissolved in PBS and administered to the mice via intravenous injection.
  • mice given IR-A48 showed a steady decrease in blood sugar until 1 hour and then slowly recovered. The results are shown in FIG.
  • IR-A48 is active not only in vitro but also in vivo, indicating that IR-A48 can regulate blood glucose independently of insulin through allosteric regulation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Emergency Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

본 발명은 인슐린 수용체에 특이적으로 결합하는 DNA 압타머, 이를 유효성분으로 함유하는 당뇨병 치료용 조성물 및 당뇨병 진단용 조성물에 관한 것으로, 상기 압타머는 기존의 인슐린과 다른 결합 기작을 가짐으로써 암발병률 증가 및 죽상동맥경화와 같은 인슐린에 의한 부작용 보다 효과적으로 당뇨병을 치료하고 진단할 수 있는 것을 특징으로 한다.

Description

【명세서】
【발명의 명칭】
인슐린 수용체 압타머 및 이를 포함하는 약학적 조성물 【기술분야】
본 발명은 인슐린 수용체에 특이적으로 결합하는 압타머 및 이를 이용하여 인슐린 작용제로 사용할 수 있으며, 또는 인슬린 수용체와 관련된 질환의 치료 또는 진단용 약학 조성물에 관한 것이다. 【발명의 배경이 되는 기술】
인술린 수용체 ( IR, Insul in receptor)는 티로신 카이네이즈 수용체로서 인슐린, IGF-1 또는 IGF-2 에 의해 활성화되는 막관통 수용체 (transmembrane receptor)이다. 인슐린 결합부를 포함하는 α 사슬 (719잔기 ) 2개와 막 관통부를 포함하는 β 사슬 (620잔기 ) 2개가 S- S 결합으로 연결된 4 합체 구조로 되어 있다. 인슐린이 수용체와 결합하면, β 사슬의 세포내 영역에 있는 티로신키나아제 활성이 활발해지고, 수용체 티로신잔기의 인산화가 일어난다. 이 자기인산화가 다른 단백질의 인산화를 일으킨다.
인슐린 수용체가 활성화될 경우 글루코오스 흡수를 야기하는데, 인슐린 수용체의 신호전달이 감소할 경우 글루코오스의 흡수가 저해되어 제 2 당뇨 또는 이와 관련된 합병증 및 과혈당 (hyperglycemi a)등이 야기될 수 있다.
압타머 (aptamer )는 펩타이드로 이루어진 항체와 달리 4 종류의 핵산 (nuc lei c acid)로 이루어져 그 시퀀스의 조합에 따라 대상 단백질에 대한 특이성을 나타내는 물질이다. 대상 단백질에 특이적인 압타머는 시험관에서 SELEX(Systemat i c Evolut ion of Ligands by Exponent i al enr i chment )를 통해 만들어지는데, 이 과정은 무작위 조합으로 구성된 압타머의 풀 (pool )에서 정제된 단백질에 특이적으로 결합하는 압타머를 찾아내고 PCR 을 통해 증폭하 과정을 포함한다. 대표적인 단일가닥 DNA 압타머 신약인 페갑타닙은 혈관 표피 성장인자를 대상으로 하여 혈관 표피 성장인자가 혈관 표피 성장인자 수용체에 결합하는 것을 방해하는 항암제로서 FDA에 승인을 받아 임상에 사용되고 있다.
현재 기능적 압타머를 발굴하기 위한 대부분의 노력은 표적에 대한 압타머의 저해 능력에 초점이 맞춰져 있다. 특히 임상적 웅용을 위해서 표적분자의 활성을 방해하는 다양한 종류의 저해성 압타머 ( inhibi tory aptamer )가 질병치료를 위해 개발되어 왔다 (e . g Macgen, AS1411) . 하지만 분자간의 상호작용은 필연적으로 구조적인 변화를 동반한다는 점을 염두해 봤을 때, 만약 압타머-단백질 결합이 단백질의 적절한 구조 변화를 유도시킬 수 있다면 단백질 기능의 활성화가 가능해질 것이라 여겨진다. 따라서 이론적으로 압타머는 특정 단백질-단백질 결합을 모방함으로써 기능적 Agoni st 로 역할을 할 수 있는 잠재력을 가진다. 하지만 현재 표적의 기능을 활성화 키는 Agoni st 압타머의 개발은 어려운 문제로 남아있다.
또한, 오늘날 당뇨병 환자의 혈당을 정상적으로 조절하기 위해 많은 종류의 인술린 유도체들이 개발되어 사용되고 있으나 인슐린은 포도당 흡수 이외에도 세포 분열을 유도하며 몇몇 인슐린 유도체에 도입된 아미노산 서열의 변화는 IGF-1 수용체에 대한 결합력과 활성화를 증가시킨다. 따라서 당뇨병 치료를 위한 장기간의 인술린 투여는 반대로 암발생률을 높일 수 있고 죽상동맥경화와 같은 인슐린에 의한 부작용에 관한 우려가 지속적으로 제기되어 왔다. 또한 몇몇 역학조사를 통해 지속된 인슐린 투여와 암발병를 증가 사이에 유의미한 상관관계가 있다는 내용 역시 보고되었다. 따라서 세포분열을 유도하지 않고 포도당 흡수만을 증가시키는 인슐린 수용체에 대한 bi ased agoni st 의 개발은 인슬린 투여에 대한 좋은 대안을 제시할 것이다.
따라서, 인술린 수용체에 특이적으로 결합하는 압타머 및 아를 이용한 당뇨병 치료 또는 진단 기술의 개발이 요구된다.
【발명의 내용】
【해결하고자 하는 과제】 이에, 본 발명은 인슐린 수용체에 특이적으로 결합하고, 5-위치가 소수성 작용기로 치환되어 변형된 데옥시리보스 우라실을 포함하는, 인술린 수용체 압타머를 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 인슐린 수용체 압타머를 유효성분으로 포함하는 당뇨병 치료용 조성물, 상기 인술린 수용체 압타머의 약학적 유효량을 당뇨병 환자에게 투여하는 단계를 포함하는 당뇨병 치료 방법 및 당뇨 치료를 위한 용도를 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 인슐린 수용체 압타머를 유효성분으로 포함하는 당뇨병 진단용 조성물, 및 당뇨병 진단을 위한 용도를 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 인슬린 수용체 압타머를 이용하여 당뇨병 진단에 정보를 제공하는 방법을 제공하는 것을 목적으로 한다.
【과제의 해결 수단】
상기 목적을 달성하기 위하여, 본 발명은 인슐린 수용체의 세포 외 영역에 특이적으로 결합하고, 인술린 수용체의 인산화를 촉진하는, 인슐린 수용체 압타머를 제공한다.
본 명세서에서 인슬린 수용체 압타머란 인슐린에 특이적인 친화도로 결합할 수 있는 압타머를 의미한다. 상기 인슐린 수용체는 인간 인술린 수용체 단백질에서 유래하는 것일 수 있으나 이에 한정되지 않는다.
상기 인슐린 수용체 압타머는 5' -위치가 소수성 작용기로 치환되어 있는 변형된 염기를 포함할 수 있다. 상기 압타머는 25 내지 90 개, 바람직하게는 27 내지 80 개, 더욱 바람직하게는 27 내지 33 개의 염기로 이루어지고, 인슐린 수용체에 특이적으로 결합하는 것을 특징으로 한다. 상기 변형된 염기 이외의 본 발명의 인슐린 수용체 압타머에 사용되는 염기는 특별한 언급이 없는 한, A, G, C, T, 및 이들의 deoxy 형태의 염기들로 이루어진 군에서 선택된 것이다.
인슐린 수용체 압타머의 상기 변형된 염기 개수는 5 내지 15 개, 바람직하게는 6 내지 8개일 수 있다. 바람직하게 , 상기 압타머는 IR-A48로 명명된 서열번호 1의 염기서열 내의 서열번호 2 의 염기 서뎔을 포함하고 양 옆으로 연속하는 33 개 내지
80 개의 뉴클레오타이드인, 인슐린 수용체 압타머 이거나, IR-A62 로 명명된 서열번호 6 의 염기서열 내의 서열번호 7 의 염기 서열을 필수적으로 포함하고, 서열번호 7 의 염기서열의 양 옆으로 연속하는 27 개 내지 79 또는 27 개 내지 80 개의 뉴클레오타이드를 추가로 포함하는, 인슐린 수용체 압타머일 수 있다.
더욱 바람직하게는, 상기 압타머는 서열번호 1 의 염기서열 내의 서열번호 2 의 염기서열을 포함하고 양 옆으로 연속하는 33 개 내지 80 개 염기서열로 이루어진 인슐린 수용체 압타머, 또는 서열번호 6 의 염기서열 내의 서열번호 7의 염기서열을 필수적으로 포함하는 27개 내지 79개, 또는 27개 내지 80개 염기서열로 이루어진 인슐린 수용체 압타머 일 수 있다. 상기 염기서열은 압타머의 결합력과 특이성을 높이기 위하여, 상기 압타머에 포함된 뉴클레오티드의 염기의 5-위치가 소수성 작용기로 치환된 것일 수 있다. 예를 들면 가변영역의 티민 (Thymine)염기의 5-위치가 소수성 작용기로 치환되어 변형된 데옥시리보스 우라실, 예컨대 5-[Ν-( 1- naphthylmethyl )carboxamide]-2' -deoxyur idine (Nap— dU)을 가변영역에 8 개 포함한다. 상기 소수성 작용기는 나프틸기, 벤질기, 피를벤질기, 또는 트립토판을 포함할 수 있고, 더욱 바람직하게는 상기 소수성 작용기는 나프틸기이다.
바람직하게는 상기 인슐린 수용체 압타머는 내부의 뉴클레오티드로 구성된 스템 -루프 구조를 형성할 수 있다. 더욱 바람직하게는 상기 스템- 루프 구조는 27개 또는 33개의 뉴클레오티드로 구성된 것일 수 있다.
구체적으로, 상기 33 개 뉴클레오티드로 구성된 스템 -루프 구조는 I -A48F로 명명된 서열번호 1 의 염기서열 중 15 내지 47 번의 염기에 의해 형성될 수 있고, 상기 15 번 내지 47 번 뉴클레오티드로 이루어진 염기서열은 서열번호 2 일 수 있다. 또한, 상기 27 개 뉴클레오티드로 구성된 스템 -루프 구조는 IR-A62F 로 명명된 서열번호 6 의 염기서열증 26 내지 45 번의 염기에 의해 형성될 수 있고, 상기 26 번 내지 45 번의 염기로 구성된 스텝 -루프 구존의 양단에 추가의 뉴클레오티드를 포함하는 염기서열은 서열번호 1 의 22 번 내지 48 번 염기를 포함하는 서열번호 7 일 수 있다.
본 발명자들은 상기 인슐린 수용체 압타머가 인슐린 수용체와 매우 유사한 구조를 가지는 IGF—K insul in-l ike growth factor ) 수용체에는 결합하지 않고 인술린 수용체에 특이적으로 결합하는 것을 확인하였다. 구체적으로 본 발명의 IR-A48 로 명명된 인슐린 수용체 압타머는, 인슐린과 상이한 위치에서 비경쟁적으로 결합할 수 있고, 인슐린 수용체와 결합 시 해리 상수 (Kd)가 lnm 내지 20nM이고 바람직하게는 약 3.5 내지 6.9nM 이다. IR-A62 로 명명된 인슐린 수용체 압타머는 인슬린과 촉진적 상호작용 (Posi t ive cooperat ivi ty)을 통해 인술린의 결합을 증가시킬 수 있고, 인술린 수용체와 결합 시 해리 상수 (Kd)가 0.5nM 내지 40nM 이고 바람직하게는 약 2.4 내지 26.9nM 이다.
본 발명자들은 SELEX 방법을 이용하여 인슐린 수용체에 결합하는 압타머를 발굴하였고 발굴된 압타머가 인슐린 수용체와 결합하여 인슐린 수용체를 인산화 하였음을 확인하였다.
인슐린이 수용체와 결합하면 수용체 티로신 잔기가 인산화되는데, 인술린 수용체의 인산화는 신호전달을 통해 지방세포와 근육에서 glucose transporter 4 (GLUT4)의 이동을 조절하여 포도당 흡수를 증가시킨다. 이러한 인술린 수용체에 의한 대사기능은 주로 IRS-AKT 경로에 의해 조절되며 또한 인술린 신호전달 과정에서 PI3K 는 AKT 의 인산화에 중요한 역할을 한다. 공지된 PI3K 저해물질인 LY29400는 AKT의 인산화뿐만 아니라 포도당 흡수와 같이 AKT에 의해 유도되는 세포기능을 완전히 차단한다. 본 발명에 의한 인슐린 수용체 압타머는 인슐린 수용체의 인산화를 촉진하며, 구체적으로 인술린 수용체의 Y1150 을 우선적으로 인산화하고 아후 AKT S473 의 인산화를 촉진시켜 인슐린 수준으로 포도당을 흡수할 수 있다. 본 발명자들은 상기 인산화 및 포도당 흡수가 PI3K 를 통해 유도되는 것임을 확인하였다.
MAP 경로는 인슐린 수용체를 통해 유도되는 대표적인 신호전달 경로이며 세포 분열에 중요한 역할을 하고 인술린 역시 몇몇 암세포주에서 세포의 분열을 유도시키는 것으로 잘 알려져 있다. 본 발명자들은 상기 인슐린 수용체 압타머는 인슐린의 작용제로서 포도당 흡수 (glucose uptake)을 수행할 수 있으나, 그러나 인술린과 달리 세포분열에 영향을 미치지 않는 것을 확인하였다. 따라서 본 발명에 다른 인술린 수용체 압타머는 인슐린과 달리 MAPK 경로를 활성화시키지 않으며, 바람직하게는 MAPK 경로 활성화에 의한 인슐린 질환에 영향을 미치지 않으며, 더욱 바람직하게는 암세포의 성장에 의한 암발생률 증가와 혈관 평활근 세포의 성장에 의한 죽상동맥경화에 영향을 미치지 않으면서 혈당조절을 하는데 유용하게 사용될 수 있다.
또한, 상기 압타머는, 혈청 내 안정성을 증진시키거나 신장 클리어런스 (renal clearance)를 조절하기 위하여, 5' 말단, 3' 말단, 중간 또는 양 말단에 위치한 염기를 적어도 하나 이상 변형시킬 수 있다. 상기 변형은 5' 말단, 3' 말단, 중간 또는 양 말단에 PEG(polyethylene glycol), 비오틴, idT( inverted deoxy thymidine) , LNA( Locked Nucleic Acid) , 2'- 메특시 뉴클레오사이드, 2'-아미노 뉴클레오사이드, 2'F-뉴클레오사이드, 아민 링커, 티올 링커, 및 콜레스테를 등으로 이루어진 군에서 선택된 1 종 아상이 결합되어 변형된 것일 수 있다. 2'-메록시 뉴클레오사이드, 2'- 아미노 뉴클레오사이드 또는 2'F—뉴클레오사이드는 압타머에 포함된 염기에 결합하여 변형된 염기를 제공함으로써 누클레이즈 저항성 (nuclease resistance)을 부여한다
바람직하게 , 상기 압타머는 뉴클라아제 저항성을 확보하여 최적화된 in vivo 투여를 하기 위하여 변형된 염기를 포함할 수 있고, 더욱 바람직하게는, 상기 변형은 2' -OMe (메톡시) 또는 2' -F (플루오르)일 수 있다.
본 발명에 의한 2 이상의 압타머가 연결되어 이량체 (dimer) 흑은 다합체 (multimer)로 존재할 수 있다.
본원에서 사용되는 것으로, 용어 "인슐린 수용체의 작용제 "는 인슐린 수용체에 선택적으로 결합하는 약학적으로 허용가능한 제제를 나타낸다. 통상적으로 인슐린 수용체 작용제는, 효과적으로 혈당을 조절하기 위하여 개발된 새로운 종류의 당뇨병 치료제를 나타낸다. 본 발명의 인슐린 수용체 작용제는 인슐린 수용체에 특이적으로 결합할 뿐 아니라 암 발생의 부작용이 없는 특징이 있다.
따라서, 상기 인슐린 수용체의 작용제는 인슐린과 관련한 다양한 질병의 진단 또는 치료용도로 사용될 수 있다.
이에, 본 발명의 또 다른 일예는 상기 압타머를 인슐린 수용체 작용제로 포함하는 인슬린과 관련 질환의 예방 또는 치료용 약학 조성물에 관한 것이다. 또 다른 일예는, 상기 압타머를 인술린 수용체 작용제로 포함하는 인슐린과 관련 질환의 진단용 조성물에 관한 것이다. 상기 조성물은 인슐린을 추가로 포함할 수 있다. 상기 인슐린 관련 질환은 당뇨병, 당뇨 합병증, 대사성 증후군, 비만, 심혈관 질환 등을 포함할 수 있다.
상기 꺅학 조성물은 다양한 경구 투여 형태 또는 비경구 투여 형태로 제형화될 수 있다. 예를 들어, 정제, 환제, 경 /연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭서제 (el ixirs) 등의 임의의 경구 투여용 제형으로 될 수 있다. 이러한 경구 투여용 제형은 각 제형의 통상적인 구성에 따라 상기 유효 성분 외에, 예를 들어, 락토즈, 텍스트로즈, 수크로즈, 만니를, 솔비를, 셀를로즈 및 /또는 글리신 둥의 희석제나, 실리카 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염' 및 /또는 폴리에틸렌 글리콜 등의 활택제 등의 제약상 허용 가능한 담체를 포함할 수 있다.
또한, 상기 경구 투여용 제형이 정제인 경우, 마그네슴 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸샐를로즈, 나트륨 카복시메틸셀를로즈 및 /또는 폴리비닐피를리딘 둥의 결합제를 포함할 수 있고, 경우에 따라, 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제나, 비등 흔합물 및 /또는 흡수제, 착색제, 향미제 또는 감미제 둥을 포함할 수도 있다.
그리고, 상기 약학 조성물은 비경구 투여 형태로 제형화될 수도 있는데, 이러한 경우 피하주사, 정맥주사, 근육 내. 주사 또는 흉부 내 주사 등의 비경구 투여 방법에 의해 투여된다. 이 때, 상기 비경구 투여용 제형으로 제제화하기 위하여, 상기 약학 조성물은 유효 성분, 즉, 화학식 I 의 유도체 또는 이의 약학적으로 허용 가능한 염이 안정제 또는 완층제와 함께 물에서 흔합되어 용액 또는 현탁액으로 제조되고, 이러한 용액 또는 현탁액이 앰플 또는 바이알의 단위 투여형으로 제조될 수 있다.
또한, 상기 약학 조성물은 멸균되거나, 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및 /또는 완층제 등의 보조제를 더 포함할 수도 있고, 기타 치료적으로 유용한 물질을 더 포함할 수도 있으며, 흔합, 과립화 또는 코팅의 통상적인 방법에 따라 제제화될 수 있다. 본 발명의 약학 조성물의 투여 대상은 인간을 포함하는 포유류일 수 있으며, 바람직하게는 설치류, 또는 인간일 수 있다.
또 다른 측면에서, 본 발명은 상기 인슐린 수용체 압타머를 이용하여 당뇨병 진단에 정보를 제공하는 방법을 제공한다.
상기 당뇨병 진단에 정보를 제공하는 방법은
분리된 생물학적 시료를 준비하는 단계;
상기 생물학적 시료에, 본 발명에 따른 인슐린 수용체 압타머를 반웅시키는 단계 ; 및
상기 생물학적 시료에서의 인술린 수용체 압타머의 결합 정도를 측정하는 단계를 포함하고,
생물학적 시료에서의 인술린 수용체 압타머의 결합 정도가 정상 시료보다 높은 경우, 당뇨병인 것으로 진단하는 것을 특징으로 하는 것일 수 있다.
상기 생물학적 시료에서의 인술린 수용체 압타머의 결합 정도를 측정하는 단계는 관련 기술분야에서 통상적으로 사용되는 DNA 압타머 결합 측정 기술을 이용하여 수행될 수 있으며, 예컨대, 인슐린 수용체 압타머 말단에 형광 또는 방사성 물질 표지하여 형광 또는 방사성 세기를 측정하거나, 이미지화하여 관찰하는 방법 등을 이용할 수 있으나, 이에 제한되는 것은 아니다. 【발명의 효과]
본 발명의 인슐린 수용체 압타머는 인슐린 수용체의 인산화를 촉진시켜 포도당 흡수를 증가시키면서도 인술린 수용체의 대사 기능만을 선택적으로 유도하는 Biased Agoni st 로서 기능할 수 있다. 그 뿐 아니라 암발병를 증가 등과 같은 MAPK 경로 활성화에 의한 각종 인슐린에 의한 질환을 일으키지 않고 인슐린 수용체를 통해 혈당을 조절할 수 있다. 【도면의 간단한 설명】
도 la은 IR-A48F 및 IR-A48 압타머의 서열을 나타낸 것이다.
도 lb는 실시예 1.6의 Mfold프로그램에 의해 예측된 압타머의 2차 구조로서, IR-A48 의 뉴클레오티드가 스템-구조를 형성하는 것을 나타낸 것이다.
도 lc 는 실시예 2.3 의 IR-A48F 또는 IR-A48 가 인슐린 수용체 또는
IGF-1 수용체에 결합여부를 측정한 결과이다.
도 Id는 IR-A62F 및 IR-A62 압타머의 서열을 나타낸 것이다.
도 le는 실시예 1.6의 Mfold프로그램에 의해 예측된 압타머의 2차 구조로서, IR-A62 의 뉴클레오티드가 스템-구조를 형성하는 것을 나타낸 것아다.
도 If 는 실시예 2.3 의 IR-A62F 또는 IR-A62 가 인술린 수용체 또는 IGF-1 수용체에 결합여부를 측정한 결과이다.
도 2a 는 인슐린 수용체를 과 발현시키고 있는 Rat-1 f ibroblast (Rat-l/hIR)^l FITC-인술린 (lOOnmol/L)과 IR-A48 을 0.1 , 0.25, 및 Ι μ πι 의 농도로 처리하여 FITC 형광 변화를 특정한 실시예 2.2 의 실험 결과를 나타낸 것이다.
도 2b 는 실시예 3.2 의 Rat-1/hIR 세포에서 인슐린 및 IR-A48 에 의한 IRS, AKT, ERK의 인산화 여부를 확인한 결과를 보여주는 것이다.
도 2c 는 인슐린 수용체를 과 발현시키고 있는 Rat一 1 f ibroblast (Rat-l/hIR)에 FT C-인술린 (100nmol/L)과 IR-A62 를 0.02, 0.1, 0.25 0.5 및 1 마이크로미터의 농도로 처리하여 FITC 형광 변화를 특정한 실시예 2.2의 실험 결과를 나타낸 것이다.
도 2d 는 실시예 3.2 의 Rat-1/hIR 세포에서 인슐린 및 IR-A62 에 의한 IRS, AKT, ERK의 인산화 여부를 확인한 결과를 보여주는 것이다. 도 3a 는 실시예 3.3 의 인술린, IR-A48 및 IR-A62 에 의한 인슐린 수용체 내 Y960, Y1146 , Y1150, Y1151, Y1316 및 Y1322 의 인산화 여부를 확인한 결과를 보여주는 것이다.
도 3b는 실시예 3.3의 인슐린 수용체에 대한 항체인 10C3와 pAb의 Y1150 , Y1151 및 Y1150/Y1151 인산화에 대한 결합특이성을 측정한 결과이다. 도 3c는 HeLa 세포에서 IGF-1수용체의 인산화를 관찰한 결과이다. 도 4a 는 실시예 3.4 의 인슐린 (50nmol/L)이 처리된 3T3-L1 지방세포에서 인술린 수용체 단백질의 인산화 여부를 확인한 결과를 보여주는 것이다.
도 4b 내지 도 4d 는 인슐린 및 IR-A48 에 의하여 각각 AKT(S473) ,
AKKT308) 및 ERKCT202/Y204)의 인산화 여부를 정량화한 실시예 3.4 실험의 결과이다.
도 5a 는 실시예 5 의 MCF-7 세포에 인슐린 및 IR-A48 을 각각 처리하여 세포성장에 미치는 영향을 확인한 결과이고, 도 5b 는 MCF-7 세포에 인슐린 및 인술린과 IR-A48 의 흔합물을 각각 처리하여 IR A48 이 인슐린에 의한 세포성장에 미치는 영향을 확인한 결과이몌 도 5c 는 MCF-7 세포에서 인술린 및 IR-A48 이 인술린 수용체의 Y1150 및 MT S473 을 인산화 시키는지 여부를 확인한 결과를 보여주는 것이다ᅳ
도 6a 는 실시예 4.1 의 3T3-L1 지방세포에 인술린, IR-A48 및 인슬린과 IR-A48 흔합물을 처리하고 시간에 따른 포도당 흡수를 나타낸 그래프이다.
도 6b 는 인술린과 IR-A48 의 농도에 따른 활성을 측정하기 위하여 각각 30 분 및 4 시간으로 처리한 후 포도당 흡수를 관찰한 실시예 4.1 의 결과이다.
도 6c 는 실시예 4.2 의 IR-A48 의 활성이 PI3K 를 통해 전달되는지 확인하기 위하여 3T3-L1 에서 PI3K 저해제 (LY294002)를 1 시간동안 전처리한 후 IR-A48(2 시간 처리) 및 인슐린 (30 분 처리)에 의한 포도당 흡수 증가를 비교 조사한 결과이고, 도 6d는 IR-A48 의 활성이 PI3K를 통해 전달되는지 확인하기 위하여 3T3-L1에서 PI3K 저해제 (LY294002)를 1 시간동안 전처리한 후 IR-A48(2 시간 처리) 및 인술린 (30 분 처리)에 의한 AKT 인산화를 비교 조사한 결과이다.
도 7 은 실시예 6 의 0.6U/kg 의 인슐린 및 2.5, 5, 10mg/kg 의 IR- A48을 마우스에 투여한 후 120분동안 혈당 변화를 관찰한 결과이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 실시예를 들어 본 발명의 구성 및 효과를 보다 구체적으로 설명한다. 그러나 아래 실시예는 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 그에 의해 제한되는 것은 아니다.
항체 및 시약의 준비
인간 인술린 수용체 단백질은 R&D system (Minneapol ie, MN)에서 구입해서 사용하였다. 사용된 압타머는 Aptamer Science, Inc. (Pohang, Korea)와 ST Pharm (Siheung, Korea)을 통해 합성되었다. 웨스턴 블랏시 사용한 항체는 다음과 같다: Ant i -phosphor— ERK(T202/Y204), Anti -AKT, Ant i -phosphor-AKT( S473 ) , Ant i -phosphor-AKT(T308) , ant i-phospho-Fox01/3a (T24/T32), 및 anti-phospho-AS160 (T642)(signal ing, Beverly, MA). Anti— IR β-subunit (C-19), anti-IGF-lR β-subunit (C-20) , ant i-phospho-IR (10C3, Y1150/Y1151), ant i— phospho— IRS1 (Y632), 및 ant i-phospho-Shc (Y239/Y240) 항체는 Santa Cruz Biotechnology (Santa Cruz Biotechmology, Snata Cruz, CA)에서 구매함. Ant i-phospho-tyrosine (4G10), anti- phospho-IRSl (Y612) human/ (Y608) mouse , 및 ant i -phospho— IR (Y1146) (Mi 11 ipore, Darmstadt , Germany) . Ant i-phospho-IR (Y960) , ant i -phospho- IR (pAb, Y1150/Y1151), ant i-phospho-IR (Y1316), ant i-phospho-IR (Y1322), ant i-phospho-IR (Y1146/Y1150/Y1151) (Invitrogen, Carlsbad, CA). 세포 배양 및 분화
MCF7 인간 유방암 세포주, 인간 배아 신장 세포 HE 293, 마우스 지방세포 3T3-L1 은 American Type Culture Collection (Manassas, VA, USA)로부터 구입하였다. 인슐린 수용체가 과발현된 Rat-1 섬유세포 (Rat- 1/hIR)는 University of California 의 Nicholas J. G. Webster 박사로부터 제공 받았다. MCF7, HEK293, Rat-1/hIR은 10% fetal bovine serum (Gibco), penicillin C100 units/ml) , 및 streptomycin (100 units/ml)가 보충된 Dulbecco's modified Eagle's medium (Lonza)에서 37 °C 및 5% CO2 조건 하에서 배양하였다. 3T3-L1 은 0% Bovine serum (Gibco), penicillin (100 units/ml ) , 및 streptomycin (100 units/ml)가 보중된 Dulbecco's modified Eagle's medium (Lonza)에서 37°C 및 5% C02조건 하에서 배양하였다.
3T3-L1의 지방세포 분화를 위해 포화상태로 성장한 세포를 2일 동안 더 배양 한 후, 1 μΜ dexamethasone, 500 nM IBMX, 850 nM 인슐린과 10% FBS 가 포함된 DMEM 을 2 일동안 처리하였다. 그 후 850 nM 인슐린과 10% FBS 가 포함된 DMEM 을 2 일 동안 처리하고, 1OT FBS 만 포함된 DMEM 을 지방세포로의 분화가 완료 될 때까지 5~6일동안 처리하였다. 실시예 1: 인술린 수용체 압타머 발굴
SELEX 를 사용해 인슐린 수용체의 세포외 영역에 결합하는 압타머들을 발굴했다. 40mer 의 가변서열과 양쪽에 20mer 씩 존재하는 불가변 서열로 구'성된 단일가닥의 DNA 라이브러리 (서열번호 3)를 사용하여 SELEX를 진행하였다.
1.1변형 핵산 라이브러리 합성
SELEX 에 필요한 단일 사슬 변형 DNA 라이브러리를 제조하기 위하여 5'에 바이오틴 (biotin)이 결합된 안티센스 라이브러리 (서열번호 3)를 합성하였다. 안티센스 라이브러리를 0.5mM 의 dNTP(ATP, GTP, CTP, Bz-dU) , 0.25U/ul 의 K0D XL(Invitrogen) , 10X extension buffer(1.2M Tris-HCl pH7.8, 100 mM KC1, 60 mM (NH4)2S04, 70 mMMgS04, 1% TritonX-100, lmg/mlBSA)상에서 70°C 1 시간 동안 50uM의 역방향 프라이머 (서열번호 4)와 반웅시켜 이중 나선 DNA를 제조하였다. 여기에 20mM NaOH를 이용하여 단일 사슬 변형 DNA 라이브러리를 용출한 뒤 HCL 용액으로 중화하였다. 제조된 DNA 라이브러리는 Amicon ultra-15(Mi 11 ipore)를 이용하여 농축한 뒤 UV 분광광도계 (spectrophotometer)로 정량하였다.
1.2.인슐린 수용체와 결합
상기 합성된 라이브러리 lnmole 을 선택 완층액 (select ion buffer )(200mM HEPES, 510mM NaCl, 25mM KC1, 25mM MgC12)에 넣고 95°C, 70 °C, 48 °C, 37°C에서 각각 5 분간 반웅시킨 후, 음성 선택 (Negative select ion)을 위하여 10X 단백질 경쟁 완층액 (protein competition buffer )(10 Μ prothrombin, 10 Μ casein, 0. l (w/v) HSA (human serum albumin, SIGMA) lOyL를 흔합한 뒤, 상층액이 제거된 Dynabeads® MyOne™ Streptavidin CKSA bead) (50%(v/v) slurry, lOmg/ml Invitrogen)에 첨가하여 37°C에서 10분간 반웅 시켰다.
음성 선택 반응 후, 상층 액만을 취하여 새로운 튜브에 옮긴 후, His tag 이 결합된 인술린 수용체 단백질과 결합시킨 Dynabead TALON 에 37°C에서 1 시간 동안 반웅시켰다. 100 uL 으로 선택 완층액 (200mM HEPES, 510mM NaCl, 25mM KC1, 25mM MgC12) DNA 와 인슐린 수용체와 결합한 Dynabeads TALON를 5번 세척하였다. 5번째 세척 시에는 새로운 플레이트에 옮겨 세척하였다. 2mM NaOH 용액 85 를 첨가하여 표적에 결합하는 라이브러뫼를 용출한 뒤 8mM HC1 용액 20yL로 중화하였다.
1.3 증폭
표적에 결합하는 라이브러리 DNA 를 QPCR(quantitative PCR, IQ5 multicolor real time PCR detect ion system, Bi으 rad)을 이용하여 증폭하였다. 앞서 라이브러리 제조에 사용된 역방향 프라이머 (서열번호 4)와 안티센스 라이브러리 (서열번호 3)를, 각각 5uM (5 X QPCR master Mix, Novagen) , 0.075U/ul KOD(Novagen) , ImM dNTP( Roche Applied science), 25mM MgC12,5XSYBRgreen I (Invitrogen)의 총 부피가 125yL 가 되도록 흔할하여, 96°C 15 초, 55°C 10 초, 68 °C 30 분 조건으로 1 희, 그리고 96°C 15 초, 72 °C 1 분 조건으로 30 회 반복하여 이증 가닥 라이브러리를 제조하였다. 1.4. eDNA 제조
eDNA 는 enzymat ic DNA 로 DNA 주형과 폴리머라제를 이용해 생산한 압타머를 의미한다. 상기 QPCR을 통하여 만들어진 DNA 라이브러리를 25 ii L Myone SA bead( Invi trogen)에 상온에서 10 분간 흔합하여 고정하였다. 이 때 흔합된 DNA 양은 QPCR product 로 60ul 로 하였다. 20raM NaOH 용액을 첨가하여 단일 가닥 DNA로 만들어주었다. 그리고 실시예 1. 1의 라이브러리 제조와 같은 방법으로 변형된 핵산을 포함하는 DNA를 합성하여 다음 회차에 사용하였다. SELEX round 는 총 8 회 수행하였고 보다 선택적인 결합을 위하여 4 회부터 6 회까지 그리고 7 회부터 8 회까지 각각 DNA 와 단백질 ( Integr in a Vp 3) 복합체를 10mM - DxS04(s igma)용액에 1/200, 1/400 로 희석하여 DNA 압타머를 선별하였다.
1.5.압타머 염기서열 분석
8번의 SELEX round를 거친 후 그 결과물을 QPCR 방법으로 이중 가닥
DNA 로 증폭한 뒤 TA cloning ki t (SolGent )를 이용하여 클로닝 하였다. 그리고 백터 상에 존재하는 M13 프라이머 (서열번호 5)를 가지고 시퀀싱하여 압타머의 서열을 얻었다. 1.6. 최적의 압타마서열 결정
압타머를 찾아내기 위해서 발굴된 압타머 ( luM)를 인슐린 수용체가 과발현되고 있는 HEK293 세포에 처리하여 ART S473 의 인산화를 증가하는지를 분석하였다. 대부분의 압타머들이 효과가 없었지만, 발굴된 IR-A48F 및 IR-A62F 압타머는 AKT 의 인산화를 상당히 증가시켰다. IR- A48F 및 IR-A62F 의 서열은 가변영역에 8 개의 Nap-dU를 포함하는 80mer 로 구성되어 있는데 (도 la , 도 Id) , 표적과의 결합에 필요한 압타머의 최소 서열을 찾기 위해 압타머의 2 차구조를 바탕으로 압타머 서열 최소화를 수행하였다.
Mfold 프로그램에 의해 예측된 IR-A48F 압타머의 2 차 구조는 도 lb 에 나타내었으며 6 개의 Nap-dU 를 포함한 압타머 내부의 33 개의 뉴클레오타이드가 안정적인 스템 -루프 구조를 형성한다. Mfold 프로그램에 의해 예측된 IR-A62F 압타머의 2 차 구조는 도 le 에 나타내었으며 6 개의 Nap-dU 를 포함한 압타머 내부의 27 개의 뉴클레오타이드가 안정적인 스템- 루프 구조를 형성한다
상기 실험 결과, 표적에 대한 결합분석을 통해 이 내부 스템 -루프 서열 ( IR-A48) (3.5 nM Kd) 이 IR-A48F(6.9 nM Kd)와 비슷한 수준으로 인슐린 수용체에 결합함을 확인하였다. 또한 IR-A48 은 인슐린 수용체와 매우 유사한 구조를 가지는 인슐린 유사 성장인자 1( insul in-l ike growth factor 1, IGF-1) 수용체는 결합하지 않았기 때문에 인슐린 수용체에 대해 매우 높은 특이성을 가지는 것을 확인하였다. 마찬가지로 10C3 항체를 사용해 IR-A48 이 IGF-1 수용체의 인산화에 미치는 영향을 조사한 결과, 결합 특이성과 일치하게 IR— A48 은 인슐린과는 다르게 IGF-1 수용체의 인산화에 아무런 영향을 미치지 못하였다. 상기 결과를 도 lc 및 도 3c 에 나타내었다.
또한, 표적에 대한 결합분석을 통해 이 내부 스템 -루프 서열 ( IR-A62)
(2.4 nM Kd) 이 IR-A48F(26.9 nM Kd)와 비슷한 수준으로 인술린 수용체에 결합함을 확인하였다. 또한 IR-A62 은 인슐린 수용체와 매우 유사한 구조를 가지는 인슐린 유사 성장인자 1( insul in-l ike growth factor 1, IGF-1) 수용체는 결합하지 않았기 때문에 인슐린 수용체에 대해 매우 높은 특이성을 가지는 것을 확인하였다. 마찬가지로 10C3 항체를 사용해 IR- A62 이 IGF-1 수용체의 인산화에 미치는 영향을 조사한 결과, 결합 특이성과 일치하게 IR-A62 은 인슐린과는 다르게 IGF-1 수용체의 인산화에 아무런 영향을 미치지 못하였다. 상기 결과를 도 If 및 도 3c에 나타내었다.
이후의 모든 실험은 최소화가 진행된 IR-A48 및 IR-A62 을 사용해 수행하였다.
1.7.압타머 합성 및 정제
압타머는 핵산전용 고정상합성기인 Bioautomat ion 사의 Mermade 12 합성기를 사용하여 Sol id Phase Ol igo Synthesi s 방법으로 자체 합성하였다. 을리고뉴클레오티드 합성기 (Bioautomat ion, Mermadel2)를 이용하여 sol ide phase b-cyanoethyl phosphor ami dite chemistry 로 .합성하였으며, 합성 早 CPG(200nmole synthesis column, 1000A (匪 1-1000-) )를 클리비지 (cleavage) 용액 [t— butylamine:methanol:water(l:l:2 부피비)]에 넣고 70°C에서 5 시간 동안 클리비지 /디프로텍션 (deprotection) 후 진공 건조를 시킨 다음, HPLCXGE, AKTA basic)를 이용하여 분리 /정제하였다. 사용한 컬럼은 RP—C18 컬럼 (Waters, Xbridge OST C18 10x50mm)이고 UV 254 nm/290nm, f low rate: 5ml/min, 은도: 65°C의 조건으로 0.1M TEAB/Acetonitr i le Buffer 를 이용하였다. 이들 압타머들은 모두 LC-ESI MS spectrometer (Waters HPLC sys terns ( Wat ers) . + Qtrap2000(ABI))로 0.02% 오차범위 내에서 정확한 분자량을 측정하였으며 HPI 를 이용한 순도측정에서 80-9OT를 얻을 수 있었다, 실시예 2: 인술린 수용체 압타머 결합특성
2.1. 세포 실험을 위한 준비
압타머를 처리하기 전, 혈청 결핍을 위해 세포를 FBS가 없는 DMEM에
3 시간동안 처리하였다. 이후 1 시간 동안 Krebs-Ringer HEPES buffer [25 mM HEPES ( H 7.4), 120 mM NaCl , 5 mM KC1, 1.2 mM MgS04, 1.3 mM CaC12, and 1.3 mM KH2P04]에 세포를 처리 하였다. 세포 처리를 위한 모든 압타머는 동일한 Krebs-Ringer HEPES buffer 에 준비되었으며, 정확한 2 차구조 형성을 위해 95° C 에서 5 분 동안 가열하여 상은서 천천히 식히는 과정을 거쳤다.
2.2. 인술린 경합 분석 (Insulin competition assay)
실시예 1 에서 발굴된 IR-A48 및 IR-A62 의 인슐린 수용체에 대한 결합 특성을 조사하기 위해서 유세포 분석기 (Flow cytometry)를 사용해 인술린 경합 분석 (Insulin competition assay)을 진행하였다. Rat- 1/hIR세포를 5mM EDTA가 포함된 PBS 를 이용하여 세포배양용기로부터 떼어 내었다. 준비된 세포에 블로킹 완층액 (Blocking buffer) (PBS, 1% BSA, and 0.1% NaN3)를 처리하여 4°C에서 30분 동안 20rpm으로 회전하며 반웅시켰다. 이후 FITC 가 결합된 인슐린을 다양한 농도의 IR-A48 과 함께 처리하여 각각의 결합이 평형상태에 이르도록 4°C에서 1시간동안 반웅시켰다. 세포를 PBS 로 2 번 씻어낸 후, 4% 파라포름알데하이드가 포함된 PBS 로 상온에 30 분 동안 고정시켰다. 세포에 결합된 인슐린의 양을 유세포 분석기 (Flow cytometry, BD FACSCanto™ 11)를 통해 FTTC 의 형광을 측정함으로써 관찰하였다.
그 결과 IR-A48 는 아고니스트로서 활성올 가짐에도 불구하고, 인슐린의 결합을 방해하지 않는 것을 확인했다 (도 2a). 이는 IR-A48 이 인술린이 결합하는 오소스테릭 자리 (orthosteric site)가 아닌, 완전히 다른 알로스테릭 자리 (allosteric site)에 결합한다는 의미를 지닌다. IR- A62 는 아고니스트로서 활성을 가짐에도 불구하고 인슐린의 결합을 증가시키는 촉진적 상호작용 (Positive cooperat ivity)을 가지는 것을 확인했다 (도 2c).
2.3. 필터 결합 분석 (filter binding assay)
선별된 압타머의 결합력을 알아보기 위하여 필터 결합 분석법 (filter binding assay)을 수행하였다. 먼저 압타머의 5 ' 말단에 TdT (Terminal deoxynucleotidyl transferase, NEB)로 a _P32ATP(PerkinElmer )을 표지 하였다. 압타머 ΙμΜ 0.25uL, α -Ρ32ΑΤΡ (5 μ M,perkinelmer ) , 0.25 uL, TdT 및 10X NEB buffer4 10 uL reaction volume 으로 37°C에서 30 분간 반웅시키고, 70°C에서 10 분간 incubation 하여, TdT 를 불활성화시켰다. 표지된 DNA pool 은 Micro spin G-50 column(GE healthcare)을 이용하여 정제하였다.
표지된 압타머 20,000cpm 을 100 IxSB buf fer (200mM HEPES, 510mM NaCl, 25raM KCl, 25mM MgC12)에 넣고 95°C에서부터 1초에 0.1°C씩 37°C까지 천천히 냉각시켰다. 그리고, buffer (200mM HEPES, 510mM NaCl, 25mM KCl, 25mM MgCl2)를 이용하여 인슐린 수용체 단백질을 ΙΟΟηΜ 에서 12 point 로 순차적으로 희석한 뒤, 상기 가열 및 넁각시킨 DNA 풀 30 L 를 각각 첨가하여 37°C에서 30 분간 반응시켰다. 나일론 멤브레인 (Nylon membrane, GE healthcare)에 DNA 와 IntegrinaVP3 의 흔합물을 각각 2yL 씩 spotting 한 뒤 zorbax resin(Agi lent) 5.5μί 를 첨가하였다. 그리고 미리 IX SB buffer (200mM HEPES, 510mM NaCl , 25mM KC1, 25mM MgC12)50yL 로 적셔놓은 Durapore 필터 (Mi 11 ipore)에 넣고 vacuum 을 걸어주었다. 그리고 멤브레인 필터를 100 uL의 IX선택 완층액 (select ion buf fer)(200raM HEPES, 510mM NaCl, 25mM KC1, 25mM MgC12)로 씻어주었다. 필터 플레이트를 이미지 플레이트에 밤새 노출시킨 뒤 FLA-5100(Fuji)으로 이미지를 정량화 하였다. 그 결과 IR-A48 및 IRA48F 의 Kd 는 각각 3.5nM 및 6.9ηΜ 이었으며, IR-A48은 인슐린 수용체에는 결합하였으나 IGF-1수용체에는 결합하지 않는 것을 확인할 수 있었다. 상기 결과를 도 lc에 나타내었다.
또한, 그 결과 IR-A62 및 IR-A62F 의 Kd 는 각각 2.4nM 및 26'.9nM 이었으며, IR-A62 은 인슐린 수용체에는 결합하였으나 IGF- 1 수용체에는 결합하지 않는 것을 확인할 수 있었다. 상기 결과를 도 U 에 나타내었다. 실시예 3: 인슐린 수용체 압타머의 인산화
3.1. Western Blot
인술린 수용체 및 신호전달 단백질의 인산화를 관찰하기 위하여 용해완충용액 [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 20 mM NaF, 10 mM β -glycerophosphate, 2 mM Na3V04, 1 mM PMSF, 10% glycerol, 1% Triton-X, and protease inhibitor cocktails]에 세포를 용해시켰다. 세포 용해물은 95° C 에서 14,000 rpm 으로 15 분 동안 원심분리하여 단백질을 분리해 내었다. 준비된 세포 용해물은 6%~16% SDS-PAGE 상에서 전기영동하였고 니트로셀를로오스 막 (Nitrocellulose membrane)에 옮겨졌다. 막에 1 차 항체를 4°C에서 12 시간동안 반웅시킨 후, HPROtorseradish peroxidase) 혹은 IRDye800CW(LI-COR)가 결합된 2 차 항체를 상온에서 1 시간동안 반웅시켰다. 단백질의 존재 및 인산화 정도는 ECLCThermo Scientific, MA)을 통한 Cherai luminescence 혹은 Infrared fluorescence system(0dyssey, LI-C0R)를 이용해 측정되었다.
3.2. 인슐린 수용체 인산화 실시예 1 의 IR-A48 및 IR-A62 압타머가 인슐린의 결합에 미치는 연향을 알아보기 위해, IR-A48 , IR-A62 및 인슐린을 처리할 경우 인슐린 수용체의 인산화 정도를 상기 기재된 웨스턴 블로팅법을 통하여 관찰하고 그 결과를 도 2b 및 도 2d에 나타내었다.
Rat-1/hIR 세포에서 인슐린에 의한 IRS, AKT, ERK 의 인산화는 IR-
A48 또는 IR-A62과 함께 처리했음에도 불구하고 아무런 영향을 받지 않았다. 하지만 IR-A48 또는 IR-A62 에 의한 인술린 수용체의 인산화는 인슐린과는 달랐다. 인슐린 수용체 카이네이즈 영역의 Y1150/Y1151 의 인산화는 인슐린과 IR-A48 또는 IR-A62 모두에 의해서 증가하였다. I -A48 과 인슐린이 함께 처리되었을 때 Y1150/Y1151 의 인산화는 협력적으로 증가하였고, IR-A48 과 인슐린이 함께 처리되었을 때 Y1150/Y1151 의 인산화는 크게 증폭되었다. 전체 티로신 인산화는 인슐린에 의해서만 크게 증가하였고 IR-A48 과 IR-A62 의 영향은 미미했다. 종합해보면 이 결과들은 IR-A48 인 인술린과 독립적으로 작용하며 IR-A62 는 인슐린의 활성을 증폭시키지만, 그 활성은 카이네이즈 영역의 특정 티로신 (Y1150/Y1151)에 편중되어 있다는 것을 보여 준다.
3.3. ELISA- 세포 내 티로신 인산화
실시예 1 에서 발굴된 IR-A48 및 IR-A62 압타머의 인산화 효과를 알아보기 위하여 6종류의 항체를 사용하였다. 인슐린이 수용체에 결합할 때 세포 내 영역의 7 개의 티로신 (Y953 , Y960, Y1146, Y1150, Y1151, Y1316 및 Y1322)이 인산화 되는데, 이 중 Y953 에 대한 항체는 개발되지 않아 총 6가지 티로신에 대하여 실험하였다.
항체의 항원 특이성을 관찰하기 위하여 ELISA 를 수행하였는데 먼저 항원으로 사용될 3 종류의 펩타이드 (MTRDIYETD-pY-pY-RKGGKGLL, MTRDIYETD- pY-YRKGGKGLL, MTRDIYETDY-pY-RKGGKGLL)는 Sel leckchem (Houston, TX)에서 합성되었다. PBS 에 녹인 20 pmol/100 μΐ 의 펩타이드를 N—oxysuccinimide ester groups 으로 코딩된 96 plate(Corning, MA)에 4°C에서 12 시간동안 반웅시켜 공유결합으로 연결시켰다. 1% BSA 가 포함된 PBS 로 1 시간 동안 blocking 후, TTBS 완층용액 [50 mM Tr i s-HCl (pH 7.6), 150 mM NaCl , and 0.05% Tween-20]으로 한번 씻어 내었다. 항체를 TTBS 완충용액에 1 : 1000 으로 희석 시킨 후, 상온에서 1 시간동안 96 plate 에 결합된 항원과 결합시켰다. TTBS 완층용액으로 3 번 씻어낸 후, AP(Alkal ine phosphatase)가 결합된 2 차 항체 1 :2000 으로 희석하여 1 시간 동안 상온에서 결합시켰다ᅳ TTBS 완층용액으로 3 번 씻어낸 후, lOOul 의 CSPD 를 첨가하여 상온에서 30 분동안 반웅시킨 후 광도계 (Luminoskan Ascent )를 이용하여 화학 발광을 측정하였다.
Y1150/Y1151에 편향된 인산화를 명확히 검증하기 위해서 2가지 다른 종류의 pY1150/pY1151 항체를 사용하였다: 10C3 (sc-81500, Santa Cruz) pAb (44804G, Invi trogen) . 또한 Y1150 과 Y1151은 독립적으로 인산화 되기 때문에 두 항체가 각각 pY1150, pY1151 , pY1150/pY1151 에 서로 다른 특이성 '을 가지고 있다고 가정하고, 이를 검증하기 위해 ρΥ1150, ρΥ1151 , ρΥ1150/ρΥ1151 에 대응하는 합성 펩타이드 (pept ides)를 마련하면서 ELISA를 통해 항체를 특이성을 확인했다.
그 결과를 도 3a 에 나타내었으며, 인슐린은 Y960, Y1146, Y1150,
Y1151, Y1316, Y1322 의 모든 인산화를 증가시켰지만, IR-A48 및 IRᅳ A62 은 오직 카이네이즈 영역의 Y1150/Y1151 인산화만을 증가시켰음을 알 수 있다. 도 3b 에서 알 수 있듯이, 10C3 항체는 pY1150/pY1151 과 ρΥ1150 모두에 비슷한 정도로 결합했지만, pAb 항체는 오직 pY1150/pY1151 에만 강하게 결합하였다. 이 결과를 통하여 IR-A48 이 인슐린 수용체 카이네이즈 영역의 Y1150 만을 우선적으로 인산화시키는 편향된 아고니스트 (biased agoni st )라는 것이 입증되었다.
3.4: 신호전달 단백질의 인산화
실시예 1 에서 발굴된 IR-A48 에 의한 Y1150 인산화가 인술린 신호전달에 어떤 다른 영향을 미치는지 인슐린과 비교하였다.
상기 실험 결과, IR-A48 은 인슐린과 견즐 정도의 신호전달을 활성화시켰다. 인술린 (50nmol /L)이 처리된 3T3-L1 지방세포에서 인슐린 수용체와 IRS, AKT, ERK 등의 단백질의 인산화는 5 분 동안 빠르게 증가하였고 시간이 지남에 따라 점차 감소하였다. 인슐린과는 대조적으로 IR-A48(200nmol /L)은 RS (Y608 , Y632) , AKT (T308 , S473) , AS160 (T642) , GS 3 α / β (S21/S9) , F0X01/3a (T24/T32)의 인산화를 2시간에 걸쳐 천천히 증가시켰고 인산화는 4 시간 동안 지속되었다. 상기 결과를 도 4a 에 나타내었다.
인슐린 수용체의 인산화는 신호전달에서 두 가지 역할을 하는데 첫째로 카이네이즈 영역의 인산화 (Y1146 , Y1150 , Y1151)는 카이네이즈의 활성을 조절하고, 둘째로는 Y960 과 Y1322 의 인산화가 인슐린 수용체에 결합하는 신호전달 단백질의 결합위치로 사용된다. 이러한 Y1150 에 편중된 인산화를 고려할 때 IR-A48 은 다른 티로신의 낮은 인산화로 인해 인슐린 신호전달을 크게 높이지 못할 것으로 생각되었음에도 불구하고, IR-A48 은 인술린 수준의 신호 전달 활성을 보여 예상치 못한 효과를 보였음을 확인하였다.
무엇보다도 IR-A48 은 특정 인슐린 신호전달에 편증된 활성을 보였다. I -A48 에 의해서 AKT S483 의 인술린과 비교해 98% 정도의 높은 인산화 정도를 보였지만, AKT T308 의 인산화는 단지 37%에 머물렀다 (도 4A, 4B, 및 4C) . 또한 IR-A48 은 E 의 인산화에는 거의 영향을 미치지 않았다 (도 4A 및 4D) . 이와 같이 IR-A48 은 인술린 수용체의 신호전달을 활성화시키지만, 인슐린에 의한 신호전달과는 확연히 다른 특성을 가지고 있다. 실시예 4 : 인술린 수용체 압타머의 포도당흡수
4. 1 3T3-L1 지방 세포에서 포도당 흡수
상기 실시예 1 에서 발꿀된 IR-48 이 AKT S473 의 인산화를 증가시켰으므로 포도당 흡수에 대한 IR-A48 의 활성을 3T3-L1 지방세포에서 조사하였다.
완전히 분화된 3T3-L1 지방세포를 혈청 결핍을 위해 FBS 가 없는 DMEM에 3시간동안 처리한 후, 1시간동안 Krebs-Ringer HEPES 완층용액으로 처리했다. 인슐린 혹은 압타머를 해당 시간 동안 처리한 후, 2- deoxy[ 14C] glucose (0. 1 Ci/ml )를 10 분 동안 처리하였다. 20mM 포도당이 첨가된 PBS 로 3 반을 씻어내고 0.5 N NaOH 과 1% SDS 가 포함된 용액으로 세포를 녹여내었다. 액체 섬광 계수기 (Liquid scint i l lat ion counter )를 사용하여 세포 내로 흡수된 2-Deoxy-D-glucose의 양을 관찰하였다.
3T3-L1 지방세포에 인슐린 (50nraol/L)을 처리했을 때, 포도당 흡수는 30 분에서 1 시간 정도에 가장 높이 증가했다가 천천히 감소하여 8 시간 이후에는 절반 이하로 떨어졌다. Y1150 에 ' 편증된 인산화에도 불구하고, IR-A48(200nmol/L)은 인슐린과 비슷한 정도의 수준으로 포도당 흡수를 증가시켰다. 하지만, 신호전달 단백질의 인산화 패턴과 마찬가지로 포도당 흡수 역시 4 시간에 걸쳐 천천히 증가시켰고, 8 시간 이상 지속되었다. 또한, IR-A48 과 인슐린을 함께 처리했을 때는 IR-A48 의 알로스테릭 결합 (al loster ic binding) 때문에 포도당 흡수는 협력적으로 증가 되었다. 상기 결과를 도 6a에 나타내었다.
느린 증가속도에도 불구하고 IR-A48 은 높은 농도에서 포도당 흡수를 충분히 증가시켰다. 인슐린과 IR-A48 의 농도에 따른 활성을 측정하기 위해 각각 가장 높은 반웅을 보인 처리 시간에 포도당 흡수를 관찰하였다 (인술린은 30 분, IR-A48 은 4 시간) . 가장 높은 농도에서 인술린과 IR-A48 모두 비슷한 정도의 포화된 포도당 흡수 정도를 보였다. 하지만 인술린의 경우 농도에 따라 서서히 증가하는 포도당 흡수를 보였지만 (Hi U coeff icient : 0.77), IR-A48 은 20 nraol/L 와 200 nmol/L 사이에서 급격하게 증가하는 모습을 보였다 (Hi l l coef f icient : 0.77) . 그 결과, IR-A48(66.2nmol/L)의 EC50 는 인술린 (8.9nmol/L)보다 높았지만, I - A48(202.4nmol/L)의 EC95 는 인슐린 (261.9nmol /L)보다 약간 낮았다. 상기 결과를 도 6b에 나타내었다.
4.2 PI3K에 의한 포도당 흡수 유도
상기 실시예 1 에서 발굴된 IR-A48 의 활성이 PI3K 를 통해 전달되는지 여부를 확인하기 위하여 3T3-L1 에서 PI3K inhibi tor (LY294002)을 1 시간동안 처리한 후, IR-A48 에 의한 AKT 인산화와 포도당 흡수 증가를 조사하였다. 그 결과 IR-A48 의한 포도당 흡수뿐 아니라, AKT 의 인산화 역시 LY294002 에 의해서 저해되는 것을 확인하였다. 그 결과를 도 6c 및 도 6d 에 나타내었으며 , 이는 IR-A48 에 의한 AKT 인산화와 포도당 흡수 증가는 인술린과 마찬가지로 PI3K 를 통해 유도된다는 것을 보여준다. 실시예 5: 암세포성장유도
실시예 1에서 발굴된 IR-A48이 세포 분열에 미치는 영향을 조사하기 위하여 인슐린의 세포분열 유도 능력을 실험하는데 폭넓게 사용되는 MCF-7 암세포주를 사용하였다.
MCF7 세포를 24-wel l plate에 wel l 당 10000개로 배양한 후 24시간 동안 키운다. 혈청 결핍을 위해 0.5% FBS DMEM으로 추가로 24시간 동안 더 키운다. 인슐린 혹은 압타머를 72 시간 동안 처리하였으며 24 시간이 지날 때마다 배지를 새롭게 교체해 주었다. 처리가 끝난 후 세포를 4% paraformaldehyde 가 포함된 PBS 로 상온에 30 분 동안 고정시켰다. 세포가 가진 DNA 를 Ι μ Μ SYT060 형광색소가 포함된 PBS 로 염색시킨 후 LI—C0R Odyssey스캐너로 형광을 측정함으로써 세포의 양을 정량하였다.
MCF-7 에 인술린과 IR-A48 을 각각 단독으로 처리한 결과, 인술린은 세포분열을 2.1 배 증가시켰지만 IR-A48은 아무런 영향이 없었다. 또한 IR- A48(lumol/L)을 인슐린과 함께 섞어 처리하였을 때 역시 인술린에 의한 세포분열에 아무런 영향을 미치지 않았다. IR-A48이 MCF-7 세포에 존재하는 인술린 수용체를 활성화시키지 못했을 가능성을 배제하기 위하여, MCF-7 세포에서 IR-A48에 의한 인슬린 신호전달을 확인해 보았다. 그 결과 3T3-L1 지방세포와 마찬가지로 MCF-7 세포에서도 인슐린 수용체 Y1150 과 AKT S473 을 인산화시키는 것을 확인하였다. 상기 결과를 도 5a 내지 도 5c 에 나타내었으며, 이 결과 IR-A48 에 의해 유도되는 신호전달은 인슐린 수용체에 의한 세포분열 유도와 완전히 분리된 기능을 가지는 것을 알 수 있었다. 실시예 6: in vivo 혈당실험
상기 실시예 3 내지 실시예 6 의 결과를 in vivo에서 증명하기 위해 실시예 1 에서 발굴된 IR-A48 이 마우스의 혈당이 미치는 영향을 측정하였다. 혈액 속에서 IR-A48 이 3' 엑소뉴클에이즈 (3' exonuc l eases)에 의해서 빠르게 분해되는 것을 막기 위해서 IR-A48 의 3 ' 말단에 역위 데옥시티라민 ( inverted deoxythymi dine , idT)를 추가하였다. 8 주령의 수컷 C57B1 /6J 실험 쥐를 12 시간 동안 금식시킨 후 10 rag/kg, 5 mg/kg, 2.5 mg/kg 의 IR-A48 를 PBS 에 녹여 정맥주사를 통해 실험 쥐에 투여하였다. 투여 후 15분, 30분, 60분, 90분, 120분이 지났을 때, 꼬리로부터 혈액을 채취하여 혈당측정기 (Accu-Check Act ive ; Roche Di agnost i cs)를 통해 혈당의 변화를 관찰 하였다. 투여 30 분 후, 10 mg/kg IR-A48 가 투여된 마우스의 혈당 (41% 감소)은 0.6 uni t /kg 의 인슐린 (51% 감소)과 비슷한 정도로 감소하였다. 하지만 30 분 이후 빠르게 혈당이 회복되는 인슐린과는 다르게, IR-A48 이 투여된 마우스는 1 시간까지 혈당이 지속적으로 감소하다가 그 이후에야 천천히 회복되는 양상을 보여줬다. 상기 결과를 도 7에 나타내었다.
이를 통하여 IR-A48 이 in vi tro 뿐만 아니라 in vivo 에서도 활성이 있음을 확인하였으며, 이는 IR— A48 이 알로스테릭 조절을 통해 인술린과는 독립적으로 혈당을 조절할 수 있다는 것을 나타낸다.

Claims

【특허청구범위】
【청구항 1】
인슐린 수용체의 세포 외 영역 (Extracel lular domain)에 특이적으로 결합하고 인슐린 수용체의 인산화를 촉진시키는 압타머로서, 인술린 수용체 압타머 (aptamer) .
【청구항 2】
제 1 항에 있어서, 상기 압타머는 인슐린 수용체에 결합하고, IGF-1 수용체에는 결합하지 않는 것을 특징으로 하는, 인술린 수용체 압타머.
【청구항 3】
제 1항에 있어서, 상기 압타머는 5-위치에 소수성 작용기로 치환되어 변형된 데옥시리보스 우라실을 포함하는 것인, 인슐린 수용체 압타머.
【청구항 4]
제 4 항에 있어서, 상기 압타머는 인술린 수용체의 Y1150 을 인산화하거나 또는 AKT S473을 인산화시키는 것인, 인슐린 수용체 압타머 .
【청구항 5】
제 1 항에 있어서, 상기 압타머는 MAPK 경로와 독립적인 경로로 활성화시키는 것을 특징으로 하는, 인슐린 수용체 압타머.
【청구항 6】
제 5항에 있어서 , 상기 압타머는 인슐린 수용체의 인산화를 일으키나 세포의 성장 또는 분열을 일으키지 않는 것인, 인슐린 수용체 압타머.
【청구항 71
제 1 항에 있어서, 상기 압타머는 서열번호 2 또는 서열번호 7 의 염기서열을 포함하는 것인, 인슐린 수용체 압타머.
【청구항 8】
제 1 항에 있어서, 상기 압타머는 서열번호 1 의 염기서열 내의 서열번호 2 의 염기서열을 필수적으로 포함하고, 상기 서열번호 2 의 염기서열의 적어도 일 말단으로 연속하는 33 개 내지 80 개 뉴클레오타이드로 이루어진 것인, 인슐린 수용체 압타머.
【청구항 9】 제 1 항에 있어서, 상기 압타머는 서열번호 6 의 염기서열 내의 서열번호 7 의 염기서열을 필수적으로 포함하고, 상기 서열번호 7 의 염기서열의 적어도 일 말단으로 연속하는 27 개 내지 80 개 뉴클레오타이드로 이루어진 것인, 인슐린 수용체 압타머.
【청구항 10】
제 1 항에 있어서, 상기 압타머는 서열번호 2 또는 서열번호 7 의 염기서열이 스템 -루프 구조를 형성하는 것인, 인슐린 수용체 압타머.
【청구항 11】
제 1 항에 있어서, 상기 소수성 작용기는 나프틸기, 벤질기, 피롤벤질기 및 트립토판로 이루어지는 군에서 선택된 1 종 이상인, 인슐린 수용체 압타머 .
【청구항 12】 .
제 8항에 있어서, 상기 서열번호 2의 염기서열을 포함하는 압타머는 인슐린 수용체와 결합 시 해리 상수 (Kd)가 1 내지 20 nM 인, 인슐린 수용체 압타머ᅳ
【청구항 13】
제 8항에 있어서, 상기 서열번호 2의 염기서열을 포함하는 압타머는 인술린 수용체와 결합 시 해리 상수 (Kd)가 0.5 내지 40 nM 인, 인슐린 수용체 압타머 .
【청구항 14】
제 1 항에 있어서, 상기 압타머에 포함된 적어도 하나의 염기는 PEG ( po 1 y e t hy 1 ene glycol ) , 비오틴 i dT( inverted deoxythymidine) , LNA(Locked Nuclei c Acid) , 2 ' -메톡시 뉴클레오사이드, 2 ' -아미노 뉴클레오사이드, 2 ' F-뉴클레오사이드, 아민 링커, 티올 링커, 및 콜레스테를로 이루어진 군에서 선택된 1 종 이상이 결합되어 변형된 것을 특징으로 하는, 인술린 수용체 압타머 .
【청구항 15】
제 1항에 있어서, 이량체 (dimer ) 또는 다량체 (mul t imer )로 존재하는, 인슐린 수용체 압타머ᅳ
【청구항 16】
제 1 항 내지 제 15 항 중 어느 한 항의 인술린 수용체 압타머를 포함하는, 인슐린 수용체 작용제 (agoni st ) .
【청구항 17】
제 16 항에 있어서, 상기 압타머는 인술린 수용체에 결합하고, IGF-1 수용체에는 결합하지 않는 것을 특징으로 하는, 작용제
【청구항 18】
제 1항 내지 제 15항 중 어느 한 항의 인슐린 수용체 압타머를 유효 성분으로 함유하는, 인슐린 관련 질환의 예방 또는 치료용 약학 조성물.
【청구항 19】
제 18항에 있어서, 상기 질환은 당뇨병, 당뇨 합병증, 대사성 증후군, 비만 또는 심혈관 질환인 약학 조성물.
【청구항 20]
제 19항에 있어서, 인슐린을 추가로 포함하는, 약학조성물.
【청구항 21】 ―
제 1 항 내지 제 15항 중 어느 한 항의 인슐린 수용체 압타머를 유효 성분으로 함유하는, 당뇨병 또는 당뇨 합병증 진단용 조성물.
PCT/KR2016/004665 2015-07-27 2016-05-03 인슐린 수용체 압타머 및 이를 포함하는 약학적 조성물 WO2017018641A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16830674.4A EP3330379B1 (en) 2015-07-27 2016-05-03 Aptamer against insulin receptor and pharmaceutical composition containing the same
JP2018503571A JP6514825B2 (ja) 2015-07-27 2016-05-03 インスリン受容体アプタマーおよびこれを含む薬学的組成物
US15/746,654 US10724039B2 (en) 2015-07-27 2016-05-03 Aptamer against insulin receptor and pharmaceutical compostion containing the same
ES16830674T ES2899917T3 (es) 2015-07-27 2016-05-03 Aptámero contra el receptor de insulina y la composición farmacéutica que lo contiene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150106151 2015-07-27
KR10-2015-0106151 2015-07-27

Publications (2)

Publication Number Publication Date
WO2017018641A1 true WO2017018641A1 (ko) 2017-02-02
WO2017018641A8 WO2017018641A8 (ko) 2017-03-02

Family

ID=57885164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004665 WO2017018641A1 (ko) 2015-07-27 2016-05-03 인슐린 수용체 압타머 및 이를 포함하는 약학적 조성물

Country Status (6)

Country Link
US (1) US10724039B2 (ko)
EP (1) EP3330379B1 (ko)
JP (1) JP6514825B2 (ko)
KR (1) KR101881500B1 (ko)
ES (1) ES2899917T3 (ko)
WO (1) WO2017018641A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216458A1 (ko) * 2018-05-10 2019-11-14 주식회사 압타머사이언스 인슐린 수용체 압타머 및 이를 포함하는 당뇨병 치료용 약학적 조성물
KR102218267B1 (ko) * 2018-10-15 2021-02-23 한양대학교 산학협력단 성상교세포 특이적 핵산 압타머 및 이의 용도
WO2021201516A1 (ko) * 2020-03-30 2021-10-07 주식회사 압타머사이언스 인슐린 수용체 특이적 압타머 및 이의 용도
CN113549623B (zh) * 2021-05-31 2023-07-11 武汉维尔博生物科技有限公司 一种同时检测胰岛素与葡萄糖的适配体组合、检测传感器及其制备方法
KR20230131326A (ko) * 2022-03-03 2023-09-13 주식회사 압타머사이언스 인슐린 수용체 특이적 압타머 및 이의 이용
WO2024005240A1 (ko) * 2022-06-30 2024-01-04 포항공과대학교 산학협력단 인슐린 수용체 결합 압타머 이량체 및 이의 용도
KR20240053520A (ko) * 2022-10-14 2024-04-24 포항공과대학교 산학협력단 Igf-1 수용체 결합 압타머 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011680A1 (en) * 2002-07-25 2004-02-05 Archemix Corp. Regulated aptamer therapeutics
US20120083521A1 (en) * 2005-09-15 2012-04-05 Duke University Aptamers as agonists

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926976B2 (en) * 2009-09-25 2015-01-06 Xoma Technology Ltd. Modulators
US20130059292A1 (en) 2011-08-30 2013-03-07 Aptamer Sciences Inc. Method of detecting a target using aptamer-mediated protein precipitation assay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011680A1 (en) * 2002-07-25 2004-02-05 Archemix Corp. Regulated aptamer therapeutics
US20120083521A1 (en) * 2005-09-15 2012-04-05 Duke University Aptamers as agonists

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHANG, MINHYEOK ET AL.: "Aptamer-based Single-molecule Imaging of Insulin Receptors in Living Cells", JOURNAL OF BIOMEDICAL OPTICS, vol. 19, no. 5 , 051204, May 2014 (2014-05-01), pages 1 - 6, XP055350011 *
KIM, KISEOK ET AL.: "Efficient Isolation and Elution of Cellular Proteins Using Aptamer-mediated Protein Precipitation Assay", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 448, no. 1, 24 April 2014 (2014-04-24), pages 114 - 119, XP029021416 *
PARK, GA - YOUNG ET AL.: "Selection of DNA Aptamer Switched on Signaling of Insulin Receptor by SELEX", THE KOREAN SOCIETY FOR BIOTECHNOLOGY AND BIOENGINEERING INTERNATIONAL SYMPOSIUM, April 2015 (2015-04-01), pages 568, XP009508664 *
See also references of EP3330379A4 *
YUNN, NA - OH ET AL.: "Agonistic Aptamer to the Insulin Receptor Leads to Biased Signaling and Functional Selectivity through Allosteric Modulation", NUCLEIC ACIDS RESEARCH, vol. 43, no. 16, 5 August 2015 (2015-08-05), pages 1 - 1 3, XP055350012 *

Also Published As

Publication number Publication date
US10724039B2 (en) 2020-07-28
KR101881500B1 (ko) 2018-07-24
WO2017018641A8 (ko) 2017-03-02
JP6514825B2 (ja) 2019-05-15
EP3330379A9 (en) 2018-07-18
EP3330379B1 (en) 2021-10-27
JP2018530994A (ja) 2018-10-25
EP3330379A1 (en) 2018-06-06
US20190032060A1 (en) 2019-01-31
KR20170013178A (ko) 2017-02-06
ES2899917T3 (es) 2022-03-15
EP3330379A4 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
WO2017018641A1 (ko) 인슐린 수용체 압타머 및 이를 포함하는 약학적 조성물
JP2018530994A6 (ja) インスリン受容体アプタマーおよびこれを含む薬学的組成物
MacKay et al. ROS-dependent activation of RhoA/Rho-kinase in pulmonary artery: Role of Src-family kinases and ARHGEF1
WO2012176952A1 (ko) Erbb2 수용체에 선택적으로 결합하는 압타머 및 이의 용도
KR20190100227A (ko) 유전적으로 암호화가능한 바이오센서용 강력한 저분자 결합 압타머를 생성하기 위한 시험관내 선별법을 이용한 생물학적 rna 스캐폴드의 사용
US9650638B2 (en) Aptamer for periostin and anti-cancer composition including same
Yang et al. Inhibition of farnesyl pyrophosphate synthase attenuates angiotensin II-induced cardiac hypertrophy and fibrosis in vivo
KR20200023427A (ko) Hmgb1 발현을 억제하기 위한 조성물 및 방법
KR20220115946A (ko) 안지오텐시노겐 (agt) 관련 장애를 치료하기 위한 방법 및 조성물
EP3369820B1 (en) Dna aptamer capable of bonding to vwf
WO2017019952A1 (en) Compositions and methods for regulating leukocyte adhesion
KR20150050384A (ko) C형 간염 바이러스 감염 질환의 예방 또는 치료용 약학 조성물
AU2020433744B2 (en) Pharmaceutical composition for lowering blood cholesterol, preventing or treating cardiovascular diseases and reducing inflammation
US10253069B2 (en) Compositions and methods for regulating arterial tone
Zheng et al. Exenatide regulates substrate preferences through the p38γ MAPK pathway after ischaemia/reperfusion injury in a rat heart
CN108350033A (zh) 端粒酶易位的肽抑制剂及其治疗用途
Nakaya et al. Decoy approach using RNA-DNA chimera oligonucleotides to inhibit the regulatory function of human immunodeficiency virus type 1 Rev protein
KR20230162024A (ko) 헌팅틴(HTT) iRNA 제제 조성물 및 이의 사용 방법
KR101680335B1 (ko) 상피세포 성장인자 수용체 압타머 및 이를 포함하는 항암제 조성물
KR100973990B1 (ko) 대장암 진단용 마커 prr7과 이에 의해 코드되는 단백질 및 이를 이용한 대장암 진단 키트
KR20240053520A (ko) Igf-1 수용체 결합 압타머 및 이의 용도
KR20180129585A (ko) Mage-1에 특이적으로 결합하는 압타머 및 이의 용도
KR20230022812A (ko) 비천연 핵산 리간드를 유효성분으로 포함하는 삼중음성 유방암의 치료를 위한 약학적 조성물
JP6041288B2 (ja) ホスホランバン標的修飾rnaアプタマー
WO2010117055A1 (ja) プロテインキナーゼCα又はη選択的阻害活性を有するポリペプチド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018503571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016830674

Country of ref document: EP