WO2017018488A1 - チタン酸リチウムとチタン酸リチウムランタンとを含む焼結体、その製造方法、及びリチウム電池 - Google Patents

チタン酸リチウムとチタン酸リチウムランタンとを含む焼結体、その製造方法、及びリチウム電池 Download PDF

Info

Publication number
WO2017018488A1
WO2017018488A1 PCT/JP2016/072205 JP2016072205W WO2017018488A1 WO 2017018488 A1 WO2017018488 A1 WO 2017018488A1 JP 2016072205 W JP2016072205 W JP 2016072205W WO 2017018488 A1 WO2017018488 A1 WO 2017018488A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sintered body
titanate
precursor
sintered
Prior art date
Application number
PCT/JP2016/072205
Other languages
English (en)
French (fr)
Inventor
亮太 江▲崎▼
努 西▲崎▼
田村 哲也
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP16830593.6A priority Critical patent/EP3326983A4/en
Priority to KR1020187005597A priority patent/KR20180033571A/ko
Priority to US15/747,947 priority patent/US20180219224A1/en
Priority to CN201680039768.7A priority patent/CN107848890A/zh
Publication of WO2017018488A1 publication Critical patent/WO2017018488A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sintered body in which lithium titanate and lithium lanthanum titanate are combined and a method for producing the same, and more particularly, to a sintered body that can be used for an electrode of a lithium primary battery or a lithium secondary battery, a method for producing the same, and the like. .
  • Secondary batteries are used in portable devices such as mobile phones and laptop computers, transportation equipment such as automobiles and airplanes, and power storage devices for power leveling. Improvements in energy density are required in all applications. Yes.
  • the practical secondary battery with the highest energy density is a lithium ion battery, and research is being conducted to further increase the energy density while maintaining safety.
  • all-solid-state batteries batteries that use solid electrolytes instead of electrolytes, which is an improved technology for lithium-ion batteries, has been conducted.
  • the negative electrode, electrolyte, and positive electrode that make up the battery are all solid, so by repeatedly stacking the negative electrode layer, solid electrolyte layer, and positive electrode layer, a battery with a series structure can be manufactured without using wires, etc. Therefore, it is considered suitable for automobiles and power storage. Furthermore, an all-oxide all-solid battery in which the negative electrode active material, the solid electrolyte, and the positive electrode active material are oxides can be expected to have an effect on safety and high-temperature durability in addition to improving energy density.
  • Li 4 Ti 5 O 12 As a kind of negative electrode active material of a lithium ion battery, lithium titanate Li 4 Ti 5 O 12 (also referred to as LTO), which is an oxide having a spinel crystal structure, is known (Patent Document 1).
  • LTO has almost no change in lattice size due to charge / discharge, so graphite-based carbon material (although it is widely used as a negative electrode for lithium ion batteries, the graphite layer expands and contracts by about 10% in the c-axis direction due to charge / discharge. It is considered that it has excellent properties as a negative electrode active material for all solid state batteries.
  • lithium titanate for example, Li 2 Ti 3 O 7
  • ramsdelite also called ramsdelite
  • lithium lanthanum titanate Li 3x La 2 / 3-x TiO 3 having a perovskite-type crystal structure with high lithium ion conductivity. It has been reported that a sintered body (0 ⁇ x ⁇ 1/6, also called LLTO) is used (Patent Document 3).
  • JP 2012-104280 A Japanese Patent Laid-Open No. 11-283624 JP 2013-140762 A JP 2010-033877 A JP 2013-080637 A
  • the composites for electrodes described in Patent Documents 4 and 5 use a sulfide-based solid electrolyte containing sulfur and lithium that tends to have low interface resistance as the solid electrolyte.
  • the crystal grains of the electrode active material and the crystal grains of the solid electrolyte need to be in close contact with each other at a low resistance interface, but the oxide-based solid excellent in safety and high-temperature durability A sintered body in which an electrolyte and an electrode active material are combined has not been reported.
  • the present invention has been made to solve such problems of the prior art, and an object thereof is to provide a sintered body in which an electrode active material and an oxide solid electrolyte are combined.
  • the composite of the electrode active material and the solid electrolyte means that the respective crystal grains are joined and a lithium ion conduction path to the crystal grains of the electrode active material is formed through the crystal grains of the solid electrolyte. Means.
  • the inventors have obtained a mixture of a precursor that becomes lithium titanate by heating and a precursor that becomes lithium lanthanum titanate by heating, or a mixture of lithium titanate and lithium lanthanum titanate.
  • a sintered body in which lithium titanate crystal grains and lithium lanthanum titanate crystal grains were bonded was obtained, and the present invention was completed.
  • a first aspect of the present invention includes lithium titanate having a spinel type crystal structure and / or lithium titanate having a ramsdelite type crystal structure, and lithium lanthanum titanate having a perovskite type crystal structure. This is a sintered body.
  • a negative electrode that occludes and releases lithium and a positive electrode that occludes and releases lithium are disposed in an electrolyte solution facing each other with a separator interposed therebetween. It is a lithium battery characterized by using a bonded body.
  • a negative electrode layer that occludes and releases lithium, a solid electrolyte layer that conducts lithium, and a positive electrode layer that occludes and releases lithium are laminated in this order. Or it is an all-solid-state lithium battery using the said sintered compact as said positive electrode layer.
  • a fourth aspect of the present invention there are provided a step of molding a powder of a mixture of a lithium titanate precursor and a lithium lanthanum titanate precursor to obtain a molded body, and a sintering process for sintering the molded body. And a sintering step.
  • the fifth aspect of the present invention includes a step of calcining a mixture of a lithium titanate precursor and a lithium lanthanum titanate precursor to obtain a calcined body, and molding the calcined powder.
  • the method for producing a sintered body includes a step of obtaining a molded body and a sintering step of sintering the molded body.
  • a sintering process including a step of forming a powder of a mixture of lithium titanate and lithium lanthanum titanate to obtain a formed body, and a sintering step of sintering the formed body. It is a manufacturing method of a zygote.
  • a sintered body in which an electrode active material and an oxide solid electrolyte are combined can be provided.
  • 2 is a powder X-ray diffraction pattern of a precipitate and a precursor according to Example 1.
  • FIG. 3 is a powder X-ray diffraction pattern of the sintered bodies according to Examples 1-1 to 1-4.
  • Fig. 5 is a powder X-ray diffraction pattern of the sintered body according to Example 1-5.
  • FIG. Fig. 5 is a powder X-ray diffraction pattern of the sintered body according to Example 5-3.
  • the sintered body according to the present invention includes lithium titanate having a spinel crystal structure and / or lithium titanate having a ramsdelite crystal structure and lithium lanthanum titanate having a perovskite crystal structure. That is, the sintered body may contain either one of lithium titanate having a spinel crystal structure and lithium titanate having a ramsdelite crystal structure, or both.
  • the lithium titanate having a spinel crystal structure is, for example, Li 4 Ti 5 O 12 .
  • Part of the elements constituting lithium titanate may be replaced with another element, or another element may be doped.
  • Lithium titanate having a ramsdelite type crystal structure is, for example, Li 2 Ti 3 O 7 .
  • Part of the elements constituting lithium titanate may be replaced with another element, or another element may be doped.
  • Examples of the lithium titanate having a Rams Delight type crystal structure, in addition to Li 2 Ti 3 O 7, LiTi 2 O 4 or the like, and a large number of substances are known, solid solutions thereof, for example, Li 2 Ti 3 O 7 A solid solution of LiTi 2 O 4 is also known.
  • the lithium lanthanum titanate having a perovskite crystal structure is, for example, lithium lanthanum titanate represented by the general formula Li 3x La 2 / 3-x TiO 3 (0 ⁇ x ⁇ 1/6). Part of the elements constituting lithium lanthanum titanate may be replaced with another element, or another element may be doped.
  • Identification of lithium titanate and lithium lanthanum titanate can be performed using X-ray diffraction.
  • the sintered body according to the present invention is characterized by containing both lithium titanate and lithium lanthanum titanate.
  • the strongest line strength of lithium titanate and the lithium lanthanum titanate The ratio to the strongest line intensity is 100 times or less.
  • the strongest ray intensity I S of the lithium titanate having a spinel type crystal structure, and the strongest intensity I R of the lithium titanate having a Rams Delight type crystal structure the strongest of the lanthanum lithium titanate having a perovskite type crystal structure
  • the relationship is When CuK ⁇ rays are used, the strongest line of lithium titanate having a spinel crystal structure usually appears at 17 ° or more and 19 ° or less, and the strongest line of lithium titanate having a ramsdelite crystal structure is 19 ° or more. It appears at 21 ° or less, and the strongest line of lithium lanthanum titanate having a perovskite crystal structure appears at 32 ° or more and 34 ° or less.
  • the actual density of the sintered body is preferably 2.5 g / cm 3 or more, more preferably 2.8 g / cm 3 or more, and further preferably 3.0 g / cm 3 or more.
  • the upper limit of the actual density of the sintered body is not particularly limited, and may be, for example, 6.0 g / cm 3 or less, or 5.0 g / cm 3 or less.
  • the lithium ion conductivity at 25 ° C. of the sintered body is preferably 1 ⁇ 10 ⁇ 8 S / cm or more, more preferably 5 ⁇ 10 ⁇ 8 S / cm or more, and 1 ⁇ 10 ⁇ 7 S. / Cm or more is more preferable.
  • lithium ion conductivity means the value evaluated using the non-blocking electrode measuring method which measures using a cell which pinched
  • the upper limit of the lithium ion conductivity at 25 ° C. of the sintered body is not particularly limited, and may be, for example, 1 ⁇ 10 ⁇ 2 S / cm or less, or 1 ⁇ 10 ⁇ 3 S / cm or less.
  • the thickness of the plate-like or sheet-like sintered body is preferably 3 ⁇ m or more.
  • the thickness of the sintered body is more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the thickness is 1 mm or less because the resistance hardly increases.
  • the sintered body of the present invention can be used as the negative electrode or the positive electrode.
  • a negative electrode layer that occludes and releases lithium, a solid electrolyte layer that conducts lithium, and a positive electrode layer that occludes and releases lithium are stacked in this order using a solid electrolyte layer instead of the electrolyte solution.
  • the sintered body described in the present invention can be used as the positive electrode layer.
  • a dry polymer electrolyte layer containing a lithium salt in the polymer may be used as the solid electrolyte layer.
  • Lithium titanate is often used as a negative electrode active material for lithium ion secondary batteries, but a counter electrode (such as lithium metal or lithium alloy) that has a relatively low charge / discharge potential relative to lithium titanate ( If used in a negative electrode), it can be used as a positive electrode active material.
  • a counter electrode such as lithium metal or lithium alloy
  • the lithium battery includes both a primary battery and a secondary battery, and not only a battery using metallic lithium or a lithium alloy as an electrode, but also an entire battery in which lithium ions move between a positive electrode and a negative electrode. including.
  • the sintered body is composed of crystal grains of lithium titanate and lithium lanthanum titanate, and the diameter of each crystal grain is 1/3 or less of the thickness of the sintered body.
  • the thickness is preferably 1/5 or less of the thickness of the sintered body, and more preferably 1/10 or less of the thickness of the sintered body.
  • the diameter of the crystal grains constituting the sintered body can be confirmed with an electron microscope.
  • the minimum of the diameter of the said crystal grain is not specifically limited, For example, 1 / 100,000 or more of the thickness of a sintered compact may be sufficient, and 1 / 10,000 or more may be sufficient.
  • the lithium lanthanum titanate phase network contributes to lithium ion conduction, and a lithium ion conduction path to the lithium titanate is established through the lithium lanthanum titanate network. Therefore, charging / discharging is possible in the state of a sintered body. Therefore, the sintered body of the present invention processed to a thickness of 500 ⁇ m is used as a negative electrode or a positive electrode, and the initial stage of the sintered body when a charge / discharge test is performed at a rate of 0.1 mA / cm 2 in a cell using an electrolytic solution.
  • the charge capacity and / or initial discharge capacity is preferably 10 mAh / g or more, more preferably 20 mAh / g or more, and further preferably 30 mAh / g or more.
  • the capacity means a capacity per unit mass of the sintered body obtained by dividing the capacity of the cell by the mass of the sintered body. More specifically, the cell is a cell using a sintered body of the present invention processed to a thickness of 500 ⁇ m as a negative electrode or a positive electrode, and using a predetermined counter electrode and an electrolyte solution.
  • a positive electrode including a positive electrode material such as a lithium-containing transition metal phosphate compound (for example, lithium iron phosphate) or a lithium-containing transition metal composite oxide (for example, LiCoO 2 ) is given.
  • a negative electrode containing a negative electrode material such as metallic lithium or graphite can be used.
  • the upper limit of the initial charge capacity and / or the initial discharge capacity is not particularly limited, and may be, for example, 336 mAh / g or less, or 250 mAh / g or less.
  • a charge / discharge test was conducted at a temperature of 60 ° C.
  • the initial charge capacity and / or initial discharge capacity of the sintered body is preferably 10 mAh / g or more, more preferably 20 mAh / g or more, and further preferably 30 mAh / g or more.
  • the capacity means a capacity per unit mass of the sintered body obtained by dividing the capacity of the all solid-type cell by the mass of the sintered body.
  • the all-solid-type cell is an all-solid-type cell using a predetermined counter electrode and a solid electrolyte, with the sintered body processed to a thickness of 10 ⁇ m or more and 150 ⁇ m or less as a negative electrode or a positive electrode.
  • the predetermined counter electrode is as described above.
  • the upper limit of the initial charge capacity and / or the initial discharge capacity is not particularly limited, and may be, for example, 336 mAh / g or less, or 250 mAh / g or less.
  • the sintered body may contain a conductive agent having electronic conductivity in addition to lithium titanate and lithium lanthanum titanate.
  • the conductive agent include metals such as gold, silver, copper, and nickel, oxides such as tin oxide, zinc oxide, titanium oxide, and indium tin oxide, and materials such as carbon, particles, fibers, It can be used in the form of a rod, tube or the like.
  • the carbon-based conductive agent carbon fiber, carbon black, carbon nanotube, carbon nanofiber, graphene, graphite or the like can be used.
  • a film of a conductive agent may be formed on the surface of lithium titanate or lithium lanthanum titanate particles.
  • a conductive agent may be mixed and added to the powder before molding, or a conductive agent may be added during the production of the precursor.
  • the method for producing the sintered body of the present invention is not particularly limited.
  • a method of forming and sintering a mixture of precursors to be lithium titanate or lithium lanthanum titanate by heating, lithium titanate and titanium Any method of forming and sintering a mixture with lithium lanthanum acid can be employed.
  • the first method for producing a sintered body according to the present invention includes a step of molding a powder of a mixture of a lithium titanate precursor and a lithium lanthanum titanate precursor to obtain a molded body, And a step of sintering.
  • the mixture of precursors not only means that the lithium titanate precursor and the lithium lanthanum titanate are separate particles, but also titanium, lanthanum, and lithium are integrated. It also means a case where lithium titanate and lithium lanthanum titanate are generated from the solidified material by heating. Further, the precursor may contain lithium titanate or lithium lanthanum titanate crystals.
  • the second method for producing a sintered body according to the present invention includes a step of calcining a mixture of a lithium titanate precursor and a lithium lanthanum titanate precursor to obtain a calcined body, Is a method for producing a sintered body, comprising: a step of forming a powder to obtain a molded body; and a sintering step of sintering the molded body.
  • a mixture of a lithium titanate precursor and a lithium lanthanum titanate precursor is heated at 250 ° C. or higher and 1500 ° C. or lower, preferably 400 ° C. or higher and 1300 ° C. or lower. / Or produces lithium lanthanum titanate. Pre-firing at a lower temperature to produce only lithium titanate and no need to produce lithium lanthanum titanate, or pre-firing at a higher temperature to produce both lithium titanate and lithium lanthanum titanate You may let them.
  • the third method for producing a sintered body according to the present invention includes lithium titanate, for example, lithium titanate having a spinel type and / or ramsdellite type crystal structure, and lithium titanate, for example, perovskite type. It is a manufacturing method including a step of molding a powder of a mixture with lithium lanthanum titanate having a crystal structure to obtain a molded body, and a step of sintering the molded body. In order to obtain a mixture of lithium titanate and lithium lanthanum titanate, there is a method obtained by mixing the respective powders, but calcining obtained by calcining by the above-described second sintered body production method The body may fall under this.
  • the mixing method of lithium titanate and lithium lanthanum titanate can be obtained by mixing with a ball mill or the like.
  • the lithium titanate powder and the lithium lanthanum titanate powder are mixed in a solvent such as water or alcohol for several minutes to several tens of hours, preferably 10 minutes or more. It is preferable to achieve
  • a mixture of a lithium titanate precursor and a lithium lanthanum titanate precursor, or a mixture of lithium titanate and lithium lanthanum titanate is formed.
  • the powder of the mixture is put into a mold or formed into a sheet.
  • a method is conceivable in which powder is dispersed in a solvent, the obtained dispersion is applied, the solvent is dried, and pressure is applied using a roll press or the like.
  • the molding pressure can be set in the range of 100 MPa to 1000 MPa in the mold.
  • the linear pressure can be in the range of 20 N / mm to 2000 N / mm.
  • the molded body is heated at 250 ° C. or higher and 1500 ° C. or lower, preferably 400 ° C. or higher and 1300 ° C. or lower, thereby binding the constituent particles of the molded body.
  • the sintering temperature is higher than about 1000 ° C, lithium titanate with a ramsdellite-type crystal structure is likely to be produced.
  • the sintering temperature reaches 1200 ° C., most of the lithium titanate becomes a ramsdelite type.
  • the heating method after molding in the sintering step is not particularly limited, and for example, resistance heating, microwave heating, or the like can be applied.
  • well-known sintering methods such as electric current sintering and electric discharge plasma sintering which perform a shaping
  • the atmosphere during sintering any of an air atmosphere, an inert atmosphere such as nitrogen, a highly oxidizing atmosphere such as oxygen, and a reducing atmosphere such as diluted hydrogen can be used.
  • the holding time of the sintering temperature can be appropriately changed according to the sintering temperature and the like, and practically, 24 hours or less is preferable. When the sintering temperature is 600 ° C.
  • the holding time of the sintering temperature may be a short time of 1 hour or less. Furthermore, the holding time is set to 0 minutes, and heating is performed immediately after reaching the sintering temperature. You may stop.
  • the cooling method is not particularly limited, either natural cooling (cooling in the furnace) may be performed, cooling may be performed more rapidly than natural cooling, or the temperature may be maintained at a certain temperature during cooling.
  • lithium titanate having a spinel crystal structure that can be used as an electrode active material and / or lithium titanate having a ramsdelite crystal structure that can be used as an electrode active material, and a solid electrolyte It is possible to synthesize a sintered body in which lithium lanthanum titanate having a perovskite crystal structure that can be used as a composite is combined. This sintered body can be used as an electrode for a lithium battery.
  • the sintering step of the first sintered body manufacturing method, the preliminary firing step and the sintering step of the second sintered body manufacturing method that is, the precursor that becomes lithium titanate or lithium lanthanum titanate by heating.
  • a change in crystal phase from the precursor and / or an improvement in crystallinity occur.
  • the change in crystal phase and / or improvement in crystallinity can be confirmed by powder X-ray diffraction. Changes in the crystal phase are reflected in the X-ray diffraction pattern as changes in the diffraction pattern, and improvements in crystallinity are reflected in the diffraction line width as a decrease.
  • Li 0.94 Ti 2 O 4 [ICDD No. 01-088-0609], lithium titanate having a perovskite crystal structure Lanthanum such as Li 3x La 2 / 3-x TiO 3 (0 ⁇ x ⁇ 1/6) [ICDD numbers 01-074-4217, 00-046-0467, 01-087-0935, 00-046-0466 etc.] Produces.
  • the mixture of the lithium titanate precursor and the lithium lanthanum titanate precursor used in the forming step in the first or second method for producing a sintered body according to the present invention is the solvothermal method described below. It is preferable to obtain the first to fourth precursors using the method.
  • a mixture containing a Ti element source, a Li element source and a solvent needs to be solvothermally treated.
  • the compound of the La element source can be added later as in the second precursor production method to be described later, but a mixture containing the La element source, the Ti element source, the Li element source and the solvent is solvothermal.
  • a precursor production method including a step of heating by a treatment method can also be used. This manufacturing method corresponds to the superordinate concept of the manufacturing method of the first precursor, the modification of the manufacturing method of the second precursor, the manufacturing method of the third precursor, and the manufacturing method of the fourth precursor.
  • an aqueous solution preparation step of preparing an aqueous solution containing La cation and Ti cation, an aqueous solution obtained in the aqueous solution preparation step, and a basic aqueous solution To obtain a precipitate containing an oxide and / or hydroxide of La element and an oxide and / or hydroxide of Ti element, and obtained in the simultaneous precipitation process step.
  • aqueous solution preparation process In the aqueous solution preparation step, an aqueous solution containing La cation and Ti cation is prepared.
  • La 3+ is exemplified as the La cation
  • Ti 4+ is exemplified as the Ti cation.
  • Each of the La cation and the Ti cation may form a complex with water, ammonia, oxide ions, hydroxide ions, counter anions described later, and the like as ligands.
  • the counter anion of La cation and Ti cation include, in addition to oxide ions and hydroxide ions, chlorine-containing anions such as chloride ions, nitrate anions, and the like. Said counter anion may be used independently or may use 2 or more types together.
  • the aqueous solution is prepared, for example, by dissolving a lanthanum compound that generates La cations by dissolution and a titanium compound that generates Ti cations by dissolution in water or an acidic aqueous solution.
  • these lanthanum compounds and titanium compounds include chlorides, oxychlorides, hydroxides, oxides, nitrates, and the like, and chlorides or oxychlorides are easily available or inexpensive. Is preferred.
  • nitrate is preferable from the viewpoint of easy dissolution. It does not specifically limit as said lanthanum compound and a form of a titanium compound, For example, solids, such as a powder, liquids, such as aqueous solution, etc. are mentioned.
  • Each of the above lanthanum compounds and titanium compounds may be used alone or in combination of two or more.
  • the aqueous solution prepared in the aqueous solution preparation step preferably has a pH of less than 7, that is, acidic.
  • La cations show a high aqueous solution in the region from strong acidity to weak acidity, while Ti cations show high water solubility only in the strong acidity region. Therefore, the aqueous solution prepared in the aqueous solution preparation step is preferably strongly acidic (for example, pH 3 or less) from the viewpoint of stability.
  • the precipitate containing lanthanum oxide and / or hydroxide and titanium oxide and / or hydroxide is mixed by mixing the aqueous solution obtained in the aqueous solution preparation step and the basic aqueous solution.
  • the method of mixing the aqueous solution obtained in the aqueous solution preparation step and the basic aqueous solution is not particularly limited, and examples thereof include a method of dropping or spraying the aqueous solution obtained in the aqueous solution preparation step onto the basic aqueous solution.
  • the pH of the basic aqueous solution is preferably 8 or more from the viewpoint of the precipitation rate. It does not specifically limit as basic aqueous solution, For example, ammonia water and lithium hydroxide aqueous solution are mentioned. Ammonia water is preferred because it is easily available and inexpensive. From the viewpoint of preventing contamination to the solid electrolyte, an aqueous lithium hydroxide solution in which the alkali cation is a lithium ion, that is, a cation constituting the solid electrolyte is preferable.
  • the molar equivalent of the base of the basic aqueous solution used in the simultaneous precipitation treatment step is the molar equivalent of the counter anion of La cation and Ti cation (excluding oxide ions and hydroxide ions) in the aqueous solution obtained in the aqueous solution preparation step. It is preferable that the amount is larger than that, and a large excess (for example, about twice or more) is more preferable.
  • the molar equivalent of the base in the basic aqueous solution is larger than the molar equivalent of the counter anion, the basicity of the mixed solution can be sufficiently maintained even after the aqueous solution obtained in the aqueous solution preparation step and the basic aqueous solution are mixed.
  • the precipitate obtained in the simultaneous precipitation treatment step is appropriately separated and washed.
  • the separation method is not particularly limited, and examples thereof include centrifugation, decantation, and filtration. Moreover, it does not specifically limit as a solvent used for washing
  • the precipitate obtained in the simultaneous precipitation treatment step can prevent a large decrease in mass due to detachment of organic ligands during sintering, which occurs by a sol-gel method.
  • the lithium element source compound is not particularly limited, and examples thereof include lithium carbonate, lithium chloride, lithium fluoride, lithium hydroxide, lithium nitrate, lithium acetate, and hydrates thereof. These lithium compounds may be used alone or in combination of two or more. Moreover, the form of the lithium compound may be a solid such as a powder or an aqueous solution, and is not particularly limited.
  • the content ratio of La element to Ti element in the mixture before performing the solvothermal treatment step is La / Ti ⁇ 0.66.
  • La / Ti ⁇ 0.66 more La than required by the electrode composite containing the target mixed composition lithium titanate and lithium lanthanum titanate is unlikely to remain after firing. Therefore, by firing, other than LTO or LLTO Impurity phases such as La (OH) 3 , La 2 O 3 and La 2 Ti 2 O 7 are hardly generated.
  • hydrothermal treatment using water as a solvent is mainly performed as solvothermal treatment.
  • Hydrothermal treatment refers to a compound synthesis method or crystal growth method performed in the presence of hot water of high temperature and high pressure, and a chemical reaction that does not occur in an aqueous solution at normal temperature and pressure may proceed.
  • an aqueous solution containing lithium element is added to a solid or solution containing La cation and Ti cation, and a high temperature and high pressure treatment is performed, so that lithium element that is water-soluble at room temperature and normal pressure is replaced with titanium element.
  • Complex chloride can be incorporated into the complex salt, and the precursor is obtained by separating the complex salt from the solvent.
  • water is used as a solvent, but the same effect can be expected by a method (solvothermal method) using a solvent other than water (for example, an organic solvent).
  • the absolute pressure is higher than atmospheric pressure and lower than 8.7 MPa
  • the temperature is in an environment of 60 ° C. or higher and 300 ° C. or lower, more preferably, the absolute pressure is 0.15 MPa or higher and 4.0 MPa or lower.
  • the temperature is preferably about 1 hour to 100 hours in an environment of 60 ° C. to 250 ° C.
  • the Ti element source fine particles (solid matter) containing an oxide and / or hydroxide of Ti element can be used.
  • Method for synthesizing Ti-containing fine particles (solid matter) As a method for synthesizing the fine particles (solid matter) containing the oxide and / or hydroxide of the Ti element, titanium tetrachloride is vapor-phase oxidized, and the hydrous titanium oxide is first treated with sodium hydroxide and then with hydrochloric acid. And a method using a precipitation reaction. As an example, a method using a precipitation reaction is shown below. In this method, fine particles containing an oxide and / or hydroxide of Ti element are synthesized by mixing an aqueous solution containing Ti cations and a basic aqueous solution.
  • aqueous solution preparation process In the aqueous solution preparation step, an aqueous solution containing Ti cations is prepared.
  • the aqueous solution preparation step of the second precursor production method can be performed in the same manner as the aqueous solution preparation step of the first precursor production method, except that the lanthanum compound is not added.
  • a precipitate containing titanium oxide and / or hydroxide is obtained by mixing the aqueous solution containing the Ti cation obtained in the aqueous solution preparation step and the basic aqueous solution.
  • the precipitation treatment step of the second precursor production method can be performed in the same manner as the precipitation treatment step of the first precursor production method.
  • solvothermal treatment step a Ti element source that is a solid matter containing a Ti cation such as a precipitate obtained in the precipitation treatment step, a compound of a lithium element source, and a solvent are mixed, and the pressure is higher than atmospheric pressure. Under heating, a composite salt of Li and Ti is obtained.
  • the solvothermal treatment step of the second precursor production method can be performed in the same manner as the solvothermal treatment step of the first precursor production method.
  • the La element source is added following the solvothermal treatment step.
  • the La element source addition step may be performed before the composite salt after the solvothermal treatment is separated from the solvent or after it is separated from the solvent.
  • the form of the La element source may be, for example, a solid such as a powder or an aqueous solution, and is not particularly limited, and is dissolved in water or an acidic aqueous solution when the complex salt is added before separation from the solvent.
  • These lanthanum compounds include, for example, chlorides, oxychlorides, hydroxides, oxides, and nitrates. From the viewpoint of easy availability and low cost, chlorides or lanthanum compounds can be used. Oxychloride is preferred.
  • lanthanum compound in the case of adding after isolate
  • the above lanthanum compounds may be used alone or in combination of two or more.
  • the La element source may be simply mixed with the composite salt.
  • a solid substance can also be formed by a thermal treatment method.
  • the solvothermal treatment process for forming a composite salt of Li and Ti is a first solvothermal treatment process
  • the process for forming a solid substance is a second solvothermal treatment process.
  • the molar ratio (Li / Ti) with respect to the titanium in the reaction container which performs a 1st solvothermal treatment process is 0.5 or more and 3.5 or less. Preferably, it is 0.8 or more and 3.0 or less, more preferably 1.0 or more and 2.5 or less.
  • La element source lanthanum compounds that dissolve in water or acidic aqueous solutions can be used.
  • these lanthanum compounds include chlorides, oxychlorides, hydroxides, oxides, and nitrates, which are easily available. From the viewpoint of being inexpensive and inexpensive, chloride or oxychloride is preferred. Moreover, nitrate is preferable from the viewpoint of easy dissolution. It does not specifically limit as a form of said La element source, For example, solid, such as powder, aqueous solution etc. are mentioned.
  • the above lanthanum compounds may be used alone or in combination of two or more.
  • the second solvothermal treatment step may be performed in a state where an acid is added together with the La element source.
  • an acid an inorganic acid or an organic acid can be used, and hydrochloric acid, nitric acid, sulfuric acid, formic acid, acetic acid and the like can be used.
  • the amount of acid added was such that the difference from the molar ratio of acid to titanium (acid / Ti) from the molar ratio of lithium to titanium (Li / Ti) was 0.1 ⁇ [(Li / Ti)-(acid / Ti )] ⁇ 1.5, preferably 0.3 ⁇ [(Li / Ti)-(acid / Ti)] ⁇ 1.1.
  • the pH of the solution after addition of the acid is preferably 8 or more and 14 or less.
  • the same hydrothermal treatment method as that used in the first solvothermal treatment step can be used.
  • a complex salt is formed in order to supply a sufficient amount of lithium to the amount of titanium in the first solvothermal step.
  • the amount of Ti cations that have not been reduced can be reduced.
  • the impurity phase after firing can be reduced, and the sintering density can be increased when sintering is performed after molding.
  • a Li—Ti composite salt that becomes a precursor of LTO in the first solvothermal treatment step, a Li—Ti composite salt that becomes a precursor of LTO
  • a solid substance that becomes the precursor of LLTO is formed, so that a structure in which the periphery of LTO is covered with LLTO is formed in the lithium titanate composite product after firing. Is expected to do.
  • the aqueous solution preparation step, simultaneous precipitation treatment step, and first solvothermal treatment step of the third precursor production method are respectively the aqueous solution preparation step, simultaneous precipitation treatment step, and solvothermal of the first precursor production method.
  • the molar ratio (Li / Ti) of lithium to titanium in the reaction vessel in which the first solvothermal treatment step is performed is preferably 0.5 or more and 3.5 or less. It is more preferably 8 or more and 3.0 or less, and further preferably 1.0 or more and 2.5 or less.
  • an acid is added to the solid substance containing the Li—Ti composite salt and the La element source obtained in the first solvothermal treatment step, under a pressure higher than atmospheric pressure. Heat to obtain the precursor.
  • an inorganic acid or an organic acid can be used, and hydrochloric acid, nitric acid, sulfuric acid, formic acid, acetic acid and the like can be used.
  • the difference between the molar ratio of titanium (acid / Ti) and the molar ratio of lithium to titanium (Li / Ti) is 0.1 ⁇ [(Li / Ti)-(acid / Ti)]. It is preferable to satisfy ⁇ 1.5, and it is more preferable to satisfy 0.3 ⁇ [(Li / Ti)-(acid / Ti)] ⁇ 1.1.
  • the pH of the solution after addition of the acid is preferably 8 or more and 14 or less.
  • the same hydrothermal treatment method as that used in the first solvothermal treatment step can be used.
  • the amount of Ti cations that do not form a composite salt can be reduced.
  • the impurity phase after firing can be reduced, and the sintering density can be increased when sintering is performed after molding.
  • the precursor according to the present invention is a mixture containing a single salt of La element, a single salt of Ti element, a single salt of Li element and a solvent under a pressure higher than atmospheric pressure.
  • a complex salt of Li and Ti can also be obtained by a heating solvothermal treatment step. That is, a single salt of La element can be used as the La element source, and a single salt of Ti element can be used as the Ti element source.
  • a solvothermal process it can carry out by the method similar to the solvothermal process with respect to the precipitate obtained by the simultaneous precipitation method.
  • the elemental salt of La element is not particularly limited, and examples thereof include lanthanum oxide and / or hydroxide.
  • the single salt of Ti element is not particularly limited, and examples thereof include titanium oxide and / or hydroxide.
  • the Li element simple salt is not particularly limited, and examples thereof include lithium carbonate, lithium chloride, lithium fluoride, lithium hydroxide, lithium nitrate, lithium acetate, and hydrates thereof.
  • the average particle size of the single salt of Ti element is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. This is because when the Ti element single salt particles are within the above range, complex chlorination of Li and Ti easily proceeds during the solvothermal treatment.
  • the precursor obtained in the solvothermal treatment step may be dried.
  • conditions for the drying step include 60 ° C. or higher and 250 ° C. or lower and 1 hour or longer and 10 hours or shorter.
  • Example 1 Preparation of precursor (simultaneous precipitation process) A solution obtained by dissolving lanthanum chloride heptahydrate in water is mixed with an aqueous solution of titanium tetrachloride, and an aqueous solution having a La concentration of 0.50 mmol / g, a Ti concentration of 2.60 mmol / g, and a Cl concentration of 8.23 mmol / g. Prepared. At this time, the La / Ti ratio was 0.192 (molar ratio). This aqueous solution was transparent and did not produce a precipitate when left at room temperature.
  • Example 1-1 (2) Production of sintered body (molding process) Part of the obtained precursor was packed in a metal mold having a diameter of 13 mm and pressed into a pellet at 740 MPa to obtain a molded body.
  • the molded body was sintered in air at a sintering temperature of 850 ° C. and a holding time of 12 hours to obtain a sintered body having a thickness of 500 ⁇ m.
  • the sintered body was pulverized and subjected to powder X-ray diffraction measurement using CuK ⁇ rays. As shown in FIG. 6 (Example 1-1), spinel phase lithium titanate and perovskite phase titanate. A diffraction line corresponding to lithium lanthanum was detected.
  • Examples 1-2 to 1-5 Sintered bodies of Examples 1-2 to 1-5 were produced in the same manner as Example 1-1 except that the sintering temperature was changed to 900 ° C., 950 ° C., 1000 ° C., and 1050 ° C.
  • Example 1-2 to 1-5 powder X-ray diffraction measurement was performed in the same manner as in Example 1-1.
  • the results of Examples 1-2 to 1-4 are shown in FIG. 6, and the results of Example 1-5 are shown in FIG.
  • Examples 1-2 and 1-3 diffraction lines corresponding to spinel phase lithium titanate and perovskite phase lithium titanate were detected.
  • Examples 1-4 and 1-5 diffraction lines corresponding to spinel lithium titanate, ramsdellite phase lithium titanate and perovskite phase lithium lanthanum were detected.
  • FIGS. 8A to 8D show the results of observation of the surface of the sintered bodies according to Examples 1-1 and 1-3 with a scanning electron microscope. Comparing FIGS. 8A to 8D, in comparison with Example 1-1 sintered at 850 ° C., the example sintered at 950 ° C. has a larger crystal grain size and an actual density of 3 Increased from 3 g / cm 3 to 3.6 g / cm 3 . 8B and 8D, the bright region is a region containing a large amount of La, that is, crystal grains of a lithium lanthanum titanate phase, and the dark region is a crystal grain of a lithium titanate phase having less La. Yes, the crystal grains of each other are joined.
  • Examples 2-1 to 2-4 A solution obtained by dissolving lanthanum chloride heptahydrate in water was mixed with an aqueous solution of titanium tetrachloride to prepare a solution having a La / Ti ratio of 0.065 (molar ratio). Thus, sintered bodies of Examples 2-1 to 2-4 were produced. For the sintered body according to Example 2-4, powder X-ray diffraction measurement was performed in the same manner as in Example 1-1. The results are shown in FIG. In any of Examples 2-1 to 2-4, diffraction lines corresponding to spinel phase lithium titanate and perovskite phase lithium titanate were detected.
  • Example 3-1 A precursor was obtained in the same manner as in Example 1. The precursor was calcined at 800 ° C. for 5 hours to obtain a calcined body. The calcined body was placed in a zirconia ball mill jar, zirconia balls and 2-propanol were added, and planetary ball milling was performed at 300 rpm for 12 hours. The obtained powder was separated from balls and 2-propanol and dried at 200 ° C. to obtain a calcined pulverized product. A part of the obtained calcined pulverized body was packed in a mold having a diameter of 13 mm and pressure-formed into a pellet at 740 MPa. The molded body was sintered in air at 950 ° C.
  • Example 3-1 powder X-ray diffraction measurement was performed in the same manner as in Example 1-1. As a result, also in Example 3-1, formation of both spinel-phase lithium titanate and perovskite-phase lithium titanate was confirmed.
  • Example 3-2 A sintered body was obtained by the same method as in Example 3-1, except that the calcining temperature at the time of obtaining the calcined body was 400 ° C. In Example 3-2, formation of both spinel phase lithium titanate and perovskite phase lithium lanthanum titanate was confirmed.
  • a sintered body was obtained by the following procedure.
  • the precursor was calcined at 1150 ° C. for 2 hours to obtain a calcined body.
  • the obtained calcined body was put into a ball mill jar made of zirconia, zirconia balls were added, and a planetary ball mill treatment was performed at 400 rpm for 1 hour in a dry method, and then 2-propanol was added and further treated at 400 rpm for 1 hour.
  • Example 4 A part of the obtained precursor was packed in a mold having a diameter of 13 mm, and pressure-molded into a pellet at 740 MPa. The molded body was sintered in air at 950 ° C. for 12 hours to obtain a sintered body having a thickness of 500 ⁇ m.
  • powder X-ray diffraction measurement was performed in the same manner as in Example 1-1. The results are shown in FIG. Also in Example 4, the formation of both spinel-phase lithium titanate and perovskite-phase lithium titanate was confirmed.
  • Example 1 was carried out in the same manner as Example 1-1 except that the sintering temperature and the holding time thereof were (1100 ° C., 10 minutes), (1050 ° C., 0 minutes) and (1200 ° C., 0 minutes), respectively.
  • Sintered bodies of 5-1 to 5-3 were produced.
  • Examples 5-1 and 5-2 diffraction lines corresponding to spinel phase lithium titanate, ramsdellite phase lithium titanate, and perovskite phase lithium lanthanum titanate were detected.
  • FIG. 11 shows the result of the powder X-ray diffraction measurement of Example 5-3.
  • Example 5-3 diffraction lines corresponding to ramsdelite phase lithium titanate and perovskite phase lithium titanate were detected.
  • Example 6 Example, except that the amount of precursor used in the molding process is reduced to 1/4, and the sintering temperature and the holding time thereof are (950 ° C., 12 hours) and (1150 ° C., 0 minutes), respectively.
  • sintered bodies of Examples 6-1 and 6-2 were produced. The thicknesses of the obtained sintered bodies were all 130 ⁇ m.
  • Example 6-1 diffraction lines corresponding to spinel phase lithium titanate and perovskite phase lithium lanthanum titanate were detected.
  • Example 6-2 diffraction lines corresponding to spinel phase lithium titanate, ramsdelite phase lithium titanate and perovskite phase lithium lanthanum were detected.
  • Example 7 The precursor obtained by the method described in Example 1 was dispersed in a solvent in which toluene and isopropyl alcohol were mixed at a volume ratio of 2: 1 together with polyvinyl butyral as a binder to form a slurry. After coating on a PET film, drying at 120 ° C. for 10 minutes, and pressing at 440 MPa using a hot plate press at 80 ° C., the PET film was peeled off and heated at 500 ° C. for 2 hours to remove the binder. Thereafter, sintering was performed at 1150 ° C. and a holding time of 2 hours to obtain a sintered body sheet having a thickness of 30 ⁇ m.
  • Lithium titanate powder (manufactured by Wako Pure Chemical Industries, Ltd.) was packed in a mold having a diameter of 13 mm and pressure-formed into a pellet at 740 MPa. The molded body was sintered in air at 950 ° C. for 12 hours to obtain a sintered body having a thickness of 500 ⁇ m.
  • Comparative Example 2 A sintered body of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the amount of lithium titanate powder packed in the mold was reduced to a quarter. The thickness of the obtained sintered body was 130 ⁇ m.
  • Comparative Example 3 A sintered body sheet of Comparative Example 3 was prepared in the same manner as in Example 7 except that the lithium titanate powder (manufactured by Wako Pure Chemical Industries, Ltd.) was sintered at 950 ° C. for 12 hours. . The thickness of the obtained sintered body sheet was 10 ⁇ m.
  • the test electrolyte cell was prepared in a glove box. Gold was vapor-deposited on one surface of the sintered body sample, and the vapor-deposited surface was placed on the lower part of the stainless steel cell exterior. A separator and a positive electrode were placed on top of each other in this order, and the whole was immersed in an electrolytic solution, covered with the upper part of the cell exterior, and sealed in a form in which compressive stress was applied to the sintered body / separator / positive electrode laminate.
  • the electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7.
  • the positive electrode was lithium iron phosphate, carbon, and polytetrafluoro. What mixed ethylene with the ratio (mass ratio) of 85: 10: 5 was used. Charging / discharging was performed at a temperature of 25 ° C., a constant current of 0.1 mA / cm 2 , an upper limit cutoff potential of 2.3 V, and a lower limit cutoff potential of 1.0 V.
  • the test all-solid cell was prepared in a glove box. Polyethylene oxide having a weight average molecular weight of 600,000 and lithium bis (trifluoromethanesulfonyl) imide having a mass ratio of 35% with respect to polyethylene oxide are mixed in acetonitrile and applied to the upper surface and the periphery of a sintered body in which gold is deposited on the lower surface. did. Then, it dried under reduced pressure for 12 hours at 130 ° C., and acetonitrile was completely removed to obtain a laminate of a dry polymer electrolyte and a sintered body.
  • a coin-type all-solid-state cell for testing in which metal lithium is adhered to the dry polymer electrolyte side of this laminate and sealed in a coin-type container, with the sintered body as the positive electrode, the dry polymer electrolyte as the solid electrolyte, and the metal lithium as the negative electrode And a charge / discharge test was performed at 60 ° C. Charging / discharging started from the discharge, and was performed with a constant current of 0.02 mA / cm 2 , an upper limit cutoff potential of 2.5 V, and a lower limit cutoff potential of 1.25 V.
  • the measurement cell was produced in a glove box. Place a metal lithium foil on the lower part of the stainless steel cell exterior, and stack the separator soaked with electrolyte, the sintered body sample, the separator impregnated with the electrolyte, and the metal lithium foil in this order. The upper part was covered, and it sealed in the form which applies a compressive stress to the laminated body of metal lithium foil / separator / sintered body sample / separator / metal lithium foil positive electrode.
  • the electrolytic solution was used a solution obtained by dissolving LiClO 4 at a concentration of 1 mol / L in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.
  • the measurement was performed at a temperature of 25 ° C.
  • an impedance analyzer was used (frequency 1 Hz to 32 MHz, amplitude voltage 100 mV), a resistance value was obtained from the arc of the Nyquist plot, and lithium ion conductivity was calculated from this resistance value.
  • capacitance shows the capacity
  • Examples 1-1 to 1-5 and Examples 5-1 to 5-3 show that lithium titanate having a ramsdelite type crystal structure was formed at a sintering temperature of 1000 ° C. or higher.
  • the sintering temperature was 1200 ° C.
  • lithium titanate having a spinel crystal structure was hardly observed.
  • the sintered body obtained in the present invention and containing lithium titanate and lithium lanthanum titanate of Examples 1-3, 1-5, 2-3, 3-2, 4, 5-1 to 5-3 It was possible to charge and discharge in the electrolytic cell. Even in Examples 5-1 to 5-3, in which the holding time of the sintering temperature is short, a sufficient sintered body is obtained, which is energy saving and long in a high temperature environment that brings about composition variation and particle size coarseness. It is preferable in that it does not have to be exposed to time.
  • Comparative Example 1 which is a sintered body of only lithium titanate powder does not contain a solid electrolyte, and the electrolyte does not penetrate into the dense sintered body. Because there was no conduction path, it was almost impossible to charge and discharge.
  • a sintered body having a thickness of 130 ⁇ m containing lithium titanate and lithium lanthanum titanate of Examples 6-1 and 6-2 obtained in the present invention, and lithium titanate and lithium lanthanum titanate of Example 7 were used.
  • seat included was able to charge / discharge in the all-solid-state battery using the dry polymer electrolyte which is a solid electrolyte, without using electrolyte solution.
  • Comparative Examples 2 and 3 which are sintered bodies composed only of lithium titanate powders could hardly be charged / discharged in the charge / discharge test using the all-solid cell, similarly to the charge / discharge test using the electrolyte cell. .

Abstract

電極活物質と酸化物系固体電解質とを複合化した焼結体を提供する。スピネル型結晶構造を持つチタン酸リチウム及び/又はラムズデライト型結晶構造を持つチタン酸リチウムと、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンと、を含むことを特徴とする焼結体を用いる。この焼結体は、例えば、チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との混合物や、チタン酸リチウムとチタン酸リチウムランタンとの混合物を成形して成形体を得る工程と、前記成形体を焼結する焼結工程と、を含む焼結体の製造方法等により得ることができる。

Description

チタン酸リチウムとチタン酸リチウムランタンとを含む焼結体、その製造方法、及びリチウム電池
 本発明は、チタン酸リチウムとチタン酸リチウムランタンとが複合化した焼結体とその製造方法に関し、特に、リチウム一次電池又はリチウム二次電池の電極に使用できる焼結体及びその製造方法等に関する。
 二次電池は携帯電話やノートパソコン等の携帯機器、自動車や航空機等の輸送用機械、電力平準化用等の電力貯蔵装置に利用されており、いずれの用途でもエネルギー密度の向上が求められている。現在最もエネルギー密度の高い実用二次電池はリチウムイオン電池であり、安全性を保ちながら更なる高エネルギー密度化を試みる研究が進められている。その一環として、リチウムイオン電池の改良技術である全固体電池(電解液の代わりに固体電解質を用いる電池)の研究が行われている。
 全固体電池は、電池を構成する負極と電解質と正極がすべて固体であるため、負極層と固体電解質層と正極層を繰り返し積層することで、導線等を用いずに直列構造を持つ電池を製造できるため、自動車用や電力貯蔵用に適していると考えられている。更に、負極活物質と固体電解質と正極活物質がそれぞれ酸化物である全酸化物系全固体電池は、エネルギー密度向上に加えて、安全性と高温耐久性にも効果が期待できる。
 リチウムイオン電池の負極活物質の一種として、スピネル型結晶構造を持つ酸化物であるチタン酸リチウムLiTi12(LTOとも呼ばれる)が知られている(特許文献1)。LTOは充放電に伴う格子サイズの変化がほとんどないことから、黒鉛系炭素材料(リチウムイオン電池の負極として多用されているものの、充放電に伴い黒鉛層間がc軸方向に10%程度膨張収縮することが知られている)等と比較して、全固体電池の負極活物質として優れた性質を有すると考えられる。
 また、リチウムイオン電池の負極活物質の一種として、ラムズデライト(ラムスデライトとも呼ばれる)型結晶構造を持つチタン酸リチウム(例えば、LiTi)が知られている(特許文献2)。
 一方、全固体電池の正極層と負極層との間に介在する固体電解質層として、高いリチウムイオン伝導度を持つ、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンLi3xLa2/3-xTiO (0≦x≦1/6、LLTOとも呼ばれる)の焼結体を用いることが報告されている(特許文献3)。
 実用化されている電解液を用いるリチウムイオン電池の電極は、正極と負極との空隙に浸透している電解液がリチウムイオンの伝導経路として機能している。一方、全固体電池は電解液を用いないため、電極活物質の単相を電極とすると、ほとんどの電極活物質が充放電に参加できなかった。電極活物質へのリチウムイオン伝導パスを形成するため、電極活物質と固体電解質を混合させた複合体を電極とすることが検討されている(特許文献4、5)。
特開2012-104280号公報 特開平11-283624号公報 特開2013-140762号公報 特開2010-033877号公報 特開2013-080637号公報
 特許文献4、5に記載の電極用複合体は、固体電解質として、界面抵抗が低くなる傾向のある、硫黄とリチウムとを含む硫化物系固体電解質を使用している。
 電極用の焼結体では、電極活物質の結晶粒と固体電解質の結晶粒とは低抵抗の界面で密着している必要があるが、安全性と高温耐久性とに優れた酸化物系固体電解質と電極活物質とを複合化した焼結体は報告されていなかった。
 本発明は、このような従来技術の問題点を解決するためになされたものであり、電極活物質と酸化物系固体電解質とを複合化した焼結体を提供することを目的とする。なお、電極活物質と固体電解質とが複合化したとは、それぞれの結晶粒が接合し、固体電解質の結晶粒を介して電極活物質の結晶粒へのリチウムイオン伝導パスが形成されている状態を意味する。
 本発明者らは、鋭意検討の結果、加熱によりチタン酸リチウムとなる前駆体と、加熱によりチタン酸リチウムランタンとなる前駆体との混合物か、チタン酸リチウムとチタン酸リチウムランタンとの混合物を、成形した後に加熱することで、チタン酸リチウムの結晶粒とチタン酸リチウムランタンの結晶粒とが接合した焼結体が得られることを見出し、本発明を完成させるに至った。
 本発明の第1の形態は、スピネル型結晶構造を持つチタン酸リチウム及び/又はラムズデライト型結晶構造を持つチタン酸リチウムと、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンと、を含むことを特徴とする焼結体である。
 また、本発明の第2の形態は、リチウムを吸蔵放出する負極とリチウムを吸蔵放出する正極とをセパレータを介して対向して電解液中に配置しており、前記負極又は前記正極として前記焼結体を使用することを特徴とするリチウム電池である。
 また、本発明の第3の形態は、リチウムを吸蔵放出する負極層と、リチウムを伝導する固体電解質層と、リチウムを吸蔵放出する正極層とをこの順に積層しており、前記負極層及び/又は前記正極層として前記焼結体を使用することを特徴とする全固体リチウム電池である。
 また、本発明の第4の形態は、チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との混合物の粉末を成形して成形体を得る工程と、前記成形体を焼結する焼結工程と、を含む焼結体の製造方法である。
 また、本発明の第5の形態は、チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との混合物を仮焼成して仮焼体を得る工程と、前記仮焼体の粉末を成形して成形体を得る工程と、前記成形体を焼結する焼結工程と、を含む焼結体の製造方法である。
 また、本発明の第6の形態は、チタン酸リチウムとチタン酸リチウムランタンとの混合物の粉末を成形して成形体を得る工程と、前記成形体を焼結する焼結工程と、を含む焼結体の製造方法である。
 本発明により、電極活物質と酸化物系固体電解質とを複合化した焼結体を提供することができる。
第1の前駆体の製造方法を経る焼結体の製造方法のフローチャート。 第2の前駆体の製造方法を経る焼結体の製造方法のフローチャート。 第3の前駆体の製造方法を経る焼結体の製造方法のフローチャート。 第4の前駆体の製造方法を経る焼結体の製造方法のフローチャート。 実施例1に係る沈殿体と前駆体の粉末X線回折図形。 実施例1-1~1-4に係る焼結体の粉末X線回折図形。 実施例1-5に係る焼結体の粉末X線回折図形。 実施例1-1、1-3に係る焼結体の走査型電子顕微鏡写真。 実施例2-4に係る焼結体の粉末X線回折図形。 実施例4に係る焼結体の粉末X線回折図形。 実施例5-3に係る焼結体の粉末X線回折図形。
 以下、本発明の焼結体とその製造方法について詳細に説明する。
<焼結体>
 本発明に係る焼結体は、スピネル型結晶構造を持つチタン酸リチウム及び/又はラムズデライト型結晶構造を持つチタン酸リチウムと、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンと、を含む。即ち、焼結体は、スピネル型結晶構造を持つチタン酸リチウムとラムズデライト型結晶構造を持つチタン酸リチウムのいずれか一方を含んでいてもよいし、両方を含んでいてもよい。
 スピネル型結晶構造を持つチタン酸リチウムは、例えば、LiTi12である。チタン酸リチウムを構成する元素の一部が別の元素に置き換わっていてもよく、別の元素をドーピングしていてもよい。
 ラムズデライト型結晶構造を持つチタン酸リチウムは、例えば、LiTiである。チタン酸リチウムを構成する元素の一部が別の元素に置き換わっていてもよく、別の元素をドーピングしていてもよい。ラムズデライト型結晶構造を持つチタン酸リチウムとしては、LiTiの他に、LiTi等、多数の物質が知られており、それらの固溶体、例えばLiTiとLiTiの固溶体等も知られている。
 また、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンとは、例えば、一般式Li3xLa2/3-xTiO(0<x≦1/6)で表されるチタン酸リチウムランタンである。チタン酸リチウムランタンを構成する元素の一部が別の元素の置き換わっていてもよく、別の元素をドーピングしていてもよい。
 チタン酸リチウムとチタン酸リチウムランタンの同定はX線回折法を用いて行うことができる。本発明に係る焼結体は、チタン酸リチウムとチタン酸リチウムランタンの両方を含むことを特徴としており、焼結体をX線回折パターンにおいて、チタン酸リチウムの最強線強度とチタン酸リチウムランタンの最強線強度との比が、100倍以下であることを特徴とする。即ち、スピネル型結晶構造を持つチタン酸リチウムの最強線強度Iと、ラムズデライト型結晶構造を持つチタン酸リチウムの最強線強度Iと、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンの最強線強度Iが、(I+I)/I=0.01以上100以下の関係であることが好ましく、0.02以上50以下の関係であることがより好ましく、0.05以上20以下の関係であることが更に好ましい。なお、CuKα線を用いる場合、通常は、スピネル型結晶構造を持つチタン酸リチウムの最強線は17°以上19°以下に現れ、ラムズデライト型結晶構造を持つチタン酸リチウムの最強線は19°以上21°以下に現れ、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンの最強線は32°以上34°以下に現れる。
 焼結体中に含まれるチタンとランタンとのモル比が、La/Ti=0.0001以上0.66以下であることが好ましく、チタン酸リチウムの生成の促すためにはLa/Ti=0.0001以上0.5以下であることがより好ましく、十分な充放電容量を確保するためにはLa/Ti=0.05以上0.2以下であることが更に好ましい。チタン酸リチウムランタンは、リチウムイオン伝導性を持つため、焼結体中に所定量のランタンが含まれることにより、焼結体にチタン酸リチウムランタンのネットワークが形成され、焼結体内部のリチウムイオンの移動を助けることができる。また、0.0001≦La/Ti≦0.66の場合は、Laが過剰となりにくく、焼結時にペロブスカイト型チタン酸リチウムランタン以外のLa(OH)やLaやLaTi等の不純物相が生成しにくいことに加え、チタン酸リチウムランタン相が少なすぎず、リチウムイオン伝導率向上の効果が十分に得られやすい。
 焼結体の実密度が2.5g/cm以上であることが好ましく、2.8g/cm以上であることがより好ましく、3.0g/cm以上であることが更に好ましい。実密度が高い方が焼結体中に空隙が少なく、高いリチウムイオン伝導率を達成できる。焼結体の実密度の上限は、特に限定されず、例えば、6.0g/cm以下でよく、5.0g/cm以下でもよい。
 焼結体の25℃でのリチウムイオン伝導率が1×10-8S/cm以上であることが好ましく、5×10-8S/cm以上であることがより好ましく、1×10-7S/cm以上であることが更に好ましい。本発明において、リチウムイオン伝導率は、焼結体を、電解液を含むセパレータを介して金属リチウム電極で挟んだセルを用いて測定するノンブロッキング電極測定法を用いて評価した値を意味する。焼結体の25℃でのリチウムイオン伝導率の上限は、特に限定されず、例えば、1×10-2S/cm以下でよく、1×10-3S/cm以下でもよい。
 焼結体をリチウム電池用の電極として用いる際は、板状又はシート状の焼結体の厚さが3μm以上であることが好ましい。焼結体が薄いと、チタン酸リチウム単相でも充放電が可能となることが多いため、特に焼結体が厚い場合の方が、本発明は有効である。十分な充放電容量を得るためには、焼結体の厚さは5μm以上がより好ましく、10μm以上が更に好ましく、30μm以上が特に好ましい。一方で、厚さが1mm以下であると、抵抗が大きくなりにくいため、好ましい。
 リチウムを吸蔵放出する負極とリチウムを吸蔵放出する正極とをセパレータを介して対向して電解液中に配置しているリチウム電池において、負極又は正極として本発明の焼結体を使用することができる。なお、電解液をポリマーに含ませてゲル化したリチウムイオンポリマー電池としてもよい。また、電解液の代わりに固体電解質層を用いて、リチウムを吸蔵放出する負極層と、リチウムを伝導する固体電解質層と、リチウムを吸蔵放出する正極層とをこの順に積層しており、負極層及び/又は正極層として本発明に記載の焼結体を使用することができる。なお、固体電解質層として、ポリマー中にリチウム塩を含有するドライポリマー電解質層を用いてもよい。
 なお、チタン酸リチウムは、リチウムイオン二次電池の負極活物質として用いられる場合が多いが、金属リチウムやリチウム合金等、充放電電位がチタン酸リチウムに対して相対的に卑な材料を対極(負極)に用いれば、正極活物質として用いることができる。また、本発明の焼結体を、金属リチウムやリチウム合金等を対極として、一次電池の電極として用いてもよい。なお、本発明で、リチウム電池とは、一次電池と二次電池の両方を含み、更に、金属リチウムやリチウム合金を電極として用いる電池だけでなく、正極及び負極間でリチウムイオンが移動する電池全体を含む。
 焼結体は、チタン酸リチウムの結晶粒と、チタン酸リチウムランタンの結晶粒とが集まって構成されており、それぞれの結晶粒の直径は、焼結体の厚さの1/3以下であることが好ましく、焼結体の厚さの1/5以下であることがより好ましく、焼結体の厚さの1/10以下であることが更に好ましい。焼結体を構成する結晶粒の直径は、電子顕微鏡により確認することができる。上記結晶粒の直径の下限は、特に限定されず、例えば、焼結体の厚さの1/100,000以上でよく、1/10,000以上でもよい。
 また、本発明の焼結体は、チタン酸リチウムランタン相のネットワークがリチウムイオンの伝導に貢献しており、チタン酸リチウムランタンによるネットワークを介してチタン酸リチウムへのリチウムイオン伝導パスができているため、焼結体の状態で充放電が可能である。従って、厚さ500μmに加工した本発明の焼結体を負極又は正極とし、電解液を用いたセルにおいて、0.1mA/cmのレートで充放電試験をした際の前記焼結体の初期充電容量及び/又は初期放電容量が10mAh/g以上であることが好ましく、20mAh/g以上であることがより好ましく、30mAh/g以上であることが更に好ましい。上記容量は、上記セルの容量を前記焼結体の質量で除して得られる、前記焼結体の単位質量当たりの容量を意味する。上記セルは、より具体的には、厚さ500μmに加工した本発明の焼結体を負極又は正極とし、所定の対極と電解液とを用いたセルであり、所定の対極としては、例えば、当該焼結体を負極とする場合には、リチウム含有遷移金属リン酸化合物(例えば、リン酸鉄リチウム)、リチウム含有遷移金属複合酸化物(例えば、LiCoO)等の正極材料を含む正極が挙げられ、当該焼結体を正極とする場合には、金属リチウム、黒鉛等の負極材料を含む負極が挙げられる。上記初期充電容量及び/又は初期放電容量の上限は、特に限定されず、例えば、336mAh/g以下でよく、250mAh/g以下でもよい。また、厚さ10μm以上150μm以下に加工した前記焼結体を負極又は正極とし、固体電解質を用いた全固体型のセルにおいて、温度60℃、0.02mA/cmのレートで充放電試験をした際の前記焼結体の初期充電容量及び/又は初期放電容量が10mAh/g以上であることが好ましく、20mAh/g以上であることがより好ましく、30mAh/g以上であることが更に好ましい。上記容量は、上記全固体型のセルの容量を前記焼結体の質量で除して得られる、前記焼結体の単位質量当たりの容量を意味する。上記全固体型のセルは、より具体的には、厚さ10μm以上150μm以下に加工した前記焼結体を負極又は正極とし、所定の対極と固体電解質とを用いた全固体型のセルであり、所定の対極は、上述の通りである。上記初期充電容量及び/又は初期放電容量の上限は、特に限定されず、例えば、336mAh/g以下でよく、250mAh/g以下でもよい。
 なお、焼結体には、チタン酸リチウム、チタン酸リチウムランタンに加えて、電子伝導性を有する導電剤が含まれていても良い。このような導電剤としては、例えば、金、銀、銅、ニッケル等の金属や、酸化スズ、酸化亜鉛、酸化チタン、酸化インジウムスズ等の酸化物や、炭素等の材料を、粒子や繊維、ロッド、チューブ等の形態で用いることができる。炭素系導電剤としては、炭素繊維、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、グラフェン、グラファイト等を用いることができる。また、チタン酸リチウムやチタン酸リチウムランタンの粒子の表面に導電剤の皮膜を形成してもよい。成形する前の粉末に導電剤を混合して加えてもよいし、前駆体の製造時に導電剤を加えても良い。
<焼結体の製造方法>
 本発明の焼結体の製造方法としては、特に限定されず、例えば、加熱によりチタン酸リチウムやチタン酸リチウムランタンとなる前駆体の混合物を成形して焼結する方法と、チタン酸リチウムとチタン酸リチウムランタンとの混合物を成形して焼結する方法のいずれも採用することができる。
 即ち、本発明に係る第1の焼結体の製造方法は、チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との混合物の粉末を成形して成形体を得る工程と、成形体を焼結する工程とを含む製造方法である。なお、前駆体の混合物とは、チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体とが、それぞれ別の粒子となっている場合を意味するだけでなく、チタン、ランタン、リチウムが一体化した固体状物質の中から、加熱によりチタン酸リチウムとチタン酸リチウムランタンが生成する場合も意味する。また、前駆体はチタン酸リチウム又はチタン酸リチウムランタンの結晶を含んでいても良い。
 また、本発明に係る第2の焼結体の製造方法は、チタン酸リチウムの前駆体とチタン酸リチウムランタンの前駆体との混合物を仮焼成して仮焼体を得る工程と、仮焼体の粉末を成形して成形体を得る工程と、成形体を焼結する焼結工程と、を含む焼結体の製造方法である。焼結工程の前に仮焼成工程を行うことで、焼結工程における成形体のガス発生や質量減少を緩和することができる。
 仮焼成工程では、チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との混合物を、250℃以上1500℃以下、好ましくは400℃以上1300℃以下で加熱することで、チタン酸リチウム及び/又はチタン酸リチウムランタンを生成する。より低い温度で仮焼成を行いチタン酸リチウムのみを生成させ、チタン酸リチウムランタンを生成させなくてもよいし、より高い温度で仮焼成を行い、チタン酸リチウムとチタン酸リチウムランタンの両方を生成させてもよい。
 また、本発明にかかる第3の焼結体の製造方法は、チタン酸リチウム、例えば、スピネル型及び/又はラムズデライト型の結晶構造を持つチタン酸リチウムと、チタン酸リチウムランタン、例えば、ペロブスカイト型結晶構造を持つチタン酸リチウムランタンとの混合物の粉末を成形して成形体を得る工程と、成形体を焼結する工程とを含む製造方法である。チタン酸リチウムとチタン酸リチウムランタンとの混合物を得るには、それぞれの粉末を混合して得る方法があるが、前述の第2の焼結体の製造方法で仮焼成して得られた仮焼体がこれに該当する場合もある。
 チタン酸リチウムとチタン酸リチウムランタンの混合方法は、ボールミル等で混合して得ることができる。ボールミル等で混合する場合、チタン酸リチウムの粉末とチタン酸リチウムランタンの粉末を、水やアルコール等の溶媒中で、数分から数十時間、好ましくは10分以上混合し、粉末の微粒化と均一化を達成することが好ましい。
[成形工程]
 チタン酸リチウムの前駆体とチタン酸リチウムランタンの前駆体との混合物や、チタン酸リチウムとチタン酸リチウムランタンとの混合物を成形する。成形工程は、混合物の粉末に圧力をかけて所定の形状に成形することが好ましい。また、成形する前に粉末に導電剤を混合して加えてもよい。混合物の粉末は、金型に入れられるか、シート状に成形される。シート状に成形する場合、例えば粉末を溶媒に分散させ、得られた分散体を塗布し、溶媒を乾燥させ、ロールプレス等を用いて圧力をかける方法が考えられる。なお、分散体には、必要に応じて可塑剤、バインダ、分散剤等を添加しても良い。成形圧力は、金型では例えば、100MPa以上1000MPa以下の範囲とすることができる。シート状では例えば、線圧20N/mm以上2000N/mm以下の範囲とすることができる。シート状に成形する場合、成形工程で正極層やセパレータ(固体電解質)層、あるいはそれらの前駆体と共に積層構造を形成しても良い。
[焼結工程]
 焼結工程では、成形体を250℃以上1500℃以下、好ましくは400℃以上1300℃以下で加熱することで、成形体の構成粒子同士を結合させる。焼結温度が、1000℃付近を境として、より高い温度の場合、ラムズデライト型結晶構造を持つチタン酸リチウムが生成しやすく、より低い温度の場合、スピネル型結晶構造を持つチタン酸リチウムが生成しやすい。特に、焼結温度が1200℃まで到達すると、ほとんどのチタン酸リチウムがラムズデライト型になる。焼結工程における、成形後の加熱方法は特に限定されず、例えば、抵抗加熱、マイクロ波加熱等を適用することができる。また、成形工程と焼結工程を同時に行う、通電焼結、放電プラズマ焼結等の公知の焼結方法を適用することもできる。焼結中の雰囲気は、空気雰囲気、窒素等の不活性雰囲気、酸素等の高酸化性雰囲気、希釈水素等の還元性雰囲気のいずれも使用することができる。また、焼結温度の保持時間は、焼結温度等に応じて適宜変更することができ、現実的には24時間以下が好ましい。なお、焼結温度が600℃以上の場合、焼結温度の保持時間は、1時間以下の短時間であってもよく、更には保持時間を0分とし、焼結温度到達後すぐに加熱を停止してもよい。冷却方法も特に限定されず、自然放冷(炉内放冷)してもよいし、自然放冷よりも急速に冷却してもよく、冷却中にある温度で保持してもよい。
 この焼結工程により、電極活物質として用いることができるスピネル型結晶構造を有するチタン酸リチウム、及び/又は、電極活物質として用いることができるラムズデライト型結晶構造を有するチタン酸リチウムと、固体電解質として用いることができるペロブスカイト型結晶構造を有するチタン酸リチウムランタンとが複合化した焼結体を合成することができる。この焼結体は、リチウム電池用の電極として用いることができる。
 第1の焼結体の製造方法の焼結工程や、第2の焼結体の製造方法の仮焼成工程と焼結工程、即ち、加熱によりチタン酸リチウムやチタン酸リチウムランタンとなる前駆体の混合物を加熱する工程では、前駆体からの結晶相の変化及び/又は結晶性の向上が起こる。結晶相の変化及び/又は結晶性の向上は粉末X線回折法によって確認できる。結晶相の変化は回折パターンの変化として、結晶性の向上は回折線の幅の減少としてX線回折図形に反映される。例えば、前駆体中に存在する(Li1.81,H0.19)Ti・2HO[ICDD番号00-047-0123]、Li0.771.23(Ti)・2HO[ICDD番号00-040-0304]、(LiTiO1.333[ICDD番号01-075-0614]に比定できる回折パターンは焼結によって消失し、スピネル型結晶構造を持つチタン酸リチウム、例えばLiTi12[ICDD番号00-049-0207]、ラムズデライト型結晶構造を持つチタン酸リチウム、例えば、LiTi[ICDD番号00-034-0393]、Li0.94Ti[ICDD番号01-088-0609]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン、例えばLi3xLa2/3-xTiO(0<x≦1/6)[ICDD番号01-074-4217、00-046-0467、01-087-0935、00-046-0466等]が生成する。
<前駆体の製造方法>
 本発明に係る第1又は第2の焼結体の製造方法において成形工程に使用される、チタン酸リチウムの前駆体とチタン酸リチウムランタンの前駆体との混合物は、以下に記載のソルボサーマル法を利用した第1~第4の前駆体の製造方法を用いて得ることが好ましい。
 本発明の前駆体の製造方法は、少なくとも、Ti元素源とLi元素源と溶媒とを含む混合物をソルボサーマル処理する必要がある。La元素源の化合物は、後述する第2の前駆体の製造方法のように、後から添加することができるが、La元素源とTi元素源とLi元素源と溶媒とを含む混合物をソルボサーマル処理法により加熱する工程を含む前駆体の製造方法を用いることもできる。この製造方法は、第1の前駆体の製造方法、第2の前駆体の製造方法の変形例、第3の前駆体の製造方法、第4の前駆体の製造方法の上位概念に対応する。このようなソルボサーマル処理工程により、チタン酸リチウムの前駆体とチタン酸リチウムランタンの前駆体との混合物が得られる。
 <第1の前駆体の製造方法>
 本発明に係る第1の前駆体の製造方法として、図1に示すように、Laカチオン及びTiカチオンを含む水溶液を調製する水溶液調製工程と、前記水溶液調製工程で得た水溶液と塩基性水溶液とを混合することにより、La元素の酸化物及び/又は水酸化物と、Ti元素の酸化物及び/又は水酸化物とを含む沈殿物を得る同時沈殿処理工程と、前記同時沈殿処理工程で得られた沈殿物、Li元素源の化合物、及び溶媒を含む混合物をソルボサーマル処理法により固体状物質を形成する工程と、を含むことを特徴とする前駆体の製造方法が挙げられる。
[水溶液調製工程]
 水溶液調製工程では、Laカチオン及びTiカチオンを含む水溶液を調製する。Laカチオンとしては、La3+が挙げられ、TiカチオンとしてはTi4+が挙げられる。Laカチオン及びTiカチオンのそれぞれは、水、アンモニア、酸化物イオン、水酸化物イオンや後述の対アニオン等を配位子として、錯体を形成していてもよい。Laカチオン及びTiカチオンの対アニオンとしては、酸化物イオン及び水酸化物イオン以外に、例えば、塩化物イオン等の塩素含有アニオンや、硝酸アニオン等が挙げられる。上記の対アニオンは、単独で用いても2種以上を併用してもよい。
 上記水溶液は、例えば、溶解によりLaカチオンを生成するランタン化合物と、溶解によりTiカチオンを生成するチタン化合物とを、水や酸性の水溶液に溶解させることにより調製される。これらのランタン化合物及びチタン化合物としては、例えば塩化物、オキシ塩化物、水酸化物、酸化物、硝酸塩等が挙げられ、入手が容易である点や安価である点から、塩化物又はオキシ塩化物が好ましい。また、溶解が容易である点からは硝酸塩が好ましい。上記のランタン化合物及びチタン化合物の形態としては特に限定されず、例えば、粉末等の固体、水溶液等の液体等が挙げられる。上記のランタン化合物及びチタン化合物の各々は、単独で用いても2種以上を併用してもよい。
 水溶液調製工程で調製した水溶液は、pHが7未満、即ち、酸性であることが好ましい。Laカチオンは強酸性から弱酸性までの領域で高い水溶液を示すが、Tiカチオンは強酸性領域のみで高い水溶性を示す。よって、水溶液調製工程で調製される水溶液は、安定性の観点から、強酸性(例えば、pH3以下)であることが好ましい。
[同時沈殿処理工程]
 同時沈殿処理工程では、水溶液調製工程で得た水溶液と塩基性水溶液とを混合することにより、ランタンの酸化物及び/又は水酸化物と、チタンの酸化物及び/又は水酸化物とを含む沈殿物を得る。水溶液調製工程で得た水溶液と塩基性水溶液とを混合する方法としては、特に限定されず、例えば、水溶液調製工程で得た水溶液を塩基性水溶液に滴下又は噴霧する方法が挙げられる。
 塩基性水溶液のpHは、沈殿速度の観点から、8以上であることが好ましい。塩基性水溶液としては、特に限定されず、例えば、アンモニア水、水酸化リチウム水溶液が挙げられる。入手が容易である点や安価である点からは、アンモニア水が好ましい。また、固体電解質へのコンタミネーションを防ぐ観点からは、アルカリカチオンがリチウムイオン、即ち、固体電解質を構成するカチオンである水酸化リチウム水溶液が好ましい。
 同時沈殿処理工程で用いる塩基性水溶液の塩基のモル当量は、水溶液調製工程で得た水溶液中のLaカチオン及びTiカチオンの対アニオン(但し、酸化物イオン及び水酸化物イオンを除く)のモル当量と比較して、より多いことが好ましく、大過剰(例えば、2倍程度以上)であることがより好ましい。塩基性水溶液の塩基のモル当量が上記対アニオンのモル当量より多いと、水溶液調製工程で得た水溶液と塩基性水溶液とを混合した後でも、混合溶液の塩基性を十分に維持しやすい。
 同時沈殿処理工程で得た沈殿物は、適宜、分離及び洗浄される。分離方法としては、特に限定されず、例えば、遠心分離、デカンテーション、ろ過が挙げられる。また、洗浄に用いられる溶媒としては、特に限定されず、入手が容易である点や安価である点から、水が好ましく例示できる。
 本発明に係る水溶液調製工程では、ゾルゲル法で使用する高価なアルコキシドではなく、塩化物等の安価な原料を使用できる。また、同時沈殿処理工程で得た沈殿物は、ゾルゲル法で発生する、焼結時の有機配位子の脱離等に伴う大きな質量減少を防ぐことができる。
[ソルボサーマル処理工程]
 ソルボサーマル処理工程では、同時沈殿処理工程で得た沈殿物等のLaカチオン及びTiカチオンを含む固形物又は溶液と、リチウム元素源の化合物と、溶媒とを混合して、大気圧よりも高い圧力の下で加熱し、前駆体を得る。
 リチウム元素源の化合物としては、特に限定されず、例えば、炭酸リチウム、塩化リチウム、フッ化リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、これらの水和物が挙げられる。これらのリチウム化合物を単独で用いても2種以上を併用してもよい。また、リチウム化合物の形態は、例えば、粉末等の固体であっても、水溶液であってもよく、特に限定されない。
 ソルボサーマル処理工程を行う前の混合物中のTi元素に対するLa元素の含有比率が、La/Ti≦0.66であることが好ましい。La/Ti≦0.66の場合は、目標混合組成のチタン酸リチウムとチタン酸リチウムランタンを含む電極複合体が必要とする以上のLaが焼成後に残留しにくいため、焼成によってLTO又はLLTO以外のLa(OH)やLaやLaTi等の不純物相が生成しにくい。
 本発明では、ソルボサーマル処理として、溶媒として水を使用する水熱処理を主に行う。水熱処理とは、高温高圧の熱水の存在下で行われる化合物合成法又は結晶成長法をいい、常温常圧の水溶液中では起こらない化学反応が進行する場合がある。本発明では、Laカチオン及びTiカチオンを含む固形物又は溶液に対して、リチウム元素を含有する水溶液を加え、高温高圧処理を行うことで、常温常圧では水溶性であるリチウム元素をチタン元素と複合塩化して複合塩中に取り込ませることができ、この複合塩を溶媒から分離することで前駆体が得られる。なお、水熱処理では溶媒として水を用いるが、水以外の溶媒(例えば、有機溶媒等)を用いる方法(ソルボサーマル法)でも同様の効果が期待できる。
 本発明の水熱処理においては、大気圧よりも高く8.7MPaよりも低い絶対圧、温度は60℃以上300℃以下の環境下で、より好ましくは、絶対圧は0.15MPa以上4.0MPa以下、温度は60℃以上250℃以下の環境下で、1時間以上100時間以下程度加熱することが好ましい。圧力と温度が上記範囲内であると、反応が進行しやすく、不純物が生じにくくなる上に、高度な耐圧容器が不要となり、製造コストの上昇を招きにくい。また、反応時間が上記範囲内であると、生産性が低下しにくい。
 <第2の前駆体の製造方法>
 本発明に係る第2の前駆体の製造方法として、Ti元素源と、Li元素源と、溶媒とを含む混合物をソルボサーマル処理法により、LiとTiとの複合塩を形成するソルボサーマル処理工程と、複合塩にLa元素源を添加し、固体状物質を形成する工程と、を含むことを特徴とする前駆体の製造方法が挙げられる。Ti元素源としては、Ti元素の酸化物及び/又は水酸化物を含む微粒子(固形物)を用いることができる。
 [Ti含有微粒子(固形物)の合成方法]
 上記のTi元素の酸化物及び/又は水酸化物を含む微粒子(固形物)の合成法としては、四塩化チタニウムを気相酸化する方法、含水酸化チタンをまず水酸化ナトリウム、次いで塩酸で処理する方法、沈殿反応を利用する方法等がある。一例として、以下に沈殿反応を利用する方法を示す。
 この方法では、Tiカチオンを含む水溶液と塩基性水溶液とを混合することにより、Ti元素の酸化物及び/又は水酸化物を含む微粒子を合成する。
 [水溶液調製工程]
 水溶液調製工程では、Tiカチオンを含む水溶液を調製する。第2の前駆体の製造方法の水溶液調製工程は、ランタン化合物を添加しない点以外は、第1の前駆体の製造方法の水溶液調製工程と同様に行うことができる。
[沈殿処理工程]
 沈殿処理工程では、水溶液調製工程で得たTiカチオンを含む水溶液と塩基性水溶液とを混合することにより、チタンの酸化物及び/又は水酸化物を含む沈殿物を得る。第2の前駆体の製造方法の沈殿処理工程は、第1の前駆体の製造方法の沈殿処理工程と同様に行うことができる。
[ソルボサーマル処理工程]
 ソルボサーマル処理工程では、沈殿処理工程で得た沈殿物等のTiカチオンを含む固形物であるTi元素源と、リチウム元素源の化合物と、溶媒とを混合して、大気圧よりも高い圧力の下で加熱し、LiとTiとの複合塩を得る。第2の前駆体の製造方法のソルボサーマル処理工程は、第1の前駆体の製造方法のソルボサーマル処理工程と同様に行うことができる。
[La元素源添加工程]
 第2の前駆体の製造方法では、ソルボサーマル処理工程に続いてLa元素源の添加を行う。La元素源添加工程は、ソルボサーマル処理後の複合塩を溶媒から分離する前に行っても、溶媒から分離した後に行っても良い。La元素源の形態は、例えば、粉末等の固体であっても、水溶液であってもよく、特に限定されず、複合塩を溶媒から分離する前に添加する場合は水や酸性の水溶液に溶解するランタン化合物を使用でき、これらのランタン化合物としては、例えば塩化物、オキシ塩化物、水酸化物、酸化物、硝酸塩が挙げられ、入手が容易である点や安価である点から、塩化物又はオキシ塩化物が好ましい。また、溶媒から分離した後に添加する場合のランタン化合物としては、例えば、酸化ランタンや水酸化ランタン等が挙げられる。上記のランタン化合物は、単独で用いても2種以上を併用してもよい。
<第2の前駆体の製造方法の変形例>
 また、複合塩にLa元素源を添加して固体状物質を形成する工程では、複合塩にLa元素源を単純に混合してもよく、図2に示すように、La元素源を添加したソルボサーマル処理法により固体状物質を形成することもできる。その場合、LiとTiとの複合塩を形成するソルボサーマル処理工程を第1ソルボサーマル処理工程とし、固体状物質を形成する工程を第2ソルボサーマル処理工程とする。
 また、第2のソルボサーマル処理工程を行う場合、第1ソルボサーマル処理工程を行う反応容器内におけるリチウムのチタンに対するモル比(Li/Ti)は、0.5以上3.5以下であることが好ましく、0.8以上3.0以下であることがより好ましく、1.0以上2.5以下であることが更に好ましい。チタン量に対して十分なリチウム量を供給することで、複合塩化されないTiカチオンを低減することができる。また、適切な範囲の量のリチウムは、第2ソルボサーマル処理工程で酸により除去される量を低減するため、製造コストの上昇を招きにくい。
[第2ソルボサーマル処理工程]
 第2ソルボサーマル処理工程を行う場合は、第1ソルボサーマル処理工程で得たLiとTiとの複合塩にLa元素源を添加した後で、大気圧よりも高い圧力の下で加熱し、前駆体を得る。
 La元素源としては、水や酸性の水溶液に溶解するランタン化合物を使用でき、これらのランタン化合物としては、例えば塩化物、オキシ塩化物、水酸化物、酸化物、硝酸塩が挙げられ、入手が容易である点や安価である点から、塩化物又はオキシ塩化物が好ましい。また、溶解が容易である点からは硝酸塩が好ましい。上記のLa元素源の形態としては特に限定されず、例えば、粉末等の固体、水溶液等が挙げられる。上記のランタン化合物は、単独で用いても2種以上を併用してもよい。
 第2ソルボサーマル処理工程は、La元素源と共に酸も添加した状態で実施しても良い。酸としては、無機酸も有機酸も使用することができ、塩酸、硝酸、硫酸、ギ酸、酢酸等を用いることができる。
 酸の添加量としては、酸のチタンに対するモル比(酸/Ti)のリチウムのチタンに対するモル比(Li/Ti)からの差が、0.1<[(Li/Ti)―(酸/Ti)]<1.5を満たすことが好ましく、0.3<[(Li/Ti)―(酸/Ti)]<1.1を満たすことが更に好ましい。また、酸の添加後の溶液のpHは8以上14以下であることが好ましい。酸の添加量を調整することで、第2ソルボサーマル処理後の固形物に含まれるリチウムの量を好ましい範囲に調整することができる。
 第2ソルボサーマル処理工程で使用できるソルボサーマル処理としては、第1ソルボサーマル処理工程で使用できるソルボサーマル処理と、同様の水熱処理方法を使用することができる。
 第2のソルボサーマル処理工程において酸を添加する第2の前駆体の製造方法の変形例では、第1のソルボサーマル工程においてチタン量に対して十分なリチウム量を供給するため、複合塩を形成していないTiカチオンの量を低減することができる。その結果、焼成後の不純物相を低減することができ、成形後に加熱する焼結を行う際には焼結密度を高くすることもできる。
 第1のソルボサーマル処理工程と第2のソルボサーマル処理工程とを行う第2の前駆体の製造方法の変形例では、第1ソルボサーマル処理工程において、LTOの前駆体となるLi-Ti複合塩を形成した後、第2ソルボサーマル処理工程において、LLTOの前駆体となる固体状物質が形成されるため、焼成後のチタン酸リチウム複合生成物において、LTOの周囲をLLTOで被覆した構造を形成することが期待される。
 <第3の前駆体の製造方法>
 本発明に係る第3の前駆体の製造方法として、図3に示すように、Laカチオン及びTiカチオンを含む水溶液を調製する水溶液調製工程と、前記水溶液調製工程で得た水溶液と塩基性水溶液とを混合することにより、La元素の酸化物及び/又は水酸化物と、Ti元素の酸化物及び/又は水酸化物とを含む沈殿物を得る同時沈殿処理工程と、前記同時沈殿処理工程で得られた沈殿物、Li元素源の化合物、及び溶媒を含む混合物をソルボサーマル処理法により固体状物質を形成する第1ソルボサーマル処理工程と、更に酸を添加して、ソルボサーマル処理法により固体状物質を形成する第2ソルボサーマル処理工程と、を含むことを特徴とする前駆体の製造方法が挙げられる。
 第3の前駆体の製造方法の水溶液調製工程、同時沈殿処理工程、及び第1ソルボサーマル処理工程は、それぞれ、第1の前駆体の製造方法の水溶液調製工程、同時沈殿処理工程、及びソルボサーマル処理工程と同様の方法であり、第1ソルボサーマル処理工程を行う反応容器内におけるリチウムのチタンに対するモル比(Li/Ti)は、0.5以上3.5以下であることが好ましく、0.8以上3.0以下であることがより好ましく、1.0以上2.5以下であることが更に好ましい。チタン量に対して十分なリチウム量を供給することで、複合塩化されないTiカチオンを低減することができる。また、適切な範囲の量のリチウムは、第2ソルボサーマル処理工程で酸により除去される量を低減するため、製造コストの上昇を招きにくい。
 第2ソルボサーマル処理工程では、第1ソルボサーマル処理工程で得られたLi-Ti複合塩とLa元素源とを含む固体状物質に対して、酸を添加し、大気圧より高い圧力の下で加熱し、前駆体を得る。
 酸としては、無機酸も有機酸も使用することができ、塩酸、硝酸、硫酸、ギ酸、酢酸等を用いることができる。
 酸の添加量としては、チタンに対するモル比(酸/Ti)のリチウムのチタンに対するモル比(Li/Ti)からの差が、0.1<[(Li/Ti)―(酸/Ti)]<1.5を満たすことが好ましく、0.3<[(Li/Ti)―(酸/Ti)]<1.1を満たすことが更に好ましい。また、酸の添加後の溶液のpHは8以上14以下であることが好ましい。酸の添加量を調整することで、第2ソルボサーマル処理後の固形物に含まれるリチウムの量を好ましい範囲に調整することができる。
 第2ソルボサーマル処理工程で使用できるソルボサーマル処理としては、第1ソルボサーマル処理工程で使用できるソルボサーマル処理と、同様の水熱処理方法を使用することができる。
 第3の前駆体の製造方法では、第1のソルボサーマル工程においてチタン量に対して十分なリチウム量を供給するため、複合塩を形成していないTiカチオンの量を低減することができる。その結果、焼成後の不純物相を低減することができ、成形後に加熱する焼結を行う際には焼結密度を高くすることもできる。
 <第4の前駆体の製造方法、単塩のソルボサーマル処理工程>
 また、本発明に係る前駆体は、図4に示すように、La元素の単塩、Ti元素の単塩、Li元素の単塩と溶媒とを含む混合物を大気圧よりも高い圧力の下で加熱するソルボサーマル処理工程によってもLiとTiとの複合塩を得ることができる。即ち、La元素源としてLa元素の単塩、Ti元素源としてTi元素の単塩を用いることができる。また、ソルボサーマル処理工程としては、同時沈殿法で得られた沈殿物に対するソルボサーマル処理と同様の方法で行うことができる。
 La元素の単塩としては、特に限定されず、ランタンの酸化物及び/又は水酸化物が挙げられる。Ti元素の単塩としては、特に限定されず、チタンの酸化物及び/又は水酸化物が挙げられる。Li元素の単塩としては、特に限定されず、例えば、炭酸リチウム、塩化リチウム、フッ化リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、これらの水和物が挙げられる。
 また、Ti元素の単塩の平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが特に好ましい。Ti元素の単塩の粒子が上記範囲内であると、ソルボサーマル処理時にLiとTiとの複合塩化が進行しやすいためである。
[乾燥工程]
 その後、ソルボサーマル処理工程で得られた前駆体を乾燥しても良い。乾燥工程の条件としては、例えば60℃以上250℃以下、1時間以上10時間以下が挙げられる。
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
[実施例1]
(1)前駆体の作製
(同時沈殿処理工程)
 塩化ランタン7水和物を水に溶解させて得た溶液を四塩化チタン水溶液と混合し、La濃度0.50mmol/g、Ti濃度2.60mmol/g、Cl濃度8.23mmol/gの水溶液を調製した。この際のLa/Ti比は0.192(モル比)であった。この水溶液は透明であり、室温で放置しても沈殿を生成しなかった。この水溶液350gを28質量%アンモニア水500g中に噴霧すると沈殿が生成した。沈殿を分離し、水で洗浄し、200℃で乾燥し、機械的に解砕した。該沈殿についてCuKα線を用いた粉末X線回折測定を行ったところ、図5(沈殿体)に示すように、顕著な回折ピークは認められなかった。
(水熱合成処理)
 上記沈殿9.31gを耐圧容器に入れ、4N水酸化リチウム水溶液39.58mL(水酸化リチウム0.158mol相当)を加えた。上記耐圧容器を密封し、120℃に設定した恒温槽で12時間加熱して水熱処理を行った。更に、酢酸6.17mLを添加し、180℃で12時間水熱処理を行った。放冷後、沈殿を分離し、水と2-プロパノールを等体積混合した液体で洗浄した後、200℃で乾燥させることで固体状の前駆体を得た。
 得られた前駆体についてCuKα線を用いた粉末X線回折測定を行ったところ、図5(前駆体)に示すように、(LiTiO1.333[ICDD番号01-075-0614]に比定されるLiとTiとの複合塩の回折線が検出された。
[実施例1-1]
(2)焼結体の作製
(成形工程)
 得られた前駆体の一部を、直径13mmの金型に詰め、740MPaで、ペレット状に加圧し、成形体を得た。
(焼結工程)
 成形体を空気中で、焼結温度850℃かつ保持時間12時間で焼結し、厚さ500μmの焼結体を得た。
 また、焼結体を粉砕してCuKα線を用いた粉末X線回折測定を行ったところ、図6(実施例1-1)に示すように、スピネル相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。
[実施例1-2~1-5]
 焼結温度を、900℃、950℃、1000℃、1050℃に変更する以外は、実施例1-1と同様にして実施例1-2~1-5の焼結体を作製した。
 実施例1-2~1-5の焼結体についても実施例1-1と同様の方法で粉末X線回折測定を行った。実施例1-2~1-4の結果を図6に、実施例1-5の結果を図7に示す。実施例1-2、1-3では、スピネル相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。実施例1-4、1-5では、スピネル相のチタン酸リチウムとラムズデライト相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。
 実施例1-1と1-3に係る焼結体の表面を、走査型電子顕微鏡で観察した結果を、図8(a)~(d)に示す。図8(a)~(d)を比較すると、850℃で焼結した実施例1-1に比べて、950℃で焼結した実施例のほうが、結晶粒サイズが大きくなり、実密度も3.3g/cmから3.6g/cmに増加した。なお、図8(b)、(d)において、明るい領域がLaを多く含む領域、即ちチタン酸リチウムランタン相の結晶粒であり、暗い領域が、Laがより少ないチタン酸リチウム相の結晶粒であり、互いの結晶粒が接合している。
[実施例2-1~2-4]
 塩化ランタン7水和物を水に溶解させて得た溶液を四塩化チタン水溶液と混合し、La/Ti比は0.065(モル比)となる溶液を作製した以外は、実施例1と同様にして、実施例2-1~2-4の焼結体を作製した。
 実施例2-4に係る焼結体についても、実施例1-1と同様の方法で粉末X線回折測定を行った。結果を図9に示す。実施例2-1~2-4のいずれにおいてもスピネル相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。
[実施例3-1]
 実施例1と同様の方法で前駆体を得た。前駆体を800℃で5時間仮焼成し、仮焼体を得た。仮焼体をジルコニア製のボールミルジャーに入れ、ジルコニアボール及び2-プロパノールを加え、遊星ボールミル処理を300rpmで12時間行った。得られた粉末をボールと2-プロパノールから分離し、200℃にて乾燥し、仮焼粉砕体を得た。
 得られた仮焼粉砕体の一部を、直径13mmの金型に詰め、740MPaで、ペレット状に加圧成形した。成形体を空気中にて950℃で12時間焼結し、厚さ500μmの焼結体を得た。
 実施例3-1に係る焼結体についても、実施例1-1と同様の方法で粉末X線回折測定を行った。その結果、実施例3-1においてもスピネル相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンの両方の生成が確認された。
[実施例3-2]
 仮焼体を得る際の仮焼温度を400℃とする以外は、実施例3-1と同様の方法により焼結体を得た。実施例3-2においてもスピネル相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンの両方の生成が確認された。
[実施例4]
 水熱合成法を利用しない製造方法の例として、以下の手順で焼結体を得た。
 まず、ペロブスカイト相のチタン酸リチウムランタンの粉末は以下の手順で作製した。リチウム源に炭酸リチウム、ランタン源に酸化ランタン、チタン源に二酸化チタンを用い(モル比でLi:La:Ti=0.35:0.56:1.000)、秤量してジルコニア製のボールミルジャーに入れた(原料はそれぞれ乾燥処理を施した)。ジルコニアボール及び2-プロパノールを加え、遊星ボールミル処理を400rpmで2時間行った。
 その後、200℃で3時間乾燥し溶媒を揮発させ、粉末をメノウ乳鉢で粉砕混合し前駆体を得た。前駆体を1150℃で2時間仮焼成し、仮焼体を得た。
 得られた仮焼体をジルコニア製のボールミルジャーに入れ、ジルコニアボールを加え、乾式で遊星ボールミル処理を400rpmで1時間行い、その後2-プロパノールを加え更に400rpmで1時間処理した。200℃で3時間乾燥し溶媒を揮発させ、粉末をメノウ乳鉢で粉砕混合し、1350℃で6時間焼成し、焼成体を得た。CuKα線を用いて粉末X線回折測定を行ったところ、ペロブスカイト相のチタン酸リチウムランタンのピークが観測された。
 次いで、得られたペロブスカイト相のチタン酸リチウムランタンの粉末とスピネル相のチタン酸リチウムの粉末(和光純薬製)とを、ジルコニアボールを用いたボールミルで12時間混合して、前駆体を得た。La/Tiは0.192であった。
 得られた前駆体の一部を、直径13mmの金型に詰め、740MPaで、ペレット状に加圧成形した。成形体を空気中で950℃で12時間焼結し、厚さ500μmの焼結体を得た。
 実施例4に係る焼結体についても、実施例1-1と同様の方法で粉末X線回折測定を行った。結果を図10に示す。実施例4においてもスピネル相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンの両方の生成が確認された。
[実施例5-1~5-3]
 焼結温度とその保持時間を、それぞれ(1100℃,10分)、(1050℃,0分)、(1200℃,0分)とする以外は、実施例1-1と同様にして、実施例5-1~5-3の焼結体を作製した。実施例5-1と実施例5-2では、スピネル相のチタン酸リチウムとラムズデライト相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。図11に実施例5-3の粉末X線回折測定結果を示す。実施例5-3では、ラムズデライト相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。
[実施例6]
 成形工程で用いる前駆体の量を4分の1にすることと、焼結温度とその保持時間を、それぞれ(950℃,12時間)、(1150℃,0分)とする以外は、実施例1-1と同様にして、実施例6-1、6-2の焼結体を作製した。得られた焼結体の厚さはいずれも130μmであった。実施例6-1では、スピネル相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。実施例6-2では、スピネル相のチタン酸リチウムとラムズデライト相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。
[実施例7]
 実施例1に記載の方法で得られた前駆体を、バインダであるポリビニルブチラールと共に、トルエンとイソプロピルアルコールを体積比2:1で混合した溶媒に分散し、スラリーを形成した。PETフィルム上に塗布し、120℃で10分間乾燥し、80℃の熱板プレスを用いて440MPaでプレスした後、PETフィルムを剥離し、500℃で2時間加熱してバインダを除去した。その後、1150℃かつ保持時間2時間で焼結し、厚さ30μmの焼結体シートを得た。なお、この焼結体シートの一部を粉末X線回折測定を行った結果、ラムズデライト相のチタン酸リチウムとペロブスカイト相のチタン酸リチウムランタンとに相当する回折線が検出された。
[比較例1]
 チタン酸リチウムの粉末(和光純薬製)を、直径13mmの金型に詰め、740MPaで、ペレット状に加圧成形した。成形体を空気中で950℃で12時間焼結し、厚さ500μmの焼結体を得た。
[比較例2]
 金型に詰めるチタン酸リチウム粉末の量を4分の1にすること以外は比較例1と同様にして、比較例2の焼結体を作製した。得られた焼結体の厚さは130μmであった。
[比較例3]
 チタン酸リチウムの粉末(和光純薬製)を、焼結温度とその保持時間を、950℃,12時間とする以外は実施例7と同様にして、比較例3の焼結体シートを作製した。得られた焼結体シートの厚さは10μmであった。
 <評価方法>
 [実密度の評価]
 得られた焼結体について、乾燥質量を実寸から求めた体積で除することにより実密度を求めた。
 [充放電試験及びリチウムイオン伝導率測定]
 実施例1-3、1-5、2-3、3-2、4、5-1~5-3の焼結体を用いて、試験用電解液セルを用いた充放電試験及びリチウムイオン伝導率の測定を行った。また、参考として、比較例1の焼結体についても電解液セルを用いた充放電試験を行った。実施例6-1、6-2、比較例2の焼結体を用いて、試験用全固体セルを用いた充放電試験及びリチウムイオン伝導率の測定を行った。実施例7、比較例3の焼結体シートについても試験用全固体セルを用いた充放電試験を行った。
 [試験用電解液セルを用いた充放電試験]
 試験用電解液セルはグローブボックス内で作製した。焼結体試料の片面に金を蒸着し、蒸着面を下にしてステンレス製のセル外装下部の上に置いた。その上にセパレータ及び正極を順に重ねて置き、電解液で全体を浸し、セル外装上部を被せ、焼結体/セパレータ/正極の積層体に圧縮応力を加える形で密封した。なお、電解液にはエチレンカーボネートとエチルメチルカーボネートとを体積比3:7で混合した溶媒にLiPFを濃度1mol/Lで溶解したものを、正極にはリン酸鉄リチウムとカーボンとポリテトラフルオロエチレンとを85:10:5の割合(質量比)で混合したものを使用した。
 充放電は、温度25℃、0.1mA/cmの定電流で、上限のカットオフ電位を2.3Vとし、下限のカットオフ電位を1.0Vとして行った。
 [試験用全固体セルを用いた充放電試験]
 試験用全固体セルはグローブボックス内で作成した。重量平均分子量60万のポリエチレンオキシドと、ポリエチレンオキシドに対する質量比が35%のリチウムビス(トリフルオロメタンスルホニル)イミドを、アセトニトリル中で混合し、下面に金を蒸着した焼結体の上面と周囲に塗布した。その後、130℃12時間減圧乾燥を行い、アセトニトリルを完全に除去することで、ドライポリマー電解質と焼結体の積層体を得た。この積層体のドライポリマー電解質側に金属リチウムを密着させ、コイン型容器に密封することで、焼結体を正極、ドライポリマー電解質を固体電解質、金属リチウムを負極とする試験用コイン型全固体セルを作製し、60℃で充放電試験を行った。充放電は放電から開始し、0.02mA/cmの定電流で、上限のカットオフ電位を2.5Vとし、下限のカットオフ電位を1.25Vとして行った。
 [リチウムイオン伝導率の測定]
 測定用セルはグローブボックス内で作製した。ステンレス製のセル外装下部の上に金属リチウム箔を置き、その上に電解液を染み込ませたセパレータ、焼結体試料、電解液を染み込ませたセパレータ、金属リチウム箔の順に重ねて置き、セル外装上部を被せ、金属リチウム箔/セパレータ/焼結体試料/セパレータ/金属リチウム箔正極の積層体に圧縮応力を加える形で密封した。なお、電解液にはエチレンカーボネートとジエチルカーボネートの等体積混合溶媒にLiClOを濃度1mol/Lで溶解したものを使用した。
 測定は温度25℃で行った。測定にはインピーダンスアナライザを用い(周波数1Hz~32MHz、振幅電圧100mV)、ナイキストプロットの円弧より抵抗値を求め、この抵抗値からリチウムイオン伝導率を算出した。
 一連の評価結果を表1、表2、表3に示す。なお、表2の初期充電容量、初期放電容量は試験用電解液セルを、表3の初期放電容量、初期充電容量は試験用全固体セルを用いて測定した値である。また、各容量は、焼結体の乾燥質量で除した、焼結体の単位質量当たりの容量を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1-1~1-5、実施例5-1~5-3を比較すると、焼結温度が1000℃以上で、ラムズデライト型結晶構造を持つチタン酸リチウムが生成していることが分かり、焼結温度が1200℃である実施例5-3では、スピネル型結晶構造を持つチタン酸リチウムはほとんど観察されなかった。
 本発明で得られた、実施例1-3、1-5、2-3、3-2、4、5-1~5-3のチタン酸リチウムとチタン酸リチウムランタンとを含む焼結体は、電解液型セルにおいて充放電が可能であった。焼結温度の保持時間が短い実施例5-1~5-3でも、十分な焼結体が得られており、省エネルギーである上に、組成の変動と粒子径の粗大をもたらす高温環境に長時間さらさなくてもよい点で好ましい。一方、チタン酸リチウム粉末だけの焼結体である比較例1は、固体電解質を含まず、また、緻密な焼結体の内部まで電解液が浸透しないため、焼結体内部のチタン酸リチウムへの伝導パスがなかったため、ほとんど充放電ができなかった。
 本発明で得られた、実施例6-1、6-2のチタン酸リチウムとチタン酸リチウムランタンとを含む厚さ130μmの焼結体、実施例7のチタン酸リチウムとチタン酸リチウムランタンとを含む厚さ30μmの焼結体シートは、電解液を用いずに、固体電解質であるドライポリマー電解質を用いた全固体電池において、充放電可能であった。なお、チタン酸リチウム粉末だけの焼結体である比較例2、3は、電解液セルを用いた充放電試験と同様に、全固体セルを用いた充放電試験においてもほとんど充放電できなかった。

Claims (17)

  1.  スピネル型結晶構造を持つチタン酸リチウム及び/又はラムズデライト型結晶構造を持つチタン酸リチウムと、
     ペロブスカイト型結晶構造を持つチタン酸リチウムランタンと、
    を含むことを特徴とする焼結体。
  2.  前記焼結体中に含まれるチタンとランタンとのモル比が、La/Ti=0.0001以上0.66以下であることを特徴とする請求項1に記載の焼結体。
  3.  前記焼結体中に含まれるチタンとランタンとのモル比が、La/Ti=0.05以上0.2以下であることを特徴とする請求項1又は2に記載の焼結体。
  4.  前記焼結体の実密度が2.5g/cm以上であることを特徴とする請求項1~3のいずれか1項に記載の焼結体。
  5.  前記焼結体の25℃でのLiイオン伝導率が1×10-8S/cm以上であることを特徴とする請求項1~4のいずれか1項に記載の焼結体。
  6.  前記焼結体が板状又はシート状であり、厚さが3μm以上であることを特徴とする請求項1~5のいずれか1項に記載の焼結体。
  7.  前記焼結体を構成する前記チタン酸リチウムの結晶粒の直径、及び、前記焼結体を構成する前記チタン酸リチウムランタンの結晶粒の直径の各々が、前記焼結体の厚さの1/3以下であることを特徴とする請求項6に記載の焼結体。
  8.  厚さ500μmに加工した前記焼結体を負極又は正極とし、電解液を用いたセルにおいて、0.1mA/cmのレートで充放電試験をした際の前記焼結体の初期充電容量及び/又は初期放電容量が10mAh/g以上であることを特徴とする請求項1~7のいずれか1項に記載の焼結体。
  9.  厚さ10μm以上150μm以下に加工した前記焼結体を負極又は正極とし、固体電解質を用いた全固体型のセルにおいて、温度60℃、0.02mA/cmのレートで充放電試験をした際の前記焼結体の初期充電容量及び/又は初期放電容量が10mAh/g以上であることを特徴とする請求項1~7のいずれか1に記載の焼結体。
  10.  リチウムを吸蔵放出する負極とリチウムを吸蔵放出する正極とをセパレータを介して対向して電解液中に配置しており、
     前記負極又は前記正極として請求項1に記載の焼結体を使用することを特徴とするリチウム電池。
  11.  リチウムを吸蔵放出する負極層と、リチウムを伝導する固体電解質層と、リチウムを吸蔵放出する正極層とをこの順に積層しており、
     前記負極層又は前記正極層として請求項1に記載の焼結体を使用することを特徴とする全固体リチウム電池。
  12.  請求項1に記載の焼結体の製造方法であって、
     チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との混合物の粉末を成形して成形体を得る工程と、
     前記成形体を焼結する焼結工程と、
    を含む焼結体の製造方法。
  13.  請求項1に記載の焼結体の製造方法であって、
     チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との混合物を仮焼成して仮焼体を得る工程と、
     前記仮焼体の粉末を成形して成形体を得る工程と、
     前記成形体を焼結する焼結工程と、
    を含む焼結体の製造方法。
  14.  チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との前記混合物を、
     La及びTiを含む水溶液と塩基性水溶液とを混合することにより、Laの酸化物及び/又は水酸化物と、Tiの酸化物及び/又は水酸化物とを含む沈殿物を得る同時沈殿処理工程と、
     前記沈殿物と、Li元素源と、溶媒とを含む混合物を、ソルボサーマル処理することにより、チタン酸リチウムの前駆体とチタン酸リチウムランタンの前駆体との混合物を得る工程と、
    により得ることを特徴とする
    請求項12又は請求項13に記載の焼結体の製造方法。
  15.  チタン酸リチウムの前駆体と、チタン酸リチウムランタンの前駆体との前記混合物を、
     La及びTiを含む水溶液と塩基性水溶液とを混合することにより、Laの酸化物及び/又は水酸化物と、Tiの酸化物及び/又は水酸化物とを含む沈殿物を得る同時沈殿処理工程と、
     前記沈殿物と、Li元素源と、溶媒とを含む混合物を、ソルボサーマル処理する第1ソルボサーマル処理工程と、
     更に酸を添加し、ソルボサーマル処理することで、チタン酸リチウムの前駆体とチタン酸リチウムランタンの前駆体との混合物を得る第2ソルボサーマル処理工程と、
    により得ることを特徴とする
    請求項12又は請求項13に記載の焼結体の製造方法。
  16.  前記焼結工程において、焼結温度が1000℃以上であり、
     ラムズデライト型結晶構造を持つチタン酸リチウムを含む焼結体を得ることを特徴とする請求項12又は請求項13に記載の焼結体の製造方法。
  17.  請求項1に記載の焼結体の製造方法であって、
     チタン酸リチウムとチタン酸リチウムランタンとの混合物の粉末を成形して成形体を得る工程と、
     前記成形体を焼結する焼結工程と、
    を含む焼結体の製造方法。
PCT/JP2016/072205 2015-07-30 2016-07-28 チタン酸リチウムとチタン酸リチウムランタンとを含む焼結体、その製造方法、及びリチウム電池 WO2017018488A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16830593.6A EP3326983A4 (en) 2015-07-30 2016-07-28 Sintered body containing lithium titanate and lithium lanthanum titanate, method for producing same, and lithium battery
KR1020187005597A KR20180033571A (ko) 2015-07-30 2016-07-28 티탄산 리튬과 티탄산 리튬란탄을 포함하는 소결체, 그 제조 방법 및 리튬 전지
US15/747,947 US20180219224A1 (en) 2015-07-30 2016-07-28 Sintered Body Containing Lithium Titanate and Lithium Lanthanum Titanate, Method for Producing Same, and Lithium Battery
CN201680039768.7A CN107848890A (zh) 2015-07-30 2016-07-28 包含钛酸锂和钛酸锂镧的烧结体、其制造方法以及锂电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-150610 2015-07-30
JP2015150610 2015-07-30
JP2016-011622 2016-01-25
JP2016011622 2016-01-25

Publications (1)

Publication Number Publication Date
WO2017018488A1 true WO2017018488A1 (ja) 2017-02-02

Family

ID=57884531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072205 WO2017018488A1 (ja) 2015-07-30 2016-07-28 チタン酸リチウムとチタン酸リチウムランタンとを含む焼結体、その製造方法、及びリチウム電池

Country Status (6)

Country Link
US (1) US20180219224A1 (ja)
EP (1) EP3326983A4 (ja)
JP (1) JP2017132682A (ja)
KR (1) KR20180033571A (ja)
CN (1) CN107848890A (ja)
WO (1) WO2017018488A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078307A1 (ja) * 2017-10-20 2019-04-25 セントラル硝子株式会社 複合体電極及び全固体リチウム電池
CN111656563A (zh) * 2017-09-05 2020-09-11 罗伯特·博世有限公司 用于陶瓷电解质颗粒的表面涂层
JP2021039872A (ja) * 2019-09-02 2021-03-11 太平洋セメント株式会社 リチウムイオン二次電池の固体電解質用チタン酸ランタンリチウム結晶粒子の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016212050A1 (de) * 2016-07-01 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Komposit-Kathodenschichtaufbau für Festkörperbatterien auf Lithiumbasis und ein Verfahren zu seiner Herstellung
JP6392493B1 (ja) * 2017-05-15 2018-09-19 日本碍子株式会社 チタン酸リチウム焼結体板
KR102224126B1 (ko) * 2018-04-05 2021-03-08 주식회사 세븐킹에너지 리튬 이차전지를 위한 세라믹 고체 전해질의 제조 방법
JP7022207B2 (ja) * 2018-05-17 2022-02-17 日本碍子株式会社 リチウム二次電池
US10741873B2 (en) * 2018-07-16 2020-08-11 Ford Global Technologies, Llc Composition for sintered lithium titanate-lithium lanthanum titanium oxide composite
CN110330050A (zh) * 2019-03-25 2019-10-15 郑州大学 一种锂镧钛氧材料及其制备方法、h2s气敏传感器
US20220049328A1 (en) * 2020-08-14 2022-02-17 Lawrence Livermore National Security, Llc Mechanically alloyed li-sn-zn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105646A (ja) * 2011-11-15 2013-05-30 Seiko Epson Corp 固体電解質層形成用組成物、固体電解質層の形成方法、固体電解質層およびリチウムイオン二次電池
WO2016017745A1 (ja) * 2014-07-30 2016-02-04 セントラル硝子株式会社 チタン酸リチウム系複合生成物の前駆体及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332579B (zh) * 2011-02-21 2014-10-08 东莞新能源科技有限公司 一种锂离子电池及其负极活性材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105646A (ja) * 2011-11-15 2013-05-30 Seiko Epson Corp 固体電解質層形成用組成物、固体電解質層の形成方法、固体電解質層およびリチウムイオン二次電池
WO2016017745A1 (ja) * 2014-07-30 2016-02-04 セントラル硝子株式会社 チタン酸リチウム系複合生成物の前駆体及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3326983A4 *
SUN LI: "High-strength all-solid lithium ion electrodes based on Li4Ti5O12", JOURNAL OF POWER SOURCES, vol. 196, no. 15, pages 6507 - 6511, XP028216056 *
YI TING-FENG: "Synthesis and application of a novel Li4Ti5O12 composite as anode material with enhanced fast charge-discharge performance for lithium-ion battery", ELECTROCHIMICA ACTA, vol. 134, pages 377 - 383, XP028849810 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656563A (zh) * 2017-09-05 2020-09-11 罗伯特·博世有限公司 用于陶瓷电解质颗粒的表面涂层
WO2019078307A1 (ja) * 2017-10-20 2019-04-25 セントラル硝子株式会社 複合体電極及び全固体リチウム電池
JP2021039872A (ja) * 2019-09-02 2021-03-11 太平洋セメント株式会社 リチウムイオン二次電池の固体電解質用チタン酸ランタンリチウム結晶粒子の製造方法
JP7299110B2 (ja) 2019-09-02 2023-06-27 太平洋セメント株式会社 リチウムイオン二次電池の固体電解質用チタン酸ランタンリチウム結晶粒子の製造方法

Also Published As

Publication number Publication date
KR20180033571A (ko) 2018-04-03
EP3326983A1 (en) 2018-05-30
US20180219224A1 (en) 2018-08-02
CN107848890A (zh) 2018-03-27
JP2017132682A (ja) 2017-08-03
EP3326983A4 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
WO2017018488A1 (ja) チタン酸リチウムとチタン酸リチウムランタンとを含む焼結体、その製造方法、及びリチウム電池
Yang et al. Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode
EP2911223B1 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
Sandhya et al. Lithium titanate as anode material for lithium-ion cells: a review
Rosero-Navarro et al. Preparation of Li7La3 (Zr2− x, Nbx) O12 (x= 0–1.5) and Li3BO3/LiBO2 composites at low temperatures using a sol–gel process
WO2018139657A1 (ja) 電極積層体及び全固体リチウム電池
EP3540843A1 (en) Secondary battery
JP5957618B2 (ja) 固体電解質層を含む二次電池
JP6018930B2 (ja) 正極−固体電解質複合体の製造方法
JP5283188B2 (ja) 全固体二次電池およびその製造方法
Yi et al. Effective enhancement of electrochemical performance for spherical spinel LiMn2O4 via Li ion conductive Li2ZrO3 coating
JP6109672B2 (ja) セラミック正極−固体電解質複合体
WO2018139373A1 (ja) 全固体リチウム電池用電極積層体の製造方法、全固体リチウム電池用電極複合体及びその製造方法
EP2565161B1 (en) Novel lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP2019164980A (ja) 複合体電極及び全固体リチウム電池
Okumura et al. Enhancement of lithium-ion conductivity for Li2. 2C0. 8B0. 2O3 by spark plasma sintering
JP6109673B2 (ja) セラミック正極−固体電解質複合体
Lu et al. Conductivity and stability of Li3/8Sr7/16-3x/2LaxZr1/4Ta3/4O3 superionic solid electrolytes
JP7126518B2 (ja) 全固体リチウム電池及びその製造方法
JP2019077573A (ja) スピネル型チタン酸リチウムを含む焼結体の製造方法
JP7115626B2 (ja) 固体電解質の前駆体組成物、二次電池の製造方法
CN107324379A (zh) 一种高容量钛酸锂材料制备方法
Murali et al. Preparation, dielectric and conductivity studies of LiNi1-xMgxO2 cathode materials for lithium-ion batteries
JP6168690B2 (ja) セラミック正極−固体電解質複合体
Gu et al. Two-dimensional layered lithium lanthanum titanium oxide/graphene-like composites as electrodes for lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15747947

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016830593

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187005597

Country of ref document: KR

Kind code of ref document: A