WO2017018240A1 - パウダースラッシュ成形機及びパウダースラッシュ成形法 - Google Patents

パウダースラッシュ成形機及びパウダースラッシュ成形法 Download PDF

Info

Publication number
WO2017018240A1
WO2017018240A1 PCT/JP2016/070935 JP2016070935W WO2017018240A1 WO 2017018240 A1 WO2017018240 A1 WO 2017018240A1 JP 2016070935 W JP2016070935 W JP 2016070935W WO 2017018240 A1 WO2017018240 A1 WO 2017018240A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
cooling
powder
slush molding
heating
Prior art date
Application number
PCT/JP2016/070935
Other languages
English (en)
French (fr)
Inventor
竹己 松野
Original Assignee
株式会社仲田コーティング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社仲田コーティング filed Critical 株式会社仲田コーティング
Priority to EP16830345.1A priority Critical patent/EP3284569B1/en
Priority to US15/568,798 priority patent/US10994452B2/en
Priority to CN201680025320.XA priority patent/CN107530921B/zh
Priority to JP2016554746A priority patent/JP6034544B1/ja
Priority to KR1020177030415A priority patent/KR101947541B1/ko
Publication of WO2017018240A1 publication Critical patent/WO2017018240A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/18Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/34Moulds or cores; Details thereof or accessories therefor movable, e.g. to or from the moulding station
    • B29C33/36Moulds or cores; Details thereof or accessories therefor movable, e.g. to or from the moulding station continuously movable in one direction, e.g. in a closed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/38Moulds, cores or other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/52Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules

Definitions

  • the present invention relates to a powder slush molding machine and a powder slush molding method.
  • the present invention relates to a powder slush molding machine provided with a preheating device for preheating the mold during conveyance in addition to the main heating furnace of the mold, and a powder slush molding method using such a powder slush molding machine. .
  • each of the provisional heating step and the preliminary heating step controlled to a predetermined temperature is provided to uniformly heat the mold, and after using the mold, immerse it in water at a predetermined temperature and gradually cool it.
  • a powder slush molding method is disclosed as a method for forming leather characterized by (see, for example, Patent Document 1).
  • the slush molding die is a porous die, the opening of the hot air supply duct is brought into contact with the material inlet of the die, and the hot air is pumped from the duct into the die.
  • a method for heating a molding die is disclosed (for example, see Patent Document 2).
  • any of the above-described powder slush molding methods and the like only heating by hot air blowing from one direction to the inner surface of the mold, which is the formation surface of the sheet-like material, in the heating furnace or the post-heating furnace is considered. Therefore, there was a problem that high-speed heating and uniform heating as a whole mold were still insufficient. In particular, there has been a problem that heating of the inner surface portion that is curved or depressed tends to be insufficient as the mold becomes larger or deformed. Accordingly, it has been proposed to provide not only a heating furnace but also a post-heating furnace for the purpose of high-speed heating and uniform heating in response to the increase in size and profile of the mold. However, when the post-heating furnace is provided in this way, there is a new problem that the powder slush molding machine becomes large or the time required for the manufacturing process of the sheet-like product tends to be excessively long.
  • the inventor of the present invention has an outer surface of the mold (non-formation surface of sheet-like material: A surface) by installing a preheating device in the conveying device for transferring the mold. Not only the inner surface of the mold (formation surface of sheet-like material: B surface), but also the inner surface of the mold that is curved in this heating furnace is preliminarily heated locally or locally to a predetermined temperature. It has been found that the entire mold including the surface portion, the recessed inner surface portion, and the offset portion can be heated at high speed and uniformly. That is, the present invention is equipped with a mechanism for preheating the mold using the transfer time of the mold in the transport machine itself, and preheating during transport, etc.
  • An object is to provide a powder slush molding machine that can be heated at high speed and uniformly, and thus can be downsized without a post-heating furnace, and a powder slush molding method using such a powder slush molding machine. It is said.
  • a mold heating unit that heats the mold so that the mold temperature becomes a value equal to or higher than a predetermined temperature, and spraying the molding resin while powdering, the inner surface of the heated mold, A powder slash part for forming a sheet material of a predetermined thickness, a mold cooling part for cooling the mold so that the mold temperature is lower than a predetermined temperature, and removing the cooled sheet material from the mold
  • a powder slush molding machine comprising: a die processing unit that further includes a conveying device that moves the die between the respective parts; and heating the die to a part of the conveying device
  • a powder slush molding machine characterized in that a preheating device is provided to solve the above-mentioned problems.
  • the preheating device for heating the mold is provided in a part of the conveying device, the entire mold, that is, the sheet shape is used by using the transfer time of the mold. Not only the non-formation surface (A surface) of the object but also the formation surface (B surface) can be preheated. Therefore, during the main heating, the entire mold can be heated to a predetermined temperature uniformly and at high speed regardless of the inner surface shape of the mold (curved, recessed, offset, etc.). In addition, the temperature difference between the inner surface and the outer surface of the mold is reduced by the heating of the preheating device, and as a result, the metal fatigue of the mold and the occurrence of seizure phenomenon on the inner surface of the molded resin are effectively suppressed.
  • the entire mold can be heated uniformly and at high speed.
  • the mold can be supplementarily heated by the preheating device, the main heating in the main heating furnace can be assisted, and the heating capacity and size in the main heating furnace can be suppressed.
  • the power consumption of the heating capacity (10% or more) for achieving a predetermined temperature in the heating furnace can be increased only by raising the mold temperature by 10 ° C. during conveyance, that is, before charging into the heating furnace, by the preheating device. A reduction is possible.
  • the preheating device preferably includes a far infrared heating type heater.
  • a far-infrared heating type heater for example, a ceramic heater
  • the heat ray penetrates from any location on the outer surface of the mold to the inside, and the entire mold regardless of the inner surface shape of the mold. Can be heated more uniformly and at a high speed from both sides (A side and B side).
  • a far-infrared heating type heater can be heated to a predetermined temperature in a short time using far-infrared rays even when a plurality of heaters are provided, and is relatively lightweight and space-saving.
  • the transport device can be transported smoothly and at high speed.
  • the amount of heat generated can be easily adjusted in a concentrated manner in places that are difficult to heat to a predetermined temperature compared to places that are difficult to heat.
  • the entire mold can be in a uniform heating state (temperature profile).
  • the preheating device has an opening that opens downward, and includes a covering member that accommodates the mold through the opening.
  • a covering member that accommodates the mold through the opening.
  • the periphery of the mold can be securely gripped while being covered from above, and the preheated mold The heat dissipation from can be effectively prevented.
  • the conveying device includes a synchronization mechanism for preheating the die by switching on the preheating device at the same time as holding the die. In this way, by adopting a configuration in which the mold is preheated in synchronization with the gripping operation of the mold, the transfer time of the mold can be used more effectively.
  • the powder slash part and the mold cooling part are integrated, and between the powder slash part and the mold cooling part, in the powder slash part It is preferable that an exchange device is provided that enables position exchange of the powder box and the cooling device in the mold cooling section (hereinafter also referred to as a cooling booth).
  • the powder box after the powder slash is moved from the powder slash part to the box replacement position, and the mold cooling part
  • the cooling device provided in is moved directly under the rotating device of the powder slush part and the inner surface of the mold is released to the outside, the cooling water is showered or cooled against the outer surface of the mold. Can be quickly cooled. Therefore, by using the powder slush part and the mold cooling part integrated in this way, the powder slush molding machine as a whole can be further downsized and downsized.
  • a mold heating unit that heats the mold so that the mold temperature becomes a value equal to or higher than a predetermined temperature, and a mold heated by spraying a molding resin while powdering.
  • a powder slash part for forming a sheet material of a predetermined thickness
  • a mold cooling part for cooling the mold so that the mold temperature is equal to or lower than the predetermined temperature
  • the cooled sheet material are A mold processing unit for removing the mold from the mold, and further, a conveyance device for moving the mold between the respective parts, and heating at least the outer surface of the mold to a part of the conveyance device.
  • the conveying device grips the mold and transfers the mold from the mold processing section to the mold heating section, and the mold heating section so that the mold temperature becomes a value equal to or higher than a predetermined temperature. And the conveying device grips the heated mold and transfers it from the mold heating section to the powder slush section, and then sprays the molding resin while powdering, and the heated mold
  • a conveying device including a step of forming a sheet-like material having a predetermined thickness on the inner surface, a cooling step of cooling the mold, and a step of removing the cooled sheet-like material from the die.
  • the mold is preheated by a preheating device provided in a part of the conveying device during the process of gripping the mold and transferring it from the mold processing section to the mold heating section.
  • a preheating device provided in a part of the conveying device during the process of gripping the mold and transferring it from the mold processing section to the mold heating section.
  • It is a powder slush molding method. That is, according to the powder slush molding method of the present invention, the outer surface and inner surface of the mold, that is, the surface on which the sheet-like material is formed can be preheated using the transfer time of the mold. Regardless of the inner surface shape of the mold, during the main heating, the entire mold can be heated to a predetermined temperature uniformly and at high speed.
  • a post-heating furnace for further curing the once formed sheet material can be substantially omitted, and further, by providing a predetermined preheating device, heating can be performed. Since the furnace itself can be reduced in size, downsizing can be performed correspondingly, and a powder slush molding machine that is reduced in size and space can be provided as a whole. More specifically, since a post-heating furnace or the like for further curing the once formed sheet material can be virtually omitted, a powder slush molding method using a small powder slush molding machine can be provided accordingly. it can.
  • a mold different from the mold when the conveying device transfers a mold (sometimes referred to as a first mold for distinction), a mold different from the mold. (For distinction, it may be referred to as a second mold) is preferably gripped below the transport device and transported simultaneously.
  • first mold and second mold are simultaneously transporting a plurality of molds (first mold and second mold) with a single transport device.
  • tact time or cycle time the molding time per sheet material
  • the first mold and the second mold, or any one of the molds while simultaneously transporting the first mold and the second mold by the preheating device provided in the transport apparatus. Since the mold can be preheated, the tact time can be further shortened and contributed to downsizing.
  • the powder slash part and the mold cooling part are integrated, and when the mold is cooled, the powder box after the powder slash is finished, While moving from the powder slash part to the box replacement position, the cooling device provided in the mold cooling part moves directly under the rotating unit of the powder slash part and engages with the frame member holding the mold, It is preferable to spray shower or cooling mist on the outer surface of the mold with the inner surface of the mold released to the outside.
  • the powder slash part also serves as a mold cooling part, the powder slush molding machine as a whole is further downsized to reduce the size and the molding time of the sheet-like material. Shortening can be achieved.
  • FIG. 1 is a side view for explaining an example of the powder slush molding machine of the present invention.
  • FIG. 2 is a plan view provided for explaining an example of the powder slush molding machine of the present invention.
  • FIGS. 3A and 3B are a side view and a plan view for explaining another powder slush molding machine of the present invention.
  • FIGS. 4A and 4B are a plan view and a front view for explaining a transport device provided with a preheating unit.
  • FIG. 5 is a side view provided for explaining a transport apparatus including a preheating unit.
  • FIG. 6A is a diagram (photograph) provided to explain a far-infrared heating type heater of the preheating unit, and FIG.
  • FIG. 6B shows a far-infrared heating type heater of another preheating unit. It is the schematic provided for demonstrating.
  • Drawing 7 is a figure offered in order to explain an example of a metallic mold heating part.
  • FIGS. 8A to 8B are views for explaining another mold heating unit.
  • FIGS. 9A to 9C are views used to explain the powder slush molding method of the present invention (part 1).
  • FIGS. 10 (a) to 10 (b) are views for explaining the powder slush molding method of the present invention (part 2).
  • FIG. 11 is a diagram provided for explaining the drying apparatus.
  • FIGS. 12 (a) to 12 (b) are diagrams for explaining the heating device.
  • a mold heating unit that heats the mold 60 so that the temperature of the mold 60 becomes a value equal to or higher than a predetermined temperature.
  • a powder slash part (B part) for forming a sheet-like article 94 having a predetermined thickness on the inner surface of the heated mold 60 by spraying the molding resin while powdering, and the temperature of the mold 60 is
  • a mold cooling part (C part) that cools the mold 60 so as to be below a predetermined temperature
  • a mold processing part that removes the cooled sheet 94 from the mold 60.
  • a powder slush molding machine 10, 10 a including a transfer device 62 that moves the mold 60 between the respective parts. 4 to 5, a powder slush molding machine characterized in that a preheating device 63 for heating at least the outer surface of the mold 60 is provided in a part of the conveying device 62. 10, 10a can be provided to solve the above-mentioned problems.
  • the powder slush molding machines 10 and 10a of the first embodiment will be specifically described below with reference to the drawings as appropriate.
  • 1 and 2 are a side view and a plan view of a powder slush molding machine 10 in which a powder slash part (B part) and a mold cooling part (C part) are independent from each other (a transport device is omitted). Is shown.
  • 3 (a) to 3 (b) show the powder slush molding machine 10a in which the powder slash part (B part) and the mold cooling part (C part) are integrated (B part / C part).
  • a side view and a plan view are shown, respectively.
  • 4A, 4B, and 5 are a top view, a front view, and a side view (a state in which the mold 60 is mounted) of the transfer device 62 provided with the preheating device 63, respectively.
  • a mold processing section (E section) at a predetermined time, respectively.
  • a basic configuration is provided in which each part is moved by a transfer device 62 including a preheating device 63 in the order of the part (E part).
  • the process for completing a series of powder slush molding is performed in parallel, and finally, the sheet-like product 94 which is a resin molded product is quickly and stably.
  • the mold processing section (E section) shown in FIG. 1 and the like is a part for performing a demolding operation for taking out the powdered slush molded sheet 94 from the mold 60.
  • the mold 60 is attached to a frame member 61 in order to facilitate movement and quick processing.
  • a conveying device for example, a crane
  • the mold processing part (E part) is used as a starting point, and can be arbitrarily moved between predetermined parts. More specifically, as shown in FIG. 3A, the conveying device 62 holds the mold 60 along the arrow F that is horizontal and the arrow G that is vertical, Can move arbitrarily.
  • a preheating device 63 and a driving device 63b including a motor / blower fan are provided as a preheating portion (A ′ portion) above the conveying device 62. It is equipped and it is comprised so that metal mold
  • a preheating device 63 and a driving device 63b including a motor / blower fan are provided as a preheating portion (A ′ portion) above the conveying device 62.
  • the mold temperature can be adjusted to a predetermined temperature while the mold 60 is being conveyed. More specifically, as shown in FIGS. 4 to 5, the mold 60 is transferred from the mold processing section (E section) to the mold heating section (A section) by the transfer device (for example, crane) 62. However, at this time, it is preferable that the transport device 62 is provided with a preheating device 63 for heating at least the outer surface of the mold 60.
  • the preheating device 63 by using the preheating device 63, the time during the conveyance of the mold 60 is used, not only the outer surface (A surface) which is the non-formation surface of the sheet-like object 94 in the mold 60 but also the sheet-like article 94.
  • the inner surface (B surface) that is the formation surface of the film can also be preheated to a predetermined temperature. Therefore, regardless of the inner surface shape (curvature, dent, offset, etc.) of the mold 60, the entire mold can be heated to a predetermined temperature uniformly and at high speed during the main heating in combination with the preliminary heating. it can.
  • the preheating device 63 reduces the temperature difference between the inner surface (B surface) and the outer surface (A surface) of the mold 60, so that metal fatigue of the mold 60 and baking on the inner surface of the molding resin are performed.
  • the entire mold can be uniformly and rapidly heated while effectively suppressing the occurrence of the phenomenon.
  • a post-heating furnace for further curing the once formed sheet material can be virtually omitted. Therefore, downsizing can be performed correspondingly, and a powder slush molding machine that is reduced in size and space as a whole can be provided.
  • the external surface temperature of the mold 60 when the mold 60 (for example, made of nickel cast alloy having a thickness of 3.5 mm) 60 is preheated by the preheating device 63 that is, the preheating temperature, for example, A value of 200 ° C. or lower is preferable.
  • the preheating temperature exceeds 200 ° C., the burden on the heating capacity of the preheating device 63 increases, or the transfer due to the influence of the environmental temperature, the heat history of the mold 60, etc. This is because it may be difficult to reach such a temperature during the time.
  • the preheating temperature is more preferably set to a value within the range of 100 to 180 ° C., and further preferably set to a value within the range of 120 to 160 ° C.
  • the preheating temperature can be measured using at least one of a thermocouple, an infrared thermometer, a thermography, a power consumption meter, etc., but further, it can be measured continuously or intermittently,
  • the temperature before entering the heating furnace can be a representative value of the preheating temperature.
  • the preheating device 63 preferably includes a far infrared heating type heater 63a (including some blower fans) as shown in FIGS. 6 (a) to 6 (b).
  • FIG. 6A is a diagram (photograph) showing an appearance of a far-infrared heating type heater (ceramic heater) 63a as an example.
  • a rectangular ceramic heater 63a having an irradiation area of 250 ⁇ 250 mm 2 is shown.
  • heat generation of 1 to 6 kW / piece is possible using a three-phase, 200 V, 30 A rated power supply.
  • FIG. 6B is a cross-sectional view of another far-infrared heating type heater (ceramic heater) 63a.
  • the blower 153, the hose 154, the hose connection port 151a, the rectifying plate member 155, the vent hole are provided.
  • the far-infrared radiation heating element 159 has, for example, a thin belt-shaped energizing material as a substrate, the surface of which is coated with a ceramic material, and generates heat when the substrate is energized.
  • Far infrared rays 160 can be emitted.
  • the far-infrared rays 160 can be radiated more uniformly and rapidly by using a partly blower fan in combination. That is, by using any one of the far-infrared heating type heaters 63a, not only the entire surface (A surface and B surface) of the mold 60 but also far infrared rays (heat rays) can penetrate any place. Therefore, regardless of the inner surface shape of the mold 60, the whole including the inside of the mold 60 can be preheated more uniformly and rapidly. In addition, since the far-infrared heating type heater 63a is relatively light and thin, the preheating device 63 can be reduced in weight, thickness, and space.
  • a preheating device far-infrared heating type heater
  • the conventional conveying device motor, wire, gear, etc.
  • 63b By using 63b basically, it can be transferred smoothly and at high speed.
  • the preheating device 63 has an opening that opens downward, and includes a covering member 63d that accommodates the mold 60 through the opening. Preferably it is.
  • a covering member 63d that accommodates the mold 60 through the opening.
  • the periphery of the mold 60 can be gripped physically and securely while being covered from above.
  • such a covering member 63d has an advantage that it can be covered with an aluminum plate, a calcium silicate plate, a carbon black-containing resin material, or the like as the heat insulating gripping member.
  • FIG. 4A is a top view of the transfer device 62 including the preheating device 63
  • FIG. 4B is a front view of the transfer device 62 including the preheating device 63.
  • These are side views (the state which mounts the metal mold
  • FIG. The preheating device 63 disclosed in FIGS. 4 to 5 basically has a flat far-infrared heating type heater as shown in FIGS.
  • the flat ceramic heater 63a is provided on a heat-insulating base material having a thickness of 0.1 to 10 mm, such as a fiber reinforced plate mainly composed of calcium silicate. It is configured to radiate heat intensively.
  • such a plurality of ceramic heaters 63a also serves as a driving device 63b including a motor / blower fan, so that the mold 60 is effectively preheated to a predetermined temperature by a temperature control means (not shown). It is configured.
  • the mold 60 is mounted at a predetermined position of a frame member 63c of the preheating device 63, that is, a frame member 63c having a substantially rectangular shape and including a reinforcing member, and a predetermined fixture (not shown). Is detachably supported.
  • a plurality of motors / fans for moving the frame member 63c on which the mold 60 is mounted or only the mold 60 or the like directly or indirectly in the XYZ directions.
  • the drive device 63b including is mounted.
  • FIG. not only that, the inner surface (B surface), which is the surface on which the sheet 94 is formed, can be preheated to a predetermined temperature. That is, in consideration of the arrangement and number of ceramic heaters 63 a in the preheating device 63, the mounting position and mounting direction of the mold 60, a plurality of parts at any location corresponding to the inner shape of the mold 60. Preheating can be performed by the ceramic heater 63a.
  • Mold heating part (1) Hot air generator
  • the structure of the hot air generator 40 for heating the mold 60 (60C) in the mold heating part (A part) can efficiently heat the mold 60. If there is, there is no particular limitation. Therefore, for example, as shown in FIG. 7, the furnace body of the vertical heating furnace 58 ′ is formed as a flat rectangular box-like body having a shutter 58 a that can be opened and closed in the vertical direction on the side surface. More specifically, in the shutter 58a with the weight 58b as a balancer, the mold 60C and its frame member 61 are moved sideways into the furnace with the weight 58b raised, that is, with the shutter 58a opened. Bring in more.
  • the weight 58b is lowered and the shutter 58a is closed.
  • hot air having a predetermined temperature generated as a heating furnace 58 'by hot air generators 58c and 58d such as a gas furnace is blown from below through a louver 58f, and further provided above the mold 60C.
  • the louver 58e is configured to uniformly and quickly heat the mold 60C while circulating hot air. That is, with this configuration, not only the mold 60C and the like can be easily carried into the heating furnace 58 ', but also the heat energy can be easily supplied to the heating furnace 58', thereby saving space.
  • hot air 14 obtained by a propane gas-derived flame apparatus or the like is supplied below or below the hot air outlet 16 for air supply.
  • the fan 46 is configured to supply from the hot air outlet 16 through the pipe 45 and the main pipe 43. That is, the hot air 14 obtained by the hot air generator 40 and the hot air recovered from the furnace through the energy recovery unit 54 described later and sent to the mixing chamber 44 by the air circulation fan 42 are appropriately mixed in the mixing chamber 44. After that, it is preferable that the air supply fan 46 supplies a large amount of hot air having a predetermined wind speed to the hot air outlet 16 through the main pipe 43.
  • FIG. 8A is an example of a heating furnace 58 for a mold 60 for forming one sheet-like product 94, and FIG. 8B shows two sheet-like items 94 simultaneously. It is an example of the heating furnace 58 for the metal mold
  • a hot air storage chamber 39 is provided in the middle of the main pipe 43, and in the hot air storage chamber 39, the outlet of the main pipe 43 is obstructed.
  • a plate 49 is preferably provided.
  • an energy recovery unit 54 for recovering hot air (heat energy) having a high temperature after heating the mold 60 and having a lot of energy. That is, it is preferable to have a duct structure having an opening that leads to the inclined bottom surface 19 of the heating furnace 58 and a branch pipe 47 that continues to the hot air generator 40. As described above, it is preferable to dispose the damper 47a in the middle of the branch pipe 47 connected to the energy recovery unit 54.
  • the heating furnaces 58 and 58 'in the mold heating part (A part) are also called the main heating furnaces, as shown in FIG. 7 or FIGS. 8 (a) to 8 (b), respectively. Further, it is preferable that the hot air generator 40 is disposed above the hot air generator 40 and is configured as a single compact heating device as a whole. As shown in FIGS. 8A to 8B, the heating furnace 58 is preferably configured to be branched at the outlet portion of the main pipe 43. Therefore, a duct structure that has a predetermined height and is extended in the vertical direction so that the mold 60 in the heating furnace 58 can be heated from the side, that is, the side hot air outlet 50 is provided. It is preferable to provide it.
  • the side hot air outlet 50 is preferably arranged along the inside of the heating furnace 58, and is further connected to the branch pipe 41 connected to the hot air generator 40 and the main pipe 43.
  • the air volume is preferably adjusted by the damper 48 or the like.
  • the heating furnace 58 ′ is also a gas furnace using fuel gas, but hot air having a predetermined temperature generated by the hot air generators 58 c and 58 d is blown from below through the louver 58 f, and the gold furnace located above is heated. It is comprised so that the type
  • the inner surface temperature of the mold 60 is preferably set to a value in the range of 220 to 300 ° C., for example.
  • the reason for this is that when the mold temperature exceeds 300 ° C., the gloss phenomenon due to the baking phenomenon of the molding resin frequently occurs or the mold is cracked during cooling due to metal fatigue of the mold 60. Because there is. Therefore, the mold temperature is more preferably set to a value within the range of 230 to 280 ° C., for example, and further preferably set to a value within the range of 240 to 260 ° C.
  • the powder slash part (B part) is a gold containing a heated frame member 61, as shown in FIGS. 9 (a) to 9 (c) and FIG. 10 (a).
  • the mold 60 and the reservoir tank 88 containing the fluid molding resin 92 facing downward, the inner surface of the mold 60 indicated by the symbol A is facing downward, and the opening surface of the reservoir tank 88 is facing upward, It is a part for carrying out the process of integrally connecting up and down. More specifically, with reference to FIGS. 9 (a) to 9 (c) and FIG. 10 (a), a powder slush portion for performing the powder slush molding method will be described. That is, as shown in FIG.
  • the mold 60 on which the coating layer (not shown) is formed is heated to a predetermined temperature by the hot air 14 in the heating furnace, and in particular, the hot air 14 is applied to the inner surface of the mold. Is heated to a predetermined temperature.
  • the mold 60 is placed after being positioned above the reservoir tank 88.
  • the mold 60 is rotated together with the reservoir tank 88.
  • these are rotated, in order to improve the dispersibility of the molding resin 92 accommodated in the reservoir tank 88 and form a sheet 94 having a uniform thickness, it is provided below the reservoir tank 88.
  • air is introduced into the stirring chamber 88a so that the powdered molding resin 92 is in a fluid state. That is, it is preferable that the upper part of the stirring chamber 88a is composed of a perforated member, for example, a mesh member, and has a structure in which the molded resin 92 is wound up by the introduced air.
  • the vibration member provided on the frame member 61 is attached to the hammer 108 so that the flow state of the molding resin 92 is activated and a uniform film can be formed as shown in FIG. It is preferable to repeatedly tap the tip portion 108a.
  • the molding resin 92 is allowed to settle for a predetermined time, and the molding resin 92 is allowed to settle at a predetermined location. At that time, it is preferable to depressurize the air so that the molding resin 92 is in a non-flowing state at an early stage. And, as will be described later, such a powder slash part (B part) is integrated with the mold cooling part (C part), and when the mold is cooled, the cooling device or the like moves. In the case of the coming configuration, the mold is cooled in the powder slash part / cooling part. That is, finally, as shown in FIG.
  • the cooling device 55 is used to form the sheet 94 formed on the inner surface A of the mold 60 and the outer surface B on the back side of the mold 60.
  • the cooling is performed by blowing a shower or the like.
  • the powder slash part (B part) and the mold cooling part (C part) are independent from each other, the mold after powder slush molding is transferred to the mold cooling part (C part). Therefore, predetermined cooling is performed on the outer surface B on the back side of the mold 60 together with the sheet-like material 94 formed on the inner surface A of the mold 60.
  • the sheet 94 is formed only on the desired inner surface (A) of the mold 60. It is preferable to provide molds 84 a and 84 b having a predetermined thickness (height) between the mold 60 and the reservoir tank 88 so that they can be made.
  • the lower part of the mold 84b is made of, for example, aluminum
  • the upper part of one mold 84a is made of a combination of a silicone rubber / fluororesin film, so that the mold 60 and the reservoir tank 88 are It can also serve to fill the gaps between them.
  • the molding resin used in the powder slash part (B part) is not particularly limited.
  • epoxy resin urethane resin (including thermoplastic urethane resin), polyester resin, and the like.
  • thermoplastic polyester resins acrylic resins, vinyl chloride resins, olefin resins (including thermoplastic olefin resins), silicone resins and the like alone or in combination of two or more.
  • it is a vinyl chloride resin or a thermoplastic urethane resin, it has good affinity with the second resin forming the underlayer, provides strong adhesiveness, and is excellent in low-temperature brittleness. Therefore, it is a suitable resin.
  • the powdering time is set to a value within the range of 18 to 45 seconds in order to form a sheet 94 having a uniform thickness as described above. It is preferable to do. This is because when the powdering time is less than 18 seconds, the molding resin is easily melted by heat, and it may be difficult to form the sheet-like product 94 having a predetermined thickness. . On the other hand, when the powdering time exceeds 45 seconds, the time for heating the mold to a predetermined temperature, and thus the tact time, becomes excessively long, which may be economically disadvantageous. Accordingly, in the powder slash portion (B portion), the powdering time is more preferably set to a value within the range of 20 to 40 seconds, and further preferably set to a value within the range of 25 to 38 seconds.
  • Mold cooling part (1) Configuration 1 As shown in FIG. 10B, the mold cooling section (C section) cools the mold 60 including the frame member 61 by a cooling device 55 such as water cooling or air cooling, so that the sheet-like material 94 is fixed to a predetermined degree. It is a component part which consists of the cooling device 55 for making it solidify. More specifically, the cooling device 55 sprays cooling water on the outer surface (B surface) of the mold 60 on which the sheet-like material 94 is formed, and cools it to a predetermined temperature. .
  • a cooling device 55 such as water cooling or air cooling
  • the mold cooling part (C part) is also used as the powder slush part (B part), and the mold The cooling part (C part) is preferably mobile. That is, as shown in FIG. 3B, when the mold 60 is cooled, the powder box after the completion of the powder slash is moved from the powder slash part (B part) to the box replacement position as shown by an arrow C. Move horizontally to (D2).
  • the mold 60 engaged with the rotating device 89 and the powder box 64 are separated and moved as indicated by an arrow E. Accordingly, only the mold 60 engaged with the rotating device 89 is raised, and the powder box 64 is moved horizontally from the powder slash portion (B portion) toward the box replacement position (D2). That is, in FIG. 3B, it horizontally moves upward along the arrow C, and then moves horizontally along the arrow D in the right lateral direction or, in some cases, the left lateral direction as appropriate.
  • the location of the box replacement position (D2) is not particularly limited. However, since only a horizontal movement is sufficient in practice, as shown in FIG. 3B, the powder slash part (B part) ) Is preferably provided in an outer region (upper side in the drawing) adjacent to the upper side.
  • the cooling device 55 provided in the mold cooling section (C section) rotates the powder slash section (B section) as indicated by an arrow A. It moves horizontally just below the device 89 and engages with a frame member (not shown) that holds the mold 60. More specifically, the cooling device 55 provided in the mold cooling section (C section) moves along the drive rail 55 a and moves directly below the mold 60 in a state of being engaged with the rotating device 89. Correspondingly, the mold 60 is inverted by the rotating device 89 and the inner surface (A surface) on which the sheet-like material 94 is formed is opened upward, and the cooling device 55 and the outside of the mold 60 are removed.
  • the mold 60 After cooling the back surface (B surface) of the mold 60 to a predetermined temperature in the mold cooling section (C section), as shown in FIG. It is preferable to blow dry air against 94 or the like. More specifically, the mold 60 rotates in the direction of arrow A along the assumed circle described with a two-dot chain line, and the B surface, which is the sheet forming surface, faces downward. Next, dry air is blown onto the formed sheet-like material 94, the mold 60, and the like to further cool these temperatures and remove moisture and the like attached to the surface of the sheet-like material 94 and the like.
  • the drying device 99 is mainly composed of a plurality of air outlets 99a and an air blower 99b, and the swinging mechanism for changing the spray angle within a range of about 180 ° as a whole at the tip of these air outlets 99a. Is provided. More specifically, a plurality of outlets 99a provided along the lower wall of the drying device 99, and a plurality of sheets positioned immediately below the mold 60 so as to directly dry the formed sheet-like material 94 and the like.
  • the air outlets 99a ' are respectively provided. Therefore, for example, air with a wind speed of 1 to 100 m / second can be blown against the sheet-like object 94 or the like while changing the blowing angle from the blowout port to the left or right, or fixed at a fixed angle.
  • the mold cooling section (C section) after cooling the back surface (B surface) of the mold 60 to a predetermined temperature or before cooling, as shown in FIGS. 12A to 12B, It is also preferable to heat the formed sheet 94 and the mold 60 to a predetermined temperature using the heating devices 100 and 100 '. That is, in place of the cooling device and the drying device in the mold cooling unit (C portion), or together with the drying device, the heating device 100, 100 'is provided, and the sheet-like material 94 formed by a far infrared type ceramic heater or the like. Is preferably heated. Therefore, in the case of the heating apparatus 100 shown in FIG.
  • the mold 60 having the formed sheet-like material 94 is placed above a part of the frame members 100a and heat-treated from below. become. Therefore, in the sheet-like product 94, the molding resin that has been insufficiently melted can be melted more uniformly, or the drying of the sheet-like product 94 can be accelerated.
  • the mold 60 having the sheet-like material 94 formed below the far-infrared ceramic heater 63a or the like is placed on the predetermined frame 100b. It is mounted and heat-treated from above. This also makes it possible to melt the molding resin that has been insufficiently melted in the sheet-like material 94 or to speed up the drying of the sheet-like material 94.
  • the mold cooling unit is not limited to a movable type or a fixed type, and preferably has a mold cooling configuration by at least three steps by a combination of a first air blow, a mist / shower, and a second air blow. . That is, first, air is blown as the first air to the inside and the outside of the mold 60 at about 150 ° C. on which the sheet 94 is formed, and the mold temperature is lowered to about 100 ° C. Is preferred.
  • the mold cooling section is provided with a nozzle 98 such as a shower nozzle / mist nozzle and an air nozzle (not shown) as the cooling device 55 in combination.
  • the shower device / mist device is connected to one water supply tank and the spray amount and the shower amount are determined by a switching device such as a control valve provided at the outlet.
  • the mold 60 on which the sheet-like material 94 is formed is not limited to the movable type or the fixed type, and at least three-stage cooling is performed.
  • the mold temperature is preferably set to a value of 60 ° C. or less. The reason for this is that when the mold temperature exceeds 60 ° C., it may be difficult to remove the mold in the next step or apply the second resin in the next cycle. However, if the mold temperature is excessively lowered, the cooling time may be excessively long. Therefore, the mold temperature after cooling is preferably set to a value of 30 ° C. or higher. Accordingly, in the mold cooling section, the mold temperature including the sheet-like material 94 is more preferably set to a value within the range of 30 to 50 ° C., and further preferably set to a value within the range of 40 to 45 ° C.
  • the cooling time is preferably set to a value within the range of 25 to 50 seconds, not limited to the movable type or the fixed type. This is because when the cooling time is less than 25 seconds, it may be difficult to set the temperature of the mold 60 on which the sheet 94 is formed to a predetermined value or less. On the other hand, if the cooling time exceeds 50 seconds, the time for cooling the mold 60 to a predetermined temperature, and thus the tact time, may become excessively long, which may be economically disadvantageous. Therefore, in the mold cooling section, the cooling time is more preferably set to a value within the range of 30 to 45 seconds, and further preferably set to a value within the range of 35 to 40 seconds.
  • the mold cooling section (C section) is not limited to the movable type or the fixed type, and the mold cooling rate, that is, the temperature gradient during cooling is set to a value within the range of 100 to 220 ° C./min. It is preferable. The reason for this is that when the cooling rate of the mold becomes less than 100 ° C./min, the time for cooling the mold to a predetermined temperature, and thus the tact time for obtaining one sheet-like product 94 is excessive. This is because it may become long and economically disadvantageous. On the other hand, when the cooling rate of the mold exceeds 220 ° C./min, the mold is rapidly cooled, and thermal fatigue is remarkably increased and cracks are likely to occur.
  • the mold cooling rate is more preferably set to a value within a range of 120 to 210 ° C./min, and a value within a range of 140 to 200 ° C./min. Is more preferable.
  • Mold Change Part The powder slush molding machine of the first embodiment preferably further includes a mold change part (D part). That is, by using such a mold exchanging part (D part), in the middle of powder slush molding, it is changed to a mold for molding two-color molded sheet-like material, or during powder slush molding This is to cope with the case where the mold is damaged. That is, even in such a case, the mold can be replaced while the powder slush molding machine is operated.
  • a mold change part D part
  • the mold exchanging part (D part) temporarily places the cooling device 55 when the mold cooling part (C part) is movable and powder slush molding is performed. It is also a place (temporary stand).
  • the mold exchanging section (D section) includes a support base 66 for placing the mold 60, and the position of the support base 66 is controlled by external control. It is preferable that it is movable.
  • the exchanging mold 60 ′ and the frame member 61 a ′ of the exchanging mold 60 ′ stand by on the support base 66.
  • another replacement mold 60 ′′ and the frame member 61a ′′ are in a standby state on the support base 66 extending upward.
  • the mold exchanging section (D section) is provided with a cooling device 55, and the cooling device 55 moves after powder slush molding. It is preferable.
  • the cooling device 55 or the mold 60 itself is replaced, the mold 60 and the like are horizontally moved as appropriate using the region D1 shown in FIG. Alternatively, it can be exchanged with the mold 60. That is, in FIG. 3B, along the arrow B, the mold 60 or the like horizontally moves upward in the drawing, and then, as appropriate, along the arrow D, the right lateral direction, or in some cases. Move horizontally horizontally to the left.
  • Sheet-like material Regarding the form of the sheet-like material 94 to be powder slush-molded as shown in FIG. 9 and the like, the thickness is usually set to a value within the range of 1.1 to 1.6 mm, more preferably 1.2 to
  • an epoxy resin, a vinyl chloride resin, an acrylic resin, an olefin resin (including a thermoplastic olefin resin), a urethane resin (including a thermoplastic urethane resin), and a polycarbonate resin are used.
  • at least one resin of a polyester resin including a thermoplastic polyester resin. This is because the sheet-like material 94 having high versatility, low cost, and excellent decorativeness can be provided by such a configuration.
  • a mold heating unit for heating the mold 60 so that the mold temperature becomes a value equal to or higher than a predetermined temperature
  • a powder slash part for molding a sheet-like article 94 having a predetermined thickness on the inner surface of the heated mold 60 by spraying the molding resin while powdering, and the mold temperature is lower than the predetermined temperature.
  • the preheater 63 is provided in a part of the conveying device 62, a powder slush molding method, which comprises heating the mold 60.
  • a powder slush molding method which comprises heating the mold 60.
  • the mold preparation step is a next step by performing a demolding operation for taking out the powdered slush molded sheet 94 from the mold 60 in the mold processing section (E section) shown in FIG. This is a step of preparing another predetermined mold 60 for the purpose.
  • a preheating device 63 provided with a die 60 mounted in a die processing unit (E portion) in a part of a conveying device (such as a crane) 62 is used, for example,
  • the preheating device 63 is operated with respect to the gripped mold 60 so that the temperature of the mold 60 is set to a temperature of 100 to 200 ° C., for example, 165 to 195 ° C. More preferably, the temperature is 170 to 190 ° C.
  • the reason for this is that by preheating the mold 60 to such a temperature, in the heating furnace 58, the temperature difference from the inner surface temperature of the mold 60 is reduced, and thermal deterioration of the mold 60 is prevented.
  • the main heating is performed such that the temperature of the mold 60 becomes a predetermined temperature (for example, 250 to 300 ° C.), high-speed and uniform heating is further facilitated.
  • the transport device 62 grips the mold 60 and at the same time the preheating device 63 is switched on to preheat the mold 60.
  • the transfer time of the mold 60 can be sufficiently utilized by preheating the mold 60 in synchronism with the gripping operation of the mold 60 in this way.
  • the preheating device 63 is switched on at the same time when the mold 60 is gripped, it does not necessarily have to be 0 seconds later, depending on the situation of the powder slush molding, etc. It may be after 2 seconds.
  • the preheating process in order to prevent a temperature drop during the conveyance of the mold 60, the preheating process is performed while the other mold 60 is clamped to the conveyance device 62 during the heat treatment for another mold. It is also preferable to apply.
  • the reason for this is that the sheet-like material 94 can be formed more quickly and stably on the heat-treated mold 60 at an integral part (B part / C part) including the powder slash part by a predetermined preheating process. This is because the molding time per one sheet-like material (tact time) can be further shortened.
  • the temperature of the mold 60 is set to a value within a desired temperature range by the preheating device 63 as heating for maintaining the temperature.
  • the preheating device 63 can maintain and heat the mold 60 so that the temperature of the mold 60 is maintained. Therefore, in the powder slash part (B part), the sheet-like object 94 is more stably provided. Can be molded.
  • the heating step is a step of heating the mold 60 so as to have a mold temperature of, for example, 220 to 300 ° C., more preferably 230 to 270 ° C. in the mold heating section (A part). (Hereafter, it may be called a heating process.). Therefore, the predetermined mold 60 is moved to the mold heating section (A section) and carried into the heating furnace 58, where the mold 60 can be quickly heated so that the temperature of the mold 60 becomes a predetermined temperature. preferable. As described above, when the heating process is performed, the temperature of the mold 60 is set to a predetermined uniform temperature so that the sheet-like product 94 having a uniform thickness can be formed in the powder slush process, which is a subsequent process. In addition, it is preferable to perform convection heating with hot air.
  • Powder Slush Process Next, in the powder slush process, a predetermined sheet 94 is formed on the mold 60 in the powder slash part (B part) (hereinafter, sometimes simply referred to as a slush process). It is. That is, the heated mold 60 is moved from the mold heating part (A part) to the powder slash part (B part), where, as shown in FIG. 94 is a process of forming 94.
  • the powder slush part (B part) is integrated with the mold cooling part (C part) and the cooling device 55 is used.
  • Etc. are mobile, such a powder slash process is performed at a certain location (B part / C part) including the powder slash part and the mold cooling part. That is, as shown in FIG. 3B, when the mold 60 is cooled, the powder box after the completion of the powder slash is moved from the powder slash part (B part) to the box replacement position as shown by an arrow C. Move horizontally to (D2).
  • the mold 60 including the frame member 61 and the reservoir are used regardless of whether or not the slush process is performed at a predetermined location (B section / C section) including the powder slash section and the mold cooling section. It is preferable to form the sheet 94 having a predetermined thickness on the inner surface of the mold 60 indicated by the symbol A by rotating the tank in a connected state. That is, it is preferable that the mold 60 including the frame member 61 and the reservoir tank 88 are combined and inverted in the vertical direction.
  • the molding resin (powder) 92 in the reservoir tank 88 falls under its own weight and falls onto the inner surface (surface A) of the mold 60, so that the molding is in contact with the inner surface of the mold 60.
  • the mold temperature is heated to a value of 220 ° C. or lower, the powdering time is adjusted, and hot heat of 200 ° C. or lower is blown against the back surface of the sheet-like material, followed by heat treatment. It is understood that it is effective.
  • the molding resin 92 is not scattered except for a predetermined portion, and the sheet-like object 94 can be formed only on a desired inner surface (A surface) of the mold 60.
  • Is preferably provided with a pressure adjusting device (not shown) for blowing a predetermined amount of air.
  • the mold cooling process is a process of cooling the mold 60 on which the sheet-like material 94 is formed in the mold cooling part (C part) shown in FIG. 1 to a predetermined temperature (hereinafter referred to as a mold cooling process). May be referred to.). That is, the mold 60 in a state where the sheet 94 is formed is moved from the powder slash part (B part) to the mold cooling part (C part), where at least the first air blow, the mist / shower, and the first This is a process of cooling to 40 to 50 ° C. in a three-stage step by combining two air blows.
  • the powder slush part (B part), the mold cooling part (C part), Are integrated (B / C part), and powder slush and mold cooling are performed at the same place. That is, when the mold 60 is cooled, the powder box after completion of the powder slash moves from the powder slash part to the box exchange position and is provided in the mold cooling part (mold exchange part (D part)). The cooling device 55 is moved directly below the rotating device of the powder slash part. Then, a shower or cooling mist is blown against the outer surface of the mold 60 in a state where the mold 60 is engaged with a frame member or the like that holds the mold 60 and the inner surface of the mold 60 is released to the outside. Is preferred.
  • the powder slash part (B part) and the mold cooling part (C) It is also preferable to carry out the powder slush molding and the cooling step at the same time in different molds.
  • the demolding process is a process of demolding the formed sheet-like material from the mold in the mold processing section (hereinafter, sometimes referred to as a demolding process). That is, it is a step of removing the sheet-like material 94 which has been lowered to about 40 to 60 ° C. through the cooling step from the mold 60. Such a demolding step can be performed automatically using a robot, or a sheet-like material can be demolded as a human work.
  • Operation example 1 In carrying out a series of predetermined processes relating to this powder slush molding, a plurality of molds, at least three molds, mold A (hereinafter, 60A), mold B (hereinafter, 60B), and mold C ( Hereinafter, an operation example using 60C) will be described with reference to FIGS. That is, by performing a predetermined process on each of the molds 60A to 60C in parallel, the tact time per sheet 94 is 150 seconds or less, more preferably 120 seconds or less. Compared with the tact time in this case (for example, 240 seconds), it can be made extremely short.
  • an operation example in which the tact time is shortened by using the three molds 60A to 60C simultaneously will be described with reference to the powder slush molding machine 10a shown in FIGS. 3 (a) to 3 (b).
  • the conveyance device 62 including the preheating device 63 clamps the mold 60A and moves up to a predetermined location, and the preheating device 63 starts preheating the mold 60A over a predetermined time.
  • the conveying device 62 descends while preheating the mold 60A, and moves from the mold processing section (E section) to the powder slash section (B section).
  • the conveying device 62 conveys the mold 60B that has already been completed in the powder slush molding / cooling process from the powder slush / cooling section (B / C section) to the mold processing section (E section) and demolding. Process.
  • the transport device 62 transports the mold 60A from the mold processing section (E section) to the mold heating section (A section), and performs the heat treatment for a predetermined time. Further, during the heat treatment for the mold 60A, the transfer device 62 clamps the mold C and starts preheating.
  • the transfer device 62 takes out the mold 60A from the mold heating part (A part) and transports it to the integrated part (B / C part) of the powder slush / cooling part
  • the powder slush molding / cooling process is sequentially performed. Done.
  • the powder box after completion of the powder slash moves from the powder slash part to the box replacement position.
  • the cooling device 55 provided in the mold cooling part (die exchange part D part) moves directly below the rotating device of the powder slush part (B part) / mold cooling part (C part).
  • the conveying device 62 clamps the mold 60C to perform preheating, and moves the mold 60C to the mold heating part (A part) to start the heating process. That is, the transfer device 62 moves from an integrated part (B / C part) including the powder slash part and the cooling part to the mold heating part (A part), transports the mold 60C, and performs heat treatment for a predetermined time. It is preferable to carry out.
  • the conveying device 62 conveys the mold 60A after the powder slush molding / cooling process is completed from the integrated part (B / C part) including the powder slush part and the cooling part to the die processing part (E part). And demolding.
  • the mold 60A, the mold 60B and the mold 60C are used in the powder slush molding machine 10a shown in FIGS.
  • Independent processing including processing, can be performed concurrently. In each process, the processing time is not always constant, or physical simultaneous processing may not be possible. In such a case, while waiting in a predetermined place, for example, above the heating furnace 58 ′.
  • the mold 60 may be preheated by the preheating device 63 provided in the transport device 62.
  • the powder slush molding machine 10 arranged in order was assumed, but from the right, the mold heating part (A part), the mold exchange part (D part), the powder slush / cooling part (B / C part)), And the powder slush molding machine 10 arranged in the order of the die processing part (E part).
  • Operation example 2 In the first operation example, as shown in FIGS. 3A to 3B, on the premise of the presence of the powder slush molding machine 10a in which the powder slush molding / cooling process is performed at an integrated portion (B / C section), various predetermined Explained the process.
  • the powder slush molding machine 10 shown in FIGS. 1 and 2 that is, the powder slush part (B part) and the mold cooling part (C part) are provided independently, And various powder processing can be explained supposing the powder slush molding machine 10 which performs powder slush molding and cooling processing separately at different places, respectively.
  • powder slush molding is performed for a predetermined time. I will do it.
  • another mold 60B is subjected to another process. Processing can be performed. For example, while powder slush molding is being performed on the mold 60A, the mold 60B (powder slash treated) is moved to the mold cooling section (C section) using the transfer device 62, Therefore, the cooling process can be performed at the same time.
  • the powder slash part (B part) is subjected to powder slush molding for a predetermined time with respect to the mold 60A, and then the conveying device 62 is used. It is also possible to move to the mold cooling part (C part) and perform the cooling process there. Therefore, in this operation example 2, compared with the processing time of the operation example 1 when the apparatus in which the powder slush molding / cooling process is performed at an integrated part (B / C part) is assumed, the mold 60A is compared. The waiting time for the next step when performing powder slush molding, or the time for moving the cooling device to the powder slush part (B part) can be omitted.
  • one sheet-like product can be formed with a tact time of 100 seconds or less, more preferably 80 seconds or less.
  • the operation example 2 is the same as the operation example 1 in that a transfer device with a preheating device can be used and a plurality of molds can be transferred simultaneously by a single transfer device.
  • Example 1 Preparation of sheet-like material (1) Mold preparation step In the mold processing section (E section) shown in FIG. 1, a predetermined mold (nickel electromold, thickness 3.5 mm) was prepared.
  • die was moved to the metal mold
  • the far infrared type ceramic heater is started, and preheating is performed for about 30 seconds so that the outer surface temperature of the mold becomes, for example, 180 ° C. went.
  • the amount of heat supplied per hour: 300,000 kcal / hr) is accommodated inside, and as a guide, the average surface temperature of the mold (temperature difference within 8 ° C. between the A side and the B side) is about 260 ° C.
  • heating was performed for about 35 seconds under a predetermined flow rate condition.
  • die temperature can be directly measured with the non-contact infrared thermometer mentioned above, a thermography thermometer, or a contact-type thermocouple.
  • the temperature of the outer surface (A surface) of the mold is measured with a non-contact infrared thermometer, etc., and then the temperature of the inner surface (B surface) is estimated in consideration of the material and thickness of the mold. It is also possible to measure indirectly.
  • the mold was moved from the mold heating part (A part) to the powder slash part (B part) using a crane.
  • a mold resin (average particle size: 30 ⁇ m powder) made of heat-resistant vinyl chloride resin is powder slush molded for 30 seconds on a mold heated to about 260 ° C. An approximately 1.3 mm sheet was obtained.
  • the mold temperature is set to a predetermined temperature (using a preheating device attached to the crane) for about 15 seconds to move from the mold heating section (A section) to the powder slush / cooling section (B / C section).
  • the mold temperature hardly decreased (less than 5 ° C.) using an infrared thermometer.
  • the mold temperature is about 10 to 30 ° C. while moving from the mold heating section (A section) to the powder slash section (B section). It has been found separately that it has a negative impact on powder slush molding.
  • the powder slash part (B part) holds the mold containing the sheet-like material using a crane, and the powder box after the completion of the powder slash is powder.
  • the cooling device provided in the mold exchange part (D part) was moved directly below the rotating device of the powder slash part.
  • the cooling device is engaged with the frame member that holds the mold, the mold on which the sheet-like material is formed is practically upward, and the mold is opened with the inner surface of the mold released to the outside. From below, a shower or cooling mist was sprayed on the outer surface of the cooling water.
  • the surface temperature of the sheet-like material was lowered to about 100 ° C. by blowing the first air (dry air) for about 20 seconds against the outer surface of the mold.
  • mist / shower cooling was performed for about 15 seconds on the outer surface of the mold, and it was confirmed that the surface temperature of the sheet-like material decreased from about 100 ° C. to about 55 ° C.
  • the second air (dry air) was blown for about 5 seconds to scatter water droplets adhering to the surface of the sheet-like material, and the mold temperature was confirmed to decrease from about 55 ° C. to about 50 ° C. .
  • Comparative Example 1 In Comparative Example 1, the surface temperature of the mold in the heating step was prepared in the same manner as in Example 1 except that no preheating was performed by the preheating device attached to the crane. evaluated. As a result, the thickness of arbitrary 10 places of the obtained sheet-like material was measured with a caliper, and the film forming property was evaluated from the average thickness according to the following criteria. As a result, the average thickness was 1.2 mm, and the variation in film thickness (difference between the maximum value and the minimum value) was 1600 ⁇ m or more. Moreover, when the production of the sheet-like material is repeated under the same conditions using the powder slush molding machine shown in FIG. 1, the gloss phenomenon (baking phenomenon) occurs due to use less than 100 times, or cracks in the mold occur. Has been confirmed to occur.
  • a preheating device for heating the mold being transported is As a result, the time required to heat the mold to a predetermined temperature can be remarkably shortened and made uniform in this heating furnace. And with shortening of heating to the mold, the tact time at the time of forming the sheet-like material is a value of 120 seconds or less for the so-called 3 type, and to a value of 80 seconds or less for the so-called 4 type. It became possible to shorten.
  • the preheating of the mold enables partial heating or heating with a temperature difference, and accordingly, the temperature distribution inside the mold is also reduced, particularly as shown in FIG. 9 (a).
  • the temperature distribution inside the mold is also reduced, particularly as shown in FIG. 9 (a).
  • uniform partial heating is possible, and the occurrence of metal fatigue (crack generation) of the mold 60 can be effectively prevented. Therefore, according to the obtained sheet-like product 94 as a powder slush molded product, it is expected to be suitably used as an automobile interior material, a bumper or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

金型の移送時間を利用して、金型を予備加熱する、ダウンサイジング可能なパウダースラッシュ成形機、及びそのようなパウダースラッシュ成形機を用いてなるパウダースラッシュ成形法を提供する。 金型温度が所定温度以上の値になるように金型を加熱する金型加熱部と、成形樹脂をパウダリングしながら吹きつけて、加熱した金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、金型温度が所定温度以下となるように、金型を冷却する金型冷却部と、冷却したシート状物を、金型から脱型する金型加工部と、を備え、さらには、金型を、各部の間で移動させる搬送装置と、を備えてなるパウダースラッシュ成形機及びそれを用いてなるパウダースラッシュ成形法であって、搬送装置の一部に、金型を予備加熱するための予備加熱装置が設けてある。

Description

パウダースラッシュ成形機及びパウダースラッシュ成形法
 本発明は、パウダースラッシュ成形機及びパウダースラッシュ成形法に関する。特に、金型の本加熱炉のほかに、金型を搬送中に予備加熱するための予備加熱装置を備えたパウダースラッシュ成形機、及びそのようなパウダースラッシュ成形機を用いたパウダースラッシュ成形法に関する。
 従来、自動車の内装材等の大型で、複雑形状を有するシート状物を製造するにあたり、パウダースラッシュ部と、金型冷却部と、を備えたパウダースラッシュ成形機を用いて、粉末樹脂パウダー(成形樹脂)をスラッシュ成形するパウダースラッシュ成形法が広く実施されている。
 ここで、成形樹脂からなる内装材の厚さを均一化するために、各種金型を均一に加熱することが望まれている。
 そこで、例えば、所定温度に制御された仮加熱工程及び予備加熱工程をそれぞれ備えて、金型を均一に加熱するとともに、金型を使用した後、所定温度の水中に浸漬して徐冷することを特徴とした皮革の形成方法としての、パウダースラッシュ成形法が開示されている(例えば、特許文献1参照)。
 また、スラッシュ成形金型を多孔性金型として、該金型の材料投入口に熱風供給用ダクトの開口部を当接させ、該ダクトから熱風を金型内に圧送することを特徴とするスラッシュ成形金型の加熱方法が開示されている(例えば、特許文献2参照)。
特開平3-202329号公報 特開平4-191018号公報
 しかしながら、上述したパウダースラッシュ成形方法等のいずれにおいても、加熱炉や後加熱炉による、シート状物の形成面である金型の内表面に対する一方向からの熱風吹きつけによる加熱のみを考慮しており、金型全体としての高速加熱や均一加熱が、いまだ不十分であるという問題が見られた。特に、金型の大型化や異形化に伴い、湾曲したり、窪んだりした内表面部分の加熱が不十分になりやすいという問題が見られた。
 そこで、かかる金型の大型化や異形化に対して、高速加熱や均一加熱を意図して、加熱炉のみならず、後加熱炉を設けることも提案されていた。
 但し、このように後加熱炉を設けると、パウダースラッシュ成形機が大型化したり、あるいは、シート状物の製造工程に要する時間が過度に長くなりやすいという新たな問題が見られた。
 そこで、本発明の発明者は鋭意検討した結果、金型を移送するための搬送装置に、予備加熱装置を装備することによって、金型の外表面(シート状物の非形成面:A面)のみならず、金型の内表面(シート状物の形成面:B面)についても、全体的又は局所的に、所定温度に予備加熱することにより、本加熱炉において、金型が湾曲した内表面部分や、窪んだ内表面部分、あるいはオフセットした部分等も含めて、金型全体を高速かつ均一に加熱できることを見出した。
 すなわち、本発明は、金型の移送時間を利用して金型を予備加熱する機構を、搬送機自体に装備して、搬送中等に予備加熱することにより、本加熱炉において、金型全体を高速かつ均一に加熱でき、ひいては、後加熱炉等を省略して、ダウンサイジングが可能なパウダースラッシュ成形機、及びそのようなパウダースラッシュ成形機を用いてなるパウダースラッシュ成形法を提供することを目的としている。
 本発明によれば、金型温度が所定温度以上の値になるように金型を加熱する金型加熱部と、成形樹脂をパウダリングしながら吹きつけて、加熱した金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、金型温度が所定温度以下となるように、金型を冷却する金型冷却部と、冷却したシート状物を、金型から脱型する金型加工部と、を備え、さらには、金型を、各部の間で移動させる搬送装置と、を備えてなるパウダースラッシュ成形機であって、搬送装置の一部に、金型を加熱するための予備加熱装置が設けてあることを特徴とするパウダースラッシュ成形機が提供され、上述した問題点を解決することができる。
 すなわち、本発明によれば、搬送装置の一部に、金型を加熱するための予備加熱装置が設けてあることから、金型の移送時間を利用して、金型全体、すなわち、シート状物の非形成面(A面)のみならず、形成面(B面)についても、予備加熱することがすることができる。そのため、本加熱の際に、金型の内表面形状(湾曲、窪み、オフセット等)によらず、金型全体を、均一かつ高速に、所定温度に加熱することができる。
 また、かかる予備加熱装置の加熱によって、金型の内表面と外表面との温度差が小さくなり、ひいては、金型の金属疲労や、成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制しつつ、本加熱炉において、金型全体を、均一かつ高速に加熱することができる。
 その上、予備加熱装置によって、金型を補助的に加熱できるため、本加熱炉における本加熱を補助することができ、ひいては、本加熱炉における加熱能力やサイズ等を抑制することができる。例えば、予備加熱装置によって、搬送中、すなわち、本加熱炉に投入前の金型温度を10℃高めるだけで、本加熱炉における所定温度にするための加熱能力(10%以上)の電力消費の低下が可能である。
 したがって、従来行われていた、シート状物をさらに硬化させるための後加熱炉の設置等を、事実上省略することができ、その分、本発明によれば、ダウンサイジングが可能であって、全体として、小型化や省スペース化されたパウダースラッシュ成形機を提供することができる。
 また、本発明のパウダースラッシュ成形機によれば、予備加熱装置が、遠赤外線加熱方式のヒータを備えることが好ましい。
 このように遠赤外線加熱方式のヒータ、例えば、セラミックヒータを備えることによって、金型の少なくとも外表面の任意場所から、熱線が内部まで浸透し、金型の内表面形状によらず、金型全体を、両面(A面およびB面)から、より均一かつ高速に加熱することができる。
 また、遠赤外線加熱方式のヒータであれば、複数枚備えた場合であっても、遠赤外線を利用して、短時間で、所定温度に加熱できるばかりか、比較的軽量で、省スペース化が図られるため、搬送装置の一部に取り付けたとしても、当該搬送装置を、円滑かつ高速に移送することができる。
 その上、複数の遠赤外線加熱方式のヒータを備えることができるので、所定温度に加熱しにくい箇所においては、加熱しにくい箇所と比較して、そこだけ集中的に発熱量を容易に調整して、金型全体として、均一な加熱状態(温度プロフィール)とすることができる。
 また、本発明のパウダースラッシュ成形機によれば、予備加熱装置が、下方に開口した開口部を有しており、当該開口部を介して、金型を収容する被覆部材を備えていることが好ましい。
 すなわち、このように下方に開口した、概ね御椀型の被覆部材(断熱把持部材)を少なくとも備えることにより、金型の周囲を、上方から覆いつつ、確実に把持できるとともに、予備加熱した金型からの熱の放散を効果的に防止することができる。
 また、本発明のパウダースラッシュ成形機によれば、搬送装置が、金型を把持すると同時に、予備加熱装置にスイッチが入って、金型を予備加熱するための同期機構を備えることが好ましい。
 このように金型の把持動作と同期して、金型を予備加熱する構成とすることにより、金型の移送時間をさらに有効に利用することができる。
 また、本発明のパウダースラッシュ成形機によれば、パウダースラッシュ部と、金型冷却部と、が一体化されており、パウダースラッシュ部と、金型冷却部と、の間に、パウダースラッシュ部におけるパウダーボックスと、金型冷却部における冷却装置(以下、冷却ブースと称する場合もある。)、の位置交換を可能とする交換装置が設けてあることが好ましい。
 すなわち、パウダースラッシュ部において、シート状物を成形した後、金型を冷却する際には、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部に設けてある冷却装置が、パウダースラッシュ部の回転装置の直下に移動して、金型の内表面を外部に解放した状態で、金型の外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けることにより、迅速に冷却することができる。
 よって、このように一体化したパウダースラッシュ部及び金型冷却部とすることにより、パウダースラッシュ成形機全体として、さらにダウンサイジングして、小型化を図ることができる。
 また、本発明の別の態様は、金型温度が所定温度以上の値になるように金型を加熱する金型加熱部と、成形樹脂をパウダリングしながら吹きつけて、加熱した金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、金型温度が所定温度以下となるように、金型を冷却する金型冷却部と、冷却したシート状物を、金型から脱型する金型加工部と、を備え、さらには、金型を、各部の間で移動させる搬送装置と、を備えるとともに、搬送装置の一部に、金型の少なくとも外表面を加熱するための予備加熱装置が設けてあるパウダースラッシュ成形機を用いてなるパウダースラッシュ成形法である。
 そして、搬送装置が、金型を把持して、金型加工部から、金型加熱部に移送する工程と、金型加熱部において、金型温度が所定温度以上の値になるように金型を加熱する工程と、搬送装置が、加熱された金型を把持して、金型加熱部から、パウダースラッシュ部に移送した後、成形樹脂をパウダリングしながら吹きつけて、加熱した金型の内表面に、所定厚さのシート状物を成形するする工程と、金型を冷却する冷却工程と、冷却したシート状物を、金型から脱型する工程と、を含み、かつ、搬送装置が、金型を把持して、金型加工部から、金型加熱部に移送する工程の間に、搬送装置の一部に設けてある予備加熱装置によって、金型を予備加熱することを特徴とするパウダースラッシュ成形法である。
 すなわち、本発明のパウダースラッシュ成形法によれば、金型の移送時間を利用して、金型の外表面や内表面、すなわち、シート状物の形成面を予備加熱することができるため、金型の内表面形状によらず、本加熱の際に、金型全体を、均一かつ高速に、所定温度に加熱することができる。
 特に、予備加熱工程を含む、複数工程で、金型を加熱するため、金属疲労や成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制しつつ、金型の内表面形状によらず、金型全体を、均一かつ高速に加熱することができる。
 また、本発明のパウダースラッシュ成形法によれば、一旦成形したシート材をさらに硬化させるための後加熱炉を事実上省略することができ、さらには、所定の予備加熱装置を備えることによって、加熱炉自体を小型化することができるため、その分、ダウンサイジングが可能であって、全体として、小型化や省スペース化されたパウダースラッシュ成形機を提供することができる。
 より具体的には、一旦成形したシート材をさらに硬化させるための、後加熱炉等を事実上省略できるため、その分、小型のパウダースラッシュ成形機を用いたパウダースラッシュ成形法を提供することができる。
 また、本発明のパウダースラッシュ成形法によれば、搬送装置が、金型(区別のため、第1の金型と称する場合がある。)を移送する際に、当該金型とは異なる金型(区別のため、第2の金型と称する場合がある。)を、搬送装置の下方に把持して、同時に搬送することが好ましい。
 このように複数の金型(第1の金型及び第2の金型)を、一つの搬送装置で、同時搬送することによって、移動距離が短くなったり、所定処理の動作性が向上したりして、シート材の一つ当たりの成形時間(以降、タクトタイム、あるいはサイクルタイムと称する場合がある。)をさらに短くすることができる。
 さらには、搬送装置に設けた予備加熱装置によって、第1の金型及び第2の金型を同時搬送しながら、第1の金型及び第2の金型、あるいは、いずれかの一方の金型を予備加熱することができるため、さらに、タクトタイムをより短くしたり、ダウンサイジング化に寄与したりすることができる。
 また、本発明のパウダースラッシュ成形法によれば、パウダースラッシュ部と、金型冷却部と、が一体化されており、金型を冷却する際には、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部に設けてある冷却装置が、パウダースラッシュ部の回転装置の直下に移動して、金型を把持するフレーム部材と係合し、金型の内表面を外部に解放した状態で、金型の外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けることが好ましい。
 このようなパウダースラッシュ成形法によれば、パウダースラッシュ部が、金型冷却部を兼ねていることから、パウダースラッシュ成形機全体として、さらにダウンサイジングして、小型化やシート状物の成形時間の短縮化を図ることができる。
図1は、本発明のパウダースラッシュ成形機の一例を説明するために供する側面図である。 図2は、本発明のパウダースラッシュ成形機の一例を説明するために供する平面図である。 図3(a)~(b)は、本発明の別のパウダースラッシュ成形機を説明するために供する側面図及び平面図である。 図4(a)~(b)は、予備加熱部を備えた搬送装置を説明するために供する平面図及び正面図である。 図5は、予備加熱部を備えた搬送装置を説明するために供する側面図である。 図6(a)は、予備加熱部の遠赤外線加熱方式のヒータを説明するために供する図(写真)であり、図6(b)は、別の予備加熱部の遠赤外線加熱方式のヒータを説明するために供する概略図である。 図7は、金型加熱部の一例を説明するために供する図である。 図8(a)~(b)は、別の金型加熱部を説明するために供する図である。 図9(a)~(c)は、本発明のパウダースラッシュ成形法を説明するために供する図である(その1)。 図10(a)~(b)は、本発明のパウダースラッシュ成形法を説明するために供する図である(その2)。 図11は、乾燥装置を説明するために供する図である。 図12(a)~(b)は、それぞれ加熱装置を説明するために供する図である。
[第1の実施形態]
 第1の実施形態は、図1~図2、あるいは図3に例示するように、金型60の温度が所定温度以上の値になるように金型60を加熱する金型加熱部(A部)と、成形樹脂をパウダリングしながら吹きつけて、加熱した金型60の内表面に、所定厚さのシート状物94を成形するパウダースラッシュ部(B部)と、金型60の温度が所定温度以下となるように、金型60を冷却する金型冷却部(C部)と、冷却したシート状物94を、金型60から脱型する金型加工部(E部)と、を備え、さらには、金型60を、各部の間で移動させる搬送装置62と、を備えてなるパウダースラッシュ成形機10、10aである。
 そして、図4~図5に例示するように、搬送装置62の一部に、金型60の少なくとも外表面を加熱するための予備加熱装置63が設けてあることを特徴とするパウダースラッシュ成形機10、10aが提供され、上述した問題点を解決することができる。
 以下、図面を適宜参照して、第1の実施形態のパウダースラッシュ成形機10、10aを具体的に説明する。
 なお、図1及び2は、パウダースラッシュ部(B部)と、金型冷却部(C部)がそれぞれ独立してなるパウダースラッシュ成形機10の側面図、及び平面図(搬送装置は省略。)を示している。
 また、図3(a)~(b)は、パウダースラッシュ部(B部)と、金型冷却部(C部)が一体化(B部/C部)してなるそれぞれパウダースラッシュ成形機10aの側面図、及び平面図をそれぞれ示している。
 さらに、図4(a)、(b)及び図5は、それぞれ予備加熱装置63を備えた搬送装置62の上面図、正面図、及び側面図(金型60を搭載した状態)である。
1.基本的構成
 図1及び2に示すパウダースラッシュ成形機10の場合には、少なくとも4つの金型60(60A、60B、60C、60D)が用いられることを前提として、それぞれ所定時期に、金型加工部(E部)、予備加熱部(A´部)、金型加熱部(A部)、パウダースラッシュ部(B部)、金型冷却部(C部)、金型交換部(D部)、再び金型加工部(E部)の順に、予備加熱装置63を備えた搬送装置62によって各部を移動する基本的構成を備えている。
 また、図3に示すパウダースラッシュ成形機10aの場合には、少なくとも3つの金型60(60A、60B、60C)が用いられることを前提として、それぞれ所定時期に、金型加工部(E部)、予備加熱部(A´部)、金型加熱部(A部)、パウダースラッシュ部/冷却部を含む一体箇所(B部/C部)、金型交換部(D部)、再び金型加工部(E部)の順に、予備加熱装置63を備えた搬送装置62によって各部を移動する基本的構成を備えている。
 そして、それぞれのパウダースラッシュ成形機10、10aにおいて、一連のパウダースラッシュ成形を完結するための処理が並行的に行われ、最終的に、樹脂成形品であるシート状物94を迅速かつ安定的に得ることができる。
2.金型加工部
 図1等に示される金型加工部(E部)は、パウダースラッシュ成形したシート状物94を、金型60から取り出す脱型作業を行うための部位である。
 そして、図1等に示されるように、金型60は、移動及び迅速処理を容易にするため、フレーム部材61に取りつけられており、当該フレーム部材61とともに、搬送装置(例えば、クレーン)62によって、金型加工部(E部)をスタート地点として、所定部の間を、任意に移動できるように構成されている。
 より具体的には、図3(a)に示されるように、搬送装置62が、水平方向である矢印Fや、鉛直方向である矢印Gに沿って、それぞれ金型60を把持した状態で、任意に移動することができる。
 なお、後述するように、図3(a)に示されるように、搬送装置62の上方には、予備加熱部(A´部)として予備加熱装置63及びモータ/送風ファンを含む駆動装置63bが備えられており、金型60の搬送中に、金型温度を所定温度に調整できるように構成されている。
3.予備加熱装置
 また、図3(a)に示されるように、搬送装置62の上方に、予備加熱部(A´部)として、予備加熱装置63及びモータ/送風ファンを含む駆動装置63bが備えられており、金型60の搬送中に、金型温度を所定温度に調整できるように構成されている。
 より具体的には、図4~図5に示すように、搬送装置(例えば、クレーン)62によって、金型60は、金型加工部(E部)から金型加熱部(A部)に移送されるが、その際、搬送装置62には、金型60の少なくとも外表面を加熱するための予備加熱装置63が設けてあることが好ましい。
 すなわち、かかる予備加熱装置63によって、金型60の搬送中の時間を利用して、金型60におけるシート状物94の非形成面である外表面(A面)のみならず、シート状物94の形成面である内面(B面)についても、所定温度に予備加熱することができる。
 そのため、金型60の内表面形状(湾曲、窪み、オフセット等)によらず、予備加熱と併せて、本加熱の際に、金型全体を、均一かつ高速に、所定温度に加熱することができる。
 また、かかる予備加熱装置63によって、金型60の内表面(B面)と外表面(A面)との温度差が小さくなって、金型60の金属疲労や、成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制しつつ、金型全体を、均一かつ高速に加熱することができる。
 その上、予備加熱装置63によって、補助的に加熱できるため、一旦成形したシート材をさらに硬化させるための後加熱炉を事実上省略することができる。したがって、その分、ダウンサイジングが可能であって、全体として、小型化や省スペース化されたパウダースラッシュ成形機を提供することができる。
 ここで、予備加熱装置63によって、金型(例えば、厚さ3.5mmのニッケル鋳造合金製)60を予備加熱した際の、当該金型60の外面温度、すなわち、予備加熱温度を、例えば、200℃以下の値とすることが好ましい。
 この理由は、かかる予備加熱温度が200℃を超えた値になると、予備加熱装置63における加熱能力上の負担が大きくなったり、環境温度の影響や金型60の熱履歴等の影響によって、移送時間中に、かかる温度に達することが困難となったりする場合があるためである。
 但し、かかる予備加熱温度が過度に低いと、金型60の本加熱への補助効果が過度に少なくなったり、逆に、金型60の本加熱の際の金型温度のばらつきが生じやすくなったりする場合がある。
 したがって、予備加熱温度を、例えば、100~180℃の範囲内の値とすることがより好ましく、120~160℃の範囲内の値とすることがさらに好ましい。
 なお、予備加熱温度は、熱電対、赤外線温度計、サーモグラフィ、消費電力計等の少なくとも一つを用いて、測定することができるが、さらには、連続的又は断続的に測定し、かつ、本加熱炉に入る前の温度を、予備加熱温度の代表値とすることができる。
 また、かかる予備加熱装置63としては、図6(a)~(b)に示すような、遠赤外線加熱方式のヒータ(一部送風ファンも含む)63aを備えることが好ましい。
 図6(a)は、一例の遠赤外線加熱方式のヒータ(セラミックヒータ)63aの外観を示す図(写真)であるが、例えば、照射面積が250×250mm2の矩形状のセラミックヒータ63aであって、3相、200V、30Aの定格電源を用いて、1~6kW/個の発熱が可能である。
 また、図6(b)は、別の遠赤外線加熱方式のヒータ(セラミックヒータ)63aの断面図であるが、後方から、送風機153、ホース154、ホース接続口151a、整流板部材155、通気孔が設けてある排出調整部材158、遠赤外線放射発熱体159、及び、筐体151とから、構成されている。
 そして、遠赤外線放射発熱体159は、例えば、薄い帯状の通電材料を基板として、その表面にセラミックス材料が溶射被覆されており、基板に通電することにより、発熱し、セラミックス材料表面から、前方に向かって遠赤外線160を放射することができる。
 したがって、一部送風ファンを併用することにより、さらに、均一かつ迅速に、遠赤外線160を放射させることができる。
 すなわち、このような遠赤外線加熱方式のヒータ63aのいずれかを用いることによって、金型60の全面(A面及びB面)はもちろんのこと、任意場所に対して、遠赤外線(熱線)を浸透させることができるので、金型60の内表面形状によらず、金型60の内部を含む全体を、より均一かつ迅速に予備加熱することができる。
 また、このような遠赤外線加熱方式のヒータ63aであれば、比較的軽量かつ薄型であることから、予備加熱装置63としても、軽量化、薄型化、省スペース化等を図ることができる。
 よって、かかる予備加熱装置(遠赤外線加熱方式のヒータ)63を搬送装置62の一部に取り付けたとしても、金型60を予備加熱しながら、従来どおりの搬送装置(モータ、ワイヤ、ギア等)63bを基本的に用いて、円滑かつ高速に移送することができる。
 また、図3(a)等に示すように、予備加熱装置63が、下方に開口した開口部を有しており、当該開口部を介して、金型60を収容する被覆部材63dを備えていることが好ましい。
 この理由は、このように下方に開口した、概ね御椀型の被覆部材63dを備えることにより、金型60の周囲を、上方から覆いつつ、かつ、物理的に確実に把持できるためである。
 また、かかる被覆部材63dであれば、断熱把持部材として、アルミニウム板、珪酸化カルシウム板、あるいはカーボンブラック含有樹脂材料等で被覆することができるという利点がある。
 その結果、所定の断熱性を発揮し、予備加熱した金型60からの上方等への熱の放散があるとしても、かかる熱放散を有効に抑制することができる。
 例えば、厚さ20~100μmのカーボンブラック含有樹脂材料で、金型60の非形成面を被覆した場合、所定加熱条件で予備加熱しただけで、約10℃以上、金型温度を高めることが判明している。
 その上、このようなカーボンブラック含有樹脂材料等で被覆してあることによって、赤外線方式の温度計等に対する反応性や感度が上がることから、より正確かつ短時間に、金型温度を測定することができるという利点もある。
 次いで、図4~図6に言及して、予備加熱装置63を備えた搬送装置62、及び予備加熱装置63に用いる遠赤外線加熱方式のヒータの一例をそれぞれ具体的に説明する。
 すなわち、図4(a)は、予備加熱装置63を備えた搬送装置62の上面図であり、図4(b)は、予備加熱装置63を備えた搬送装置62の正面図であり、図5は、予備加熱装置63を備えた搬送装置62の側面図(金型60を搭載した状態)である。
 そして、図4~図5に開示された予備加熱装置63は、基本的に、図6(a)~(b)に示されるような平板状の遠赤外線加熱方式のヒータ(単に、セラミックヒータと称する場合もある。)63aを複数枚備えている。
 この例では、8枚からなるセラミックヒータ63aの横列が、二段に配置されているが、セラミックヒータ63aの枚数は、加熱面積や加熱速度等を考慮して定めることができる。したがって、通常、単位面積(10m2)あたり、セラミックヒータ63aの4~200枚の範囲とし、より好ましくは、8~100枚の範囲とすることが好ましい。
 また、かかる平板状のセラミックヒータ63aは、珪酸カルシウムを主成分とした繊維強化板等の、例えば、厚さ0.1~10mmの断熱性基材の上に設けてあり、前方に向かって、集中的に放熱できるように構成してある。
 すなわち、かかる複数のセラミックヒータ63aが、モータ/送風ファンを含む駆動装置63bを兼用しつつ、温度制御手段(図示せず)によって、所定温度に金型60を効果的に予備加熱するように、構成されている。
 また、金型60は、予備加熱装置63のフレーム部材63c、すなわち、概ね矩形状であって、補強部材を含んでなるフレーム部材63cの所定位置に搭載され、所定の固定具(図示せず)によって、脱着可能に支持されている。
 その上、予備加熱装置63の一端には、金型60を搭載したフレーム部材63c、あるいは、金型60のみ等を、直接又は間接的に、XYZ方向に移動させるための複数のモータ/送風ファンを含む駆動装置63bが搭載されている。
 よって、このような予備加熱装置63を備えた搬送装置62であれば、金型60の搬送時間を利用して、金型60におけるシート状物94の非形成面である外表面(A面)のみならず、シート状物94の形成面である内面(B面)についても、所定温度に予備加熱することができる。
 すなわち、予備加熱装置63におけるセラミックヒータ63aの配置や数、金型60の搭載位置や、搭載向き等を考慮することによって、金型60における内面形状に対応させて、いずれの箇所についても、複数のセラミックヒータ63aによって、予備加熱することが可能である。
 なお、搬送装置62の下方に設けてあるフック62cを利用して、予備加熱される金型(第1の金型)とは異なる、別の金型(第2の金型)についても把持しながら、これらを同時搬送することができることから、ひいては、シート状物94を製造する際の、単位時間あたりの製造効率を示すタクトタイムを著しく短縮することができる。
4.金型加熱部
(1)熱風発生装置
 金型加熱部(A部)における、金型60(60C)を加熱するための熱風発生装置40の構造は、金型60を効率的に加熱できるものであれば、特に制限されるものではない。
 したがって、例えば、図7に示すように、縦型の加熱炉58´の炉本体は、側面に、上下方向に開閉可能なシャッター58aを有する平面長方形の箱状体として形成されている。
 より具体的には、バランサーとしての錘58bが付いたシャッター58aにおいて、錘58bを上げた状態、すなわち、シャッター58aを開いた状態で、金型60C及びそのフレーム部材61を、炉内に側方より搬入する。
 次いで、加熱炉58の搬入箇所の上方の所定箇所に固定配置した後、錘58bを下げた状態にして、シャッター58aを閉じる。
 次いで、ガス炉等の熱風発生装置58c、58dによって、加熱炉58´として発生させた所定温度の熱風を、下方から、ルーバー58fを介して吹き込み、さらには、金型60Cの上方に設けてあるルーバー58eによって、熱風を循環させながら、金型60Cを、均一かつ迅速に加熱できるように構成されている。
 すなわち、このように構成することにより、金型60C等の、加熱炉58´への搬入が容易になるばかりか、加熱炉58´への熱エネルギの供給が容易になり、ひいては、省スペース化や加熱炉58´からの熱エネルギの効率的回収についても容易になる。
 なお、図7に示す加熱炉58´の場合、複数の金型60を搬送してきたとしても、一つの金型60のみ、本加熱する構成であるため、その場合、搬送装置62に保持した、もう一方の金型60については、予備加熱しながら、次工程を実施するタイミングまで、加熱炉58´の上方で、待機することが好ましい。
 また、図8(a)~(b)に示す別の加熱炉58ように、プロパンガス由来の火炎装置等により得られた熱風14を、熱風吹出口16の下方あるいは下側に設けた空気供給ファン46により、配管45や主配管43を通じて、熱風吹出口16から供給する構成であることも好ましい。
 すなわち、かかる熱風発生装置40により得られた熱風14と、後述するエネルギ回収部54を通じて炉内から回収され、空気循環ファン42により混合室44に送り込まれた熱風とを、混合室44において適宜混合した後、空気供給ファン46により、所定風速を有する大量の熱風として、主配管43を通じて、熱風吹出口16に供給する構成であることが好ましい。
 なお、図8(a)は、一つのシート状物94を成形するための金型60のための加熱炉58の例であって、図8(b)は、同時に二つのシート状物94を成形するための金型60のための加熱炉58の例である。
 そして、図8(a)~(b)に示すように、主配管43の途中に、熱風貯留室39を設けるとともに、その熱風貯留室39の中であって、主配管43の出口部分に邪魔板49を設けることが好ましい。
 また、同様に、金型60を加熱した後の、少なからず温度が高くて、多くのエネルギを有する熱風(熱エネルギ)を回収するためのエネルギ回収部54を設けることが好ましい。
 すなわち、加熱炉58の傾斜した炉内底面19に通じる開口部を有するとともに、熱風発生装置40に連なる分岐配管47を備えたダクト構造を有することが好ましい。そして、既に上述したように、エネルギ回収部54に連なる分岐配管47の途中に、ダンパ-47aを配設することが好ましい。
(2)加熱炉
 また、金型加熱部(A部)における加熱炉58、58´は、本加熱炉とも称せられるが、図7、あるいは、図8(a)~(b)にそれぞれ示すように、熱風発生装置40の上方に配置されていて、かつ、全体として一つのコンパクトな加熱装置として構成されていることが好ましい。
 そして、図8(a)~(b)に示すように、加熱炉58においては、主配管43の出口部分に枝分かれさせて構成してあることが好ましい。
 したがって、所定高さを有しており、かつ、加熱炉58内の金型60を側方からも加熱できるように、垂直方向に延出させたダクト構造、すなわち、側方熱風吹出口50を設けることが好ましい。
 その上、かかる側方熱風吹出口50は、加熱炉58の内側に沿って配置してあることが好ましく、さらには、熱風発生装置40に連なる分岐配管41や、主配管43に連結してあり、その風量をダンパ48等によって調節することが好ましい。
 一方、加熱炉58´も、燃料ガスを用いたガス炉であるが、熱風発生装置58c、58dによって発生させた所定温度の熱風を、下方から、ルーバー58fを介して吹き込み、上方に位置する金型60を均一かつ迅速に加熱できるように構成されている。
(3)温度
 また、金型加熱部(A部)において、加熱炉58、58´を用いて、金型(例えば、厚さ3.5mmのニッケル鋳造合金製)60を加熱する際に、当該金型60の内表面温度、すなわち、金型温度を、例えば、220~300℃の範囲内の値とすることが好ましい。
 この理由は、かかる金型温度が300℃を超えると、成形樹脂の焼き付け現象に起因したグロス現象が頻繁に生じたり、金型60の金属疲労により、冷却時に金型にクラックが生じたりする場合があるためである。
 したがって、金型温度を、例えば、230~280℃の範囲内の値とすることがより好ましく、240~260℃の範囲内の値とすることがさらに好ましい。
5.パウダースラッシュ部
(1)基本的構成
 また、パウダースラッシュ部(B部)は、図9(a)~(c)及び図10(a)に示されるように、加熱されたフレーム部材61を含む金型60と、流動状体の成形樹脂92を収容したリザーバタンク88とを、記号Aで示される金型60の内表面を下向きにするとともに、リザーバタンク88の開口面を上向きにした状態で、上下に一体的に連結する工程を実施するための部位である。
 より具体的には、図9(a)~(c)及び図10(a)を参照して、パウダースラッシュ成形法を実施するパウダースラッシュ部を説明する。
 すなわち、図9(a)に示すように、加熱炉における熱風14によって、塗布層(図示せず)が形成された金型60を所定温度に加熱、特に、金型内表面に対して熱風14を吹き付けて、所定温度に加熱する。
 次いで、図9(b)に示すように、金型60を、リザーバタンク88の上方に位置合わせした上で、載置する。
 次いで、図9(c)に示すように、金型60を、リザーバタンク88と一緒に、回転させる。
 そして、これらを回転させる際に、リザーバタンク88の内部に収容された成形樹脂92の分散性を向上させ、均一な厚さのシート状物94を形成するために、リザーバタンク88の下方に設けた攪拌室88aに空気を導入して、パウダー状の成形樹脂92を流動状態とすることが好ましい。
 すなわち、攪拌室88aの上方は、穴開き部材、例えば、メッシュ部材から構成してあり、導入された空気によって、成形樹脂92を巻き上げる構造であることが好ましい。
 さらに、回転させる際に、成形樹脂92の流動状態を活性化させ、均一な製膜ができるように、図9(c)に示すように、フレーム部材61に設けてある振動部材を、ハンマー108の先端部108aで繰り返し叩くことが好ましい。
 次いで、図10(a)に示すように、所定時間静置して、成形樹脂92を所定個所に沈降させる。その際、成形樹脂92が早期に非流動状態となるように、空気を脱気して、減圧操作を行うことが好ましい。
 そして、後述するように、このようなパウダースラッシュ部(B部)が、金型冷却部(C部)と一体化しており、かつ、金型を冷却する際に、冷却装置等が移動してくる構成の場合には、パウダースラッシュ部/冷却部において、金型を冷却することになる。
 すなわち、最後に、図10(b)に示すように、冷却装置55を用いて、金型60の内表面Aに形成されたシート状物94とともに、金型60の背面側の外表面Bに対して、シャワー等を吹きつけて冷却する構成であることが好ましい。
 但し、パウダースラッシュ部(B部)が、金型冷却部(C部)と、それぞれ独立している場合には、パウダースラッシュ成形が終了した金型が、金型冷却部(C部)に移送されて、そこで、金型60の内表面Aに形成されたシート状物94とともに、金型60の背面側の外表面Bに対して、所定の冷却が行われる構成である。
(2)型枠
 また、パウダースラッシュ部(B部)において、フレーム部材61を含む金型60を反転させる際、かかる金型60における所望の内表面(A)のみに、シート状物94を形成できるように、金型60と、リザーバタンク88との間に、所定の厚さ(高さ)を有する型枠84a、84bを設けることが好ましい。
 ここで、かかる型枠84bの下部を、例えば、アルミニウムから構成し、一方の型枠84aの上部をシリコーンゴム/フッ素樹脂フィルムの組合せから構成することにより、金型60と、リザーバタンク88との間の隙間を充填する役目を果たすこともできる。
(3)成形樹脂
 また、パウダースラッシュ部(B部)で使用する成形樹脂としては、特に制限されるものではないが、例えば、エポキシ樹脂、ウレタン樹脂(熱可塑性ウレタン樹脂も含む。)、ポリエステル樹脂(熱可塑性ポリエステル樹脂も含む。)、アクリル樹脂、塩化ビニル樹脂、オレフィン樹脂(熱可塑性オレフィン樹脂も含む。)、シリコーン樹脂等の一種単独又は二種以上の組み合わせが挙げられる。
 特に、塩化ビニル樹脂や熱可塑性ウレタン樹脂であれば、下地層を形成する第2の樹脂との親和性が良好であって、強固な接着性が得られ、さらには、低温脆性に優れていることから、好適な樹脂である。
(4)パウダリング時間
 また、パウダースラッシュ部(B部)において、上述したように、均一な厚さのシート状物94を形成すべく、パウダリング時間を18~45秒の範囲内の値とすることが好ましい。
 この理由は、かかるパウダリング時間が18秒未満の値になると、成形樹脂が容易に熱溶解して、所定厚さを有するシート状物94を形成することが困難となる場合があるためである。
 一方、かかるパウダリング時間が45秒を超えた値になると、金型を所定温度まで加熱する時間、ひいては、タクトタイムが過度に長くなって、経済的に不利となる場合があるためである。
 したがって、パウダースラッシュ部(B部)において、パウダリング時間を20~40秒の範囲内の値とすることがより好ましく、25~38秒の範囲内の値とすることがさらに好ましい。
6.金型冷却部
(1)構成1
 金型冷却部(C部)は、図10(b)に示すように、フレーム部材61を含む金型60を、水冷あるいは空冷等の冷却装置55により冷却して、シート状物94を所定程度に固化させるための冷却装置55からなる構成部位である。
 より具体的には、冷却装置55により、シート状物94を形成した金型60の外表面(B面)に対して、冷却水をシャワー又は冷却ミストを吹き付け、所定温度まで冷却することになる。
 一方、図3(a)に示す、ダウンサイジングされたパウダースラッシュ成形機10aの場合には、金型冷却部(C部)が、パウダースラッシュ部(B部)と兼用されているとともに、金型冷却部(C部)等が移動式であることが好ましい。
 すなわち、図3(b)に示すように、金型60を冷却する際には、パウダースラッシュ終了後の粉体ボックスが、矢印Cに示すように、パウダースラッシュ部(B部)からボックス交換位置(D2)に、水平的に移動する。
 より具体的には、パウダースラッシュ成形後、回転装置89と係合した状態の金型60と、粉体ボックス64とが、矢印Eで示されるように、分離移動する。
 したがって、回転装置89と係合した状態の金型60のみ上昇するとともに、粉体ボックス64は、パウダースラッシュ部(B部)からボックス交換位置(D2)に向かって、水平的に移動する。
 すなわち、図3(b)中、矢印Cに沿って、上方に水平移動し、その後、適宜、矢印Dに沿って、右横方向、あるいは、場合によっては、左横方向に水平移動する。
 なお、ボックス交換位置(D2)の配置場所については、特に制限されるものではないが、事実上、水平移動のみで足りることから、図3(b)に示すように、パウダースラッシュ部(B部)に隣接した外側領域(図面上、上側)に設けてあることが好ましい。
 次いで、図3(a)~(b)に示すように、金型冷却部(C部)に設けてある冷却装置55が、矢印Aに示されるように、パウダースラッシュ部(B部)の回転装置89の直下に水平移動し、金型60を把持するフレーム部材(図示せず。)と係合する。
 より具体的には、金型冷却部(C部)に設けてある冷却装置55が、駆動レール55aに沿って移動し、回転装置89と係合した状態の金型60の直下に移動する。
 それに対応して、回転装置89によって、金型60は反転されて、シート状物94が形成された内表面(A面)を上側に開放した状態となり、冷却装置55と、金型60の外表面(B面)とが向き合う状態で、両者が、係合する。
 そして、かかる冷却装置55により、金型60の外表面(B面)に対して、冷却水をシャワー又は冷却ミストを吹き付ける。
 なお、金型冷却部(C部)に設けてある冷却装置55や金型60についても、適宜交換することができる。
 すなわち、図3(b)中、矢印Bに沿って、冷却装置55や金型60は、上方に水平移動し、その後、適宜、矢印Dに沿って、左方向、あるいは、場合によっては、右方向に水平移動し、所定場所において交換することができる。
 その他、金型冷却部(C部)において、金型60の背面(B面)を所定温度に冷却した後、図11に示すように、乾燥装置99を用いて、金型60やシート状物94等に対して、乾燥空気を吹き付けることが好ましい。
 より具体的には、二点鎖線で記載された想定円に沿って、矢印Aの方向に、金型60が回転し、シート成形面であるB面が下方を向かせる。
 次いで、形成したシート状物94及び金型60等に、乾燥空気を吹き付けて、これらの温度をさらに冷却するとともに、シート状物94の表面等に付着した水分等を除去する。
 したがって、かかる乾燥処理を行うことによって、金型冷却部(C部)に設けてある冷却装置55の駆動時間を短縮化することができるとともに、シート状物94における吸水率を制御して、より高品質のシート状物94とすることができる。
 なお、乾燥装置99は、複数の吹出口99a及び送風機99bから主として構成されており、これら吹出口99aの先端部が、全体として、約180°の範囲で、吹き付け角度を変えるための首振り機構が設けてある。
 より具体的には、乾燥装置99の下方壁に沿って設けてある、複数の吹出口99aと、形成したシート状物94等を直接的に乾燥させるべく、金型60の直下に位置する複数の吹出口99a´とが、それぞれ設けてある。
 したがって、例えば、風速1~100m/秒の空気等につき、吹出口からの吹き付け角度を左右に変えながら、あるいは、一定角度に固定して、シート状物94等に対して吹き付けることができる。
 その上、金型冷却部(C部)において、金型60の背面(B面)を所定温度に冷却した後、あるいは、冷却前に、図12(a)~(b)に示すように、加熱装置100、100´を用いて、形成したシート状物94及び金型60を所定温度に加熱することも好ましい。
 すなわち、金型冷却部(C部)における冷却装置や乾燥装置にかえて、あるいは、乾燥装置とともに、加熱装置100、100´を備え、遠赤外線方式のセラミックヒータ等によって、形成したシート状物94を加熱することが好ましい。
 したがって、図12(a)に示す加熱装置100の場合、一部のフレーム部材100aの上方に、形成したシート状物94を備えた状態の金型60を載置し、下方から加熱処理することになる。
 よって、シート状物94において、溶融が不十分だった成形樹脂をより均一に溶融させたり、シート状物94の乾燥を速めたりすることができる。
 一方、図12(b)に示す加熱装置100´の場合、遠赤外線方式のセラミックヒータ63a等の下方に、形成したシート状物94を備えた状態の金型60を、所定フレーム100bの上に載置し、上方から加熱処理することになる。これによっても、シート状物94において、溶融が不十分だった成形樹脂を溶融させたり、シート状物94の乾燥を速めたりすることができる。
(2)構成2
 また、かかる金型冷却部に関して、移動式又は固定式に限らず、第1のエアブロー、ミスト/シャワー、及び第2のエアブローの組み合わせによる、少なくとも三段階ステップによる金型冷却構成とすることが好ましい。
 すなわち、最初に、シート状物94が形成された150℃程度の金型60の内部及び外部に対し、第1のエアーとして、空気を吹き付けて、金型温度を約100℃程度まで低下させることが好ましい。
 次いで、ミストノズル及びシャワーノズル、あるいはいずれか一方のノズル98から水ミスト及び水シャワーを、金型外部から吹き付けて、金型温度を約50℃程度まで低下させることが好ましい。
 最後に、シート状物94が形成され、50℃程度まで冷却された金型60の外表面及び内表面に対し、第2のエアーとして、空気を吹き付け、さらに金型温度の蓄熱をとるとともに、金型表面に残留している水滴等を吹き飛ばし、金型における錆の発生を有効に防止することが好ましい。
 したがって、金型冷却部(C部)に、冷却装置55として、シャワーノズル/ミストノズル等のノズル98と、エアノズル(図示せず)を、併用して備えることが好ましい。
 なお、シャワー装置/ミスト装置は、一つの給水タンクに連結されてあって、吹出口に設けた制御弁等の切り替え装置によって、噴霧量やシャワー量を決定することも好ましい。
(3)温度/時間
 また、かかる金型冷却部(C部)に関して、移動式又は固定式に限らず、シート状物94を形成した金型60を、少なくとも三段階ステップによる冷却を実施し、金型温度を60℃以下の値とすることが好ましい。
 この理由は、かかる金型温度が60℃を超えると、次工程である脱型や、次サイクルの第2の樹脂の塗布が困難となる場合があるためである。
 但し、金型温度を過度に低くすると、冷却時間が過度に長くなる場合があることから、冷却後の金型温度を30℃以上の値とすることが好ましい。
 したがって、金型冷却部において、シート状物94を含む金型温度を30~50℃の範囲内の値とすることがより好ましく、40~45℃の範囲内の値とすることがさらに好ましい。
 そして、金型冷却部(C部)において、同様に移動式又は固定式に限らず、冷却時間を25~50秒の範囲内の値とすることが好ましい。
 この理由は、かかる冷却時間が25秒未満の値になると、シート状物94を形成した金型60の温度を、所定値以下とすることが困難となる場合があるためである。
 一方、かかる冷却時間が50秒を超えた値になると、金型60を所定温度まで冷却する時間、ひいては、タクトタイムが過度に長くなって、経済的に不利となる場合があるためである。
 したがって、金型冷却部において、冷却時間を30~45秒の範囲内の値とすることがより好ましく、35~40秒の範囲内の値とすることがさらに好ましい。
(4)冷却速度(温度勾配)
 また、金型冷却部(C部)において、同様に移動式又は固定式に限らず、金型の冷却速度、すなわち、冷却時の温度勾配を100~220℃/分の範囲内の値とすることが好ましい。
 この理由は、かかる金型の冷却速度が100℃/分未満の値になると、金型を所定温度まで冷却する時間、ひいては、シート状物94の製品一つを得るまでのタクトタイムが過度に長くなって、経済的に不利となる場合があるためである。
 一方、かかる金型の冷却速度が220℃/分を超えた値になると、金型を急冷することになって、熱疲労が著しく大きくなって、クラックが生じやすくなる場合があるためである。
 したがって、金型冷却部(C部)において、金型の冷却速度を120~210℃/分の範囲内の値とすることがより好ましく、140~200℃/分の範囲内の値とすることがさらに好ましい。
7.金型交換部
 また、第1の実施形態のパウダースラッシュ成形機は、金型交換部(D部)をさらに備えることが好ましい。
 すなわち、かかる金型交換部(D部)を利用して、パウダースラッシュ成形の途中で、種類の異なる二色成形されたシート状物を成形するための金型に変更したり、パウダースラッシュ成形中に、金型損傷が生じたりする場合に対応するためである。
 すなわち、そのような場合であっても、パウダースラッシュ成形機を動作させたまま、金型を交換できるためである。
 一方、かかる金型交換部(D部)は、金型冷却部(C部)が移動式であって、かつ、パウダースラッシュ成形している際には、冷却装置55を一時的に載置する箇所(仮台)ともなる。
 したがって、図1及び図2に示すように、かかる金型交換部(D部)には、金型60を載置するための支持台66を備えるとともに、支持台66の位置が、外部制御によって、移動可能であることが好ましい。
 なお、図2に示す金型交換部(D部)の例では、交換用の金型60´と、交換用の金型金型60´のフレーム部材61a´が、支持台66の上に待機しているばかりか、さらに、上方に伸びた支持台66の上には、さらに別の交換用の金型60´´と、フレーム部材61a´´とが、待機している状態である。
 さらに言えば、図3(b)に示すように、かかる金型交換部(D部)には、冷却装置55が設けてあり、パウダースラッシュ成形後に、かかる冷却装置55が、移動する構成であることが好ましい。
 その上、かかる冷却装置55や、金型60自体を交換する場合には、図3(b)に示す領域D1を利用して、これら金型60等を適宜水平移動させ、新規の冷却装置55や、金型60と交換することができる。
 すなわち、図3(b)中、矢印Bに沿って、金型60等は、図面上、上方方向に水平移動し、その後、適宜、矢印Dに沿って、右横方向、あるいは、場合によっては、左横方向に水平移動する。
8.シート状物
 図9等に示す、パウダースラッシュ成形されるシート状物94の形態に関し、厚さを、通常、1.1~1.6mmの範囲内の値とし、より好ましくは、1.2~1.4mmの範囲内の値とするとともに、例えば、エポキシ樹脂、塩化ビニル樹脂、アクリル樹脂、オレフィン樹脂(熱可塑性オレフィン樹脂を含む。)、ウレタン樹脂(熱可塑性ウレタン樹脂を含む。)、ポリカーボネート樹脂、又はポリエステル樹脂(熱可塑性ポリエステル樹脂を含む。)の少なくとも一つの樹脂から構成してあることが好ましい。
 この理由は、このように構成することにより、汎用性が高く、安価であり、しかも装飾性に優れたシート状物94を提供できるためである。
[第2の実施形態]
 第2の実施形態は、図3(a)~(b)等に示される、金型温度が所定温度以上の値になるように金型60を加熱する金型加熱部(A部)と、成形樹脂をパウダリングしながら吹きつけて、加熱した金型60の内表面に、所定厚さのシート状物94を成形するパウダースラッシュ部(B部)と、金型温度が所定温度以下となるように、金型60を冷却する金型冷却部(C部)と、冷却したシート状物94を、金型60から脱型する金型加工部(E部)と、を備え、さらには、金型60を、各部の間で移動させる搬送装置62と、を備えるとともに、搬送装置62の一部に、金型60を加熱するための予備加熱装置63が設けてあるパウダースラッシュ成形機10aを用いてなるパウダースラッシュ成形法である。
 そして、図3(a)~(b)等、あるいは図4~図5に例示されるように、搬送装置62が、金型60を把持して、金型加工部(E部)から、金型加熱部(A部)に移送する工程と、金型加熱部(A部)において、金型温度が所定温度以上の値になるように金型60を加熱する工程と、搬送装置62が、加熱された金型60を把持して、金型加熱部(A部)から、パウダースラッシュ部(B部)に移送した後、成形樹脂をパウダリングしながら吹きつけて、加熱した金型60の内表面に、所定厚さのシート状物94を成形する工程と、金型60を冷却する冷却工程と、冷却したシート状物94を、金型60から脱型する工程と、を含み、かつ、搬送装置62が、金型60を把持して、金型加工部(E部)から、金型加熱部(A部)に移送する工程の間に、搬送装置62の一部に設けてある予備加熱装置63によって、金型60を加熱することを特徴とするパウダースラッシュ成形法である。
 以下、第2の実施形態のパウダースラッシュ成形法について具体的に説明する。
1.金型準備工程
 金型準備工程は、図1等に示される金型加工部(E部)において、パウダースラッシュ成形したシート状物94を、金型60から取り出す脱型作業を行って、次工程のために、別の所定金型60を準備する工程である。
2.予備加熱工程
 次いで、予備加熱工程は、金型加工部(E部)において搭載した金型60を、搬送装置(クレーン等)62の一部に備えてなる予備加熱装置63を用いて、例えば、100~200℃の金型温度(例えば、外表面温度)となるように、金型60を加熱する工程(以下、予備加熱工程と称する場合がある。)である。
 すなわち、かかる予備加熱工程は、金型60を、金型加工部(E部)から金型加熱部(A部)に移動させる途中に、金型60の温度が所定温度となるように、予備的に加熱する工程である。
 また、予備加熱工程において、把持した金型60に対して、かかる予備加熱装置63を動作させ、金型60の温度を、例えば、100~200℃の温度とすることが好ましく、165~195℃の温度とすることがより好ましく、170~190℃の温度とすることがさらに好ましい。
 この理由は、このような温度となるように金型60を予備加熱することにより、加熱炉58において、金型60の内表面温度との温度差を少なくし、金型60の熱劣化を防止するとともに、金型60の温度が所定温度(例えば、250~300℃)になるように本加熱する際に、高速かつ均一加熱がさらに容易になるためである。
 また、予備加熱工程において、搬送装置62が、金型60を把持すると同時に、予備加熱装置63にスイッチが入って、金型60を予備加熱することが好ましい。
 この理由は、このように金型60の把持動作と同期して、金型60を予備加熱することにより、金型60の移送時間を十分に利用できるためである。
 但し、金型60を把持すると同時に、予備加熱装置63にスイッチが入ると言っても、必ずしも0秒後である必要はなく、パウダースラッシュ成形の状況等に応じて、0.1秒後や1秒後であっても良い。
 その他、予備加熱工程において、金型60の搬送時の温度低下を防止すべく、別の金型に対する加熱処理の間に、さらに別の金型60を搬送装置62にクランプしながら、予備加熱処理を施すことも好ましい。
 この理由は、所定の予備加熱処理によって、パウダースラッシュ部を含む一体箇所(B部/C部)での、加熱処理された金型60に対するシート状物94の形成を、より迅速かつ安定的に行うことができ、ひいては、シート状物一つ当たりの成形時間(タクトタイム)をより短期化できるためである。
 なお、後述するように、金型60の温度が、例えば、260℃になるまで、加熱炉58の熱風を循環利用して、金型60が加熱処理された後、パウダースラッシュ部(B部)に移動されることになる。
 その際、かかる金型60をパウダースラッシュ部(B部)に移送するまでの間も、予備加熱装置63によって、温度維持のための加熱として、金型60の温度を、所望温度範囲の値に維持することができる。
 すなわち、予備加熱装置63によって、金型60の温度についても、それが維持されるように、維持加熱することもできるので、パウダースラッシュ部(B部)において、シート状物94をさらに安定的に成形することができる。
3.加熱工程
 次いで、加熱工程は、金型加熱部(A部)において、金型60を、例えば、220~300℃、より好ましくは、230~270℃の金型温度となるように、加熱する工程(以下、加熱工程と称する場合がある。)である。
 したがって、所定の金型60を金型加熱部(A部)に移動させて、加熱炉58内に搬入し、そこで、金型60の温度が所定温度となるように、迅速に加熱することが好ましい。
 なお、上述したように、加熱工程を実施するに際して、後工程であるパウダースラッシュ工程で均一な厚さのシート状物94を成形できるように、金型60の温度が所定の均一温度になるように、熱風による対流加熱を行うことが好ましい。
4.パウダースラッシュ工程
 次いで、パウダースラッシュ工程は、パウダースラッシュ部(B部)において、金型60に対して、所定のシート状物94を成形する工程(以下、単に、スラッシュ工程と称する場合がある。)である。
 すなわち、加熱状態の金型60を、金型加熱部(A部)からパウダースラッシュ部(B部)に移動させ、そこで、図9(c)に示すように、成形樹脂92からなるシート状物94を形成する工程である。
 但し、上述したように、図3(a)に示すパウダースラッシュ成形機10aの場合、パウダースラッシュ部(B部)が、金型冷却部(C部)と一体化されているとともに、冷却装置55等が移動式であることから、かかるパウダースラッシュ工程は、パウダースラッシュ部及び金型冷却部を含む一定箇所(B部/C部)で行われることになる。
 すなわち、図3(b)に示すように、金型60を冷却する際には、パウダースラッシュ終了後の粉体ボックスが、矢印Cに示すように、パウダースラッシュ部(B部)からボックス交換位置(D2)に、水平的に移動する。
 ここで、スラッシュ工程を実施するにあたり、パウダースラッシュ部及び金型冷却部を含む一定箇所(B部/C部)で行われるか否かにかかわらず、フレーム部材61を含む金型60と、リザーバタンクとを連結した状態で回転させて、記号Aで示される金型60の内表面に所定の厚さのシート状物94を形成することが好ましい。
 すなわち、フレーム部材61を含む金型60と、リザーバタンク88とを組み合わせた状態で、上下方向に反転させることが好ましい。
 この理由は、このように実施すると、リザーバタンク88内の成形樹脂(パウダー)92は自重で、金型60の内表面(A面)に落下するので、かかる金型60の内表面に接する成形樹脂92及びその近傍の成形樹脂92のみが、金型60の熱によって溶融状態となって付着し、シート状物94を短時間に形成できるためである。
 したがって、金型温度を220℃以下の値に加熱するとともに、パウダリング時間を調整し、かつ、200℃以下の熱風を、シート状物の裏面に対して、吹き付ける後加熱処理を実施することが有効であると理解される。
 また、フレーム部材61を含む金型60を反転させる際、成形樹脂92が所定箇所以外に飛散せず、かかる金型60における所望の内表面(A面)のみに、シート状物94を形成できるように、攪拌室88aを介して吸引し、金型60内の圧力を低下させることが好ましい。
 すなわち、金型60を回転させてパウダースラッシュ成形している最中には、金型60の内圧を低下させるために吸引し、パウダースラッシュ成形前には、リザーバタンク88に収容された成形樹脂92の内部に、所定量の空気を吹き込むための圧力調整装置(図示せず)が設けてあることが好ましい。
5.金型冷却工程
 次いで、金型冷却工程は、図1に示す金型冷却部(C部)においてシート状物94を形成した金型60を、所定温度まで冷却する工程(以下、金型冷却工程と称する場合がある。)である。
 すなわち、シート状物94を成形した状態の金型60を、パウダースラッシュ部(B部)から金型冷却部(C部)に移動させ、そこで、少なくとも第1のエアブロー、ミスト/シャワー、及び第2のエアブローの組み合わせによる三段階ステップで、通常、40~50℃に冷却する工程である。
 ここで、一部上述したように、図3に示すパウダースラッシュ成形機10aの場合には、ダウンサイジング化等のために、パウダースラッシュ部(B部)と、金型冷却部(C部)とが一体化(B/C部)されており、同一箇所で、パウダースラッシュと、金型冷却を行うことになる。
 すなわち、金型60を冷却する際には、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部(金型交換部(D部))に設けてある冷却装置55が、パウダースラッシュ部の回転装置の直下に移動する。
 そして、金型60を把持するフレーム部材等と係合し、金型60の内表面を外部に解放した状態で、金型60の外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けることが好ましい。
 但し、シート状物の一つあたりのタクトタイムを重視する場合には、図1及び図2のパウダースラッシュ成形機10に示すように、パウダースラッシュ部(B部)と、金型冷却部(C部)とを独立的に設けるとともに、異なる金型において、同時期に、パウダースラッシュ成形と、冷却工程を実施することも好ましい。
6.脱型工程
 最後に、脱型工程は、金型加工部において、形成したシート状物を、金型から脱型する工程(以下、脱型工程と称する場合がある。)である。
 すなわち、冷却工程を経て、約40~60℃に低下したシート状物94を、金型60から脱型する工程である。
 なお、かかる脱型工程は、ロボットを用いて自動的に行うこともできるし、あるいは人的作業として、シート状物を脱型することもできる。
7.動作例1
 このパウダースラッシュ成形に関する一連の所定処理を実施するにあたり、複数の金型、少なくとも3個の金型である金型A(以下、60A)、金型B(以下、60B)、及び金型C(以下、60C)を同時使用した動作例を図3(a)~(b)にて説明する。
 すなわち、それぞれの金型60A~Cにつき、同時並行して所定処理が行うことによって、シート状物94の一つ当たりのタクトタイムを、150秒以下、より好ましくは、120秒以下と、従来装置の場合のタクトタイム(例えば、240秒)と比較して、極めて短くすることができる。
 以下、図3(a)~(b)に示すパウダースラッシュ成形機10aを参照しながら、3個の金型60A~Cを同時使用して、タクトタイムが短くなる動作例を説明する。
 まずは、予備加熱装置63を備えた搬送装置62が、金型60Aをクランプして、所定場所まで上昇し、予備加熱装置63によって、所定時間にわたる金型60Aの予備加熱を開始する。
 次いで、金型60Aの予備加熱をしながら搬送装置62が、下降し、金型加工部(E部)から、パウダースラッシュ部(B部)に移動する。
 次いで、搬送装置62が、パウダースラッシュ成形/冷却処理において、既に終了した金型60Bを、パウダースラッシュ/冷却部(B/C部)から、金型加工部(E部)に搬送し、脱型処理を行う。
 この脱型処理の間に、搬送装置62が、金型加工部(E部)から、金型加熱部(A部)に、金型60Aを搬送して、所定時間の加熱処理を行う。
 また、この金型60Aに対する加熱処理の間に、搬送装置62が、金型Cをクランプして、予備加熱を開始する。
 次いで、搬送装置62が、金型60Aを、金型加熱部(A部)から取り出し、パウダースラッシュ/冷却部の一体箇所(B/C部)に搬送した後、パウダースラッシュ成形/冷却処理が順次行われる。
 その際、金型60Aを冷却する際には、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動する。
 そして、金型冷却部(金型交換部D部)に設けてある冷却装置55が、パウダースラッシュ部(B部)/金型冷却部(C部)の回転装置の直下に移動する。
 そして、金型60Aを把持するフレーム部材と係合し、金型60Aの内表面を外部に解放した状態で、金型60Aの外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けることになる。
 そして、このパウダースラッシュ成形/冷却処理の間に、搬送装置62が、金型60Cをクランプして予備加熱を行うとともに、金型加熱部(A部)に移動させ、加熱処理を開始する。
 すなわち、搬送装置62が、パウダースラッシュ部及び冷却部を含む一体箇所(B/C部)から、金型加熱部(A部)に移動し、金型60Cを搬送して、所定時間の加熱処理を行うことが好ましい。
 最後に、搬送装置62が、パウダースラッシュ成形/冷却処理が終了した金型60Aを、パウダースラッシュ部及び冷却部を含む一体箇所(B/C部)から、金型加工部(E部)に搬送し、脱型処理を行う。
 以上の説明の通り、図3(a)~(b)に示すパウダースラッシュ成形機10aにおいて、金型60A、金型60B、及び金型60Cを用いた場合、動作例1によれば、予備加熱処理を含めて、それぞれ独立した処理を同時並行で行うことができる。
 また、各工程において、必ずしも処理時間が一定とならない場合や、物理的に同時処理ができない場合があるが、そのような場合には、所定場所、例えば、加熱炉58´の上方で待機しつつ、搬送装置62に備えた予備加熱装置63によって、金型60を予備加熱しすればよい。
 その他、動作例1の場合、右から、金型加熱部(A部)、パウダースラッシュ/冷却部(B/C部)、金型交換部(D部)及び金型加工部(E部)の順に、配置してあるパウダースラッシュ成形機10を想定したが、右から、金型加熱部(A部)、金型交換部(D部)、パウダースラッシュ/冷却部(B/C部))、及び金型加工部(E部)の順に、配置してあるパウダースラッシュ成形機10であっても良い。
8.動作例2
 動作例1では、図3(a)~(b)に示すように、パウダースラッシュ成形/冷却処理が一体箇所(B/C部)で行われるパウダースラッシュ成形機10aの存在を前提として、各種所定処理を説明した。
 それに対して、動作例2では、図1及び図2に示すパウダースラッシュ成形機10、すなわち、パウダースラッシュ部(B部)と、金型冷却部(C部)とが独立的に設けてあり、かつ、パウダースラッシュ成形及び冷却処理を別々な箇所で、それぞれ別個に行うパウダースラッシュ成形機10を想定して、各種所定処理を説明することができる。
 すなわち、動作例2では、例えば、金型60Aを、搬送装置62によって、金型加熱部(A部)から取り出し、パウダースラッシュ部(B部)に搬送した後、所定時間のパウダースラッシュ成形を行うこととする。
 そして、動作例2では、例えば、金型60Aに対して、パウダースラッシュ部(B部)において、所定時間のパウダースラッシュ成形を行っている最中に、別の金型60Bに対して、別の処理を行うことができる。
 例えば、金型60Aに対して、パウダースラッシュ成形を行っている最中に、搬送装置62を用いて金型60B(パウダースラッシュ処理済)を、金型冷却部(C部)に移動させて、そこで同時期に冷却処理を行うことができる。
 一方、動作例2では、これとは別工程として、例えば、金型60Aに対して、パウダースラッシュ部(B部)において、所定時間のパウダースラッシュ成形を行った後、搬送装置62を用いて、金型冷却部(C部)に移動させて、そこで冷却処理を行うことも可能である。
 したがって、かかる動作例2では、パウダースラッシュ成形/冷却処理が一体箇所(B/C部)で行われる装置を前提とした場合の動作例1の処理時間と比較して、金型60Aに対して、パウダースラッシュ成形を行っている際の次工程への待ち時間や、あるいは、パウダースラッシュ部(B部)への冷却装置の移動等の時間を省略することができる。
 よって、100秒以下、より好ましくは、80秒以下のタクトタイムで、一つのシート状物を成形することができる。
 なお、動作例2においても、予備加熱装置付き搬送装置を用いることや、一つの搬送装置で、複数の金型を同時搬送したりできる点は、動作例1と同様である。
[実施例1]
1.シート状物の作成
(1)金型の準備工程
 図1に示す金型加工部(E部)において、所定の金型(ニッケル電鋳型、厚さ3.5mm)を準備した。
(2)予備加熱工程
 次いで、図1に示す金型加工部(E部)から、金型加熱部(A部)に、搬送装置としてのクレーンを用いて、所定の金型を移動させた。
 その際、クレーンが、金型を把持するのと同期させて、遠赤外線方式のセラミックヒータをスタートさせ、金型の外表面温度が、例えば180℃となるように、約30秒間、予備加熱を行った。
(3)加熱工程
 次いで、クレーンに取り付けた予備加熱装置を用いて、金型を搬送中に、約160℃に予備加熱した金型を、温度が約430℃に維持された本加熱炉(単位時間あたりの供給熱量:30万kcal/hr)の内部に収容して、目安として、金型の平均表面温度(A面と、B面との温度差8℃以内)が、約260℃になるように、所定流速条件下、約35秒間加熱した。
 なお、金型温度としての金型の表面温度(A面及びB面)は、上述した非接触赤外線温度計、サーモグラフィ温度計、あるいは、接触式熱電対によって、直接的に測定することができる。
 あるいは、非接触赤外線温度計等によって、金型の外表面(A面)の温度を測定し、それから、金型の素材や厚さ等を考慮して、内表面(B面)の温度を推定する、すなわち、間接的に測定することも可能である。
(4)パウダースラッシュ工程
 次いで、図1に示すように、金型加熱部(A部)からパウダースラッシュ部(B部)に、クレーンを用いて金型を移動させた。
 次いで、パウダースラッシュ成形機を用いて、約260℃に加熱された金型に対して、耐熱塩化ビニル樹脂からなる成形樹脂(平均粒径:30μmパウダー)を、30秒間パウダースラッシュ成形し、厚さ約1.3mmのシート状物を得た。
 また、金型加熱部(A部)からパウダースラッシュ/冷却部(B/C部)に移動させる約15秒の間に、クレーンに取り付けた予備加熱装置を用いて、金型温度を所定温度(約130℃)に維持する予備加熱を行ったところ、赤外線温度計を用いて、金型温度がほとんど低下しない(5℃未満)であることを確認した。
 それに対して、従来の予備加熱装置無しのクレーンを用いた場合には、金型加熱部(A部)からパウダースラッシュ部(B部)に移動させる間に、金型温度が約10~30℃低下し、パウダースラッシュ成形に影響することが別途判明している。
(5)冷却工程
 次いで、図1に示すように、パウダースラッシュ部(B部)に、クレーンを用いてシート状物を含む金型を保持したまま、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動するとともに、金型交換部(D部)に設けてある冷却装置が、パウダースラッシュ部の回転装置の直下に移動した。
 次いで、冷却装置が、金型を把持するフレーム部材と係合するとともに、シート状物が形成された金型を事実上、上向きとし、金型の内表面を外部に解放した状態で、金型の下方から、外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けた。
 すなわち、金型の外表面に対して、第1のエアー(乾燥空気)を約20秒間吹き付けることにより、シート状物の表面温度が約100℃に低下することを確認した。
 次いで、金型の外表面に対して、ミスト/シャワー冷却を約15秒間実施し、シート状物の表面温度が、約100℃から、約55℃に低下することを確認した。
 さらに、第2のエアー(乾燥空気)を約5秒間吹き付け、シート状物の表面に付着した水滴を飛散させるとともに、金型温度が、約55℃から、約50℃まで低下することを確認した。
(6)脱型工程
 次いで、図1に示すように、金型冷却部(C部)から金型加工部(E部)に、クレーンを用いてシート状物を含む金型を移動させた後、約50℃の温度に低下したシート状物を、人的作業により脱型し、実施例1のシート状物とした。
2.シート状物の評価
 得られたシート状物の任意の10か所の厚さをノギスで測定し、その平均厚さから、以下の基準に準じて、膜厚形成性を評価した。
 その結果、平均厚さが1.4mmであって、かつ、シート状物の膜厚のばらつき(最大値と、最小値の差)は、80μm未満であった。
 また、図1に示すパウダースラッシュ成形機を用いて、同一条件でシート状物の製造を繰り返したところ、10000回以上の使用によっても、グロス現象(焼き付け現象)が生じないとともに、金型におけるクラックの発生も見られないことを確認した。
[比較例1]
 比較例1においては、加熱工程における金型の表面温度を、クレーンに取り付けた予備加熱装置による予備加熱を全く行わなわなかったほかは、実施例1と同様に、シート状物を作成して、評価した。
 その結果、得られたシート状物の任意の10か所の厚さをノギスで測定し、その平均厚さから、以下の基準に準じて、膜厚形成性を評価した。その結果、平均厚さが1.2mmであって、かつ、膜厚のばらつき(最大値と、最小値の差)は、1600μm以上であった。
 また、図1に示すパウダースラッシュ成形機を用いて、同一条件でシート状物の製造を繰り返したところ、100回未満の使用によって、グロス現象(焼き付け現象)が生じたり、あるいは、金型におけるクラックが発生したりすることを確認した。
 本発明のパウダースラッシュ成形機及びパウダースラッシュ成形法によれば、本来、金型の内表面を主として加熱する加熱炉のほかに、搬送中の金型を加熱するための予備加熱装置を、搬送装置の一部に設けたことにより、本加熱炉において、金型を所定温度に加熱するまでの時間を著しく短縮化かつ均一化できるようになった。
 そして、金型に対する加熱の短縮化等に伴い、シート状物を成形する際のタクトタイムを、いわゆる3型であれば120秒以下の値とし、いわゆる4型であれば80秒以下の値まで、短縮できるようになった。
 また、金型の予備加熱によって、部分的加熱や、温度差を有する加熱も可能となって、それに伴い、金型内部の温度分布も小さくなり、特に、図9(a)に示されるように、最も窪んだ金型60の内表面位置60cにおいて、均一な部分加熱が可能となって、金型60の金属疲労(クラック発生)の発生を有効に防止できるようになった。
 したがって、得られたパウダースラッシュ成形品としてのシート状物94によれば、自動車の内装材やバンパー等として、好適に使用されることが期待される。
10、10a:パウダースラッシュ成形機、14:熱風、16:熱風吹出口、40:熱風発生装置、41:分岐配管、43:主配管、48:ダンパ、49:邪魔板、54:エネルギ回収部、55:冷却装置、58、58´:加熱炉、58a:シャッター、58b:錘、58c:加熱装置、58d:回収装置、58e:撹拌装置、58f:吹出口、60、60´、60A、60B、60C:金型、60´、60´´:交換用の金型、61:金型のフレーム部材、61a´、61a´´:交換用の金型のフレーム部材、62:搬送装置(クレーン)、62c:フック、63:予備加熱装置、63a:遠赤外線加熱方式のヒータ(セラミックヒータ)、63b:電源/モータ類、63c:フレーム部材、63d:被覆部材、64:粉体ボックス、84a、84b:型枠、88:リザーバタンク、88a:攪拌室、92:第2の樹脂(成形樹脂)、94:シート状物、98:シャワーノズル/ミストノズル、99:乾燥装置、99a、99a´:吹出口、99b:送風機、100、100´:加熱装置

Claims (8)

  1.  金型温度が所定温度以上の値になるように金型を加熱する金型加熱部と、
     成形樹脂をパウダリングしながら吹きつけて、加熱した前記金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、
     前記金型温度が所定温度以下となるように、前記金型を冷却する金型冷却部と、
     冷却したシート状物を、前記金型から脱型する金型加工部と、
     を備え、
     さらには、前記金型を、各部の間で移動させる搬送装置と、を備えてなるパウダースラッシュ成形機であって、
     前記搬送装置の一部に、前記金型の少なくとも外表面を加熱するための予備加熱装置が設けてあることを特徴とするパウダースラッシュ成形機。
  2.  前記予備加熱装置が、遠赤外線加熱方式のヒータを備えることを特徴とする請求項1に記載のパウダースラッシュ成形機。
  3.  前記予備加熱装置が、下方に開口した開口部を有しており、当該開口部を介して、前記金型を収容する被覆部材を備えていることを特徴とする請求項1又は2に記載のパウダースラッシュ成形機。
  4.  前記搬送装置が、前記金型を把持すると同時に、前記予備加熱装置にスイッチが入って、前記金型を予備加熱するための同期機構を備えることを特徴とする請求項1~3のいずれか一項に記載のパウダースラッシュ成形機。
  5.  前記パウダースラッシュ部と、前記金型冷却部と、が一体化されており、前記パウダースラッシュ部と、前記金型冷却部と、の間に、パウダースラッシュ部におけるパウダーボックスと、金型冷却部における冷却装置と、の位置交換を可能とする交換装置が設けてあることを特徴とする請求項1~4のいずれか一項に記載のパウダースラッシュ成形機。
  6.  金型温度が所定温度以上の値になるように金型を加熱する金型加熱部と、
     成形樹脂をパウダリングしながら吹きつけて、加熱した前記金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、
     前記金型温度が所定温度以下となるように、前記金型を冷却する金型冷却部と、
     冷却したシート状物を、前記金型から脱型する金型加工部と、
     を備え、
     さらには、前記金型を、各部の間で移動させる搬送装置と、を備えるとともに、前記搬送装置の一部に、前記金型の少なくとも外表面を加熱するための予備加熱装置が設けてあるパウダースラッシュ成形機を用いてなるパウダースラッシュ成形法であって、
     前記搬送装置が、前記金型を把持して、前記金型加工部から、前記金型加熱部に移送する工程と、
     前記金型加熱部において、前記金型温度が所定温度以上の値になるように少なくとも金型の内表面を加熱する工程と、
     前記搬送装置が、前記加熱された金型を把持して、前記金型加熱部から、前記パウダースラッシュ部に移送した後、前記成形樹脂をパウダリングしながら吹きつけて、加熱した前記金型の内表面に、所定厚さのシート状物を成形するする工程と、
     前記金型を冷却する冷却工程と、
     冷却したシート状物を、前記金型から脱型する工程と、を含み、
     かつ、前記搬送装置が、前記金型を把持して、前記金型加工部から、前記金型加熱部に移送する工程の間に、前記搬送装置の一部に設けてある予備加熱装置によって、前記金型の少なくとも外表面を加熱することを特徴とするパウダースラッシュ成形法。
  7.  前記搬送装置が、前記金型を移送する際に、前記金型とは異なる金型を、前記搬送装置の下方に把持して、同時に搬送することを特徴とする請求項6に記載のパウダースラッシュ成形法。
  8.  前記金型を冷却する際には、前記パウダースラッシュ終了後の粉体ボックスが、ボックス交換位置に移動するとともに、前記金型冷却部に設けてある冷却装置が、前記パウダースラッシュ部の回転装置の直下に移動して、前記金型のフレーム部材と係合し、金型の内表面を解放した状態で、金型の外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けることを特徴とする請求項6又は7に記載のパウダースラッシュ成形法。
PCT/JP2016/070935 2015-07-29 2016-07-15 パウダースラッシュ成形機及びパウダースラッシュ成形法 WO2017018240A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16830345.1A EP3284569B1 (en) 2015-07-29 2016-07-15 Powder slush molding machine and powder slush molding method
US15/568,798 US10994452B2 (en) 2015-07-29 2016-07-15 Powder slush molding machine and powder slush molding method
CN201680025320.XA CN107530921B (zh) 2015-07-29 2016-07-15 粉末搪塑成形机以及粉末搪塑成形法
JP2016554746A JP6034544B1 (ja) 2015-07-29 2016-07-15 パウダースラッシュ成形機及びパウダースラッシュ成形法
KR1020177030415A KR101947541B1 (ko) 2015-07-29 2016-07-15 파우더 슬러쉬 성형기 및 파우더 슬러쉬 성형법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149202 2015-07-29
JP2015-149202 2015-07-29

Publications (1)

Publication Number Publication Date
WO2017018240A1 true WO2017018240A1 (ja) 2017-02-02

Family

ID=57885664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070935 WO2017018240A1 (ja) 2015-07-29 2016-07-15 パウダースラッシュ成形機及びパウダースラッシュ成形法

Country Status (5)

Country Link
US (1) US10994452B2 (ja)
EP (1) EP3284569B1 (ja)
KR (1) KR101947541B1 (ja)
CN (1) CN107530921B (ja)
WO (1) WO2017018240A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193903A (zh) * 2018-02-27 2019-09-03 丰田自动车株式会社 粉末搪塑成型系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204740A1 (de) * 2019-04-03 2020-10-08 Faurecia Innenraum Systeme Gmbh Formwerkzeug und Verfahren zur Herstellung einer Formhaut für ein Fahrzeuginnenverkleidungsteil
KR102381060B1 (ko) * 2020-08-12 2022-03-31 (주)대호테크 복합 이송 유니트를 구비한 성형 장치
CN116352939B (zh) * 2023-06-02 2023-09-08 苏州聚威共混材料有限公司 一种应用搪塑工艺的热塑性弹性体的成型方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297224A (ja) * 1988-05-26 1989-11-30 Toyota Motor Corp 粉体スラッシュ成形装置
JPH02249613A (ja) * 1989-03-24 1990-10-05 Honda Motor Co Ltd 複合表皮材のスラッシュ成形方法及びその成形装置
JPH04164610A (ja) * 1990-10-29 1992-06-10 Honda Motor Co Ltd スラッシュ成形型の加熱方法
JP2002210768A (ja) * 2001-01-22 2002-07-30 Honda Motor Co Ltd 加熱炉への金型搬入・搬出装置
JP2005028773A (ja) * 2003-07-07 2005-02-03 Nakata Coating Co Ltd パウダースラッシュ成形機およびパウダースラッシュ成形方法
JP2008137272A (ja) * 2006-12-01 2008-06-19 Nakata Coating Co Ltd パウダースラッシュ成形機

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623503A (en) * 1984-11-21 1986-11-18 Ex-Cell-O Corporation Slush molding method with selective heating of mold by air jets
JP2619695B2 (ja) * 1988-08-02 1997-06-11 株式会社仲田コーティング スラッシュ成形装置
JPH066302B2 (ja) * 1989-02-23 1994-01-26 株式会社土橋機械 パウダースラッシュ成形装置
JPH03202329A (ja) 1989-12-28 1991-09-04 Nippon Rika Kogyosho:Kk 皮革の形成方法
JPH04191018A (ja) 1990-11-27 1992-07-09 Toyota Motor Corp スラッシュ成形金型の加熱方法
JP3272432B2 (ja) * 1992-12-25 2002-04-08 西川化成株式会社 スラッシュ成形金型の加熱装置
JP2000254930A (ja) * 1999-03-09 2000-09-19 Calsonic Kansei Corp パウダースラッシュ成形法による合成樹脂成形品の製造方法
EP1436131B1 (en) * 2001-10-09 2008-08-06 Collins & Aikman Automotive Company Inc. Plastic skin forming process and apparatus
AU2003213339A1 (en) * 2003-03-13 2004-09-30 Nakata Coating Co., Ltd. Powder slash molding machine and powder slash molding method
US6981862B2 (en) * 2003-09-09 2006-01-03 Toyota Technical Center Usa, Inc. Slush molding machine
KR100709452B1 (ko) * 2005-08-31 2007-04-18 현대모비스 주식회사 파우더 슬러쉬 몰딩에 의한 표피재의 성형방법
DE102008026365B4 (de) * 2008-06-02 2010-11-18 International Automotive Components Group Gmbh Vorrichtung und Verfahren zur Herstellung von Slush-Häuten
PL2402136T3 (pl) * 2009-02-25 2016-11-30 Urządzenie do formowania osadowego z proszku i sposób formowania osadowego z proszku
CN102001146A (zh) * 2009-09-03 2011-04-06 金兴汽车内饰股份有限公司 搪塑机
CN201483697U (zh) * 2009-09-03 2010-05-26 金兴汽车内饰股份有限公司 搪塑机
CN203125819U (zh) * 2013-02-18 2013-08-14 长春富维—江森自控汽车饰件系统有限公司 多工位全自动搪塑机
CN103121255A (zh) * 2013-02-18 2013-05-29 长春富维—江森自控汽车饰件系统有限公司 多工位全自动搪塑机
CN103448183B (zh) * 2013-09-17 2015-08-26 延锋汽车饰件系统有限公司 一种复合涂层表皮成型方法
WO2016031531A1 (ja) * 2014-08-25 2016-03-03 株式会社仲田コーティング 低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法
CN204172248U (zh) * 2014-09-24 2015-02-25 吉林科尔物流涂装设备有限公司 一种双色搪塑成型机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297224A (ja) * 1988-05-26 1989-11-30 Toyota Motor Corp 粉体スラッシュ成形装置
JPH02249613A (ja) * 1989-03-24 1990-10-05 Honda Motor Co Ltd 複合表皮材のスラッシュ成形方法及びその成形装置
JPH04164610A (ja) * 1990-10-29 1992-06-10 Honda Motor Co Ltd スラッシュ成形型の加熱方法
JP2002210768A (ja) * 2001-01-22 2002-07-30 Honda Motor Co Ltd 加熱炉への金型搬入・搬出装置
JP2005028773A (ja) * 2003-07-07 2005-02-03 Nakata Coating Co Ltd パウダースラッシュ成形機およびパウダースラッシュ成形方法
JP2008137272A (ja) * 2006-12-01 2008-06-19 Nakata Coating Co Ltd パウダースラッシュ成形機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193903A (zh) * 2018-02-27 2019-09-03 丰田自动车株式会社 粉末搪塑成型系统
CN110193903B (zh) * 2018-02-27 2021-06-11 丰田自动车株式会社 粉末搪塑成型系统

Also Published As

Publication number Publication date
US20180099437A1 (en) 2018-04-12
KR101947541B1 (ko) 2019-02-13
KR20170130523A (ko) 2017-11-28
EP3284569A1 (en) 2018-02-21
EP3284569A4 (en) 2018-12-26
CN107530921B (zh) 2019-08-16
CN107530921A (zh) 2018-01-02
US10994452B2 (en) 2021-05-04
EP3284569B1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
WO2017018240A1 (ja) パウダースラッシュ成形機及びパウダースラッシュ成形法
JP5905653B1 (ja) 低温加熱型パウダースラッシュ成形機およびパウダースラッシュ成形方法
JP6034544B1 (ja) パウダースラッシュ成形機及びパウダースラッシュ成形法
JP5328420B2 (ja) ワニス硬化方法及び装置
JP3696875B2 (ja) パウダースラッシュ成形機およびパウダースラッシュ成形方法
JP6644893B2 (ja) パウダースラッシュ成形機及びパウダースラッシュ成形方法
US20070022624A1 (en) Paint-drying system and method
JP6010593B2 (ja) 金型加熱装置
JPH0826760A (ja) 板ガラスの曲げ及び焼戻し方法
JPS62290510A (ja) 成形された樹脂物品を形成する方法とその装置
JP3625819B2 (ja) パウダースラッシュ成形機およびパウダースラッシュ成形方法
JP2020029018A (ja) パウダースラッシュ成形機及びパウダースラッシュ成形法
JP2005505440A (ja) プラスチック表皮成形方法
JP6952589B2 (ja) パウダースラッシュ成形機
TWM519021U (zh) 金屬板材成型系統
JP6274448B2 (ja) 焼成炉及びコーティング方法
JPH04164610A (ja) スラッシュ成形型の加熱方法
JP4760575B2 (ja) スラッシュ成形における加熱制御方法
WO2019084910A1 (zh) 一种热弯机
US11396116B2 (en) Powder slush molding system
JPH07323257A (ja) 有機被覆の短時間熱処理法
JP2528019B2 (ja) 粉体塗装システム
CN112140420A (zh) 一种汽车饰件飞边快速倒角装置及其倒角方法
JP2016083589A (ja) コーティング剤の塗布装置、および塗布方法
JPWO2004080686A1 (ja) パウダースラッシュ成形機およびパウダースラッシュ成形方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016554746

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177030415

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE