WO2017018208A1 - 吸収式ヒートポンプ装置 - Google Patents

吸収式ヒートポンプ装置 Download PDF

Info

Publication number
WO2017018208A1
WO2017018208A1 PCT/JP2016/070596 JP2016070596W WO2017018208A1 WO 2017018208 A1 WO2017018208 A1 WO 2017018208A1 JP 2016070596 W JP2016070596 W JP 2016070596W WO 2017018208 A1 WO2017018208 A1 WO 2017018208A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption
refrigerant
heat
liquid
evaporator
Prior art date
Application number
PCT/JP2016/070596
Other languages
English (en)
French (fr)
Inventor
修 坪内
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201680038294.4A priority Critical patent/CN107735627B/zh
Priority to US15/580,822 priority patent/US10619893B2/en
Priority to EP16830313.9A priority patent/EP3306229B1/en
Publication of WO2017018208A1 publication Critical patent/WO2017018208A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/14Sorption machines, plants or systems, operating continuously, e.g. absorption type using osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • B60H1/32011Cooling devices using absorption or adsorption using absorption, e.g. using Li-Br and water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B33/00Boilers; Analysers; Rectifiers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/004Sorption machines, plants or systems, operating continuously, e.g. absorption type of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an absorption heat pump device.
  • an absorption heat pump apparatus using an absorbing solution capable of absorbing vapor during refrigerant evaporation is known.
  • Such an absorption heat pump apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 1-98866.
  • JP-A-1-98866 discloses an absorption cold / hot heat generator (absorption heat pump device) provided with a concentrator (generator), a condenser, an evaporator and an absorber.
  • the absorber is communicated with the evaporator through a vapor passage, and the hydrophobic porous membrane and the heat transfer body ( A module comprising a heat transfer surface for heat exchange).
  • the hydrophobic porous membrane is made of a material that allows only gas to permeate but not liquid substance, and is configured to be able to form a solution (absorbing liquid) passage.
  • the absorber the refrigerant vapor that has permeated the hydrophobic porous membrane through the vapor passage from the evaporator with respect to the absorbing liquid supplied into the module from the inlet portion at one end of the hydrophobic porous membrane. Is absorbed, and the absorbed heat is transferred to the cooling water side through the heat transfer body.
  • the diluted absorbent is configured to be discharged from the outlet of the other end of the hydrophobic porous membrane through the module, stored in the bottom of the absorber, and then discharged to the concentrator (generator). ing.
  • the absorption liquid cooled by absorbing the refrigerant vapor exits the module and is stored at the bottom of the absorber. Stored in the bottom of the absorber due to tilting or shaking of the vehicle body when mounted on a vehicle, etc., when an air-conditioning cold / heat generator (absorption heat pump device) is installed in a vehicle, etc. There is a possibility that the liquid flows back to the evaporator through the vapor passage and enters the refrigerant in the evaporator. For this reason, there is a problem that the concentration control of the absorption liquid which is the key of the absorption refrigeration cycle cannot be performed properly, and the performance as the absorption heat pump apparatus is deteriorated.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to suppress a decrease in the performance of the absorption refrigeration cycle even when mounted on a vehicle. It is to provide a possible absorption heat pump device.
  • an absorption heat pump apparatus is an absorption heat pump apparatus that absorbs refrigerant vapor with an absorbing liquid, and an evaporator that evaporates the refrigerant and an evaporator that evaporates
  • An absorber that absorbs the absorbed refrigerant vapor into the absorption liquid, and the absorber covers the heat exchange part that removes the heat absorbed by the refrigerant vapor into the absorption liquid and the heat exchange part that the absorption liquid contacts.
  • a membrane member formed so as to allow the refrigerant vapor to pass therethrough without allowing the absorption liquid to pass therethrough.
  • the absorption heat pump device is disposed in a state of covering the heat exchanging portion in contact with the absorption liquid, and the refrigerant vapor is not transmitted through the absorption liquid.
  • a membrane member formed to be permeable is provided in the absorber.
  • the entire absorber can be configured by covering the heat exchange part with the membrane member, so that the absorption liquid (dilute liquid) in which the refrigerant vapor has passed through the membrane member and has been absorbed by the absorption liquid (concentrated liquid) ) Can be discharged to the outside of the absorber from a portion other than the membrane member while being stored inside the membrane member.
  • the absorption heat pump device of the present invention it is possible to suppress the absorption liquid from passing through the membrane member and flowing back directly to the evaporator. Therefore, even when the absorption heat pump device of the present invention is mounted on a vehicle or the like, the absorption liquid (dilute liquid) is prevented from flowing back to the evaporator due to inclination or shaking of the vehicle body. In the case of mounting in the case, it is possible to suppress the performance of the absorption refrigeration cycle from being deteriorated.
  • the absorption liquid is stored in the inner bottom portion of the membrane member.
  • steam can be stored in the inner bottom part of the film
  • the absorption heat pump device further includes a spin coating unit that coats the absorption liquid supplied to the absorber along the outer surface of the heat exchange unit, and the spin coating unit includes the spin coating unit.
  • the refrigerant liquid that has passed through the membrane member is absorbed by the absorbing liquid applied along the outer surface.
  • coated the absorption liquid to the outer surface of the heat exchange part by the rotation application part can be efficiently absorbed by the absorption liquid.
  • the absorbing liquid diluted by absorbing the refrigerant vapor on the outer surface of the heat exchange part can be scraped down and stored on the inner bottom part of the membrane member by the rotary application part.
  • the refrigerant vapor is continuously absorbed by the absorption liquid (concentrated liquid) newly supplied to the outer surface. Therefore, the performance of the absorber can be continuously maintained.
  • the heat exchanging portion has a structure in which flat plate heat exchangers through which the heat exchanging fluid flows are stacked in the horizontal direction.
  • the absorption liquid is supplied to the area inside the membrane member via the absorption liquid supply path extending along the direction in which the heat exchangers are stacked inside the membrane member, and the refrigerant vapor is absorbed.
  • the absorbing liquid stored in the inner bottom portion of the membrane member is configured to be discharged to the outside through an absorbing liquid discharge path extending along the direction in which the heat exchangers are stacked.
  • membrane member is efficiently guide
  • the heat exchanging unit has a structure in which flat plate heat exchangers through which a heat exchanging fluid circulates are stacked along a horizontal direction,
  • the heat exchange unit also serves as a support member for supporting the membrane member that covers the heat exchange unit so as to surround it.
  • the heat exchange unit utilizes the rigidity of the heat exchange unit in which flat plate heat exchangers are stacked.
  • the membrane member can be easily held around. Thereby, even if it is a case where an absorber receives a vibration from the vehicle body side, it can prevent easily that a film
  • the evaporator includes a refrigerant storage section that stores the refrigerant before evaporation, and the absorber has a refrigerant in the vicinity of the lowermost portion of the membrane member inside the evaporator. It is comprised so that it may arrange
  • coolant storage part utilizes the surface area of a film
  • the performance of an absorber can be maintained high.
  • the absorption heat pump device can be reduced in size by the amount of the absorber provided inside the evaporator.
  • the refrigerant vapor evaporated by the evaporator permeates the outer surface other than the inner bottom portion of the membrane member in which the absorption liquid is stored and passes through the outer surface of the absorber. It is configured to be supplied inside.
  • the refrigerant vapor from the evaporator can be taken into the absorber by making maximum use of the outer surface of the membrane member exposed to the atmosphere filled with the refrigerant vapor.
  • the absorber including the membrane member is provided such that the heat exchanging portion protrudes from the inner wall surface of the evaporator, and the membrane member includes the heat exchanging portion of the heat exchanging portion. With the periphery sealed, the heat exchanging part is fixed to the inner wall surface of the evaporator.
  • the heat exchanging part can be constituted in a cantilever structure with respect to the inner wall surface of the evaporator, so that the whole can be covered by easily covering the heat exchanging part with the membrane member.
  • the cooling water supply pipe, the cooling water discharge pipe, the concentrated liquid supply pipe, and the dilute liquid discharge pipe can be centrally arranged on the inner wall surface portion of the root portion to which the heat exchange unit is fixed.
  • the end of the membrane member covered by the heat exchange part can be joined circumferentially to the inner wall surface of the evaporator without being affected by the kind.
  • An absorption heat pump apparatus is an absorption heat pump apparatus that absorbs refrigerant vapor with an absorbing liquid, and an evaporator that evaporates the refrigerant and the refrigerant vapor evaporated by the evaporator are absorbed into the absorbing liquid. And the absorber or the evaporator surrounds the heat exchange part that removes the heat absorbed by the refrigerant vapor into the absorption liquid or evaporates the refrigerant, and the heat exchange part in contact with the absorption liquid or the refrigerant. And a membrane member formed so as to allow the refrigerant vapor to pass through without passing through the absorbing liquid or the refrigerant.
  • the entire absorber can be configured so as to surround the heat exchanging portion with the membrane member. Permeation and direct backflow to the evaporator can be suppressed.
  • the entire evaporator can be configured by covering the heat exchange portion with the membrane member, and the refrigerant vapor (low temperature water vapor) after evaporation in a state where the refrigerant (liquid refrigerant) is stored inside the membrane member. Can be supplied to the absorber through the membrane member. Thereby, it can suppress that the refrigerant
  • the absorption liquid (dilute liquid) in the absorber flows back to the evaporator or evaporates due to inclination or shaking of the vehicle body. Since the refrigerant (liquid refrigerant) in the container is suppressed from being mixed into the absorber, it is possible to suppress the performance of the absorption refrigeration cycle from being deteriorated even when mounted in a vehicle.
  • the absorption heat pump apparatus 100 In the absorption heat pump apparatus 100 according to the first embodiment of the present invention, water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid are used.
  • the absorption heat pump device 100 is mounted on a vehicle (not shown) such as a passenger car and a bus provided with an engine 90 (internal combustion engine) and is applied to an air conditioning system in the vehicle.
  • the absorption heat pump apparatus 100 includes a regenerator 10 (within a two-dot chain line), a condenser 20, an evaporator 30, and an absorber 40.
  • the regenerator 10 has a role of separating refrigerant vapor (high temperature steam) from the absorbing liquid.
  • the condenser 20 has a role of condensing (liquefying) the refrigerant vapor during the cooling operation.
  • the evaporator 30 has a role of evaporating (vaporizing) the refrigerant that has become condensed water under cooling and low pressure conditions during the cooling operation.
  • the absorber 40 has a role of absorbing the refrigerant vapor (low-temperature steam) vaporized by the evaporator 30 in the absorbing liquid supplied in a concentrated liquid state.
  • the regenerator 10 includes a heating unit 11 that heats the absorption liquid, and a gas-liquid separation unit 12 that separates the refrigerant vapor from the absorption liquid heated by the heating unit 11.
  • heat exchange is performed between the high-temperature exhaust gas flowing through the exhaust pipe 91 routed from the engine 90 and the absorbing liquid.
  • the exhaust pipe 91 includes an exhaust heat supply path 91a that passes through the heating unit 11 and a bypass 91b that does not pass through the heating unit 11, and a valve 92 is provided in the exhaust heat supply path 91a.
  • the valve 92 is opened during the cooling operation and the heating operation, so that a part of the exhaust gas discharged from the engine 90 is circulated to the heating unit 11 via the exhaust heat supply path 91a. Yes.
  • the absorption heat pump apparatus 100 includes a circulation passage 51 composed of absorption liquid circulation paths 51a and 51b, a refrigerant vapor passage 52 and 53, a refrigerant passage 54, absorption liquid passages 55 and 56, and refrigerant supply paths 57 and 58.
  • the circulation passage 51 has a role of circulating the absorption liquid between the heating unit 11 and the gas-liquid separation unit 12, and a pump 71 is provided in the absorption liquid circulation path 51a.
  • the refrigerant vapor passage 52 has a role of supplying the refrigerant vapor from the gas-liquid separator 12 to the condenser 20 during the cooling operation.
  • the refrigerant vapor passage 53 has a role of causing the refrigerant vapor separated by the gas-liquid separator 12 during the heating operation to flow into the evaporator 30.
  • a connection portion between the refrigerant vapor passage 52 and the refrigerant vapor passage 53 is a three-way valve capable of switching between opening the refrigerant vapor passage 52 during the cooling operation and opening the refrigerant vapor passage 53 during the heating operation. 64 is provided.
  • the refrigerant passage 54 is provided with a valve 65.
  • the absorption liquid passage 55 has a role of supplying the absorption liquid (concentrated liquid) to the absorber 40 according to the opening / closing operation of the valve 61.
  • the absorption liquid passage 56 has a role of supplying the circulation liquid 51 with an absorption liquid (dilute liquid) stored in a state where the refrigerant vapor is absorbed in the absorber 40 when the pump 72 and the valve 62 are interlocked.
  • the refrigerant supply path 57 has a role of supplying the refrigerant (water) stored in the evaporator 30 to the circulation path 51 by interlocking the pump 73 and the valve 63 during the heating operation.
  • the refrigerant supply path 58 has a role of supplying the condensed water stored in the condenser 20 directly to the absorber 40 in accordance with the opening / closing operation of the valve 67 for the purpose of preventing crystallization. Further, in the heat exchanger 59, heat exchange between the absorbing liquids flowing through the absorbing liquid passage 55 and the absorbing liquid passage 56 is performed.
  • the absorption heat pump apparatus 100 includes a cooling water circuit 80 that is driven during cooling operation.
  • the cooling water circuit 80 is used for cooling the refrigerant vapor in the condenser 20 and removing the absorbed heat generated when the absorber 40 absorbs the refrigerant into the absorbing liquid.
  • the cooling water circuit 80 is disposed in the cooling water circulation path 81 through which the cooling water (an example of a heat exchange fluid) flows, the pump 82, the heat exchange unit 83 disposed in the condenser 20, and the absorber 40.
  • the heat exchange part 42 (refer FIG. 3) made and the thermal radiation part 84 are included.
  • the cooling water flowing through the heat exchanging section 84a is cooled (heat radiated) by the air (outside air) blown by the blower 84b.
  • the evaporator 30 includes a container 31 that holds the inside in a vacuum state of 1 kPa or less at an absolute pressure, and a heat exchange unit 32 and an injector 33 that are installed inside the container 31. Further, a pump 35 is provided outside the evaporator 30 in a passage 34 that connects the refrigerant reservoir 31 a and the injector 33. As a result, the refrigerant (water) in the refrigerant storage unit 31 a is pumped up by the pump 35 and sprayed from the injector 33 toward the heat exchange unit 32.
  • the suction air in the vehicle circulated by the blower 39 is cooled when passing through the heat exchanging unit 32 due to the latent heat of evaporation obtained when the sprayed refrigerant (water) becomes the refrigerant vapor (low-temperature steam). Is done.
  • the absorber 40 is installed inside the container 31 in the evaporator 30.
  • the structure of the absorber 40 installed in the evaporator 30 maintained in a vacuum state (1 kPa or less in absolute pressure) will be described in detail.
  • the absorber 40 includes a heat exchanging unit 42 integrally including a plurality of (five) heat exchangers 41 having a hollow disk shape with a flat vertical cross section, and adjacent heat exchangers 41. And a spin coater 43 disposed in the area between them.
  • the heat exchangers 41 are stacked with equal pitch intervals along the horizontal direction (X-axis direction).
  • the heat exchange part 42 protrudes from the inner wall face 31c of the side wall part 31b of the container 31 of the evaporator 30 in the horizontal direction (arrow X2 direction in the horizontal direction) as a whole and is exposed to the inside of the container 31 (see FIG. 2). It is installed as follows.
  • the heat exchangers 41 are connected to each other by a cooling water supply pipe 42a and a cooling water discharge pipe 42b at the top portion on the Z1 side and the lower bottom portion on the Z2 side.
  • a cooling water supply pipe 42a and a cooling water discharge pipe 42b at the top portion on the Z1 side and the lower bottom portion on the Z2 side.
  • FIG. 3 in order to show the internal structure of the absorber 40, the heat exchanger 41 and the rotation application unit 43 are partially omitted. That is, the overall structure of the absorber 40 is as shown in FIGS.
  • each heat exchanger 41 has the penetration part 41a which the rotating shaft 47 which rotates the rotation application part 43 penetrates a center part (center part).
  • the through-portion 41a does not penetrate the heat transfer wall of the heat exchanger 41 in and out, and the internal flow path is also sealed by the heat transfer wall in the through-portion 41a.
  • the cooling water supply pipe 42a and the cooling water discharge pipe 42b penetrate the inner wall surface 31c and are connected to an external cooling water circulation path 81 (see FIG. 1). Thereby, the cooling water flowing in from the cooling water supply pipe 42a is distributed to each heat exchanger 41 of the heat exchanging section 42, and flows in the heat exchanger 41 from the Z1 side to the Z2 side to the cooling water discharge pipe 42b. Collected and returned to the cooling water circulation path 81.
  • the heat exchanging section 42 has a concentrated liquid supply pipe 44a (an example of an absorbing liquid supply path) for supplying an absorbing liquid (concentrated liquid), and an absorbing liquid.
  • a dilute liquid discharge pipe 44b (an example of an absorbing liquid discharge path) for discharging (dilute liquid) is provided.
  • the concentrated liquid supply pipe 44a protrudes laterally (in the direction of the arrow X2) from the inner wall surface 31c.
  • a portion of the concentrated liquid supply port 44c branched from the concentrated liquid supply pipe 44a in the direction of the arrow Y2 is inserted into a corresponding U-shaped cutout portion 41c of each heat exchanger 41.
  • the heat exchanger 41 and the concentrated liquid supply port 44c are isolated by a wall portion on the concentrated liquid supply pipe 44a side.
  • a plurality of holes 44e are formed in the outer surface 44d of the concentrated liquid supply port 44c.
  • the outer surface 44d is smoothly connected to the outer surface 41b of the heat exchanger 41.
  • the concentrated liquid supply pipe 44a and the diluted liquid discharge pipe 44b penetrate the inner wall surface 31c and are connected to external absorption liquid passages 55 and 56 (see FIG. 1), respectively. Therefore, the heat exchanging portion 42 is attached to the inner wall surface 31c with a cantilever structure toward the inside.
  • the absorber 40 is configured by providing a membrane member 45 that covers the structure in which the tube 44b is integrated.
  • the membrane member 45 is made of a material that can transmit the refrigerant vapor from the evaporator 30 without allowing the absorption liquid to pass through the container 31. Examples of the membrane member 45 include a resin-made hydrophobic porous membrane.
  • the membrane member 45 is covered in the direction of the arrow X1 from the end of the heat exchanging portion 42 on the X2 side, and the circumferential shape (annular) of the membrane member 45 on the X1 side Is fixed (joined) to the inner wall surface 31c of the evaporator 30 in a circumferential shape.
  • the end portion 45c on the X1 side of the film member 45 is formed of a resin material in a bulk shape to constitute a gasket structure, and the end portion 45c is welded circumferentially to the inner wall surface 31c.
  • the entire heat exchanging portion 42 also serves as a support member (framework) for supporting the membrane member 45.
  • the heat exchange part 42 which consists of a material which cannot maintain a self shape
  • the film member 45 is easily held around the heat exchanging portion 42 by utilizing the rigidity of the heat exchanger 42. Therefore, for the convenience of illustration, the outer shape of the membrane member 45 is illustrated to resemble a cylindrical shape.
  • the membrane member 45 includes the heat exchange unit 42, the rotation application unit 43, the cooling water supply pipe 42a, the cooling member.
  • the water discharge pipe 42b, the concentrated liquid supply pipe 44a and the dilute liquid discharge pipe 44b are covered so as to be in close contact with the outer surface of the integrated structure, and the end portion 45c is welded circumferentially to the inner wall surface 31c. Yes.
  • the absorbing liquid (mixed liquid of concentrated liquid and dilute liquid) is configured to be stored in the inner bottom portion 45 a of the membrane member 45.
  • the refrigerant vapor evaporated in the evaporator 30 passes through the outer surface 45b other than the inner bottom portion 45a of the film member 45 in which the absorption liquid is stored, and is supplied to the absorber 40.
  • the entire absorber 40 is configured so that the membrane member 45 surrounds the heat exchanging portion 42, so that the refrigerant vapor passes through the outer surface 45 b and is absorbed by the concentrated liquid on the outer surface 41 b of the heat exchanger 41.
  • the diluted liquid after being stored is stored in the inner bottom portion 45 a inside the membrane member 45.
  • the dilute liquid stored in the inner bottom portion 45a is directly discharged to the outside of the absorber 40 (the absorbent liquid passage 56 (see FIG. 1)) via the dilute liquid discharge pipe 44b. .
  • the concentrated liquid supply pipe 44a and the diluted liquid discharge pipe 44b are arranged along the stacking direction (lateral direction) of the heat exchanger 41, supply of the absorbing liquid to the heat exchange unit 42 covered with the membrane member 45
  • the mouth (the connection portion with the absorption liquid passage 55) and the discharge port (the connection portion with the absorption liquid passage 56) are concentrated on one side in the lateral direction (X1 side of the side wall portion 31b). This also prevents the heat exchanging part 42 from being connected to the outside of the container 31 except for the supply and discharge ports of the absorbing liquid. Therefore, the heat exchanging part 42 is covered with the membrane member 45 from the X2 side in the container 31. It can be easily covered.
  • the sealing portion (end portion 45c) with respect to the inner wall surface 31c of the membrane member 45 is limited to one region, the sealing property between the inside and the outside of the absorber 40 is improved, and the absorbing liquid is inside the absorber 40. It is configured so as to be reliably stored in (the inner bottom 45a of the membrane member 45).
  • the spin coating unit 43 has a role of coating the absorbent (concentrated liquid) supplied to the absorber 40 along the outer surface 41b of the heat exchange unit 42.
  • the absorber 40 includes a motor 46 (shown by a broken line) that rotates the rotation application unit 43 around the rotation axis 150 in the arrow R direction.
  • a rotation shaft 47 (shown by a broken line) is connected to the motor 46, and the rotation shaft 47 extends from the X1 side to the X2 side via the through portion 41a of each heat exchanger 41.
  • the rotation application unit 43 has a pair of brush members 43a around the rotation shaft 47, and each is attached to the rotation shaft 47 at intervals of 180 °.
  • the brush member 43a includes a plurality of arm portions 43b extending radially outward from the rotation shaft 47, and a plurality of brush members 43a extending in the X1 direction and the X2 direction toward the outer surface 41b of the heat exchanger 41 with respect to the arm portions 43b. Brush 43c.
  • the absorption liquid (concentrated liquid) supplied from the gas-liquid separator 12 (see FIG. 1) is supplied to the outer surface 41b of the heat exchanger 41, and the motor 46 is driven.
  • the brush member 43a is configured to rotate in the direction of arrow R along the outer surface 41b.
  • membrane member 45 by the concentrated liquid apply
  • coated along the outer surface 41b by the rotation application part 43 is comprised easily. More specifically, when the brush member 43a is rotationally moved in the direction of the arrow R along the outer surface 41b, the absorption liquid (the refrigerant is absorbed and diluted with the cooling water remaining on the outer surface 41b).
  • the concentrated liquid (absorbing liquid with a small refrigerant absorption amount) supplied to the brush member 43a is newly added to the outer surface 41b from which the heat-exchanged diluted liquid is removed while removing the diluted liquid) from the outer surface 41b.
  • the absorption heat generated when the refrigerant vapor is absorbed by the applied absorption liquid is taken away by the cooling water via the heat exchanger 41. Therefore, since the temperature of the applied absorbing liquid is kept at a low temperature, further absorption of the refrigerant vapor into the applied absorbing liquid is promoted.
  • the absorbing liquid becomes a dilute liquid and is removed from the outer surface 41b by the brush member 43a and falls to the inner bottom portion 45a of the film member 45.
  • membrane member 45 is the upper surface (the Z2 side) of the refrigerant
  • a housing 36 is attached to the outer surface of the side wall 31b on the X1 side of the container 31.
  • the motor 46 is fixed in the housing 36 via a fixing member 37 (shown by a broken line).
  • a rotating shaft 47 connected to the motor 46 extends through the side wall 31b of the container 31 in the direction of the arrow X2 (horizontal direction) and is rotatably inserted through the through part 41a of the heat exchanger 41. .
  • the end 47a of the rotating shaft 47 is rotatably supported by the penetrating portion 41a of the heat exchanger 41 closest to the X2 side.
  • the absorption heat pump apparatus 100 is operated as follows.
  • the three-way valve 64 is switched to the side in which the gas-liquid separator 12 and the condenser 20 are communicated (the refrigerant vapor flows through the refrigerant vapor passage 52), and the refrigerant vapor condensed in the condenser 20 is transferred to the evaporator 30.
  • the air in the vehicle is cooled via the heat exchanging unit 32.
  • the refrigerant vapor evaporated in the heat exchanging section 32 in the container 31 is sucked into the absorber 40 through the membrane member 45.
  • the refrigerant vapor is absorbed with respect to the absorbing liquid (concentrated liquid) supplied to the outer surface 41 b of the heat exchanger 41, becomes a diluted liquid, and is stored in the inner bottom portion 45 a of the membrane member 45. Further, the dilute liquid stored in the inner bottom portion 45 a flows through the dilute liquid discharge pipe 44 b and the absorbing liquid passage 55 and is returned to the circulation passage 51.
  • the membrane member 45 that is disposed so as to surround the heat exchanging portion 42 that is in contact with the absorbing liquid and is formed to be able to transmit the refrigerant vapor without transmitting the absorbing liquid is used as the absorber. 40.
  • the entire absorber 40 can be configured by covering the heat exchanging portion 42 with the membrane member 45, so that the absorption of the refrigerant vapor through the membrane member 45 and absorbed by the absorbing liquid (concentrated liquid).
  • the liquid (dilute liquid) can be discharged to the outside of the absorber 40 from a portion other than the membrane member 45 while being stored inside the membrane member 45. That is, it is possible to suppress the absorption liquid from passing through the membrane member and flowing back to the evaporator 30 directly.
  • the absorption heat pump device 100 is mounted on a vehicle or the like, the backflow of the absorbing liquid (dilute liquid) to the evaporator 30 due to the inclination or shaking of the vehicle body when mounted on the vehicle is suppressed. Therefore, it is possible to suppress the performance of the absorption refrigeration cycle from being lowered even when mounted on a vehicle.
  • the absorbing liquid is stored in the inner bottom portion 45a of the membrane member 45.
  • the refrigerant vapor is stored in the inner bottom portion 45a of the film member 45 that covers the heat exchanging portion 42 so that the absorption liquid (dilute liquid) absorbed in the absorption liquid (concentrated liquid) in the absorber 40 is surrounded. Therefore, the stored absorption liquid (dilute liquid) can be discharged directly from the portion other than the membrane member 45 to the absorption liquid passage 56 outside the absorber 40 without being mixed into the evaporator 30.
  • membrane is formed in the absorption liquid apply
  • the refrigerant vapor transmitted through the member 45 is absorbed.
  • coated the absorption liquid (concentrated liquid) to the outer surface 41b of the heat exchanger 41 by the rotation application part 43 can be absorbed into an absorption liquid efficiently.
  • the absorbing liquid diluted with the refrigerant vapor absorbed by the outer surface 41 b of the heat exchanger 41 can be scraped down and stored on the inner bottom portion 45 a of the membrane member 45 by the rotary application portion 43.
  • the refrigerant vapor is continuously applied to the absorption liquid (concentrated liquid) newly supplied to the outer surface 41b. Therefore, the performance of the absorber 40 can be continuously maintained.
  • the heat exchanging unit 42 has a structure in which five flat plate heat exchangers 41 through which cooling water flows are stacked along the horizontal direction (X-axis direction).
  • the absorbent (concentrated liquid) is supplied to the region inside the membrane member 45 through the concentrated liquid supply pipe 44a extending along the direction in which the heat exchanger 41 is laminated inside the membrane member 45.
  • the refrigerant vapor is absorbed and the absorption liquid stored in the inner bottom portion 45a of the membrane member 45 is discharged to the outside through the dilute liquid discharge pipe 44b extending along the direction in which the heat exchanger 41 is stacked. To do.
  • the refrigerant vapor taken in through the membrane member 45 is transferred to the outer surface 41b (transmission of each heat exchanger 41). It can be efficiently guided to the hot surface) to promote absorption into the absorbent. Then, it is possible to easily supply the absorbing liquid (concentrated liquid) and discharge the absorbing liquid (dilute liquid) through the concentrated liquid supply pipe 44a and the diluted liquid discharge pipe 44b extending along the stacking direction of the heat exchanger 41. it can. Also.
  • the entire heat exchanging portion 42 can be easily covered by covering the heat exchanger 41 stacked along the horizontal direction with the film member 45 in the stacking direction.
  • the heat exchange part 42 in which the heat exchangers 41 are stacked along the X-axis direction also serves as a support member that supports the film member 45 that covers the heat exchange part 42.
  • the heat exchanging portion 42 is utilized by utilizing the rigidity of the heat exchanging portion 42 on which the flat plate heat exchanger 41 is laminated.
  • the membrane member 45 can be easily held around. Thereby, even when the absorber 40 receives vibration from the vehicle body side, it is possible to easily prevent the membrane member 45 from falling off the heat exchange part 42.
  • the absorber 40 is configured so that the lowermost vicinity of the film member 45 is disposed above the upper surface of the refrigerant reservoir 31a in the evaporator 30.
  • the membrane member 45 does not contact the refrigerant storage portion 31a (liquid refrigerant)
  • the refrigerant vapor evaporated from the refrigerant storage portion 31a is utilized on the heat exchange portion 42 side (inside Direction) can be transmitted (captured).
  • the performance of the absorber 40 can be maintained high.
  • the absorption heat pump apparatus 100 can be reduced in size by the amount of the absorber 40 provided in the evaporator 30.
  • the refrigerant vapor evaporated by the evaporator 30 is supplied to the inside of the absorber 40 through the outer surface 45b other than the inner bottom portion 45a of the membrane member 45 in which the absorbing liquid is stored.
  • steam from the evaporator 30 can be taken in in the inside of the absorber 40 using the outer surface 45b of the film
  • the heat exchange part 42 is provided so that it may protrude from the inner wall face 31c of the evaporator 30, and the heat exchange part 42 protrudes in the state which the membrane member 45 sealed the circumference
  • the absorber 40 is configured to be fixed to the inner wall surface 31c of the vessel 30.
  • the cooling water supply pipe 42a, the cooling water discharge pipe 42b, the concentrated liquid supply pipe 44a, and the dilute liquid discharge pipe 44b may be intensively arranged on the inner wall surface 31c of the root portion to which the heat exchanging section 42 is fixed. Therefore, the end of the film member 45 covered with the heat exchange part 42 can be joined to the inner wall surface 31c of the evaporator 30 in a circumferential manner without being affected by these pipes.
  • the second embodiment will be described with reference to FIG. 1 and FIGS.
  • the absorption heat pump apparatus 200 is configured by applying the same configuration as the absorber 40 to the evaporator 230 in addition to the absorber 40. To do.
  • an evaporator 230 and an absorber 40 are installed inside a container 31 as shown in FIG. Since the absorber 40 is the same as that of the first embodiment, the description thereof is omitted. On the other hand, an evaporator 230 having the same structure as the absorber 40 is provided in place of the evaporator 30 (see FIG. 1) of the first embodiment. Hereinafter, the structure of the evaporator 230 will be described with the reference numeral different from that of the absorber 40.
  • the evaporator 230 includes a heat exchanging unit 232 including five heat exchangers 231 and a spin coating unit 233 arranged in a region between the heat exchangers 231.
  • the heat exchanging unit 232 protrudes from the inner wall surface 31 c of the container 31 in the arrow X2 direction.
  • the heat exchange part 232 is mutually connected by the water piping 232a and 232b for an air conditioning connected to each heat exchanger 231 in the upper part and the lower part.
  • the air pipes 232a and 232b for air conditioning are connected to a heat exchanger (not shown).
  • the heat exchange unit 232 has a refrigerant supply pipe 234a for supplying a refrigerant (condensed water) and a refrigerant for discharging the refrigerant (returning to the circulation passage 51 during heating operation).
  • a refrigerant discharge pipe 234b is provided. The refrigerant supply pipe 234a and the refrigerant discharge pipe 234b penetrate the inner wall surface 31c and are connected to external refrigerant passages 54 and 57 (see FIG. 1).
  • the evaporator 230 is configured by providing a film member 235 that covers the outer periphery of the film.
  • the membrane member 235 is made of a resin-made hydrophobic porous membrane or the like, and the end portion 235c on the X1 side is formed in a bulk shape with a resin material to constitute a gasket structure.
  • the end portion 235c is welded circumferentially to the inner wall surface 31c.
  • the refrigerant (condensed water) condensed in the condenser 20 flows through the refrigerant passage 54 and the refrigerant supply pipe 234a and is supplied to the outer surface 231b of the heat exchanger 231.
  • coolant is thinly apply
  • the refrigerant evaporates while taking heat (evaporation latent heat) from the circulating air for air conditioning in the heat exchanger 231.
  • the evaporated refrigerant vapor (low temperature water vapor) passes through the outer surface 235b other than the inner bottom portion 235a of the membrane member 235 outward and is released to the external space of the evaporator 230 in the container 31. That is, the evaporator 230 is not provided with a refrigerant path, a pump, or the like that connects the refrigerant injector or the refrigerant reservoir to the injector.
  • the refrigerant vapor (low-temperature water vapor) released to the outside space of the membrane member 235 immediately passes inward through the membrane member 45 in the absorber 40 adjacent to the evaporator 230 and is supplied to the absorber 40. Further, the refrigerant vapor is cooled and diluted in the heat exchanging portion 42 and stored in the inner bottom portion 45a. In this way, a cooling cycle is formed.
  • the other structure of the absorption heat pump apparatus 200 by 2nd Embodiment is the same as that of the said 1st Embodiment.
  • the refrigerant (water) is disposed so as to surround the heat exchanging part 232 that contacts the refrigerant (water), and the refrigerant vapor is transmitted without passing through the refrigerant (water).
  • the membrane member 235 formed in a possible manner is provided in the evaporator 230. Accordingly, the entire evaporator 230 can be configured by covering the heat exchanging part 232 with the membrane member 235, and the refrigerant vapor after evaporation in a state where the refrigerant (water) is stored inside the membrane member 235. (Low-temperature steam) can be supplied to the absorber 40 through the membrane member 235 outwardly.
  • the heat exchange unit 42 (232) is configured using the hollow disk-shaped heat exchanger 41 (231), but the present invention is not limited thereto.
  • a plurality of heat transfer tubes may be arranged to constitute the heat exchange unit.
  • the number of heat exchangers 41 may be other than five.
  • the circulating water for air conditioning is circulated through the heat exchanger 231 of the evaporator 230, but the present invention is not limited to this.
  • the air for air conditioning is directly circulated inside the heat exchanging unit 232, whereby the refrigerant (water) and the air for air conditioning are passed through the evaporator 230. Heat exchange may be performed.
  • the absorption heat pump device of the present invention is applied to an air conditioning system for vehicles such as passenger cars, buses, and trucks, but the present invention is not limited to this.
  • the present invention can be widely applied not only to vehicles (moving bodies) but also to stationary absorption heat pump devices for air conditioning such as buildings, factories, and commercial facilities.
  • the absorption liquid is heated using the heat of the exhaust gas of the engine 90, but the present invention is not limited to this.
  • the absorption heat pump device of the present invention may be applied for air conditioning of a hybrid vehicle or an electric vehicle that is driven by driving an electric motor.
  • the absorption heat pump of the present invention is used for air conditioning of a passenger car equipped with a fuel cell system by utilizing, for example, a battery or motor exhaust heat of an electric vehicle or exhaust heat generated during power generation in a fuel cell as a heat source for heating the absorbing liquid.
  • An apparatus may be applied.
  • water and an aqueous lithium bromide solution are used as the refrigerant and the absorbing solution.
  • the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

車両搭載時の車体の傾斜や揺れなどに起因して、吸収液の濃度制御が適切に行えなくなり、吸収式ヒートポンプ装置としての性能が低下することを抑制することが可能な吸収式ヒートポンプ装置を提供する。 吸収液により冷媒蒸気を吸収する吸収式ヒートポンプ装置(100)は、冷媒を蒸発させる蒸発器(30)と、蒸発器で蒸発した冷媒蒸気を吸収液に吸収させる吸収器(40)とを備える。吸収器は、冷媒蒸気の吸収液への吸収熱を除去する熱交換部(42)と、吸収液が接触する熱交換部を取り囲むように覆った状態で配置されるとともに、吸収液を透過させずに冷媒蒸気を透過可能に形成された膜部材(45)とを含む。

Description

吸収式ヒートポンプ装置
 本発明は、吸収式ヒートポンプ装置に関する。
 従来、冷媒蒸発時の蒸気を吸収可能な吸収液を用いた吸収式ヒートポンプ装置が知られている。このような吸収式ヒートポンプ装置は、たとえば、特開平1-98866号公報に開示されている。
 特開平1-98866号公報には、濃縮器(発生器)、凝縮器、蒸発器および吸収器を備えた吸収式冷温熱発生機(吸収式ヒートポンプ装置)が開示されている。この特開平1-98866号公報に記載の吸収式冷温熱発生機では、吸収器は、蒸発器と蒸気通路を介して連通されており、吸収器内に疎水性多孔質膜と伝熱体(熱交換用の伝熱面)とからなるモジュールが配置されている。ここで、疎水性多孔質膜は、ガスのみが透過可能で液状物質は透過できない材料からなり、溶液(吸収液)の通路を形成可能に構成されている。これにより、吸収器では、疎水性多孔質膜の一方端部の入口部からモジュール内に供給された吸収液に対して、蒸発器からの蒸気通路を経て疎水性多孔質膜を透過した冷媒蒸気が吸収されるとともに、吸収熱が伝熱体を介して冷却水側に受け渡される。そして、希釈された吸収液は疎水性多孔質膜の他方端部の出口部からモジュールを出て吸収器の底部に貯留された後、濃縮器(発生器)へと排出されるように構成されている。
特開平1-98866号公報
 しかしながら、特開平1-98866号公報に記載された吸収式冷温熱発生機では、冷媒蒸気を吸収して冷却された吸収液がモジュールを出て吸収器の底部に貯留されるため、たとえば、吸収式冷温熱発生機(吸収式ヒートポンプ装置)を車両等に搭載して車内空調に適用する場合に、車両搭載時の車体の傾斜や揺れなどに起因して、吸収器の底部に貯留された吸収液が、蒸気通路を介して蒸発器に逆流して蒸発器内の冷媒に混入する虞がある。このため、吸収冷凍サイクルの要となる吸収液の濃度制御が適切に行えなくなり、吸収式ヒートポンプ装置としての性能が低下するという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、車両に搭載した場合にも、吸収冷凍サイクルの性能が低下するのを抑制することが可能な吸収式ヒートポンプ装置を提供することである。
 上記目的を達成するために、この発明の第1の局面における吸収式ヒートポンプ装置は、吸収液により冷媒蒸気を吸収する吸収式ヒートポンプ装置であって、冷媒を蒸発させる蒸発器と、蒸発器で蒸発した冷媒蒸気を吸収液に吸収させる吸収器と、を備え、吸収器は、冷媒蒸気の吸収液への吸収熱を除去する熱交換部と、吸収液が接触する熱交換部を取り囲むように覆った状態で配置されるとともに、吸収液を透過させずに冷媒蒸気を透過可能に形成された膜部材と、を含む。
 この発明の第1の局面による吸収式ヒートポンプ装置では、上記のように、吸収液が接触する熱交換部を取り囲むように覆った状態で配置されるとともに、吸収液を透過させずに冷媒蒸気を透過可能に形成された膜部材を吸収器に設ける。これにより、膜部材により熱交換部を取り囲むように覆って吸収器全体を構成することができるので、冷媒蒸気が膜部材を透過して吸収液(濃液)に吸収された吸収液(希液)を、膜部材の内側に貯留した状態で膜部材以外の部分から吸収器の外部に排出することができる。すなわち、吸収液が膜部材を透過して蒸発器に直接的に逆流するのを抑制することができる。したがって、本発明の吸収式ヒートポンプ装置を車両等に搭載した場合であっても車体の傾斜や揺れなどに起因して吸収液(希液)が蒸発器に逆流するのが抑制されるので、車両に搭載した場合にも、吸収冷凍サイクルの性能が低下するのを抑制することができる。
 上記第1の局面による吸収式ヒートポンプ装置において、好ましくは、吸収液は、膜部材の内底部に貯留されるように構成されている。
 このように構成すれば、冷媒蒸気が吸収器内で吸収液(濃液)に吸収された吸収液(希液)を、熱交換部を取り囲むように覆う膜部材の内底部に貯留することができるので、貯留された吸収液(希液)を蒸発器側に混入させることなく膜部材以外の部分から吸収器の外部に直接的に排出することができる。
 上記第1の局面による吸収式ヒートポンプ装置において、好ましくは、吸収器に供給される吸収液を熱交換部の外表面に沿って塗布する回転塗布部をさらに備え、回転塗布部により熱交換部の外表面に沿って塗布された吸収液に、膜部材を透過した冷媒蒸気が吸収されるように構成されている。
 このように構成すれば、回転塗布部により吸収液を熱交換部の外表面に塗布した状態で膜部材を透過した冷媒蒸気を吸収液に効率よく吸収させることができる。また、熱交換部の外表面で冷媒蒸気が吸収されて希釈された吸収液を回転塗布部により膜部材の内底部に掻き下ろして貯留することができる。これにより、冷却された吸収液(希液)を熱交換部の外表面から除去しつつ、この外表面に新たに供給される吸収液(濃液)に対して冷媒蒸気を連続的に吸収させることができるので吸収器の性能を継続的に維持することができる。
 上記吸収液が膜部材の内底部に貯留される構成において、好ましくは、熱交換部は、内部を熱交換流体が流通する平板状の熱交換器が横方向に沿って積層された構造を有しており、吸収液は、膜部材の内側において熱交換器が積層された方向に沿って延びる吸収液供給路を介して膜部材の内側の領域に供給されるとともに、冷媒蒸気が吸収されて膜部材の内底部に貯留される吸収液は、熱交換器が積層された方向に沿って延びる吸収液排出路を介して外部に排出されるように構成されている。
 このように構成すれば、平板状の熱交換器を横方向に沿って積層することによって、膜部材を介して取り込まれた冷媒蒸気を各々の熱交換器の伝熱面に効率よく導いて吸収液への吸収を促進させることができる。そして、熱交換器の積層方向(横方向)に沿って延びる吸収液供給路および吸収液排出路を介して吸収液(濃液)の供給および吸収液(希液)の排出を容易に行うことができる。また。横方向に沿って積層された熱交換器に対して膜部材をこの積層方向に被せて熱交換部全体を容易に覆うことができる。
 上記第1の局面による吸収式ヒートポンプ装置において、好ましくは、熱交換部は、内部を熱交換流体が流通する平板状の熱交換器が横方向に沿って積層された構造を有しており、熱交換部は、熱交換部を取り囲むように覆う膜部材を支持するための支持部材を兼ねている。
 このように構成すれば、自己の形状を維持しにくい材質(材料)からなる膜部材を用いる場合にも、平板状の熱交換器が積層された熱交換部の剛性を利用して熱交換部まわりに膜部材を容易に保持することができる。これにより、吸収器が車体側から振動を受けた場合であっても、膜部材が熱交換部から脱落するのを容易に防止することができる。
 上記第1の局面による吸収式ヒートポンプ装置において、好ましくは、蒸発器は、蒸発前の冷媒を貯留する冷媒貯留部を含み、吸収器は、蒸発器の内部において、膜部材の最下部近傍が冷媒貯留部の上面よりも上方に配置されるように構成されている。
 このように構成すれば、膜部材は冷媒貯留部(液状の冷媒)に接触しないので、冷媒貯留部から蒸発した冷媒蒸気を膜部材の表面積を最大限に利用して熱交換部側(内向き)に透過させる(取り込む)ことができる。これにより、吸収器の性能を高く維持することができる。また、蒸発器の内部に吸収器が設けられる分、吸収式ヒートポンプ装置の小型化を図ることができる。
 上記吸収液が膜部材の内底部に貯留される構成において、好ましくは、蒸発器で蒸発した冷媒蒸気は、吸収液の貯留される膜部材の内底部以外の外表面を透過して吸収器の内部に供給されるように構成されている。
 このように構成すれば、冷媒蒸気の満たされた雰囲気に露出する膜部材の外表面を最大限に利用して、蒸発器からの冷媒蒸気を吸収器の内部に取り込むことができる。
 上記第1の局面による吸収式ヒートポンプ装置において、好ましくは、膜部材を含む吸収器は、熱交換部が蒸発器の内壁面から突出するように設けられており、膜部材は、熱交換部の周囲を密閉した状態で、熱交換部が突出する蒸発器の内壁面に対して固定されている。
 このように構成すれば、蒸発器の内壁面に対して熱交換部を片持ち構造で構成することができるので、熱交換部に対して膜部材を容易に被せて全体を覆うことができる。また、熱交換部が固定される根元部分の内壁面の部分に冷却水供給管、冷却水排出管、濃液供給管および希液排出管を集中的に配置することができるので、これらの配管類の影響を受けることなく熱交換部に被せられた膜部材の端部を蒸発器の内壁面に周状に接合することができる。
 この発明の第2の局面における吸収式ヒートポンプ装置は、吸収液により冷媒蒸気を吸収する吸収式ヒートポンプ装置であって、冷媒を蒸発させる蒸発器と、蒸発器で蒸発した冷媒蒸気を吸収液に吸収させる吸収器と、を備え、吸収器または蒸発器は、冷媒蒸気の吸収液への吸収熱を除去するかまたは冷媒を蒸発させる熱交換部と、吸収液または冷媒が接触する熱交換部を取り囲むように覆った状態で配置されるとともに、吸収液または冷媒を透過させずに冷媒蒸気を透過可能に形成された膜部材と、を含む。
 この発明の第2の局面による吸収式ヒートポンプ装置では、上記構成を備えることによって、膜部材により熱交換部を取り囲むように覆って吸収器全体を構成することができるので、吸収液が膜部材を透過して蒸発器に直接的に逆流するのを抑制することができる。また、膜部材により熱交換部を取り囲むように覆って蒸発器全体を構成することができるとともに、冷媒(液冷媒)を膜部材の内側に貯留した状態で、蒸発後の冷媒蒸気(低温水蒸気)を膜部材を透過させて吸収器へと供給することができる。これにより、蒸発器の冷媒(液冷媒)が吸収器に混入されるのを抑制することができる。この結果、本発明の吸収式ヒートポンプ装置を車両等に搭載した場合であっても車体の傾斜や揺れなどに起因して吸収器内の吸収液(希液)が蒸発器に逆流したり、蒸発器内の冷媒(液冷媒)が吸収器に混入したりするのが抑制されるので、車両に搭載した場合にも、吸収冷凍サイクルの性能が低下するのを抑制することができる。
本発明の第1実施形態における吸収式ヒートポンプ装置の全体構成を示した図である。 本発明の第1実施形態における蒸発器内部に設置された吸収器を示した斜視図である。 本発明の第1実施形態における吸収器の詳細な構造を示した斜視図である。 本発明の第1実施形態における吸収器の全体的な構造を示した斜視図である。 本発明の第2実施形態における蒸発器の全体的な構造を示した斜視図である。 本発明の第2実施形態における蒸発器の詳細な構造を示した斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 [第1実施形態]
 まず、図1~図4を参照して、本発明の第1実施形態による吸収式ヒートポンプ装置100の構成について説明する。
 (吸収式ヒートポンプ装置の構成)
 本発明の第1実施形態による吸収式ヒートポンプ装置100では、冷媒としての水と、吸収液としての臭化リチウム(LiBr)水溶液とが用いられる。また、吸収式ヒートポンプ装置100は、エンジン90(内燃機関)を備えた乗用車およびバスなどの車両(図示せず)に搭載されるとともに車内の空調システムに適用されるように構成されている。
 吸収式ヒートポンプ装置100は、図1に示すように、再生器10(二点鎖線枠内)と、凝縮器20と、蒸発器30と、吸収器40とを備える。再生器10は、吸収液から冷媒蒸気(高温水蒸気)を分離する役割を有する。凝縮器20は、冷房運転時に、冷媒蒸気を凝縮(液化)させる役割を有する。蒸発器30は、冷房運転時に、凝縮水となった冷媒を低温低圧の条件下で蒸発(気化)させる役割を有する。吸収器40は、濃液状態で供給された吸収液に蒸発器30で気化した冷媒蒸気(低温水蒸気)を吸収させる役割を有する。
 再生器10は、吸収液を加熱する加熱部11と、加熱部11により加熱された吸収液から冷媒蒸気を分離する気液分離部12とを含む。加熱部11では、エンジン90から引き回された排気管91を流通する高温の排気ガスと吸収液とが熱交換される。なお、排気管91は、加熱部11を経由する排熱供給路91aと、加熱部11を経由しない迂回路91bとを含み、排熱供給路91aには弁92が設けられている。そして、冷房運転時および暖房運転時に弁92が開かれることによって、エンジン90から排出された排気ガスの一部が排熱供給路91aを経由して加熱部11に流通されるように構成されている。
 また、吸収式ヒートポンプ装置100は、吸収液循環路51aおよび51bからなる循環通路51と、冷媒蒸気通路52および53と、冷媒通路54と、吸収液通路55および56と、冷媒供給路57および58とを備える。なお、循環通路51は、吸収液を加熱部11と気液分離部12との間で循環させる役割を有しており、吸収液循環路51aにポンプ71が設けられている。また、冷媒蒸気通路52は、冷房運転時に気液分離部12からの冷媒蒸気を凝縮器20に供給する役割を有する。冷媒蒸気通路53は、暖房運転時に気液分離部12で分離された冷媒蒸気を蒸発器30に流入させる役割を有する。ここで、冷媒蒸気通路52と冷媒蒸気通路53との接続部分には、冷房運転時に冷媒蒸気通路52を開にするか、暖房運転時に冷媒蒸気通路53を開にするかを切替可能な三方弁64が設けられている。また、冷媒通路54には、弁65が設けられている。
 また、吸収液通路55は、弁61の開閉動作に応じて吸収器40に吸収液(濃液)を供給する役割を有する。吸収液通路56は、ポンプ72と弁62との連動時に吸収器40において冷媒蒸気が吸収された状態で貯留される吸収液(希液)を循環通路51に供給する役割を有する。冷媒供給路57は、暖房運転時にポンプ73と弁63とが連動することによって、蒸発器30に貯留された冷媒(水)を循環通路51に供給する役割を有する。冷媒供給路58は、結晶化防止を目的として弁67の開閉動作に応じて凝縮器20に貯留された凝縮水を直接的に吸収器40に供給する役割を有する。また、熱交換器59においては、吸収液通路55および吸収液通路56を流通する吸収液同士の熱交換が行われる。
 また、吸収式ヒートポンプ装置100は、冷房運転時に駆動される冷却水回路80を備える。冷却水回路80は、凝縮器20における冷媒蒸気の冷却と、吸収器40における冷媒の吸収液への吸収時に発生する吸収熱の除去とに用いられる。詳細には、冷却水回路80は、冷却水(熱交換流体の一例)が流通する冷却水循環路81と、ポンプ82と、凝縮器20に配置された熱交換部83と、吸収器40に配置された熱交換部42(図3参照)と、放熱部84とを含む。放熱部84では、熱交換部84aを流通する冷却水が送風機84bにより送風された空気(外気)によって冷却(放熱)される。
 蒸発器30は、図1に示すように、内部を絶対圧力で1kPa以下の真空状態に保持する容器31と、容器31内部に設置された熱交換部32および噴射器33とを含む。また、蒸発器30の外部には、冷媒貯留部31aと噴射器33とを接続する通路34にポンプ35が設けられている。これにより、冷媒貯留部31aの冷媒(水)がポンプ35により汲み上げられて噴射器33から熱交換部32に向けて噴霧される。したがって、冷房運転時には、噴霧された冷媒(水)が冷媒蒸気(低温水蒸気)になる際に得る蒸発潜熱によって、送風機39により循環される車内の吸込空気は熱交換部32を通過する際に冷却される。
 ここで、第1実施形態では、図1および図2に示すように、蒸発器30における容器31の内部に吸収器40が設置されている。以下、真空状態(絶対圧力で1kPa以下)に保たれた蒸発器30内に設置された吸収器40の構造について詳細に説明する。
 (吸収器の構造)
 図3に示すように、吸収器40は、縦断面が扁平形状を有する中空円盤状の複数(5個)の熱交換器41を一体的に含む熱交換部42と、隣接する熱交換器41間の領域に配置された回転塗布部43とを備える。熱交換部42は、熱交換器41同士が横方向(X軸方向)に沿って等ピッチ間隔を有して積層されている。また、熱交換部42は、全体として蒸発器30の容器31の側壁部31bの内壁面31cから横方向(水平方向における矢印X2方向)に突出して容器31(図2参照)の内部に露出するように設置されている。また、熱交換部42は、Z1側の点頂部とZ2側の下底部とにおいて、冷却水供給管42aおよび冷却水排出管42bによって各熱交換器41が互いに接続されている。なお、図3では、吸収器40の内部構造を示すために熱交換器41および回転塗布部43の図示を一部省略している。すなわち吸収器40の全体的な構造は、図2および図4に示される通りである。
 また、図3に示すように、個々の熱交換器41は、回転塗布部43を回転させる回転軸47が中央部(中心部)を貫通する貫通部41aを有する。貫通部41aは、熱交換器41の伝熱壁を内外に貫通せずに貫通部41aの部分でも内部流路は伝熱壁により密閉されている。また、冷却水供給管42aおよび冷却水排出管42bは、内壁面31cを貫通して外部の冷却水循環路81(図1参照)に接続されている。これにより、冷却水供給管42aから流入された冷却水は、熱交換部42の各熱交換器41に分配され、熱交換器41内をZ1側からZ2側に流れて冷却水排出管42bに集まり冷却水循環路81に戻される。
 また、熱交換部42には、冷却水供給管42aおよび冷却水排出管42bとは別に、吸収液(濃液)を供給する濃液供給管44a(吸収液供給路の一例)と、吸収液(希液)を排出する希液排出管44b(吸収液排出路の一例)とが設けられている。濃液供給管44aは、内壁面31cから横方向(矢印X2方向)に突出している。また、濃液供給管44aから矢印Y2方向に分岐した濃液供給ポート44cの部分が、各々の熱交換器41の対応するU字状の切欠部分41cに差し込まれている。ここで、熱交換器41と濃液供給ポート44cとは濃液供給管44a側の壁部により隔絶されている。また、濃液供給ポート44cの外表面44dには複数の孔部44eが形成されている。また、外表面44dは熱交換器41の外表面41bと滑らかに接続されている。これにより、熱交換器41において、濃液は、濃液供給ポート44cの孔部44eから外表面41bを伝って流下される。また、濃液供給管44aおよび希液排出管44bは、内壁面31cを貫通して外部の吸収液通路55および56(図1参照)にそれぞれ接続されている。したがって、熱交換部42は、内壁面31cに対して内部に向けて片持ち構造を有して取り付けられている。
 ここで、第1実施形態では、図2および図4に示すように、熱交換部42、回転塗布部43、冷却水供給管42a、冷却水排出管42b、濃液供給管44aおよび希液排出管44bが一体化された構造を取り囲むように覆う膜部材45が設けられて吸収器40が構成されている。膜部材45は、容器31内において吸収液を透過させずに蒸発器30からの冷媒蒸気を透過可能な材料からなる。また、膜部材45として、樹脂製の疎水性多孔質膜などが挙げられる。また、熱交換部42が片持ち構造であるので、膜部材45は熱交換部42のX2側の端部から矢印X1方向に被せられるとともに、膜部材45のX1側の周状(円環状)の端部45cが蒸発器30の内壁面31cに対して周状に固定(接合)されている。なお、膜部材45のX1側の端部45cは、樹脂材料がバルク状に形成されてガスケット構造を構成しており、この端部45cが内壁面31cに周状に溶着されている。
 また、熱交換部42全体が、膜部材45を支持するための支持部材(骨組み)の役割を兼ねている。これにより、自己の形状を維持しにくい材質からなる膜部材45を用いても、5個の熱交換器41が積層され冷却水供給管42aおよび冷却水排出管42bで繋がれた熱交換部42の剛性を利用して、熱交換部42まわりに膜部材45が容易に保持されている。したがって、図示の都合上、円筒形状に似せて膜部材45の外形を図示しているが、実際には、膜部材45は、熱交換部42、回転塗布部43、冷却水供給管42a、冷却水排出管42b、濃液供給管44aおよび希液排出管44bが一体化された構造の外表面に密着するような状態で被せられて、端部45cが内壁面31cに周状に溶着されている。
 また、図4に示すように、吸収液(濃液と希液との混合液)は、膜部材45の内底部45aに貯留されるように構成されている。この場合、蒸発器30で蒸発した冷媒蒸気は、吸収液の貯留される膜部材45の内底部45a以外の外表面45bを内向きに透過して吸収器40に供給される。これにより、膜部材45が熱交換部42を取り囲むように覆って吸収器40全体が構成されるので、冷媒蒸気が外表面45bを透過して熱交換器41の外表面41bにおいて濃液に吸収された後の希液は、膜部材45の内側の内底部45aに貯留される。そして、内底部45aに貯留された希液は、希液排出管44bを介して直接的に吸収器40の外部(吸収液通路56(図1参照))に排出されるように構成されている。
 なお、濃液供給管44aおよび希液排出管44bが熱交換器41の積層方向(横方向)に沿って配置されるので、膜部材45により覆われた熱交換部42への吸収液の供給口(吸収液通路55と接続部分)および排出口(吸収液通路56と接続部分)は、横方向における一方側(側壁部31bのX1側)に集約される。これによっても熱交換部42には吸収液の供給口および排出口以外と容器31の外部との接続箇所が存在しないので、容器31内のX2側から膜部材45を被せて熱交換部42を容易に覆うことが可能に構成されている。また、膜部材45の内壁面31cに対するシール箇所(端部45c)が1つの領域に限られるので、吸収器40の内部と外部とのシール性が向上されて、吸収液が吸収器40の内側(膜部材45の内底部45a)に確実に貯留されるように構成されている。
 回転塗布部43は、吸収器40に供給される吸収液(濃液)を熱交換部42の外表面41bに沿って塗布する役割を有する。詳細には、吸収器40は、図3に示すように、回転塗布部43を回転軸線150まわりに矢印R方向に回転させるモータ46(破線で示す)を備える。モータ46には、回転軸47(破線で示す)が接続されており、回転軸47が各熱交換器41の貫通部41aを介してX1側からX2側に延びている。回転塗布部43は、回転軸47まわりに一対のブラシ部材43aを有しており、各々が互いに180°間隔で回転軸47に取り付けられている。ブラシ部材43aは、回転軸47から半径外側方向に延びる腕部43bと、腕部43bに対して熱交換器41の外表面41bに向かってX1方向およびX2方向に延びるように植え付けられた複数本のブラシ43cとを有する。
 したがって、冷房運転時においては、気液分離部12(図1参照)から供給された吸収液(濃液)が熱交換器41の外表面41bに供給された状態で、モータ46の駆動とともに各々のブラシ部材43aが外表面41bに沿って矢印R方向に回転移動されるように構成されている。これにより、回転塗布部43により外表面41bに沿って塗布された濃液に膜部材45を透過した冷媒蒸気が吸収されやすくなるように構成されている。より詳細には、ブラシ部材43aは、外表面41bに沿って矢印R方向に回転移動される際に、外表面41bに残留する冷却水との熱交換済みの吸収液(冷媒が吸収されて希釈された希液)を外表面41bから除去しながら、熱交換済みの希液が除去された外表面41bに、ブラシ部材43aに供給された濃液(冷媒の吸収量が少ない吸収液)が新たに塗布される。なお、塗布された吸収液に冷媒蒸気が吸収される際に発生する吸収熱は、熱交換器41を介して冷却水に奪われる。したがって、塗布された吸収液の温度が低温に保たれるので、塗布された吸収液への更なる冷媒蒸気の吸収が促進される。吸収液は希液となってブラシ部材43aにより外表面41bから除去されて膜部材45の内底部45aに落下する。
 また、第1実施形態では、図2に示すように、吸収器40は、容器31(蒸発器30)の内部において、膜部材45の最下部近傍(Z2側)が冷媒貯留部31aの上面(水面)よりも上方に配置されるように構成されている。これにより、膜部材45は冷媒貯留部31aの冷媒に接触しないので、冷媒貯留部31aから蒸発した冷媒蒸気を膜部材45の表面積を最大限に利用して吸収器40内に透過させることが可能に構成されている。
 また、図3に示すように、容器31のX1側の側壁部31bの外表面には、ハウジング36が取り付けられている。モータ46は、固定部材37(破線で示す)を介してハウジング36内に固定されている。また、モータ46に接続された回転軸47が容器31の側壁部31bを貫通して矢印X2方向(水平方向)に延びるとともに熱交換器41の貫通部41aを介して回転可能に挿入されている。なお、回転軸47の端部47aは、最もX2側の熱交換器41の貫通部41aに回転可能に支持されている。また、回転軸47が側壁部31bを貫通する部分には、封止材38が回転軸47に対して摺動可能に嵌め込まれている。なお、ハウジング36内も真空状態に保たれており、外部に対して気密性が保たれている。以上の構成によって、吸収式ヒートポンプ装置100は以下のように動作される。
 (冷房運転時の動作)
 冷房運転時には、図1に示すように、弁61および62を閉じた状態でポンプ71が始動されて吸収液を循環通路51に矢印P方向に循環させる。加熱部11により昇温されて気液分離部12で分離された冷媒蒸気が所定温度に達した時点で弁61および62が開かれてポンプ72が始動される。これにより、気液分離部12に貯留されたLiBr濃液が吸収液通路55および56にも矢印Q方向に流通されて冷房サイクルが形成される。また、三方弁64が気液分離部12と凝縮器20とを連通する(冷媒蒸気が冷媒蒸気通路52を流通する)側に切り替えられ、凝縮器20で凝縮された冷媒蒸気が蒸発器30に流入されて、熱交換部32を介して車内の空気が冷却される。そして、容器31内の熱交換部32で蒸発した冷媒蒸気は、膜部材45を介して吸収器40に吸引される。吸収器40では、熱交換器41の外表面41bに供給された吸収液(濃液)に対して冷媒蒸気が吸収されて希液となり膜部材45の内底部45aに貯留される。また、内底部45aに貯留された希液は、希液排出管44bおよび吸収液通路55を流通して循環通路51に戻される。
 (暖房運転時の動作)
 暖房運転時には、運転期間中、弁61および62は常に閉じられており吸収器40は使用されない。三方弁64が気液分離部12と蒸発器30とを連通する(高温水蒸気が冷媒蒸気通路53を流通する)側に切り替えられ、かつ、弁65が閉じられて凝縮器20がサイクルから切り離される。そして、運転開始直後に循環通路51を循環させて吸収液の昇温が行われ、気液分離部12で分離された高温水蒸気が蒸発器30(凝縮器の役割を果たす)に直接的に流入される。これにより、熱交換部32を介して車内の空気が暖められる。また、蒸発器30で熱交換(冷却)された凝縮水は、ポンプ73と弁63との連動により冷媒供給路57を介して循環通路51に還流されて暖房サイクルが形成される。
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、吸収液が接触する熱交換部42を取り囲むように覆った状態で配置されるとともに、吸収液を透過させずに冷媒蒸気を透過可能に形成された膜部材45を吸収器40に設ける。これにより、膜部材45により熱交換部42を取り囲むように覆って吸収器40全体を構成することができるので、冷媒蒸気が膜部材45を透過して吸収液(濃液)に吸収された吸収液(希液)を、膜部材45の内側に貯留した状態で膜部材45以外の部分から吸収器40の外部に排出することができる。すなわち、吸収液が膜部材を透過して蒸発器30に直接的に逆流するのを抑制することができる。したがって、吸収式ヒートポンプ装置100を車両等に搭載した場合であっても、車両搭載時の車体の傾斜や揺れなどに起因して吸収液(希液)が蒸発器30に逆流するのが抑制されるので、車両に搭載した場合にも、吸収冷凍サイクルの性能が低下するのを抑制することができる。
 また、第1実施形態では、膜部材45の内底部45aに吸収液が貯留されるように構成する。これにより、冷媒蒸気が吸収器40内で吸収液(濃液)に吸収された吸収液(希液)を、熱交換部42を取り囲むように覆う膜部材45の内底部45aに貯留することができるので、貯留された吸収液(希液)を蒸発器30に混入させることなく膜部材45以外の部分から吸収器40の外部の吸収液通路56に直接的に排出することができる。
 また、第1実施形態では、吸収器40に供給される吸収液を熱交換器41の外表面41bに沿って塗布する回転塗布部43によって、外表面41bに沿って塗布された吸収液に膜部材45を透過した冷媒蒸気を吸収させるように構成する。これにより、回転塗布部43により吸収液(濃液)を熱交換器41の外表面41bに塗布した状態で膜部材45を透過した冷媒蒸気を吸収液に効率よく吸収させることができる。また、熱交換器41の外表面41bで冷媒蒸気が吸収されて希釈された吸収液を回転塗布部43により膜部材45の内底部45aに掻き下ろして貯留することができる。これにより、冷却された吸収液(希液)を熱交換器41の外表面41bから除去しつつ、この外表面41bに新たに供給される吸収液(濃液)に対して冷媒蒸気を連続的に吸収させることができるので、吸収器40の性能を継続的に維持することができる。
 また、第1実施形態では、熱交換部42は、内部を冷却水が流通する平板状の5個の熱交換器41が横方向(X軸方向)に沿って積層された構造を有しており、膜部材45の内側において熱交換器41が積層された方向に沿って延びる濃液供給管44aを介して膜部材45の内側の領域に吸収液(濃液)を供給する。そして、冷媒蒸気が吸収されて膜部材45の内底部45aに貯留された吸収液を熱交換器41が積層された方向に沿って延びる希液排出管44bを介して外部に排出するように構成する。これにより、5個の熱交換器41を横方向(X軸方向)に沿って積層することによって、膜部材45を介して取り込まれた冷媒蒸気を各々の熱交換器41の外表面41b(伝熱面)に効率よく導いて吸収液への吸収を促進させることができる。そして、熱交換器41の積層方向に沿って延びる濃液供給管44aおよび希液排出管44bを介して吸収液(濃液)の供給および吸収液(希液)の排出を容易に行うことができる。また。横方向に沿って積層された熱交換器41に対して膜部材45をこの積層方向に被せて熱交換部42全体を容易に覆うことができる。
 また、第1実施形態では、熱交換器41がX軸方向に沿って積層された熱交換部42は、熱交換部42を覆う膜部材45を支持する支持部材の役割を兼ねる。これにより、自己の形状を維持しにくい材質(材料)からなる膜部材45を用いる場合にも、平板状の熱交換器41が積層された熱交換部42の剛性を利用して熱交換部42まわりに膜部材45を容易に保持することができる。これにより、吸収器40が車体側から振動を受けた場合であっても、膜部材45が熱交換部42から脱落するのを容易に防止することができる。
 また、第1実施形態では、蒸発器30の内部において、膜部材45の最下部近傍が冷媒貯留部31aの上面よりも上方に配置されるように吸収器40を構成する。これにより、膜部材45は冷媒貯留部31a(液状の冷媒)に接触しないので、冷媒貯留部31aから蒸発した冷媒蒸気を膜部材45の表面積を最大限に利用して熱交換部42側(内向き)に透過させる(取り込む)ことができる。これにより、吸収器40の性能を高く維持することができる。また、蒸発器30の内部に吸収器40が設けられる分、吸収式ヒートポンプ装置100の小型化を図ることができる。
 また、第1実施形態では、蒸発器30で蒸発した冷媒蒸気が吸収液の貯留される膜部材45の内底部45a以外の外表面45bを透過して吸収器40の内部に供給される。これにより、冷媒蒸気の満たされた雰囲気に露出する膜部材45の外表面45bを最大限に利用して、蒸発器30からの冷媒蒸気を吸収器40の内部に取り込むことができる。
 また、第1実施形態では、蒸発器30の内壁面31cから突出するように熱交換部42を設け、膜部材45が熱交換部42の周囲を密閉した状態で熱交換部42が突出する蒸発器30の内壁面31cに対して固定されるように吸収器40を構成する。これにより、蒸発器30の内壁面31cに対して熱交換部42を片持ち構造で構成することができるので、熱交換部42に対して膜部材45を容易に被せて全体を覆うことができる。また、熱交換部42が固定される根元部分の内壁面31cの部分に冷却水供給管42a、冷却水排出管42b、濃液供給管44aおよび希液排出管44bを集中的に配置することができるので、これらの配管類の影響を受けることなく熱交換部42に被せられた膜部材45の端部を蒸発器30の内壁面31cに周状に接合することができる。
 [第2実施形態]
 図1および図4~図6を参照して、第2実施形態について説明する。この第2実施形態では、上記第1実施形態と異なり、吸収器40に加えて蒸発器230に対しても吸収器40と同様の構成を適用して吸収式ヒートポンプ装置200を構成した例について説明する。
 本発明の第2実施形態による吸収式ヒートポンプ装置200では、図5に示すように、容器31の内部に、蒸発器230および吸収器40が設置されている。なお、吸収器40については上記第1実施形態と同様であるので説明を省略する。一方、上記第1実施形態の蒸発器30(図1参照)の代わりに吸収器40と同様の構造を有する蒸発器230が設けられている。以下に、蒸発器230の構造を吸収器40とは符号を違えて説明する。
 (蒸発器の構造)
 図5に示すように、蒸発器230は、5個の熱交換器231を含む熱交換部232と、熱交換器231間の領域に配置された回転塗布部233とを備える。熱交換部232は、容器31の内壁面31cから矢印X2方向に突出している。また、熱交換部232は、上部と下部とにおいて、各々の熱交換器231に接続された空調用の水配管232aおよび232bによって互いに接続されている。空調用の水配管232aおよび232bは、図示しない熱交換器に接続されている。この熱交換器では、送風機により送風された空気(外気)が熱交換器(空気熱交)を流通する空調用の循環水によって冷却される。そして、冷却された空気(冷風)が車内に吹き出されるように構成されている。また、熱交換部232には、水配管232aおよび232bとは別に、冷媒(凝縮水)を供給するための冷媒供給管234aと、冷媒を排出する(暖房運転時に循環通路51に戻す)ための冷媒排出管234bとが設けられている。冷媒供給管234aおよび冷媒排出管234bは、内壁面31cを貫通して外部の冷媒通路54および57(図1参照)に接続されている。
 ここで、第2実施形態では、図5および図6に示すように、熱交換部232、回転塗布部233、水配管232aおよび232b、冷媒供給管234aおよび冷媒排出管234bが一体化された構造を取り囲むように覆う膜部材235が設けられて蒸発器230が構成されている。また、膜部材235は、樹脂製の疎水性多孔質膜などからなり、X1側の端部235cは、樹脂材料がバルク状に形成されてガスケット構造を構成している。そして、この端部235cが内壁面31cに対して周状に溶着されている。
 これにより、冷房運転時には、凝縮器20で凝縮された冷媒(凝縮水)が冷媒通路54および冷媒供給管234aを流通して熱交換器231の外表面231bに供給される。そして、冷媒は、回転塗布部233(ブラシ部材43a)の回転とともに外表面231bに薄く塗布される。この際、容器31内は真空状態なので冷媒が熱交換器231内の空調用の循環水から熱(蒸発潜熱)を奪いながら蒸発する。そして蒸発した冷媒蒸気(低温水蒸気)は、膜部材235の内底部235a以外の外表面235bを外向きに透過して容器31内における蒸発器230の外部空間に放出される。つまり、蒸発器230では、冷媒の噴射器や冷媒貯留部と噴射器とを接続する冷媒通路およびポンプなどは設けられていない。
 その後、膜部材235の外部空間に放出された冷媒蒸気(低温水蒸気)は、直ちに、蒸発器230に隣接する吸収器40における膜部材45を内向きに透過して吸収器40に供給される。また、冷媒蒸気は、熱交換部42において冷却されるとともに希釈されて内底部45aに貯留される。このようにして冷房サイクルが形成される。なお、第2実施形態による吸収式ヒートポンプ装置200のその他の構成は、上記第1実施形態と同様である。
 (第2実施形態の効果)
 第2実施形態では、吸収器40に加えて、冷媒(水)が接触する熱交換部232を取り囲むように覆った状態で配置されるとともに、冷媒(水)を透過させずに冷媒蒸気を透過可能に形成された膜部材235を蒸発器230に設ける。これにより、膜部材235により熱交換部232を取り囲むように覆って蒸発器230全体を構成することができるとともに、冷媒(水)を膜部材235の内側に貯留した状態で、蒸発後の冷媒蒸気(低温水蒸気)を、膜部材235を外向きに透過させて吸収器40へと供給することができる。これにより、蒸発器230の冷媒(水)が吸収器40内部に混入されるのを抑制することができる。したがって、吸収式ヒートポンプ装置200を車両等に搭載した場合であっても、車両搭載時の車体の傾斜や揺れなどに起因して冷媒(水)が吸収器40に混入するのが抑制されるので、車両に搭載した場合にも、吸収冷凍サイクルの性能が低下するのを抑制することができる。なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 [変形例]
 今回開示された実施形態は、全ての点で例示であり制限的なものではないと考えられるべきである。本発明の範囲は上記実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内での全ての変更(変形例)が含まれる。
 たとえば、上記第1および第2実施形態では、中空円盤状の熱交換器41(231)を用いて熱交換部42(232)を構成したが、本発明はこれに限られない。伝熱管を複数配列して熱交換部を構成してもよい。また、熱交換器41の個数も5個以外でもよい。
 また、上記第2実施形態では、蒸発器230の熱交換器231に空調用の循環水を流通させたが、本発明はこれに限られない。たとえば、上記第1実施形態の蒸発器30の使用方式と同様に、熱交換部232内部に空調用の空気を直接流通させることにより、蒸発器230において冷媒(水)と空調用の空気とを熱交換させてもよい。
 また、上記第1および第2実施形態では、本発明の吸収式ヒートポンプ装置を、乗用車、バスおよびトラックなどの車両の空調システムに適用したが、本発明はこれに限られない。たとえば、ディーゼルエンジンを備えた列車や船舶などの空調システムに適用してもよい。また車両(移動体)のみならず、ビル、工場、商業施設などの空調を行うための据置型の吸収式ヒートポンプ装置に対しても本発明を広く適用することができる。
 また、上記第1および第2実施形態では、エンジン90の排気ガスの熱を利用して吸収液を加熱したが、本発明はこれに限られない。たとえば、ハイブリッド自動車や電動モータ駆動により走行する電気自動車の空調用に本発明の吸収式ヒートポンプ装置を適用してもよい。また、吸収液を加熱する熱源に電気自動車のバッテリやモータ排熱や燃料電池における発電時の排熱などを利用するなどして、燃料電池システムを備えた乗用車の空調に本発明の吸収式ヒートポンプ装置を適用してもよい。
 また、上記第1および第2実施形態では、冷媒および吸収液として、水および臭化リチウム水溶液を用いたが、本発明はこれに限られない。たとえば、冷媒および吸収液として、それぞれ、アンモニアおよび水を用いて吸収式ヒートポンプ装置を構成してもよい。
 30、230 蒸発器
 31 容器
 40 吸収器
 41、231 熱交換器
 42、232 熱交換部(支持部材)
 43、233 回転塗布部
 44a 濃液供給管(吸収液供給路)
 44b 希液排出管(吸収液排出路)
 45、235 膜部材
 45a、235a 内底部
 100、200 吸収式ヒートポンプ装置

Claims (9)

  1.  吸収液により冷媒蒸気を吸収する吸収式ヒートポンプ装置であって、
     冷媒を蒸発させる蒸発器と、
     前記蒸発器で蒸発した冷媒蒸気を吸収液に吸収させる吸収器と、を備え、
     前記吸収器は、
     前記冷媒蒸気の前記吸収液への吸収熱を除去する熱交換部と、
     前記吸収液が接触する前記熱交換部を取り囲むように覆った状態で配置されるとともに、前記吸収液を透過させずに前記冷媒蒸気を透過可能に形成された膜部材と、を含む、吸収式ヒートポンプ装置。
  2.  前記吸収液は、前記膜部材の内底部に貯留されるように構成されている、請求項1に記載の吸収式ヒートポンプ装置。
  3.  前記吸収器に供給される前記吸収液を前記熱交換部の外表面に沿って塗布する回転塗布部をさらに備え、
     前記回転塗布部により前記熱交換部の外表面に沿って塗布された前記吸収液に、前記膜部材を透過した前記冷媒蒸気が吸収されるように構成されている、請求項1または2に記載の吸収式ヒートポンプ装置。
  4.  前記熱交換部は、内部を熱交換流体が流通する平板状の熱交換器が横方向に沿って積層された構造を有しており、
     前記吸収液は、前記膜部材の内側において前記熱交換器が積層された方向に沿って延びる吸収液供給路を介して前記膜部材の内側の領域に供給されるとともに、前記冷媒蒸気が吸収されて前記膜部材の内底部に貯留される前記吸収液は、前記熱交換器が積層された方向に沿って延びる吸収液排出路を介して外部に排出されるように構成されている、請求項2または3に記載の吸収式ヒートポンプ装置。
  5.  前記熱交換部は、内部を熱交換流体が流通する平板状の熱交換器が横方向に沿って積層された構造を有しており、
     前記熱交換部は、前記熱交換部を取り囲むように覆う前記膜部材を支持するための支持部材を兼ねている、請求項1~4のいずれか1項に記載の吸収式ヒートポンプ装置。
  6.  前記蒸発器は、蒸発前の冷媒を貯留する冷媒貯留部を含み、
     前記吸収器は、前記蒸発器の内部において、前記膜部材の最下部近傍が前記冷媒貯留部の上面よりも上方に配置されるように構成されている、請求項1~5のいずれか1項に記載の吸収式ヒートポンプ装置。
  7.  前記蒸発器で蒸発した冷媒蒸気は、吸収液の貯留される前記膜部材の前記内底部以外の外表面を透過して前記吸収器の内部に供給されるように構成されている、請求項2に記載の吸収式ヒートポンプ装置。
  8.  前記膜部材を含む前記吸収器は、前記熱交換部が前記蒸発器の内壁面から突出するように設けられており、
     前記膜部材は、前記熱交換部の周囲を密閉した状態で、前記熱交換部が突出する前記蒸発器の内壁面に対して固定されている、請求項1~7のいずれか1項に記載の吸収式ヒートポンプ装置。
  9.  吸収液により冷媒蒸気を吸収する吸収式ヒートポンプ装置であって、
     冷媒を蒸発させる蒸発器と、
     前記蒸発器で蒸発した冷媒蒸気を吸収液に吸収させる吸収器と、を備え、
     前記吸収器または前記蒸発器は、
     前記冷媒蒸気の前記吸収液への吸収熱を除去するかまたは冷媒を蒸発させる熱交換部と、
     前記吸収液または前記冷媒が接触する前記熱交換部を取り囲むように覆った状態で配置されるとともに、前記吸収液または前記冷媒を透過させずに前記冷媒蒸気を透過可能に形成された膜部材と、を含む、吸収式ヒートポンプ装置。
PCT/JP2016/070596 2015-07-27 2016-07-12 吸収式ヒートポンプ装置 WO2017018208A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680038294.4A CN107735627B (zh) 2015-07-27 2016-07-12 吸收式热泵装置
US15/580,822 US10619893B2 (en) 2015-07-27 2016-07-12 Absorption heat pump device
EP16830313.9A EP3306229B1 (en) 2015-07-27 2016-07-12 Absorption heat pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015147593A JP6432462B2 (ja) 2015-07-27 2015-07-27 吸収式ヒートポンプ装置
JP2015-147593 2015-07-27

Publications (1)

Publication Number Publication Date
WO2017018208A1 true WO2017018208A1 (ja) 2017-02-02

Family

ID=57884571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070596 WO2017018208A1 (ja) 2015-07-27 2016-07-12 吸収式ヒートポンプ装置

Country Status (5)

Country Link
US (1) US10619893B2 (ja)
EP (1) EP3306229B1 (ja)
JP (1) JP6432462B2 (ja)
CN (1) CN107735627B (ja)
WO (1) WO2017018208A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2555704B1 (es) * 2014-05-30 2017-10-27 Consejo Superior De Investigaciones Científicas (Csic) Máquina frigorífica de absorción de pequeña potencia
JP6627540B2 (ja) * 2016-02-02 2020-01-08 アイシン精機株式会社 吸収式ヒートポンプ装置
JP7379911B2 (ja) * 2019-08-02 2023-11-15 株式会社アイシン 吸収式ヒートポンプ装置
CN113865380B (zh) * 2021-09-16 2023-10-31 青岛海信日立空调系统有限公司 全热交换器芯体及全热交换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272566A (ja) * 1985-05-27 1986-12-02 三菱重工業株式会社 吸収式冷凍機
JPS63315887A (ja) * 1987-06-16 1988-12-23 Hitachi Ltd 疎水性多孔質膜を用いた冷却塔及び吸収式温度回生器
JPH0198866A (ja) * 1987-10-09 1989-04-17 Hitachi Ltd 吸収式冷温熱発生機及びそれに用いられる吸収器及び濃縮器
JPH04268176A (ja) * 1991-02-22 1992-09-24 Daikin Ind Ltd 吸収式冷凍装置
JP2011169537A (ja) * 2010-02-19 2011-09-01 Aisin Seiki Co Ltd 吸収液濃度調整装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862468A (ja) * 1981-10-12 1983-04-13 三洋電機株式会社 吸収ヒ−トポンプ
JP3521101B2 (ja) 1996-01-31 2004-04-19 三郎 久保 空気調和装置
JP4268176B2 (ja) * 2006-06-28 2009-05-27 崇貿科技股▲ふん▼有限公司 フローティング駆動回路
EP2123997A1 (en) * 2007-02-16 2009-11-25 Hachiyo Engineering Co., Ltd. Absorption-type freezing unit
WO2011158432A1 (ja) * 2010-06-17 2011-12-22 アイシン精機株式会社 粘性物質希釈装置
DE102011110018A1 (de) * 2011-08-11 2013-02-14 Aaa Water Technologies Ag Absorptionskältemaschine
JP2015004481A (ja) * 2013-06-21 2015-01-08 アイシン精機株式会社 吸収式ヒートポンプ装置
JP6264013B2 (ja) * 2013-12-16 2018-01-24 アイシン精機株式会社 吸収式ヒートポンプ装置
CN103743155A (zh) * 2014-01-27 2014-04-23 山东中科凯恩低碳新能源科技研发有限公司 吸收式冷暖设备
JP6686485B2 (ja) * 2016-02-03 2020-04-22 アイシン精機株式会社 吸収式ヒートポンプ装置
JP2017145992A (ja) * 2016-02-16 2017-08-24 アイシン精機株式会社 吸収式ヒートポンプ装置
JP6747152B2 (ja) * 2016-08-04 2020-08-26 アイシン精機株式会社 吸収式ヒートポンプ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272566A (ja) * 1985-05-27 1986-12-02 三菱重工業株式会社 吸収式冷凍機
JPS63315887A (ja) * 1987-06-16 1988-12-23 Hitachi Ltd 疎水性多孔質膜を用いた冷却塔及び吸収式温度回生器
JPH0198866A (ja) * 1987-10-09 1989-04-17 Hitachi Ltd 吸収式冷温熱発生機及びそれに用いられる吸収器及び濃縮器
JPH04268176A (ja) * 1991-02-22 1992-09-24 Daikin Ind Ltd 吸収式冷凍装置
JP2011169537A (ja) * 2010-02-19 2011-09-01 Aisin Seiki Co Ltd 吸収液濃度調整装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306229A4 *

Also Published As

Publication number Publication date
EP3306229A4 (en) 2018-05-30
JP2017026260A (ja) 2017-02-02
CN107735627B (zh) 2020-12-08
EP3306229B1 (en) 2020-02-26
CN107735627A (zh) 2018-02-23
US10619893B2 (en) 2020-04-14
JP6432462B2 (ja) 2018-12-05
EP3306229A1 (en) 2018-04-11
US20180163999A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2017018208A1 (ja) 吸収式ヒートポンプ装置
US9610825B2 (en) Motor vehicle climate control system
JP6015137B2 (ja) 吸収式ヒートポンプ装置
US5431716A (en) Sorption device
RU2674732C2 (ru) Система кондиционирования воздуха транспортного средства, система кондиционирования воздуха и способ управления системой кондиционирования воздуха транспортного средства
EP2733443B1 (en) Vehicle-mounted absorption heat pump apparatus
JP6264013B2 (ja) 吸収式ヒートポンプ装置
JP2012127594A (ja) 吸着式ヒートポンプ
JP5974822B2 (ja) 吸収式ヒートポンプ装置
JP6089721B2 (ja) 吸収式ヒートポンプ装置
JP6686485B2 (ja) 吸収式ヒートポンプ装置
JP6627540B2 (ja) 吸収式ヒートポンプ装置
JP6578796B2 (ja) 吸収式ヒートポンプ装置
JP6672847B2 (ja) 吸収式ヒートポンプ装置
JP6686484B2 (ja) 吸収式ヒートポンプ装置
JP5708998B2 (ja) 車載用吸収式ヒートポンプ装置
JP7024317B2 (ja) 車載用吸収式ヒートポンプ装置
JP7032731B2 (ja) 吸収式ヒートポンプ装置
JP2017145992A (ja) 吸収式ヒートポンプ装置
JP2013019613A (ja) 車載用吸収式ヒートポンプ装置
JP2019105395A (ja) 吸収式ヒートポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15580822

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE