WO2017018006A1 - 樹脂成形用型 - Google Patents

樹脂成形用型 Download PDF

Info

Publication number
WO2017018006A1
WO2017018006A1 PCT/JP2016/062083 JP2016062083W WO2017018006A1 WO 2017018006 A1 WO2017018006 A1 WO 2017018006A1 JP 2016062083 W JP2016062083 W JP 2016062083W WO 2017018006 A1 WO2017018006 A1 WO 2017018006A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
buffer layer
mold
molded product
fine particles
Prior art date
Application number
PCT/JP2016/062083
Other languages
English (en)
French (fr)
Inventor
政幸 酒井
久男 青田
Original Assignee
株式会社棚澤八光社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社棚澤八光社 filed Critical 株式会社棚澤八光社
Priority to CN201680002162.6A priority Critical patent/CN106794602B/zh
Priority to US15/320,981 priority patent/US10124514B2/en
Priority to JP2016543243A priority patent/JP6253786B2/ja
Priority to KR1020167035064A priority patent/KR102437077B1/ko
Priority to DE112016000089.8T priority patent/DE112016000089T5/de
Publication of WO2017018006A1 publication Critical patent/WO2017018006A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0053Moulding articles characterised by the shape of the surface, e.g. ribs, high polish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3807Resin-bonded materials, e.g. inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2903/00Use of resin-bonded materials as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0024Matt surface

Definitions

  • the present invention relates to a resin molding die, and more particularly to a resin molding die for molding a resin molded product in which occurrence of appearance defects on a surface provided with a texture is suppressed.
  • resin molded products as interior parts of automobiles are required to have a high-class feeling, and can be prevented from being reflected in the window.
  • a resin molded product is desired.
  • Such a resin molded product is molded using a molding die which is subjected to surface processing called “texture processing”. Thereby, the surface of the resin molded product is provided with a minute uneven pattern called grain. If it does so, the surface in which the wrinkle was provided will be glossy (namely, gloss value will fall), and a delicate shadow and touch will be given to the surface.
  • Non-patent Document 1 Such “white blur”, for example, is said to be manifested by the fact that the transferred shape of the grain is partially inclined and the brightness increases when irradiated from the inclined direction. At present, the means for suppressing this has not been clearly established.
  • the main object of the present invention is to improve the texture by controlling how gloss is generated in a resin molded product having wrinkles, and white blurring is manifested on the surface where the resin wrinkles are provided. It is to provide a mold for resin molding that can be suppressed.
  • a resin molding die is a resin molding die for molding a resin molded product having a texture
  • the resin molding die includes a molding die and a buffer layer formed on a mold surface of the molding die.
  • the buffer layer is formed of a mixture of a thermosetting resin and substantially spherical fine particles, and the fine particles have a bulk specific gravity of 0.4 g / ml to 0.9 g / ml, and on the surface of the buffer layer,
  • a resin molding die, wherein a plurality of substantially spherical gloss adjusting convex portions based on fine particles are formed.
  • the particle diameter of the fine particles is preferably 1.0 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of the buffer layer according to the present invention is 1.0 ⁇ m or more and 20 ⁇ m or less, and is not less than the particle diameter of the fine particles.
  • the substantially spherical gloss adjustment convex portion is formed on the surface of the buffer layer of the resin molding die, it is difficult for the mold surface of the molding die to stand up. . Therefore, when a resin molded product is molded by injection molding using this resin molding die, the concave portion formed on the embossed surface of the resin molded product is formed in a substantially spherical shape, so that the resin molded product shrinks when cooled. Even so, since it is possible to avoid the occurrence of scratches on the surface of the resin molded product due to pulling or rubbing based on galling when being pulled out from the resin molding die, it is possible to obtain a glossy resin molded product.
  • the surface of the resin molded product molded using the resin molding die according to the present invention shows a matte surface property, it is not necessary to further coat the resin molded product, By removing the gloss, a desired resin molded product with improved texture can be obtained. Further, when the particle size of the fine particles contained in the buffer layer is 1.0 ⁇ m or more and 15 ⁇ m or less, the concave portion formed by the embossing process is not filled, so that the shape of the embossed pattern of the resin molded product is maintained. The occurrence of galling can be avoided.
  • the thickness of the buffer layer is not less than 1.0 ⁇ m and not more than 20 ⁇ m and not less than the particle size of the fine particles, the shape of a plurality of substantially spherical gloss adjusting protrusions based on the fine particles is ensured on the surface of the buffer layer. Can be maintained.
  • the texture is improved by controlling how gloss is generated, and the occurrence of white blur on the surface provided with the molding texture is suppressed. It is possible to provide a resin mold that can be used.
  • FIG. 5 is a cross-sectional view showing a state in which a resin molded product that has been injection-molded using a molding die that suppresses gloss by striking a bead-shaped blast is removed.
  • FIG. 1 is a cross-sectional view illustrating an example of a resin molding die according to the present invention
  • FIG. 2 is an enlarged cross-sectional view in which a buffer layer portion of the resin molding die shown in FIG. 1 is enlarged.
  • FIG. 3 is a cross-sectional view showing a state in which a resin molded product injection-molded using the resin molding die according to the present invention is removed.
  • Resin mold 10 includes a mold 12.
  • the mold 12 can be made of a material that can be heated to at least 150 ° C., and is formed using a metal material such as a steel material, aluminum, or ZAS, or a synthetic resin material, for example.
  • the mold surface 12a of the mold 12 is subjected to embossing, for example, by etching, and as a result, an embossing protrusion 14a and an embossing recess 14b are formed.
  • the maximum height T between the embossed convex portion 14a and the embossed concave portion 14b is 10 ⁇ m or more. This is because when the thickness is less than 10 ⁇ m, the embossed concave portion 14b is filled with the buffer layer 16 described later.
  • the mold 12 is provided with a draft for injection molding.
  • This draft angle is defined by the relationship between the maximum height T of the embossing convex portion 14a and the embossing concave portion 14b.
  • the embossing convex portion 14a and the embossing concave portion 14b When the maximum height T is 10 ⁇ m, it is set at about 1 degree.
  • the embossing process is a process for applying a concavo-convex pattern such as a leather texture, a geometric texture, and a satin texture.
  • the wrinkles include skin wrinkles, textures, woodgrains, pearskins, veins, scales, marbles, hairlines, geometric patterns, polished patterns, painted patterns, and the like.
  • this embossing process may give an uneven
  • a partially uneven pattern may be formed on the mold surface 12 a of the mold 12. In this case, the mold surface 12a of the mold 12 that has not been textured is a mirror surface.
  • the resin molding die 10 includes a buffer layer 16 formed on the entire mold surface 12 a of the molding die 12.
  • the buffer layer 16 may be formed only on a part of the mold surface 12 a of the mold 12.
  • the buffer layer 16 includes at least a thermosetting resin and fine particles 18.
  • the buffer layer 16 is preferably formed to have a thickness in the range of 1.0 ⁇ m to 20 ⁇ m. Further, the thickness of the buffer layer 16 is preferably equal to or larger than the particle diameter of the fine particles 18. Furthermore, the thickness of the buffer layer 16 is at least smaller than the maximum height T of the embossing convex portion 14a and the embossing concave portion 14b by embossing. This is because when the thickness of the buffer layer 16 is larger than the maximum height T of the embossing convex portion 14a and the embossing concave portion 14b, the resin molded product cannot be embossed.
  • Such a buffer layer 16 may be formed on both the core mold and the cavity mold, or the buffer layer 14 may be formed only on the cavity mold.
  • the thickness of the buffer layer 16 can be measured by, for example, an electromagnetic / overcurrent film thickness meter (manufactured by Sanko Electronics Co., Ltd., model number: SWT-9100).
  • the thermosetting resin used for the buffer layer 16 is required to have heat resistance, releasability, adhesion to the mold surface 12a of the mold 12, and wear resistance.
  • the heat resistance is preferably not melted at a temperature lower than 100 ° C., and the curing temperature of the thermosetting resin is set in accordance with the heat resistance temperature of the mold 12.
  • the buffer layer 16 is formed on the molding die 12 formed of a material having a low melting point such as aluminum or ZAS, it is cured in a temperature range of 100 ° C. or higher and 150 ° C. or lower in accordance with the heat resistance temperature of the mold material.
  • a thermosetting resin is used.
  • the abrasion resistance those having sufficient resistance to the flow of the resin melt during injection molding are desirable.
  • the thermosetting resin used for the buffer layer 16 is made of a material having high heat insulation.
  • a thermosetting resin having a thermal conductivity of 0.10 W / m ⁇ K or more and 0.99 W / m ⁇ K or less is used as the thermosetting resin used for the buffer layer 16.
  • the thermosetting resin used for the buffer layer 16 includes phenol resin, alkyd resin, melamine urea resin, epoxy resin, polyurethane resin, silicone resin, chlorinated rubber resin, vinyl acetate resin, acrylic resin, vinyl chloride resin, fluorine resin. Cellulose, polystyrene resin, etc. are used, and any of a single substance and a copolymer can be used.
  • the fine particles 18 contained in the buffer layer 16 a flexible urethane or acrylic powder is used.
  • the fine particles 18 are concentrated in the vicinity of the surface layer of the buffer layer 16.
  • those having a light specific gravity with respect to the thermosetting resin contained in the buffer layer 16 are used.
  • the fine particles 18 have a bulk specific gravity of 0.4 g / ml or more and 0.9 g / ml or less. If the bulk specific gravity is less than 0.4 g / ml, handling becomes difficult. On the other hand, if the bulk specific gravity is greater than 0.9 g / ml, the fine particles 18 are unlikely to be present in the vicinity of the surface layer of the buffer layer 16.
  • the fine particles 18 may have a true specific gravity of 1.0 g / cm 3 or more and 1.3 g / cm 3 or less. If the true specific gravity is less than 1.0 g / cm 3, handling becomes difficult. On the other hand, when the true specific gravity is larger than 1.3 g / cm 3, the fine particles 18 hardly exist in the vicinity of the surface layer of the buffer layer 16. The material of the fine particles 18 has higher heat resistance than the thermosetting resin used for the buffer layer 16. Further, the material of the fine particles 18 has solvent resistance to the thermosetting resin used for the buffer layer 16.
  • the fine particles 18 are substantially spherical, and the particle size thereof is, for example, in the range of 1.0 ⁇ m to 15 ⁇ m. This is because the thickness of the buffer layer 16 is 1.0 ⁇ m or more. Further, the particle size of the fine particles 18 may not be uniform but random. Furthermore, the fine particles 18 preferably have elasticity. The particle size of the fine particles 18 is smaller than the maximum height T of the embossing convex portion 14a and the embossing concave portion 14b by the embossing process, and therefore affects the shape of embossing applied to the resin molded product. Absent.
  • the fine particles 18 are concentrated near the surface (upper layer side) of the buffer layer 16. Therefore, as shown in FIG. 2, the fine particles 18 are formed on the surface of the buffer layer 16.
  • a plurality of substantially spherical gloss adjusting convex portions 20 based on the above are formed.
  • the protrusion height t1 from the surface of the buffer layer 16 in the plurality of gloss adjusting convex portions 20 is different in size depending on the gloss adjusting convex portion 20.
  • a part of the plurality of substantially spherical gloss adjustment convex portions 20 may be formed by exposing the fine particles 18 from the surface of the buffer layer 16.
  • a plane maintaining portion 22 is formed in a region where the gloss adjusting convex portion 20 is not formed.
  • the plane maintaining part 22 forms a substantially flat surface on the molding surface of the resin molded product.
  • the lower layer side of the buffer layer 16 has a small number of fine particles 18.
  • the particle size of the fine particles 18 can be measured by, for example, magnified observation with a microscope.
  • the forming die 12 that has been subjected to the texture processing is prepared.
  • the embossing convex portion 14 a and the embossing concave portion 14 b are formed on the mold surface 12 a of the mold 12.
  • a material that can be heated to at least 150 ° C. can be used.
  • a metal material such as a steel material, aluminum, or ZAS, or a synthetic resin material can be used.
  • the mold surface 12a of the mold 12 is subjected to a textured pattern such as leather texture, geometric texture, and textured texture as necessary.
  • the wrinkle pattern is selected from a leather wrinkle pattern, a textured pattern, a wood grain pattern, a satin pattern, a vein pattern, a scale pattern, a marble pattern, a hairline, a geometric pattern, a polished pattern, a painted pattern, and the like.
  • the mold surface 12a of the mold 12 is degreased and cleaned.
  • the buffer layer 16 is formed on the mold surface 12 a of the mold 12.
  • a thermosetting resin and fine particles 18 are prepared.
  • a mixed solution in which the prepared thermosetting resin and fine particles 18 are dispersed in a solvent is prepared.
  • thermosetting resin used for forming the buffer layer 16 examples include phenol resin, alkyd resin, melamine urea resin, epoxy resin, polyurethane resin, silicone resin, chlorinated rubber resin, vinyl acetate resin, acrylic resin, vinyl chloride resin, A fluororesin, a cellulose, a polystyrene resin, or the like is used, and any of a simple substance and a copolymer can be used.
  • the fine particles 18 contained in the buffer layer 16 a flexible urethane or acrylic powder is used.
  • the fine particles 18 those having a light specific gravity with respect to the thermosetting resin contained in the buffer layer 16 are used.
  • the fine particles 18 have a bulk specific gravity of 0.4 g / ml or more and 0.9 g / ml or less.
  • the fine particles 18 may have a true specific gravity of 1.0 g / cm 3 or more and 1.3 g / cm 3 or less.
  • the material of the fine particles 18 has higher heat resistance than the thermosetting resin used for the buffer layer 16. Further, the material of the fine particles 18 has solvent resistance to the thermosetting resin used for the buffer layer 16.
  • the particle size of the fine particles 18 is, for example, 1.0 ⁇ m or more and 15 ⁇ m or less, and is smaller than the maximum height of the embossing convex portion 14a and the embossing concave portion 14b formed by the embossing formed on the molding die 12.
  • Particles 18 with a particle size are selected.
  • the fine particles 18 are substantially spherical, and the particle diameter thereof may not be uniform and random. Furthermore, the fine particles 18 preferably have elasticity.
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether, n-butyl acetate, n-butyl alcohol, methyl alcohol, and ethylene glycol monomethyl ether acetate can be used.
  • the prepared mixture is applied to the mold surface 12a of the mold 12 by, for example, a spraying method so as to have a thickness of 1.0 ⁇ m or more and 20 ⁇ m or less.
  • the spraying conditions of the mixed solution for forming the buffer layer 16 include, for example, a coating pressure (air pressure) of 0.25 MPa, a spray gun aperture of 0.8 mm, and a coating distance of 15 cm to 40 cm. And it sprays from the perpendicular
  • the application place is, for example, a painting room.
  • the buffer layer 16 may be formed not only on the entire surface of the mold surface 12a of the mold 12 but also partially.
  • the buffer layer 16 is formed on the mold surface 12a of the mold 12 by firing the mold 12 coated with the mixed solution at a firing temperature of 100 ° C. to 150 ° C. for 2 hours to 5 hours.
  • the resin molding die 10 is obtained.
  • thermoplastic resin material molded using the present resin molding die 10 for example, polypropylene (PP), acrylonitrile, butadiene, an ABS resin that is a copolymerized synthetic resin of styrene, polyvinyl chloride (PVC), or the like is used. be able to.
  • the thickness of the resin molded product is not particularly limited, and can be molded to an arbitrary thickness.
  • a plurality of substantially spherical concave portions 110 are formed on the surface of the resin molded product 100 molded using the resin molding die 10.
  • the depth of the inner surface of the plurality of substantially spherical recesses 110 differs depending on each of the substantially spherical recesses 110.
  • the resin molding die 1 in which the fine uneven surface 3 is formed on the surface of the molding die is molded by hitting beads or sand. In this case, unevenness occurs in the region where glass beads, sand, or the like is hit, or the mold surface of the mold 2 is cut off.
  • the resin molded product 4 is molded using the molding die 2 having such a surface, when the resin molded product 4 is removed from the molding die 1 due to shrinkage during cooling of the resin molded product 4, Scratches due to galling, pulling, or rubbing were likely to occur.
  • the concave portion 110 formed on the embossed surface of the resin molded product 100 is formed in a substantially spherical shape. Even if 100 shrinks during cooling, it is possible to avoid generation of scratches on the surface of the resin molded product 100 due to pulling or rubbing based on galling when the resin molded product 100 is removed from the resin molding die 10.
  • the glossy resin molded product 100 can be obtained, and further, the resin molded product 100 in which white blurring is suppressed from appearing on the textured surface can be obtained.
  • the incident light is reflected on the inner surface of the substantially spherical concave portion 110 of the resin molded product 100, so Diffuse light is reflected in the direction. Since incident light is diffusely reflected, less reflected light reaches the observer's eyes. Since a large number of substantially spherical concave portions 110 having different depths are formed on the surface of the resin molded product 100, the gloss (gloss value) of the entire resin molded product 100 is lowered. Thus, since the surface of the resin molded product 100 molded using the resin molding die 10 according to the present embodiment exhibits a dull surface property, the resin molded product is further coated. There is no need, and the desired resin molded product 100 with improved texture can be obtained by reducing the gloss.
  • the particle size of the fine particles 18 contained in the buffer layer 16 is 1.0 ⁇ m or more and 15 ⁇ m or less, the embossing recess 14 b formed by embossing is filled. Therefore, the occurrence of galling or the like can be avoided while maintaining the textured shape of the resin molded product 100.
  • the thickness of the buffer layer 16 is not less than 1.0 ⁇ m and not more than 20 ⁇ m and is not less than the particle size of the fine particles 18, and therefore, based on the fine particles 18 on the surface of the buffer layer 16.
  • the shape of the plurality of substantially spherical gloss adjustment convex portions can be reliably maintained.
  • test plate of a resin molding die in which a buffer layer 16 is formed on the molding die 12 and a test plate of a resin molding die in which a buffer layer is not formed on the molding die are prepared as comparative examples, and each resin molding die
  • Resin mold (Example)
  • the base materials of the test plates of the molds of Examples 1 to 7 were all carbon steel for machine structure (S50C). Moreover, the size of the test plate of the resin molding die of Examples 1 to 7 is 220 mm long, 320 mm wide, and 10 mm thick. Moreover, in Example 1 thru
  • the resin contained in these buffer layers was an acrylic resin, and the fine particles were urethane fine particles having a bulk specific gravity of 0.4 g / ml to 0.9 g / ml.
  • the particle diameter of the fine particles was 1.0 ⁇ m or more and 12 ⁇ m or less.
  • the thickness of the buffer layer formed on the mold surface of the test plates of the molds of Examples 1 to 7 was set in the range of 1.0 ⁇ m to 20 ⁇ m.
  • the spraying conditions of the mixed solution for forming the buffer layer were as follows.
  • Application pressure air pressure: 0.25 MPa -Spray gun caliber: 0.8mm ⁇ Application distance: 30 mm or more and 40 mm or less ⁇
  • Direction of application as vertical as possible to the mold surface of the mold ⁇
  • Application place painting room ⁇
  • Application thickness 18 ⁇ m
  • test plate of the molding die of Comparative Example 1 is subjected to a series of graining including surface treatment with sandblasting and glass beads, which is the same as the graining applied to the molding die of Example 1, and a buffer layer is provided.
  • the test board is not formed.
  • the test plates of the molds of Comparative Examples 2 to 7 are a series of textures including sandblasting and surface processing with glass beads similar to the texture processing applied to each of Examples 2 to 7. This is a test plate that has been processed and has no buffer layer.
  • the base materials of the molds of Comparative Examples 1 to 7 were all made of carbon steel for machine structure (S50C).
  • the size of the test plates of Comparative Examples 1 to 7 was also the same as the size of the test plates of Examples 1 to 7.
  • FIG. 4 shows the appearance of a test plate of a resin molded product used in the experiment, (a) is a front view, and (b) is a side view.
  • Injection molding for molding the resin molded products of Examples 1 to 7 and Comparative Examples 1 to 7 was performed by an existing injection molding method.
  • the materials of the resin molded products of Examples 1 to 7 and Comparative Examples 1 to 7 were all polypropylene (PP).
  • the sizes of the resin molded products of Examples 1 to 7 and Comparative Examples 1 to 7 were 200 mm long, 300 mm wide, and about 3 mm thick.
  • the gloss value (Gs (60 °) gloss) of the mold surface 12a of the test plate of the mold 12 was measured using a gloss meter manufactured by Konica Minolta (trade name: UNI GLOSS GM-60).
  • Gs (60 °) means specular gloss (degree) with a measurement angle of 60 degrees.
  • this measured value was converted to a percentage when the glossiness of the reference surface was 100, and expressed as a specular glossiness.
  • the reference surface a black glass reference surface having a constant refractive index of 1.567 over the entire visible wavelength range defined in the above standard is used.
  • the incident angle is 60 °
  • the specular reflectance is 10%.
  • a degree of 100 was defined.
  • the gloss value (Gs (60 °) glossiness) of the surface of the test plate for the resin molded product is the same as the method for measuring the gloss value of the mold surface of the test plate of the mold, and manufactured by Konica Minolta A gloss meter (trade name: UNI GLOSS GM-60) was used to measure according to JIS Z 8741.
  • Table 1 shows the evaluation results of Examples 1 to 7.
  • Table 2 shows the evaluation results of Comparative Examples 1 to 7.
  • the range is 1.4 to 1.7 in Examples 1 to 7, and 5 in Comparative Examples 1 to 7. From 0.0 to 11.0, it was confirmed that the gloss was greatly reduced by forming the buffer layer on the mold surface of the mold. Further, focusing on the average value of the gloss value on the embossed surface of the resin molded product, it is in the range of 1.4 to 2.0 in Examples 1 to 7, and 2 in Comparative Examples 1 to 7. .3 to 4.3, it was confirmed that the gloss of the resin molded product injection-molded using the resin molding die having the buffer layer formed on the mold surface is greatly reduced.
  • FIG. 5 is a schematic view showing an experimental state performed for confirming the occurrence of white blur in the resin molded product used in the experiment. That is, first, the test plate 200 was tilted 30 ° from the reference plane. And the test board 200 was image
  • FIG. 5 is a schematic view showing an experimental state performed for confirming the occurrence of white blur in the resin molded product used in the experiment. That is, first, the test plate 200 was tilted 30 ° from the reference plane. And the test board 200 was image
  • the buffer layer formed on the mold surface of the mold contains fine particles having a bulk specific gravity of 0.4 g / ml or more and 0.9 g / ml or less, and a plurality of substantially spherical protrusions based on the fine particles. It was confirmed that by forming the portion on the surface of the buffer layer, it is possible to obtain a resin molded product in which the gloss is lowered on the textured surface of the resin molded product and generation of white blur is suppressed.

Abstract

シボを有する樹脂成形品において、艶の生じ方を制御することで質感を向上させ、かつ樹脂成形品を成形シボが設けられた面に白ボケの発現されることが抑制しうる樹脂成形用型を提供する。 本願の樹脂成形用型10は、シボを有する樹脂成形品を成形するための樹脂成形用型である。樹脂成形用型10は、成形型12と、成形型12の内側の型面に形成される緩衝層16とを含む。緩衝層16は熱硬化性樹脂と略球状の微粒子18との混合物で形成される。微粒子18は、かさ比重が0.4g/ml以上0.9g/ml以下であり、緩衝層16の表面において、微粒子18に基づく複数の略球状の光沢調整用凸部20が形成される。

Description

樹脂成形用型
 本発明は、樹脂成形用型に関し、特に、シボが設けられた面における外観不良の発生の抑制された樹脂成形品を成形するための樹脂成形用型に関する。
 従来、たとえば、自動車の内装部品としての樹脂成形品、特に、窓回りに配置されるインストルメント・パネルやガーニッシュ等には、高級感が求められ、また、艶を落として窓映りを防止しうる樹脂成形品が望まれている。このような樹脂成形品は、シボ加工と呼ばれる表面加工を成形型に施し、該成形型を用いて成形される。これにより、樹脂成形品の表面には、シボと呼ばれる微小な凹凸模様が設けられる。そうすると、シボが設けられた面は、艶が落とされ(すなわち、グロス値が低下し)、その表面に微妙な陰影や手触りが付与される。
 上述したようなシボを得るために、エッチング加工による梨地シボやサンドブラスト加工によって、シボ加工された成形型の内側面をさらに荒らすことにより、グロス値を低下させる処理を行っていた(たとえば、特許文献1を参照)。
特開平11-320627号公報
横井秀俊,増田範通、「シボ面における転写ムラ生成機構の解析」(第23回プラスチック成形加工学会年次大会講演予稿集、第131頁-第132頁、2012年)
 しかしながら、サンドブラストにより、シボ加工された成形型の内側面を荒らす処理を行った場合、ガラスビーズを打ち付ける領域にムラが生じたり、成形型の内側面が切り立った状態となったりする。そのため、樹脂成形品が冷えることにより収縮し、成形型から樹脂成形品を抜く際の、引き抜き方向に対する成形型の内側面における出っ張りに起因する傷(以下、かじりという)、また、樹脂成形品に対する引っ張りあるいは擦れによる傷が生じ、樹脂成形品の表面に対して、全面的に安定して艶を落とすことが困難であった。
 さらに、近年、上述したようなシボが設けられた一部の樹脂成形品において、シボを設けた面をある特定の方向から見ると白くぼやけて見える、いわゆる「白ボケ」(あるいは、転写ムラ)と呼ばれる外観不良が現れる場合があることが明らかとなってきた(たとえば、非特許文献1)。このような「白ボケ」は、たとえば、シボの転写形状が部分的に傾斜しており、傾斜方向から照射されると輝度が高くなることで発現すると言われているが、この「白ボケ」を抑制するための手段は、未だ明確には確立されていないのが現状である。
 それゆえに、この発明の主たる目的は、シボを有する樹脂成形品において、艶の生じ方を制御することで質感を向上させ、かつ樹脂成形品を成形シボが設けられた面に白ボケの発現されることが抑制しうる樹脂成形用型を提供することである。
 この発明に係る樹脂成形用型は、シボを有する樹脂成形品を成形するための樹脂成形用型であって、樹脂成形用型は、成形型と、成形型の型面に形成される緩衝層とを含み、緩衝層は熱硬化性樹脂と略球状の微粒子との混合物で形成され、微粒子は、かさ比重が0.4g/ml以上0.9g/ml以下であり、緩衝層の表面において、微粒子に基づく複数の略球状の光沢調整用凸部が形成されることを特徴とする、樹脂成形用型である。
 また、この発明に係る樹脂成形用型では、微粒子の粒径が、1.0μm以上15μm以下であることが好ましい。
 さらに、この発明に係る緩衝層の厚みが1.0μm以上20μm以下であり、かつ微粒子の粒径以上であることが好ましい。
 この発明に係る樹脂成形用型によれば、樹脂成形用型の緩衝層の表面において、略球状の光沢調整用凸部が形成されることから、成形型の型面が切り立った状態が生じ難い。したがって、この樹脂成形用型を用いて射出成形することにより樹脂成形品を成形すると、樹脂成形品のシボ形成面に形成される凹部が略球状に形成されるため、樹脂成形品が冷却時に収縮しても、樹脂成形用型から抜くときのかじりに基づく、引っ張りあるいは擦れによる樹脂成形品の表面に生ずる傷の発生を回避することができることから、艶の落とされた樹脂成形品を得ることができ、さらに、シボ形成面に白ボケの発現されることが抑制された樹脂成形品を得ることができる。
 また、この樹脂成形用型を用いて成形された樹脂成形品の表面に光が入射すると、入射光が、樹脂成形品の略球状の凹部の内表面に反射して、いろいろな方向に反射する拡散光となる。入射光は、乱反射するので、観察者の目に届く反射光は少なくなる。樹脂成形品の表面には、深さの異なる略球状の凹部が多数形成されるため、樹脂成形品全体の光沢(グロス値)が低下する。
 このように、本発明に係る樹脂成形用型を用いて成形された樹脂成形品の表面は、艶のない表面性状を示すことから、当該樹脂成形品につき、さらに、塗装を行う必要がなく、艶が落とされることで質感の向上した所望の樹脂成形品を得ることができる。
 また、緩衝層に含有される微粒子の粒径が1.0μm以上15μm以下である場合、シボ加工により形成される凹部が埋められることがないため、樹脂成形品のシボ模様の形状を維持しつつ、かじり等の発生を回避しうる。
 さらに、緩衝層の厚みが、1.0μm以上20μm以下であり、かつ微粒子の粒径以上である場合、緩衝層の表面における、微粒子に基づく複数の略球状の光沢調整用凸部の形状を確実に維持することができる。
 この発明によれば、シボを有する樹脂成形品において、艶の生じ方を制御することで質感を向上させ、かつ樹脂成形品を成形シボが設けられた面に白ボケの発現されることが抑制しうる樹脂成形用型を提供することができる。
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。
この発明の樹脂成形用型の一例を示す断面図解図である。 図1に示す樹脂成形用型の緩衝層の部分を拡大した拡大断面図である。 この発明に係る樹脂成形用型を用いて射出成形された樹脂成形品を抜いた状態を示す断面図解図である。 実験に用いた樹脂成形品のテスト板の外観を示し、(a)は正面図であり、(b)は側面図を示す。 実験に用いた樹脂成形品の白ボケの発生の有無を確認するために行った実験状態を示した模式図である。 ビーズ状のブラストを打ちつけることによって、艶を抑えるとした成形型を用いて射出成形された樹脂成形品を抜いた状態を示す断面図解図である。
1.樹脂成形用型
 図1は、この発明の樹脂成形用型の一例を示す断面図解図であり、図2は、図1に示す樹脂成形用型の緩衝層の部分を拡大した拡大断面図である。図3は、この発明に係る樹脂成形用型を用いて射出成形された樹脂成形品を抜いた状態を示す断面図解図である。
 樹脂成形用型10は、成形型12を含む。
 成形型12は、少なくとも150℃に加熱可能な素材が使用可能であり、たとえば、鉄鋼材料、アルミニウム、ZASなどの金属材料や合成樹脂材料を用いて形成される。成形型12の型面12aは、たとえば、エッチングによりシボ加工が施され、その結果、シボ成形用凸部14aとシボ成形用凹部14bとが形成されている。このシボ加工によるシボ成形用凸部14aとシボ成形用凹部14bとの最大高さTは、10μm以上であることが好ましい。10μm未満であると、後述する緩衝層16によりシボ成形用凹部14bの部分が埋められてしまうからである。
 また、成形型12には射出成形のための抜き勾配が設けられている。この抜き勾配は、シボ加工によるシボ成形用凸部14aとシボ成形用凹部14bとの最大高さTとの関係で規定されており、たとえば、シボ成形用凸部14aとシボ成形用凹部14bとの最大高さTが10μmの場合、約1度で設定される。
 シボ加工は、皮シボ、幾何学シボ、梨地シボ等の凹凸形状模様を施す加工である。シボは、皮シボ模様、肌理模様や木目模様、梨地模様、葉脈模様、鱗模様、大理石模様、ヘアライン、幾何学模様、研磨模様、塗装模様などが含まれる。
 なお、このシボ加工は、エッチング以外の方法により凹凸状の模様が施されてもよく、たとえば、彫刻や機械加工または研磨目により施されてもよい。また、シボ加工は、成形型12の型面12aにおいて部分的に凹凸状の模様を施すようにしてよい。この場合は、シボ加工が施されていない成形型12の型面12aは、鏡面となる。
 樹脂成形用型10は、成形型12の型面12aの全面に形成される、緩衝層16を含む。なお、緩衝層16は、成形型12の型面12aの一部にのみ形成されていてもよい。
 緩衝層16は、少なくとも熱硬化性樹脂と微粒子18とを含む。緩衝層16は、1.0μm以上20μm以下の範囲の厚みとなるように形成されることが好ましい。また、緩衝層16の厚みは、微粒子18の粒径以上の厚みであることが好ましい。さらに、緩衝層16の厚みは、少なくとも、シボ加工によるシボ成形用凸部14aとシボ成形用凹部14bとの最大高さTよりも小さい。緩衝層16の厚みがシボ加工によるシボ成形用凸部14aとシボ成形用凹部14bとの最大高さTより大きいと、樹脂成形品に、シボ加工を施せなくなるためである。このような緩衝層16は、コア型およびキャビティ型の両方に形成されてもよいし、キャビティ型にのみ緩衝層14を形成してもよい。
 なお、緩衝層16の厚みは、たとえば、電磁・過電流式膜厚計(サンコウ電子社製,型番:SWT-9100)によって計測することができる。
 緩衝層16に用いられる熱硬化性樹脂としては、耐熱性、離形性、成形型12の型面12aとの接着性、耐摩耗性等が要求される。耐熱性としては、100℃未満の温度で溶融しないものが望ましく、熱硬化性樹脂の硬化温度が、成形型12の耐熱温度に合わせて設定される。たとえば、アルミニウムやZASなどの融点の低い材料で形成された成形型12に緩衝層16を形成する場合には、型材料の耐熱温度に合わせて、100℃以上150℃以下の温度範囲で硬化する熱硬化性樹脂が用いられる。耐摩耗性としては、射出成形時の樹脂の溶融物の流れに対し、耐性が充分にあるものが望ましい。たとえば、合成樹脂による成形、たとえば、射出成形に際し、1000ショット以上の成形に耐え得るものが望ましい。樹脂成形品の成形にあたっては、同一の成形型12で数多くの樹脂成形品を成形するためである。
 また、上述したような緩衝層16対する要求を満たすために、緩衝層16に用いられる熱硬化性樹脂は、断熱性が高い材料が用いられる。たとえば、緩衝層16に用いられる熱硬化性樹脂としては、熱伝導率が、0.10W/m・K以上0.99W/m・K以下の熱硬化型樹脂が用いられる。
 緩衝層16に用いられる熱硬化性樹脂としては、フェノール樹脂、アルキド樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、塩化ゴム系樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、セルロース、ポリスチレン樹脂等が用いられ、単体および共重合体のいずれも用いることができる。
 緩衝層16に含有される微粒子18は、柔軟性を有するウレタンあるいはアクリルの粉粒体が用いられる。微粒子18は、緩衝層16の表層近傍に集中して存在する。微粒子18は、緩衝層16に含有される熱硬化性樹脂に対して、比重の軽いものが用いられる。微粒子18は、かさ比重が0.4g/ml以上0.9g/ml以下である。かさ比重が0.4g/mlよりも小さいと取り扱いが困難になる。また、かさ比重が0.9g/mlよりも大きいと、微粒子18が、緩衝層16の表層近傍に存在し難くなる。そして、微粒子18は、真比重が1.0g/cm3以上1.3g/cm3以下であってもよい。真比重が1.0g/cm3よりも小さいと取り扱いが困難になる。また真比重が1.3g/cm3よりも大きいと、微粒子18が、緩衝層16の表層近傍に存在し難くなる。
 また、微粒子18の材料は、緩衝層16に用いられる熱硬化性樹脂よりも高い耐熱性を有する。さらに、微粒子18の材料は、緩衝層16に用いられる熱硬化性樹脂に対する耐溶剤性を有する。
 また、微粒子18は略球状であり、その粒径は、たとえば、1.0μm以上15μm以下の範囲の大きさである。緩衝層16の厚みが1.0μm以上であるためである。また、微粒子18の粒径は、均一でなくランダムでもよい。さらに、微粒子18は、弾力性を有することが好ましい。なお、微粒子18の粒径は、シボ加工によるシボ成形用凸部14aとシボ成形用凹部14bとの最大高さTよりも小さいため、樹脂成形品に施されるシボ加工の形状に影響を与えない。
 このような微粒子18を用いることにより、緩衝層16の表面付近(上層側)には微粒子18が集中的に存在するため、図2に示すように、緩衝層16の表面には、この微粒子18に基づく複数の略球状の光沢調整用凸部20が形成される。この複数の光沢調整用凸部20における緩衝層16の表面からの突出高さt1は、光沢調整用凸部20それぞれにより異なる大きさである。また、複数の略球状の光沢調整用凸部20のうちの一部は、微粒子18が、緩衝層16の表面から露出することにより形成されてもよい。また、緩衝層16の表面には、光沢調整用凸部20の形成されない領域において、平面維持部22が形成される。平面維持部22は、樹脂成形品の成形面において、略平面を形成する。一方、緩衝層16における下層側は、微粒子18の存在数が少ない。
 なお、微粒子18の粒径は、たとえば、マイクロスコープによる拡大観察により測定することができる。
2.樹脂成形用型の製造方法
 次に、本発明にかかる樹脂成形用型の製造方法について説明する。
 まず、シボ加工が施された成形型12が準備される。このシボ加工により、成形型12の型面12aには、シボ成形用凸部14aとシボ成形用凹部14bとが形成されている。
  成形型12の母材は、少なくとも150℃に加熱可能な素材が使用可能であり、たとえば、鉄鋼材料、アルミニウム、ZASなどの金属材料や合成樹脂材料を用いることができる。
 また、成形型12の型面12aには、必要に応じて、皮シボ、幾何学シボ、梨地シボ等の凹凸形状模様のシボ加工が施される。シボ模様は、皮シボ模様、肌理模様や木目模様、梨地模様、葉脈模様、鱗模様、大理石模様、ヘアライン、幾何学模様、研磨模様、塗装模様などから選択される。
 そして、後の工程において緩衝層16を形成するために、成形型12の型面12aが脱脂・洗浄される。
 次に、緩衝層16が成形型12の型面12aに形成される。
 まず、緩衝層16を形成するために、熱硬化性樹脂および微粒子18が準備される。そして、準備された熱硬化性樹脂および微粒子18を溶剤に分散した混合溶液が準備される。
 緩衝層16の形成に用いられる熱硬化性樹脂としては、フェノール樹脂、アルキド樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、塩化ゴム系樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、セルロース、ポリスチレン樹脂等が用いられ、単体および共重合体のいずれも用いることができる。
 緩衝層16に含有される微粒子18は、柔軟性を有するウレタンあるいはアクリルの粉粒体が用いられる。微粒子18は、緩衝層16に含有される熱硬化性樹脂に対して、比重が軽いものが用いられる。微粒子18は、かさ比重が0.4g/ml以上0.9g/ml以下である。そして、微粒子18は、真比重が1.0g/cm3以上1.3g/cm3以下であってもよい。また、微粒子18の材料は、緩衝層16に用いられる熱硬化性樹脂よりも高い耐熱性を有する。さらに、微粒子18の材料は、緩衝層16に用いられる熱硬化性樹脂に対する耐溶剤性を有する。
 また、微粒子18の粒径は、たとえば、1.0μm以上15μm以下であり、成形型12に形成されるこのシボ加工によるシボ成形用凸部14aとシボ成形用凹部14bとの最大高さよりも小さい粒径の微粒子18が選択される。また、微粒子18は略球状であり、その粒径は、均一でなくランダムでもよい。さらに、微粒子18は、弾力性を有することが好ましい。
 緩衝層16の形成に用いられる溶剤としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、酢酸n-ブチル、n-ブチルアルコール、メチルアルコール、エチレングリコールモノメチルエーテルアセテートを用いることができる。
 続いて、緩衝層16を形成するために、準備された混合物は、1.0μm以上20μm以下の厚みとなるように、たとえば、吹き付け法により、成形型12の型面12aに塗工される。
 緩衝層16を形成するための混合溶液の吹き付け条件としては、たとえば、塗布圧力(空気圧)が0.25MPa、スプレーガンの口径が0.8mm、塗布距離が15cm以上40cm以下の範囲である。そして、コーティングするための成形型12の型面12aに対してできるだけ鉛直から吹き付けるようにする。緩衝層16が、成形型12の型面12aに均一にコーティングされるように形成させるためである。塗布する場所は、たとえば、塗装ルームである。
 なお、また、緩衝層16の形成を、成形型12の型面12aの全体面だけでなく、部分的に緩衝層16を形成してもよい。
 その後、混合溶液が塗工された成形型12を、焼成温度を100℃以上150℃以下とし、2時間以上5時間以下で焼成することにより、成形型12の型面12aに緩衝層16が形成されて、樹脂成形用型10が得られる。
 3.樹脂成形品
 この樹脂成形用型10を用いて、加熱溶融された熱可塑性樹脂で射出成形を行う。本樹脂成形用型10を用いて成形される熱可塑性樹脂の材料は、たとえば、ポリプロピレン(PP)、アクリロニトリル、ブタジエン、スチレンの共重合合成樹脂であるABS樹脂、ポリ塩化ビニル(PVC)等を用いることができる。また、樹脂成形品の厚みは、特に制限はなく、任意の厚みに成形することができる。
 この樹脂成形用型10を用いて成形される樹脂成形品100の表面には、図3に示すように、複数の略球状の凹部110が複数形成される。この複数の略球状の凹部110の内表面の深さは、略球状の凹部110それぞれにより異なる。
 従来の樹脂成形用型1を用いて、シボの形成された樹脂成形品を成形する際には、その樹脂成形品の表面の艶を落とすために、成形型2の型面に対して、ガラスビーズや砂等を打ち付けることによって、図6に示すように、成形型の表面に微細な凹凸面3を形成した樹脂成形用型1を用いて成形していた。この場合、ガラスビーズや砂等を打ち付ける領域にムラが生じたり、成形型2の型面が切り立った状態が生じたりしていた。このような表面を有する成形型2を用いて樹脂成形品4を成形すると、この樹脂成形品4の冷却時の収縮によって、成形型1から樹脂成形品4を抜く際に、樹脂成形品4にかじりや引っ張りあるいは擦れによる傷が生じ易かった。そのため、この傷により、樹脂成形品4の表面に対して、全面的に安定して艶を落とすことが困難であり、また、白ボケの発生する原因ともなっていた。
 この樹脂成形用型10によれば、樹脂成形用型10から樹脂成形品100を抜く際に、シボを有する樹脂成形品100に対して、かじりや引っ張りあるいは擦れによる傷が生ずるのを回避することができ、シボが設けられた面に白ボケの発現されることが抑制された樹脂成形品100が得られる。すなわち、図3に示すように、緩衝層16の表面において略球状の光沢調整用凸部20が形成されることから、成形型12の型面12aにおいて切り立った状態が生じ難い。
 したがって、この樹脂成形用型10を用いて射出成形することにより樹脂成形品100を成形すると、樹脂成形品100のシボ形成面に形成される凹部110が略球状に形成されるため、樹脂成形品100が冷却時に収縮しても、樹脂成形品100を樹脂成形用型10から抜くときのかじりに基づく、引っ張りあるいは擦れによる樹脂成形品100の表面に生ずる傷の発生を回避することができることから、艶の落とされた樹脂成形品100を得ることができ、さらに、シボ形成面に白ボケの発現されることが抑制された樹脂成形品100を得ることができる。
 また、この樹脂成形用型10を用いて成形された樹脂成形品100の表面に光が入射すると、入射光が、樹脂成形品100の略球状の凹部110の内表面に反射して、いろいろな方向に反射する拡散光となる。入射光は、乱反射するので、観察者の目に届く反射光は少なくなる。樹脂成形品100の表面には、深さの異なる略球状の凹部110が多数形成されるため、樹脂成形品100全体の光沢(グロス値)が低下する。
 このように、本実施の形態に係る樹脂成形用型10を用いて成形された樹脂成形品100の表面は、艶のない表面性状を示すことから、当該樹脂成形品につき、さらに、塗装を行う必要がなく、艶が落とされることで質感の向上した所望の樹脂成形品100を得ることができる。
 また、この樹脂成形用型10によれば、緩衝層16に含有される微粒子18の粒径が1.0μm以上15μm以下であるので、シボ加工により形成されるシボ成形用凹部14bが埋められることがないため、樹脂成形品100のシボ模様の形状を維持しつつ、かじり等の発生を回避しうる。
 さらに、この樹脂成形用型10によれば、緩衝層16の厚みが、1.0μm以上20μm以下であり、かつ微粒子18の粒径以上であるので、緩衝層16の表面における、微粒子18に基づく複数の略球状の光沢調整用凸部の形状を確実に維持することができる。
(実験例)
 実施例として成形型12に緩衝層16を形成した樹脂成形用型のテスト板と比較例として成形型に緩衝層を形成しない樹脂成形用型のテスト板とを準備し、それぞれの樹脂成形用型のテスト板およびそれらの樹脂成形用型で成形された樹脂成形品のテスト板を評価する実験を行った。評価は、樹脂成形用型のテスト板の型面および樹脂成形品のテスト板のシボ形成面のグロス値を計測することにより行った。さらに、樹脂成形品のテスト板のシボ形成面における白ボケの発生の有無を確認することにより評価を行った。
1.樹脂成形用型
(実施例)
 実施例1ないし実施例7の成形型のテスト板の母材は、すべて機械構造用炭素鋼(S50C)とした。また、実施例1ないし実施例7の樹脂成形用型のテスト板の大きさは、縦220mm、横320mm、厚さ10mmである。
 また、実施例1ないし実施例7では、従来の方法により、それぞれ異なる模様のシボ加工を施した。なお、実施例1ないし実施例7において、このシボ加工によるシボ成形用凸部とシボ成形用凹部との最大高さTは、50μm以上とした。そして、実施例1ないし実施例7の成形型のテスト板における型面には、緩衝層を形成した。これらの緩衝層に含有される樹脂は、アクリル樹脂とし、微粒子は、かさ比重が0.4g/ml以上0.9g/ml以下のウレタンの微粒子とした。また、微粒子の粒径は、1.0μm以上12μm以下の微粒子とした。また、実施例1ないし実施例7の成形型のテスト板における型面に形成される緩衝層の厚みは、1.0μm以上20μm以下の範囲内とした。
 実施例1ないし実施例7において、緩衝層を形成するための混合溶液の吹き付け条件は次の通りとした。
 ・塗布圧力(空気圧):0.25MPa
 ・スプレーガンの口径:0.8mm
 ・塗布距離:30mm以上40mm以下
 ・塗布向き:成形型の型面に対してできるだけ鉛直
 ・塗布場所:塗装ルーム
 ・塗布厚み:18μm
(比較例)
 比較例1の成形型のテスト板は、実施例1の成形型に施されたシボ加工と同じ、サンドブラストおよびガラスビーズによる表面加工を含む一連のシボ加工が施されており、かつ、緩衝層が形成されていないテスト板である。以下同様に、比較例2ないし比較例7の成形型のテスト板は、実施例2ないし実施例7のそれぞれに施されたシボ加工と同様の、サンドブラストおよびガラスビーズによる表面加工を含む一連のシボ加工が施されており、かつ、緩衝層が形成されていないテスト板である。また、比較例1ないし比較例7の成形型の母材も、すべて機械構造用炭素鋼(S50C)とした。比較例1ないし比較例7のテスト板の大きさも、実施例1ないし実施例7のテスト板の大きさと同一とした。
2.樹脂成形品
 図4は、実験に用いた樹脂成形品のテスト板の外観を示し、(a)は正面図であり、(b)は側面図を示す。
 実施例1ないし実施例7および比較例1ないし比較例7の樹脂成形品の成形のための射出成形は、既存の射出成形方法で行った。また、実施例1ないし実施例7および比較例1ないし比較例7の樹脂成形品の材料は、すべてポリプロピレン(PP)とした。また、実施例1ないし実施例7および比較例1ないし比較例7の樹脂成形品の大きさは、縦200mm、横300mm、厚み約3mmとした。
(計測方法)
 成形型12のテスト板の型面12aのグロス値(Gs(60°)の光沢度)は、コニカミノルタ社製光沢計(商品名:UNI GLOSS GM-60)を用いて計測した。Gs(60°)は、測定角60度の鏡面光沢(度)を意味する。
 鏡面光沢度は、JIS Z8741-1997「鏡面光沢度-測定方法」に規定された測定方法に準じて、下記の方法で測定した。すなわち、前記規格に準拠する鏡面光沢度測定装置を用いて入射角=60°の条件で、表面の反射率を測定した。次に、この測定値を、基準面の光沢度を100としたときの百分率数に換算して鏡面光沢度として表わした。基準面としては、前記規格に規定された、屈折率が可視波長範囲全域にわたって一定値1.567である黒色ガラス基準面を用い、入射角=60°のときは、鏡面反射率10%を光沢度100と規定した。測定を行うと前記の換算を自動的に行って、鏡面光沢度を出力する機能を有する鏡面光沢測定装置であるコニカミノルタ社製光沢計(商品名:UNI GLOSS GM-60)を用いて、入射角=60°の条件で、テスト板表面各部をN=5で測定し、その平均値を各テスト板表面の鏡面光沢度とした。なお、グロス値(光沢度)が低いほど、艶が落ちた状態であることを意味している。
 また、樹脂成形品にかかるテスト板の表面のグロス値(Gs(60°)の光沢度)も、成形型のテスト板の型面のグロス値の計測方法と同様の方法とし、コニカミノルタ社製光沢計(商品名:UNI GLOSS GM-60)を用いて、JIS Z 8741に従いを計測した。
 表1は、実施例1ないし実施例7の評価結果を示す。
 また、表2は、比較例1ないし比較例7の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 成形型のシボ加工された型面におけるグロス値の平均値に着目すると、実施例1ないし実施例7では、1.4から1.7の範囲であり、比較例1ないし比較例7では、5.0から11.0であることから、緩衝層を成形型の型面に形成することで、艶が大きく落ちることが確認された。
 また、樹脂成形品のシボ形成面におけるグロス値の平均値に着目すると、実施例1ないし実施例7では、1.4から2.0の範囲であり、比較例1ないし比較例7では、2.3から4.3であることから、緩衝層を成形型の型面に形成した樹脂成形用型を用いて射出成形された樹脂成形品の方が、艶が大きく落ちることが確認された。
 続いて、樹脂成形品のテスト板のシボ形成面における白ボケの発生の有無を確認した。
 白ボケの発生の有無の確認は、樹脂成形品のテスト板を所定の条件によりカメラで撮影し、それぞれ目視で確認した。樹脂成形品のテスト板のシボ成形面に対する撮影は、図5に示すような条件により行った。図5は、実験に用いた樹脂成形品の白ボケの発生の有無を確認するために行った実験状態を示した模式図である。すなわち、まず、テスト板200を基準面から30°傾けた。そして、太陽光Lをテスト板200のグロス値を計測する面に照射させた状態で、カメラCにより基準面に対して平行となる向きでテスト板200を撮影した。
 白ボケの発生の有無を確認した結果、実施例1ないし実施例7の樹脂成形品のテスト板におけるシボ形成面では、いずれも白ボケは発生しなかった。一方、比較例1ないし比較例7の樹脂成形品のテスト板におけるシボ形成面では、いずれも広い範囲で白ボケが発生しているのが確認された。
 以上の評価結果より、成形型の型面に形成される緩衝層が、かさ比重が0.4g/ml以上0.9g/ml以下の微粒子を含有し、該微粒子に基づく複数の略球状の凸部が緩衝層の表面に形成されることで、樹脂成形品のシボ形成面において艶が落ちており、かつ白ボケの発生も抑制された樹脂成形品の得られることが確認された。
 10 樹脂成形用型
 12 成形型
 12a 型面
 14a シボ成形用凸部
 14b シボ成形用凹部
 16 緩衝層
 18 微粒子
 20 光沢調整用凸部
 22 平面維持部
 100 樹脂成形品
 110 凹部
 T シボ成形用凸部とシボ成形用凹部との最大高さ
 t1 光沢調整用凸部における緩衝層16の表面からの突出高さ
 L 太陽光
 C カメラ

Claims (3)

  1.  シボを有する樹脂成形品を成形するための樹脂成形用型であって、
     前記樹脂成形用型は、
     成形型と、前記成形型の型面に形成される緩衝層とを含み、
      前記緩衝層は熱硬化性樹脂と略球状の微粒子との混合物で形成され、
      前記微粒子は、かさ比重が0.4g/ml以上0.9g/ml以下であり、
     前記緩衝層の表面において、前記微粒子に基づく複数の略球状の光沢調整用凸部が形成されることを特徴とする、樹脂成形用型。
  2.  前記微粒子の粒径は、1.0μm以上15μm以下であることを特徴とする、請求項1に記載の樹脂成形用型。
  3.  前記緩衝層の厚みは1.0μm以上20μm以下であり、かつ前記微粒子の粒径以上であることを特徴とする、請求項1または請求項2に記載の樹脂成形用型。
PCT/JP2016/062083 2015-07-30 2016-04-15 樹脂成形用型 WO2017018006A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680002162.6A CN106794602B (zh) 2015-07-30 2016-04-15 树脂成型用模具
US15/320,981 US10124514B2 (en) 2015-07-30 2016-04-15 Resin molding mold
JP2016543243A JP6253786B2 (ja) 2015-07-30 2016-04-15 樹脂成形用型
KR1020167035064A KR102437077B1 (ko) 2015-07-30 2016-04-15 수지 성형용 금형
DE112016000089.8T DE112016000089T5 (de) 2015-07-30 2016-04-15 Harzformungsform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-151141 2015-07-30
JP2015151141 2015-07-30

Publications (1)

Publication Number Publication Date
WO2017018006A1 true WO2017018006A1 (ja) 2017-02-02

Family

ID=57884470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062083 WO2017018006A1 (ja) 2015-07-30 2016-04-15 樹脂成形用型

Country Status (6)

Country Link
US (1) US10124514B2 (ja)
JP (1) JP6253786B2 (ja)
KR (1) KR102437077B1 (ja)
CN (1) CN106794602B (ja)
DE (1) DE112016000089T5 (ja)
WO (1) WO2017018006A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038663A (ja) * 2017-08-25 2019-03-14 東芝テック株式会社 プリンタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499588A (ja) * 1972-05-23 1974-01-28
JPS536358A (en) * 1976-07-06 1978-01-20 Nippon Poriesuteru Kk Molds for molding plastics
WO1995035194A1 (fr) * 1994-06-22 1995-12-28 Asahi Kasei Kogyo Kabushiki Kaisha Produit en resine synthetique depoli moule par injection et son procede de moulage
WO2007015390A1 (ja) * 2005-08-04 2007-02-08 Tanazawa Hakkosha Co., Ltd. 樹脂成形用型およびそれを用いて成形した樹脂成形品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329687B2 (ja) * 1997-04-09 2002-09-30 早川ゴム株式会社 一体成型シート、遮音シート及び制振シート
JP3372207B2 (ja) 1998-05-11 2003-01-27 東北ムネカタ株式会社 シボ製品成形用金型の製法及びこの製法により製造されたシボ製品成形用金型
JP2014210361A (ja) * 2013-04-18 2014-11-13 住友ベークライト株式会社 微細構造形成用母型およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499588A (ja) * 1972-05-23 1974-01-28
JPS536358A (en) * 1976-07-06 1978-01-20 Nippon Poriesuteru Kk Molds for molding plastics
WO1995035194A1 (fr) * 1994-06-22 1995-12-28 Asahi Kasei Kogyo Kabushiki Kaisha Produit en resine synthetique depoli moule par injection et son procede de moulage
WO2007015390A1 (ja) * 2005-08-04 2007-02-08 Tanazawa Hakkosha Co., Ltd. 樹脂成形用型およびそれを用いて成形した樹脂成形品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038663A (ja) * 2017-08-25 2019-03-14 東芝テック株式会社 プリンタ

Also Published As

Publication number Publication date
KR20180032484A (ko) 2018-03-30
CN106794602B (zh) 2020-06-12
US20170197336A1 (en) 2017-07-13
JPWO2017018006A1 (ja) 2017-07-27
DE112016000089T5 (de) 2017-04-06
CN106794602A (zh) 2017-05-31
KR102437077B1 (ko) 2022-08-25
US10124514B2 (en) 2018-11-13
JP6253786B2 (ja) 2017-12-27

Similar Documents

Publication Publication Date Title
KR101598637B1 (ko) 방현 필름
JP5945084B1 (ja) フロントパネルの製造方法
KR101608091B1 (ko) 방현 필름 및 그 제조 방법
TW201119827A (en) Method for making an anti-glare film, and method for making a mold for manufacture of anti-glare film
KR20140131518A (ko) 방현 필름
KR20100111864A (ko) 헤어 라인 가공 방법
CN109634045A (zh) 一种变间距抗光幕布及其制备方法
JP6253786B2 (ja) 樹脂成形用型
WO2017018007A1 (ja) 樹脂成形用型
KR101629020B1 (ko) 방현 필름의 제조 방법 및 방현 필름 제작을 위한 금형의 제조 방법
JP2018176564A (ja) マークの表示方法およびマークを有する製品
JP6006443B1 (ja) フロントパネルの製造方法
EP2623286A2 (en) Mold for forming 3-dimensional pattern and method for manufacturing coating material using same for home electronics
JP3217328U (ja) 樹脂成形用型
JP2022116026A (ja) テクスチャ加工されたハードコートフィルム
CN108215234A (zh) 金属塑料结合件及其制作方法
JP2005036168A (ja) アクリル艶消しフィルム、アクリル艶消し印刷フィルム、立体形状アクリル艶消し印刷フィルム、艶消し印刷シートおよび艶消し成形品
JP5948515B1 (ja) フロントパネルの製造方法
JP6805902B2 (ja) 加飾成形品及びその製造方法、並びに転写シート
CN107403588A (zh) 图像显示装置用前面板及其制造方法
JP2022095052A (ja) 成形品、電子機器、および成形品の製造方法
WO2023084705A1 (ja) 樹脂成形品
JP6732212B2 (ja) 樹脂成形品用金型、及び樹脂成形品
JP6696114B2 (ja) 低反射シート
JP6300776B2 (ja) 立体写真構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016543243

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167035064

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15320981

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000089

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830111

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16830111

Country of ref document: EP

Kind code of ref document: A1