WO2017017789A1 - 熱交換器及び冷凍サイクル装置 - Google Patents

熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2017017789A1
WO2017017789A1 PCT/JP2015/071386 JP2015071386W WO2017017789A1 WO 2017017789 A1 WO2017017789 A1 WO 2017017789A1 JP 2015071386 W JP2015071386 W JP 2015071386W WO 2017017789 A1 WO2017017789 A1 WO 2017017789A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
angle
fin
sample
corrugated fin
Prior art date
Application number
PCT/JP2015/071386
Other languages
English (en)
French (fr)
Inventor
綾 河島
智嗣 上山
石橋 晃
良太 赤岩
寿守務 吉村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/071386 priority Critical patent/WO2017017789A1/ja
Priority to JP2017530522A priority patent/JPWO2017017789A1/ja
Priority to CN201610365863.8A priority patent/CN106403641A/zh
Priority to CN201620502356.XU priority patent/CN205784707U/zh
Publication of WO2017017789A1 publication Critical patent/WO2017017789A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger having fins and a refrigeration cycle apparatus using the heat exchanger.
  • Patent Document 1 As a conventional heat exchanger having fins, there is a parallel flow type heat exchanger having fins having a hydrophobic surface, a hydrophilic header pipe, and a hydrophilic flat tube (for example, Patent Document 1). reference). Further, there is a heat exchanger having hydrophobic fins in which a roughened metal surface is coated with a water-repellent paint (see, for example, Patent Document 2).
  • Patent Document 1 and Patent Document 2 when the heat exchanger functions as an evaporator, water droplets generated in the heat exchanger cause a bridging phenomenon that bridges between adjacent fin planes. There was a problem that the ventilation resistance of the exchanger increased.
  • This invention was made in order to solve the above-mentioned subject, and it aims at providing the heat exchanger and refrigeration cycle apparatus which can avoid the bridge phenomenon by a water droplet and can maintain ventilation resistance.
  • the heat exchanger according to the present invention includes a pair of header tubes arranged in parallel above and below in the direction of gravity, a plurality of heat transfer tubes juxtaposed in parallel with the direction of gravity and joined between the pair of header tubes, A plurality of fins joined between the heat transfer tubes adjacent to each other, a hydrophilic surface treatment is applied to the heat transfer tubes and the fins, and the fins are connected to the heat transfer tubes.
  • a slope portion extending obliquely between them, and an angle of the slope portion with respect to a horizontal direction is an inclination angle of the slope portion, and when the water droplets dropped on the slope portion of the fin start to fall, When the angle is a falling angle, the fin is subjected to a surface-sliding treatment so that the falling angle is smaller than the inclination angle.
  • the refrigeration cycle apparatus includes the above-described heat exchanger.
  • the hydrophilic surface treatment is applied to the fin, so that condensed water or water generated by frost melting after defrosting operation spreads wet on the fin, thereby avoiding a bridging phenomenon caused by water droplets. Can do.
  • drainage of condensed water and water after defrosting can be improved by applying hydrophilic surface treatment to the fin so that the falling angle of the fin is smaller than the inclination angle of the inclined portion of the fin. . Therefore, according to the present invention, it is possible to provide a heat exchanger and a refrigeration cycle apparatus that can avoid a bridge phenomenon due to water droplets and maintain ventilation resistance.
  • FIG. 3 is a schematic partial enlarged view of an example of the structure of the flat tube 2 and the corrugated fin 3 of the heat exchanger 10 according to Embodiment 1 of the present invention as viewed from the upper header tube 1a side. It is the schematic partial enlarged view which looked at the modification of the structure of the flat tube 2 and the corrugated fin 3 of the heat exchanger 10 which concerns on Embodiment 1 of this invention from the upper header pipe
  • FIG. 1 is a refrigerant circuit diagram schematically showing an example of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. It is the schematic which expanded a part of heat exchanger 10 which concerns on Embodiment 1 of this invention, and displayed the dimension and angle of the corrugated fin 3.
  • FIG. It is the schematic which shows the measuring method of contact angle (theta) which concerns on Embodiment 1 of this invention. It is the schematic which shows the measuring method of fall angle (PHI) which concerns on Embodiment 1 of this invention.
  • Embodiment 1 of this invention it is the graph which showed contact angle (theta) and rolling-down angle (PHI) of the measurement sample 4 made from aluminum surface-treated with the combination of arbitrary hydrophilic materials and arbitrary surface roughness.
  • 7 is a table showing measurement results of contact angle ⁇ and falling angle ⁇ in samples of Conventional Examples 1 to 4 and a sample of heat exchanger 10 of Embodiment 1 of the present invention.
  • 7 is a table showing measurement results of frosting resistance and drainage performance of samples of Conventional Examples 1 to 4 and a sample of heat exchanger 10 of Embodiment 1 of the present invention.
  • FIG. 6 is a table showing measurement results of contact angle ⁇ and falling angle ⁇ in samples of Conventional Examples 1 to 4 and a sample of heat exchanger 10 of Embodiment 2 of the present invention.
  • 10 is a table showing measurement results of frosting resistance and drainage performance of samples of Conventional Examples 1 to 4 and a sample of the heat exchanger 10 of Embodiment 2 of the present invention. It is the front view which showed schematically the structure of the heat exchanger 10 which concerns on Embodiment 3 of this invention.
  • 7 is a table showing measurement results of contact angle ⁇ and falling angle ⁇ in samples of Conventional Examples 1 to 4 and a sample of heat exchanger 10 of Embodiment 3 of the present invention.
  • 10 is a table showing measurement results of frosting resistance and drainage performance of samples of Conventional Examples 1 to 4 and a sample of the heat exchanger 10 of Embodiment 3 of the present invention.
  • FIG. 1 is a front view schematically showing the structure of the heat exchanger 10 according to the first embodiment.
  • the heat exchanger 10 according to the first embodiment is a corrugated fin type heat exchanger, and is a longitudinal flow type heat exchanger that circulates a heat exchange medium (for example, refrigerant) in the vertical direction.
  • a heat exchange medium for example, refrigerant
  • the upper header pipe 1a and the lower header pipe 1b are arranged in parallel in the gravity direction so as to form a pair of header pipes.
  • a plurality of flat tubes 2 that flow refrigerant distributed via the upper header pipe 1a or the lower header pipe 1b are parallel to the gravity direction. It is joined to.
  • the flat surfaces of the plurality of flat tubes 2 are arranged so as to face each other.
  • corrugated fins 3 are arranged between the flat surfaces of two adjacent flat tubes 2. That is, the heat exchanger 10 has a configuration in which the flat tubes 2 and the corrugated fins 3 are alternately arranged along the length direction of the upper header tube 1a (or the lower header tube 1b).
  • the corrugated fin 3 is a corrugated (wave-shaped) metal flat plate, and has a plurality of top portions 3 a that are alternately joined to the flat surfaces of two adjacent flat tubes 2, and the top portions 3 a of the two adjacent flat tubes 2. And a plurality of inclined surface portions 3b extending alternately.
  • Heat exchange is performed between the blast air flowing in a direction intersecting (for example, orthogonal to) both directions.
  • the refrigerant flows from the upper header pipe 1a toward the lower header pipe 1b.
  • the refrigerant that has flowed into the upper header pipe 1 a of the heat exchanger 10 is divided into the same number of paths as the number of flat tubes 2.
  • the divided refrigerant flows through the plurality of flat tubes 2 downward.
  • the refrigerant flowing downward through the plurality of flat tubes 2 is heat-exchanged with the blown air through the plurality of flat tubes 2 and the corrugated fins 3.
  • the refrigerant heat-exchanged by the plurality of flat tubes 2 joins at the lower header tube 1b and flows out of the heat exchanger 10.
  • FIG. 2 is a schematic partial enlarged view of an example of the structure of the flat tubes 2 and the corrugated fins 3 of the heat exchanger 10 according to the first embodiment when viewed from the upper header tube 1a side.
  • FIG. 3 is a schematic partial enlarged view of a modification of the structure of the flat tube 2 and the corrugated fin 3 of the heat exchanger 10 according to the first embodiment as viewed from the upper header tube 1a side.
  • FIG. 4 is a schematic partial enlarged view of another modified example of the structure of the flat tube 2 and the corrugated fin 3 of the heat exchanger 10 according to the first embodiment as viewed from the upper header tube 1a side.
  • the flat tube 2 of the heat exchanger 10 according to the first embodiment has a configuration in which a plurality of refrigerant channels 2a are arranged inside.
  • the heat exchanger 10 can be configured such that the width of the top portion 3 a that is a joint portion of the corrugated fin 3 with the flat tube 2 is shorter than the width of the flat tube 2 in the major axis direction.
  • the width between the adjacent flat tubes 2 to which the corrugated fins 3 are not joined is defined as a lower header tube by making the width of the top portion 3a shorter than the width in the major axis direction of the flat tube 2. It can be configured as a drainage path through which water melted by the heat exchanger 10 flows down toward 1b.
  • the refrigerant is disposed at a position inside the flat tube 2 corresponding to the drainage path of the heat exchanger 10 in the major axis direction of the flat tube 2. It is good also as composition which does not provide channel 2a.
  • the drainage path was comprised by making the width
  • the notch 3c may be provided at the same position of the plurality of joints, and the notch 3c may be used as a drainage path for the heat exchanger 10.
  • the corrugated fin 3 is configured as a corrugated metal flat plate so that the surface in contact with the blown air can be enlarged, so that heat exchange with the blown air is efficient. Can be done.
  • the amount of refrigerant used in the heat exchanger 10 and the heat exchange are determined according to the surface characteristics of the flat tube 2 and the corrugated fin 3. Properties and manufacturability are determined.
  • the upper header pipe 1a, the lower header pipe 1b, the flat pipe 2 and the corrugated fin 3 of the heat exchanger 10 can be made of a metal member having high thermal conductivity, low cost and excellent workability.
  • the heat exchanger 10 can be composed of a member made of aluminum or aluminum alloy.
  • the member used for the heat exchanger 10 is not limited to aluminum or aluminum alloy, and any member can be used as long as it is a member excellent in thermal conductivity.
  • each component of the heat exchanger 10 can be formed of different kinds of metal members.
  • the upper header pipe 1a and the lower header pipe 1b may be made of an aluminum alloy member
  • the flat tube 2 and the corrugated fin 3 may be made of a copper member.
  • each component of the heat exchanger 10 is composed of different kinds of metals, it is caused by corrosion at the joints of different kinds of metals (in the above example, for example, the joint between the upper header pipe 1a and the flat pipe 2). It is necessary to pay attention to the potential design of each member so that refrigerant leakage does not occur.
  • the joint portion between the upper header pipe 1a and the lower header pipe 1b and the flat tube 2 and the joint portion between the flat tube 2 and the corrugated fin 3 are joined by, for example, a brazing process.
  • a joining method of the said junction part if it is a method which can maintain the thermal conductivity in the said junction part, methods other than brazing processing may be used, for example, the said junction part is joined by welding or adhesion
  • FIG. 5 is a refrigerant circuit diagram schematically showing an example of the refrigeration cycle apparatus 100 according to the first embodiment.
  • the refrigeration cycle apparatus 100 includes a compressor 20, a refrigerant flow switching device 30, a heat source side heat exchanger 40, a decompression device 50, and a load side heat exchanger 60 that are annularly arranged via a refrigerant pipe. It has a connected configuration.
  • the heat exchanger 10 according to the first embodiment is used for at least one of the heat source side heat exchanger 40 and the load side heat exchanger 60.
  • the refrigeration cycle apparatus 100 includes a blower fan 70 that blows air to the heat source side heat exchanger 40.
  • FIG. 5 shows only the minimum necessary components for the refrigeration cycle apparatus 100 that performs both the cooling operation and the heating operation.
  • the refrigeration cycle apparatus 100 may include a gas-liquid separator, a receiver, an accumulator, and the like in addition to the components shown in FIG.
  • Compressor 20 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the refrigerant flow switching device 30 switches the flow direction of the refrigerant in the refrigeration cycle between the cooling operation and the heating operation.
  • a four-way valve is used.
  • the heat source side heat exchanger 40 is a heat exchanger that functions as an evaporator during heating operation and functions as a radiator (for example, a condenser) during cooling operation. In the heat source side heat exchanger 40, heat exchange is performed between the refrigerant circulating inside and the air (outside air) blown by the blower fan 70.
  • the decompression device 50 decompresses the high-pressure refrigerant into a low-pressure refrigerant.
  • a linear electronic expansion valve LEV whose opening degree can be adjusted is used.
  • the load-side heat exchanger 60 is a heat exchanger that functions as a radiator (for example, a condenser) during heating operation and functions as an evaporator during cooling operation.
  • a radiator for example, a condenser
  • heat exchange is performed between the refrigerant circulating in the interior and air (for example, indoor air in the case of an air conditioner) blown by a load-side fan (not shown). .
  • heating operation refers to an operation for supplying high-temperature and high-pressure refrigerant to the load-side heat exchanger 60
  • cooling operation refers to supplying low-temperature and low-pressure refrigerant to the load-side heat exchanger 60. It refers to driving.
  • FIG. 5 the refrigerant flow during the heating operation is indicated by a solid line arrow, and the refrigerant flow during the cooling operation is indicated by a broken line arrow.
  • the load-side heat exchanger 60 is accommodated in an indoor unit (not shown), and the outdoor unit (not shown).
  • the heat source side heat exchanger 40 is accommodated.
  • heating operation is performed by supplying a high-temperature and high-pressure refrigerant to the load-side heat exchanger 60 of the indoor unit.
  • a cooling operation is performed by supplying a low-temperature and low-pressure refrigerant to the load-side heat exchanger 60 of the indoor unit.
  • the heat transfer tubes for example, the flat tubes 2) or the fins (for example, the flat tubes 2) of the heat source side heat exchanger 40 or the load side heat exchanger 60 functioning as an evaporator.
  • a water film dew condensation
  • frost formation due to condensed water condensation water
  • a part of the accumulated condensed water adhering to the fins flows from the fin surface according to gravity.
  • the air flow path of the heat source side heat exchanger 40 or the load side heat exchanger 60 is caused by the water film or frost on the fin. May become narrow and the air flow path may be blocked.
  • the heat resistance and the ventilation resistance increase, so the heat source side heat exchanger 40 or the heat exchange rate of the load-side heat exchanger 60 decreases.
  • defrosting operation means compression to prevent frost from adhering to the heat source side heat exchanger 40 or the load side heat exchanger 60 functioning as an evaporator, or to melt the adhering frost.
  • This is an operation of supplying hot gas, which is a high-temperature and high-pressure gas refrigerant, from the machine 20 to the heat source side heat exchanger 40 or the load side heat exchanger 60.
  • the frost and ice adhering to the heat source side heat exchanger 40 or the load side heat exchanger 60 are melted by the hot gas supplied to the heat source side heat exchanger 40 or the load side heat exchanger 60 during the defrosting operation.
  • the defrosting operation when the cooling operation or the heating operation is continued for a predetermined time, for example, the flow direction of the refrigerant is switched by the refrigerant flow switching device 30, and a high-temperature and high-pressure refrigerant (hot gas) is supplied to the evaporator. Done.
  • a bypass refrigerant pipe (see FIG. 5) is provided between the discharge port of the compressor 20 and the heat source side heat exchanger 40 or the load side heat exchanger 60.
  • the hot gas may be directly supplied from the compressor 20 to the heat source side heat exchanger 40 or the load side heat exchanger 60.
  • the heat source side heat exchanger 40 or the load side heat exchanger 60 it is important for the heat source side heat exchanger 40 or the load side heat exchanger 60 to be configured to be able to suppress dew condensation and frost formation and to quickly drain the melted water during the defrosting operation.
  • the heat exchange rate due to the condensed water is suppressed from decreasing, and the resistance to frost formation. Can be improved.
  • the heat exchanger 10 of Embodiment 1 improves the drainage performance during the defrosting operation by applying a hydrophilic surface treatment to the flat tube 2 and the corrugated fin 3.
  • the surfaces of the flat tube 2 and the corrugated fin 3 are coated with a hydrophilic material, and a hydrophilic and water-sliding inorganic film or organic film is used. There is a method to coat.
  • a hydrophilic material coated on the surface of the flat tube 2 and the corrugated fin 3 any hydrophilic inorganic material or organic material can be used.
  • water glass, silicic acid, polyvinyl alcohol can be used without limitation.
  • Polyacrylamide, polyacrylic acid, epoxy resin, flux, and other materials can be used.
  • a surface treatment for further improving the water slidability of the surfaces of the flat tube 2 and the corrugated fins 3 subjected to hydrophilic and water slidable film treatment for example, an inorganic film coated on the surfaces of the flat tube 2 and the corrugated fins 3
  • a method for flattening the surface roughness of a film or an organic film There is a method for flattening the surface roughness.
  • the method for improving the water slidability of the surfaces of the flat tube 2 and the corrugated fins 3 is not limited to the method of flattening the surface roughness.
  • the surface smoothness of the flat tubes 2 and the corrugated fins 3 can be adjusted by adjusting the surface shapes. It is also possible to improve aqueous properties.
  • FIG. 6 is a schematic view showing a size and an angle of the corrugated fin 3 by enlarging a part of the heat exchanger 10 according to the first embodiment.
  • the distance (fin width of the corrugated fin 3) between the adjacent flat tubes 2 was set to w (mm).
  • interval) between the intermediate positions of the adjacent slope part 3b of the corrugated fin 3 was made into d [mm].
  • the angle between the perpendicular connecting the adjacent flat tubes 2 and the inclined surface portion 3b is the inclination angle of the corrugated fin 3 is ⁇ f [°]. .
  • the range of the inclination angle ⁇ f is set to 0 ° ⁇ f ⁇ 90 °.
  • the fin width w, the fin pitch d of the corrugated fins 3 and the inclination angle ⁇ f of the corrugated fins 3 are assumed to be substantially the same throughout the heat exchanger 10.
  • the inclination angle ⁇ f of the corrugated fin 3 is calculated by the following equation using the fin pitch d of the corrugated fin 3 and the fin width w of the corrugated fin 3.
  • ⁇ f tan ⁇ 1 (d / w)
  • the fin pitch d of the corrugated fins 3 may be designed to be extremely narrow for the purpose of improving the performance of the heat exchanger 10, so that the condensed water bridges between the adjacent slope portions 3 b of the corrugated fins 3. It tends to be easy.
  • the ventilation resistance in the heat exchanger 10 increases, the heat exchange rate decreases, and a trade-off relationship occurs in which the heat exchange rate decreases even if the heat exchange area increases.
  • the surface treatment of the corrugated fins 3 can improve the drainage of the water droplets bridged to the corrugated fins 3, so that the heat exchange rate due to dew condensation and frost formation is improved. Can be avoided.
  • FIG. 7 is a schematic diagram showing a method for measuring the contact angle ⁇ according to the first embodiment.
  • the contact angle ⁇ is measured using the measurement sample 4 of the flat tube 2 and the corrugated fin 3.
  • the contact angle ⁇ is measured using a water droplet 5 generated by dropping 10 ⁇ L of ion-exchanged water on the measurement sample 4 of the flat tube 2 and the corrugated fin 3.
  • the contact angle ⁇ is defined as the angle between the tangent at the contact point 5a between the measurement sample 4 and the surface of the water drop 5 and the surface of the measurement sample 4 with which the water drop 5 contacts.
  • the contact angle ⁇ is defined as 0 ° ⁇ ⁇ [°] ⁇ 180 °, and is defined as hydrophilic when ⁇ [°] ⁇ 90 ° and hydrophobic when ⁇ [°] ⁇ 90 °. Further, it can be said that the hydrophilicity increases as the contact angle ⁇ decreases, and the hydrophobicity increases as the contact angle ⁇ increases.
  • FIG. 8 is a schematic diagram showing a method of measuring the falling angle ⁇ according to the first embodiment.
  • the falling angle ⁇ is measured using the measurement sample 4 of the flat tube 2 and the corrugated fin 3.
  • the drop angle ⁇ is such that 10 ⁇ L of ion-exchanged water is dropped on the measurement sample 4 of the flat tube 2 and the corrugated fin 3, and the measurement sample 4 is inclined 30 seconds after the dropping, and the forward end 5 b of the water droplet 5 is , Is defined as the inclination angle of the measurement sample 4 when moved about 1 mm from the initial position 5 c of the water droplet 5.
  • Is defined as the inclination angle of the measurement sample 4 when moved about 1 mm from the initial position 5 c of the water droplet 5.
  • the position of the water droplet 5 before movement is indicated by a broken line
  • the position of the water droplet 5 after movement is indicated by a solid line.
  • the sliding angle ⁇ is in the range of 0 ° ⁇ [°] ⁇ 90 °. It can be said that the sliding property increases when the falling angle ⁇ decreases, and the sliding property decreases when the falling angle ⁇ increases.
  • a sliding surface treatment is performed so that the falling angle ⁇ of the corrugated fin 3 is smaller than the inclination angle ⁇ f of the corrugated fin 3. Yes.
  • drainage performance improves, so that sliding property is high.
  • the fin pitch d of the corrugated fin 3 can be designed to be small, and the heat exchange area is increased, so that the heat exchange performance is improved. Therefore, in this Embodiment 1, as the fall angle (PHI) of the corrugated fin 3 becomes small, drainage property will improve and heat exchange performance will improve.
  • FIG. 9 is a graph showing the contact angle ⁇ and the falling angle ⁇ of the measurement sample 4 made of aluminum surface-treated with a combination of an arbitrary hydrophilic material and an arbitrary surface roughness in the first embodiment.
  • the horizontal axis of the graph represents the contact angle ⁇
  • the vertical axis of the graph represents the falling angle ⁇ .
  • the blot on the graph shows the contact angle ⁇ and the tumbling angle ⁇ for any hydrophilic material (membrane material) and any surface roughness combination.
  • measurement samples made of aluminum having various combinations of contact angle ⁇ and sliding angle ⁇ depending on the combination of the type of hydrophilic material applied to the surface of measurement sample 4 and the degree of surface roughness of measurement sample 4. 4 is shown to be manufacturable.
  • the measurement sample 4 made of aluminum can be manufactured even in a range of a low contact angle ⁇ (for example, 40 ° or less) and a low sliding angle ⁇ (for example, 20 ° or less). Therefore, according to the surface treatment of the first embodiment, it is possible to manufacture the flat tube 2 and the corrugated fin 3 that have high hydrophilicity and high sliding properties.
  • a heat exchanger 10 having a size of 300 ⁇ 300 ⁇ 15 mm was prepared.
  • the fin pitch d of the corrugated fins 3 is 1.7 mm
  • the fin width w of the corrugated fins 3 is 10 mm
  • the inclination angle ⁇ f of the corrugated fins 3 is 10 °.
  • the thickness of the flat tube 2 in the minor axis direction was 2 mm.
  • the heat exchanger 10 of Embodiment 1 As a comparison object of the heat exchanger 10 of Embodiment 1, four corrugated fin type heat exchanger samples of the prior art were prepared.
  • the four corrugated fin type heat exchanger samples were 300 ⁇ 300 ⁇ 15 mm size corrugated fin type heat exchangers, similar to the sample of the heat exchanger 10 of the first embodiment.
  • the fin pitch of the corrugated fins is 1.7 mm
  • the fin width of the corrugated fins 3 is 10 mm
  • the inclination angle of the corrugated fins is 10 °.
  • the thickness of the flat tube in the minor axis direction was set to 2 mm.
  • the samples of the four corrugated fin heat exchangers were the samples of the conventional examples 1 to 4, and each flat tube and corrugated fin were subjected to different surface treatments.
  • FIG. 10 is a table showing the measurement results of the contact angle ⁇ and the falling angle ⁇ in the samples of the conventional examples 1 to 4 and the sample of the heat exchanger 10 of the first embodiment.
  • the samples of Conventional Examples 1 to 4 are abbreviated as “Conventional Example 1”, “Conventional Example 2”, “Conventional Example 3”, and “Conventional Example 4”.
  • a sample of the heat exchanger 10 of the first embodiment is abbreviated as “Embodiment 1”.
  • the sample of Conventional Example 1 was a sample of a corrugated fin heat exchanger in which neither a flat tube nor a corrugated fin is subjected to surface treatment.
  • the corrugated fin contact angle ⁇ was 86 °
  • the flat tube contact angle ⁇ was 85 °.
  • the sample of Conventional Example 2 was a sample of a corrugated fin heat exchanger in which a flat tube and a corrugated fin were subjected to a hydrophobic surface treatment.
  • the contact angle ⁇ of the corrugated fin was 117 °, and the falling angle ⁇ was 24 °.
  • the contact angle ⁇ of the flat tube was 118 °, and the falling angle ⁇ was 24 °.
  • the sample of Conventional Example 3 was a sample of a corrugated fin heat exchanger in which a flat tube was subjected to a hydrophilic surface treatment and a corrugated fin was subjected to a hydrophobic surface treatment.
  • the contact angle ⁇ of the corrugated fin was 117 °, and the falling angle ⁇ was 24 °.
  • the contact angle ⁇ of the flat tube was 51 °. In addition, even if the water drop dripped at the flat tube was inclined to an angle of 90 °, it did not fall.
  • the corrugated fin is subjected to a hydrophobic surface treatment, and the corrugated fin is subjected to a hydrophilic surface treatment so that the falling angle ⁇ is larger than the inclination angle (10 °) of the corrugated fin.
  • a fin-type heat exchanger sample was used.
  • the contact angle ⁇ of the corrugated fin was 14 °, and the falling angle ⁇ was 30 °.
  • the contact angle ⁇ of the flat tube was 51 °. In addition, even if the water drop dripped at the flat tube was inclined to an angle of 90 °, it did not fall.
  • the flat tube 2 is subjected to a hydrophilic surface treatment so that the falling angle ⁇ is smaller than the inclination angle ⁇ f (10 °) of the corrugated fin 3.
  • a sample in which the corrugated fin 3 was subjected to a hydrophilic surface treatment was used.
  • the contact angle ⁇ of the corrugated fin 3 was 20 °
  • the falling angle ⁇ was 8 °.
  • the contact angle ⁇ of the flat tube 2 was 51 °.
  • even if the water drop dripped at the flat tube 2 was inclined to an angle of 90 °, it did not fall.
  • the frosting resistance was evaluated using the frosting time T1. Measure the speed of the air passing through the heat exchanger sample and wear the elapsed time from the start of measurement until the initial front wind speed (1 m / s) of the air passing through the heat exchanger sample is reduced to 1/2. It measured as frost time T1.
  • the measured frost formation time T1 is defined as 1 as the frost formation time T1 in the sample of the conventional example 1, and the frost formation time T1 in each sample is normalized as a ratio to the frost formation time T1 in the sample of the conventional example 1. It was compared and evaluated.
  • frosting ⁇ defrosting operation is taken as one cycle, and data of the second cycle after one cycle operation is measured as frosting time T1.
  • the frosting time T1 is affected by the residual water to the heat exchanger, so there is residual water that was not drained during the defrosting of the first cycle. In this case, the generation speed of frost is accelerated. Therefore, it was evaluated that the longer the frost formation time T1, the better the frost resistance.
  • the drainage performance was measured as the defrosting time T2 after the defrosting operation was completed until the outlet temperature of the heat exchanger increased by 10 °. Moreover, the amount M of residual water remaining in the heat exchanger was measured by subtracting the weight of the heat exchanger at the start of operation from the weight of the heat exchanger after the defrosting time T2.
  • the measured defrosting time T2 is set to 1 as the defrosting time T2 in the sample of Conventional Example 1, and the defrosting time T2 in each sample is normalized as a ratio to the defrosting time T2 in the sample of Conventional Example 1. It was compared and evaluated.
  • the measured residual water amount M was comparatively evaluated by setting the residual water amount M in the sample of Conventional Example 1 to 1, and standardizing the residual water amount M in each sample as a ratio to the residual water amount M in the sample of Conventional Example 1. . Therefore, the smaller the defrosting time T2, the better the drainage performance, and the smaller the remaining water amount M, the better the drainage performance.
  • FIG. 11 is a table showing measurement results of frosting resistance and drainage performance of the samples of the conventional examples 1 to 4 and the sample of the heat exchanger 10 of the first embodiment.
  • the frost formation time T1 was 1.10, and only a slight improvement in frost resistance was observed compared to the sample of Conventional Example 1. Further, the defrosting time T2 is 0.88 and the residual water amount M is 0.90, and the drainage performance is improved as compared with the sample of Conventional Example 1.
  • the frosting time T1 was 1.23, and only a slight improvement in frost resistance was observed compared to the sample of Conventional Example 1.
  • the defrosting time T2 was 0.84 and the residual water amount M was 0.84, and the drainage performance was improved as compared with the sample of Conventional Example 1.
  • the surface of the corrugated fin is hydrophobic, so that the sliding property is improved, so that the drainage performance is improved and the frosting resistance is slightly improved as compared with the sample of Conventional Example 1. Conceivable.
  • the sample of Conventional Example 3 has a hydrophilic flat tube. In the sample of Conventional Example 3, by making the flat tube hydrophilic, the defrosted water easily flows from the hydrophobic fin to the hydrophilic flat tube. Therefore, in the sample of Conventional Example 3, the defrosting time T2 and the remaining water amount M are smaller than those of the sample of Conventional Example 2.
  • the frost formation time T1 was 0.96, and no improvement in frost resistance was observed even when compared with the sample of Conventional Example 1.
  • the defrosting time T2 was 0.99 and the residual water amount M was 0.94, and only a slight improvement in drainage performance was seen as compared with the samples of the conventional examples 1 to 3.
  • the corrugated fin is hydrophilic, but the fall angle ⁇ is configured to be larger than the inclination angle of the corrugated fin. Therefore, it is considered that after the defrosting operation, the entire surface of the corrugated fin remained wet and spread, and thus the improvement in frost resistance was not observed.
  • the contact angle ⁇ of the flat tube is larger than the contact angle ⁇ of the corrugated fin, so that the drainage to the flat tube is not performed completely and stagnates in the vicinity of the joint, thereby improving the drainage performance. It is thought that there were few.
  • the frosting time T1 is 1.35, and improvement in frosting resistance is seen compared to the samples of the conventional examples 1 to 4. It was. Further, the defrosting time T2 was 0.78, and the residual water amount M was 0.53, and the drainage performance was improved as compared with the samples of the conventional examples 1 to 4.
  • the corrugated fin 3 subjected to the hydrophilic surface treatment has a falling angle ⁇ of the corrugated fin 3 smaller than the inclined angle ⁇ f of the inclined portion 3b of the corrugated fin 3.
  • a surface treatment with water slidability is applied.
  • the water that has spread on the surface of the corrugated fins 3 steadily becomes flattened by performing a sliding surface treatment in addition to the hydrophilic surface treatment. Therefore, the remaining water amount M of the heat exchanger 10 can be greatly reduced.
  • the frost that has started to melt on the surface of the corrugated fin 3 immediately after the defrosting operation flows to the flat tube 2 through which the refrigerant passes before completely melting.
  • the defrosting time T2 is shortened and the drainage performance is improved.
  • the main factor that the frost formation time T1 is increased and the frost resistance is improved is that the residual water amount M on the surface of the corrugated fin 3 is reduced.
  • the corrugated fin 3 subjected to the hydrophilic surface treatment has a falling angle ⁇ of the corrugated fin 3 larger than the inclined angle ⁇ f of the inclined surface portion 3b of the corrugated fin 3.
  • the heat exchanger 10 includes the pair of header tubes (upper header tube 1a and lower header tube 1b) arranged in parallel in the upper and lower directions in the gravity direction, and in parallel with the gravity direction. And a plurality of heat transfer tubes (for example, flat tubes 2) joined between a pair of header tubes (upper header tube 1a, lower header tube 1b), and adjacent heat transfer tubes (for example, flat tubes 2).
  • a plurality of fins (for example, corrugated fins 3) joined between the heat transfer tubes (for example, flat tubes 2) and fins (for example, corrugated fins 3) are subjected to hydrophilic surface treatment.
  • the fin (for example, corrugated fin 3) has a slope portion 3b extending obliquely between the joint portion (top portion 3a) with the heat transfer tube (eg, flat tube 2), and the slope portion 3b with respect to the horizontal direction. Is defined as the inclination angle ⁇ f of the slope portion 3b.
  • the fin (for example, the corrugated fin 3) has a falling angle ⁇ .
  • a sliding surface treatment is applied so as to be smaller than the inclination angle ⁇ f.
  • the refrigeration cycle apparatus 100 of the first embodiment includes the heat exchanger 10 described above.
  • the corrugated fin 3 subjected to the hydrophilic surface treatment has a sliding surface so that the falling angle ⁇ of the corrugated fin 3 is smaller than the inclination angle ⁇ f of the inclined surface portion 3b of the corrugated fin 3. Processing has been applied. Therefore, according to the configuration of the first embodiment, the water generated in the heat exchanger 10 spreads wet on the corrugated fin 3 without becoming a sphere, so even if the fin pitch d is small, the water is adjacent to the corrugated fin 3. It is possible to prevent water bridging between the combined slope portions 3b.
  • the flat tube 2 hydrophilic, the water that has spread wet on the corrugated fins 3 easily flows into the flat tube 2 and can easily be drained from the flat tube 2 according to gravity. improves. Therefore, according to the configuration of the first embodiment, it is possible to shorten the defrosting operation time by improving the drainage performance, and thus it is possible to provide the heat exchanger 10 and the refrigeration cycle apparatus 100 that can reduce energy consumption. .
  • the flat tube 2 by arranging the flat tube 2 in parallel to the direction of gravity (vertical direction), water flowing from the corrugated fins 3 to the flat tube 2 is drained to the lower header tube 1b according to gravity by its own weight, and the heat exchanger It becomes possible to suppress the residual water amount M to 10 whole.
  • the lower header pipe 1b is a refrigerant pipe having a circular cross section
  • the water drained by its own weight flows from the surface of the lower header pipe 1b by making the surface of the lower header pipe 1b hydrophilic or slippery. It becomes possible to suppress the retention of water on the surface of the lower header pipe 1b. Therefore, according to the configuration of the first embodiment, it is possible to prevent root ice when the normal operation is resumed after the defrosting operation.
  • the heat exchanger 10 and the refrigeration cycle apparatus 100 according to Embodiment 1 even when the fin pitch d of the corrugated fins 3 is narrow, the heat exchanger of water melted by condensed water or defrosting operation.
  • the retention at 10 can be suppressed, and the increase in ventilation resistance can be suppressed. Therefore, according to the first embodiment, the heat exchange performance of the heat exchanger 10 and the refrigeration cycle apparatus 100 can be improved.
  • the drainage property of the heat exchanger 10 can be improved, new frost formation can be suppressed, so that the durability of the heat exchanger 10 can be improved.
  • FIG. 12 is a front view schematically showing the structure of the heat exchanger 10 according to the second embodiment.
  • the heat exchanger 10 according to Embodiment 2 is a modification of the heat exchanger 10 according to Embodiment 1 described above.
  • the flat tube 6 of the heat exchanger 10 according to the second embodiment of the present invention is obtained by subjecting the flat tube 2 of the above-described first embodiment to a lubricious surface treatment.
  • Other structures, constituent materials, and surface treatments of the heat exchanger 10 according to the second embodiment of the present invention are the same as those of the heat exchanger 10 according to the above-described first embodiment, and thus description thereof is omitted. To do.
  • FIG. 13 is a table showing the measurement results of the contact angle ⁇ and the falling angle ⁇ in the samples of the conventional examples 1 to 4 and the sample of the heat exchanger 10 of the second embodiment.
  • FIG. 14 is a table showing measurement results of the frosting resistance and drainage performance of the samples of Conventional Examples 1 to 4 and the sample of the heat exchanger 10 of the second embodiment. Measurement method of contact angle ⁇ and falling angle ⁇ , measurement result of contact angle ⁇ and falling angle ⁇ of conventional examples 1 to 4, experimental method of frost resistance and drainage performance, and frost resistance and drainage of conventional examples 1 to 4 Since the performance measurement results and the like are the same as those of the heat exchanger 10 according to the first embodiment, the description thereof is omitted.
  • the flat tube 6 is subjected to a hydrophilic and water-sliding surface treatment so that the falling angle ⁇ is smaller than the inclination angle ⁇ f (10 °) of the corrugated fin 3. Further, the corrugated fin 3 was subjected to a hydrophilic surface treatment.
  • the contact angle ⁇ of the corrugated fin 3 was 20 °, and the falling angle ⁇ was 8 °.
  • the contact angle ⁇ of the flat tube 6 was 35 °, and the falling angle ⁇ was 34 °.
  • the sliding property of the flat tube 6 will become high when the fall angle (PHI) of the flat tube 6 becomes small, drainage performance also becomes high.
  • the frosting time T1 is 1.39, and an improvement in the frosting resistance is seen as compared with the samples of the conventional examples 1 to 4. Further, the defrosting time T2 was 0.77 and the residual water amount M was 0.50, and the drainage performance was improved as compared with the samples of the conventional examples 1 to 4.
  • the frost proof strength and drainage performance of the sample of the heat exchanger 10 according to the second embodiment were further improved than the sample of the heat exchanger 10 according to the first embodiment shown in FIG.
  • the tumbling angle ⁇ on the surface of the flat tube 6 is 34 °, and the surface of the flat tube 6 has a high lubricity. Therefore, the water remaining on the surface of the flat tube 6 is drained to the lower header tube 1b, and the remaining water amount M is reduced. Therefore, it is considered that the frosting resistance and drainage performance are further improved.
  • a plurality of heat transfer tubes (for example, the flat tubes 6) of the heat exchanger 10 according to the second embodiment are subjected to a lubricious surface treatment.
  • FIG. 15 is a front view schematically showing the structure of the heat exchanger 10 according to the third embodiment.
  • the heat exchanger 10 according to Embodiment 3 is another modification of the heat exchanger 10 according to Embodiment 1 described above.
  • the surface of the flat tube 7 of the heat exchanger 10 according to Embodiment 3 of the present invention has a higher hydrophilicity than the surface of the corrugated fin 3.
  • the other structure, constituent materials, and surface treatment of the heat exchanger 10 according to the third embodiment of the present invention are the same as those of the heat exchanger 10 according to the above-described third embodiment, and thus the description thereof is omitted. To do.
  • FIG. 16 is a table showing the measurement results of the contact angle ⁇ and the falling angle ⁇ in the samples of the conventional examples 1 to 4 and the sample of the heat exchanger 10 of the third embodiment.
  • FIG. 17 is a table showing measurement results of the frosting resistance and drainage performance of the samples of Conventional Examples 1 to 4 and the sample of the heat exchanger 10 of the third embodiment. Measurement method of contact angle ⁇ and falling angle ⁇ , measurement result of contact angle ⁇ and falling angle ⁇ of conventional examples 1 to 4, experimental method of frost resistance and drainage performance, and frost resistance and drainage of conventional examples 1 to 4 Since the performance measurement results and the like are the same as those of the heat exchanger 10 according to the first embodiment, the description thereof is omitted.
  • the flat tube 7 is subjected to a hydrophilic and water-sliding surface treatment so that the falling angle ⁇ is smaller than the inclination angle ⁇ f (10 °) of the corrugated fin 3.
  • the corrugated fin 3 was subjected to a hydrophilic surface treatment, and the contact angle ⁇ of the flat tube 7 was made lower than the contact angle ⁇ of the corrugated fin 3.
  • the contact angle ⁇ of the corrugated fin 3 was 20 °
  • the falling angle ⁇ was 8 °.
  • the contact angle ⁇ of the flat tube 6 was 14 °
  • the falling angle ⁇ was 30 °.
  • the frosting time T1 is 1.44, and the frosting resistance is improved as compared with the samples of the conventional examples 1 to 4. Further, the defrosting time T2 was 0.62 and the residual water amount M was 0.46, and the drainage performance was improved as compared with the samples of the conventional examples 1 to 4.
  • the frost proof strength and drainage performance of the sample of the heat exchanger 10 of the third embodiment are seen to improve further than the samples of the heat exchanger 10 of the first and second embodiments shown in FIGS. It was.
  • the hydrophilicity of the flat tube 7 is higher than the hydrophilicity of the corrugated fin 3 by making the contact angle ⁇ of the flat tube 7 lower than the contact angle ⁇ of the corrugated fin 3.
  • water has a characteristic that it flows toward the more hydrophilic side. Therefore, it is considered that water easily flows from the corrugated fin 3 to the flat tube 7 via the top 3a of the corrugated fin 3 and is discharged to the lower header tube 1b.
  • the surfaces of the plurality of heat transfer tubes (for example, the flat tubes 7) of the heat exchanger 10 according to Embodiment 3 are more hydrophilic than the surfaces of the plurality of corrugated fins 3.
  • the residual water amount M of the heat exchanger 10 can be further reduced by making the hydrophilicity of the surface of the flat tube 7 higher than the hydrophilicity of the surface of the corrugated fin 3, the drainage performance and heat exchange can be reduced. The performance can be further improved.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • an air conditioner is exemplified as the refrigeration cycle apparatus 100.
  • the present invention can also be applied to refrigeration cycle apparatuses 100 other than the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器は、重力方向の上下に並列に配置された一対のヘッダ管と、重力方向と並列に並置され、一対のヘッダ管の間に接合された複数の伝熱管と、隣り合った伝熱管の間に接合される複数のフィンとを備え、伝熱管及びフィンには親水性の表面処理が施されており、フィンは、伝熱管との接合部分の間を斜方に延在する斜面部を有し、水平方向に対する斜面部の角度を斜面部の傾斜角とし、フィンの斜面部に滴下した水滴が落下しはじめるときの斜面部の角度を転落角とした場合に、フィンには、転落角が傾斜角よりも小さくなるように、滑水性の表面処理が施されている。

Description

熱交換器及び冷凍サイクル装置
 本発明は、フィンを有する熱交換器及び当該熱交換器を用いた冷凍サイクル装置に関する。
 従来のフィンを有する熱交換器としては、疎水性の表面を有するフィンと、親水性のヘッダパイプと、親水性の扁平チューブとを有するパラレルフロー型の熱交換器がある(例えば、特許文献1参照)。また、粗面化処理された金属表面を撥水性の塗料で皮膜した疎水性のフィンを有する熱交換器がある(例えば、特許文献2参照)。
特開2013-190169号公報 特開平6-79820号公報
 しかしながら、特許文献1及び特許文献2では、熱交換器が蒸発器として機能する場合に、熱交換器に生じた水滴が、隣り合ったフィンの平面の間でブリッジするブリッジ現象が発生し、熱交換器の通風抵抗が増加するという課題があった。
 本発明は、上述の課題を解決するためになされたものであり、水滴によるブリッジ現象を回避し、通風抵抗を維持可能な熱交換器及び冷凍サイクル装置を提供することを目的とする。
 本発明に係る熱交換器は、重力方向の上下に並列に配置された一対のヘッダ管と、重力方向と並列に並置され、前記一対のヘッダ管の間に接合された複数の伝熱管と、隣り合った前記伝熱管の間に接合される複数のフィンとを備え、前記伝熱管及び前記フィンには親水性の表面処理が施されており、前記フィンは、前記伝熱管との接合部分の間を斜方に延在する斜面部を有し、水平方向に対する前記斜面部の角度を前記斜面部の傾斜角とし、前記フィンの斜面部に滴下した水滴が落下しはじめるときの前記斜面部の角度を転落角とした場合に、前記フィンには、前記転落角が前記傾斜角よりも小さくなるように、滑水性の表面処理が施されている。
 また、本発明に係る冷凍サイクル装置は、上述の熱交換器を備えるものである。
 本発明によれば、フィンに親水性の表面処理を施すことにより、凝縮水又は除霜運転後に霜が融解して発生した水が、フィン上で濡れ広がるため、水滴によるブリッジ現象を回避することができる。また、フィンの転落角がフィンの斜面部の傾斜角よりも小さくなるように、親水性の表面処理をフィンに施すことにより、凝縮水および除霜後の水の排水性を向上させることができる。したがって、本発明によれば、水滴によるブリッジ現象を回避し、通風抵抗を維持可能な熱交換器及び冷凍サイクル装置を提供することができる。
本発明の実施の形態1に係る熱交換器10の構成を概略的に示した正面図である。 本発明の実施の形態1に係る熱交換器10の扁平管2及びコルゲートフィン3の構造の一例を上ヘッダ管1aの側から見た概略的な部分拡大図である。 本発明の実施の形態1に係る熱交換器10の扁平管2及びコルゲートフィン3の構造の変形例を上ヘッダ管1aの側から見た概略的な部分拡大図である。 本発明の実施の形態1に係る熱交換器10の扁平管2及びコルゲートフィン3の構造の別の変形例を上ヘッダ管1aの側から見た概略的な部分拡大図である。 本発明の実施の形態1に係る冷凍サイクル装置100の一例を概略的に示す冷媒回路図である。 本発明の実施の形態1に係る熱交換器10の一部を拡大して、コルゲートフィン3の寸法及び角度を表示した概略図である。 本発明の実施の形態1に係る接触角θの測定方法を示す概略図である。 本発明の実施の形態1に係る転落角Φの測定方法を示す概略図である。 本発明の実施の形態1において、任意の親水性の材料及び任意の表面粗さの組み合わせで表面処理したアルミニウム製の測定サンプル4の接触角θと転落角Φとを示したグラフである。 従来例1~4のサンプル及び本発明の実施の形態1の熱交換器10のサンプルにおける接触角θ及び転落角Φの測定結果を示す表である。 従来例1~4のサンプル及び本発明の実施の形態1の熱交換器10のサンプルにおける着霜耐力及び排水性能の測定結果を示す表である。 本発明の実施の形態2に係る熱交換器10の構成を概略的に示した正面図である。 従来例1~4のサンプル及び本発明の実施の形態2の熱交換器10のサンプルにおける接触角θ及び転落角Φの測定結果を示す表である。 従来例1~4のサンプル及び本発明の実施の形態2の熱交換器10のサンプルにおける着霜耐力及び排水性能の測定結果を示す表である。 本発明の実施の形態3に係る熱交換器10の構成を概略的に示した正面図である。 従来例1~4のサンプル及び本発明の実施の形態3の熱交換器10のサンプルにおける接触角θ及び転落角Φの測定結果を示す表である。 従来例1~4のサンプル及び本発明の実施の形態3の熱交換器10のサンプルにおける着霜耐力及び排水性能の測定結果を示す表である。
実施の形態1.
 本発明の実施の形態1に係る熱交換器10の構造について説明する。図1は、本実施の形態1に係る熱交換器10の構造を概略的に示した正面図である。
 なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。また、以下の図面では、同一の又は類似する部材又は部分には、同一の符号を付すか、又は符号を付すことを省略している。また、以下の説明における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、本実施の形態1を含む以下の実施の形態の熱交換器10を使用可能な状態に設置したときのものである。
 本実施の形態1に係る熱交換器10は、コルゲートフィン型熱交換器であり、熱交換媒体(例えば、冷媒)を上下方向に流通させる縦流れ式の熱交換器である。本実施の形態1に係る熱交換器10では、上ヘッダ管1a及び下ヘッダ管1bが、一対のヘッダ管となるように重力方向の上下に並列に配置されている。
 上ヘッダ管1aと下ヘッダ管1bとの間には、上ヘッダ管1a又は下ヘッダ管1bを介して分配された冷媒を流動する複数の扁平管2(伝熱管の一例)が重力方向と並列に接合されている。例えば、本実施の形態1に係る熱交換器10においては、複数の扁平管2の扁平面が互いに対面するように配置される。
 隣り合った2つの扁平管2の扁平面の間には、フィン、例えばコルゲートフィン3が配置されている。すなわち、熱交換器10は、扁平管2とコルゲートフィン3とが、上ヘッダ管1a(又は、下ヘッダ管1b)の長さ方向に沿って交互に配置された構成となっている。コルゲートフィン3は、コルゲート状(波状)の金属平板であり、隣り合った2つの扁平管2の扁平面に交互に接合される複数の頂部3aと、隣り合った2つの扁平管2の頂部3aの間を交互に延在する複数の斜面部3bとを有している。
 本実施の形態1に係る熱交換器10では、扁平管2の内部を上下方向に流動する冷媒と、扁平管2の長さ方向及び上ヘッダ管1a(又は、下ヘッダ管1b)の長さ方向の双方に交差(例えば、直交)する方向に流れる送風空気との間で熱交換が行われる。
 例えば、上ヘッダ管1aから下ヘッダ管1bに向けて冷媒が流動する場合を考える。熱交換器10の上ヘッダ管1aに流入した冷媒は、扁平管2の本数と同数のパスへ分流される。分流された冷媒は、複数の扁平管2を下方に流動する。複数の扁平管2を下方に流動する冷媒は、複数の扁平管2及びコルゲートフィン3を通じて、送風空気と熱交換される。複数の扁平管2で熱交換された冷媒は、下ヘッダ管1bで合流して熱交換器10から流出する。
 次に、本実施の形態1の熱交換器10に生じる水滴の排水経路について、図2~4を用いて説明する。図2は、本実施の形態1に係る熱交換器10の扁平管2及びコルゲートフィン3の構造の一例を上ヘッダ管1aの側から見た概略的な部分拡大図である。図3は、本実施の形態1に係る熱交換器10の扁平管2及びコルゲートフィン3の構造の変形例を上ヘッダ管1aの側から見た概略的な部分拡大図である。図4は、本実施の形態1に係る熱交換器10の扁平管2及びコルゲートフィン3の構造の別の変形例を上ヘッダ管1aの側から見た概略的な部分拡大図である。図2~4に示すように、本実施の形態1に係る熱交換器10の扁平管2は、複数の冷媒流路2aを内部に配置した構成としている。
 図2に示すように、熱交換器10は、コルゲートフィン3の扁平管2との接合部分である頂部3aの幅を、扁平管2の長径方向の幅よりも短くなるように構成できる。本実施の形態1では、頂部3aの幅を扁平管2の長径方向の幅よりも短くすることにより、コルゲートフィン3が接合していない隣り合った扁平管2の間の領域を、下ヘッダ管1bに向けて熱交換器10で融解した水を流下させる排水経路として構成できる。
 なお、図3に示すように、本実施の形態1に係る熱交換器10では、扁平管2の長径方向における、熱交換器10の排水経路に対応する扁平管2の内部の位置に、冷媒流路2aを設けない構成としてもよい。また、図2では、斜面部3bの幅を扁平管2の長径方向の幅よりも短くすることにより排水経路を構成したが、図4に示すように、扁平管2の長径方向におけるコルゲートフィン3の複数の接合部の同一位置に切欠部3cを設け、切欠部3cを熱交換器10の排水経路として利用するように構成してもよい。
 本実施の形態1に係る熱交換器10において、コルゲートフィン3は、波状の金属平板として構成することにより、送風空気に接する面を大きくすることができるため、送風空気との熱交換を効率的に行うことができる。なお、熱交換器10においては、扁平管2及びコルゲートフィン3の形状、大きさ、及びピッチに加え、扁平管2及びコルゲートフィン3の表面特性によって、熱交換器10の使用冷媒量、熱交換特性、及び製造性が決定される。
 次に、本発明の実施の形態1に係る熱交換器10を構成する材料について説明する。
 熱交換器10の上ヘッダ管1a、下ヘッダ管1b、扁平管2、及びコルゲートフィン3は、熱伝導性が高く、安価で加工性に優れた金属製の部材で構成できる。例えば、熱交換器10は、アルミニウム製又はアルミニウム合金製の部材で構成できる。
 なお、熱交換器10に使用される部材は、アルミニウム又はアルミニウム合金に限定されず、熱伝導性に優れた部材であれば任意の部材を用いることができる。例えば、銅、銀、金等の金属製の部材で構成してもよい。
 また、熱交換器10の各構成要素を異種の金属製の部材で構成することもできる。例えば、上ヘッダ管1a及び下ヘッダ管1bをアルミニウム合金製の部材で構成し、扁平管2及びコルゲートフィン3を銅製の部材で構成してもよい。ただし、熱交換器10の各構成要素を異種の金属で構成する場合は、異種の金属の接合部(上の例では、例えば上ヘッダ管1aと扁平管2との接合部)での腐食による冷媒漏れが生じないように、各部材の電位設計に留意する必要がある。
 上ヘッダ管1a及び下ヘッダ管1bと扁平管2との接合部、並びに扁平管2とコルゲートフィン3との接合部は、例えば、ロウ付け処理によって接合されている。なお、当該接合部の接合方法としては、当該接合部における熱伝導性を維持できる方法であれば、ロウ付け処理以外の方法を用いてもよい、例えば、当該接合部は、溶接又は接着によって接合してもよい。
 次に、本実施の形態1に係る熱交換器10を用いた冷凍サイクル装置100について図5を用いて説明する。図5は、本実施の形態1に係る冷凍サイクル装置100の一例を概略的に示す冷媒回路図である。
 図5に示すように、冷凍サイクル装置100は、圧縮機20、冷媒流路切替装置30、熱源側熱交換器40、減圧装置50、及び負荷側熱交換器60が冷媒配管を介して環状に接続された構成を有している。本実施の形態1に係る熱交換器10は、熱源側熱交換器40又は負荷側熱交換器60の少なくとも一方に用いられている。また、冷凍サイクル装置100は、熱源側熱交換器40に空気を送風する送風ファン70を有している。
 なお、図5では、冷房運転及び暖房運転の双方を行う冷凍サイクル装置100として必要最小限の構成要素のみを示している。冷凍サイクル装置100は、図5に示す構成要素の他に、気液分離器、レシーバ、アキュムレータ等を備えていてもよい。
 圧縮機20は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。
 冷媒流路切替装置30は、冷房運転時と暖房運転時とで冷凍サイクル内の冷媒の流れ方向を切り替えるものであり、例えば四方弁等が用いられる。
 熱源側熱交換器40は、暖房運転時には蒸発器として機能し、冷房運転時には放熱器(例えば、凝縮器)として機能する熱交換器である。熱源側熱交換器40では、内部を流通する冷媒と、送風ファン70により送風される空気(外気)との熱交換が行われる。
 減圧装置50は、高圧冷媒を減圧して低圧冷媒とするものである。減圧装置50としては、例えば、開度を調節可能なリニア電子膨張弁(LEV)等が用いられる。
 負荷側熱交換器60は、暖房運転時には放熱器(例えば、凝縮器)として機能し、冷房運転時には蒸発器として機能する熱交換器である。負荷側熱交換器60では、例えば、内部を流通する冷媒と、負荷側送風ファン(図示せず)により送風される空気(例えば、空気調和装置の場合は室内空気)との熱交換が行われる。
 ここで、「暖房運転」とは、負荷側熱交換器60に高温高圧の冷媒を供給する運転のことをいい、「冷房運転」とは、負荷側熱交換器60に低温低圧の冷媒を供給する運転のことをいう。図5では、暖房運転時における冷媒の流れを実線の矢印で示し、冷房運転時における冷媒の流れを破線の矢印で示している。
 例えば、冷凍サイクル装置100をカーエアコン又は建物用の空気調和装置として構成する場合は、室内側ユニット(図示せず)に負荷側熱交換器60が収容され、室外側ユニット(図示せず)に熱源側熱交換器40が収容される。カーエアコン又は建物用の空気調和装置では、室内側ユニットの負荷側熱交換器60に高温高圧の冷媒を供給することにより、暖房運転が行われる。また、カーエアコン又は建物用の空気調和装置では、室内側ユニットの負荷側熱交換器60に低温低圧の冷媒を供給することにより、冷房運転が行われる。
 冷凍サイクル装置100において、冷房運転又は暖房運転が長時間継続されたときには、蒸発器として機能する熱源側熱交換器40又は負荷側熱交換器60の伝熱管(例えば、扁平管2)又はフィン(例えば、コルゲートフィン3)の表面に凝縮水(結露水)による水膜(着露)又は着霜が生じる場合がある。凝縮水が発生した場合、フィン上に付着し、蓄積した凝縮水の一部は、重力に従ってフィン表面から流れていく。しかしながら、フィンに付着した凝縮水が重力に従い排水されない場合又はフィンに着霜が生じたときには、フィンの水膜又は着霜により、熱源側熱交換器40又は負荷側熱交換器60の空気流路が狭くなり、空気流路が閉塞される場合がある。熱源側熱交換器40又は負荷側熱交換器60で空気流路の狭路化(狭小化)又は空気流路の閉塞が発生すると、熱抵抗及び通風抵抗が増加するため、熱源側熱交換器40又は負荷側熱交換器60の熱交換率が低下する。
 そこで、冷凍サイクル装置100においては、冷房運転又は暖房運転が長時間継続されたときには、除霜運転が行われる。ここで、「除霜運転」とは、蒸発器として機能する熱源側熱交換器40又は負荷側熱交換器60に霜が付着するのを防ぐために、又は付着した霜を融かすために、圧縮機20から熱源側熱交換器40又は負荷側熱交換器60に高温高圧のガス冷媒であるホットガスを供給する運転のことである。熱源側熱交換器40又は負荷側熱交換器60に付着した霜及び氷は、除霜運転時に、熱源側熱交換器40又は負荷側熱交換器60に供給されるホットガスによって融解される。
 除霜運転は、冷房運転又は暖房運転が所定時間継続された場合に、例えば、冷媒流路切替装置30によって冷媒の流れ方向を切り替え、蒸発器に高温高圧の冷媒(ホットガス)を供給して行われる。また、除霜運転は、冷房運転又は暖房運転が所定時間継続された場合に、圧縮機20の吐出口と熱源側熱交換器40又は負荷側熱交換器60との間をバイパス冷媒配管(図示せず)で接続し、圧縮機20から熱源側熱交換器40又は負荷側熱交換器60にホットガスを直接的に供給して行ってもよい。
 一方、除霜運転中は、通常の運転を中断する必要があるため、冷凍サイクル装置100の熱交換性能(COP)の低下が生じる。
 したがって、熱源側熱交換器40又は負荷側熱交換器60は、着露及び着霜を抑制でき、除霜運転時に融解した水を素早く排水できる構成とすることが重要となる。フィン及び伝熱管の表面等、熱源側熱交換器40又は負荷側熱交換器60からの排水性を向上させることにより、凝縮水による熱交換率が低下するのを抑制するとともに、着霜に対する耐力を向上させることができる。
 次に、本実施の形態1における、除霜運転時の排水性を向上させるための扁平管2及びコルゲートフィン3の表面処理について説明する。本実施の形態1の熱交換器10は、扁平管2及びコルゲートフィン3に親水性の表面処理を施すことにより、除霜運転時の排水性を向上させるものである。
 扁平管2及びコルゲートフィン3の表面処理(表面改質処理)としては、例えば、扁平管2及びコルゲートフィン3の表面を親水性の材料で塗布し、親水性及び滑水性の無機膜又は有機膜を皮膜する方法がある。扁平管2及びコルゲートフィン3の表面に皮膜される親水性の材料としては、任意の親水性の無機材料又は有機材料を用いることができ、例えば、限定しないが、水ガラス、ケイ酸、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、エポキシ樹脂、フラックス等の材料を1成分以上含む材料にできる。
 また、親水性及び滑水性の皮膜処理を施した扁平管2及びコルゲートフィン3の表面の滑水性を更に向上させる表面処理としては、例えば、扁平管2及びコルゲートフィン3の表面に皮膜された無機膜又は有機膜の表面粗さを平坦化する方法がある。なお、扁平管2及びコルゲートフィン3の表面の滑水性を向上させる方法は、表面粗さを平坦化する方法に限られず、例えば、扁平管2及びコルゲートフィン3の表面形状を調整することにより滑水性を向上させることも可能である。
 次に、熱交換器10のコルゲートフィン3の傾斜角φfについて説明する。
 図6は、本実施の形態1に係る熱交換器10の一部を拡大して、コルゲートフィン3の寸法及び角度を表示した概略図である。ここでは、隣接する扁平管2の間の距離(コルゲートフィン3のフィン幅)をw(mm)とした。また、コルゲートフィン3の隣接する斜面部3bの中間位置の間のフィンピッチ(フィン間隔)をd[mm]とした。また、扁平管2の冷媒の流れ方向を鉛直方向とした場合に、隣接する扁平管2を結ぶ垂線と、斜面部3bとの間の角度をコルゲートフィン3の傾斜角をφf[°]とした。なお、本実施の形態1では、傾斜角φfの範囲を0°<φf<90°とした。また、本実施の形態1では、フィン幅w、コルゲートフィン3のフィンピッチd、及びコルゲートフィン3の傾斜角φfは、熱交換器10の全体にわたってほぼ同一であるものとした。
 コルゲートフィン3の傾斜角φfは、コルゲートフィン3のフィンピッチdとコルゲートフィン3のフィン幅wを用いて次式により算出される。
   φf=tan-1(d/w)
 なお、コルゲートフィン3を用いた従来の熱交換器10では、フィンピッチdが小さくなると、熱交換面積が増加するため、熱交換性能が向上する。一方、熱交換器10に着露及び着霜が生じる場合においては、コルゲートフィン3のフィンピッチdが小さくなると、水滴がコルゲートフィン3の隣り合った斜面部3bの間でブリッジして転落しにくくなるため排水性が悪くなる。特に近年は、熱交換器10の性能向上を目的として、コルゲートフィン3のフィンピッチdを極めて狭く設計することがあるため、凝集水がコルゲートフィン3の隣り合った斜面部3bの間でブリッジしやすい傾向にある。結果、熱交換器10における通風抵抗が増大し、熱交換率が低下し、熱交換面積が増加しても熱交換率が低下するというトレードオフの関係が生じる。本実施の形態1の熱交換器10では、コルゲートフィン3の表面処理を行うことで、コルゲートフィン3にブリッジした水滴の排水性を向上させることができるため、着露及び着霜による熱交換率の低下を回避することができる。
 次に、扁平管2及びコルゲートフィン3の親水性を示す指標となる接触角θの測定方法について説明する。
 図7は、本実施の形態1に係る接触角θの測定方法を示す概略図である。本実施の形態1では、扁平管2及びコルゲートフィン3の測定サンプル4を用いて接触角θを測定する。本実施の形態1では、接触角θは、扁平管2及びコルゲートフィン3の測定サンプル4に、イオン交換水10μLを滴下して生じた水滴5を用いて測定される。接触角θは、測定サンプル4と水滴5の表面との接点5aにおける接線と、水滴5が接触する測定サンプル4の表面との間の角度として定義される。本実施の形態1では、接触角θは0°≦θ[°]<180°の範囲とし、θ[°]<90°で親水性、θ[°]≧90°で疎水性と定義する。また、接触角θが小さくなると親水性は高くなり、接触角θが大きくなると疎水性は高くなると言える。
 次に、扁平管2及びコルゲートフィン3の滑水性を示す指標となる転落角Φの測定方法について説明する。
 図8は、本実施の形態1に係る転落角Φの測定方法を示す概略図である。本実施の形態1では、接触角θの測定と同様に、扁平管2及びコルゲートフィン3の測定サンプル4を用いて転落角Φを測定する。本実施の形態1では、転落角Φは、扁平管2及びコルゲートフィン3の測定サンプル4にイオン交換水10μLを滴下し、滴下30秒後に測定サンプル4を傾斜し、水滴5の前進端5bが、水滴5の初期位置5cより約1mm移動したときの測定サンプル4の傾斜角として定義される。図8では、移動前の水滴5の位置は破線で示し、移動後の水滴5の位置は実線で示している。本実施の形態1の転落角Φの測定方法では、滴下後30秒後に測定サンプル4を傾斜することで、測定サンプル4の親水性の表面で濡れ広がることによって前進端5bが移動する影響を取り除いている。転落角Φは0°<Φ[°]≦90°の範囲となり、転落角Φが小さくなると滑水性は高くなり、転落角Φが大きくなると滑水性は低くなると言える。
 本実施の形態1に係る熱交換器10のコルゲートフィン3においては、コルゲートフィン3の転落角Φが、コルゲートフィン3の傾斜角φfよりも小さくなるように、滑水性の表面処理が施されている。コルゲートフィン3においては、滑水性が高いほど排水性が向上する。また、コルゲートフィン3の傾斜角φfを小さくすると、コルゲートフィン3のフィンピッチdを小さく設計でき、熱交換面積が増加するため、熱交換性能が向上する。したがって、本実施の形態1においては、コルゲートフィン3の転落角Φが小さくなるにつれて、排水性が向上し、熱交換性能が向上することとなる。
 図9は、本実施の形態1において、任意の親水性の材料及び任意の表面粗さの組み合わせで表面処理したアルミニウム製の測定サンプル4の接触角θと転落角Φとを示したグラフである。グラフの横軸は接触角θを表し、グラフの縦軸は転落角Φを表している。グラフ上のブロットは、任意の親水性の材料(膜材料)及び任意の表面粗さの組み合わせでの接触角θと転落角Φとを示している。
 図9では、測定サンプル4の表面へ塗布する親水性の材料の種類及び測定サンプル4の表面粗さの度合いの組み合わせによって、種々の組合せの接触角θと転落角Φを有するアルミニウム製の測定サンプル4が製造可能なことが示されている。特に、低い接触角θ(例えば、40°以下)及び低い転落角Φ(例えば、20°以下)の範囲であっても、アルミニウム製の測定サンプル4が製造可能なことが示されている。したがって、本実施の形態1の表面処理によれば、親水性が高く、かつ滑水性が高い扁平管2及びコルゲートフィン3を製造することが可能である。
 次に、本実施の形態1の熱交換器10の着霜耐力(着霜を抑える性能)及び排水性能を評価した実験について説明する。
 本実施の形態1の熱交換器10のサンプルとしては、300×300×15mmサイズの熱交換器10を準備した。コルゲートフィン3のフィンピッチdは1.7mm、コルゲートフィン3のフィン幅wは10mm、コルゲートフィン3の傾斜角φfは10°とした。また、扁平管2の短径方向の厚さは2mmとした。
 本実施の形態1の熱交換器10の比較対象として、従来技術の4つのコルゲートフィン型熱交換器のサンプルを準備した。4つのコルゲートフィン型熱交換器のサンプルは、本実施の形態1の熱交換器10のサンプルと同様に、300×300×15mmサイズのコルゲートフィン型熱交換器とした。また、本実施の形態1の熱交換器10のサンプルと同様に、コルゲートフィンのフィンピッチは1.7mm、コルゲートフィン3のフィン幅は10mm、コルゲートフィンの傾斜角は10°とした。また、本実施の形態1の熱交換器10のサンプルと同様に、扁平管の短径方向の厚さは2mmとした。
 4つのコルゲートフィン型熱交換器のサンプルは、従来例1~4のサンプルとし、それぞれの扁平管及びコルゲートフィンに異なる表面処理を施した。
 図10は、従来例1~4のサンプル及び本実施の形態1の熱交換器10のサンプルにおける接触角θ及び転落角Φの測定結果を示す表である。図10においては、従来例1~4のサンプルを「従来例1」、「従来例2」、「従来例3」、及び「従来例4」と略記している。また、本実施の形態1の熱交換器10のサンプルを「実施の形態1」と略記している。
 従来例1のサンプルは、扁平管にもコルゲートフィンにも表面処理を施さないコルゲートフィン型熱交換器のサンプルとした。従来例1のサンプルにおいては、コルゲートフィンの接触角θは86°であり、扁平管の接触角θは85°であった。なお、コルゲートフィン及び扁平管に滴下された水滴は90°の角度まで傾斜させても転落しなかった。
 従来例2のサンプルは、扁平管及びコルゲートフィンに疎水性の表面処理を施したコルゲートフィン型熱交換器のサンプルとした。従来例2のサンプルにおいては、コルゲートフィンの接触角θは117°であり、転落角Φは24°であった。扁平管の接触角θは118°であり、転落角Φは24°であった。
 従来例3のサンプルは、扁平管に親水性の表面処理を施し、コルゲートフィンに疎水性の表面処理を施したコルゲートフィン型熱交換器のサンプルとした。従来例3のサンプルにおいては、コルゲートフィンの接触角θは117°であり、転落角Φは24°であった。扁平管の接触角θは51°であった。なお、扁平管に滴下された水滴は90°の角度まで傾斜させても転落しなかった。
 従来例4のサンプルは、扁平管に疎水性の表面処理を施し、転落角Φがコルゲートフィンの傾斜角(10°)よりも大きくなるように、コルゲートフィンに親水性の表面処理を施したコルゲートフィン型熱交換器のサンプルとした。従来例4のサンプルにおいては、コルゲートフィンの接触角θは14°であり、転落角Φは30°であった。扁平管の接触角θは51°であった。なお、扁平管に滴下された水滴は90°の角度まで傾斜させても転落しなかった。
 これに対し、本実施の形態1の熱交換器10のサンプルは、扁平管2に親水性の表面処理を施し、転落角Φがコルゲートフィン3の傾斜角φf(10°)よりも小さくなるように、コルゲートフィン3に親水性の表面処理を施したサンプルとした。本実施の形態1の熱交換器10のサンプルにおいては、コルゲートフィン3の接触角θは20°であり、転落角Φは8°であった。扁平管2の接触角θは51°であった。なお、扁平管2に滴下された水滴は90°の角度まで傾斜させても転落しなかった。
 以上の従来例1~4のサンプル及び本実施の形態1の熱交換器10のサンプルを用いて、本実施の形態1の熱交換器10の着霜耐力及び排水性能を評価した。
 着霜耐力は、着霜時間T1を用いて評価した。熱交換器のサンプルを通過する空気の速度を測定し、測定開始から、熱交換器のサンプルを通過する空気の初期前面風速(1m/s)が1/2に減速するまでの経過時間を着霜時間T1として測定した。測定した着霜時間T1は、従来例1のサンプルでの着霜時間T1を1とし、各サンプルでの着霜時間T1を従来例1のサンプルでの着霜時間T1に対する比率として規格化することで比較評価した。
 なお、実機運転の状況に合わせることを目的として、着霜→除霜運転を1サイクルとして、1サイクル運転した後の2サイクル目のデータを着霜時間T1として測定している。1サイクル運転した後の2サイクル目のデータを測定することにより、着霜時間T1は熱交換器への残水の影響を受けるため、1サイクル目の除霜時に排水されなかった残水がある場合は、霜の生成速度が早まることとなる。したがって、着霜時間T1は大きいほど着霜耐力が良いと評価した。
 排水性能は、除霜運転終了後から熱交換器の出口温度が10°上昇するまでの経過時間を除霜時間T2として測定した。また、除霜時間T2経過後の熱交換器の重量から運転開始時の熱交換器の重量を減算して、熱交換器に残存する残水量Mを測定した。測定した除霜時間T2は、従来例1のサンプルでの除霜時間T2を1とし、各サンプルでの除霜時間T2を従来例1のサンプルでの除霜時間T2に対する比率として規格化することで比較評価した。測定した残水量Mは、従来例1のサンプルでの残水量Mを1とし、各サンプルでの残水量Mを従来例1のサンプルでの残水量Mに対する比率として規格化することで比較評価した。したがって、除霜時間T2は小さいほど排水性能が良く、残水量Mは小さいほど排水性能が良いと評価した。
 図11は、従来例1~4のサンプル及び本実施の形態1の熱交換器10のサンプルにおける着霜耐力及び排水性能の測定結果を示す表である。
 従来例2のサンプルでは、着霜時間T1が1.10となっており、従来例1のサンプルと比較して着霜耐力の改善がわずかしか見られなかった。また、除霜時間T2が0.88、残水量Mが0.90となっており、従来例1のサンプルと比較して排水性能の改善が見られる。
 また、従来例3のサンプルでも、着霜時間T1が1.23となっており、従来例1のサンプルと比較して着霜耐力の改善がわずかしか見られなかった。また、除霜時間T2が0.84、残水量Mが0.84となっており、従来例1のサンプルと比較して排水性能の改善が見られた。
 従来例2~3のサンプルでは、コルゲートフィンの表面が疎水性であるため、滑落性が改善したことで、従来例1のサンプルよりも排水性能が向上し、着霜耐力がわずかに向上したと考えられる。また、従来例3のサンプルは、従来例2のサンプルとは異なり扁平管が親水性である。従来例3のサンプルでは、扁平管を親水性とすることで、除霜した水が疎水性のフィンから親水性の扁平管へ流れやすくなる。したがって、従来例3のサンプルでは、従来例2のサンプルと比較して除霜時間T2及び残水量Mが小さくなっている。しかしながら、従来例2~3のサンプルでは、排水後にコルゲートフィンの斜面部の間で、除霜した水がブリッジし、コルゲート型熱交換器に多くの残水があることを目視で確認できた。このため着霜耐力が、従来例1と比較してわずかしか改善されなかったと考えられる。
 また、従来例4のサンプルでは、着霜時間T1が0.96となっており、従来例1のサンプルと比較しても着霜耐力の改善が見られなかった。また、除霜時間T2が0.99、残水量Mが0.94となっており、従来例1~3のサンプルと比較しても排水性能の改善はわずかしか見られなかった。
 従来例4のサンプルでは、コルゲートフィンは親水性であるものの、転落角Φがコルゲートフィンの傾斜角よりも大きくなるように構成されている。したがって、除霜運転後、コルゲートフィンの表面全体に水が濡れ広がった状態で残ったため、着霜耐力の改善が見られなかったと考えられる。
 また、従来例4のサンプルでは、コルゲートフィンの表面全体へ除霜した水が濡れ広がるためコルゲートフィンの斜面部の間での除霜した水のブリッジはほとんど見られない。しかしながら、コルゲートフィンの扁平管との接合部付近には、除霜した水が残り、扁平管から排水されない様子が目視で確認された。従来例4のサンプルでは、扁平管が疎水性の表面処理がされており、コルゲートフィンが親水性の表面処理がされている。したがって、従来例4のサンプルでは、扁平管の接触角θがコルゲートフィンの接触角θよりも大きくなるため、扁平管への排水が完全に行われずに接合部付近に停滞し、排水性能の改善がわずかであったと考えられる。
 これに対して、本実施の形態1の熱交換器10のサンプルでは、着霜時間T1が1.35となっており、従来例1~4のサンプルと比較して着霜耐力の改善が見られた。また、除霜時間T2が0.78、残水量Mが0.53となっており、従来例1~4のサンプルと比較して排水性能の改善が見られた。
 本実施の形態1の熱交換器10のサンプルでは、親水性の表面処理を施したコルゲートフィン3は、コルゲートフィン3の転落角Φがコルゲートフィン3の斜面部3bの傾斜角φfよりも小さくなるように、滑水性の表面処理が施されている。本実施の形態1の熱交換器10のサンプルでは、親水性の表面処理に加えて滑水性の表面処理を施したことで、コルゲートフィン3の表面に濡れ広がった水が、定常的に扁平管2へと流れ排水されるため、熱交換器10の残水量Mを大きく低減することが可能となる。
 また、コルゲートフィン3に滑水性の表面処理を施すことで、除霜運転直後にコルゲートフィン3の表面で融解し始めた霜が、完全に融解する前に冷媒の通過する扁平管2へと流れ扁平管2に接触することで、除霜時間T2が短縮され、排水性能が向上したと考えられる。着霜時間T1が大きくなり着霜耐力が向上した主な要因は、コルゲートフィン3の表面の残水量Mが小さくなったためと考えられる。したがって、本実施の形態1の熱交換器10のサンプルでは、親水性の表面処理を施したコルゲートフィン3は、コルゲートフィン3の転落角Φがコルゲートフィン3の斜面部3bの傾斜角φfよりも小さくなるように、滑水性の表面処理を施すことにより、着霜耐力及び排水性能が大きく向上する。
 以上に説明したように、本実施の形態1の熱交換器10は、重力方向の上下に並列に配置された一対のヘッダ管(上ヘッダ管1a、下ヘッダ管1b)と、重力方向と並列に並置され、一対のヘッダ管(上ヘッダ管1a、下ヘッダ管1b)の間に接合された複数の伝熱管(例えば、扁平管2)と、隣り合った伝熱管(例えば、扁平管2)の間に接合される複数のフィン(例えば、コルゲートフィン3)とを備え、伝熱管(例えば、扁平管2)及びフィン(例えば、コルゲートフィン3)には親水性の表面処理が施されており、フィン(例えば、コルゲートフィン3)は、伝熱管(例えば、扁平管2)との接合部分(頂部3a)の間を斜方に延在する斜面部3bを有し、水平方向に対する斜面部3bの角度を斜面部3bの傾斜角φfとし、フィン(例えば、コルゲートフィン3)の斜面部3bに滴下した水滴が落下しはじめるときの斜面部3bの角度を転落角Φとした場合に、フィン(例えば、コルゲートフィン3)には、転落角Φが傾斜角φfよりも小さくなるように、滑水性の表面処理が施されている。
 また、本実施の形態1の冷凍サイクル装置100は、上述の熱交換器10を備える。
 本実施の形態1では、親水性の表面処理を施したコルゲートフィン3は、コルゲートフィン3の転落角Φがコルゲートフィン3の斜面部3bの傾斜角φfよりも小さくなるように、滑水性の表面処理が施されている。したがって、本実施の形態1の構成によれば、熱交換器10に発生した水は、球になることなくコルゲートフィン3上で濡れ広がるため、フィンピッチdが小さい場合でも、コルゲートフィン3の隣り合った斜面部3bの間での水のブリッジを防ぐことができる。
 また、扁平管2を親水性とすることにより、コルゲートフィン3上で濡れ広がった水は扁平管2に流れやすくなり、扁平管2から重力にしたがって排水することが容易となるため、排水性が向上する。したがって、本実施の形態1の構成によれば、排水性の向上により、除霜運転時間の短縮が可能となるため、エネルギー消費量を削減可能な熱交換器10及び冷凍サイクル装置100を提供できる。
 また、扁平管2を重力方向(鉛直方向)に対し平行に配置することにより、コルゲートフィン3から扁平管2に流れた水が、自重により重力に従って下ヘッダ管1bまでに排水され、熱交換器10全体への残水量Mを抑制することが可能となる。また、下ヘッダ管1bが断面円形状の冷媒配管である場合、下ヘッダ管1bの表面を親水性又は滑水性にすることで、自重で排水された水が、下ヘッダ管1bの表面から流れ、下ヘッダ管1bの表面における水の滞留を抑制することが可能となる。したがって、本実施の形態1の構成によれば、除霜運転後に通常運転を再開した場合の根氷を防ぐことが可能である。
 以上のとおり、本実施の形態1に係る熱交換器10及び冷凍サイクル装置100によれば、コルゲートフィン3のフィンピッチdが狭い場合でも、凝縮水又は除霜運転によって融けた水の熱交換器10での滞留を抑制でき、通風抵抗の増加の抑制が可能となる。したがって、本実施の形態1によれば、熱交換器10及び冷凍サイクル装置100の熱交換性能を向上させることができる。また、熱交換器10の排水性が向上させることができることにより、新たな着霜を抑制することができるため、熱交換器10の耐久性を向上させることができる。
実施の形態2.
 本発明の実施の形態2に係る熱交換器10の構造について説明する。図12は、本実施の形態2に係る熱交換器10の構造を概略的に示した正面図である。本実施の形態2に係る熱交換器10は、上述の実施の形態1に係る熱交換器10の一変形例である。
 本発明の実施の形態2に係る熱交換器10の扁平管6は、上述の実施の形態1の扁平管2に滑水性の表面処理を施したものである。その他の本発明の実施の形態2に係る熱交換器10の構造、構成材料、及び表面処理については、上述の実施の形態1に係る熱交換器10のものと同一であるため、説明を省略する。
 図13は、従来例1~4のサンプル及び本実施の形態2の熱交換器10のサンプルにおける接触角θ及び転落角Φの測定結果を示す表である。図14は、従来例1~4のサンプル及び本実施の形態2の熱交換器10のサンプルにおける着霜耐力及び排水性能の測定結果を示す表である。接触角θ及び転落角Φの測定方法、従来例1~4の接触角θ及び転落角Φの測定結果、着霜耐力及び排水性能の実験方法、並びに従来例1~4の着霜耐力及び排水性能の測定結果等は、上述の実施の形態1に係る熱交換器10のものと同一であるため、説明を省略する。
 本実施の形態2の熱交換器10のサンプルにおいて、扁平管6は、親水性及び滑水性の表面処理を施し、転落角Φがコルゲートフィン3の傾斜角φf(10°)よりも小さくなるように、コルゲートフィン3に親水性の表面処理を施したものとした。本実施の形態2の熱交換器10のサンプルにおいては、コルゲートフィン3の接触角θは20°であり、転落角Φは8°であった。扁平管6の接触角θは35°であり、転落角Φは34°であった。なお、扁平管6の転落角Φが小さくなると、扁平管6の滑水性が高くなるため、排水性能も高くなる。
 本実施の形態2の熱交換器10のサンプルでは、着霜時間T1が1.39となっており、従来例1~4のサンプルと比較して着霜耐力の改善が見られた。また、除霜時間T2が0.77、残水量Mが0.50となっており、従来例1~4のサンプルと比較して排水性能の改善が見られた。
 本実施の形態2の熱交換器10のサンプルの着霜耐力及び排水性能は、図11に示した上述の実施の形態1の熱交換器10のサンプルよりも更に改善傾向が見られた。本実施の形態2においては、扁平管6の表面の転落角Φは34°であり、扁平管6の表面の滑水性が高くなっている。したがって、扁平管6の表面に残っていた水が下ヘッダ管1bまで排水され、残水量Mが減少したため、着霜耐力及び排水性能が更に改善したと考えられる。
 以上に説明したように、本実施の形態2に係る熱交換器10の複数の伝熱管(例えば、扁平管6)には、滑水性の表面処理が施されている。
 本実施の形態2では、転落角Φが90°未満となる滑水性の表面処理の施した扁平管6を用いることにより、熱交換器10の残水量Mを更に低減できるため、熱交換性能を更に向上させることができる。
実施の形態3.
 本発明の実施の形態3に係る熱交換器10の構造について説明する。図15は、本実施の形態3に係る熱交換器10の構造を概略的に示した正面図である。本実施の形態3に係る熱交換器10は、上述の実施の形態1に係る熱交換器10の別の一変形例である。
 本発明の実施の形態3に係る熱交換器10の扁平管7の表面は、コルゲートフィン3の表面よりも親水性を高くしたものである。その他の本発明の実施の形態3に係る熱交換器10の構造、構成材料、及び表面処理については、上述の実施の形態3に係る熱交換器10のものと同一であるため、説明を省略する。
 図16は、従来例1~4のサンプル及び本実施の形態3の熱交換器10のサンプルにおける接触角θ及び転落角Φの測定結果を示す表である。図17は、従来例1~4のサンプル及び本実施の形態3の熱交換器10のサンプルにおける着霜耐力及び排水性能の測定結果を示す表である。接触角θ及び転落角Φの測定方法、従来例1~4の接触角θ及び転落角Φの測定結果、着霜耐力及び排水性能の実験方法、並びに従来例1~4の着霜耐力及び排水性能の測定結果等は、上述の実施の形態1に係る熱交換器10のものと同一であるため、説明を省略する。
 本実施の形態3の熱交換器10のサンプルにおいて、扁平管7は、親水性及び滑水性の表面処理を施し、転落角Φがコルゲートフィン3の傾斜角φf(10°)よりも小さくなるように、コルゲートフィン3に親水性の表面処理を施し、更に扁平管7の接触角θをコルゲートフィン3の接触角θよりも低いものとした。本実施の形態1の熱交換器10のサンプルにおいては、コルゲートフィン3の接触角θは20°であり、転落角Φは8°であった。扁平管6の接触角θは14°であり、転落角Φは30°であった。
 本実施の形態3の熱交換器10のサンプルでは、着霜時間T1が1.44となっており、従来例1~4のサンプルと比較して着霜耐力の改善が見られた。また、除霜時間T2が0.62、残水量Mが0.46となっており、従来例1~4のサンプルと比較して排水性能の改善が見られた。
 本実施の形態3の熱交換器10のサンプルの着霜耐力及び排水性能は、図11、14に示した上述の実施の形態1、2の熱交換器10のサンプルよりも更に改善傾向が見られた。本実施の形態3においては、扁平管7の接触角θをコルゲートフィン3の接触角θよりも低くすることで、扁平管7の親水性がコルゲートフィン3の親水性よりも高くなっている。一般的に、親水性の異なる物質の界面では、水は親水性の高い方へ流れるという特性を有する。したがって、コルゲートフィン3からコルゲートフィン3の頂部3aを経由して扁平管7に円滑に水が流れやすくなり、下ヘッダ管1bに排出されたためと考えられる。
 以上に説明したように、本実施の形態3に係る熱交換器10の複数の伝熱管(例えば、扁平管7)の表面は、複数のコルゲートフィン3の表面よりも親水性が高い。
 本実施の形態3では、扁平管7の表面の親水性をコルゲートフィン3の表面の親水性よりも高くすることにより、熱交換器10の残水量Mを更に低減できるため、排水性能及び熱交換性能を更に向上させることができる。
その他の実施の形態.
 本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱しない範囲において種々の変形が可能である。例えば、上述の実施の形態では、冷凍サイクル装置100として空気調和装置を例に挙げたが、本発明は、空気調和装置以外の冷凍サイクル装置100にも適用可能である。
 また、上記の各実施の形態は、互いに組み合わせて実施することが可能である。
 1a 上ヘッダ管、1b 下ヘッダ管、2、6、7 扁平管、2a 冷媒流路、3 コルゲートフィン、3a 頂部、3b 斜面部、3c 切欠部、4 測定サンプル、5 水滴、5a 接点、5b 前進端、5c 初期位置、10 熱交換器、20 圧縮機、30 冷媒流路切替装置、40 熱源側熱交換器、50 減圧装置、60 負荷側熱交換器、70 送風ファン、100 冷凍サイクル装置。

Claims (4)

  1.  重力方向の上下に並列に配置された一対のヘッダ管と、
     重力方向と並列に並置され、前記一対のヘッダ管の間に接合された複数の伝熱管と、
     隣り合った前記伝熱管の間に接合される複数のフィンと
    を備え、
     前記伝熱管及び前記フィンには親水性の表面処理が施されており、
     前記フィンは、前記伝熱管との接合部分の間を斜方に延在する斜面部を有し、
     水平方向に対する前記斜面部の角度を前記斜面部の傾斜角とし、前記フィンの斜面部に滴下した水滴が落下しはじめるときの前記斜面部の角度を転落角とした場合に、前記フィンには、前記転落角が前記傾斜角よりも小さくなるように、滑水性の表面処理が施されている
     熱交換器。
  2.  前記伝熱管には、滑水性の表面処理が施されている
     請求項1に記載の熱交換器。
  3.  前記伝熱管の表面は、前記フィンの表面よりも親水性が高い
     請求項1又は2に記載の熱交換器。
  4.  請求項1~3のいずれか1項に記載の熱交換器を備える冷凍サイクル装置。
PCT/JP2015/071386 2015-07-28 2015-07-28 熱交換器及び冷凍サイクル装置 WO2017017789A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/071386 WO2017017789A1 (ja) 2015-07-28 2015-07-28 熱交換器及び冷凍サイクル装置
JP2017530522A JPWO2017017789A1 (ja) 2015-07-28 2015-07-28 熱交換器及び冷凍サイクル装置
CN201610365863.8A CN106403641A (zh) 2015-07-28 2016-05-27 热交换器以及制冷循环装置
CN201620502356.XU CN205784707U (zh) 2015-07-28 2016-05-27 热交换器以及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071386 WO2017017789A1 (ja) 2015-07-28 2015-07-28 熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017017789A1 true WO2017017789A1 (ja) 2017-02-02

Family

ID=57885406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071386 WO2017017789A1 (ja) 2015-07-28 2015-07-28 熱交換器及び冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JPWO2017017789A1 (ja)
CN (2) CN205784707U (ja)
WO (1) WO2017017789A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158264A (ja) * 2018-03-14 2019-09-19 株式会社デンソー 熱交換器
WO2020084786A1 (ja) * 2018-10-26 2020-04-30 三菱電機株式会社 熱交換器及びそれを用いた冷凍サイクル装置
WO2020178977A1 (ja) * 2019-03-05 2020-09-10 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
US20210108864A1 (en) * 2018-07-11 2021-04-15 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669892B (zh) 2019-08-01 2022-10-14 浙江三花智能控制股份有限公司 换热器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263790A (ja) * 1991-02-18 1992-09-18 Zexel Corp 熱交換器
JP2006105415A (ja) * 2004-09-30 2006-04-20 Daikin Ind Ltd 熱交換器
JP2013190169A (ja) * 2012-03-14 2013-09-26 Sharp Corp 熱交換器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331290A (ja) * 1993-05-20 1994-11-29 Mitsubishi Electric Corp 空調用熱交換器及びその製造方法
JPH11166798A (ja) * 1997-12-03 1999-06-22 Sanyo Electric Co Ltd 滑水性材料をコーテイングした機能性装置
JP2006043510A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 着霜抑制被膜付き成型品の製造方法
JP2006046694A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 冷凍装置
JP2009229040A (ja) * 2008-03-25 2009-10-08 Mitsubishi Electric Corp 熱交換器および熱交換器の製造方法
JP2010060159A (ja) * 2008-09-01 2010-03-18 Daikin Ind Ltd 冷凍装置
US9958194B2 (en) * 2011-10-03 2018-05-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus with a heating unit for melting frost occurring in a heat exchanger
JP5559227B2 (ja) * 2012-03-14 2014-07-23 株式会社神戸製鋼所 アルミニウム製フィン材
US9534132B2 (en) * 2013-03-21 2017-01-03 Nihon Parkerizing Co., Ltd. Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263790A (ja) * 1991-02-18 1992-09-18 Zexel Corp 熱交換器
JP2006105415A (ja) * 2004-09-30 2006-04-20 Daikin Ind Ltd 熱交換器
JP2013190169A (ja) * 2012-03-14 2013-09-26 Sharp Corp 熱交換器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158264A (ja) * 2018-03-14 2019-09-19 株式会社デンソー 熱交換器
JP7024522B2 (ja) 2018-03-14 2022-02-24 株式会社デンソー 熱交換器
US20210108864A1 (en) * 2018-07-11 2021-04-15 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
US11573056B2 (en) 2018-07-11 2023-02-07 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
WO2020084786A1 (ja) * 2018-10-26 2020-04-30 三菱電機株式会社 熱交換器及びそれを用いた冷凍サイクル装置
JPWO2020084786A1 (ja) * 2018-10-26 2021-06-03 三菱電機株式会社 熱交換器及びそれを用いた冷凍サイクル装置
JP7112053B2 (ja) 2018-10-26 2022-08-03 三菱電機株式会社 熱交換器及びそれを用いた冷凍サイクル装置
WO2020178977A1 (ja) * 2019-03-05 2020-09-10 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JPWO2020178977A1 (ja) * 2019-03-05 2021-09-30 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP7118238B2 (ja) 2019-03-05 2022-08-15 三菱電機株式会社 熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Also Published As

Publication number Publication date
CN205784707U (zh) 2016-12-07
JPWO2017017789A1 (ja) 2018-02-22
CN106403641A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
JP5661202B2 (ja) プレートフィンチューブ式熱交換器及びそれを備えた冷凍空調システム
WO2017017789A1 (ja) 熱交換器及び冷凍サイクル装置
US10627175B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6847229B2 (ja) 熱交換器、及び冷凍サイクル装置
EP2455687B1 (en) Outdoor heat exchanger and heat pump having the same
WO2016009713A1 (ja) 冷凍サイクル装置及びこれに使用されるクロスフィンチューブ型熱交換器の製造方法
WO2018116408A1 (ja) 熱交換器およびその製造方法ならびに冷凍サイクル装置
WO2017221400A1 (ja) 冷凍サイクル装置およびそれに用いられる室外熱交換器
US20200217590A1 (en) Heat exchanger and refrigeration cycle apparatus
JP2019190727A (ja) 熱交換器
JP6980117B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
WO2020012549A1 (ja) 熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置
JP6692495B2 (ja) 熱交換器及び冷凍サイクル装置
WO2020178977A1 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP2006046695A (ja) 冷凍装置
WO2017072945A1 (ja) 熱交換器及び空気調和機
WO2016038865A1 (ja) 室外ユニットおよびそれを用いた冷凍サイクル装置
WO2012098915A1 (ja) 熱交換器および空気調和機
CN219956241U (zh) 一种具有复合结构翅片的换热器
CN107850358B (zh) 热交换器及制冷循环装置
JP2014001869A (ja) 熱交換器及び冷凍サイクル装置
JP2022148601A (ja) 熱交換器および冷凍サイクル装置
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
WO2019239554A1 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP2013204914A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899622

Country of ref document: EP

Kind code of ref document: A1