JP7118238B2 - 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 - Google Patents

熱交換器、熱交換器ユニット、及び冷凍サイクル装置 Download PDF

Info

Publication number
JP7118238B2
JP7118238B2 JP2021503308A JP2021503308A JP7118238B2 JP 7118238 B2 JP7118238 B2 JP 7118238B2 JP 2021503308 A JP2021503308 A JP 2021503308A JP 2021503308 A JP2021503308 A JP 2021503308A JP 7118238 B2 JP7118238 B2 JP 7118238B2
Authority
JP
Japan
Prior art keywords
heat exchanger
flat tube
tube
refrigerant flow
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021503308A
Other languages
English (en)
Other versions
JPWO2020178977A1 (ja
Inventor
伸 中村
剛志 前田
暁 八柳
敦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020178977A1 publication Critical patent/JPWO2020178977A1/ja
Application granted granted Critical
Publication of JP7118238B2 publication Critical patent/JP7118238B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器、熱交換器を備えた熱交換器ユニット、及び冷凍サイクル装置に関し、特に扁平管に取り付けられたフィンの構造に関する。
従来、内部に冷媒を循環させ、冷媒を蒸発又は凝縮させて空気等の流体と熱交換を行う熱交換器は、空気調和機及び冷蔵庫をはじめとして様々な分野において幅広く利用されている。発熱機器の冷却や作動流体への加熱など様々な用途で活躍する熱交換器であるが、どの分野においても熱交換性能及びコンパクト性の向上は常に求められており、これらの両立は、熱交換器が搭載される機器そのものにとって優位に働くことは言うまでもない。
現在、代表的な熱交換器の一つとして、フィンアンドチューブ熱交換器がある。このフィンアンドチューブ熱交換器は、複数の薄板状のフィンに、フィン表面に垂直な方向に複数の管を通し、これらの管を拡管させてフィンを管に取り付けて製造される。フィンアンドチューブ熱交換器は、管内部に冷媒を流し、管外壁に密着する伝熱面積の広いフィンを伝熱媒体として空気との熱交換を行うことを特徴としており、熱交換性能及びコンパクト性の向上を目指してこれまでに様々な模索がなされてきた。例えば、伝熱面積を増やすために、フィンを薄くしてフィン枚数を多くする、またはフィン表面にスリットを入れる、といったフィンについての改良、同じく伝熱面積を増やすために管内壁に凹凸を付ける、といった管についての改良がなされてきている。
一方、更なる熱交換性能及びコンパクト性の向上を追求するためには、フィンアンドチューブ熱交換器という範疇内での部分的改良の積み重ねのみでは、大きな効果を期待することが難しい状況になっている。このような背景から、従来のフィンアンドチューブ熱交換器に代わる新しい形態の熱交換器の研究が数多くなされている。その中で、多数の管を密に並べることにより伝熱面積を増やし、多数の管同士を繋ぐフィンを用いずに構成される熱交換器であるフィンレス熱交換器が注目を浴びている。このフィンレス熱交換器の形態としては、円管を規則正しく並べたものから、矩形や楕円形あるいは流線形といった断面を持つ管を不規則に並べた複雑なものまで、用途に応じて様々な形態のものが考案されている。
フィンレス熱交換器は、熱交換性能では、フィンを無くした事による熱交換性能の低下が非常に大きくなってしまうおそれがある。例えば、家庭用空気調和機の室内熱交換器のように管の直径が7mm程度、フィン間のピッチが1mm程度、ファンにより送り込まれる空気の風速が1m/s程度のフィンアンドチューブ熱交換器を、熱交換器サイズとファン入力を変えずに、扁平管を用いたフィンレス熱交換器に変更しようとすると、扁平管の断面の短軸寸法である管短径を2~3mm程度まで小さくし、扁平管の配列ピッチを小さくしても伝熱面積が不足し、熱交換性能が大幅に低下してしまう。
そこで、特許文献1では、圧力損失の増大を招くことなく、コンパクト性を確保しつつ、熱交換性能の向上を図ることができる空気調和機用熱交換器を提供するため、フィンアンドチューブ熱交換器の管の断面の短軸寸法である管短径Aを0.31~1.40mmの範囲で形成し、管短径Aと各扁平管のピッチBとを、一定の数値範囲内となるように各扁平管を配置するものが提案されている。
特許第3264525号公報
しかし、特許文献1に示されているようなフィンアンドチューブ型の熱交換器は、蒸発器として作動させた際に、空気中の水分を凝縮させることで発生する結露水が、隣り合うフィン間を跨がって滞留することがある。フィンレス熱交換器の各扁平管のピッチBを特許文献1に示されているような従来のフィンアンドチューブ型の熱交換器のフィンピッチと同程度で配列した場合、フィンレス熱交換器においても上述した結露水が滞留する現象は発生し得る。このようなフィンレス熱交換器は、各扁平管のピッチBが小さいため伝熱性能を確保できるが、隣り合う扁平管の間に結露水が跨がって滞留する。これによりフィンレス熱交換器は、蒸発器として運転される時に伝熱性能及び通風性能を損なうという課題があった。
本発明は、上記のような課題を解決するためのものであり、扁平管同士の間隔が狭いフィンレス熱交換器においても扁平管同士の隙間に水が滞留しにくく、排水性を向上させた熱交換器、熱交換器ユニット、及び冷凍サイクル装置を得ることを目的とする。
本発明に係る熱交換器は、管軸を並列された第1の扁平管及び第2の扁平管を備え、前記第1の扁平管は、前記第2の扁平管に対向する第1の側面を有し、前記第2の扁平管は、前記第1の扁平管に対向する第2の側面を有し、前記第1の側面の少なくとも一部分である親水領域は、前記第2の側面よりも親水性が高く、前記第1の側面の前記親水領域の転落角は、前記第2の側面のうち前記親水領域に対向する領域の転落角よりも大きい
本発明に係る熱交換器ユニットは、上記熱交換器を備える。
本発明に係る冷凍サイクル装置は、上記熱交換器ユニットを備える。
本発明によれば、第1の扁平管と第2の扁平管との対向する2つの側面が親水性を異なるように構成されているため、結露水が2つの側面に跨がったときに親水性が低い方の側面から高い方の側面に移動する。結露水が移動することにより、2つの扁平管の間に結露水が滞留するのを抑えることができ、排水性が向上する。これにより、扁平管の間隔が狭い熱交換器においても、通風性能及び伝熱性能の低下を抑えることができる。
実施の形態1に係る熱交換器ユニットを示す斜視図である。 実施の形態1に係る熱交換器を示す正面図である。 実施の形態1に係る熱交換器が適用された冷凍サイクル装置1の説明図である。 図2の熱交換器の断面構造の説明図である。 実施の形態1の熱交換器の複数の扁平管の表面の親水性状を示す図である。 実施の形態1の熱交換器の複数の扁平管の表面に水滴が付着した場合の説明図である。 実施の形態1の熱交換器の比較例である熱交換器の模式図である。 実施の形態1の熱交換器の比較例である熱交換器の模式図である。 実施の形態1の室外熱交換器の水の挙動を示す模式図である。 実施の形態1の室外熱交換器の水の挙動を示す模式図である。 実施の形態1の室外熱交換器の水の挙動を示す模式図である。 実施の形態1の熱交換器の複数の扁平管の表面に水滴が付着した場合の説明図である。 実施の形態1に係る熱交換器の変形例である熱交換器の断面構造の説明図である。 実施の形態2に係る熱交換器の断面構造の説明図である。 実施の形態2に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。 実施の形態2に係る熱交換器の変形例である熱交換器の複数の扁平管の表面の親水性状を示す図である。 実施の形態3に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。 実施の形態4に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。 実施の形態5に係る熱交換器の複数の扁平管の表面の親水性状を示す図である。 実施の形態6に係る熱交換器の断面構造の説明図である。 実施の形態6に係る熱交換器の変形例である熱交換器の断面構造の説明図である。
以下に、熱交換器、熱交換器ユニット、及び冷凍サイクル装置の実施の形態について説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
図1は、実施の形態1に係る熱交換器ユニット101を示す斜視図である。図2は、実施の形態1に係る熱交換器100を示す正面図である。図3は、実施の形態1に係る熱交換器100が適用された冷凍サイクル装置1の説明図である。図1に示された熱交換器ユニット101は、一例であり、ここでは空気調和装置の室外機8に相当する。また、図2に示された熱交換器100は、図1の熱交換器ユニット101の内部に搭載されるものであり、正面から見た構造を模式的に表している。熱交換器100は、空気調和装置又は冷蔵庫等の冷凍サイクル装置1に搭載されるものであり、冷凍サイクル装置1において室外熱交換器5又は室内熱交換器7として用いることができる。図3に示される様に、冷凍サイクル装置1は、圧縮機3、四方弁4、室外熱交換器5、膨張装置6、及び室内熱交換器7を冷媒配管90により接続し、冷媒回路を構成したものである。例えば、冷凍サイクル装置1が空気調和装置である場合には、冷媒配管90内には冷媒が流通し、四方弁4により冷媒の流れを切り換えることにより、暖房運転、冷凍運転、又は除霜運転に切り換えることができる。
室外機8に搭載された室外熱交換器5及び室内機9に搭載された室内熱交換器7は、近傍に送風機2を備える。室外機8において送風機2は室外熱交換器5に外気を送り込む。室外熱交換器5は外気と冷媒との間で熱交換を行う。また、室内機9において送風機2は、室内熱交換器7に室内の空気を送り込む。室内熱交換器7は室内の空気と冷媒との間で熱交換を行い、室内の空気の温度を調和する。また、実施の形態1に係る熱交換器100は、冷凍サイクル装置1において室外機8に搭載された室外熱交換器5及び室内機9に搭載された室内熱交換器7として用いることができ、凝縮器又は蒸発器として機能する。なお、熱交換器100が搭載された室外機8及び室内機9等の機器を、特に熱交換器ユニット101と呼ぶ。図1に示される熱交換器ユニット101は、熱交換器100が搭載された室外機8の一例である。図1に示される矢印は気流の流れ方向を示している。熱交換器ユニット101は、背面から外気を筐体内部に取り込み、熱交換器100で外気と冷媒との熱交換を行い、正面から熱交換された空気を吹き出す。
図2に示される熱交換器100は、複数の扁平管20を備える。複数の扁平管20は、X方向に並列されており、複数の扁平管20のうち隣合った一方を第1の扁平管20aと称し、他方を第2の扁平管20bと称する。複数の扁平管20は、それぞれの管軸をZ方向に沿って配置されており、X方向に沿って並列して配置されている。実施の形態1においては、Z方向逆向きが重力方向に一致しているが、熱交換器100は、Z軸を重力方向に傾斜させて配置されていても良い。
複数の扁平管20は、Z方向の下側の端部において下端ヘッダ80と接続されており、Z方向の上側の端部において上端ヘッダ81と接続されている。下端ヘッダ80及び上端ヘッダ81は、冷凍サイクル装置1の冷媒配管90と接続されており、冷媒回路を流れる冷媒が、下端ヘッダ80及び上端ヘッダ81のうち一方に流入し、複数の扁平管20を通過し、他方から冷媒配管90に流出する。複数の扁平管20は、下端ヘッダ80及び上端ヘッダ81以外に複数の扁平管20のそれぞれの間を接続するフィンは設けられていないいわゆるフィンレス熱交換器である。さらに言うと、隣り合った複数の扁平管20は、対向する第1の側面25aと第2の側面25bとの間を接続する部材が設けられていない。
図4は、図2の熱交換器100の断面構造の説明図である。図4は、複数の扁平管20の管軸に垂直な断面を示しており、図2のA-A断面に対応する断面の構造の説明図である。なお、図4においては、複数の扁平管20のうち一部を表示している。複数の扁平管20は、管軸に垂直な断面形状が長軸と短軸とを有する扁平形状に形成されている。そして、複数の扁平管20は、それぞれ長軸をY方向に向け、短軸をX方向に向けて配置されている。つまり、Y方向が扁平管20の長軸方向であり、X方向が扁平管20の短軸方向である。熱交換器100を通過する気流の流れ方向はY方向に概ね一致している。また、複数の扁平管20は、気流の流れ方向における風上側に位置する端部である第1端部21と風下側に位置する端部である第2端部22を有する。
複数の扁平管20は、第1の扁平管20aと、第1の扁平管20aに隣り合って配置されている第2の扁平管20bと、を有する。ここで、第1の扁平管20aにおいて、X方向を向いた側面を第1の側面25aと称し、X方向逆向きを向いた側面を第2の側面25bと称する。また、第2の扁平管20bにおいて、X方向を向いた側面を第1の側面25aと称し、X方向逆向きを向いた側面を第2の側面25bと称する。つまり、第1の扁平管20a及び第2の扁平管20bは、長軸方向に沿った側面である第1の側面25aと、第1の側面25aの反対側に位置する第2の側面25bとを有する。第1の扁平管20a及び第2の扁平管20bは、短軸方向を向いた側面である第1の側面25aと、第1の側面25aの反対側に位置する第2の側面25bとを有する。第1の扁平管20aと第2の扁平管20bとは、隣合って配置されており、第1の側面25aと第2の側面25bとを対向させて配置されている。なお、複数の扁平管20は、第1の扁平管20a及び第2の扁平管20bの2種類のみで構成されていても良いし、他の異なる構成の扁平管が含まれていても良い。
複数の扁平管20は、それぞれが熱伝導性を持つ金属材料で構成されている。複数の扁平管20のそれぞれを構成する材料としては、例えばアルミニウム、アルミニウム合金、銅、又は銅合金が用いられている。複数の扁平管20のそれぞれは、加熱した材料をダイスの穴から押し出し、図4に示される複数の冷媒流路24を形成して製造される。なお、複数の扁平管20のそれぞれは、ダイスの穴から材料を引き抜いて図4に示される断面が成形される引き抜き加工によって製造されてもよい。複数の扁平管20のそれぞれの製造方法は、断面形状に応じ適宜選択することができる。
図5は、実施の形態1の熱交換器100の複数の扁平管20の表面の親水性状を示す図である。図5は、図4と同じ断面を示しており、複数の扁平管20の表面の親水性の異なる領域をそれぞれ異なるパターンで模式的に表している。複数の扁平管20は、第1の扁平管20aと第2の扁平管20bとを隣り合わせて配置して構成されている。第1の扁平管20aと第2の扁平管20bとは、長軸方向に沿った2つの側面の親水性がそれぞれ異なる。図5において、第1の側面25aは親水性が高く、第2の側面25bは親水性が低くなっている。なお、実施の形態1において、第1の扁平管20aと第2の扁平管20bとは、第1の側面25a及び第2の側面25bのそれぞれの全体が同一の親水性となっているが、これだけに限定されるものではない。第1の側面25a及び第2の側面25bは、それぞれ親水性が異なる領域を有していても良い。ただし、第1の側面25a及び第2の側面25bは、少なくとも一部分において対向する面の親水性が異なるように構成される。
図6は、実施の形態1の熱交換器100の複数の扁平管20の表面に水滴が付着した場合の説明図である。図6は、複数の扁平管20の第1の側面25a又は第2の側面25bに付着した水滴の状態の一例を示している。複数の扁平管20の表面に結露水などの水滴が付着した場合、表面の親水性の程度により、水滴の形状が変わる。物体の表面と水との親和性を示す指標としては、一般に接触角θが用いられる。接触角θは、物体の表面に滴下された水滴と表面との成す角度である。物体の表面の親水性が高い場合は接触角θが小さくなり、物体の表面の親水性が低い場合は、接触角θが大きくなる。親水性が高い場合は、複数の扁平管20の表面に水滴が薄く広がり易く、親水性が低い場合は、水滴が表面張力により丸くなる。親水性が低い場合を、撥水性が高い、ともいう。一般的に固体の表面と水との親和性を示す指標として、接触角θが用いられる。接触角θは固体の表面に水滴を滴下した際に、固体の表面と水滴との接触面が成す角度として定義される。
水が部材の表面に滴下された場合、水は自らの表面張力γwで丸くなる。固体の表面に滴下した水と表面との間には、固体の表面張力をγs、固体の表面と水の表面との界面張力をγswとしたときに、γs=γw・cosθ+γswの関係が成り立つ。つまり、固体の表面張力γsは、水の表面張力γwの固体の表面方向成分及び固体の表面と水との界面張力γswの合力と釣り合い、このとき水の表面と固体表面との成す角度が接触角θとなる。
図7は、実施の形態1の熱交換器100の比較例である熱交換器1100の模式図である。図7は、熱交換器1100の一部を表示しており、複数の扁平管1020の第1の側面1025a及び第2の側面1025bに水滴が付着した状態を模式的に表している。複数の扁平管1020は、第1の扁平管1020aと第2の扁平管1020bとを隣り合わせて配置して構成されている。比較例である熱交換器1100の複数の扁平管1020は、第1の側面1025a及び第2の側面1025bとも親水性状が同じであり、撥水性が高い状態になっている。つまり、複数の扁平管1020の表面は、接触角θが大きく、特に接触角θ≧90°となっている。また、比較例の熱交換器1100において第1の側面1025aの接触角θ1と第2の側面1025bの接触角θ2との関係は、θ1=θ2となっている。
比較例の熱交換器1100のように親水性の低い、即ち撥水性の高い複数の扁平管1020の表面に水が付着する場合、第1の側面1025a又は第2の側面1025bの何れかに水滴として滞留しやすい。また、特に双方の側面1025a、1025bに付着した水滴同士が接触した場合、対向する2つの扁平管の側面1025a、1025bから水滴に同様な力が働くため、水滴がどちらかの側面1025a、1025bに偏ることがない。ここで、双方の側面1025a、1025bの表面から受ける力に打ち勝つ程度の十分な水の量が無い場合には、水が第1の側面1025aと第2の側面1025bとの間にブリッジした状態のまま流下することなく保持され、水が滞留しやすいという課題がある。複数の扁平管1020の間に水が滞留することにより、複数の扁平管20の間を通過する空気の流れに対する抵抗が増加する。そして、送風機2の負荷が増加したり、熱交換器1100を通過する空気の流量が低減する。また、複数の扁平管1020の間の隙間にある水滴は、隙間を流れる空気と複数の扁平管1020内を流れる冷媒との間の伝熱にとって熱抵抗となり、熱交換効率が低下する。
図8は、実施の形態1の熱交換器100の比較例である熱交換器2100の模式図である。図8は、熱交換器2100の一部を表示しており、複数の扁平管2020の第1の側面2025a及び第2の側面2025bに水滴が付着した状態を模式的に表している。複数の扁平管2020は、第1の扁平管2020aと第2の扁平管2020bとを隣り合わせて配置して構成されている。比較例である熱交換器2100の複数の扁平管2020は、第1の側面2025a及び第2の側面2025bとも親水性状が同じであり、親水性が高い状態になっている。つまり、複数の扁平管2020の表面は、接触角θが小さく、特に接触角θ<90°となっている。また、比較例の熱交換器1100において第1の側面2025aの接触角θ1と第2の側面2025bの接触角θ2との関係は、θ1=θ2となっている。
親水性が高い状態の複数の扁平管2020の表面に水が付着する場合、水は表面に膜状になって滞留しやすい。第1の側面2025a又は第2の側面2025bに付着する水は、撥水性の高い側面1025a、1025bに滞留する水滴に比べ、薄く広がるため、複数の扁平管2020の隙間をブリッジすることはなく、熱交換器2100を通過する通風抵抗は増加しにくい。しかし、水は第1の側面2025a又は第2の側面2025bの表面を部分的に覆うように付着し、隙間を流れる空気と複数の扁平管2020内を流れる冷媒との間の伝熱にとって熱抵抗となり、熱交換効率が低下する。
比較例に係る熱交換器1100、2100は、外気温が低い条件で使用する際に、着霜及び除霜を伴う運転を行う必要がある。熱交換器1100、2100に着霜する状態で運転する場合、複数の扁平管1020、2020に付着した水が氷結する。よって、熱交換器1100、2100を除霜する際には氷結した水を融解させる必要があり、除霜運転時に熱交換器1100、2100に投入する熱量が増加するため、除霜を行う時間が増加してしまう。除霜運転中の空気調和装置は、暖房運転を停止させるのが一般的である。従って、比較例に係る熱交換器1100、2100は、除霜運転の頻度が多くなるため、室内の快適性の低下、及び室内を暖房するにあたり冷凍サイクル装置1の運転効率の低下が課題となる。
実施の形態1に係る熱交換器100においては、少なくとも第1の側面25aの接触角をθ1、第2の側面25bの接触角θ2としたときに、θ1<θ2の関係を満たしている。すなわち、小さい接触角θ1の面を持つ第1の側面25aの方が、第2の側面25bに比べ、親水性が高いと言える。また、大きい接触角θ2の面を持つ第2の側面25bの方が、第1の側面25aに比べ、撥水性が高いと言える。
図9~図11は、実施の形態1の室外熱交換器10の水の挙動を示す模式図である。図9~11は、熱交換器100を通過する気流の上流側から見た図を示している。実施の形態1の熱交換器100における、第1の側面25aの接触角θ1と第2の側面25bの接触角θ2とは、θ1<θ2の関係を満たしている。図9~11に示されるように、複数の扁平管20の隙間を形成する側面25a、25bのそれぞれの接触角θが異なる場合、隙間を形成する2つの面に付着した水滴70a、70bが接触すると、撥水性が高い第2の側面25bに滞留した水滴70bが親水性の高い第1の側面25a側へ移動し易い。そのため、第1の側面25aに付着する水量が増加し、重力Gにより水滴70に掛かる下向きの力も増加する。第2の側面25bから第1の側面25aに完全に水が移動した場合は、さらに重量が増加する。
一方、図7に示される様に、比較例の熱交換器1100においては、水滴1070は、隙間を形成する2つの側面1025a、1025bの両方に付着しているため、2つの側面1025a、1025bから固体と水との界面張力γsw、固体の表面張力γs、及び水の表面張力γwを受ける。ここで、水滴1070に掛かる重力Gが、側面1025a、1025bから受ける力の合力を上回ると、水が落下する。しかし、実施の形態1に係る熱交換器100、及び比較例に係る熱交換器1100、2100においては、第1の扁平管20a、1020a、2020aと第2の扁平管20b、1020b、2020bとの間隔が狭い。そのため、重力Gにより水滴70、1070、2070に掛かる下向きの力は小さい。従って、第1の扁平管20a、1020a、2020aと第2の扁平管20b、1020b、2020bとから水滴70、1070、2070が受ける力が強い場合には、水滴70、1070、2070が複数の扁平管20、1020、2020の間に滞留し易くなる。よって、図7に示される比較例の熱交換器1100においては、水滴1070は、隙間を形成する2つの側面1025a、1025bの両方から力を受けるため、隙間に滞留し易い。
実施の形態1に係る熱交換器100においては、図11に示される様に、水滴70に掛かる上向きの力は、親水性が高い第1の側面25aのみから働く。そのため、熱交換器100の複数の扁平管20の間に滞留する水滴70の量は、図7に示される比較例の熱交換器1100よりも減少する。また、実施の形態1に係る熱交換器100においては、第2の側面25bの水滴70bが、第1の側面25aに移動し、親水性の高い第1の側面25aに付着する水滴70の量が増える。そのため、水滴70に掛かる下向きの力が強くなり、比較例の熱交換器2100の複数の扁平管2020の隙間に存在する水滴2070よりも下方向に移動し易い。よって、熱交換器100の複数の扁平管20の間に滞留する水滴70の量は、図8に示される比較例の熱交換器2100よりも減少する。
以上に説明したように、実施の形態1に係る熱交換器100は、管軸を上下方向に向け並列された第1の扁平管20a及び第2の扁平管20bを備える。そして、第1の扁平管20a及び第2の扁平管20bは、管軸に垂直な断面における長軸方向に沿った側面である第1の側面25aと、第1の側面25aの反対側に位置する第2の側面25bと、を備える。第1の扁平管20aの第1の側面25aは、第2の扁平管20bの第2の側面25bに対向して配置されている。第1の側面25aの少なくとも一部分である親水領域は、第2の側面25bよりも親水性が高い。このように構成されることにより、複数の扁平管20の隙間にある結露水等の水滴70は、第2の側面25bから対向する第1の側面25aに移動し易く、複数の扁平管20の間に滞留する水量が低減される。よって、実施の形態1に係る熱交換器100は、比較例の熱交換器1100、2100に対し、排水性が向上し、通風抵抗及び空気と冷媒との間の熱抵抗が減少し、ひいては除霜運転時間を減少させることができる。具体的には、第1の側面25aの親水領域の接触角θ1は、第2の側面25bのうち親水領域に対向する領域の接触角θ2よりも小さくなっている。
望ましくは、第1の側面25aの親水領域の接触角θ1は、90°よりも低く、第2の側面25bのうち親水領域に対向する領域の接触角θ2は、90°以上である。対向する面の一方の面が親水性が低い、即ち撥水性を高くすることにより、より親水性が高い第1の側面25aに第2の側面25bの水滴70bが移動し易いためである。
図12は、実施の形態1の熱交換器100の複数の扁平管20の表面に水滴が付着した場合の説明図である。図12においては、複数の扁平管20の表面は、傾斜させた状態になっている。物体の表面の水滴を水平な状態から徐々に傾斜させるとき、水滴が滑落し始める時の傾斜角αを転落角という。転落角が小さい物体の表面は、水滴との付着性が弱く、物体の表面から水滴が除去されやすいと言える。従って、同じ水量が付着した物体の表面は、転落角が小さい方が水の離脱性が高い。よって、実施の形態1において、第2の側面25bは、第1の側面25aの親水領域よりも転落角が小さくなるように構成しても良い。言い換えると、第1の側面25aの親水領域の転落角は、第2の側面25bのうち親水領域に対向する領域の転落角よりも大きくなるように構成しても良い。これにより、水の離脱性が高い第2の側面25bから、比較的水の離脱性が低い第1の側面25aに水が集中し易くなる。第1の側面25aに水が集中すると、第1の側面25aに水が拡がり、かつ水の自重により複数の扁平管20に付着した水が流下し易くなる。これにより実施の形態1に係る熱交換器100は、複数の扁平管20の間に滞留する水量をさらに低減させることができる。
図13は、実施の形態1に係る熱交換器100の変形例である熱交換器100Aの断面構造の説明図である。図13に示されるように、複数の扁平管120の断面形状は、管軸に垂直な断面において中央部で折れ曲がった形状になっており、2つの直線状に伸びる2つの部分を所定の角度を持って繋げた形状になっている。つまり、複数の扁平管120は、管軸に垂直な断面において長軸方向に直線状に延びた形状ではなく、一方の端部21から他方の端部22へ向かう途中で折れ曲がった形状となっている。なお、複数の扁平管120において長軸方向とは、端部21と端部22とを結ぶ直線が延びる方向を意味する。複数の扁平管120は、図13に示された形態に限定されるものではない。例えば、複数の扁平管120の途中で複数箇所が折れ曲がっている形状でも良く、また折れ曲がりの角度も適宜設定することができる。
実施の形態2.
実施の形態2に係る熱交換器200は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造を変更したものである。実施の形態2においては、実施の形態1に対する変更点を中心に説明する。
図14は、実施の形態2に係る熱交換器200の断面構造の説明図である。図14は、複数の扁平管20の管軸に垂直な断面を示している。複数の扁平管20のそれぞれは、内部に冷媒が流通する複数の冷媒流路24が設けられた冷媒流通部50と、冷媒流通部50の長軸方向の端部21からY方向に向かって延設されたフィン部51と、を備える。フィン部51は、端部21からY方向に突出し複数の扁平管20の管軸に沿って設置された板状の部分である。なお、実施の形態2においてフィン部51は、冷媒流通部50の長軸方向、即ちY方向に平行に延びているが、この形態のみに限定されるものではない。例えば、フィン部51は、Y方向に対し所定の角度を持って端部21から延設されていても良い。
図15は、実施の形態2に係る熱交換器200の複数の扁平管20の表面の親水性状を示す図である。複数の扁平管20を構成する第1の扁平管20a及び第2の扁平管20bは、それぞれ第1の側面25a及び第2の側面25bを備える。第1の扁平管20aの第1の側面25aと第2の扁平管20bの第2の側面25bとは、それぞれ全域が同じ親水性状となっているのではない。第1の側面25aは、冷媒流通部50の表面及びフィン部51の表面の全域が親水性の高い領域となっている。第2の側面25bは、冷媒流通部50の表面が第1の側面25aよりも親水性が低くなるように構成されており、フィン部51が第1の側面25aと同様に親水性の高い領域となっている。このように構成されることにより、間隔が狭い複数の扁平管20の冷媒流通部50同士の隙間において、水滴の滞留を抑制することができる。
なお、熱交換器200において、フィン部51同士が対向している部分の隙間の間隔が比較的広いため、フィン部51は親水性が高くても低くても通風抵抗に大きな影響を与えることがない。ただし、図15に示される様に、フィン部51は親水性の高い領域とすることにより、風上側に位置するフィン部51から風下側に位置する親水性の低い冷媒流通部50に水滴が移動しにくくなる。そのため、間隔の狭い冷媒流通部50同士の隙間に水滴が滞留するのを抑制することができる。
図16は、実施の形態2に係る熱交換器200の変形例である熱交換器200aの複数の扁平管20の表面の親水性状を示す図である。図16に示される様に、複数の扁平管20のフィン部51も冷媒流通部50と同様に、第1の側面25aの親水性が高く、第2の側面25bの親水性が低くされていても良い。このように構成されることにより、熱交換器200の複数の扁平管20は、冷媒流通部50とフィン部51との厚みの差が少ない、又は同じ厚みとした場合に実施の形態1と同様に水滴の滞留を抑制することができる。
実施の形態3.
実施の形態3に係る熱交換器300は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造を変更したものである。実施の形態3においては、実施の形態1に対する変更点を中心に説明する。
図17は、実施の形態3に係る熱交換器300の複数の扁平管20の表面の親水性状を示す図である。熱交換器200bの複数の扁平管20は、別部材として製造された冷媒流通部50とフィン部51とを接合して構成されている。フィン部51を形成する板状部材60は、例えば金属の板材を折り曲げて形成されており、冷媒流通部50の端部21にろう付け等の接合手段を持って接合されている。フィン部51を形成する板状部材60は、表面全体の親水性が冷媒流通部50の表面よりも低い。このように構成されることにより、複数の扁平管20の第2の側面25bのうち板状部材60と冷媒流通部50とが対向している領域Fのみが異なる親水性状の面と対向している。よって、領域Fと板状部材60とにより形成される隙間は、異なる親水性状の面が対向しており、実施の形態1の複数の扁平管20の隙間と同様に水滴の滞留を抑制することができる。
実施の形態3において、複数の扁平管20は、異なる親水性状の面が対向しているのが、第1の側面25a及び第2の側面25bの一部分のみである。しかし、熱交換器300が蒸発器として使用される場合、最も結露が生じ易い風上側において水滴の滞留を抑制することができるため、比較例の熱交換器1100、2100に対し有利である。また、領域Fを風下側に配置した場合であっても、空気の流れにより風下側に移動した水滴が領域Fで排出され易くなるため、比較例の熱交換器1100、2100に対し有利である。
なお、実施の形態3において、冷媒流通部50は、全体が親水性の低い領域となっているが、実施の形態1と同様に第1の側面25a側と第2の側面25b側とで異なる親水性状となるように構成しても良い。ただし、実施の形態3に係る熱交換器300の複数の扁平管20のように、冷媒流通部50の表面全体を親水性の低い表面とし、フィン部51の表面全体を親水性の高い表面とすることにより、冷媒流通部50及びフィン部51を形成する板状部材60のそれぞれの製造が容易になるという利点がある。
実施の形態4.
実施の形態4に係る熱交換器400は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造を変更したものである。実施の形態4においては、実施の形態1に対する変更点を中心に説明する。
図18は、実施の形態4に係る熱交換器400の複数の扁平管20の表面の親水性状を示す図である。熱交換器400の複数の扁平管20は、内部に冷媒が流通する複数の冷媒流路24が設けられた冷媒流通部50と、冷媒流通部50の長軸方向の端部21からY方向に向かって延設されたフィン部51及び端部22からY方向逆向きに延設されたフィン部52と、を備える。フィン部52は、端部22からY方向逆向きに突出し複数の扁平管20の管軸に沿って設置された板状の部分である。
熱交換器400の複数の扁平管20は、別部材として製造された冷媒流通部50と板状部材460とを接合して構成されている。フィン部51及びフィン部52を形成する板状部材460は、例えば金属の板材を折り曲げて形成されており、冷媒流通部50の片側の側面を覆う様に取り付けられ、ろう付け等の接合手段を持って冷媒流通部50に接合されている。フィン部51及びフィン部52を形成する板状部材460は、表面全体の親水性が冷媒流通部50の表面よりも低い。一方、冷媒流通部50の表面全体の親水性は、板状部材460の表面よりも高くなっている。望ましくは、板状部材460の表面は、接触角θ1<90°で、冷媒流通部50の表面は接触角θ2≧90°で構成されると良い。板状部材460と冷媒流通部50とは、それぞれの表面の全体が同一の親水性状に構成されることにより、製造が容易になるという利点がある。
熱交換器400は、第1の扁平管20aと第2の扁平管20bとは、内部に冷媒を通す冷媒流路24を備える少なくとも1つの冷媒流通部50と、冷媒流通部50の端部21、22から長軸方向に延設する2つのフィン部51、52と、を備える。従って、冷媒流通部50の両端からフィン部51及びフィン部52が延設されていることにより、複数の扁平管20の間を通過する空気との接触面積が多くなり、熱交換効率が高くなる。そして、フィン部51、52を形成する板状部材460が第1の扁平管20aの第1の側面25aを形成し、第2の扁平管20bの第2の側面25bの一部を構成する冷媒流通部50と対向している。このように構成されることにより、熱交換器400は、親水性が高い第1の側面25aと親水性の低い第2の側面25bとが対向して配置され、最も間隔の狭い冷媒流通部50同士の隙間において、実施の形態1と同様に水滴の滞留を抑制することができる。
なお、熱交換器400の複数の扁平管20は、冷媒流通部50と別体の板状部材460とを接合して形成されているが、冷媒流通部50とフィン部51、52とを一体に製造しても良い。この場合、複数の扁平管20は、例えば押し出し加工又は引き抜き加工により製造される。ただし、熱交換器400の複数の扁平管20において冷媒流通部50とフィン部51、52とを一体にした場合は、少なくとも冷媒流通部50の第1の側面25a側と第2の側面25b側とで表面の親水性状を異なる様に形成する必要がある。
実施の形態5.
実施の形態5に係る熱交換器500は、実施の形態2に係る熱交換器200に対し、複数の扁平管20の配列を変更したものである。実施の形態5においては、実施の形態2に対する変更点を中心に説明する。
図19は、実施の形態5に係る熱交換器500の複数の扁平管520の表面の親水性状を示す図である。熱交換器500の複数の扁平管520を構成する第1の扁平管520aは、冷媒流通部50の端部21からフィン部51がY方向逆向きに延設されている。また、複数の扁平管520を構成する第2の扁平管520bは、冷媒流通部50の端部22からフィン部52がY方向に延設されている。第1の扁平管520aと第2の扁平管520bとは、冷媒流通部50がX方向に並列しておらず、第2の扁平管520bの冷媒流通部50は、Y方向にずれた位置に配置されている。つまり、第1の扁平管520aのフィン部51と第2の扁平管520bの冷媒流通部50とが対向し、第1の扁平管520aの冷媒流通部50と第2の扁平管520bのフィン部52とが対向するように配置されている。言い換えると、第1の扁平管520aと第2の扁平管520bとは、一方の冷媒流通部50と他方のフィン部51、52とを対向させて配置されている。
熱交換器500の複数の扁平管520は、フィン部51、52の親水性が高く、冷媒流通部50の親水性が低く構成されている。これにより、隣合う第1の扁平管520aと第2の扁平管520bとにより形成される隙間において、対向する面が異なる親水性状を有するため、熱交換器500は、実施の形態1と同様に水滴の滞留を抑制することができる。
実施の形態6.
実施の形態6に係る熱交換器600は、実施の形態1に係る熱交換器100に対し、複数の扁平管20の構造及び配列を変更したものである。実施の形態6においては、実施の形態1に対する変更点を中心に説明する。
図20は、実施の形態6に係る熱交換器600の断面構造の説明図である。図20は、複数の扁平管20の管軸に垂直な断面を示している。複数の扁平管620は、第1の扁平管620aと第2の扁平管620bとから構成されている。複数の扁平管620は、それぞれ冷媒流通部50を複数備え、一方の冷媒流通部50の端部21と他方の冷媒流通部50の端部22との間をフィン部53により接続して形成されている。また、複数の扁平管620は、他の冷媒流通部50と接続されていない端部21、22からフィン部51、52が延設されている。
他の実施の形態と同様に、複数の扁平管620は、第1の側面25aと第2の側面25bとが対向している。そして、少なくとも間隔の狭い冷媒流通部50同士の隙間において、第1の側面25aは親水性が高く、第2の側面25bは親水性が低くなるように構成されている。このように構成されることにより、熱交換器600は、大きな熱交換容量を有しつつ、実施の形態1と同様に水滴の滞留を抑制することができる。
図21は、実施の形態6に係る熱交換器600の変形例である熱交換器600aの断面構造の説明図である。熱交換器600aの複数の扁平管620は、熱交換器600と同様に、複数の冷媒流通部50がフィン部53により接続されて構成されている。そして、熱交換器600aは、第2の扁平管620bの冷媒流通部50が第1の扁平管620aの冷媒流通部50に対しY方向にずれて位置している。つまり、第1の扁平管620aのフィン部51及びフィン部53と第2の扁平管620bの冷媒流通部50とが対向し、第1の扁平管620aの冷媒流通部50と第2の扁平管620bのフィン部52とが対向するように配置されている。言い換えると、第1の扁平管620aと第2の扁平管620bとは、一方の冷媒流通部50と他方のフィン部51、52、53とを対向させて配置されている。
熱交換器600aの複数の扁平管620は、フィン部51、52、53の表面の親水性が高く、冷媒流通部50の表面の親水性が低くなるように構成されている。このように構成されることにより、隣合う第1の扁平管520aと第2の扁平管520bとにより形成される隙間において、対向する面が異なる親水性状を有する。そのため、熱交換器600aは、大きな熱交換容量を有しつつ、実施の形態1と同様に水滴の滞留を抑制することができる。
また、実施の形態6においては、複数の扁平管620は、冷媒流通部50とフィン部51、52、53とが一体に成形されているが、別部材同士を接合させて構成されていても良い。例えば、実施の形態4に示したように、複数の扁平管620は、フィン部51、52、53を形成する板状部材と冷媒流通部50とを接合して構成することにより、製造が容易になるという利点がある。
以上に本発明を実施の形態に基づいて説明したが、本発明は上述した実施の形態の構成のみに限定されるものではない。例えば、複数の扁平管620は、2つの冷媒流通部50を有するが、さらに多くの冷媒流通部50を有していても良い。また、熱交換器100、200、200a、300、400、500、600、600aは、さらに異なる親水性状を有する扁平管を有していても良い。また、以上の説明において、親水性の指標については、水滴と表面との接触角が大きい場合を親水性が低い、接触角が小さい場合を親水性が高い、と表現して説明しているが、接触角の大小の代わりに転落角の大小を用いても良い。つまり、転落角が小さい場合を親水性が低い(水の離脱性が高い)、転落角が大きい場合を親水性が高い(水の離脱性が低い)として、複数の扁平管の表面を構成しても良い。さらに、本発明は各実施の形態を組み合わせて構成されていても良い。例えば、実施の形態1に係る熱交換器100の変形例である熱交換器100Aの複数の扁平管120の折れ曲がった断面形状を、他の実施の形態に適用しても良い。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。
1 冷凍サイクル装置、2 送風機、3 圧縮機、4 四方弁、5 室外熱交換器、6 膨張装置、7 室内熱交換器、8 室外機、9 室内機、10 室外熱交換器、20 扁平管、20a 第1の扁平管、20b 第2の扁平管、21 (第1)端部、22 (第2)端部、24 冷媒流路、25a (第1の)側面、25b (第2の)側面、50 冷媒流通部、51 フィン部、52 フィン部、53 フィン部、60 板状部材、70 水滴、70a 水滴、70b 水滴、80 下端ヘッダ、81 上端ヘッダ、90 冷媒配管、100 熱交換器、101 熱交換器ユニット、200 熱交換器、200a 熱交換器、200b 熱交換器、300 熱交換器、400 熱交換器、460 板状部材、500 熱交換器、520 扁平管、520a 第1の扁平管、520b 第2の扁平管、600 熱交換器、600a 熱交換器、620 扁平管、620a 第1の扁平管、620b 第2の扁平管、1020 扁平管、1020a 第1の扁平管、1020b 第2の扁平管、1025a (第1の)側面、1025b (第2の)側面、1070 水滴、1100 熱交換器、2020 扁平管、2020a 第1の扁平管、2020b 第2の扁平管、2025a 第1の側面、2025b 第2の側面、2070 水滴、2100 熱交換器、A 管短径、B ピッチ、F 領域、G 重力、γs 表面張力、γsw 界面張力、γw 表面張力、θ 接触角、θ1 接触角、θ2 接触角。

Claims (15)

  1. 管軸を並列された第1の扁平管及び第2の扁平管を備え、
    前記第1の扁平管は、前記第2の扁平管に対向する第1の側面を有し、
    前記第2の扁平管は、前記第1の扁平管に対向する第2の側面を有し、
    前記第1の側面の少なくとも一部分である親水領域は、
    前記第2の側面よりも親水性が高く、
    前記第1の側面の前記親水領域の転落角は、
    前記第2の側面のうち前記親水領域に対向する領域の転落角よりも大きい、熱交換器。
  2. 前記第1の側面の前記親水領域の接触角は、
    前記第2の側面のうち前記親水領域に対向する領域の接触角よりも小さい、請求項1に記載の熱交換器。
  3. 前記第1の側面の前記親水領域の接触角は、
    90°未満であり、
    前記第2の側面のうち前記親水領域に対向する領域の接触角は、
    90°以上である、請求項2に記載の熱交換器。
  4. 前記第1の扁平管と前記第2の扁平管とは、
    内部に冷媒を通す冷媒流路を備える少なくとも1つの冷媒流通部と、
    前記冷媒流通部の端部から前記管軸に垂直な断面における長軸方向に延設する少なくとも1つのフィン部と、を備える、請求項1~3の何れか1項に記載の熱交換器。
  5. 前記第1の扁平管と前記第2の扁平管とは、
    一方の前記冷媒流通部と他方の前記フィン部とを対向させて配置される、請求項4に記載の熱交換器。
  6. 前記第1の扁平管と前記第2の扁平管とは、
    互いの前記冷媒流通部及び前記フィン部を対向させて配置される、請求項4に記載の熱交換器。
  7. 前記第1の扁平管と前記第2の扁平管とは、
    前記フィン部と前記冷媒流通部とを接合させて形成され、
    前記フィン部は、
    前記冷媒流通部の前記長軸方向に沿った2つの側面のうち一方の側面に接合されて形成されている、請求項5又は6に記載の熱交換器。
  8. 前記フィン部の表面は、
    前記冷媒流通部の表面と親水性が異なる、請求項7に記載の熱交換器。
  9. 前記フィン部は、
    複数のフィン部を有し、
    前記冷媒流通部の前記長軸方向の両方の端部から前記長軸方向に延設される、請求項4~8の何れか1項に記載の熱交換器。
  10. 前記冷媒流通部は、
    複数の冷媒流通部を有し、
    前記複数の冷媒流通部のうち隣合う2つの前記冷媒流通部の端部は、
    前記フィン部により接続されている、請求項4~9の何れか1項に記載の熱交換器。
  11. 前記第1の扁平管と前記第2の扁平管とは、
    前記第1の側面と前記第2の側面との間を接続する部材が設けられていない、請求項1~10の何れか1項に記載の熱交換器。
  12. 管軸を並列された第1の扁平管及び第2の扁平管を備え、
    前記第1の扁平管は、前記第2の扁平管に対向する第1の側面を有し、
    前記第2の扁平管は、前記第1の扁平管に対向する第2の側面を有し、
    前記第1の側面及び前記第2の側面は平面であり、
    前記第1の側面の少なくとも一部分である親水領域は、
    前記第2の側面よりも親水性が高く、
    前記第1の側面の前記親水領域の接触角は、
    90°未満であり、
    前記第2の側面のうち前記親水領域に対向する領域の接触角は、
    90°以上である、熱交換器。
  13. 管軸を並列された第1の扁平管及び第2の扁平管を備え、
    前記第1の扁平管は、前記第2の扁平管に対向する第1の側面を有し、
    前記第2の扁平管は、前記第1の扁平管に対向する第2の側面を有し、
    前記第1の側面の少なくとも一部分である親水領域は、
    前記第2の側面よりも親水性が高く、
    前記第1の扁平管と前記第2の扁平管とは、
    内部に冷媒を通す冷媒流路を備える少なくとも1つの冷媒流通部と、
    前記冷媒流通部の端部から前記管軸に垂直な断面における長軸方向に延設する少なくとも1つのフィン部と、を備え、
    一方の前記冷媒流通部と他方の前記フィン部とを対向させて配置される、熱交換器。
  14. 請求項1~13の何れか1項に記載の熱交換器を備える、熱交換器ユニット。
  15. 請求項14に記載の熱交換器ユニットを備える、冷凍サイクル装置。
JP2021503308A 2019-03-05 2019-03-05 熱交換器、熱交換器ユニット、及び冷凍サイクル装置 Active JP7118238B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008580 WO2020178977A1 (ja) 2019-03-05 2019-03-05 熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2020178977A1 JPWO2020178977A1 (ja) 2021-09-30
JP7118238B2 true JP7118238B2 (ja) 2022-08-15

Family

ID=72338475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021503308A Active JP7118238B2 (ja) 2019-03-05 2019-03-05 熱交換器、熱交換器ユニット、及び冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP7118238B2 (ja)
WO (1) WO2020178977A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024997A1 (en) * 2002-09-13 2004-03-25 Nippon Paint Co., Ltd. Method of coating an electric wire and insulated wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105703A1 (ja) * 2021-12-09 2023-06-15 三菱電機株式会社 除湿装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074588A (ja) 1998-08-31 2000-03-14 Toshiba Corp 空気調和機用フィンチューブ型熱交換器
US20070023172A1 (en) 2004-03-18 2007-02-01 Frank Obrist Heat exchanger for a motor vehicle air conditioning system
WO2013105133A1 (ja) 2012-01-11 2013-07-18 三菱電機株式会社 プレートフィンチューブ式熱交換器及びそれを備えた冷凍空調システム
JP2014043985A (ja) 2012-08-27 2014-03-13 Sharp Corp パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP2014077600A (ja) 2012-10-11 2014-05-01 Mitsubishi Electric Corp 熱交換器及びその製造方法、並びに該熱交換器を備えた空気調和機
JP2014206313A (ja) 2013-04-11 2014-10-30 三菱電機株式会社 熱交換器及び空気調和機
WO2017017789A1 (ja) 2015-07-28 2017-02-02 三菱電機株式会社 熱交換器及び冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074588A (ja) 1998-08-31 2000-03-14 Toshiba Corp 空気調和機用フィンチューブ型熱交換器
US20070023172A1 (en) 2004-03-18 2007-02-01 Frank Obrist Heat exchanger for a motor vehicle air conditioning system
WO2013105133A1 (ja) 2012-01-11 2013-07-18 三菱電機株式会社 プレートフィンチューブ式熱交換器及びそれを備えた冷凍空調システム
JP2014043985A (ja) 2012-08-27 2014-03-13 Sharp Corp パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP2014077600A (ja) 2012-10-11 2014-05-01 Mitsubishi Electric Corp 熱交換器及びその製造方法、並びに該熱交換器を備えた空気調和機
JP2014206313A (ja) 2013-04-11 2014-10-30 三菱電機株式会社 熱交換器及び空気調和機
WO2017017789A1 (ja) 2015-07-28 2017-02-02 三菱電機株式会社 熱交換器及び冷凍サイクル装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024997A1 (en) * 2002-09-13 2004-03-25 Nippon Paint Co., Ltd. Method of coating an electric wire and insulated wire

Also Published As

Publication number Publication date
WO2020178977A1 (ja) 2020-09-10
JPWO2020178977A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6847229B2 (ja) 熱交換器、及び冷凍サイクル装置
US10941985B2 (en) Heat exchanger
EP3663691A1 (en) Heat exchanger and refrigeration cycle device
JP7118238B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
EP3845851B1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2020012549A1 (ja) 熱交換器、熱交換装置、熱交換器ユニット及び冷凍サイクル装置
JPWO2017158795A1 (ja) 熱交換器および空気調和機
WO2018207321A1 (ja) 熱交換器及び冷凍サイクル装置
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
EP3699538B1 (en) Heat exchanger and refrigeration cycle device
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
JP5404571B2 (ja) 熱交換器及び機器
US11578930B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
US20240118040A1 (en) Heat exchanger
JP6937915B2 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
WO2019239554A1 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP2022148601A (ja) 熱交換器および冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220802

R150 Certificate of patent or registration of utility model

Ref document number: 7118238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150