WO2017014143A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2017014143A1
WO2017014143A1 PCT/JP2016/070822 JP2016070822W WO2017014143A1 WO 2017014143 A1 WO2017014143 A1 WO 2017014143A1 JP 2016070822 W JP2016070822 W JP 2016070822W WO 2017014143 A1 WO2017014143 A1 WO 2017014143A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
smoothing capacitor
capacitor
value
detector
Prior art date
Application number
PCT/JP2016/070822
Other languages
English (en)
French (fr)
Inventor
康滋 椋木
中山 靖
岩蕗 寛康
佑季 石井
佳祐 岩澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680042550.7A priority Critical patent/CN107852102B/zh
Priority to JP2017529581A priority patent/JP6370492B2/ja
Priority to DE112016003290.0T priority patent/DE112016003290T5/de
Priority to US15/735,987 priority patent/US10581337B2/en
Publication of WO2017014143A1 publication Critical patent/WO2017014143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4283Arrangements for improving power factor of AC input by adding a controlled rectifier in parallel to a first rectifier feeding a smoothing capacitor

Definitions

  • the present invention relates to a power converter, and in particular, converts a neutral-grounded three-phase AC voltage to a DC voltage by a diode rectifier circuit and a smoothing capacitor, and converts the DC voltage to a desired AC voltage by an inverse converter circuit.
  • the present invention relates to an output power converter.
  • Power converter realizes highly efficient power conversion by high-speed switching operation of power conversion semiconductor elements.
  • the high-speed switching operation is also a source of electromagnetic noise.
  • Electromagnetic noise becomes a cause of malfunction of the power converter and a cause of malfunction of peripheral electronic equipment. Therefore, electromagnetic noise reduction is an important development issue for power converters.
  • Patent Document 1 discloses a DC (Pulse Width Modulation) inverter composed of a single-phase AC power source, a diode rectifier, a smoothing capacitor, and an inverse converter. It is described that a capacitor having a larger capacity than the capacity on the inverter output side is connected between one end of the busbar section and the ground to achieve low noise.
  • DC Pulse Width Modulation
  • an object of the present invention is to provide a power conversion device that can reduce noise while suppressing leakage current.
  • a power converter of the present invention includes a rectifier circuit that rectifies an AC voltage output from a neutral-grounded three-phase AC power source into a DC voltage, a smoothing capacitor that smoothes the DC voltage rectified by the rectifier circuit, and a smoothing capacitor.
  • a conversion circuit for converting the DC voltage smoothed by the above to a desired AC voltage, a bidirectional switch and at least one Y capacitor connected in series between one end of the smoothing capacitor and the ground, and a voltage across the smoothing capacitor And a control unit that drives the bidirectional switch according to the output of the detector.
  • the power conversion device of the present invention it is possible to reduce noise while suppressing leakage current.
  • FIG. 1 is a circuit diagram of a power conversion device according to a first embodiment. It is a figure showing the flow of a common mode electric current.
  • FIG. 3 is a circuit diagram of a power conversion device according to a second embodiment.
  • FIG. 5 is a circuit diagram of a power conversion device according to a third embodiment.
  • FIG. 6 is a circuit diagram of a power conversion device according to a fourth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion device according to a fifth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion device according to a sixth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion device according to a seventh embodiment.
  • FIG. 10 is a schematic diagram of a common mode choke coil according to a seventh embodiment.
  • FIG. 10 is a schematic diagram of a common mode choke coil according to a seventh embodiment.
  • FIG. 10 is a circuit diagram of a power conversion device according to an eighth embodiment.
  • FIG. 10 is a circuit diagram of a power conversion device according to a ninth embodiment.
  • FIG. 12 is a schematic cross-sectional view of a bidirectional single element according to Embodiment 10.
  • FIG. 22 is a circuit diagram of a power conversion device according to an eleventh embodiment.
  • FIG. 1 is a circuit diagram of a power conversion device 1 according to the first embodiment.
  • the power conversion device 1 includes a diode rectifier 110, a smoothing capacitor 120, an inverter 130, a bypass circuit 175, a detector 180, and a control unit 190.
  • the bypass circuit 175 includes a bidirectional switch 160 and a Y capacitor 170.
  • the control unit 190 includes a comparator 192 and a drive unit 193.
  • the diode rectifier 110 rectifies the AC voltage output from the neutral-phase grounded three-phase AC power supply 100 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • the smoothing capacitor 120 smoothes the DC voltage rectified by the diode rectifier 110.
  • the inverter 130 converts the DC voltage smoothed by the smoothing capacitor 120 into a desired AC voltage, and drives the electric motor 140.
  • the bidirectional switch 160 and the Y capacitor 170 are connected in series between one end of the smoothing capacitor 120 and the ground.
  • the Y capacitor 170 reduces high-frequency common mode noise generated by switching of the switching elements constituting the inverter 130.
  • Y capacitor 170 is formed of, for example, a ceramic capacitor or a film capacitor.
  • the detector 180 detects the voltage across the smoothing capacitor 120.
  • the control unit 190 drives the bidirectional switch 160 according to the output of the detector 180.
  • the control unit 190 makes the bidirectional switch 160 conductive when the output value of the detector 180 is greater than the first threshold value.
  • the comparator 192 compares the voltage detected by the detector 180 with the first threshold value.
  • the drive unit 193 controls on / off of the bidirectional switch 160 based on the comparison result of the comparator 192.
  • the first threshold value in the present embodiment will be described.
  • the voltage fluctuation between the AC power supply frequency component generated by the voltage fluctuation of the AC power supply frequency component included in the voltage of the smoothing capacitor 120 is the Y capacitor 170.
  • the leakage current of the AC power frequency component when applied to is suppressed to the operating current value or less of the leakage breaker.
  • the three-phase AC voltage of the neutral-point grounded three-phase AC power source 100 is rectified by the diode rectifier 110 and then converted into a DC voltage by the smoothing capacitor 120.
  • This DC voltage is converted into a desired AC voltage by known PWM control by the inverter 130, and the electric motor 140 is driven by the AC voltage.
  • a stray capacitance 150 exists between the electric motor 140 and the ground.
  • the inverter 130 is driven by the PWM control, a voltage variation is applied to the stray capacitance 150 by the switching operation of the power conversion semiconductor element constituting the inverter 130, and a common mode current is generated. This common mode current propagates to the three-phase AC power source 100 side through the ground.
  • the detector 180 detects the voltage across the smoothing capacitor 120 and outputs a voltage value 191 to the control unit 190.
  • the comparator 192 in the control unit 190 compares the voltage value 191 with the first threshold value, and makes the bidirectional switch 160 conductive when the voltage value 191> the first threshold value. By turning on the bidirectional switch 160, the common mode current CI is circulated through the Y capacitor 170 as shown in FIG.
  • the voltage value> the first threshold value that is, the smoothing capacitor 120 is sufficiently charged and the voltage fluctuation of the AC power frequency superimposed on the DC buses ML1 and ML2 is also suppressed. Since the bidirectional switch 160 is operated, the leakage current generated from the Y capacitor 170 can be suppressed, and the malfunction of the leakage breaker can be avoided.
  • the generation of the common mode current has been described with the stray capacitance 150 between the motor 140 and the ground.
  • the present invention is not limited to this, and for example, the stray capacitance between the inverter 130 and the ground or the motor 140 is not limited thereto. It may be a stray capacitance between the cable and the ground.
  • the bidirectional switch 160 and the Y capacitor 170 are connected to the negative electrode side of the DC bus, but the same effect can be obtained even if they are added to the positive electrode side. Further, the same effect can be obtained even if the bidirectional switch 160 and the Y capacitor 170 are added to both the negative electrode side and the positive electrode side.
  • FIG. FIG. 3 is a circuit diagram of the power conversion device 2 according to the second embodiment.
  • the power conversion device 2 includes a diode rectifier 210, a smoothing capacitor 220, an inverter 230, an electric motor 240, a bypass circuit 275, a detector 280, and a control unit 290.
  • the bypass circuit 275 includes a bidirectional switch 260 and a Y capacitor 270.
  • the control unit 290 includes a calculator (filter) 292, a calculator (absolute value) 293, a calculator (peak value) 294, a comparator 295, and a drive unit 296.
  • the diode rectifier 210 rectifies the AC voltage output from the neutral-grounded three-phase AC power source 200 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • the smoothing capacitor 220 smoothes the DC voltage rectified by the diode rectifier 210.
  • the inverter 230 converts the DC voltage smoothed by the smoothing capacitor 220 into a desired AC voltage, and drives the electric motor 240.
  • the bidirectional switch 260 and the Y capacitor 270 are connected in series between one end of the smoothing capacitor 220 and the ground. Y capacitor 270 reduces noise generated by switching of the switching elements constituting inverter 230.
  • Detector 280 detects the voltage across smoothing capacitor 220.
  • the control unit 290 drives the bidirectional switch 260 according to the output of the detector 280.
  • the calculator (filter) 292 extracts the AC power frequency component of the voltage detected by the detector 280.
  • the calculator (absolute value) 293 outputs the absolute value of the voltage of the AC power supply frequency component output from the calculator (filter) 292.
  • the calculator (peak value) 294 outputs the peak value of the absolute value output from the calculator (absolute value) 293.
  • the comparator 295 compares the output of the calculator (peak value) 294 with the second threshold value.
  • the drive unit 296 causes the bidirectional switch 260 to conduct when the comparison result of the comparator 295 satisfies the peak value ⁇ the second threshold value.
  • This second threshold is a voltage value of the AC power frequency component.
  • the voltage variation between the AC power frequency components generated by the voltage variation of the AC power frequency components included in the voltage of the smoothing capacitor 220 is applied to the Y capacitor 170.
  • the leakage current of the AC power supply frequency component is suppressed to be equal to or lower than the operating current value of the leakage breaker.
  • the three-phase AC voltage of the neutral-phase grounded three-phase AC power source 200 is rectified by the diode rectifier 210 and then converted into a DC voltage by the smoothing capacitor 220.
  • This DC voltage is converted into a desired AC voltage by known PWM control by the inverter 230, and the electric motor 240 is driven by the AC voltage.
  • a stray capacitance 250 exists between the electric motor 240 and the ground.
  • the inverter 230 is driven by the PWM control, a voltage variation is applied to the stray capacitance 250 by the switching operation of the power conversion semiconductor element constituting the inverter 230, and a common mode current is generated. This common mode current propagates to the three-phase AC power source 200 side through the ground.
  • the detector 280 detects the voltage of the smoothing capacitor 220 and outputs the detected voltage value to the control unit 290.
  • the detected voltage value becomes an AC power supply frequency component by a calculator (filter) 292, converted to an absolute value by a calculator (absolute value) 293, converted to a peak value 291 by a calculator (peak value) 294, and a comparator.
  • a calculator filter
  • absolute value absolute value
  • peak value peak value
  • the bidirectional switch 260 by conducting the bidirectional switch 260, the common mode current is circulated through the Y capacitor 270, thereby realizing low noise.
  • the condition that the peak value 291 ⁇ the second threshold value is satisfied that is, the smoothing capacitor 220 is sufficiently charged, and the voltage fluctuation of the AC power supply frequency superimposed on the DC buses ML1 and ML2 is also suppressed. Since the bidirectional switch 260 is operated under the conditions, the leakage current generated from the Y capacitor 270 can be suppressed, and the malfunction of the leakage breaker can be avoided.
  • the AC power frequency component of the voltage detected by the detector 280 is extracted and the operation of the drive unit 296 is determined, so that highly accurate control is possible, and the capacity of the Y capacitor 270 is increased.
  • the amount can be increased up to the operating limit of the earth leakage breaker, and lower noise can be achieved.
  • the arithmetic unit (peak value) 294 has been described.
  • the present invention is not limited to this, and another arithmetic unit, for example, an arithmetic unit (average value) can be used.
  • FIG. FIG. 4 is a circuit diagram of the power conversion device 3 according to the third embodiment.
  • the power conversion device 3 includes a diode rectifier 310, a smoothing capacitor 320, an inverter 330, a bypass circuit 375, and a control unit 390.
  • the bypass circuit 375 includes a bidirectional switch 360 and a Y capacitor 370.
  • the control unit 390 includes a comparator 392 and a drive unit 393.
  • the diode rectifier 310 rectifies the AC voltage output from the neutral-phase grounded three-phase AC power supply 300 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • the smoothing capacitor 320 smoothes the DC voltage rectified by the diode rectifier 310.
  • the inverter 330 converts the DC voltage smoothed by the smoothing capacitor 320 into a desired AC voltage, and drives the electric motor 340.
  • the bidirectional switch 360 and the Y capacitor 370 are connected in series between one end of the smoothing capacitor 320 and the ground. Y capacitor 370 reduces noise generated by switching of the switching elements constituting inverter 330.
  • Detector 380 detects the current flowing through smoothing capacitor 320.
  • the control unit 390 drives the bidirectional switch 360 according to the output of the detector 380.
  • the control unit 390 makes the bidirectional switch 360 conductive when the output value of the detector 380 is smaller than the third threshold value.
  • the comparator 392 compares the current detected by the detector 380 with the third threshold value.
  • the third threshold value in the present embodiment will be described.
  • This third threshold value is a current value.
  • the voltage variation between the AC power frequency components generated by the voltage variation of the AC power frequency components included in the voltage of the smoothing capacitor 320 is applied to the Y capacitor 170.
  • the leakage current of the AC power supply frequency component is suppressed to be equal to or lower than the operating current value of the leakage breaker.
  • the driving unit 393 controls on / off of the bidirectional switch 360 based on the comparison result of the comparator 392.
  • the three-phase AC voltage of the neutral-phase grounded three-phase AC power supply 300 is rectified by the diode rectifier 310 and then converted into a DC voltage by the smoothing capacitor 320.
  • This DC voltage is converted into a desired AC voltage by the inverter 330 by well-known PWM control, and the electric motor 340 is driven by the AC voltage.
  • the detector 380 detects the current of the smoothing capacitor 320 and outputs the detected current value 391 to the control unit 390.
  • the detected current value 391 is compared with the third threshold value by the comparator 392. When the current value 391 ⁇ the third threshold value, the bidirectional switch 360 is turned on.
  • the bidirectional switch 360 By conducting the bidirectional switch 360, the common mode current is circulated through the Y capacitor 370 to achieve low noise.
  • the condition that current value 391 ⁇ the third threshold value is satisfied that is, smoothing capacitor 320 is sufficiently charged, and the voltage fluctuation of the AC power supply frequency superimposed on DC buses ML1 and ML2 is also suppressed. Since the bidirectional switch 360 is operated under conditions, the leakage current generated from the Y capacitor 370 can be suppressed, and the malfunction of the leakage breaker can be avoided.
  • FIG. FIG. 5 is a circuit diagram of the power conversion device 4 according to the fourth embodiment.
  • the power conversion device 4 includes a diode rectifier 410, a smoothing capacitor 420, an inverter 430, a bypass circuit 475, a detector 480, and a control unit 490.
  • the bypass circuit 475 includes a bidirectional switch 460 and a Y capacitor 470.
  • the control unit 490 includes a calculator (filter) 492, a calculator (absolute value) 493, a calculator (peak value) 494, a comparator 495, and a drive unit 496.
  • the diode rectifier 410 rectifies the AC voltage output from the neutral-phase grounded three-phase AC power supply 400 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • the smoothing capacitor 420 smoothes the DC voltage rectified by the diode rectifier 410.
  • the inverter 430 converts the DC voltage smoothed by the smoothing capacitor 420 into a desired AC voltage, and drives the electric motor 440.
  • the bidirectional switch 460 and the Y capacitor 470 are connected in series between one end of the smoothing capacitor 420 and the ground. Y capacitor 470 reduces noise generated by switching of the switching elements that constitute inverter 430.
  • Detector 480 detects the current flowing through smoothing capacitor 420.
  • the control unit 490 drives the bidirectional switch 460 according to the output of the detector 480.
  • the computing unit (filter) 492 extracts the AC power supply frequency component of the current detected by the detector 480.
  • the calculator (absolute value) 493 outputs the absolute value of the current of the AC power frequency component output from the calculator (filter) 492.
  • the calculator (peak value) 494 outputs the peak value of the absolute value output from the calculator (absolute value) 493.
  • the comparator 495 compares the output of the computing unit (peak value) 494 with the fourth threshold value.
  • the drive unit 496 causes the bidirectional switch 460 to conduct when the comparison result of the comparator 495 satisfies the peak value ⁇ the fourth threshold value.
  • the fourth threshold value is an AC power frequency component of the current value flowing into the smoothing capacitor 420.
  • the detected value decreases below this fourth threshold value, the voltage variation between the AC power frequency components generated by the voltage variation of the AC power frequency components included in the voltage of the smoothing capacitor 420 is applied to the Y capacitor 170.
  • the leakage current of the AC power supply frequency component is suppressed to be equal to or lower than the operating current value of the leakage breaker.
  • the three-phase AC voltage of the neutral-phase grounded three-phase AC power supply 400 is rectified by the diode rectifier 410 and then converted into a DC voltage by the smoothing capacitor 420.
  • This DC voltage is converted into a desired AC voltage by known PWM control by the inverter 430, and the electric motor 440 is driven by the AC voltage.
  • the detector 480 detects the current of the smoothing capacitor 420 and outputs the detected current value to the control unit 490.
  • the detected current value becomes an AC power supply frequency component by a calculator (filter) 492, converted to an absolute value by a calculator (absolute value) 493, converted to a peak value 491 by a calculator (peak value) 494, and a comparator.
  • the bidirectional switch 460 is turned on under the condition that the peak value 491 ⁇ the fourth threshold value is compared with the fourth threshold value.
  • the bidirectional switch 460 By conducting the bidirectional switch 460, the common mode current is circulated through the Y capacitor 470 to achieve low noise.
  • the condition that the peak value 491 ⁇ the fourth threshold value is satisfied that is, the smoothing capacitor 420 is sufficiently charged, and the voltage fluctuation of the AC power supply frequency superimposed on the DC buses ML1 and ML2 is also suppressed. Since the bidirectional switch 460 is operated under conditions, the leakage current generated from the Y capacitor 470 can be suppressed, and the malfunction of the leakage breaker can be avoided.
  • the component of the AC power supply frequency is extracted based on the detected current value and the operation of the drive unit 496 is determined. Therefore, highly accurate control is possible, and the Y capacitor 470 is operated with the operating limit of the leakage breaker. The amount can be increased to a lower noise level.
  • the computing unit (peak value) 494 has been described.
  • the present invention is not limited to this, and another computing unit, for example, a computing unit (average value) can be used.
  • FIG. FIG. 6 is a circuit diagram of the power conversion device 5 according to the fifth embodiment.
  • the power conversion device 5 includes a diode rectifier 510, a smoothing capacitor 520, an inverter 530, a bypass circuit 575, a detector 580, and a control unit 590.
  • the bypass circuit 575 includes a bidirectional switch 560 and a Y capacitor 570.
  • Bidirectional switch 560 includes IGBT 561, IGBT 562, diode 563, and diode 564.
  • the control unit 590 includes a calculator (filter) 592, a calculator (absolute value) 593, a calculator (peak value) 594, a data table 595, and a drive unit 596.
  • the diode rectifier 510 rectifies the AC voltage output from the neutral-grounded three-phase AC power supply 500 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • Smoothing capacitor 520 smoothes the DC voltage rectified by diode rectifier 510.
  • the inverter 530 converts the DC voltage smoothed by the smoothing capacitor 520 into a desired AC voltage, and drives the electric motor 540.
  • the bidirectional switch 560 and the Y capacitor 570 are connected in series between one end of the smoothing capacitor 520 and the ground. Y capacitor 570 reduces noise generated by switching of the switching elements constituting inverter 530.
  • Detector 580 detects the voltage across smoothing capacitor 520.
  • the control unit 590 drives the bidirectional switch 560 according to the output of the detector 580.
  • the calculator (filter) 592 extracts the AC power frequency component of the voltage detected by the detector 580.
  • the calculator (absolute value) 593 outputs the absolute value of the voltage of the AC power frequency component output from the calculator (filter) 592.
  • the calculator (peak value) 594 outputs the peak value of the absolute value output from the calculator (absolute value) 593.
  • the data table 595 defines the correspondence between the peak value of the absolute value of the voltage of the AC power frequency components of the DC buses ML1 and ML2 and the magnitude of the IGBT gate voltage.
  • the data table 595 is defined such that when the peak value of the absolute value of the voltage of the AC power supply frequency component is high, the gate voltage of the IGBT is low and the on-resistance value of the IGBT is high.
  • the gate voltage of the IGBT when the peak value of the absolute value of the voltage of the AC power supply frequency component is low, the gate voltage of the IGBT is high and the on-resistance value of the IGBT is low.
  • the drive unit 596 gives the gate voltage of the magnitude of the gate voltage output from the data table 595 to the IGBTs 561 and 562, and controls the conduction of the bidirectional switch 560.
  • the bidirectional switch 560 includes IGBTs 561 and 562 connected in antiparallel, a diode 563 connected in series to the IGBT 561, and a diode 564 connected in series to the IGBT 562.
  • the three-phase AC voltage of the neutral-point grounded three-phase AC power source 500 is rectified by the diode rectifier 510 and then converted into a DC voltage by the smoothing capacitor 520.
  • This DC voltage is converted into a desired AC voltage by known PWM control by the inverter 530, and the electric motor 540 is driven by the AC voltage.
  • stray capacitance 550 between the motor 540 and the ground.
  • PWM control When the inverter 530 is driven by PWM control, a voltage variation is applied to the stray capacitance 550 by the switching operation of the power conversion semiconductor element constituting the inverter 530, and a common mode current is generated. This common mode current propagates to the three-phase AC power supply 500 side through the ground.
  • Detector 580 detects the voltage across smoothing capacitor 520 and outputs the detected voltage value to control unit 590. From the detected voltage value, an AC power supply frequency component is extracted by a calculator (filter) 592, converted to an absolute value by a calculator (absolute value) 593, and converted to a peak value 591 by a calculator (peak value) 594. Is done. The magnitude of the gate voltage corresponding to the peak value 591 is output to the drive unit 596 by the data table 595. The drive unit 596 outputs the instructed gate voltage to the gates of the IGBTs 561 and 562, thereby driving the bidirectional switch 560.
  • smoothing capacitor 520 is sufficiently provided by adjusting the on-resistance of IGBTs 561 and 562 constituting bidirectional switch 560 according to the voltage value of the AC power frequency component superimposed on DC buses ML1 and ML2. Low noise is achieved even when the battery is not charged.
  • the IGBTs 561 and 562 of the bidirectional switch 560 can be used as a damping resistor, noise can be reduced even when resonance occurs in the path including the bidirectional switch 560.
  • the leakage current can be suppressed by adjusting the conduction resistance of the IGBTs 561 and 562 of the bidirectional switch 560 according to the voltage value of the AC power frequency component superimposed on the DC buses ML1 and ML2.
  • the malfunction of the earth leakage breaker can be avoided.
  • FIG. 7 is a circuit diagram of the power conversion device 6 according to the sixth embodiment.
  • the power converter 6 includes a diode rectifier 610, a first smoothing capacitor 620, an inverter 630, a bypass circuit 675, a detector 680, a control unit 690, and a chopper 6000.
  • the bypass circuit 675 includes a bidirectional switch 660 and a Y capacitor 670.
  • the chopper 6000 includes power conversion semiconductor elements 6001 and 6002, a reactor 6010, and a second smoothing capacitor 6020.
  • the control unit 690 includes a comparator 692 and a drive unit 693.
  • the diode rectifier 610 rectifies the AC voltage output from the neutral-phase grounded three-phase AC power supply 600 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • the first smoothing capacitor 620 smoothes the DC voltage rectified by the diode rectifier 610.
  • the semiconductor elements 6001 and 6002 for power conversion in the chopper 6000 convert the DC voltage of the first smoothing capacitor 620 into a desired DC voltage.
  • a second smoothing capacitor 6020 in the chopper 6000 smoothes the DC voltage converted by the power conversion semiconductor elements 6001 and 6002.
  • the inverter 630 converts the DC voltage smoothed by the second smoothing capacitor 6020 into a desired AC voltage, and drives the electric motor 640.
  • the bidirectional switch 660 and the Y capacitor 670 are connected in series between one end of the first smoothing capacitor 620 and the ground. Y capacitor 670 reduces noise generated by switching of the switching elements constituting inverter 630.
  • the detector 680 detects the voltage across the first smoothing capacitor 620.
  • the control unit 690 drives the bidirectional switch 660 according to the output of the detector 680.
  • the comparator 692 compares the voltage detected by the detector 680 with the first threshold value.
  • the drive unit 693 controls on / off of the bidirectional switch 660 based on the comparison result of the comparator 692.
  • the three-phase AC voltage of the neutral-phase grounded three-phase AC power source 600 is rectified by the diode rectifier 610 and then converted into a DC voltage by the first smoothing capacitor 620.
  • the DC voltage of the first smoothing capacitor 620 is converted into a desired DC voltage by the chopper 6000 and held by the second smoothing capacitor 6020.
  • the DC voltage of second smoothing capacitor 6020 is converted into a desired AC voltage by known PWM control by inverter 630, and motor 640 is driven by the AC voltage.
  • a stray capacitance 650 exists between the electric motor 640 and the ground.
  • the inverter 630 is driven by the PWM control, a voltage variation is applied to the stray capacitance 650 by the switching operation of the power conversion semiconductor element constituting the inverter 630, and a common mode current is generated. This common mode current propagates to the three-phase AC power supply 600 side through the ground.
  • Detector 680 detects the voltage of first smoothing capacitor 620 and outputs the detected voltage value 691 to control unit 690.
  • the detected voltage value 691 is compared with the first threshold value by the comparator 692, and the bidirectional switch 660 is turned on under the condition that the voltage value 691> the first threshold value.
  • the bidirectional switch 660 By conducting the bidirectional switch 660, the common mode current is circulated through the Y capacitor 670, thereby realizing low noise.
  • the condition of voltage value 691> first threshold that is, the first smoothing capacitor 620 is sufficiently charged, and the voltage fluctuation of the AC power supply frequency superimposed on the DC buses ML1 and ML2 is also suppressed. Since the bidirectional switch 660 is operated under conditions, the leakage current generated from the Y capacitor 670 can be suppressed, and the malfunction of the leakage breaker can be avoided.
  • the configuration in which the chopper is added to the configuration in the first embodiment has been described.
  • the present invention is not limited to this, and the chopper can be added in the same manner to the configurations in the other embodiments. .
  • FIG. FIG. 8 is a circuit diagram of a power conversion device according to the seventh embodiment.
  • the power converter 7 includes a common mode choke coil 7000, a diode rectifier 710, a smoothing capacitor 720, an inverter 730, a detector 780, a bypass circuit 775, and a control unit 790.
  • the bypass circuit 775 includes a bidirectional switch 760 and a Y capacitor 770.
  • the control unit 790 includes a comparator 792 and a drive unit 793.
  • a common mode choke coil 7000 is disposed on a three-phase AC power line between the diode rectifier 710 and the three-phase AC power source 700.
  • the common mode choke coil 7000 has a normal mode noise suppressing power using a leakage current.
  • FIG. 9 is a diagram showing a common mode choke coil 7000. As shown in FIG. 9, common mode choke coil 7000 is connected to R phase 810 of the three-phase AC power supply line, S phase 820 of the three-phase AC power supply line, and T phase 830 of the three-phase AC power supply line.
  • the operation of the common mode choke coil 7000 in FIG. 9 will be described.
  • the phase AC power line R phase 810, the three phase AC power line S phase 820, and the three phase AC power line T phase 830 are wound around the common mode choke coil 7000 with the same frequency, and the common mode noise current is generated. Attenuated and reduces common mode noise. Since the R phase 810, the S phase 820, and the T phase 830 of the three-phase AC power supply line are sparsely wound, the R phase 810, the S phase 820, and the T phase 830 of the three-phase AC power supply line are respectively a leakage magnetic field 811, 821 and 831 have inductance components. Since this inductance component functions as normal mode impedance, it has normal mode noise suppression power.
  • the common mode choke coil 7000 functions effectively in both the common mode and the normal mode.
  • diode rectifier 710 rectifies the AC voltage output from neutral-grounded three-phase AC power supply 700 into a DC voltage and outputs the DC voltage to DC buses ML1 and ML2.
  • the smoothing capacitor 720 smoothes the DC voltage rectified by the diode rectifier 710.
  • the inverter 730 converts the DC voltage smoothed by the smoothing capacitor 720 into a desired AC voltage, and drives the electric motor 740.
  • the bidirectional switch 760 and the Y capacitor 770 are connected in series between one end of the smoothing capacitor 720 and the ground. Y capacitor 770 reduces noise generated by switching of the switching elements that constitute inverter 730.
  • Detector 780 detects the voltage across smoothing capacitor 720.
  • the control unit 790 drives the bidirectional switch 760 according to the output of the detector 780.
  • the control unit 790 makes the bidirectional switch 760 conductive when the output value of the detector 780 is smaller than the first threshold value.
  • the comparator 792 compares the voltage detected by the detector 780 with the first threshold value.
  • the drive unit 793 controls on / off of the bidirectional switch 760 based on the comparison result of the comparator 792.
  • the three-phase AC voltage of the neutral-phase grounded three-phase AC power source 700 is rectified by the diode rectifier 710 and then converted into a DC voltage by the smoothing capacitor 720.
  • This DC voltage is converted into a desired AC voltage by known PWM control by the inverter 730, and the electric motor 740 is driven by the AC voltage.
  • stray capacitance 750 between the electric motor 740 and the ground.
  • a voltage variation is applied to the stray capacitance 750 by the switching operation of the power conversion semiconductor element constituting the inverter 730, and a common mode current is generated.
  • the common mode current propagates to the three-phase AC power supply 700 side through the ground.
  • the detector 780 detects the voltage of the smoothing capacitor 720 and outputs the detected voltage value 791 to the control unit 790.
  • the detected voltage value 791 is compared with the first threshold value by the comparator 792, and the bidirectional switch 760 is turned on under the condition that the voltage value 791> the first threshold value.
  • the bidirectional switch 760 By conducting the bidirectional switch 760, the common mode current is circulated through the Y capacitor 770 to realize low noise.
  • the common mode choke coil 7000 is installed on the three-phase AC power supply line, the common mode noise that wraps around the three-phase power supply line is further suppressed, and the Y capacitor 770 is circulated to achieve low noise.
  • the configuration in which the common mode choke coil is added to the configuration of the first embodiment has been described.
  • the present invention is not limited to this, and the common mode choke coil is similarly applied to the configurations of the other embodiments. Can be added.
  • FIG. 10 is a circuit diagram of the power conversion device 9 according to the eighth embodiment.
  • the power conversion device 9 includes a common mode choke coil 9000, a diode rectifier 910, a smoothing capacitor 920, an inverter 930, a bypass circuit 975, a detector 980, and a control unit 990.
  • the bypass circuit 975 includes a bidirectional switch 960 and a Y capacitor 970.
  • the control unit 990 includes a comparator 992 and a drive unit 993.
  • a common mode choke coil 9000 is disposed on a three-phase AC power supply line between the diode rectifier 910 and the three-phase AC power supply 900.
  • the diode rectifier 910 rectifies the AC voltage output from the neutral-phase grounded three-phase AC power supply 900 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • the smoothing capacitor 920 smoothes the DC voltage rectified by the diode rectifier 910.
  • the inverter 930 converts the DC voltage smoothed by the smoothing capacitor 920 into a desired AC voltage, and drives the electric motor 940.
  • the bidirectional switch 960 and the Y capacitor 970 are connected in series between one end of the smoothing capacitor 920 and the ground. Y capacitor 970 reduces noise generated by switching of the switching elements that constitute inverter 930.
  • Detector 980 detects the voltage across smoothing capacitor 920.
  • the control unit 990 drives the bidirectional switch 960 according to the output of the detector 980.
  • the control unit 990 makes the bidirectional switch 960 conductive when the output value of the detector 980 is larger than the first threshold value.
  • the comparator 992 compares the voltage detected by the detector 980 with the first threshold value.
  • the drive unit 993 controls on / off of the bidirectional switch 960 based on the comparison result of the comparator 992.
  • the bidirectional switch 960 includes reverse blocking IGBTs 1791 and 1792 connected in antiparallel.
  • the reverse blocking IGBTs 1791 and 1792 have high reverse breakdown voltage performance.
  • the three-phase AC voltage of the neutral-phase grounded three-phase AC power supply 900 is rectified by the diode rectifier 910 and then converted into a DC voltage by the smoothing capacitor 920.
  • This DC voltage is converted into a desired AC voltage by a known PWM control by the inverter 930, and the electric motor 940 is driven by the AC voltage.
  • stray capacitance 950 between the electric motor 940 and the ground.
  • a voltage variation is applied to the stray capacitance 950 by a switching operation of the power conversion semiconductor element constituting the inverter 930, and a common mode current is generated.
  • This common mode current propagates to the three-phase AC power supply 900 side through the ground.
  • Detector 980 detects the voltage of smoothing capacitor 920 and outputs the detected voltage value 991 to control unit 990.
  • the detected voltage value 991 is compared with the first threshold value by the comparator 992, and the reverse blocking IGBTs 1791 and 1792 are simultaneously turned on and the bidirectional switch 960 is turned on under the condition that the voltage value 991> the first threshold value.
  • the bidirectional switch 960 is constituted by the reverse blocking IGBTs 1791 and 1792, the number of elements constituting the bidirectional switch 960 can be reduced, and a compact mounting can be realized.
  • the switch configured by reverse blocking IGBTs 1791 and 1792 connected in antiparallel is described as a specific configuration of the bidirectional switch of the first embodiment.
  • the present invention is not limited to this.
  • the bidirectional switch having such a configuration can be used for the configurations of the other embodiments.
  • FIG. 11 is a circuit diagram of the power conversion apparatus 10 according to the ninth embodiment.
  • the power converter 10 includes a common mode choke coil 10000, a diode rectifier 1010, a smoothing capacitor 1020, an inverter 1030, a bypass circuit 1075, a detector 1080, and a control unit 1090.
  • the bypass circuit 1075 includes a bidirectional switch 1060 and a Y capacitor 1070.
  • the control unit 1090 includes a comparator 1092 and a drive unit 1093.
  • a common mode choke coil 10000 is disposed on a three-phase AC power line between the diode rectifier 1010 and the three-phase AC power source 1000.
  • the diode rectifier 1010 rectifies the AC voltage output from the neutral-phase grounded three-phase AC power supply 1000 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • Smoothing capacitor 1020 smoothes the DC voltage rectified by diode rectifier 1010.
  • the inverter 1030 converts the DC voltage smoothed by the smoothing capacitor 1020 into a desired AC voltage, and drives the electric motor 1040.
  • the bidirectional switch 1060 and the Y capacitor 1070 are connected in series between one end of the smoothing capacitor 1020 and the ground. Y capacitor 1070 reduces noise generated by switching of the switching elements constituting inverter 1030.
  • Detector 1080 detects the voltage across smoothing capacitor 1020.
  • the control unit 1090 drives the bidirectional switch 1060 according to the output of the detector 1080.
  • Control unit 1090 causes bidirectional switch 1060 to conduct when the output value of detector 1080 is greater than the first threshold.
  • the comparator 1092 compares the voltage detected by the detector 1080 with the first threshold value.
  • the driving unit 1093 controls on / off of the bidirectional switch 1060 based on the comparison result of the comparator 1092.
  • the bidirectional switch 1060 includes a P-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) 1061 and an N-channel MOSFET 1062 connected in reverse series.
  • the P-channel MOSFET 1061 and the N-channel MOSFET 1062 are turned on at the same time or turned off at the same time in accordance with a control signal from the drive unit 1093.
  • the three-phase AC voltage of the neutral-point grounded three-phase AC power supply 1000 is rectified by the diode rectifier 1010 and then converted into a DC voltage by the smoothing capacitor 1020.
  • This DC voltage is converted into a desired AC voltage by known PWM control by the inverter 1030, and the electric motor 1040 is driven by the AC voltage.
  • a stray capacitance 1050 exists between the electric motor 1040 and the ground.
  • the inverter 1030 is driven by the PWM control, a voltage variation is applied to the stray capacitance 1050 by the switching operation of the power conversion semiconductor element constituting the inverter 1030, and a common mode current is generated. This common mode current propagates to the AC power supply side through the ground.
  • the detector 1080 detects the voltage of the smoothing capacitor 1020 and outputs the detected voltage value 1091 to the control unit 1090.
  • the detected voltage value 1091 is compared with the first threshold value by the comparator 1092. Under the condition that the voltage value 1091> the first threshold value, the P-channel MOSFET 1061 and the N-channel MOSFET 1062 are simultaneously turned on, and the bidirectional switch 1060 is turned on.
  • the bidirectional switch 1060 includes a P-channel MOSFET 1061 and an N-channel MOSFET 1062 connected in reverse series. One end of P-channel MOSFET 1061 is connected to one ML2 of the DC bus.
  • the bidirectional switch 1060 is constituted by a MOSFET, the number of elements constituting the bidirectional switch 1060 can be reduced, and a compact mounting is realized.
  • the P-channel MOSFET 1061 is connected to the DC bus ML2, the DC bus voltage can be used as the source potential in the gate drive of the P-channel MOSFET 1061. Therefore, a separate mounting is not required and a small mounting can be realized.
  • the switch configured by the P-channel MOSFET 1061 and the N-channel MOSFET 1062 connected in reverse series has been described.
  • the present invention is not limited to this. is not.
  • the bidirectional switch having such a configuration can be used for the configurations of the other embodiments.
  • Embodiment 10 FIG.
  • the bidirectional switch included in the bypass circuit described in the above embodiment is configured by a bidirectional single element.
  • FIG. 12 is a cross-sectional view of a bidirectional lateral insulated gate transistor that is one of the bidirectional single elements according to the tenth embodiment.
  • the bidirectional lateral insulated gate transistor includes an n-type semiconductor layer 1100, p + well regions 1111 and 1112, n + emitter regions 1121 and 1122, emitter electrodes 1131 and 1132, gate insulating films 1141 and 1142, and gate electrodes 1151 and 1152.
  • Two p + well regions 1111 and 1112 are formed in the n-type semiconductor layer 1100.
  • N + emitter regions 1121 and 1122 are formed inside the p + well regions 1111 and 1112.
  • the p + well regions 1111 and 1112 are formed on the surface of the n-type semiconductor layer 1100 and are formed at a predetermined distance to maintain a desired withstand voltage.
  • Gate electrodes 1151 and 1152 are formed via gate insulating films 1141 and 1142 above the boundaries between the p + well regions 1111 and 1112 and the n + emitter regions 1121 and 1122, respectively.
  • Emitter electrodes 1131 and 1132 are formed so as to straddle the p + well region 1111 and 1112 and the n + emitter region 1121 and 1122.
  • the current flowing bidirectionally between the emitter electrodes can be controlled by controlling the voltage applied to the gate electrodes 1151 and 1152.
  • the bidirectional element is composed of a bidirectional single element, the number of elements constituting the bidirectional switch can be reduced, and a compact mounting is realized.
  • a switch composed of a bidirectional single element has been described as a specific configuration of the bidirectional switch of the first embodiment, but the present invention is not limited to this.
  • the bidirectional switch having such a configuration can be used for the configurations of the other embodiments.
  • FIG. FIG. 13 is a circuit diagram of the power conversion device 12 according to the eleventh embodiment.
  • the power converter 12 includes a common mode choke coil 12000, a diode rectifier 1210, a smoothing capacitor 1220, an inverter 1230, a bypass circuit 1275, a detector 1280, and a control unit 1290.
  • the bypass circuit 1275 includes a bidirectional switch 1260 and a Y capacitor unit 1270.
  • the Y capacitor unit 1270 includes Y capacitors 1271, 1272, and 1273 having different frequency characteristics and connected in parallel.
  • the control unit 1290 includes a comparator 1292 and a drive unit 1293.
  • a common mode choke coil 12000 is arranged on a three-phase AC power line between the diode rectifier 1210 and the three-phase AC power source 1200.
  • the diode rectifier 1210 rectifies the AC voltage output from the neutral-grounded three-phase AC power supply 1200 into a DC voltage and outputs the DC voltage to the DC buses ML1 and ML2.
  • the smoothing capacitor 1220 smoothes the DC voltage rectified by the diode rectifier 1210.
  • the inverter 1230 converts the DC voltage smoothed by the smoothing capacitor 1220 into a desired AC voltage and drives the electric motor 1240.
  • the bidirectional switch 1260 and the Y capacitor unit 1270 are connected in series between one end of the smoothing capacitor 1220 and the ground. Y capacitor unit 1270 reduces noise generated by switching of the switching elements constituting inverter 1230.
  • the Y capacitor unit 1270 includes a Y capacitor 1271, a Y capacitor 1272, and a Y capacitor 1273.
  • Detector 1280 detects the voltage across smoothing capacitor 1220.
  • the control unit 1290 drives the bidirectional switch 1060 according to the output of the detector 1280.
  • the control unit 1290 causes the bidirectional switch 1260 to conduct when the output value of the detector 1280 is greater than the first threshold value.
  • the comparator 1292 compares the voltage detected by the detector 1280 with the first threshold value.
  • the drive unit 1293 controls on / off of the bidirectional switch 1260 based on the comparison result of the comparator 1292.
  • the three-phase AC voltage of the neutral-grounded three-phase AC power supply 1200 is rectified by the diode rectifier 1210 and then converted into a DC voltage by the smoothing capacitor 1220.
  • This DC voltage is converted into a desired AC voltage by known PWM control by the inverter 1230, and the electric motor 1240 is driven by the AC voltage.
  • a stray capacitance 1250 exists between the electric motor 1240 and the ground.
  • the inverter 1230 is driven by the PWM control, a voltage variation is applied to the stray capacitance 1250 by the switching operation of the power conversion semiconductor element constituting the inverter 1230, and a common mode current is generated. This common mode current propagates to the AC power supply side through the ground.
  • the detector 1280 detects the voltage of the smoothing capacitor and outputs the detected voltage value 1291 to the control unit 1290.
  • the detected voltage value 1291 is compared with the first threshold value by the comparator 1292, and the bidirectional switch 1260 is turned on under the condition that the voltage value 1291> the first threshold value.
  • the bidirectional switch 1260 By conducting the bidirectional switch 1260, the common mode current is circulated through the Y capacitor unit 1270, thereby realizing low noise.
  • the Y capacitors 1271, 1272, and 1273 constituting the Y capacitor unit 1270 have different frequency characteristics.
  • the frequency characteristic of the Y capacitor is represented by a series connection of a capacitance component and an inductance component. That is, the capacitance component is dominant in the low frequency range, and the inductance component is dominant in the high frequency range, and does not function as a noise propagation path in the high frequency range.
  • a capacitance component is exhibited in a wide area from a low frequency to a high frequency and functions as a noise propagation path. Even when the frequency characteristics of the Y capacitors 1271, 1272, and 1273 are the same, the capacitor capacity is increased by connecting them in parallel, and the internal inductance is reduced to function as a noise propagation path.
  • the condition that the voltage value 1291> the first threshold value, that is, the smoothing capacitor 1220 is sufficiently charged, and the voltage fluctuation of the AC power supply frequency superimposed on the DC buses ML1 and ML2 is also suppressed. Since the bidirectional switch 1260 is operated under conditions, the leakage current generated from the Y capacitors 1271 to 1273 can be suppressed, and the malfunction of the leakage breaker can be avoided.
  • the configuration in which the Y capacitor of the first embodiment is replaced with a plurality of Y capacitors connected in parallel is described, but the present invention is not limited to this. Similarly, a plurality of Y capacitors connected in parallel can be used in the configurations of the other embodiments.
  • 1 to 7, 9, 10, 12 Power converter 100, 200, 300, 400, 500, 600, 700, 900, 1000, 1200 Three-phase AC power supply, 110, 210, 310, 410, 510, 610, 710 , 910, 1010, 1210 Diode rectifier, 120, 220, 320, 420, 520, 620, 720, 920, 1020, 1220, 6020 Smoothing capacitor, 130, 230, 330, 430, 530, 630, 730, 930, 1030 , 1230 inverter, 140, 240, 340, 440, 540, 640, 740, 940, 1040, 1240 electric motor, 150, 250, 350, 450, 550, 650, 750, 950, 1050, 1250 floating capacity, 160, 260 , 360, 460, 5 0, 660, 760, 960, 1060, 1260 Bidirectional switch, 170, 270, 370, 470, 570, 670, 770, 970,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

ダイオード整流器(110)は、中性点接地の三相交流電源(100)から出力される交流電圧を直流電圧に整流する。平滑コンデンサ(120)は、ダイオード整流器(110)によって整流された直流電圧を平滑する。インバータ(130)は、平滑コンデンサ(120)によって平滑された直流電圧を所望の交流電圧に変換する。双方向スイッチ(160)およびYコンデンサ(170)は、平滑コンデンサ(120)の一端と対地との間に直列に接続される。検出器(180)は、平滑コンデンサ(120)の両端の電圧を検出する。制御部(190)は、検出器(180)の出力に応じて、双方向スイッチ(160)を駆動する。

Description

電力変換装置
 本発明は、電力変換装置に関し、特に中性点接地の三相交流電圧をダイオード整流回路と平滑コンデンサとにより直流電圧に変換し、この直流電圧を逆変換回路により所望の交流電圧に変換して出力する電力変換装置に関する。
 電力変換装置は、電力変換用半導体素子の高速スイッチング動作によって、高効率な電力変換を実現する。一方、高速スイッチング動作は、電磁ノイズの発生源でもある。電磁ノイズは、電力変換装置の誤動作要因、また周辺電子機器の誤動作要因ともなる。そのため電力変換装置では電磁ノイズ低減が重要な開発課題である。
 このような課題に対して、特許文献1(特許第4548004号公報)には、単相交流電源、ダイオード整流器、平滑コンデンサ、および逆変換器で構成されるPWM(Pulse Width Modulation)インバータにおいて、直流母線部の一端と接地間にインバータ出力側の容量より大容量のコンデンサを接続し、低ノイズ化を実現することが記載されている。
特許第4548004号公報
 しかしながら、特許文献1に記載のPWMインバータでは、直流母線部に重畳した交流電源周波数の電圧変動が、直流母線部の一端と接地間のノイズ低減用のコンデンサに直接印加され、漏洩電流が発生する。特に起動時のように平滑コンデンサが十分に充電されていない状態では、交流電源周波数の電圧変動が大きくなり、これに比例して漏洩電流値も増加する。漏洩電流は漏電ブレーカの動作を招き、電力変換装置の動作信頼性を損なうという問題がある。
 それゆえに、本発明の目的は、漏洩電流を抑制しつつ、低ノイズ化を実現することができる電力変換装置を提供することである。
 本発明の電力変換装置は、中性点接地の三相交流電源から出力される交流電圧を直流電圧に整流する整流回路と、整流回路によって整流された直流電圧を平滑する平滑コンデンサと、平滑コンデンサによって平滑された直流電圧を所望の交流電圧に変換する変換回路と、平滑コンデンサの一端と対地との間に直列に接続された双方向スイッチおよび少なくとも1つのYコンデンサと、平滑コンデンサの両端の電圧を検出する検出器と、検出器の出力に応じて、双方向スイッチを駆動する制御部とを備える。
 本発明の電力変換装置によれば、漏洩電流を抑制しつつ、低ノイズ化を実現することができる。
実施の形態1に係る電力変換装置の回路図である。 コモンモード電流の流れを表わす図である。 実施の形態2に係る電力変換装置の回路図である。 実施の形態3に係る電力変換装置の回路図である。 実施の形態4に係る電力変換装置の回路図である。 実施の形態5に係る電力変換装置の回路図である。 実施の形態6に係る電力変換装置の回路図である。 実施の形態7に係る電力変換装置の回路図である。 実施の形態7に係るコモンモードチョークコイルの概略図である。 実施の形態8に係る電力変換装置の回路図である。 実施の形態9に係る電力変換装置の回路図である。 実施の形態10に係る双方向単一素子の概断面図である。 実施の形態11に係る電力変換装置の回路図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 実施の形態1.
 図1は、実施の形態1に係る電力変換装置1の回路図である。
 図1に示すように、電力変換装置1は、ダイオード整流器110、平滑コンデンサ120、インバータ130、バイパス回路175、検出器180、および制御部190を備える。バイパス回路175は、双方向スイッチ160およびYコンデンサ170を備える。制御部190は、コンパレータ192、および駆動部193を備える。
 ダイオード整流器110は、中性点接地の三相交流電源100から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ120は、ダイオード整流器110によって整流された直流電圧を平滑化する。
 インバータ130は、平滑コンデンサ120によって平滑された直流電圧を所望の交流電圧に変換して、電動機140を駆動する。
 双方向スイッチ160およびYコンデンサ170は、平滑コンデンサ120の一端と対地との間に直列に接続される。Yコンデンサ170は、インバータ130を構成するスイッチング素子のスイッチングにより発生した高周波のコモンモードノイズを低減させる。Yコンデンサ170は、たとえばセラミックコンデンサ、フィルムコンデンサなどで構成される。
 検出器180は、平滑コンデンサ120の両端の電圧を検出する。
 制御部190は、検出器180の出力に応じて、双方向スイッチ160を駆動する。制御部190は、検出器180の出力値が第一閾値より大きいとき、双方向スイッチ160を導通させる。
 コンパレータ192は、検出器180で検出された電圧と第一閾値とを比較する。駆動部193は、コンパレータ192の比較結果に基づいて、双方向スイッチ160のオン/オフを制御する。
 ここで本実施の形態における第一閾値について説明する。この第一閾値以上に平滑コンデンサ120の電圧値が上昇した場合、上記平滑コンデンサ120の電圧に含まれる交流電源周波数成分の電圧変動により発生する交流電源周波数成分の対地間電圧変動が、Yコンデンサ170に印加された場合の交流電源周波数成分の漏洩電流が漏電ブレーカの動作電流値以下まで抑制されている。
 次に、図1の電力変換装置1の動作を説明する。
 中性点接地の三相交流電源100の三相交流電圧は、ダイオード整流器110で整流され、その後平滑コンデンサ120によって直流電圧となる。この直流電圧は、インバータ130によって、周知のPWM制御で所望の交流電圧に変換されて、交流電圧によって、電動機140が駆動される。
 電動機140と対地間には浮遊容量150が存在する。PWM制御によってインバータ130を駆動すると、インバータ130を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量150に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、三相交流電源100側へ伝搬する。
 検出器180は、平滑コンデンサ120の両端の電圧を検出し、電圧値191を制御部190へ出力する。制御部190内のコンパレータ192は、電圧値191と第一閾値とを比較し、電圧値191>第一閾値の場合に、双方向スイッチ160を導通させる。双方向スイッチ160を導通させることによって、図2に示すように、コモンモード電流CIを、Yコンデンサ170を経由して循環させ、低ノイズ化を実現する。
 また本実施の形態では、電圧値>第一閾値となる条件、すなわち平滑コンデンサ120が十分に充電されており、直流母線ML1,ML2に重畳する交流電源周波数の電圧変動も抑制されている条件で双方向スイッチ160を動作させるため、Yコンデンサ170から発生する漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 以上のように、本実施の形態では低ノイズかつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 なお、本実施の形態では、コモンモード電流の発生を電動機140と対地間の浮遊容量150で説明したが、これに限るものではなく、たとえば、インバータ130と対地間の浮遊容量、あるいは、電動機140のケーブルと対地間の浮遊容量であってもよい。
 また、本実施の形態では、双方向スイッチ160とYコンデンサ170を直流母線の負極側へ接続したが、正極側に追加しても同様の効果を得ることができる。さらに双方向スイッチ160とYコンデンサ170を負極側、正極側の両方に追加しても同様の効果を得ることができる。
 実施の形態2.
 図3は、実施の形態2に係る電力変換装置2の回路図である。
 図3に示すように、電力変換装置2は、ダイオード整流器210、平滑コンデンサ220、インバータ230、電動機240、バイパス回路275、検出器280、および制御部290を備える。バイパス回路275は、双方向スイッチ260およびYコンデンサ270を備える。制御部290は、演算器(フィルタ)292、演算器(絶対値)293、演算器(ピーク値)294、コンパレータ295、および駆動部296を備える。
 ダイオード整流器210は、中性点接地の三相交流電源200から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ220は、ダイオード整流器210によって整流された直流電圧を平滑化する。
 インバータ230は、平滑コンデンサ220によって平滑された直流電圧を所望の交流電圧に変換して、電動機240を駆動する。
 双方向スイッチ260およびYコンデンサ270は、平滑コンデンサ220の一端と対地との間に直列に接続される。Yコンデンサ270は、インバータ230を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器280は、平滑コンデンサ220の両端の電圧を検出する。
 制御部290は、検出器280の出力に応じて、双方向スイッチ260を駆動する。
 演算器(フィルタ)292は、検出器280によって検出された電圧の交流電源周波数成分を抽出する。
 演算器(絶対値)293は、演算器(フィルタ)292から出力される交流電源周波数成分の電圧の絶対値を出力する。
 演算器(ピーク値)294は、演算器(絶対値)293から出力される絶対値のピーク値を出力する。
 コンパレータ295は、演算器(ピーク値)294の出力と第二閾値とを比較する。
 駆動部296は、コンパレータ295の比較結果が、ピーク値<第二閾値となる場合に、双方向スイッチ260を導通させる。
 ここで本実施の形態における第二閾値について説明する。この第二閾値は交流電源周波数成分の電圧値である。この第二閾値以下に検出値が減少した場合、上記平滑コンデンサ220の電圧に含まれる交流電源周波数成分の電圧変動により発生する交流電源周波数成分の対地間電圧変動が、Yコンデンサ170に印加された場合の交流電源周波数成分の漏洩電流が漏電ブレーカの動作電流値以下まで抑制されている。
 次に、図3の電力変換装置2の動作を説明する。
 中性点接地の三相交流電源200の三相交流電圧は、ダイオード整流器210で整流されて、その後、平滑コンデンサ220によって、直流電圧となる。この直流電圧は、インバータ230によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって電動機240が駆動される。
 電動機240と対地間には浮遊容量250が存在する。PWM制御によってインバータ230を駆動すると、インバータ230を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量250に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、三相交流電源200側へ伝搬する。
 検出器280は、平滑コンデンサ220の電圧を検出し、検出した電圧値を制御部290へ出力する。検知された電圧値は、演算器(フィルタ)292によって交流電源周波数成分となり、演算器(絶対値)293によって絶対値へ変換され、演算器(ピーク値)294によってピーク値291へ変換され、コンパレータ295によって第二閾値と比較され、ピーク値291<第二閾値となる場合に、双方向スイッチ260を導通させる。
 本実施の形態では、前記双方向スイッチ260を導電させることで、コモンモード電流を、Yコンデンサ270を経由して循環させ、低ノイズ化を実現する。
 また、本実施の形態では、ピーク値291<第二閾値となる条件、すなわち平滑コンデンサ220が十分に充電されており、直流母線ML1,ML2に重畳する交流電源周波数の電圧変動も抑制されている条件で、双方向スイッチ260を動作させるため、Yコンデンサ270から発生する漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 また、本実施の形態では、検出器280によって検出された電圧の交流電源周波数成分が抽出されて、駆動部296の動作を判断するため、高精度な制御が可能となり、Yコンデンサ270の容量を漏電ブレーカの動作限界まで増量でき、より低ノイズ化を実現する。
 以上のように、本実施の形態では低ノイズ化かつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 なお、本実施の形態では演算器(ピーク値)294で説明したが、本発明はこれに限るものではなく、別の演算器、例えば演算器(平均値)でも可能である。
 実施の形態3.
 図4は、実施の形態3に係る電力変換装置3の回路図である。
 図4に示すように、電力変換装置3は、ダイオード整流器310、平滑コンデンサ320、インバータ330、バイパス回路375、および制御部390を備える。バイパス回路375は、双方向スイッチ360およびYコンデンサ370を備える。制御部390は、コンパレータ392、および駆動部393を備える。
 ダイオード整流器310は、中性点接地の三相交流電源300から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ320は、ダイオード整流器310によって整流された直流電圧を平滑化する。
 インバータ330は、平滑コンデンサ320によって平滑された直流電圧を所望の交流電圧に変換して、電動機340を駆動する。
 双方向スイッチ360およびYコンデンサ370は、平滑コンデンサ320の一端と対地との間に直列に接続される。Yコンデンサ370は、インバータ330を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器380は、平滑コンデンサ320に流れる電流を検出する。
 制御部390は、検出器380の出力に応じて、双方向スイッチ360を駆動する。
 制御部390は、検出器380の出力値が第三閾値より小さいとき、双方向スイッチ360を導通させる。
 コンパレータ392は、検出器380で検出された電流と第三閾値とを比較する。
 ここで本実施の形態における第三閾値について説明する。この第三閾値は電流値である。この第三閾値以下に検出値が減少した場合、上記平滑コンデンサ320の電圧に含まれる交流電源周波数成分の電圧変動により発生する交流電源周波数成分の対地間電圧変動が、Yコンデンサ170に印加された場合の交流電源周波数成分の漏洩電流が漏電ブレーカの動作電流値以下まで抑制されている。
 駆動部393は、コンパレータ392の比較結果に基づいて、双方向スイッチ360のオン/オフを制御する。
 次に、図4の電力変換装置3の動作を説明する。
 中性点接地の三相交流電源300の三相交流電圧はダイオード整流器310で整流され、その後、平滑コンデンサ320によって直流電圧となる。この直流電圧はインバータ330によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって電動機340が駆動される。
 電動機340と対地間には浮遊容量350が存在する。PWM制御によってインバータ330を駆動すると、インバータ330を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量350に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は、対地を経路とし、三相交流電源300側へ伝搬する。
 検出器380は、平滑コンデンサ320の電流を検出し、検出した電流値391を制御部390へ出力する。検出された電流値391は、コンパレータ392によって第三閾値と比較され、電流値391<第三閾値となる場合に、双方向スイッチ360を導通させる。
 双方向スイッチ360を導通させることによって、コモンモード電流を、Yコンデンサ370を経由して循環させ、低ノイズ化を実現する。
 また、本実施の形態では、電流値391<第三閾値となる条件、すなわち平滑コンデンサ320が十分に充電されており、直流母線ML1,ML2に重畳する交流電源周波数の電圧変動も抑制されている条件で双方向スイッチ360を動作させるため、Yコンデンサ370から発生する漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 従って、本実施の形態では低ノイズかつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 実施の形態4.
 図5は、実施の形態4に係る電力変換装置4の回路図である。
 図5に示すように、この電力変換装置4は、ダイオード整流器410、平滑コンデンサ420、インバータ430、バイパス回路475、検出器480、および制御部490を備える。バイパス回路475は、双方向スイッチ460およびYコンデンサ470を備える。制御部490は、演算器(フィルタ)492、演算器(絶対値)493、演算器(ピーク値)494、コンパレータ495、駆動部496を備える。
 ダイオード整流器410は、中性点接地の三相交流電源400から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ420は、ダイオード整流器410によって整流された直流電圧を平滑化する。
 インバータ430は、平滑コンデンサ420によって平滑された直流電圧を所望の交流電圧に変換して、電動機440を駆動する。
 双方向スイッチ460およびYコンデンサ470は、平滑コンデンサ420の一端と対地との間に直列に接続される。Yコンデンサ470は、インバータ430を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器480は、平滑コンデンサ420に流れる電流を検出する。
 制御部490は、検出器480の出力に応じて、双方向スイッチ460を駆動する。
 演算器(フィルタ)492は、検出器480によって検出された電流の交流電源周波数成分を抽出する。
 演算器(絶対値)493は、演算器(フィルタ)492から出力される交流電源周波数成分の電流の絶対値を出力する。
 演算器(ピーク値)494は、演算器(絶対値)493から出力される絶対値のピーク値を出力する。
 コンパレータ495は、演算器(ピーク値)494の出力と第四閾値とを比較する。
 駆動部496は、コンパレータ495の比較結果が、ピーク値<第四閾値となる場合に、双方向スイッチ460を導通させる。
 ここで本実施の形態における第四閾値について説明する。この第四閾値は平滑コンデンサ420に流入する電流値の交流電源周波数成分である。この第四閾値以下に検出値が減少した場合、上記平滑コンデンサ420の電圧に含まれる交流電源周波数成分の電圧変動により発生する交流電源周波数成分の対地間電圧変動が、Yコンデンサ170に印加された場合の交流電源周波数成分の漏洩電流が漏電ブレーカの動作電流値以下まで抑制されている。
 次に、図5の電力変換装置4の動作を説明する。
 中性点接地の三相交流電源400の三相交流電圧は、ダイオード整流器410で整流され、その後、平滑コンデンサ420によって直流電圧となる。この直流電圧はインバータ430によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって電動機440が駆動される。
 電動機440と対地間には浮遊容量450が存在する。PWM制御によってインバータ430を駆動すると、インバータ430を構成する電力変換用半導体素子のスイッチング動作により、浮遊容量450に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、交流電源側へ伝搬する。
 検出器480は、平滑コンデンサ420の電流を検知し、検知した電流値を制御部490へ出力する。検出された電流値は、演算器(フィルタ)492によって交流電源周波数成分となり、演算器(絶対値)493によって絶対値へ変換され、演算器(ピーク値)494でピーク値491へ変換され、コンパレータ495で第四閾値と比較され、ピーク値491<第四閾値となる条件で、双方向スイッチ460を導通させる。
 双方向スイッチ460を導電させることによって、コモンモード電流を、Yコンデンサ470を経由して循環させ、低ノイズ化を実現する。
 また、本実施の形態では、ピーク値491<第四閾値となる条件、すなわち平滑コンデンサ420が十分に充電されており、直流母線ML1,ML2に重畳する交流電源周波数の電圧変動も抑制されている条件で双方向スイッチ460を動作させるため、Yコンデンサ470から発生する漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 また、本実施の形態では、検出せれた電流値によって交流電源周波数の成分を抽出し、駆動部496の動作を判断するため、高精度な制御が可能となり、Yコンデンサ470を漏電ブレーカの動作限界まで増量でき、より低ノイズ化を実現する。
 以上より、本実施の形態では低ノイズ化かつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 なお、本実施の形態では演算器(ピーク値)494で説明したが、本発明はこれに限るものではなく、別の演算器、例えば演算器(平均値)でも可能である。
 実施の形態5.
 図6は、実施の形態5に係る電力変換装置5の回路図である。
 図6に示すように、この電力変換装置5は、ダイオード整流器510、平滑コンデンサ520、インバータ530、バイパス回路575、検出器580、および制御部590を備える。バイパス回路575は、双方向スイッチ560およびYコンデンサ570を備える。双方向スイッチ560は、IGBT561、IGBT562、ダイオード563、およびダイオード564を備える。制御部590は、演算器(フィルタ)592、演算器(絶対値)593、演算器(ピーク値)594、データテーブル595、および駆動部596を備える。
 ダイオード整流器510は、中性点接地の三相交流電源500から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ520は、ダイオード整流器510によって整流された直流電圧を平滑化する。
 インバータ530は、平滑コンデンサ520によって平滑された直流電圧を所望の交流電圧に変換して、電動機540を駆動する。
 双方向スイッチ560およびYコンデンサ570は、平滑コンデンサ520の一端と対地との間に直列に接続される。Yコンデンサ570は、インバータ530を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器580は、平滑コンデンサ520の両端の電圧を検出する。
 制御部590は、検出器580の出力に応じて、双方向スイッチ560を駆動する。
 演算器(フィルタ)592は、検出器580によって検出された電圧の交流電源周波数成分を抽出する。
 演算器(絶対値)593は、演算器(フィルタ)592から出力される交流電源周波数成分の電圧の絶対値を出力する。
 演算器(ピーク値)594は、演算器(絶対値)593から出力される絶対値のピーク値を出力する。
 データテーブル595は、直流母線ML1,ML2の交流電源周波数成分の電圧の絶対値のピーク値と、IGBTのゲート電圧の大きさとの対応を定める。データテーブル595には、交流電源周波数成分の電圧の絶対値のピーク値が高い場合は、IGBTのゲート電圧が低くなり、IGBTのオン抵抗値が高くなるように定められている。データテーブル595には、交流電源周波数成分の電圧の絶対値のピーク値が低い場合は、IGBTのゲート電圧が高くなり、IGBTのオン抵抗値が低くなるように定められている。
 駆動部596は、データテーブル595から出力されるゲート電圧の大きさのゲート電圧を、IGBT561,562に与えて、双方向スイッチ560の導通を制御する。
 双方向スイッチ560は、逆並列に接続されたIGBT561、562と、IGBT561に直列接続されたダイオード563と、IGBT562に直列接続されたダイオード564とを備える。
 次に、図6の電力変換装置5の動作を説明する。
 中性点接地の三相交流電源500の三相交流電圧は、ダイオード整流器510で整流され、その後、平滑コンデンサ520によって直流電圧となる。この直流電圧は、インバータ530によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって、電動機540が駆動される。
 電動機540と対地間には浮遊容量550が存在する。PWM制御によってインバータ530を駆動すると、インバータ530を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量550に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、三相交流電源500側へ伝搬する。
 検出器580は、平滑コンデンサ520の両端の電圧を検知し、検知した電圧値を制御部590へ出力する。検知された電圧値は、演算器(フィルタ)592によって、交流電源周波数成分が抽出され、演算器(絶対値)593によって絶対値へ変換され、演算器(ピーク値)594によってピーク値591へ変換される。データテーブル595によって、ピーク値591に対応するゲート電圧の大きさが、駆動部596に出力される。駆動部596は、指示された大きさのゲート電圧をIGBT561、562のゲートへ出力することによって、双方向スイッチ560が駆動される。
 本実施の形態では、直流母線ML1,ML2に重畳した交流電源周波数成分の電圧値に応じて、双方向スイッチ560を構成するIGBT561、562のオン抵抗を調整することによって、平滑コンデンサ520が十分に充電されていない場合でも低ノイズ化を実現する。
 また、本実施の形態では、双方向スイッチ560のIGBT561、562をダンピング抵抗として活用できるため、双方向スイッチ560を含む経路に共振が発生した場合も低ノイズ化を実現できる。
 また、本実施の形態では、直流母線ML1,ML2に重畳した交流電源周波数成分の電圧値に応じて、双方向スイッチ560のIGBT561、562の導通抵抗を調整することによって、漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 以上によって、本実施の形態では低ノイズ化かつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 本実施の形態では、実施の形態1の双方向スイッチの具体的な構成として、逆並列に接続されたIGBT561、562と、IGBT561に直列接続されたダイオード563と、IGBT562に直列接続されたダイオード564とを備えるスイッチを説明したが、これに限定されるものではない。その他の実施形態の構成にも、同様にしてこのような構成の双方向スイッチを用いることができる。
 実施の形態6.
 図7は、実施の形態6に係る電力変換装置6の回路図である。
 図7に示すように、この電力変換装置6は、ダイオード整流器610、第1平滑コンデンサ620、インバータ630、バイパス回路675、検出器680、制御部690、およびチョッパ6000を備える。バイパス回路675は、双方向スイッチ660、およびYコンデンサ670を備える。チョッパ6000は、電力変換用半導体素子6001,6002、リアクトル6010、第2平滑コンデンサ6020を備える。制御部690は、コンパレータ692、および駆動部693を備える。
 ダイオード整流器610は、中性点接地の三相交流電源600から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 第1平滑コンデンサ620は、ダイオード整流器610によって整流された直流電圧を平滑化する。
 チョッパ6000内の電力変換用半導体素子6001,6002は、第1平滑コンデンサ620の直流電圧を所望の直流電圧に変換する。チョッパ6000内の第2平滑コンデンサ6020は、電力変換用半導体素子6001,6002によって変換された直流電圧を平滑化する。
 インバータ630は、第2平滑コンデンサ6020によって平滑された直流電圧を所望の交流電圧に変換して、電動機640を駆動する。
 双方向スイッチ660およびYコンデンサ670は、第1平滑コンデンサ620の一端と対地との間に直列に接続される。Yコンデンサ670は、インバータ630を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器680は、第1平滑コンデンサ620の両端の電圧を検出する。
 制御部690は、検出器680の出力に応じて、双方向スイッチ660を駆動する。
 コンパレータ692は、検出器680で検出された電圧と第一閾値とを比較する。
 駆動部693は、コンパレータ692の比較結果に基づいて、双方向スイッチ660のオン/オフを制御する。
 次に、図7の電力変換装置6の動作を説明する。
 中性点接地の三相交流電源600の三相交流電圧は、ダイオード整流器610によって整流され、その後、第1平滑コンデンサ620によって直流電圧となる。第1平滑コンデンサ620の直流電圧は、チョッパ6000によって所望の直流電圧に変換され、第2平滑コンデンサ6020によって保持される。第2平滑コンデンサ6020の直流電圧は、インバータ630によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって電動機640が駆動される。
 電動機640と対地間には浮遊容量650が存在する。PWM制御によってインバータ630を駆動するとインバータ630を構成する電力変換用半導体素子のスイッチング動作により、浮遊容量650に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、三相交流電源600側へ伝搬する。
 検出器680は、第1平滑コンデンサ620の電圧を検出し、検出した電圧値691を制御部690へ出力する。検出された電圧値691は、コンパレータ692によって第一閾値と比較され、電圧値691>第一閾値となる条件で、双方向スイッチ660を導通させる。
 双方向スイッチ660を導通させることによって、コモンモード電流を、Yコンデンサ670を経由して循環させ、低ノイズ化を実現する。
 本実施の形態では、電圧値691>第一閾値となる条件、すなわち第1平滑コンデンサ620が十分に充電されており、直流母線ML1,ML2に重畳する交流電源周波数の電圧変動も抑制されている条件で双方向スイッチ660を動作させるため、Yコンデンサ670から発生する漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 以上より、本実施の形態では低ノイズかつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 本実施の形態では、実施の形態1の構成にチョッパを追加した構成を説明したが、これに限定するものではなく、その他の実施形態の構成にも、同様にしてチョッパを追加することができる。
 実施の形態7.
 図8は、実施の形態7に係る電力変換装置の回路図である。
 図8に示すように、この電力変換装置7は、コモンモードチョークコイル7000、ダイオード整流器710、平滑コンデンサ720、インバータ730、検出器780、バイパス回路775、および制御部790を備える。バイパス回路775は、双方向スイッチ760、およびYコンデンサ770を備える。制御部790は、コンパレータ792、および駆動部793を備える。
 ダイオード整流器710と、三相交流電源700との間の三相交流電源線にコモンモードチョークコイル7000が配置される。コモンモードチョークコイル7000は、漏洩電流を利用したノーマルモードノイズ抑制力を有する。
 図9は、コモンモードチョークコイル7000を表わす図である。
 図9に示すように、コモンモードチョークコイル7000は、三相交流電源線のR相810、三相交流電源線のS相820、および三相交流電源線のT相830と接続する。
 図9のコモンモードチョークコイル7000の動作を説明する。
 相交流電源線のR相810、三相交流電源線のS相820、および三相交流電源線のT相830が同一周数でコモンモードチョークコイル7000に巻かれており、コモンモードノイズ電流を減衰され、コモンモードノイズを低減する。三相交流電源線のR相810、S相820、T相830が疎に巻かれているため、三相交流電源線のR相810、S相820、T相830は、それぞれ漏洩磁場811、821、831によるインダクタンス成分を有する。このインダクタンス成分がノーマルモードインピーダンスとして機能するため、ノーマルモードノイズ抑制力を有する。
 それゆえ、コモンモードチョークコイル7000は、コモンモードおよびノーマルモードの両方に有効に機能する。
 再び、図8を参照して、ダイオード整流器710は、中性点接地の三相交流電源700から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ720は、ダイオード整流器710によって整流された直流電圧を平滑化する。
 インバータ730は、平滑コンデンサ720によって平滑された直流電圧を所望の交流電圧に変換して、電動機740を駆動する。
 双方向スイッチ760およびYコンデンサ770は、平滑コンデンサ720の一端と対地との間に直列に接続される。Yコンデンサ770は、インバータ730を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器780は、平滑コンデンサ720の両端の電圧を検出する。
 制御部790は、検出器780の出力に応じて、双方向スイッチ760を駆動する。
 制御部790は、検出器780の出力値が第一閾値より小さいとき、双方向スイッチ760を導通させる。
 コンパレータ792は、検出器780で検出された電圧と第一閾値とを比較する。
 駆動部793は、コンパレータ792の比較結果に基づいて、双方向スイッチ760のオン/オフを制御する。
 次に、図8の電力変換装置7の動作を説明する。
 中性点接地の三相交流電源700の三相交流電圧は、ダイオード整流器710によって整流され、その後、平滑コンデンサ720で直流電圧となる。この直流電圧は、インバータ730によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって電動機740が駆動される。
 電動機740と対地間には浮遊容量750が存在する。PWM制御によってインバータ730を駆動すると、インバータ730を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量750に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、三相交流電源700側へ伝搬する。
 検出器780は、平滑コンデンサ720の電圧を検出し、検出した電圧値791を制御部790へ出力する。検知された電圧値791は、コンパレータ792によって第一閾値と比較され、電圧値791>第一閾値となる条件で、双方向スイッチ760を導通させる。
 双方向スイッチ760を導通させることによって、コモンモード電流を、Yコンデンサ770を経由して循環させ、低ノイズ化を実現する。
 本実施の形態では、コモンモードチョークコイル7000を三相交流電源線に設置するため、三相電源線へ回り込むコモンモードノイズは更に抑制され、Yコンデンサ770を循環し、低ノイズ化を実現する。
 本実施の形態では、電圧値791>第一閾値となる条件、すなわち平滑コンデンサ720が十分に充電されており、直流母線ML1,ML2に重畳する交流電源周波数の電圧変動も抑制されている条件で双方向スイッチ760を動作させるため、Yコンデンサ770から発生する漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 以上によって、本実施の形態では低ノイズかつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 本実施の形態では、実施の形態1の構成にコモンモードチョークコイルを追加した構成を説明したが、これに限定するものではなく、その他の実施形態の構成にも、同様にしてコモンモードチョークコイルを追加することができる。
 実施の形態8.
 図10は、実施の形態8に係る電力変換装置9の回路図である。
 図10に示すように、この電力変換装置9は、コモンモードチョークコイル9000、ダイオード整流器910、平滑コンデンサ920、インバータ930、バイパス回路975、検出器980、および制御部990を備える。バイパス回路975は、双方向スイッチ960およびYコンデンサ970を備える。制御部990は、コンパレータ992、および駆動部993を備える。
 ダイオード整流器910と、三相交流電源900との間の三相交流電源線にコモンモードチョークコイル9000が配置される。
 ダイオード整流器910は、中性点接地の三相交流電源900から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ920は、ダイオード整流器910によって整流された直流電圧を平滑化する。
 インバータ930は、平滑コンデンサ920によって平滑された直流電圧を所望の交流電圧に変換して、電動機940を駆動する。
 双方向スイッチ960およびYコンデンサ970は、平滑コンデンサ920の一端と対地との間に直列に接続される。Yコンデンサ970は、インバータ930を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器980は、平滑コンデンサ920の両端の電圧を検出する。
 制御部990は、検出器980の出力に応じて、双方向スイッチ960を駆動する。
 制御部990は、検出器980の出力値が第一閾値より大きいとき、双方向スイッチ960を導通させる。
 コンパレータ992は、検出器980で検出された電圧と第一閾値とを比較する。駆動部993は、コンパレータ992の比較結果に基づいて、双方向スイッチ960のオン/オフを制御する。双方向スイッチ960は、逆並列に接続された逆阻止IGBT1791,1792によって構成される。逆阻止IGBT1791,1792は、高い逆耐圧性能を有する。
 次に、図10の電力変換装置9の動作を説明する。
 中性点接地の三相交流電源900の三相交流電圧は、ダイオード整流器910によって整流され、その後、平滑コンデンサ920で直流電圧となる。この直流電圧は、インバータ930によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって、電動機940が駆動される。
 電動機940と対地間には浮遊容量950が存在する。PWM制御によって、インバータ930を駆動すると、インバータ930を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量950に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、三相交流電源900側へ伝搬する。
 検出器980は、平滑コンデンサ920の電圧を検出し、検知した電圧値991を制御部990へ出力する。検出された電圧値991は、コンパレータ992によって、第一閾値と比較され、電圧値991>第一閾値となる条件で、逆阻止IGBT1791,1792を同時にオンにし、双方向スイッチ960を導通させる。
 本実施の形態では、双方向スイッチ960を逆阻止IGBT1791,1792によって構成するため、双方向スイッチ960を構成する素子数を削減でき、小型実装を実現することができる。
 以上によって、本実施の形態では、低ノイズ化と漏電ブレーカの誤動作を回避しつつ、小型実装を実現することができる。
 本実施の形態では、実施の形態1の双方向スイッチの具体的な構成として、逆並列に接続された逆阻止IGBT1791,1792によって構成されるスイッチを説明したが、これに限定されるものではない。その他の実施形態の構成にも、同様にしてこのような構成の双方向スイッチを用いることができる。
 実施の形態9.
 図11は、実施の形態9に係る電力変換装置10の回路図である。
 図11に示すように、この電力変換装置10は、コモンモードチョークコイル10000、ダイオード整流器1010、平滑コンデンサ1020、インバータ1030、バイパス回路1075、検出器1080、および制御部1090を備える。バイパス回路1075は、双方向スイッチ1060およびYコンデンサ1070を備える。制御部1090は、コンパレータ1092、駆動部1093を備える。
 ダイオード整流器1010と、三相交流電源1000との間の三相交流電源線にコモンモードチョークコイル10000が配置される。
 ダイオード整流器1010は、中性点接地の三相交流電源1000から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ1020は、ダイオード整流器1010によって整流された直流電圧を平滑化する。
 インバータ1030は、平滑コンデンサ1020によって平滑された直流電圧を所望の交流電圧に変換して、電動機1040を駆動する。
 双方向スイッチ1060およびYコンデンサ1070は、平滑コンデンサ1020の一端と対地との間に直列に接続される。Yコンデンサ1070は、インバータ1030を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 検出器1080は、平滑コンデンサ1020の両端の電圧を検出する。
 制御部1090は、検出器1080の出力に応じて、双方向スイッチ1060を駆動する。
 制御部1090は、検出器1080の出力値が第一閾値より大きいとき、双方向スイッチ1060を導通させる。
 コンパレータ1092は、検出器1080で検出された電圧と第一閾値とを比較する。駆動部1093は、コンパレータ1092の比較結果に基づいて、双方向スイッチ1060のオン/オフを制御する。
 双方向スイッチ1060は、逆直列に接続されたPチャネルMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)1061およびNチャネルMOSFET1062とを備える。PチャネルMOSFET1061およびNチャネルMOSFET1062は、駆動部1093からの制御信号に従って、同時にオン、または同時にオフとなる。
 次に、図11の電力変換装置10の動作を説明する。
 中性点接地の三相交流電源1000の三相交流電圧は、ダイオード整流器1010によって整流され、その後、平滑コンデンサ1020によって直流電圧となる。この直流電圧は、インバータ1030によって、周知のPWM制御で所望の交流電圧に変換され、交流電圧によって電動機1040が駆動される。
 電動機1040と対地間には浮遊容量1050が存在する。PWM制御によってインバータ1030を駆動すると、インバータ1030を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量1050に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、交流電源側へ伝搬する。
 検出器1080は、平滑コンデンサ1020の電圧を検出し、検出した電圧値1091を制御部1090へ出力する。検知された電圧値1091は、コンパレータ1092によって第一閾値と比較され、電圧値1091>第一閾値となる条件で、PチャネルMOSFET1061およびNチャネルMOSFET1062を同時にオンとし、双方向スイッチ1060を導通させる。
 双方向スイッチ1060は、逆直列接続されたPチャネルMOSFET1061とNチャネルMOSFET1062で構成されている。PチャネルMOSFET1061の一端が直流母線の一方ML2と接続する。
 本実施の形態では、双方向スイッチ1060をMOSFETにより構成するため、双方向スイッチ1060を構成する素子数を削減でき、小型実装を実現する。
 また、本実施の形態では、PチャネルMOSFET1061を直流母線ML2と接続するため、PチャネルMOSFET1061のゲート駆動では直流母線電圧をソース電位として活用できる。そのため別途に絶縁デバイスを必要とせず、小型実装を実現することができる。
 以上のように、本実施の形態では、低ノイズ化と漏電ブレーカの誤動作を回避しつつ、小型実装を実現することができる。
 本実施の形態では、実施の形態1の双方向スイッチの具体的な構成として、逆直列接続されたPチャネルMOSFET1061とNチャネルMOSFET1062で構成されているスイッチを説明したが、これに限定されるものではない。その他の実施形態の構成にも、同様にしてこのような構成の双方向スイッチを用いることができる。
 実施の形態10.
 実施の形態10では、上記の実施形態で説明したバイパス回路に含まれる双方向スイッチを双方向単一素子によって構成する。
 図12は、実施の形態10に係る双方向単一素子の一つである双方向横型絶縁ゲートトランジスタの断面図である。
 図12において、双方向横型絶縁ゲートトランジスタは、n型半導体層1100、p+ウェル領域1111,1112、n+エミッタ領域1121,1122、エミッタ電極1131,1132、ゲート絶縁膜1141,1142、ゲート電極1151,1152とを備える。
 図12の双方向横型絶縁ゲートトランジスタの動作を説明する。
 n型半導体層1100に2つのp+ウェル領域1111,1112が形成される。p+ウェル領域1111,1112内部に、n+エミッタ領域1121,1122が形成される。
 p+ウェル領域1111,1112は、n型半導体層1100の表面に形成され、かつ所望の耐圧保持のため所定の距離を置いて形成させる。
 p+ウェル領域1111,1112と、n+エミッタ領域1121,1122の境界の上部には、ゲート絶縁膜1141,1142を介してゲート電極1151,1152が形成される。
 p+ウェル領域1111,1112と、n+エミッタ領域1121,1122を跨ぐ形でエミッタ電極1131,1132が形成される。
 この双方向単一素子では、ゲート電極1151,1152への印加電圧を制御すれば、エミッタ電極間を双方向に流れる電流を制御できる。
 本実施の形態では、双方向素子を双方向単一素子で構成するため、双方向スイッチを構成する素子数を削減でき、小型実装を実現する。
 以上のように、本実施の形態では、低ノイズ化と漏電ブレーカの誤動作を回避しつつ、小型実装を実現することができる。
 本実施の形態では、実施の形態1の双方向スイッチの具体的な構成として、双方向単一素子で構成されるスイッチを説明したが、これに限定されるものではない。その他の実施形態の構成にも、同様にしてこのような構成の双方向スイッチを用いることができる。
 実施の形態11.
 図13は、実施の形態11に係る電力変換装置12の回路図である。
 図13に示すように、この電力変換装置12は、コモンモードチョークコイル12000、ダイオード整流器1210、平滑コンデンサ1220、インバータ1230、バイパス回路1275、検出器1280、制御部1290を備える。バイパス回路1275は、双方向スイッチ1260およびYコンデンサ部1270を備える。Yコンデンサ部1270は、異なる周波数特性を有し、並列接続されたYコンデンサ1271,1272,1273を備える。制御部1290は、コンパレータ1292、および駆動部1293を備える。
 ダイオード整流器1210と、三相交流電源1200との間の三相交流電源線にコモンモードチョークコイル12000が配置される。
 ダイオード整流器1210は、中性点接地の三相交流電源1200から出力される交流電圧を直流電圧に整流して、直流母線ML1,ML2へ出力する。
 平滑コンデンサ1220は、ダイオード整流器1210によって整流された直流電圧を平滑化する。
 インバータ1230は、平滑コンデンサ1220によって平滑された直流電圧を所望の交流電圧に変換して、電動機1240を駆動する。
 双方向スイッチ1260およびYコンデンサ部1270は、平滑コンデンサ1220の一端と対地との間に直列に接続される。Yコンデンサ部1270は、インバータ1230を構成するスイッチング素子のスイッチングにより発生したノイズを低減させる。
 Yコンデンサ部1270は、Yコンデンサ1271と、Yコンデンサ1272と、Yコンデンサ1273とを備える。
 Yコンデンサ1271,1272,1273の容量成分をそれぞれc1,c2,c3とし、インダクタンス成分をそれぞれl1,l2,l3としたときに、c3≧c2≧c1、かつl3>l2>l1が成り立つものとする。低域の周波数のノイズがYコンデンサ1271を通って伝搬し、中域の周波数のノイズがYコンデンサ1272を通って伝搬し、高域の周波数のノイズがコンデンサ1273を通って伝搬する。
 検出器1280は、平滑コンデンサ1220の両端の電圧を検出する。
 制御部1290は、検出器1280の出力に応じて、双方向スイッチ1060を駆動する。
 制御部1290は、検出器1280の出力値が第一閾値より大きいとき、双方向スイッチ1260を導通させる。
 コンパレータ1292は、検出器1280で検出された電圧と第一閾値とを比較する。駆動部1293は、コンパレータ1292の比較結果に基づいて、双方向スイッチ1260のオン/オフを制御する。
 次に、図13の電力変換装置12の動作を説明する。
 中性点接地の三相交流電源1200の三相交流電圧は、ダイオード整流器1210によって整流され、その後平滑コンデンサ1220で直流電圧となる。この直流電圧は、インバータ1230によって周知のPWM制御で所望の交流電圧に変換され、交流電圧によって電動機1240が駆動される。
 電動機1240と対地間には浮遊容量1250が存在する。PWM制御によってインバータ1230を駆動すると、インバータ1230を構成する電力変換用半導体素子のスイッチング動作によって、浮遊容量1250に電圧変動が印加され、コモンモード電流が発生する。このコモンモード電流は対地を経路とし、交流電源側へ伝搬する。
 検出器1280は、平滑コンデンサの電圧を検出し、検出した電圧値1291を制御部1290へ出力する。検出された電圧値1291は、コンパレータ1292によって第一閾値と比較され、電圧値1291>第一閾値なる条件で、双方向スイッチ1260を導通させる。
 双方向スイッチ1260を導通させることによって、コモンモード電流をYコンデンサ部1270を経由して循環させ、低ノイズ化を実現する。
 本実施の形態では、Yコンデンサ部1270を構成するYコンデンサ1271,1272,1273は周波数特性が異なる。Yコンデンサの周波数特性は容量成分とインダクタンス成分の直列接続で表される。すなわち低周波域では容量成分が、高周波域ではインダクタンス成分が支配的となり、ノイズの伝搬経路として高周波域では機能しない。本実施の形態では周波数特性の異なる複数のYコンデンサを並列接続して使用するため、低周波から高周波までの広域で容量成分を発揮し、ノイズの伝搬経路として機能する。またYコンデンサ1271,1272,1273の周波数特性が同じ場合も、並列接続することでコンデンサ容量を増量し、内部インダクタンスを減少させノイズの伝播経路として機能する。
 また、本実施の形態では、電圧値1291>第一閾値となる条件、すなわち平滑コンデンサ1220が十分に充電されており、直流母線ML1,ML2に重畳する交流電源周波数の電圧変動も抑制されている条件で双方向スイッチ1260を動作させるため、Yコンデンサ1271~1273から発生する漏洩電流を抑制でき、漏電ブレーカの誤動作を回避できる。
 以上より、本実施の形態では低ノイズかつ漏電ブレーカの誤動作を回避する電力変換装置を実現することができる。
 本実施の形態では、実施の形態1のYコンデンサを並列接続された複数のYコンデンサに置き換えた構成について説明したが、これに限定されるものではない。その他の実施形態の構成にも、同様にしてこのような並列接続された複数のYコンデンサを用いることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1~7,9,10,12 電力変換装置、100,200,300,400,500,600,700,900,1000,1200 三相交流電源、110,210,310,410,510,610,710,910,1010,1210 ダイオード整流器、120,220,320,420,520,620,720,920,1020,1220,6020 平滑コンデンサ、130,230,330,430,530,630,730,930,1030,1230 インバータ、140,240,340,440,540,640,740,940,1040,1240 電動機、150,250,350,450,550,650,750,950,1050,1250 浮遊容量、160,260,360,460,560,660,760,960,1060,1260 双方向スイッチ、170,270,370,470,570,670,770,970,1070,1271,1272,1273 Yコンデンサ、175,275,375,475,575,675,775,975,1075,1275 バイパス回路、180,280,380,480,580,680,780,980,1080,1280 検出器、192,295,392,495,692,792,992,1092,1292 コンパレータ、193,296,393,496,596,693,793,993,1093,1293 駆動部、292,492,592 演算器(フィルタ)、293,493,593 演算器(絶対値)、294,494,594 演算器(ピーク値)、595 データテーブル、561,562 IGBT、563,564 ダイオード、6000 チョッパ、1270 Yコンデンサ部、6001,6002 電力変換用半導体素子、6010 リアクトル、7000,9000,10000,12000 コモンモードチョークコイル、801 コモンモードチョークコイル内の磁場、810 三相交流電源線のR相、811 R相の漏洩磁場、820 三相交流電源線のS相、821 S相の漏洩磁場、830 三相交流電源線のT相、831 T相の漏洩磁場、1791,1792 逆阻止IGBT、1061 PチャネルMOSFET、1062 NチャネルMOSFET、1100 n型半導体層、1111,1112 p+ウェル領域、1121,1122 n+エミッタ領域、1131,1132 エミッタ電極、1141,1142 ゲート絶縁膜、1151,1152 ゲート電極、C1 コモンモード電流、ML1,ML2 直流母線。

Claims (15)

  1.  中性点接地の三相交流電源から出力される交流電圧を直流電圧に整流して、直流母線に出力する整流回路と、
     前記整流回路によって整流された直流電圧を平滑する平滑コンデンサと、
     前記平滑コンデンサによって平滑された直流電圧を所望の交流電圧に変換する変換回路と、
     前記平滑コンデンサの一端と対地との間に直列に接続された双方向スイッチおよび少なくとも1つのYコンデンサと、
     前記平滑コンデンサの両端の電圧を検出する検出器と、
     前記検出器の出力に応じて、前記双方向スイッチを駆動する制御部とを備え、
     前記制御部は、前記検出器の出力値が第一閾値より大きいとき、または前記検出器の出力値の変動成分の絶対値のピーク値および平均値のうちの少なくとも一つが、第二閾値より小さいときに、前記双方向スイッチを導通させる、電力変換装置。
  2.  中性点接地の三相交流電源から出力される交流電圧を直流電圧に整流して、直流母線に出力する整流回路と、
     前記整流回路によって整流された直流電圧を平滑する平滑コンデンサと、
     前記平滑コンデンサによって平滑された直流電圧を所望の交流電圧に変換する変換回路と、
     前記平滑コンデンサの一端と対地との間に直列に接続された双方向スイッチおよび少なくとも1つのYコンデンサと、
     前記平滑コンデンサに流れる電流を検出する検出器と、
     前記検出器の出力値に応じて、前記双方向スイッチを駆動する制御部とを備えた、電力変換装置。
  3.  前記制御部は、前記検出器の出力値が第三閾値より小さいときに、前記双方向スイッチを導通させる、請求項2記載の電力変換装置。
  4.  前記制御部は、前記検出器の出力値の変動成分の絶対値のピーク値および平均値のうちの少なくとも一つが、第四閾値より小さいときに、前記双方向スイッチを導通させる、請求項3記載の電力変換装置。
  5.  前記制御部は、前記検出器の出力値に応じて、前記双方向スイッチの抵抗値を制御する、請求項1~4のいずれか1項に記載の電力変換装置。
  6.  前記双方向スイッチは、双方向半導体スイッチである、請求項1~5のいずれか1項に記載の電力変換装置。
  7.  前記平滑コンデンサと前記変換回路の間にチョッパ回路を備える、請求項1~6のいずれか1項に記載の電力変換装置。
  8.  前記三相交流電源と前記整流回路の間にコモンモードチョークコイルを備える、請求項1~7のいずれか1項に記載の電力変換装置。
  9.  前記双方向半導体スイッチは、逆並列に接続したIGBTを備える、請求項6に記載の電力変換装置。
  10.  前記双方向半導体スイッチは、逆並列に接続した逆阻止IGBTを備える、請求項6に記載の電力変換装置。
  11.  前記双方向半導体スイッチは、逆直列に接続したPチャネルMOSFETとNチャネルMOSFETとを備える、請求項6に記載の電力変換装置。
  12.  前記PチャネルMOSFETは、前記直流母線に接続される、請求項11記載の電力変換装置。
  13.  前記双方向半導体スイッチは、双方向1素子よりなる、請求項6に記載の電力変換装置。
  14.  前記少なくとも1つのYコンデンサは、複数のYコンデンサを含み、かつ並列接続される、請求項1~13のいずれか1項に記載の電力変換装置。
  15.  前記少なくとも1つのYコンデンサは、複数のYコンデンサを含み、
     前記複数のYコンデンサは、互いに周波数特性が相違し、かつ並列接続される、請求項14に記載の電力変換装置。
PCT/JP2016/070822 2015-07-21 2016-07-14 電力変換装置 WO2017014143A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680042550.7A CN107852102B (zh) 2015-07-21 2016-07-14 电力变换装置
JP2017529581A JP6370492B2 (ja) 2015-07-21 2016-07-14 電力変換装置
DE112016003290.0T DE112016003290T5 (de) 2015-07-21 2016-07-14 Leistungswandler
US15/735,987 US10581337B2 (en) 2015-07-21 2016-07-14 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-143723 2015-07-21
JP2015143723 2015-07-21

Publications (1)

Publication Number Publication Date
WO2017014143A1 true WO2017014143A1 (ja) 2017-01-26

Family

ID=57834020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070822 WO2017014143A1 (ja) 2015-07-21 2016-07-14 電力変換装置

Country Status (5)

Country Link
US (1) US10581337B2 (ja)
JP (1) JP6370492B2 (ja)
CN (1) CN107852102B (ja)
DE (1) DE112016003290T5 (ja)
WO (1) WO2017014143A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103021A1 (ja) * 2017-11-22 2019-05-31 日本ケミコン株式会社 電解コンデンサモジュール、フィルタ回路および電力変換器
WO2020026635A1 (ja) * 2018-07-31 2020-02-06 サンデンホールディングス株式会社 電動コンプレッサ
JPWO2020208825A1 (ja) * 2019-04-12 2021-10-21 三菱電機株式会社 電力変換装置および空気調和機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431132B1 (ja) * 2017-05-30 2018-11-28 ファナック株式会社 漏れ電流の大きい逆変換器を検知するモータ駆動装置
TWI678060B (zh) * 2018-06-13 2019-11-21 朋程科技股份有限公司 電壓轉換器及包括該電壓轉換器的交流發電裝置
DE102018006357A1 (de) * 2018-08-11 2020-02-13 Diehl Ako Stiftung & Co. Kg Antriebsschaltung zum Antreiben eines elektronisch kommutierten Motors
KR20200124362A (ko) 2019-04-23 2020-11-03 현대자동차주식회사 Y-커패시터를 선택적으로 접지와 연결하는 스위칭 수단의 진단 시스템
DE102021202042A1 (de) * 2021-03-03 2022-09-08 Valeo Siemens Eautomotive Germany Gmbh Stromrichter für ein Bordnetz eines elektrisch antreibbaren Fahrzeugs und Bordnetz für ein elektrisch antreibbares Fahrzeug
DE102021203875A1 (de) * 2021-04-19 2022-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Stromrichterschaltung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210649A (ja) * 1997-01-17 1998-08-07 Toyo Electric Mfg Co Ltd 電圧形インバータ装置
JP2003235269A (ja) * 2002-02-08 2003-08-22 Fuji Electric Co Ltd 電力変換装置のノイズ低減装置
JP2011135684A (ja) * 2009-12-24 2011-07-07 Calsonic Kansei Corp コモンモードノイズ低減装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246224B2 (ja) 1994-09-27 2002-01-15 富士電機株式会社 Pwmコンバータ
US6137700A (en) * 1997-10-08 2000-10-24 Daikin Industries, Ltd. Converter with a high power factor using a DC center point voltage
US6636107B2 (en) * 2000-03-28 2003-10-21 International Rectifier Corporation Active filter for reduction of common mode current
JP4577465B2 (ja) 2000-08-24 2010-11-10 株式会社富士通ゼネラル インバータ装置の保護方法
JP3729072B2 (ja) * 2001-01-26 2005-12-21 松下電器産業株式会社 電源装置
JP3825678B2 (ja) * 2001-10-30 2006-09-27 三洋電機株式会社 圧縮機の制御装置
JP2005192269A (ja) 2003-12-24 2005-07-14 Matsushita Electric Ind Co Ltd 電源装置
JP4548004B2 (ja) 2004-06-11 2010-09-22 富士電機システムズ株式会社 電動機駆動用pwmインバータ
JP2007295694A (ja) 2006-04-24 2007-11-08 Mitsubishi Electric Corp 交流電源用ノイズフィルタ
JP2009033891A (ja) * 2007-07-27 2009-02-12 Toyota Motor Corp 電動車両
JP5493902B2 (ja) 2009-10-28 2014-05-14 富士電機株式会社 電力変換装置
US8334670B2 (en) * 2010-03-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus to monitor an electric motor control circuit
JP2012196113A (ja) 2011-03-18 2012-10-11 Toyota Motor Corp 電源装置
JP2013059158A (ja) 2011-09-07 2013-03-28 Toyota Motor Corp 電気自動車
US20140292347A1 (en) * 2013-03-27 2014-10-02 Ford Global Technologies, Llc Low Cost Circuit to Detect Faults of ISC Outputs and/or HV Bus Shorted to Chassis
CN104249628B (zh) * 2013-06-28 2017-08-04 比亚迪股份有限公司 电动汽车及用于电动汽车的动力系统和电机控制器
JP2015106601A (ja) * 2013-11-29 2015-06-08 本田技研工業株式会社 半導体装置
JP6406623B2 (ja) * 2014-01-07 2018-10-17 パナソニックIpマネジメント株式会社 回路定数可変回路
CN104113263B (zh) * 2014-06-27 2017-02-15 联合汽车电子有限公司 新能源车用电驱动系统
KR101684021B1 (ko) * 2014-12-16 2016-12-07 현대자동차주식회사 차량용 인버터의 커패시터 모듈

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210649A (ja) * 1997-01-17 1998-08-07 Toyo Electric Mfg Co Ltd 電圧形インバータ装置
JP2003235269A (ja) * 2002-02-08 2003-08-22 Fuji Electric Co Ltd 電力変換装置のノイズ低減装置
JP2011135684A (ja) * 2009-12-24 2011-07-07 Calsonic Kansei Corp コモンモードノイズ低減装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103021A1 (ja) * 2017-11-22 2019-05-31 日本ケミコン株式会社 電解コンデンサモジュール、フィルタ回路および電力変換器
JP2019096737A (ja) * 2017-11-22 2019-06-20 日本ケミコン株式会社 電解コンデンサモジュール、フィルタ回路および電力変換器
CN111279446A (zh) * 2017-11-22 2020-06-12 日本贵弥功株式会社 电解电容器模块、滤波电路和电力变换器
EP3716302A4 (en) * 2017-11-22 2021-09-01 Nippon Chemi-Con Corporation ELECTROLYTE CAPACITOR MODULE, FILTER CIRCUIT AND POWER CONVERTER
JP7087352B2 (ja) 2017-11-22 2022-06-21 日本ケミコン株式会社 電解コンデンサモジュール、フィルタ回路および電力変換器
US11404221B2 (en) 2017-11-22 2022-08-02 Nippon Chemi-Con Corporation Electrolytic capacitor module, filter circuit and power converter
WO2020026635A1 (ja) * 2018-07-31 2020-02-06 サンデンホールディングス株式会社 電動コンプレッサ
JP2020020289A (ja) * 2018-07-31 2020-02-06 サンデンホールディングス株式会社 電動コンプレッサ
JP7221607B2 (ja) 2018-07-31 2023-02-14 サンデン株式会社 電動コンプレッサ
JPWO2020208825A1 (ja) * 2019-04-12 2021-10-21 三菱電機株式会社 電力変換装置および空気調和機
JP7204894B2 (ja) 2019-04-12 2023-01-16 三菱電機株式会社 電力変換装置および空気調和機

Also Published As

Publication number Publication date
JPWO2017014143A1 (ja) 2018-03-29
DE112016003290T5 (de) 2018-04-05
CN107852102B (zh) 2020-04-03
US20180159439A1 (en) 2018-06-07
US10581337B2 (en) 2020-03-03
JP6370492B2 (ja) 2018-08-08
CN107852102A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6370492B2 (ja) 電力変換装置
JP5493902B2 (ja) 電力変換装置
US9762119B2 (en) Switch driving circuit, and power factor correction circuit having the same
JP5995139B2 (ja) 双方向dc/dcコンバータ
WO2015045531A1 (ja) 絶縁ゲート型半導体装置
KR102482820B1 (ko) 절연형 스위칭 전원
US20160079904A1 (en) Drive unit employing gallium nitride switches
JP2008236817A (ja) コモンモードトランスとコモンモードフィルタおよびフィルタ装置
JP3737372B2 (ja) 変流器入力型電源装置
JPWO2016030933A1 (ja) 電力変換装置
JP2004336976A (ja) 整流回路
JP2003235269A (ja) 電力変換装置のノイズ低減装置
US9859804B2 (en) Power supply device
JP5407744B2 (ja) 交流−直流変換装置
JP5741199B2 (ja) 整流器のスナバ回路
JP6059109B2 (ja) 突入電流防止回路
JP6297009B2 (ja) 電力変換装置
Huber et al. Performance evaluation of synchronous rectification in front-end full-bridge rectifiers
JP5930978B2 (ja) Dc/dcコンバータ
TW200525849A (en) Snubber circuit
KR101360498B1 (ko) 서지 전압 제어 장치
WO2015098688A1 (ja) 過電圧保護回路、及びそれを備えた電力変換装置
JP6459130B2 (ja) 電力変換装置及びそれを用いたパワーコンディショナ
WO2007048196A1 (en) Mosfet circuits
JP7460508B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529581

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15735987

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003290

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827703

Country of ref document: EP

Kind code of ref document: A1