WO2017013951A1 - インバータ装置 - Google Patents
インバータ装置 Download PDFInfo
- Publication number
- WO2017013951A1 WO2017013951A1 PCT/JP2016/066757 JP2016066757W WO2017013951A1 WO 2017013951 A1 WO2017013951 A1 WO 2017013951A1 JP 2016066757 W JP2016066757 W JP 2016066757W WO 2017013951 A1 WO2017013951 A1 WO 2017013951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- wiring board
- printed wiring
- power device
- connection
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/20—Electric components for separate outdoor units
- F24F1/24—Cooling of electric components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/003—General constructional features for cooling refrigerating machinery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D31/00—Other cooling or freezing apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
Definitions
- This invention relates to the inverter apparatus which controls the electric motor provided in the freezing apparatus.
- the inverter device described in Patent Document 1 includes a power device including a converter circuit and an inverter circuit, and a reactor that is provided on a DC power supply line between the converter circuit and the inverter circuit and suppresses harmonics.
- the power device is mounted on a printed wiring board, and the reactor is disposed at a position away from the printed wiring board and connected to the printed wiring board by a harness (electric wire).
- the power device on the printed wiring board is cooled by a cooling jacket to which refrigerant piping is connected.
- the reactor is a so-called high-power component, and a large current flows through the harness connecting the reactor and the printed wiring board. For this reason, the harness becomes a noise propagation path, and there is a high possibility of adversely affecting surrounding electrical components (for example, weak electrical components connected to the printed wiring board).
- An object of the present invention is to provide an inverter device that can be miniaturized and that can shorten an electric wire connecting a reactor and a printed wiring board as much as possible, and can also cool the reactor. .
- the present invention is an inverter device that variably controls the operating frequency of an electric motor provided in a refrigeration apparatus, A printed wiring board; A power device attached to one surface of the printed wiring board, including a converter circuit and an inverter circuit; On the one surface side of the printed wiring board, at least a part of the reactor is disposed within a plane projection area of the printed wiring board; A cooler disposed between the printed wiring board and the power device and the reactor, for cooling the power device and the reactor.
- the inverter device can be reduced in size, and an electric wire connecting the reactor and the printed wiring board can be eliminated. It can be shortened. Therefore, it is possible to reduce the influence of noise given to the surrounding electrical components by the electric wires.
- a power device and a reactor can be arrange
- the said structure WHEREIN It is preferable that the whole reactor is arrange
- connection terminal of the reactor is disposed within a plane projection area of the printed wiring board and directly connected to the printed wiring board. With such a configuration, it is possible to eliminate the electric wire connecting the reactor and the printed wiring board, which becomes a noise propagation path.
- connection terminal of the reactor may be arranged outside a plane projection area of the printed wiring board and connected to the printed wiring board via an electric wire. According to this configuration, since the connection terminal of the reactor is arranged outside the plane projection area of the printed wiring board, operations for connecting the electric wire to the connection terminal, such as the handling of the electric wire, can be easily performed.
- the reactor is a harmonic suppression reactor provided between the converter circuit and the inverter circuit in an electric circuit, A first connection part to which the power device is connected, a second connection part to which the reactor is connected, a third connection part to which a power line is connected, and an output line to the motor are connected to the printed wiring board.
- a fourth connecting portion is provided, It is preferable that the first connection portion is disposed between the second connection portion, the third connection portion, and the fourth connection portion.
- the current from the power source flows in the order of the converter circuit, the reactor, and the inverter circuit, and is output to the electric motor. Therefore, by arranging each connection portion as described above, the wiring pattern on the printed wiring board can be formed along the flow of current, and the wiring pattern can be simplified.
- the inverter device of the present invention provides an inverter device that can be miniaturized and that can shorten the electric wire connecting the reactor and the printed wiring board as much as possible, and that can also cool the reactor. Objective.
- FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus according to an embodiment of the present invention.
- An air conditioner 1 as a refrigeration apparatus includes an outdoor unit 2 installed outside and an indoor unit 3 installed indoors. The outdoor unit 2 and the indoor unit 3 are connected to each other by a communication pipe.
- the air conditioner 1 includes a refrigerant circuit 4 that performs a vapor compression refrigeration cycle.
- the refrigerant circuit 4 includes an indoor heat exchanger 11, a compressor 12, an oil separator 13, an outdoor heat exchanger 14, an expansion valve (expansion mechanism) 15, an accumulator 16, a four-way switching valve 17, and the like.
- the refrigerant pipe 10 includes a liquid pipe 10L and a gas pipe 10G.
- the indoor heat exchanger 11 is a heat exchanger for exchanging heat between the refrigerant and room air, and is provided in the indoor unit 3.
- the indoor heat exchanger 11 for example, a cross fin type fin-and-tube heat exchanger or the like can be adopted.
- An indoor fan (not shown) for blowing indoor air to the indoor heat exchanger 11 is provided in the vicinity of the indoor heat exchanger 11.
- the compressor 12, the oil separator 13, the outdoor heat exchanger 14, the expansion valve 15, the accumulator 16, and the four-way switching valve 17 are provided in the outdoor unit 2.
- the compressor 12 compresses the refrigerant sucked from the suction port and discharges it from the discharge port.
- various compressors such as a scroll compressor can be adopted.
- the oil separator 13 is for separating the lubricating oil from the mixed fluid of the lubricating oil and the refrigerant discharged from the compressor 12.
- the separated refrigerant is sent to the four-way switching valve 17, and the lubricating oil is returned to the compressor 12.
- the outdoor heat exchanger 14 is for exchanging heat between the refrigerant and outdoor air.
- a cross fin type fin-and-tube heat exchanger or the like can be adopted.
- An outdoor fan for blowing outdoor air to the outdoor heat exchanger 14 is provided in the vicinity of the outdoor heat exchanger 14.
- the expansion valve 15 is disposed between the outdoor heat exchanger 14 and the indoor heat exchanger 11 in the refrigerant circuit 4, and expands the refrigerant flowing therein to reduce the pressure to a predetermined pressure.
- an electronic expansion valve 15 having a variable opening degree can be employed.
- the accumulator 16 gas-liquid separates the refrigerant that has flowed in, and is disposed between the suction port of the compressor 12 and the four-way switching valve 17 in the refrigerant circuit 4. The gas refrigerant separated by the accumulator 16 is sucked into the compressor 12.
- the four-way switching valve 17 can be switched between a first state indicated by a solid line in FIG. 1 and a second state indicated by a broken line.
- the air conditioner 1 performs the cooling operation
- the four-way switching valve 17 is switched to the first state
- the four-way switching valve 17 is switched to the second state.
- a part 10 ⁇ / b> A of the refrigerant pipe 10 of the refrigerant circuit 4 is attached to a refrigerant jacket (cooling plate) 44 for cooling a power device 41 and a reactor 27 of the inverter device 21 described later, and constitutes a cooler 20.
- the liquid side pipe of the refrigerant pipe 10 forms the cooler 20 as shown in FIG.
- the liquid side pipe constituting the cooler 20 is a liquid side pipe between the outdoor heat exchanger 14 and the expansion valve 15 in the refrigerant circuit 4, but is not limited thereto.
- the refrigerant condensed in the outdoor heat exchanger 14 flows through the liquid side pipe constituting the cooler 20, and during the heating operation, the refrigerant condensed in the indoor heat exchanger 11 and decompressed by the expansion valve 15 is supplied. Flowing.
- the temperature of these refrigerants varies depending on operating conditions and the like, but is about 40 to 45 ° C. during cooling operation, for example.
- FIG. 2 is a schematic configuration diagram of the inverter device.
- the inverter device 21 is used to variably control the operating frequency of the motor (electric motor) M that drives the compressor 12 and the fan in the air conditioner.
- the inverter device 21 includes a converter circuit (rectifier circuit) 22, a filter circuit 23, and an inverter circuit 24.
- the converter circuit 22 and the inverter circuit 24 constitute a power device 41 (see FIG. 3) described later.
- the converter circuit 22 is connected to an AC power supply 31 and DC power supply lines 25 and 26.
- the converter circuit 22 rectifies the AC voltage input from the AC power supply 31 and converts it into a pulsating voltage, and outputs it to the DC power supply lines 25 and 26.
- FIG. 2 illustrates a diode bridge as the converter circuit 22.
- the present invention is not limited to this.
- an AC-DC converter that converts an AC voltage into a DC voltage by synchronous rectification may be used.
- the AC power supply 31 may be a multiphase AC power supply or a single phase AC power supply.
- Filter circuit 23 is connected to converter circuit 22 via DC power supply lines 25 and 26.
- the filter circuit 23 includes a reactor 27 and a capacitor 28.
- the reactor 27 is connected to the DC power supply line 25.
- Reactor 27 mainly suppresses harmonics superimposed on the DC current flowing through DC power supply line 25 during normal operation of inverter circuit 24.
- the capacitor 28 is connected between the output side circuit of the reactor 27 and the DC power line 26.
- the capacitor 28 constitutes an LC filter together with the reactor 27.
- the LC filter can attenuate a current component having the same frequency as the carrier frequency used for generating the control signal of the inverter circuit 24, and the current component having the same frequency as the carrier frequency can flow out to the AC power supply 31. Can be suppressed.
- the reactor 27 and the capacitor 28 in this example are used as an LC filter rather than constituting a smoothing circuit.
- the capacitance of the capacitor 28 and the inductance of the reactor 27 can be reduced, and the capacitor 28 and the reactor 27 can be downsized.
- the reactor 27 can be reduced in size to reduce the difference in height from the power device 41 as described later (see FIG. 3), and can be easily cooled by the cooler 20 together with the power device 41. .
- the inverter circuit 24 is connected to the output side of the filter circuit 23 via the DC power supply lines 25 and 26.
- the inverter circuit 24 includes a plurality of switching elements (not shown) such as IGBTs. Then, when the conduction / non-conduction of the switching element is appropriately controlled, the inverter circuit 24 converts the DC voltage input through the filter circuit 23 into an AC voltage and applies it to the motor M.
- the plurality of switching elements included in the inverter circuit 24 are controlled by a control unit (not shown).
- FIG. 3 is a side view of the printed wiring board 42, the power device 41, and the reactor 27 that constitute the inverter device 21, and
- FIG. 4 is a rear view of the printed wiring board 42, the power device 41, and the reactor 27.
- the printed wiring board 42 is obtained by forming a wiring pattern made of a conductor on an insulating substrate such as glass epoxy resin formed in a rectangular shape in plan view. Electrical components such as a capacitor 28, a resistor, a relay module, and a microcomputer are mounted on the main surface (upper surface) of the printed wiring board 42.
- the power device 41 and the reactor 27 are arranged on the surface (back surface) opposite to the main surface of the printed wiring board 42.
- the power device 41 includes the converter circuit 22 and the inverter circuit 24 shown in FIG.
- the power device 41 of the present embodiment is a module in which the converter circuit 22 and the inverter circuit 24 are accommodated in one case.
- the power device 41 is formed in a rectangular parallelepiped shape having a rectangular planar shape and a thickness smaller than the length of each side.
- the reactor 27 is formed in a rectangular parallelepiped shape having a rectangular planar shape and a thickness smaller than the length of each side.
- the power device 41 and the reactor 27 are arranged side by side on the back side of the printed wiring board 42.
- the power device 41 and the reactor 27 are both disposed within the plane projection area of the printed wiring board 42 and are adjacent to each other. Therefore, it is possible to reduce the size of the inverter device 21 as compared with the case where these components 41 and 27 (particularly the reactor 27) are arranged outside the plane projection area of the printed wiring board 42.
- the reactor 27 includes a terminal block 27a on one side, and a connection terminal 27b is provided on the terminal block 27a. A coil electric wire built in the reactor 27 is connected to the connection terminal 27b.
- the terminal block 27a is made of a synthetic resin material that is an insulator. The terminal block 27 a is disposed between the reactor 27 and the power device 41.
- the cooler 20 is disposed on the lower surfaces of the power device 41 and the reactor 27 (surface opposite to the printed wiring board 42).
- the cooler 20 includes a cooling plate 44 and a refrigerant pipe 10A.
- the cooling plate 44 is made of a material having high thermal conductivity such as aluminum.
- the cooling plate 44 is provided in a range that covers the entire planar range of the power device 41 and the reactor 27.
- the cooling plate 44 includes a portion 44 a that covers the lower surface side of the power device 41 and a portion 44 b that covers the lower surface side of the reactor 27, and a stepped portion 44 c is formed between both the portions 44 a and 44 b.
- the thicknesses of both portions 44a and 44b are substantially the same, and the difference in thickness between the power device 41 and the reactor 27 is absorbed by the stepped portion 44c.
- a part 10 ⁇ / b> A of the refrigerant pipe 10 is in contact with the lower surface of the cooling plate 44.
- the refrigerant pipe 10 ⁇ / b> A is bent in a W shape so as to reciprocate twice between one end and the other end of the cooling plate 44.
- the refrigerant pipe 10 is bent in a W shape, whereby the straight pipe portions 10A1 of the four refrigerant pipes 10A are substantially arranged on the cooling plate 44, and 2 below the power device 41 and the reactor 27.
- Straight pipe portions 10A1 are arranged one by one.
- the cooling plate 44 is provided with a fixing plate 45 for fixing the refrigerant pipe 10A.
- Two fixing plates 45 are provided for fixing the two straight pipe portions 10A1.
- the refrigerant pipe 10 ⁇ / b> A is fixed to the cooling plate 44 by being sandwiched between the cooling plate 44 and the fixed plate 45.
- the fixing plate 45 is attached to the cooling plate 44 with bolts or the like.
- the power device 41 and the reactor 27 are components that generate greater heat (high heat generation components) than other components on the printed wiring board 42, and both of them are connected to the refrigerant flowing through the refrigerant pipe 10 ⁇ / b> A via the cooling plate 44. It is cooled by performing heat exchange. Moreover, since both the power device 41 and the reactor 27 are arrange
- coolant piping is not limited to W shape, For example, you may be bent in U shape.
- the two straight pipe portions 10A1 of the U-shaped refrigerant pipe 10A may be provided only on a part 44a of the cooling plate 44 that covers the lower surface side of the power device 41.
- the reactor 27 can be sufficiently cooled only by providing the straight pipe portion 10A1.
- FIG. 5 is an explanatory plan view showing a wiring pattern of the printed wiring board.
- first connection portions C to H to which the power device 41 is connected
- second connection portions I and J to which the reactor 27 is connected
- a power supply line 46 from the AC power supply 31 Connected to the printed wiring board 42 are first connection portions C to H to which the power device 41 is connected, second connection portions I and J to which the reactor 27 is connected, and a power supply line 46 from the AC power supply 31.
- a third connection portion A and a fourth connection portion B to which an output line 47 to the motor M is connected are provided.
- a plurality of first connection portions C to H are provided corresponding to a plurality of lead pins 41 a provided corresponding to the outer peripheral portion of the power device 41.
- the second connection portions I and J are provided at two locations corresponding to the two connection terminals 27 b provided on the reactor 27.
- the third connection portion A is provided at three locations corresponding to each phase of the three-phase AC power supply 31.
- the third connection portion A is provided with a terminal block 48 for attaching a crimp terminal at the end of the power line 46 (see FIG. 2) by screwing or the like.
- the fourth connection portion B is provided at three locations corresponding to the three-phase output voltage output from the inverter circuit 24 of the power device 41.
- the fourth connection portion B is provided with a terminal block 49 for attaching a crimp terminal of an output line 47 (see FIG. 2) connected to the motor M by screwing or the like.
- the third connection part A and the fourth connection part B are provided with connection points in places close to the converter circuit 22 and the inverter circuit 24 in the power device 41, respectively.
- the first connection parts C to H connected to the power device 41 are connected to the third connection part A connected to the power line 46 and the fourth connection part B connected to the output line 47 and the reactor 27. Between the second connecting portions I and J.
- the third connection part A and a part of the first connection parts C are connected by the wiring pattern 51 of the printed wiring board 42. Further, the fourth connection portion B and a part of the first connection portions D are connected by the wiring pattern 52 of the printed wiring board 42. Some of the second connection portions I and some of the first connection portions G are connected by the wiring pattern 53, and the second connection portion J and the first connection portion F are connected by the wiring pattern 54.
- the current flowing from the AC power supply 31 is input to the converter circuit 22 from the third connection portion A via the first connection portion C, and then from the converter circuit 22 via the first connection portion G and the second connection portion I. Is input to the reactor 27, and further input from the reactor 27 to the inverter circuit 24 via the second connection portion J and the first connection portion F, and from the inverter circuit 24 via the first connection portion D and the fourth connection portion B. Output to the motor M.
- the current from the AC power supply 31 flows in the order of the converter circuit 22, the reactor 27, and the inverter circuit 24 and is output to the motor M. Therefore, as described above, the first connection unit By disposing C to H between the third connection portion A and the fourth connection portion B and the second connection portions I and J, the wiring patterns 51 to 54 on the printed wiring board 42 follow the current flow. Thus, the wiring patterns 51 to 54 can be simplified.
- connection terminal 27 b of the reactor 27 is directly connected to the wiring patterns 53 and 54 of the printed wiring board 42. Therefore, there is no electric wire for passing current between them. Therefore, it is possible to reduce the influence of noise on the surrounding electrical components caused by the electric wire.
- FIG. 6 is a cross-sectional explanatory view showing an example of connection between the connection terminal 27 b of the reactor 27 and the printed wiring board 42.
- the connection terminal 27b of the reactor 27 is inserted into the hole 42a formed in the printed wiring board 42 and fixed by soldering.
- connection terminal 27b of the reactor 27 is configured by a press-fit pin.
- This press-fit pin 27b has a hollow portion 27b1 in the middle in the lengthwise direction, and the press-fit pin 27b is compressed and deformed by inserting the press-fit pin 27b into the hole 42a of the printed wiring board 42, and the printed wiring board.
- the press-fit pin 27b is pressed against the inner peripheral surface of the hole 42a. Therefore, soldering is unnecessary, and the reactor 27 can be connected to the printed wiring board 42 very easily.
- the connection terminal 27b may be fixed to the printed wiring board 42 by screws or the like.
- the reactor 27 of the above-described embodiment is entirely disposed within the plane projection area of the printed wiring board 42, a part of the reactor 27 may be disposed within the plane projection area of the printed wiring board 42.
- the terminal block 27a provided with the connection terminal 27b is arranged outside the plane projection area of the printed wiring board 42 in the reactor 27, and the other part is within the plane projection area. Is arranged.
- the connection terminal 27 b of the reactor 27 is connected to the second connection portions I and J of the printed wiring board 42 via a harness (electric wire) 55.
- the terminal block 27 a is arranged at the longitudinal end of the reactor 27, whereas in the example shown in FIG. 7C, the short direction of the reactor 27
- the terminal block 27a is disposed at the end of the terminal block 27, and the distance between the terminal block 27a and the second connection portions I and J is shorter than that shown in FIG. Therefore, the harness 55 that connects the terminal block 27a and the second connection portions I and J can be shortened.
- connection terminal 27 b of the reactor 27 is disposed outside the plane projection area of the printed wiring board 42
- the harness 55 for connecting to the second connection portions I and J is provided outside the printed wiring board 42. Since connection is possible, there is an advantage that connection work such as handling of the harness 55 can be easily performed.
- the harness 55 which connects the connection terminal 27b of the reactor 27 and the printed wiring board 42 can be shortened by arrange
- FIG. When most of the reactor 27 is disposed outside the plane projection area of the printed wiring board 42, the harness 55 is connected by bringing the connection terminal 27b closer to the printed wiring board 42 as shown in FIG. It can be made as short as possible. Since the harness 55 becomes a noise propagation path and may affect the surrounding electrical components, the influence of the noise can be reduced by shortening the harness 55.
- FIG. 8 is a side view showing a modification of the cooler 20.
- the cooler 20 of the above-described embodiment cools the power device 41 and the reactor 27 with the refrigerant flowing through the refrigerant pipe 10A.
- the cooler 20 illustrated in FIG. 8 uses the air as a cooling medium and the power device 41 and the reactor. 27 cooling is performed.
- a plurality of fins 44 d are provided on the lower surface of the cooling plate 44 of the cooler 20 to increase the contact area with air.
- the lower surface of the cooling plate 44 on which the fins 44d are provided is a substantially flat surface
- the upper surface of the cooling plate 44 is between the portion 44a covering the power device 41 and the portion 44b covering the reactor 27.
- the thicknesses of both portions 44a and 44b are different.
- the difference in thickness between the power device 41 and the reactor 27 is absorbed by the difference in thickness between the two portions 44a and 44b.
- the power device 41 and the reactor 27 can be suitably cooled.
- the cooler 20 has cooled both the power device 41 and the reactor 27 with the single cooling plate 44, but the cooling plate 44 is divided into two corresponding to the power device 41 and the reactor 27. Good.
- a reactor having a larger stepped portion 44c or stepped surface 44e of the cooling plate 44 or a two-divided cooling plate 44 is used.
- the present invention can be applied to an inverter device provided with a smoothing circuit that smoothes the pulsating voltage output from the converter circuit 22 instead of the filter circuit 23 as described above.
- a large-sized one having an inductance larger than that of the reactor of the filter circuit 23 is used. Even in such a case, the reactor 27 can be cooled together with the power device 41 by the cooler 20.
- the cooling plate 44 having a structure in which the fins 44 d are omitted from the cooling plate 44 shown in FIG. 8 may be used.
- the cooling plate 44 shown in FIG. A structure having fins may be used.
- the power device 41 is not limited to a module in which the converter circuit 22 and the inverter circuit 24 are integrated, and may be configured as a separate unit.
- the printed wiring board 42, the power device 41, the reactor 27, and the cooler 20 are arranged side by side (stacked) in the vertical direction. It is not limited.
- the printed wiring board 42, the power device 41, the reactor 27, and the cooler 20 may be stacked in the horizontal direction.
- the present invention can also be applied to refrigeration apparatuses other than the indoor air conditioner 1.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inverter Devices (AREA)
Abstract
Description
プリント配線板と、
前記プリント配線板の一方の面に取り付けられ、コンバータ回路及びインバータ回路を含むパワーデバイスと、
前記プリント配線板の前記一方の面側であって、少なくとも一部が前記プリント配線板の平面投影面積内に配置されたリアクトルと、
前記プリント配線板との間に前記パワーデバイス及び前記リアクトルを挟んで配置され、前記パワーデバイス及び前記リアクトルを冷却するための冷却器と、を備えている。
このような構成によって、より一層のインバータ装置の小型化を図ることができる。
このような構成によって、ノイズの伝搬経路となる、リアクトルとプリント配線板とを接続する電線を無くすことができる。
この構成によれば、リアクトルの接続端子がプリント配線板の平面投影面積外に配置されるので、電線の取り回し等、電線を接続端子に接続するための作業を容易に行うことができる。
前記プリント配線板に、前記パワーデバイスが接続される第1接続部と、前記リアクトルが接続される第2接続部と、電源線が接続される第3接続部と、電動機への出力線が接続される第4接続部とが設けられ、
前記第2接続部と、前記第3接続部及び前記第4接続部との間に、前記第1接続部が配置されていることが好ましい。
図1は、本発明の一実施の形態に係る空気調和装置の概略構成図である。
冷凍装置としての空気調和装置1は、室外に設置される室外機2と、室内に設置される室内機3とを備えている。室外機2と室内機3とは、連絡配管によって互いに接続されている。空気調和装置1は、蒸気圧縮式冷凍サイクルを行う冷媒回路4を備えている。冷媒回路4には、室内熱交換器11、圧縮機12、油分離器13、室外熱交換器14、膨張弁(膨張機構)15、アキュムレータ16、四方切換弁17等が設けられており、これらが冷媒回路4の冷媒が流れる冷媒配管10によって接続されている。冷媒配管10は、液配管10Lとガス配管10Gとを含む。
圧縮機12は、吸入ポートから吸入した冷媒を圧縮して吐出ポートから吐出するものである。圧縮機12としては、例えば、スクロール圧縮機等の種々の圧縮機を採用することができる。
室外熱交換器14は、冷媒を室外空気と熱交換させるためのものであり、例えばクロスフィン型のフィン・アンド・チューブ熱交換器等を採用できる。室外熱交換器14の近傍には、室外空気を室外熱交換器14へ送風するための室外ファンが設けられている。
アキュムレータ16は、流入した冷媒を気液分離するものであり、冷媒回路4において圧縮機12の吸入ポートと四方切換弁17との間に配設されている。アキュムレータ16で分離されたガス冷媒は、圧縮機12に吸入される。
このインバータ装置21は、空気調和装置における圧縮機12やファンを駆動するモータ(電動機)Mの運転周波数を可変制御するために用いられる。
インバータ装置21は、コンバータ回路(整流回路)22と、フィルタ回路23と、インバータ回路24とを備えている。コンバータ回路22とインバータ回路24とは、後述するパワーデバイス41(図3参照)を構成している。
リアクトル27は直流電源線25に接続されている。リアクトル27は、主としてインバータ回路24の通常動作時に直流電源線25を流れる直流電流に重畳される高調波を抑制する。
プリント配線板42は、平面視で矩形状に形成されたガラスエポキシ樹脂等の絶縁基板に導体からなる配線パターンを形成したものである。プリント配線板42の主面(上面)には、コンデンサ28、抵抗、リレーモジュール、マイクロコンピュータ等の電気部品が実装されている。一方、プリント配線板42の主面とは反対側の面(裏面)には、パワーデバイス41と、リアクトル27とが配置されている。パワーデバイス41は、図2に示すコンバータ回路22と、インバータ回路24とを含んでいる。本実施形態のパワーデバイス41は、コンバータ回路22とインバータ回路24とを1つのケースに収容してモジュール化したものとなっている。
リアクトル27は、一側部に端子台27aを備えており、この端子台27aには接続端子27bが設けられている。接続端子27bには、リアクトル27に内蔵されたコイルの電線が接続されている。端子台27aは、絶縁体である合成樹脂材料により形成されている。端子台27aは、リアクトル27とパワーデバイス41の間に配置されている。
冷却板44は、アルミニウム等の熱伝導性の高い材質により形成されている。冷却板44は、パワーデバイス41及びリアクトル27の平面範囲全体を覆う範囲で設けられている。また、冷却板44は、パワーデバイス41の下面側を覆う部分44aと、リアクトル27の下面側を覆う部分44bとを備え、両部分44a,44bの間には段差部44cが形成されている。両部分44a,44bの厚さは略同一とされ、パワーデバイス41とリアクトル27との厚さの相違が段差部44cによって吸収されている。
なお、冷媒配管10Aは、W字状に限定されず、例えばU字状に屈曲されていてもよい。この場合、パワーデバイス41の下面側を覆う冷却板44の一部44aのみにU字状の冷媒配管10Aの2本の直管部分10A1を設けてもよい。このように直管部分10A1を設けるだけでも、リアクトル27を十分に冷却することができる。
プリント配線板42には、パワーデバイス41が接続される第1接続部C~Hと、リアクトル27が接続される第2接続部I,Jと、交流電源31からの電源線46が接続される第3接続部Aと、モータMへの出力線47が接続される第4接続部Bとが設けられている。
第2接続部I,Jは、リアクトル27に設けられた2つの接続端子27bに対応して2箇所に設けられている。
第4接続部Bは、パワーデバイス41のインバータ回路24から出力される3相の出力電圧に対応して3箇所に設けられている。第4接続部Bには、モータMに接続される出力線47(図2参照)の圧着端子をネジ止め等によって取り付けるための端子台49が設けられている。第3接続部Aと第4接続部Bとは、各々パワーデバイス41内のコンバータ回路22及びインバータ回路24に近い場所に接続箇所が設けられている。これにより、配線パターンを簡素化することができる。
そして、パワーデバイス41に接続される第1接続部C~Hは、電源線46に接続される第3接続部A及び出力線47に接続される第4接続部Bと、リアクトル27に接続される第2接続部I,Jとの間に配置されている。
図6(a)に示す例は、リアクトル27の接続端子27bをプリント配線板42に形成した孔42aに挿入し、はんだ付けによって固定したものである。
なお、図6(a)、(b)に示す接続例のほか、ネジ止め等によって接続端子27bをプリント配線板42に固定してもよい。
例えば、図7(a)に示すように、リアクトル27のうち、接続端子27bが設けられた端子台27aがプリント配線板42の平面投影面積外に配置され、他の部分が当該平面投影面積内に配置されている。そして、リアクトル27の接続端子27bが、ハーネス(電線)55を介してプリント配線板42の第2接続部I,Jに接続されている。
上述した実施形態の冷却器20は、冷媒配管10Aを流れる冷媒によってパワーデバイス41及びリアクトル27の冷却を行っていたが、図8に示す冷却器20は、空気を冷却媒体としてパワーデバイス41及びリアクトル27の冷却を行うものである。この冷却器20の冷却板44の下面には、空気との接触面積を増大させるための複数のフィン44dが設けられている。
例えば、冷却器20は、1枚の冷却板44によってパワーデバイス41とリアクトル27との双方を冷却していたが、パワーデバイス41とリアクトル27とに対応して冷却板44を2分割してもよい。
例えば、本発明は、上述したようなフィルタ回路23に変えて、コンバータ回路22から出力される脈動電圧を平滑する平滑回路を備えたインバータ装置にも適用することができ、この場合、リアクトル27は、フィルタ回路23のリアクトルよりもインダクタンスの大きい大型のものが使用される。このような場合であっても、冷却器20によってパワーデバイス41とともにリアクトル27を冷却することができる。
パワーデバイス41は、コンバータ回路22とインバータ回路24とを一体のモジュールとしたものに限らず、これらを別体として構成したものであってもよい。
上記実施形態のインバータ装置21においては、プリント配線板42、パワーデバイス41及びリアクトル27、冷却器20が上下方向に並べて(積層して)配置されていたが、これらの配置の方向性についても特に限定されるものではない。例えば、プリント配線板42,パワーデバイス41及びリアクトル27、冷却器20は、水平方向に積層して配置されていてもよい。
本発明は、室内用の空気調和装置1以外の冷凍装置にも適用することができる。
20 :冷却器
21 :インバータ装置
22 :コンバータ回路
23 :フィルタ回路
24 :インバータ回路
27 :リアクトル
27b :接続端子
41 :パワーデバイス
42 :プリント配線板
46 :電源線
47 :出力線
51~54:配線パターン
55 :ハーネス(電線)
A :第3接続部
B :第4接続部
C~H :第1接続部
I、J :第2接続部
M :モータ(電動機)
Claims (5)
- 冷凍装置(1)に設けられた電動機(M)の運転周波数を可変制御するインバータ装置であって、
プリント配線板(42)と、
前記プリント配線板(42)の一方の面に取り付けられ、コンバータ回路(22)及びインバータ回路(24)を含むパワーデバイス(41)と、
前記プリント配線板(42)の前記一方の面側であって、少なくとも一部が前記プリント配線板(42)の平面投影面積内に配置されたリアクトル(27)と、
前記プリント配線板(42)との間に前記パワーデバイス(41)及び前記リアクトル(27)を挟んで配置され、前記パワーデバイス(41)及び前記リアクトル(27)を冷却するための冷却器(20)と、を備えている、インバータ装置。 - 前記リアクトル(27)の全体が、前記プリント配線板(42)の平面投影面積内に配置されている、請求項1に記載のインバータ装置。
- 前記リアクトル(27)の接続端子(27b)が、前記プリント配線板(42)の平面投影面積内に配置されかつ前記プリント配線板(42)に直接接続されている、請求項1又は2に記載のインバータ装置。
- 前記リアクトル(27)の接続端子(27b)が、前記プリント配線板(42)の平面投影面積外に配置されかつ前記プリント配線板(42)に電線(55)を介して接続されている、請求項1に記載のインバータ装置。
- 前記リアクトル(27)は、電気回路における前記コンバータ回路(22)と前記インバータ回路(24)との間に設けられる高調波抑制用のリアクトルであり、
前記プリント配線板(42)に、前記パワーデバイス(41)が接続される第1接続部(C~H)と、前記リアクトル(27)が接続される第2接続部(I,J)と、電源線(46)が接続される第3接続部(A)と、電動機(M)への出力線(47)が接続される第4接続部(B)とが設けられ、
前記第2接続部(I,J)と、前記第3接続部(A)及び前記第4接続部(B)との間に、前記第1接続部(C~H)が配置されている、請求項1~4のいずれか1項に記載のインバータ装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112017027856-1A BR112017027856B1 (pt) | 2015-07-21 | 2016-06-06 | Aparelho inversor |
US15/740,700 US10495327B2 (en) | 2015-07-21 | 2016-06-06 | Inverter apparatus |
EP16827515.4A EP3327919B1 (en) | 2015-07-21 | 2016-06-06 | Inverter apparatus |
CN201680042983.2A CN107852103B (zh) | 2015-07-21 | 2016-06-06 | 逆变器装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-143853 | 2015-07-21 | ||
JP2015143853A JP6701637B2 (ja) | 2015-07-21 | 2015-07-21 | インバータ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013951A1 true WO2017013951A1 (ja) | 2017-01-26 |
Family
ID=57833893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066757 WO2017013951A1 (ja) | 2015-07-21 | 2016-06-06 | インバータ装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10495327B2 (ja) |
EP (1) | EP3327919B1 (ja) |
JP (1) | JP6701637B2 (ja) |
CN (1) | CN107852103B (ja) |
BR (1) | BR112017027856B1 (ja) |
WO (1) | WO2017013951A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146602A1 (ja) * | 2018-01-26 | 2019-08-01 | 株式会社富士通ゼネラル | 電装品モジュール |
WO2019146766A1 (ja) * | 2018-01-26 | 2019-08-01 | 株式会社富士通ゼネラル | 電装品モジュール |
US10557638B2 (en) | 2017-11-21 | 2020-02-11 | Haier Us Appliance Solutions, Inc. | Fan assembly for a packaged terminal air conditioner unit |
JP2020118377A (ja) * | 2019-01-24 | 2020-08-06 | 株式会社富士通ゼネラル | 電装品モジュール |
GB2580262B (en) * | 2017-10-26 | 2022-09-14 | Mitsubishi Electric Corp | Heat sink and circuit device |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2542353A (en) * | 2015-09-15 | 2017-03-22 | Alstom Technology Ltd | A busbar assembly |
US11112130B2 (en) * | 2016-09-16 | 2021-09-07 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus |
JP6884007B2 (ja) * | 2017-02-28 | 2021-06-09 | 日立ジョンソンコントロールズ空調株式会社 | 電力変換装置、及びこれを備える機器 |
JP6828516B2 (ja) * | 2017-03-02 | 2021-02-10 | ダイキン工業株式会社 | 電力変換装置 |
US11375637B2 (en) * | 2017-07-03 | 2022-06-28 | Mitsubishi Electric Corporation | Heat sink |
JP2019022344A (ja) * | 2017-07-18 | 2019-02-07 | ダイキン工業株式会社 | アクティブフィルタシステム、空気調和装置 |
CN107493672B (zh) * | 2017-08-04 | 2019-07-30 | 广东美的制冷设备有限公司 | 电控板及制冷装置 |
US20200221611A1 (en) * | 2017-11-30 | 2020-07-09 | Mitsubishi Electric Corporation | Power conversion device and air-conditioning apparatus |
KR102485690B1 (ko) | 2018-01-26 | 2023-01-06 | 삼성전자주식회사 | 공기조화기의 실외기 |
EP3882529B1 (en) * | 2018-11-16 | 2024-06-26 | Mitsubishi Electric Corporation | Outdoor unit for air conditioner |
WO2021166204A2 (ja) * | 2020-02-21 | 2021-08-26 | 三菱電機株式会社 | 空気調和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11113283A (ja) * | 1997-09-30 | 1999-04-23 | Toshiba Corp | モータの駆動装置 |
JP2002204580A (ja) * | 2000-10-31 | 2002-07-19 | Fuji Electric Co Ltd | 電力変換装置 |
JP2012070531A (ja) * | 2010-09-24 | 2012-04-05 | Hitachi Appliances Inc | インバータ装置 |
JP2012170183A (ja) * | 2011-02-10 | 2012-09-06 | Sanyo Electric Co Ltd | パワーコンディショナ |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2536657B2 (ja) * | 1990-03-28 | 1996-09-18 | 三菱電機株式会社 | 電気装置及びその製造方法 |
US6650559B1 (en) * | 2000-10-31 | 2003-11-18 | Fuji Electric Co., Ltd. | Power converting device |
JP3955285B2 (ja) * | 2003-03-27 | 2007-08-08 | 松下電器産業株式会社 | モータ駆動用インバータ制御装置および空気調和機 |
JP4601044B2 (ja) * | 2004-08-30 | 2010-12-22 | 日立アプライアンス株式会社 | 電力変換装置およびその電力変換装置を備えた空気調和機 |
JP4538359B2 (ja) * | 2005-03-31 | 2010-09-08 | 株式会社日立産機システム | 電気回路モジュール |
EP1909377B1 (en) * | 2006-01-16 | 2017-12-06 | Mitsubishi Electric Corporation | Drive circuit of motor and outdoor unit of air conditioner |
JP4775108B2 (ja) * | 2006-05-18 | 2011-09-21 | 富士電機株式会社 | パワー電子機器 |
JP4580997B2 (ja) * | 2008-03-11 | 2010-11-17 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
JP5644628B2 (ja) * | 2011-03-29 | 2014-12-24 | 株式会社デンソー | スイッチング電源装置 |
JP5472364B2 (ja) | 2012-04-20 | 2014-04-16 | ダイキン工業株式会社 | 冷凍装置 |
EP2892311A4 (en) * | 2012-08-29 | 2016-04-27 | Mitsubishi Electric Corp | VEHICLE INTERNAL CURRENT TRANSFORMER |
JP5535292B2 (ja) * | 2012-10-12 | 2014-07-02 | 三菱電機株式会社 | 電力変換装置 |
-
2015
- 2015-07-21 JP JP2015143853A patent/JP6701637B2/ja active Active
-
2016
- 2016-06-06 BR BR112017027856-1A patent/BR112017027856B1/pt active IP Right Grant
- 2016-06-06 CN CN201680042983.2A patent/CN107852103B/zh active Active
- 2016-06-06 US US15/740,700 patent/US10495327B2/en active Active
- 2016-06-06 EP EP16827515.4A patent/EP3327919B1/en active Active
- 2016-06-06 WO PCT/JP2016/066757 patent/WO2017013951A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11113283A (ja) * | 1997-09-30 | 1999-04-23 | Toshiba Corp | モータの駆動装置 |
JP2002204580A (ja) * | 2000-10-31 | 2002-07-19 | Fuji Electric Co Ltd | 電力変換装置 |
JP2012070531A (ja) * | 2010-09-24 | 2012-04-05 | Hitachi Appliances Inc | インバータ装置 |
JP2012170183A (ja) * | 2011-02-10 | 2012-09-06 | Sanyo Electric Co Ltd | パワーコンディショナ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3327919A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11557521B2 (en) | 2017-10-26 | 2023-01-17 | Mitsubishi Electric Corporation | Heat sink and circuit device |
GB2580262B (en) * | 2017-10-26 | 2022-09-14 | Mitsubishi Electric Corp | Heat sink and circuit device |
US10557638B2 (en) | 2017-11-21 | 2020-02-11 | Haier Us Appliance Solutions, Inc. | Fan assembly for a packaged terminal air conditioner unit |
CN111670325A (zh) * | 2018-01-26 | 2020-09-15 | 富士通将军股份有限公司 | 电气装置模块 |
CN111656099A (zh) * | 2018-01-26 | 2020-09-11 | 富士通将军股份有限公司 | 电气装置模块 |
WO2019146602A1 (ja) * | 2018-01-26 | 2019-08-01 | 株式会社富士通ゼネラル | 電装品モジュール |
CN111670325B (zh) * | 2018-01-26 | 2021-07-13 | 富士通将军股份有限公司 | 电气装置模块 |
CN111656099B (zh) * | 2018-01-26 | 2021-07-30 | 富士通将军股份有限公司 | 电气装置模块 |
AU2019213168B2 (en) * | 2018-01-26 | 2021-08-19 | Fujitsu General Limited | Electrical component module |
AU2019211903B2 (en) * | 2018-01-26 | 2021-09-30 | Fujitsu General Limited | Electrical component module |
JP2019128120A (ja) * | 2018-01-26 | 2019-08-01 | 株式会社富士通ゼネラル | 電装品モジュール |
WO2019146766A1 (ja) * | 2018-01-26 | 2019-08-01 | 株式会社富士通ゼネラル | 電装品モジュール |
US12013171B2 (en) | 2018-01-26 | 2024-06-18 | Fujitsu General Limited | Electrical component module |
JP2020118377A (ja) * | 2019-01-24 | 2020-08-06 | 株式会社富士通ゼネラル | 電装品モジュール |
Also Published As
Publication number | Publication date |
---|---|
EP3327919B1 (en) | 2021-07-21 |
CN107852103A (zh) | 2018-03-27 |
JP6701637B2 (ja) | 2020-05-27 |
EP3327919A4 (en) | 2019-03-20 |
CN107852103B (zh) | 2020-07-24 |
BR112017027856A2 (ja) | 2018-08-28 |
US10495327B2 (en) | 2019-12-03 |
US20180187905A1 (en) | 2018-07-05 |
JP2017028825A (ja) | 2017-02-02 |
EP3327919A1 (en) | 2018-05-30 |
BR112017027856B1 (pt) | 2022-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017013951A1 (ja) | インバータ装置 | |
US9523529B2 (en) | Refrigeration apparatus | |
US9377237B2 (en) | Refrigeration apparatus | |
JP5842905B2 (ja) | 冷凍装置 | |
WO2018051499A1 (ja) | 冷凍サイクル装置 | |
WO2019082783A1 (ja) | ヒートシンクおよび回路装置 | |
JP2014093304A (ja) | 電力変換装置 | |
JP6685424B2 (ja) | 電力変換装置及びこれを用いた空気調和装置 | |
JP2016109350A (ja) | 冷凍装置 | |
JP2016050726A (ja) | 冷凍装置 | |
CN111670325B (zh) | 电气装置模块 | |
JP7279305B2 (ja) | 電装品モジュール | |
US10756647B2 (en) | Power converter device having a capacitor and a reactor adjacent to each other on the same circuit board | |
WO2023162029A1 (ja) | 駆動装置および空気調和装置 | |
JP2021038864A (ja) | 空気調和機の室外機 | |
CN111656099B (zh) | 电气装置模块 | |
JP7438434B1 (ja) | 空気調和機用回路構造体及び空気調和機 | |
JP2013073949A (ja) | 電力変換装置及びそれを備えた冷凍装置 | |
JP5772700B2 (ja) | 冷凍装置 | |
JP2013127340A (ja) | 冷凍装置 | |
JP2023041377A (ja) | パワー基板およびそれを用いた空気調和機の室外機 | |
JP2023034885A (ja) | 電力変換装置 | |
CN115076779A (zh) | 空调器及数据处理设备 | |
JP2020118377A (ja) | 電装品モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016827515 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017027856 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017027856 Country of ref document: BR Kind code of ref document: A2 Effective date: 20171222 |