WO2017013927A1 - 方向性結合器および通信モジュール - Google Patents

方向性結合器および通信モジュール Download PDF

Info

Publication number
WO2017013927A1
WO2017013927A1 PCT/JP2016/064255 JP2016064255W WO2017013927A1 WO 2017013927 A1 WO2017013927 A1 WO 2017013927A1 JP 2016064255 W JP2016064255 W JP 2016064255W WO 2017013927 A1 WO2017013927 A1 WO 2017013927A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission line
terminal
switching element
connection terminal
Prior art date
Application number
PCT/JP2016/064255
Other languages
English (en)
French (fr)
Inventor
哲也 岡元
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/561,080 priority Critical patent/US10263315B2/en
Priority to CN201680018575.3A priority patent/CN107408750B/zh
Priority to EP16827491.8A priority patent/EP3327859B1/en
Priority to JP2017529481A priority patent/JP6363798B2/ja
Publication of WO2017013927A1 publication Critical patent/WO2017013927A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems

Definitions

  • the present invention relates to a directional coupler for monitoring an electric signal transmitted through a wiring, and a communication module including the directional coupler.
  • Electronic components used in communication devices include a filter for extracting a signal in a specific frequency band from an electric signal received by an antenna, an amplifier for amplifying the electric signal, and a direction for monitoring the electric signal transmitted through the wiring There is a sex coupler (coupler).
  • Japanese Patent No. 5327324 describes a directional coupler in which a low-pass filter connected to a sub-line that is electromagnetically coupled to a main line includes a capacitor and a coil.
  • Communication devices have various frequency bands used for communication, but some mounted components have characteristics that change depending on the frequency. In such a case, the mounted components must be changed for each frequency band.
  • the directional coupler described in Japanese Patent No. 5327324 uses a so-called LC-type low-pass filter including a capacitor and a coil, so that the frequency of the coupler output represented by the attenuation amount of the electric signal output from the sub-line. It is intended to realize a directional coupler capable of reducing a change due to the above and capable of dealing with a wide frequency band.
  • the directional coupler described in Japanese Patent No. 5327324 can reduce the change of the coupler output due to the frequency, the insertion loss represented by the attenuation amount of the electric signal output from the main line changes depending on the frequency. There is a risk that it will end.
  • the directional coupler of one embodiment of the present invention is used for a communication module including a switching element.
  • the directional coupler is input to a signal input terminal to which a predetermined first frequency band electric signal and a predetermined second frequency band electric signal higher than the first frequency band are input, and the signal input terminal.
  • the first signal transmission line for transmitting the electrical signal, the signal output terminal for outputting the electrical signal transmitted through the first signal transmission line, and the first signal transmission line are electromagnetically coupled, and are generated by the electromagnetic coupling.
  • a resistance connection terminal connected to an external termination resistor and a switching element disposed between the signal input terminal and the signal output terminal are electrically connected or disconnected by the switching element.
  • a second signal transmission line that is electrically interrupted by the switching element when a signal is input.
  • the communication module of one embodiment of the present invention is a switching element that is provided in the directional coupler and the second signal transmission line, and that conducts or cuts off the second signal transmission line, and is connected to the signal input terminal.
  • the second signal transmission line is electrically conducted, and when the electric signal of the second frequency band is input to the signal input terminal, A switching element that electrically cuts off the two-signal transmission line.
  • FIG. 2 is an exploded perspective view showing a configuration of a communication module 200.
  • FIG. It is a graph which shows the relationship between the frequency of an electric signal, and a coupler output. It is a graph which shows the relationship between the frequency of an electric signal, and insertion loss.
  • FIG. 6 is an equivalent circuit diagram of a communication module 200A including a directional coupler 100A according to a second embodiment of the present invention.
  • FIG. 1 is an equivalent circuit diagram of a communication module 200 including the directional coupler 100 according to the first embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing the configuration of the communication module 200.
  • the communication module 200 is mounted on a mobile phone device or a communication device used for mobile communication, and includes an IC (Integrated Circuit) chip 6 including a directional coupler (coupler) 100 and a switching element. It is comprised including.
  • IC Integrated Circuit
  • the directional coupler 100 includes a stacked structure in which a plurality of dielectric layers are stacked, specifically, a first dielectric layer 11, a second dielectric layer 12, and a third dielectric layer 13.
  • the fourth dielectric layer 14 includes a dielectric substrate having a stacked structure in which layers are stacked in this order from above.
  • conductor patterns corresponding to terminals are formed on the outer surface portions of the outermost first dielectric layer 11 and the fourth dielectric layer 14, and signal transmission is performed between the dielectric layers.
  • Conductor patterns corresponding to the lines are formed, and the through conductors that electrically connect the conductor patterns corresponding to the terminals formed on different dielectric layers and the conductor patterns corresponding to the signal transmission lines are provided on each dielectric layer. Is provided.
  • the first dielectric layer 11, the second dielectric layer 12, the third dielectric layer 13, and the fourth dielectric layer 14 are made of a dielectric material such as ceramics or resin, and each conductor pattern is made of tungsten, copper, or the like. It consists of metal materials such as.
  • the first dielectric layer 11 has a thickness of 35 ⁇ m
  • the second dielectric layer 12 has a thickness of 35 ⁇ m
  • the third dielectric layer 13 has a thickness of 70 ⁇ m
  • the fourth dielectric layer The layer thickness of the layer 14 is 210 ⁇ m.
  • the directional coupler 100 includes a first signal transmission unit SG1, a second signal transmission unit SG2, and a coupler unit CP.
  • the correspondence relationship between each circuit element shown in the equivalent circuit of FIG. 1 and each configuration shown in the exploded perspective view of FIG. 2 will be described, and the configuration of the directional coupler 100 of the present embodiment will be described in detail.
  • the first signal transmission unit SG1 includes a signal input terminal P1, a signal output terminal P2, and a first signal transmission line 1 disposed between these terminals.
  • the signal input terminal P1 is connected to, for example, an output terminal of a power amplifier and the like, and is a predetermined low frequency first frequency band electrical signal and a high frequency higher than the first frequency band and a predetermined second frequency band.
  • An electric signal is input.
  • the directional coupler 100 uses a frequency band ranging from the lowest frequency (lower limit value of the first frequency band) to the highest frequency (upper limit value of the second frequency band) of the electrical signal input to the signal input terminal P1 as the use frequency band. It is done.
  • the first frequency band is 0.699 to 0.960 GHz
  • the second frequency band is 1.427 to 2.690 GHz.
  • the directional coupler 100 uses a frequency band of 0.699 to 2.690 GHz ranging from 0.699 GHz which is the lower limit value of the first frequency band to 2.690 GHz which is the upper limit value of the second frequency band.
  • the signal input terminal P ⁇ b> 1 is provided on the lower surface 14 ⁇ / b> A of the fourth dielectric layer 14.
  • the first signal transmission line 1 transmits an electric signal input to the signal input terminal P1. As shown in FIG. 2, the first signal transmission line 1 is provided on the upper surface of the fourth dielectric layer 14 between the third dielectric layer 13 and the fourth dielectric layer 14 with a predetermined length. It is done.
  • the signal output terminal P2 is connected to, for example, an antenna and outputs an electric signal transmitted through the first signal transmission line 1 to the antenna. As shown in FIG. 2, the signal output terminal P ⁇ b> 2 is provided on the lower surface 14 ⁇ / b> A of the fourth dielectric layer 14.
  • the first end 1a of the first signal transmission line 1 is connected to the signal input terminal P1 through a through conductor penetrating the fourth dielectric layer 14.
  • the second end 1 b of the first signal transmission line 1 is connected to the signal output terminal P ⁇ b> 2 through a through conductor that penetrates the fourth dielectric layer 14.
  • the electric signal input from the signal input terminal P1 is transmitted from the first end 1a to the second end 1b of the first signal transmission line 1 and is output from the signal output terminal P2.
  • the coupler part CP includes a coupling output terminal P3, a resistance connection terminal P4, and a coupling line 2 disposed between these terminals.
  • the coupling line 2 is electromagnetically coupled to the first signal transmission line 1 and transmits an electric signal generated by the electromagnetic coupling.
  • the coupling line 2 is electromagnetically coupled to the first signal transmission line 1 and extracts a part of the electric signal transmitted through the first signal transmission line 1.
  • the coupled line 2 is provided on the upper surface of the third dielectric layer 13 and between the second dielectric layer 12 and the third dielectric layer 13 with a predetermined length.
  • the coupling line 2 and the first signal transmission line 1 are opposed to each other with the third dielectric layer 13 interposed therebetween, and are electromagnetically coupled.
  • each of the coupling line 2 and the first signal transmission line 1 is provided in a shape in which a linear conductor pattern is bent in the same direction at two bending points, and the stacking direction of the dielectric layers It is arranged so that it overlaps when seen.
  • the strength of electromagnetic coupling between the coupling line 2 and the first signal transmission line 1 is such that, for example, the length of one line is shortened, the area of the overlapping region is reduced when viewed in the stacking direction, or the overlapping area does not overlap.
  • the distance can be reduced by increasing the distance between the coupling line 2 and the first signal transmission line 1, that is, by increasing the thickness of the third dielectric layer 13.
  • the coupler output represented by the attenuation amount of the electric signal output from the coupling line 2 can be controlled. it can.
  • the coupled output terminal P3 is connected to the first end 2a of the coupled line 2 and outputs an electrical signal transmitted through the coupled line 2.
  • the electrical signal output from the combined output terminal P3 is input to an external circuit as a monitoring signal.
  • the coupled output terminal P ⁇ b> 3 is provided on the upper surface of the first dielectric layer 11.
  • the resistance connection terminal P4 is connected to the second end 2b of the coupled line 2 and to an external termination resistor Rt.
  • the external termination resistor Rt is connected to the ground conductor electrode GND3.
  • the resistance connection terminal P ⁇ b> 4 is provided on the upper surface of the first dielectric layer 11.
  • the first end 2a of the coupled line 2 is connected to the coupled output terminal P3 through a through conductor that penetrates the first dielectric layer 11 and a through conductor 24 that penetrates the second dielectric layer 12.
  • the second end 2 b of the coupled line 2 is connected to the resistance connection terminal P ⁇ b> 4 through a through conductor that penetrates the first dielectric layer 11 and a through conductor 23 that penetrates the second dielectric layer 12.
  • the second signal transmission line SG2 is disposed between the signal input terminal P1 and the signal output terminal P2 via the switching element of the IC chip 6, and is electrically connected or cut off by the switching element. 3 is included.
  • the second signal transmission line 3 is electrically connected by a switching element when an electric signal of a first frequency band of a low frequency is input to the signal input terminal P1, and the second frequency of the high frequency is input to the signal input terminal P1. When a band electrical signal is input, it is electrically interrupted by the switching element.
  • the second signal transmission unit SG2 is a signal input connection terminal 4a, which is a switching element connection terminal for switching electrical conduction or interruption of the second signal transmission line 3 by the switching element of the IC chip 6.
  • a first transmission line connection terminal 4b, a first ground terminal 4c, a signal output connection terminal 5a, a second transmission line connection terminal 5b, and a second ground terminal 5c are further included.
  • the second signal transmission line 3 is disposed between the first transmission line connection terminal 4b and the second transmission line connection terminal 5b.
  • the second signal transmission line 3 will be described later in detail, but the signal input connection terminal 4a, the first transmission line connection terminal 4b, the first ground terminal 4c, the signal output connection terminal 5a, The connection state for the first signal transmission line 1 is switched according to the connection switching operation between the switching terminals of the two transmission line connection terminals 5b and the second ground terminal 5c.
  • the second signal transmission line 3 is provided on the upper surface of the second dielectric layer 12 with a predetermined length between the first dielectric layer 11 and the second dielectric layer 12. It is done.
  • the second signal transmission line 3 is opposed to the coupling line 2 with the second dielectric layer 12 in between, and each of the second signal transmission line 3 and the coupling line 2 has two linear conductor patterns. It is provided in a shape bent in the same direction at the bending point, and is disposed so as to overlap when viewed in the stacking direction of the dielectric layers.
  • the signal input connection terminal 4a and the first transmission line connection terminal 4b form a pair and are connected to the switching element of the IC chip 6, and function as a pair of first switching element connection terminals.
  • the signal output connection terminal 5a and the second transmission line connection terminal 5b form a pair and are connected to the switching element of the IC chip 6 and function as a pair of first switching element connection terminals.
  • the signal input connection terminal 4 a is provided on the upper surface of the first dielectric layer 11, and penetrates through the first dielectric layer 11 and through conductor 21 penetrates the second dielectric layer 12. And the first end 1a of the first signal transmission line 1 through the through conductor 25 penetrating the third dielectric layer 13. Further, it is connected to the signal input terminal P1 through a through conductor penetrating the fourth dielectric layer 14.
  • the first transmission line connection terminal 4 b is provided on the upper surface of the first dielectric layer 11, and is connected to the first end 3 a of the second signal transmission line 3 through a through conductor penetrating the first dielectric layer 11. .
  • the signal output connection terminal 5a is provided on the upper surface of the first dielectric layer 11, and includes a through conductor that penetrates the first dielectric layer 11, a through conductor 22 that penetrates the second dielectric layer 12, and a third dielectric. It is connected to the second end 1 b of the first signal transmission line 1 through a through conductor 26 that penetrates the body layer 13. Further, it is connected to the signal output terminal P ⁇ b> 2 through a through conductor penetrating the fourth dielectric layer 14.
  • the second transmission line connection terminal 5 b is provided on the upper surface of the first dielectric layer 11 and is connected to the second end 3 b of the second signal transmission line 3 through a through conductor that penetrates the first dielectric layer 11. .
  • the signal input terminal P1 has a low frequency first frequency band. When an electric signal is input, it is electrically conducted by the switching element of the IC chip 6. When a high frequency electric signal in the second frequency band is input to the signal input terminal P1, it is electrically cut off by the switching element of the IC chip 6.
  • the connection state of the second signal transmission line 3 with respect to the first signal transmission line 1 is switched according to the switching operation.
  • the second signal transmission line 3 is connected between the signal input connection terminal 4a and the first transmission line connection terminal 4b and between the signal output connection terminal 5a and the second transmission line by the switching element of the IC chip 6.
  • the signal input terminal P1 and the signal output terminal P2 are connected in parallel to the first signal transmission line 1 and one of the electric signals input to the signal input terminal P1. Is transmitted to the signal output terminal P2.
  • the first transmission line connection terminal 4b and the first ground terminal 4c form a pair and are connected to the switching element of the IC chip 6, and function as a pair of second switching element connection terminals.
  • the second transmission line connection terminal 5b and the second ground terminal 5c form a pair and are connected to the switching element of the IC chip 6, and function as a pair of second switching element connection terminals.
  • the first ground terminal 4c is provided on the upper surface of the first dielectric layer 11, and is connected to the external ground conductor electrode GND1.
  • the second ground terminal 5c is provided on the upper surface of the first dielectric layer 11, and is connected to the external ground conductor electrode GND2.
  • the signal input connection terminal 4a is switched by the switching element of the IC chip 6. And the first transmission line connection terminal 4b and the signal output connection terminal 5a and the second transmission line connection terminal 5b are electrically disconnected. Further, a signal input connection is made between the first transmission line connection terminal 4b and the first ground terminal 4c and between the second transmission line connection terminal 5b and the second ground terminal 5c by a switching element of the IC chip 6. Conduction is made when the terminal 4a and the first transmission line connection terminal 4b and the signal output connection terminal 5a and the second transmission line connection terminal 5b are electrically disconnected.
  • FIG. 3 is a graph showing the relationship between the frequency of the electrical signal and the coupler output
  • FIG. 4 is a graph showing the relationship between the frequency of the electrical signal and the insertion loss.
  • FIGS. 3 and 4 show the results of modeling the directional coupler 100 based on the first embodiment and simulating the frequency characteristics of the coupler output and insertion loss.
  • the coupler output is an attenuation amount which is a ratio A P3 / A P1 of the power (A P3 ) of the electric signal output from the combined output terminal P3 to the power (A P1 ) of the electric signal input to the signal input terminal P1. It is represented by
  • the insertion loss is an attenuation amount which is a ratio A P2 / A P1 of the electric power (A P2 ) of the electric signal output from the signal output terminal P2 to the electric power (A P1 ) of the electric signal input to the signal input terminal P1. It is represented by
  • a line segment 301 is connected between the signal input connection terminal 4a and the first transmission line connection terminal 4b and the signal output connection terminal 5a by the switching element of the IC chip 6. Between the first transmission line connection terminal 4b and the first ground terminal 4c, and between the second transmission line connection terminal 5b and the second ground terminal 5c. This shows the relationship between coupler output and frequency when is interrupted. That is, in the graph of FIG. 3, the line segment 301 indicates the relationship between the coupler output and the frequency when the second signal transmission line 3 is connected in parallel to the first signal transmission line 1. In the graph of FIG.
  • a line segment 302 is connected between the signal input connection terminal 4a and the first transmission line connection terminal 4b by the switching element of the IC chip 6, and the signal output connection. Between the terminal 5a and the second transmission line connection terminal 5b is cut off, between the first transmission line connection terminal 4b and the first ground terminal 4c, and between the second transmission line connection terminal 5b and the second ground terminal 5c.
  • This shows the relationship between the coupler output and the frequency when they are conducted. That is, in the graph of FIG. 3, a line segment 302 indicates the relationship between the coupler output and the frequency when the second signal transmission line 3 is connected to the ground conductor electrodes GND1 and GND2 and short-circuited.
  • a line segment 303 is connected between the signal input connection terminal 4a and the first transmission line connection terminal 4b by the switching element of the IC chip 6, and the signal output connection.
  • the terminal 5a and the second transmission line connection terminal 5b are electrically connected, the first transmission line connection terminal 4b and the first ground terminal 4c, and the second transmission line connection terminal 5b and the second ground terminal 5c. It shows the relationship between the insertion loss and the frequency when the gap is cut off. That is, in the graph of FIG. 4, a line segment 303 indicates the relationship between the insertion loss and the frequency when the second signal transmission line 3 is connected in parallel to the first signal transmission line 1. In the graph of FIG.
  • a line segment 304 is connected between the signal input connection terminal 4a and the first transmission line connection terminal 4b by the switching element of the IC chip 6, and the signal output connection. Between the terminal 5a and the second transmission line connection terminal 5b is cut off, between the first transmission line connection terminal 4b and the first ground terminal 4c, and between the second transmission line connection terminal 5b and the second ground terminal 5c.
  • This shows the relationship between the insertion loss and the frequency when the gap is conducted. That is, in the graph of FIG. 4, a line segment 304 indicates the relationship between the insertion loss and the frequency when the second signal transmission line 3 is connected to the ground conductor electrodes GND1 and GND2 and short-circuited.
  • the signal input connection terminal 4a and the first transmission are switched by the switching element of the IC chip 6.
  • the line connection terminal 4b and the signal output connection terminal 5a and the second transmission line connection terminal 5b are electrically connected, and the second signal transmission line 3 is connected to the first signal transmission line 1 in parallel.
  • the signal input connection terminal 4a and the first transmission line are connected by the switching element of the IC chip 6. The connection between the terminal 4b and the signal output connection terminal 5a and the second transmission line connection terminal 5b are blocked.
  • the electromagnetic coupling of the coupling line 2 becomes relatively weak, and when an electric signal in the first frequency band of low frequency is input,
  • the second signal transmission line 3 is connected in parallel to the first signal transmission line 1 so that the electromagnetic coupling of the coupling line 2 becomes stronger and the electromagnetic coupling of the coupling line 2 becomes relatively stronger.
  • the second signal transmission line 3 is not connected to the first signal transmission line 1 and the electromagnetic coupling of the coupling line 2 becomes weak.
  • the directionality of the directional coupler 100 is the ratio of the electric power (A P3 ) of the electric signal output from the combined output terminal P3 to the electric power (A P1 ) of the electric signal input to the signal input terminal P1.
  • a P3 / a P1 and coupler output is a ratio a of the relative signal output terminal of the electric signal input from the P2 power (a P2), of the electric signal output from the coupled output terminal P3 power (a P3) P3 /
  • the difference from the attenuation amount which is A P2 is represented by [A P3 / A P1 ⁇ A P3 / A P2 ].
  • a larger value of [A P3 / A P1 ⁇ A P3 / A P2 ] representing the directionality indicates that the directionality characteristic of the directional coupler 100 is better.
  • a low-frequency first frequency band electrical signal is input to the signal input terminal P1, and the signal input connection terminal 4a and the first transmission line are switched by the switching element of the IC chip 6.
  • the connection terminal 4b and between the signal output connection terminal 5a and the second transmission line connection terminal 5b, between the first transmission line connection terminal 4b and the first ground terminal 4c, and The second transmission line connection terminal 5b and the second ground terminal 5c are disconnected.
  • an electric signal in the second frequency band having a high frequency is input to the signal input terminal P1, and the signal input connection terminal 4a and the first transmission line connection terminal 4b are switched by the switching element of the IC chip 6.
  • Conduction is established between the line connection terminal 5b and the second ground terminal 5c.
  • the switching element of the IC chip 6 allows the signal input connection terminal 4a and the first transmission line connection terminal 4b to be connected and the signal output connection.
  • the connection between the terminal 5a and the second transmission line connection terminal 5b is interrupted, the connection between the first transmission line connection terminal 4b and the first ground terminal 4c, and the second transmission line connection terminal 5b and the second ground.
  • the second signal transmission line 3 is connected to the ground conductor electrodes GND1 and GND2 and short-circuited with the terminal 5c, the coupling capacitance between the second signal transmission line 3 and the coupling line 2 is reduced, and the direction [A P3 / A P1 -A P3 / A P2 ] representing the property can be suppressed from decreasing, and the directionality of the directional coupler 100 can be suppressed from decreasing.
  • the communication module 200 of the present embodiment is configured as described above, and can reduce the change in coupler output and the change in insertion loss due to frequency, and the first of the directional coupler 100. And an IC chip 6 including a switching element mounted on the upper surface of the dielectric layer 11.
  • the switching elements of the IC chip 6 are the signal input connection terminal 4a, the first transmission line connection terminal 4b, the first ground terminal 4c, the signal output connection terminal 5a, the second transmission line connection terminal 5b, and the second. Connected to the ground terminal 5c.
  • the switching element of the IC chip 6 is connected between the signal input connection terminal 4a and the first transmission line connection terminal 4b when an electric signal in the first frequency band having a low frequency is input to the signal input terminal P1.
  • the signal output connection terminal 5a and the second transmission line connection terminal 5b are electrically connected, the first transmission line connection terminal 4b and the first ground terminal 4c, and the second transmission line connection terminal 5b. And the second ground terminal 5c are interrupted.
  • the switching element of the IC chip 6 is connected between the signal input connection terminal 4a and the first transmission line connection terminal 4b when an electric signal in the second high frequency band is input to the signal input terminal P1, and
  • the signal output connection terminal 5a and the second transmission line connection terminal 5b are interrupted, the first transmission line connection terminal 4b and the first ground terminal 4c, and the second transmission line connection terminal 5b and the second transmission line connection terminal 5b. Conduction is established between the ground terminal 5c.
  • the communication module 200 includes a directional coupler 100 that can reduce changes in coupler output and insertion loss due to frequency. By mounting such a communication module 200 on a communication device, a communication device having good communication characteristics over a wide frequency band can be realized.
  • FIG. 5 is an equivalent circuit diagram of the communication module 200A including the directional coupler 100A according to the second embodiment of the present invention.
  • the directional coupler 100A is configured in the same manner as the directional coupler 100 except that the configuration of the switching element connection terminal in the second signal transmission unit SG2 is different from that of the second signal transmission unit SG2.
  • the communication module 200A is configured in the same manner as the communication module 200 except that the communication module 200A includes a directional coupler 100A having a second signal transmission unit SG2 having a different configuration of the switching element connection terminal.
  • the directional coupler 100A and the communication module 200A of the present embodiment have the same parts as the directional coupler 100 and the communication module 200 according to the first embodiment described above. Accordingly, in the following description and drawings, corresponding similar parts are denoted by the same reference numerals and description thereof is omitted.
  • the second signal transmission unit SG2 of the directional coupler 100A of the present embodiment is a switching element connection terminal connected to the switching element of the IC chip 6, which is a signal input connection terminal 7a and first transmission line connection terminals 7b and 7c.
  • a second signal transmission line 3 disposed between the two.
  • the signal input connection terminal 7a and the first transmission line connection terminal 7b form a pair and are connected to the switching element of the IC chip 6 and function as a pair of first switching element connection terminals.
  • the signal output connection terminal 8a and the second transmission line connection terminal 8b form a pair and are connected to the switching element of the IC chip 6, and function as a pair of first switching element connection terminals.
  • the signal input connection terminal 7a is connected to the first end 1a of the first signal transmission line 1 and to the signal input terminal P1.
  • the first transmission line connection terminal 7 b is connected to the first end 3 a of the second signal transmission line 3.
  • the signal output connection terminal 8a is connected to the second end 1b of the first signal transmission line 1 and to the signal output terminal P2.
  • the second transmission line connection terminal 8 b is connected to the second end 3 b of the second signal transmission line 3.
  • the signal input terminal P1 has a low frequency first frequency band.
  • the switching element of the IC chip 6 is electrically conducted by the switching element of the IC chip 6, and when the electric signal of the second high frequency band of the high frequency is input to the signal input terminal P1, the switching element of the IC chip 6 Is electrically cut off.
  • the connection state of the second signal transmission line 3 with respect to the first signal transmission line 1 is switched according to the switching operation.
  • the second signal transmission line 3 is connected between the signal input connection terminal 7a and the first transmission line connection terminal 7b, and between the signal output connection terminal 8a and the second transmission line by the switching element of the IC chip 6.
  • the signal input terminal P1 and the signal output terminal P2 are connected in parallel to the first signal transmission line 1 and one of the electric signals input to the signal input terminal P1. Is transmitted to the signal output terminal P2.
  • the electromagnetic coupling of the coupling line 2 becomes relatively weak, and when an electric signal in the first frequency band of low frequency is input,
  • the second signal transmission line 3 is connected in parallel to the first signal transmission line 1, the electromagnetic coupling of the coupling line 2 becomes stronger, and the electromagnetic coupling of the coupling line 2 becomes relatively stronger.
  • the second signal transmission line 3 is not connected to the first signal transmission line 1 and the electromagnetic coupling of the coupling line 2 is weakened. Changes in insertion loss can be reduced.
  • the first transmission line connection terminal 7c and the first ground terminal 7d form a pair and are connected to the switching element of the IC chip 6, and a pair of second switching elements Functions as a connection terminal.
  • the second transmission line connection terminal 8c and the second ground terminal 8d form a pair and are connected to the switching element of the IC chip 6, and function as a pair of second switching element connection terminals.
  • the first transmission line connection terminal 7 c is connected to the first end 3 a of the second signal transmission line 3.
  • the second transmission line connection terminal 8 c is connected to the second end 3 b of the second signal transmission line 3.
  • the first ground terminal 7d is connected to the external ground conductor electrode GND1.
  • the second ground terminal 8d is connected to the external ground conductor electrode GND2.
  • a signal input connection terminal 7a is provided by a switching element of the IC chip 6. And the first transmission line connection terminal 7b and the signal output connection terminal 8a and the second transmission line connection terminal 8b are electrically disconnected. Further, a signal input connection is made between the first transmission line connection terminal 7c and the first ground terminal 7d and between the second transmission line connection terminal 8c and the second ground terminal 8d by a switching element of the IC chip 6. Conduction is made when the terminal 7a and the first transmission line connection terminal 7b and the signal output connection terminal 8a and the second transmission line connection terminal 8b are electrically disconnected.
  • the switching element of the IC chip 6 allows the signal input connection terminal 7a and the first transmission line connection terminal 7b to be connected and the signal output connection.
  • the connection between the terminal 8a and the second transmission line connection terminal 8b is interrupted, the connection between the first transmission line connection terminal 7c and the first ground terminal 7d, and the second transmission line connection terminal 8c and the second ground.
  • the coupling capacitance between the second signal transmission line 3 and the coupling line 2 is reduced, and the direction [A P3 / A P1 ⁇ A P3 / A P2 ] representing the property can be suppressed from decreasing, and the directionality of the directional coupler 100A can be suppressed from decreasing.
  • the communication module 200A of the present embodiment is configured as described above, and the directional coupler 100A that can reduce the change in the coupler output and the change in the insertion loss due to the frequency, and the IC chip 6 that includes the switching element. It is comprised including.
  • the switching elements of the IC chip 6 are the signal input connection terminal 7a, the first transmission line connection terminals 7b and 7c, the first ground terminal 7d, the signal output connection terminal 8a, and the second transmission line connection terminals 8b and 8c. And the second ground terminal 8d.
  • the switching element of the IC chip 6 is connected between the signal input connection terminal 7a and the first transmission line connection terminal 7b when the low frequency first frequency band electrical signal is input to the signal input terminal P1.
  • the signal output connection terminal 8a and the second transmission line connection terminal 8b are electrically connected, the first transmission line connection terminal 7c and the first ground terminal 7d, and the second transmission line connection terminal 8c and the second transmission line connection terminal 8b.
  • the ground terminal 8d is disconnected.
  • the switching element of the IC chip 6 is connected between the signal input connection terminal 7a and the first transmission line connection terminal 7b when an electric signal in the second high frequency band is input to the signal input terminal P1, and The signal output connection terminal 8a and the second transmission line connection terminal 8b are blocked, the first transmission line connection terminal 7c and the first ground terminal 7d, and the second transmission line connection terminal 8c and the second transmission line connection terminal 8b. Conduction is established between the ground terminal 8d.
  • the communication module 200A includes the directional coupler 100A that can reduce the change in the coupler output and the change in the insertion loss due to the frequency, the communication module 200A can be widely used by mounting the communication module 200A in the communication device. A communication apparatus having good communication characteristics over a wide frequency band can be realized.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
  • a switching means using a diode or MEMS, or a mechanical switching means such as a relay may be used instead of the IC chip 6, a switching means using a diode or MEMS, or a mechanical switching means such as a relay may be used.
  • the first signal transmission line 1, the second signal transmission line 3, and the coupling line 2 may be formed using wiring or a rewiring layer in the IC, or may be formed using a printed circuit board or the like.
  • the first signal transmission line 1, the second signal transmission line 3, and the coupling line 2 may not be arranged in different layers, but may be partially formed in the same layer and electromagnetically coupled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

方向性結合器は、信号入力端子と信号出力端子との間に配設される第1信号伝送線路と、結合出力端子と抵抗接続端子との間に配設され、第1信号伝送線路と電磁結合する結合線路と、ICチップのスイッチング素子に接続されるスイッチング端子と、スイッチング素子によるスイッチング端子間の接続切替え動作に応じて第1信号伝送線路に対する接続状態が切り替えられる第2信号伝送線路と、を含んで構成される。第2信号伝送線路は、信号入力端子に低周波数の第1周波数帯域の電気信号が入力されたときに、スイッチング素子によるスイッチング端子間の接続切替え動作に応じて、第1信号伝送線路1に並列接続される。

Description

方向性結合器および通信モジュール
 本発明は、配線を伝送する電気信号をモニタリングするための方向性結合器、および該方向性結合器を備える通信モジュールに関する。
 携帯電話装置や移動体通信に用いられる通信装置等の小型化・高密度化・低価格化に対する要求が高まる中、1つの部品に複数の機能を内蔵することで部品点数を減少させ、小型化・高密度化を実現している。
 通信装置で用いられる電子部品には、アンテナで受信した電気信号から特定の周波数帯域の信号を取り出すためのフィルタ、電気信号を増幅するためのアンプ、配線を伝送する電気信号をモニタリングするための方向性結合器(カプラ)などがある。
 特許第5327324号公報には、主線路と電磁気的に結合している副線路に接続されるローパスフィルタが、コンデンサとコイルとを含むことを特徴とする方向性結合器が記載されている。
 通信装置では、通信に使用する周波数帯域が様々であるが、搭載部品には、周波数によって特性が変化するものがあり、その場合、周波数帯域ごとに搭載部品を変更しなければならない。特許第5327324号公報記載の方向性結合器は、コンデンサとコイルとを含む、いわゆるLC型のローパスフィルタを用いることで、副線路から出力される電気信号の減衰量で表されるカプラ出力の周波数による変化を低減し、広い周波数帯域に対応可能な方向性結合器を実現しようとするものである。
 特許第5327324号公報記載の方向性結合器は、カプラ出力の周波数による変化を低減することができるものの、主線路から出力される電気信号の減衰量で表される挿入損失が周波数によって変化してしまうという虞がある。
 本発明の一態様の方向性結合器は、スイッチング素子を備える通信モジュールに用いられる。方向性結合器は、予め定める第1周波数帯域の電気信号、および第1周波数帯域よりも高い、予め定める第2周波数帯域の電気信号が入力される信号入力端子と、前記信号入力端子に入力された電気信号を伝送する第1信号伝送線路と、前記第1信号伝送線路を伝送された電気信号を出力する信号出力端子と、前記第1信号伝送線路と電磁結合し、該電磁結合によって生じた電気信号を伝送する結合線路と、前記結合線路の第1端が接続され、前記結合線路を伝送された電気信号を出力する結合出力端子と、前記結合線路の第2端が接続されるとともに、外部の終端抵抗に接続される抵抗接続端子と、前記信号入力端子と前記信号出力端子との間にスイッチング素子を介して配設され、スイッチング素子によって電気的に導通または遮断される第2信号伝送線路であって、前記信号入力端子に前記第1周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に導通され、前記信号入力端子に前記第2周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に遮断される、第2信号伝送線路と、を含む。
 また本発明の一態様の通信モジュールは、前記方向性結合器と、前記第2信号伝送線路に設けられ、該第2信号伝送線路を導通または遮断させるスイッチング素子であって、前記信号入力端子に前記第1周波数帯域の電気信号が入力されたときに、前記第2信号伝送線路を電気的に導通させ、前記信号入力端子に前記第2周波数帯域の電気信号が入力されたときに、前記第2信号伝送線路を電気的に遮断させるスイッチング素子と、を含む。
本発明の第1実施形態に係る方向性結合器100を備えた通信モジュール200の等価回路図である。 通信モジュール200の構成を示す分解斜視図である。 電気信号の周波数とカプラ出力との関係を示すグラフである。 電気信号の周波数と挿入損失との関係を示すグラフである。 本発明の第2実施形態に係る方向性結合器100Aを備えた通信モジュール200Aの等価回路図である。
 図1は本発明の第1実施形態に係る方向性結合器100を備えた通信モジュール200の等価回路図であり、図2は通信モジュール200の構成を示す分解斜視図である。
 本実施形態の通信モジュール200は、携帯電話装置や移動体通信に用いられる通信装置に搭載されるものであり、方向性結合器(カプラ)100とスイッチング素子を備えるIC(Integrated Circuit)チップ6とを含んで構成される。
 図2に示すように、方向性結合器100は、複数の誘電体層が積層された積層構造、具体的には第1誘電体層11、第2誘電体層12、第3誘電体層13、および第4誘電体層14が、上からこの順に積層された積層構造を有する誘電体基板を含む。方向性結合器100において、最外層の第1誘電体層11および第4誘電体層14の外表面部には端子に対応した導電体パターンが形成され、各誘電体層の間には信号伝送線路に対応した導電体パターンが形成され、異なる誘電体層に形成された端子に対応した導電体パターンと信号伝送線路に対応した導電体パターンとを電気的に接続する貫通導体が各誘電体層を貫通して設けられる。
 第1誘電体層11、第2誘電体層12、第3誘電体層13、および第4誘電体層14は、セラミックス、樹脂などの誘電体材料からなり、各導電体パターンは、タングステン、銅などの金属材料からなる。
 また、たとえば、第1誘電体層11の層厚みは35μmであり、第2誘電体層12の層厚みは35μmであり、第3誘電体層13の層厚みは70μmであり、第4誘電体層14の層厚みは210μmである。
 図1の等価回路に示すように、方向性結合器100は、第1信号伝送部SG1と第2信号伝送部SG2とカプラ部CPとを含む。図1の等価回路で示した各回路素子と、図2の分解斜視図で示した各構成との対応関係について説明するとともに、本実施形態の方向性結合器100の構成について詳細に説明する。
 (第1信号伝送部SG1)
 まず、第1信号伝送部SG1の構成について説明する。第1信号伝送部SG1は、信号入力端子P1と、信号出力端子P2と、これら両端子の間に配設される第1信号伝送線路1とを含む。
 信号入力端子P1は、たとえば、パワーアンプの出力端子などと接続され、予め定める低周波数の第1周波数帯域の電気信号、および第1周波数帯域よりも高い高周波数の、予め定める第2周波数帯域の電気信号が入力される。方向性結合器100は、信号入力端子P1に入力される電気信号の最低周波数(第1周波数帯域の下限値)から最高周波数(第2周波数帯域の上限値)にわたる周波数帯域を使用周波数帯域として用いられる。本実施形態では、信号入力端子P1に入力される電気信号において、第1周波数帯域が0.699~0.960GHzであり、第2周波数帯域が1.427~2.690GHzであることに対応して、方向性結合器100は、第1周波数帯域の下限値である0.699GHzから第2周波数帯域の上限値である2.690GHzにわたる、0.699~2.690GHzの周波数帯域を使用周波数帯域として用いられる。図2に示すように、信号入力端子P1は、第4誘電体層14の下面14Aに設けられる。
 第1信号伝送線路1は、信号入力端子P1に入力された電気信号を伝送する。図2に示すように、第1信号伝送線路1は、第4誘電体層14の上面であって、第3誘電体層13と第4誘電体層14との層間に所定の長さで設けられる。
 信号出力端子P2は、たとえば、アンテナなどと接続され、第1信号伝送線路1を伝送した電気信号をアンテナに出力する。図2に示すように、信号出力端子P2は、第4誘電体層14の下面14Aに設けられる。
 第1信号伝送線路1の第1端1aは、第4誘電体層14を貫通する貫通導体を介して、信号入力端子P1と接続される。また、第1信号伝送線路1の第2端1bは、第4誘電体層14を貫通する貫通導体を介して、信号出力端子P2と接続される。信号入力端子P1から入力された電気信号は、第1信号伝送線路1の第1端1aから第2端1bまで伝送し、信号出力端子P2から出力される。
 (カプラ部CP)
 次に、カプラ部CPの構成について説明する。カプラ部CPは、結合出力端子P3と、抵抗接続端子P4と、これら両端子の間に配設される結合線路2とを含む。
 結合線路2は、第1信号伝送線路1と電磁結合し、該電磁結合によって生じた電気信号を伝送する。結合線路2は、第1信号伝送線路1と電磁結合して、第1信号伝送線路1を伝送する電気信号の一部を取り出す。図2に示すように、結合線路2は、第3誘電体層13の上面であって、第2誘電体層12と第3誘電体層13との層間に所定の長さで設けられる。結合線路2と第1信号伝送線路1とは、第3誘電体層13を挟んで対向しており、電磁的に結合される。本実施形態では、結合線路2と第1信号伝送線路1とは、それぞれ、直線状の導電体パターンが2つの屈曲点で同一方向に屈曲した形状に設けられており、誘電体層の積層方向に見たときに、重なるように配置されている。
 結合線路2と第1信号伝送線路1との電磁結合の強さは、たとえば、一方の線路の長さを短くしたり、積層方向に見たときに重なり領域の面積を小さくしたり、重ならないようにずらしたり、結合線路2と第1信号伝送線路1との距離を大きくする、すなわち第3誘電体層13の厚みを厚くすることにより、小さくすることができる。このように、結合線路2と第1信号伝送線路1との電磁結合の強さを変化させることで、結合線路2から出力される電気信号の減衰量で表されるカプラ出力を制御することができる。
 結合出力端子P3は、結合線路2の第1端2aが接続され、結合線路2を伝送した電気信号を出力する。結合出力端子P3から出力された電気信号は、モニタリング信号として外部回路に入力される。図2に示すように、結合出力端子P3は、第1誘電体層11の上面に設けられる。
 抵抗接続端子P4は、結合線路2の第2端2bが接続されるとともに、外部の終端抵抗Rtに接続される。外部の終端抵抗Rtは、接地導体電極GND3に接続されている。図2に示すように、抵抗接続端子P4は、第1誘電体層11の上面に設けられる。
 結合線路2の第1端2aは、第1誘電体層11を貫通する貫通導体と第2誘電体層12を貫通する貫通導体24とを介して、結合出力端子P3と接続される。また、結合線路2の第2端2bは、第1誘電体層11を貫通する貫通導体と第2誘電体層12を貫通する貫通導体23とを介して、抵抗接続端子P4と接続される。
 (第2信号伝送部SG2)
 次に、第2信号伝送部SG2の構成について説明する。第2信号伝送部SG2は、ICチップ6のスイッチング素子を介して信号入力端子P1と信号出力端子P2との間に配設され、スイッチング素子によって電気的に導通または遮断される第2信号伝送線路3を含む。第2信号伝送線路3は、信号入力端子P1に低周波数の第1周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に導通され、信号入力端子P1に高周波数の第2周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に遮断される。
 本実施形態では、第2信号伝送部SG2は、ICチップ6のスイッチング素子による第2信号伝送線路3の電気的な導通または遮断を切り替えるためのスイッチング素子接続端子である、信号入力接続端子4a、第1伝送線路接続端子4b、第1接地端子4c、信号出力接続端子5a、第2伝送線路接続端子5b、および第2接地端子5cを、さらに含む。第2信号伝送線路3は、第1伝送線路接続端子4bと第2伝送線路接続端子5bとの間に配設される。
 第2信号伝送線路3は、詳細については後述するが、ICチップ6のスイッチング素子による、信号入力接続端子4a、第1伝送線路接続端子4b、第1接地端子4c、信号出力接続端子5a、第2伝送線路接続端子5b、および第2接地端子5cの各スイッチング端子間の接続切替え動作に応じて第1信号伝送線路1に対する接続状態が切り替えられる。図2に示すように、第2信号伝送線路3は、第2誘電体層12の上面であって、第1誘電体層11と第2誘電体層12との層間に所定の長さで設けられる。第2信号伝送線路3は、結合線路2と第2誘電体層12を挟んで対向しており、第2信号伝送線路3と結合線路2とは、それぞれ、直線状の導電体パターンが2つの屈曲点で同一方向に屈曲した形状に設けられており、誘電体層の積層方向に見たときに、重なるように配置されている。
 信号入力接続端子4aと第1伝送線路接続端子4bとは、対を成してICチップ6のスイッチング素子に接続され、一対の第1スイッチング素子接続端子として機能する。また、信号出力接続端子5aと第2伝送線路接続端子5bとは、対を成してICチップ6のスイッチング素子に接続され、一対の第1スイッチング素子接続端子として機能する。
 図2に示すように、信号入力接続端子4aは、第1誘電体層11の上面に設けられ、第1誘電体層11を貫通する貫通導体、第2誘電体層12を貫通する貫通導体21、および第3誘電体層13を貫通する貫通導体25を介して第1信号伝送線路1の第1端1aに接続される。さらに第4誘電体層14を貫通する貫通導体を介して信号入力端子P1に接続される。第1伝送線路接続端子4bは、第1誘電体層11の上面に設けられ、第1誘電体層11を貫通する貫通導体を介して第2信号伝送線路3の第1端3aに接続される。
 また、信号出力接続端子5aは、第1誘電体層11の上面に設けられ、第1誘電体層11を貫通する貫通導体、第2誘電体層12を貫通する貫通導体22、および第3誘電体層13を貫通する貫通導体26を介して第1信号伝送線路1の第2端1bに接続される。さらに第4誘電体層14を貫通する貫通導体を介して信号出力端子P2に接続される。第2伝送線路接続端子5bは、第1誘電体層11の上面に設けられ、第1誘電体層11を貫通する貫通導体を介して第2信号伝送線路3の第2端3bに接続される。
 信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間は、信号入力端子P1に低周波数の第1周波数帯域の電気信号が入力されたときに、ICチップ6のスイッチング素子によって電気的に導通される。そして、信号入力端子P1に高周波数の第2周波数帯域の電気信号が入力されたときに、ICチップ6のスイッチング素子によって電気的に遮断される。
 上記のような、ICチップ6のスイッチング素子による、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間の接続切替え動作に応じて、第2信号伝送線路3は、第1信号伝送線路1に対する接続状態が切り替えられる。具体的には、第2信号伝送線路3は、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が導通されたときに、信号入力端子P1と信号出力端子P2との間で、第1信号伝送線路1に並列接続され、信号入力端子P1に入力された電気信号の一部を信号出力端子P2に伝送する。
 第1伝送線路接続端子4bと第1接地端子4cとは、対を成してICチップ6のスイッチング素子に接続され、一対の第2スイッチング素子接続端子として機能する。また、第2伝送線路接続端子5bと第2接地端子5cとは、対を成してICチップ6のスイッチング素子に接続され、一対の第2スイッチング素子接続端子として機能する。
 図2に示すように、第1接地端子4cは、第1誘電体層11の上面に設けられ、外部の接地導体電極GND1に接続される。また、第2接地端子5cは、第1誘電体層11の上面に設けられ、外部の接地導体電極GND2に接続される。
 第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間は、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が電気的に導通されたときに、遮断される。また、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間は、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が電気的に遮断されたときに、導通される。
 図3は電気信号の周波数とカプラ出力との関係を示すグラフであり、図4は電気信号の周波数と挿入損失との関係を示すグラフである。図3および図4は、第1実施形態に基づく方向性結合器100をモデル化し、カプラ出力および挿入損失の周波数特性についてシミュレーションを行った結果を示す。
 0.100~3.000GHzの周波数帯域において解析を行い、信号入力端子P1に入力される電気信号の、低周波数の第1周波数帯域が0.699~0.960GHzであり、高周波数の第2周波数帯域が1.427~2.690GHzであると想定し、方向性結合器100の使用周波数帯域を0.699~2.690GHzとした。
 カプラ出力とは、信号入力端子P1に入力される電気信号の電力(AP1)に対する、結合出力端子P3から出力される電気信号の電力(AP3)の比AP3/AP1である減衰量で表される。挿入損失とは、信号入力端子P1に入力される電気信号の電力(AP1)に対する、信号出力端子P2から出力される電気信号の電力(AP2)の比AP2/AP1である減衰量で表される。
 カプラ出力の周波数特性を示す図3のグラフにおいて、線分301は、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が導通され、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間が遮断されたときの、カプラ出力と周波数との関係を示すものである。すなわち、図3のグラフにおいて、線分301は、第2信号伝送線路3が第1信号伝送線路1に並列接続されたときの、カプラ出力と周波数との関係を示すものである。また、カプラ出力の周波数特性を示す図3のグラフにおいて、線分302は、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が遮断され、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間が導通されたときの、カプラ出力と周波数との関係を示すものである。すなわち、図3のグラフにおいて、線分302は、第2信号伝送線路3が接地導体電極GND1,GND2に接続されて短絡されたときの、カプラ出力と周波数との関係を示すものである。
 また、挿入損失の周波数特性を示す図4のグラフにおいて、線分303は、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が導通され、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間が遮断されたときの、挿入損失と周波数との関係を示すものである。すなわち、図4のグラフにおいて、線分303は、第2信号伝送線路3が第1信号伝送線路1に並列接続されたときの、挿入損失と周波数との関係を示すものである。また、挿入損失の周波数特性を示す図4のグラフにおいて、線分304は、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が遮断され、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間が導通されたときの、挿入損失と周波数との関係を示すものである。すなわち、図4のグラフにおいて、線分304は、第2信号伝送線路3が接地導体電極GND1,GND2に接続されて短絡されたときの、挿入損失と周波数との関係を示すものである。
 本実施形態の方向性結合器100では、信号入力端子P1に低周波数の第1周波数帯域の電気信号が入力されたときに、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が導通されて、第2信号伝送線路3が第1信号伝送線路1に並列接続される。また、方向性結合器100では、信号入力端子P1に高周波数の第2周波数帯域の電気信号が入力されたときに、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が遮断される。
 本実施形態の方向性結合器100が上記のように構成されることによって、結合線路2の電磁結合が相対的に弱くなる、低周波数の第1周波数帯域の電気信号が入力されたときに、第1信号伝送線路1に第2信号伝送線路3が並列接続されて、結合線路2の電磁結合が強くなり、結合線路2の電磁結合が相対的に強くなる。高周波数の第2周波数帯域の電気信号が入力されたときに、第1信号伝送線路1に第2信号伝送線路3が接続されずに、結合線路2の電磁結合が弱くなる。カプラ出力の周波数特性を示す図3のグラフ、および、挿入損失の周波数特性を示す図4のグラフから明らかなように、周波数によるカプラ出力の変化を低減する(カプラ出力の最小値と最大値との差分ΔAを小さくする)とともに、挿入損失の変化を低減することができる。
 ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が遮断されたときに、ICチップ6のスイッチング素子に容量が存在し、方向性結合器100の方向性が低下する場合がある。ここで、方向性結合器100の方向性とは、信号入力端子P1に入力される電気信号の電力(AP1)に対する、結合出力端子P3から出力される電気信号の電力(AP3)の比AP3/AP1であるカプラ出力と、信号出力端子P2から入力される電気信号の電力(AP2)に対する、結合出力端子P3から出力される電気信号の電力(AP3)の比AP3/AP2である減衰量との差分、[AP3/AP1-AP3/AP2]で表される。方向性を表す[AP3/AP1-AP3/AP2]が大きい値であるほど、方向性結合器100の方向性の特性がよいことを示す。
 そこで、本実施形態の方向性結合器100では、信号入力端子P1に低周波数の第1周波数帯域の電気信号が入力され、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が導通されたときに、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間が遮断される。そして、方向性結合器100では、信号入力端子P1に高周波数の第2周波数帯域の電気信号が入力され、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が遮断されたときに、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間が導通される。
 本実施形態の方向性結合器100が上記のように構成されることによって、ICチップ6のスイッチング素子によって、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が遮断されたときに、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間が導通され、第2信号伝送線路3が接地導体電極GND1,GND2に接続されて短絡されるので、第2信号伝送線路3と結合線路2との結合容量が小さくなり、方向性を表す[AP3/AP1-AP3/AP2]が小さくなることを抑制することができ、方向性結合器100の方向性が低下することを抑制することができる。
 本実施形態の通信モジュール200は、上記のように構成されて、周波数によるカプラ出力の変化と挿入損失の変化とを低減することができる方向性結合器100と、方向性結合器100の第1誘電体層11の上面に実装されるスイッチング素子を備えるICチップ6とを含んで構成される。
 通信モジュール200において、ICチップ6のスイッチング素子は、信号入力接続端子4a、第1伝送線路接続端子4b、第1接地端子4c、信号出力接続端子5a、第2伝送線路接続端子5b、および第2接地端子5cに接続される。
 そして、ICチップ6のスイッチング素子は、信号入力端子P1に低周波数の第1周波数帯域の電気信号が入力されたときに、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間が導通されたときに、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間を遮断させる。また、ICチップ6のスイッチング素子は、信号入力端子P1に高周波数の第2周波数帯域の電気信号が入力されたときに、信号入力接続端子4aと第1伝送線路接続端子4bとの間、および、信号出力接続端子5aと第2伝送線路接続端子5bとの間を遮断させ、第1伝送線路接続端子4bと第1接地端子4cとの間、および、第2伝送線路接続端子5bと第2接地端子5cとの間を導通させる。
 通信モジュール200は、周波数によるカプラ出力の変化と挿入損失の変化とを低減することができる方向性結合器100を備えて。このような通信モジュール200を通信装置に搭載することによって、広範な周波数帯域にわたって良好な通信特性を有する通信装置を実現することができる。
 図5は、本発明の第2実施形態に係る方向性結合器100Aを備えた通信モジュール200Aの等価回路図である。方向性結合器100Aは、第2信号伝送部SG2におけるスイッチング素子接続端子の構成が前述した第2信号伝送部SG2と異なること以外は、方向性結合器100と同様に構成される。また、通信モジュール200Aは、スイッチング素子接続端子の構成が異なる第2信号伝送部SG2を有する方向性結合器100Aを備えたこと以外は、通信モジュール200と同様に構成される。このように本実施形態の方向性結合器100Aおよび通信モジュール200Aは、前述した第1実施形態に係る方向性結合器100および通信モジュール200と同様の部分を有する。したがって、以下の説明および図において、対応する同様の部分については同一の参照符号を付すとともに、説明を省略する。
 本実施形態の方向性結合器100Aの第2信号伝送部SG2は、ICチップ6のスイッチング素子に接続されるスイッチング素子接続端子である、信号入力接続端子7a、第1伝送線路接続端子7b,7c、第1接地端子7d、信号出力接続端子8a、第2伝送線路接続端子8b,8c、および第2接地端子8dと、第1伝送線路接続端子7b,7cと第2伝送線路接続端子8b,8cとの間に配設される第2信号伝送線路3と、を含む。
 信号入力接続端子7aと第1伝送線路接続端子7bとは、対を成してICチップ6のスイッチング素子に接続され、一対の第1スイッチング素子接続端子として機能する。また、信号出力接続端子8aと第2伝送線路接続端子8bとは、対を成してICチップ6のスイッチング素子に接続され、一対の第1スイッチング素子接続端子として機能する。
 信号入力接続端子7aは、第1信号伝送線路1の第1端1aに接続されるとともに、信号入力端子P1に接続される。第1伝送線路接続端子7bは、第2信号伝送線路3の第1端3aに接続される。
 また、信号出力接続端子8aは、第1信号伝送線路1の第2端1bに接続されるとともに、信号出力端子P2に接続される。第2伝送線路接続端子8bは、第2信号伝送線路3の第2端3bに接続される。
 信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間は、信号入力端子P1に低周波数の第1周波数帯域の電気信号が入力されたときに、ICチップ6のスイッチング素子によって電気的に導通され、信号入力端子P1に高周波数の第2周波数帯域の電気信号が入力されたときに、ICチップ6のスイッチング素子によって電気的に遮断される。
 上記のような、ICチップ6のスイッチング素子による、信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間の接続切替え動作に応じて、第2信号伝送線路3は、第1信号伝送線路1に対する接続状態が切り替えられる。具体的には、第2信号伝送線路3は、ICチップ6のスイッチング素子によって、信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間が導通されたときに、信号入力端子P1と信号出力端子P2との間で、第1信号伝送線路1に並列接続され、信号入力端子P1に入力された電気信号の一部を信号出力端子P2に伝送する。
 本実施形態の方向性結合器100Aが上記のように構成されることによって、結合線路2の電磁結合が相対的に弱くなる、低周波数の第1周波数帯域の電気信号が入力されたときに、第1信号伝送線路1に第2信号伝送線路3が並列接続されて、結合線路2の電磁結合が強くなり、結合線路2の電磁結合が相対的に強くなる、高周波数の第2周波数帯域の電気信号が入力されたときに、第1信号伝送線路1に第2信号伝送線路3が接続されずに、結合線路2の電磁結合が弱くなるので、周波数によるカプラ出力の変化を低減するとともに、挿入損失の変化を低減することができる。
 さらに、本実施形態の方向性結合器100Aにおいて、第1伝送線路接続端子7cと第1接地端子7dとは、対を成してICチップ6のスイッチング素子に接続され、一対の第2スイッチング素子接続端子として機能する。また、第2伝送線路接続端子8cと第2接地端子8dとは、対を成してICチップ6のスイッチング素子に接続され、一対の第2スイッチング素子接続端子として機能する。
 第1伝送線路接続端子7cは、第2信号伝送線路3の第1端3aに接続される。また、第2伝送線路接続端子8cは、第2信号伝送線路3の第2端3bに接続される。
 第1接地端子7dは、外部の接地導体電極GND1に接続される。また、第2接地端子8dは、外部の接地導体電極GND2に接続される。
 第1伝送線路接続端子7cと第1接地端子7dとの間、および、第2伝送線路接続端子8cと第2接地端子8dとの間は、ICチップ6のスイッチング素子によって、信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間が電気的に導通されたときに、遮断される。また、第1伝送線路接続端子7cと第1接地端子7dとの間、および、第2伝送線路接続端子8cと第2接地端子8dとの間は、ICチップ6のスイッチング素子によって、信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間が電気的に遮断されたときに、導通される。
 本実施形態の方向性結合器100Aが上記のように構成されることによって、ICチップ6のスイッチング素子によって、信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間が遮断されたときに、第1伝送線路接続端子7cと第1接地端子7dとの間、および、第2伝送線路接続端子8cと第2接地端子8dとの間が導通され、第2信号伝送線路3が接地導体電極GND1,GND2に接続されて短絡されるので、第2信号伝送線路3と結合線路2との結合容量が小さくなり、方向性を表す[AP3/AP1-AP3/AP2]が小さくなることを抑制することができ、方向性結合器100Aの方向性が低下することを抑制することができる。
 本実施形態の通信モジュール200Aは、上記のように構成されて、周波数によるカプラ出力の変化と挿入損失の変化とを低減することができる方向性結合器100Aと、スイッチング素子を備えるICチップ6とを含んで構成される。
 通信モジュール200Aにおいて、ICチップ6のスイッチング素子は、信号入力接続端子7a、第1伝送線路接続端子7b,7c、第1接地端子7d、信号出力接続端子8a、第2伝送線路接続端子8b,8c、および第2接地端子8dに接続される。
 そして、ICチップ6のスイッチング素子は、信号入力端子P1に低周波数の第1周波数帯域の電気信号が入力されたときに、信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間が導通させ、第1伝送線路接続端子7cと第1接地端子7dとの間、および、第2伝送線路接続端子8cと第2接地端子8dとの間を遮断させる。また、ICチップ6のスイッチング素子は、信号入力端子P1に高周波数の第2周波数帯域の電気信号が入力されたときに、信号入力接続端子7aと第1伝送線路接続端子7bとの間、および、信号出力接続端子8aと第2伝送線路接続端子8bとの間を遮断させ、第1伝送線路接続端子7cと第1接地端子7dとの間、および、第2伝送線路接続端子8cと第2接地端子8dとの間を導通させる。
 通信モジュール200Aは、周波数によるカプラ出力の変化と挿入損失の変化とを低減することができる方向性結合器100Aを備えているので、このような通信モジュール200Aを通信装置に搭載することによって、広範な周波数帯域にわたって良好な通信特性を有する通信装置を実現することができる。
 なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を加えることは何ら差し支えない。例えば、ICチップ6の代わりに、ダイオードまたはMEMSを用いたスイッチング手段、あるいはリレーなどの機械的なスイッチング手段を用いても構わない。また、第1信号伝送線路1、第2信号伝送線路3、結合線路2をIC内の配線や再配線層を用いて形成したり、プリント基板など用いて形成しても構わない。また、第1信号伝送線路1、第2信号伝送線路3、結合線路2を互いに異なる層に配置するのではなく、一部を同一層に形成し電磁結合させても構わない。
 1 第1信号伝送線路
 2 結合線路
 3 第2信号伝送線路
 4a,7a 信号入力接続端子
 4b,7b,7c 第1伝送線路接続端子
 4c,7d 第1接地端子
 5a,8a 信号出力接続端子
 5b,8b,8c 第2伝送線路接続端子
 5c,8d 第2接地端子
 6 ICチップ
 11 第1誘電体層
 12 第2誘電体層
 13 第3誘電体層
 14 第4誘電体層
 21~26 貫通導体
 100,100A 方向性結合器
 200,200A 通信モジュール
 CP カプラ部
 P1 信号入力端子
 P2 信号出力端子
 P3 結合出力端子
 P4 抵抗接続端子
 SG1 第1信号伝送部
 SG2 第2信号伝送部

Claims (5)

  1.  スイッチング素子を備える通信モジュールに用いられる方向性結合器であって、
     予め定める第1周波数帯域の電気信号、および第1周波数帯域よりも高い、予め定める第2周波数帯域の電気信号が入力される信号入力端子と、
     前記信号入力端子に入力された電気信号を伝送する第1信号伝送線路と、
     前記第1信号伝送線路を伝送された電気信号を出力する信号出力端子と、
     前記第1信号伝送線路と電磁結合し、該電磁結合によって生じた電気信号を伝送する結合線路と、
     前記結合線路の第1端が接続され、前記結合線路を伝送された電気信号を出力する結合出力端子と、
     前記結合線路の第2端が接続されるとともに、外部の終端抵抗に接続される抵抗接続端子と、
     前記信号入力端子と前記信号出力端子との間にスイッチング素子を介して配設され、スイッチング素子によって電気的に導通または遮断される第2信号伝送線路であって、
      前記信号入力端子に前記第1周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に導通され、
      前記信号入力端子に前記第2周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に遮断される、第2信号伝送線路と、を含むことを特徴とする方向性結合器。
  2.  スイッチング素子による前記第2信号伝送線路の電気的な導通または遮断を切り替えるための一対の第1スイッチング素子接続端子であって、第1端子が前記信号入力端子または前記信号出力端子に接続され、第2端子が前記第2信号伝送線路に接続される、一対の第1スイッチング素子接続端子を、さらに含み、
     前記一対の第1スイッチング素子接続端子の前記第1端子と前記第2端子との間は、
      前記信号入力端子に前記第1周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に導通され、
      前記信号入力端子に前記第2周波数帯域の電気信号が入力されたときに、スイッチング素子によって電気的に遮断されることを特徴とする請求項1に記載の方向性結合器。
  3.  スイッチング素子に接続される一対の第2スイッチング素子接続端子であって、第1端子が前記第2信号伝送線路に接続され、第2端子が接地される、一対の第2スイッチング素子接続端子を、さらに含み、
     前記一対の第2スイッチング素子接続端子の前記第1端子と前記第2端子との間は、
      スイッチング素子によって前記一対の第1スイッチング素子接続端子の第1端子と前記第2端子との間が電気的に導通されたときに、遮断され、
      前記スイッチング素子によって前記一対の第1スイッチング素子接続端子の第1端子と第2端子との間が電気的に遮断されたときに、導通されることを特徴とする請求項2に記載の方向性結合器。
  4.  前記第1周波数帯域は、0.699~0.960GHzであり、
     前記第2周波数帯域は、1.427~2.690GHzであることを特徴とする請求項1~3のいずれか1つに記載の方向性結合器。
  5.  請求項1~4のいずれか1つに記載の方向性結合器と、
     前記第2信号伝送線路に設けられ、該第2信号伝送線路を導通または遮断させるスイッチング素子であって、
      前記信号入力端子に前記第1周波数帯域の電気信号が入力されたときに、前記第2信号伝送線路を電気的に導通させ、
      前記信号入力端子に前記第2周波数帯域の電気信号が入力されたときに、前記第2信号伝送線路を電気的に遮断させるスイッチング素子と、を含むことを特徴とする通信モジュール。
     
PCT/JP2016/064255 2015-07-22 2016-05-13 方向性結合器および通信モジュール WO2017013927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/561,080 US10263315B2 (en) 2015-07-22 2016-05-13 Directional coupler and communication module
CN201680018575.3A CN107408750B (zh) 2015-07-22 2016-05-13 方向性耦合器以及通信模块
EP16827491.8A EP3327859B1 (en) 2015-07-22 2016-05-13 Directional coupler and communication module
JP2017529481A JP6363798B2 (ja) 2015-07-22 2016-05-13 方向性結合器および通信モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-144537 2015-07-22
JP2015144537 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017013927A1 true WO2017013927A1 (ja) 2017-01-26

Family

ID=57834034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064255 WO2017013927A1 (ja) 2015-07-22 2016-05-13 方向性結合器および通信モジュール

Country Status (5)

Country Link
US (1) US10263315B2 (ja)
EP (1) EP3327859B1 (ja)
JP (1) JP6363798B2 (ja)
CN (1) CN107408750B (ja)
WO (1) WO2017013927A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212238A1 (ja) * 2017-05-19 2018-11-22 株式会社村田製作所 方向性結合器および通信装置
WO2019189228A1 (ja) * 2018-03-29 2019-10-03 株式会社村田製作所 方向性結合器
CN110459839A (zh) * 2019-06-30 2019-11-15 南通大学 一种频率可调差分双通带滤波器
CN113594659A (zh) * 2020-04-30 2021-11-02 株式会社村田制作所 定向耦合器
WO2022054835A1 (ja) * 2020-09-14 2022-03-17 株式会社村田製作所 方向性結合器
US11309617B2 (en) 2018-02-05 2022-04-19 Murata Manufacturing Co., Ltd. Directional coupler
US11456517B2 (en) 2019-08-01 2022-09-27 Murata Manufacturing Co., Ltd. Directional coupler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976550A (zh) * 2021-02-23 2022-08-30 天工方案公司 带有可切换电感器的智能双向耦合器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280811A (ja) * 2001-03-19 2002-09-27 Toshiba Corp マイクロ波回路
US20030214365A1 (en) * 2002-05-20 2003-11-20 Aharon Adar High directivity multi-band coupled-line coupler for RF power amplifier
JP2004179800A (ja) * 2002-11-25 2004-06-24 Nec Saitama Ltd 送信出力制御回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363071A (en) * 1993-05-04 1994-11-08 Motorola, Inc. Apparatus and method for varying the coupling of a radio frequency signal
FI20065144A (fi) * 2006-02-28 2007-08-29 Filtronic Comtek Oy Suuntakytkin
JP5169844B2 (ja) * 2009-01-06 2013-03-27 三菱電機株式会社 方向性結合器
JP5381528B2 (ja) * 2009-09-09 2014-01-08 三菱電機株式会社 方向性結合器
CN102484305B (zh) 2009-12-18 2015-01-28 株式会社村田制作所 定向耦合器
US8417196B2 (en) * 2010-06-07 2013-04-09 Skyworks Solutions, Inc. Apparatus and method for directional coupling
JP5609574B2 (ja) * 2010-11-12 2014-10-22 三菱電機株式会社 方向性結合器
JP5652542B2 (ja) * 2011-03-14 2015-01-14 株式会社村田製作所 方向性結合器
JPWO2013042756A1 (ja) * 2011-09-23 2015-03-26 日本電気株式会社 方向性結合器及びそれを用いた位相差制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280811A (ja) * 2001-03-19 2002-09-27 Toshiba Corp マイクロ波回路
US20030214365A1 (en) * 2002-05-20 2003-11-20 Aharon Adar High directivity multi-band coupled-line coupler for RF power amplifier
JP2004179800A (ja) * 2002-11-25 2004-06-24 Nec Saitama Ltd 送信出力制御回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212238A1 (ja) * 2017-05-19 2018-11-22 株式会社村田製作所 方向性結合器および通信装置
US11309617B2 (en) 2018-02-05 2022-04-19 Murata Manufacturing Co., Ltd. Directional coupler
WO2019189228A1 (ja) * 2018-03-29 2019-10-03 株式会社村田製作所 方向性結合器
US11335987B2 (en) 2018-03-29 2022-05-17 Murata Manufacturing Co., Ltd. Directional coupler
CN110459839A (zh) * 2019-06-30 2019-11-15 南通大学 一种频率可调差分双通带滤波器
US11456517B2 (en) 2019-08-01 2022-09-27 Murata Manufacturing Co., Ltd. Directional coupler
CN113594659A (zh) * 2020-04-30 2021-11-02 株式会社村田制作所 定向耦合器
WO2022054835A1 (ja) * 2020-09-14 2022-03-17 株式会社村田製作所 方向性結合器

Also Published As

Publication number Publication date
CN107408750B (zh) 2019-11-15
US20180062236A1 (en) 2018-03-01
CN107408750A (zh) 2017-11-28
EP3327859A1 (en) 2018-05-30
EP3327859B1 (en) 2020-02-26
JPWO2017013927A1 (ja) 2018-02-15
JP6363798B2 (ja) 2018-07-25
US10263315B2 (en) 2019-04-16
EP3327859A4 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6363798B2 (ja) 方向性結合器および通信モジュール
JP6881406B2 (ja) 方向性結合器
US9281797B2 (en) High-frequency device and directional coupler
USRE43957E1 (en) High-frequency module including connection terminals arranged at a small pitch
JP6662349B2 (ja) 方向性結合器、高周波フロントエンドモジュール、および、通信機器
JP5790771B2 (ja) 高周波モジュール
US20220407211A1 (en) Directional coupler
US20200295737A1 (en) Multiplexer
JP6224484B2 (ja) 方向性結合器および高周波モジュール
US10153746B2 (en) Wiring board with filter circuit and electronic device
WO2016006676A1 (ja) 高周波モジュール
WO2022024560A1 (ja) 回路基板及び電子機器
JP4389521B2 (ja) 弾性波フィルタ
US20170373364A1 (en) Circulator, front-end circuit, antenna circuit, and communication apparatus
JP2016100797A (ja) フィルタ一体型カプラおよび通信モジュール
CN112582770B (zh) 定向耦合器及电子部件模块
US11588217B2 (en) High-frequency module
JP5736955B2 (ja) 高周波装置
KR20100042308A (ko) 유도결합을 이용한 마이크로스트립 대역통과필터 및 그를 포함하는 장치
JP2010081310A (ja) 無線通信モジュール用基板およびそれを用いた無線通信モジュール
JP6502826B2 (ja) 配線基板および高周波モジュール
CN108736111B (zh) 滤波器
JP2015177330A (ja) 方向性結合器および高周波モジュール
JP2016220068A (ja) フィルタ一体型カプラおよびカプラモジュール
CN115966873A (zh) 定向耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827491

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016827491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561080

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017529481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE