WO2017013907A1 - 化学蓄熱装置 - Google Patents
化学蓄熱装置 Download PDFInfo
- Publication number
- WO2017013907A1 WO2017013907A1 PCT/JP2016/060379 JP2016060379W WO2017013907A1 WO 2017013907 A1 WO2017013907 A1 WO 2017013907A1 JP 2016060379 W JP2016060379 W JP 2016060379W WO 2017013907 A1 WO2017013907 A1 WO 2017013907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- temperature
- acquisition unit
- reactor
- reservoir
- Prior art date
Links
- 239000000126 substance Substances 0.000 title claims abstract description 94
- 238000005338 heat storage Methods 0.000 title claims abstract description 93
- 238000011084 recovery Methods 0.000 claims abstract description 120
- 238000006243 chemical reaction Methods 0.000 claims abstract description 65
- 239000012429 reaction media Substances 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims description 58
- 239000003054 catalyst Substances 0.000 description 35
- 230000004308 accommodation Effects 0.000 description 24
- 238000000746 purification Methods 0.000 description 23
- 230000004913 activation Effects 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 238000011144 upstream manufacturing Methods 0.000 description 9
- 239000003463 adsorbent Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 239000011324 bead Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000003795 desorption Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 101100365516 Mus musculus Psat1 gene Proteins 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010705 motor oil Substances 0.000 description 3
- -1 or Sr Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- NEEVCWPRIZJJRJ-LWRDCAMISA-N 5-(benzylideneamino)-6-[(e)-benzylideneamino]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound C=1C=CC=CC=1C=NC=1C(=O)NC(=S)NC=1\N=C\C1=CC=CC=C1 NEEVCWPRIZJJRJ-LWRDCAMISA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 101100170991 Caenorhabditis elegans dpf-6 gene Proteins 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- One aspect of the present invention relates to a chemical heat storage device.
- a chemical heat storage device that is applied to an exhaust purification system that purifies exhaust discharged from an internal combustion engine of a vehicle is known.
- the reaction medium stored in the reservoir is supplied to the reactor through the supply pipe.
- the supplied reaction medium and the reaction material in the reactor chemically react to generate heat. This heat heats the exhaust as a heating target through a heat exchanger or the like.
- the temperature of the exhaust discharged from the internal combustion engine becomes higher than the reaction medium regeneration temperature
- the heat of the exhaust is given to the reaction material in the reactor, and the reaction medium is desorbed from the reaction material in the reactor. Then, the desorbed reaction medium is collected in the reservoir through the supply pipe.
- Patent Document 1 discloses a chemical heat storage device for heating exhaust gas, which is disposed upstream of a catalyst body in a gas passage tube and adsorbs water as a reaction medium. And a first container containing a reaction material that generates heat and absorbs heat by desorption, and a reaction medium that is disposed outside the gas passage pipe and supplies the reaction medium to the first container and collects the reaction medium returning from the first container.
- a chemical heat storage device is described that includes a second container, a communication pipe that communicates the first container and the second container, and an on-off valve provided in the middle of the communication pipe.
- the opening / closing of the on / off valve is controlled based on the ON / OFF of the ignition key as described above, the object to be heated (exhaust) temporarily during the recovery mode in which the reaction medium is recovered from the first container to the second container.
- the temperature decreases, the reaction medium collected in the second container so far is supplied again from the second container to the first container. That is, when the reaction medium is recovered, the opening / closing valve cannot be controlled at an appropriate timing, and as a result, there arises a problem that the reaction medium cannot be efficiently recovered from the first container to the second container.
- An object of one aspect of the present invention is to provide a chemical heat storage device that can efficiently recover a reaction medium.
- a chemical heat storage device is a chemical heat storage device that heats an object to be heated.
- the chemical heat storage device generates heat by a chemical reaction between a storage medium that stores a reaction medium and the reaction medium, and the reaction medium when heated.
- a reactor having a desorbing reaction material, a supply pipe connecting the reservoir and the reactor, a valve disposed in the supply pipe for opening and closing the flow path of the reaction medium, and a reaction for obtaining the pressure of the reactor
- a control unit that performs valve opening control and valve closing control, and the control unit is configured such that when the reaction medium is recovered from the reactor to the reservoir, the reactor pressure acquired by the reactor pressure acquisition unit is The reservoir acquired by the reservoir pressure acquisition unit If it is more pressure, it performs opening control of the valve.
- the control unit when the reaction medium is recovered, if the pressure in the reactor is equal to or higher than the pressure in the storage, the control unit performs valve opening control.
- the pressure in the reactor is greater than the pressure in the reservoir. This prevents the valve from being opened when, for example, the pressure in the reservoir is greater than the pressure in the reactor and the reaction medium cannot move from the reactor to the reservoir.
- the pressure of the reactor is equal to or higher than the pressure of the reservoir, and it is possible to prevent the valve from being opened even though the reaction medium can move from the reactor to the reservoir.
- the valve can be opened at an appropriate timing for recovering the reaction medium. As a result, the reaction medium can be efficiently recovered from the reactor to the reservoir.
- a chemical heat storage device includes a reactor temperature acquisition unit that acquires the temperature of a reactor, and a storage amount acquisition unit that acquires a storage amount of a reaction medium stored in a reservoir.
- the reactor pressure acquisition unit may acquire the pressure of the reactor based on the reactor temperature acquired by the reactor temperature acquisition unit and the storage amount acquired by the storage amount acquisition unit.
- the reactor pressure since the reactor pressure is acquired by the reactor pressure acquisition unit based on the reactor temperature and the reaction medium capacity, the reactor pressure can be acquired without providing a pressure sensor or the like in the reactor. .
- cost reduction can be realized by reducing the number of components in the chemical heat storage device.
- the chemical heat storage device includes a reservoir temperature acquisition unit that acquires the temperature of the reservoir, and the storage amount acquisition unit includes the temperature of the reservoir acquired by the reservoir temperature acquisition unit, and the reservoir The storage amount may be acquired based on the pressure of the reservoir acquired by the pressure acquisition unit.
- the capacity of the reaction medium since the capacity of the reaction medium is acquired based on the temperature and pressure of the reservoir, the capacity of the reaction medium can be accurately acquired in consideration of fluctuations in both the temperature and pressure of the reservoir, As a result, the pressure of the reactor based on the capacity can be accurately obtained. Thereby, the valve opening control based on the pressure of the reactor can be performed more appropriately. As a result, the reaction medium can be collected more efficiently.
- a chemical heat storage device comprises a storage temperature acquisition unit that acquires the temperature of a storage, and a storage amount acquisition unit that acquires a storage amount of a reaction medium stored in the storage, and stores
- the container pressure acquisition unit may acquire the pressure of the reservoir based on the temperature of the reservoir acquired by the reservoir temperature acquisition unit and the storage amount acquired by the storage amount acquisition unit.
- the pressure of the reservoir can be acquired without providing a pressure sensor or the like in the reservoir. .
- cost reduction can be realized by reducing the number of components in the chemical heat storage device.
- the chemical heat storage device includes a reactor temperature acquisition unit that acquires the temperature of the reactor, and the storage amount acquisition unit includes the temperature of the reactor acquired by the reactor temperature acquisition unit, and the reactor The capacity may be acquired based on the pressure of the reactor acquired by the pressure acquisition unit.
- the capacity of the reaction medium since the capacity of the reaction medium is acquired based on the temperature and pressure of the reactor, the capacity of the reaction medium can be accurately acquired in consideration of fluctuations in both the temperature and pressure of the reactor, As a result, the pressure of the reservoir based on the capacity can be accurately obtained. Thereby, the opening control of the valve based on the pressure of the reservoir can be performed more appropriately. As a result, the reaction medium can be collected more efficiently.
- the chemical heat storage device includes a heating target temperature acquisition unit that acquires the temperature of a heating target, and the control unit is a reactor pressure acquisition unit at the time of recovery of the reaction medium from the reactor to the reservoir.
- the pressure of the reactor acquired by the above is equal to or higher than the pressure of the reservoir acquired by the reservoir pressure acquisition unit, and the temperature of the heating target acquired by the heating target temperature acquisition unit is equal to or higher than a predetermined value. Further, valve opening control may be performed.
- the pressure of the reactor is equal to or higher than the pressure of the reservoir, and in addition to the state in which the reaction medium can move from the reactor to the reservoir, the temperature of the heating target is equal to or higher than a predetermined value.
- the object to be heated is sufficiently warmed (for example, when the object to be heated such as the catalyst or exhaust is sufficiently warmed to a temperature at which the catalyst can obtain catalytic activity, or the reaction medium is removed from the reaction material).
- the valve is opened when the exhaust gas or oil is sufficiently warmed to the temperature at which it is released. Thereby, it is possible to prevent the valve from being opened in a state where the heating target is not sufficiently warmed. That is, the valve opening control can be performed at a more appropriate timing. As a result, the reaction medium can be recovered more efficiently from the reactor to the reservoir.
- a chemical heat storage device capable of efficiently collecting a reaction medium.
- FIG. 1 is a schematic configuration diagram showing an exhaust purification system including a chemical heat storage device according to the first embodiment of the present invention.
- the exhaust purification system 1 is disposed in an exhaust system of a diesel engine 2 (hereinafter simply referred to as an engine 2) that is an internal combustion engine of a vehicle, and removes harmful substances (environmental pollutants) contained in exhaust discharged from the engine 2. Purify.
- the exhaust purification system 1 includes a heat exchanger 4, an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 5, which are arranged in order from an upstream side to a downstream side in an exhaust pipe 3 that is an exhaust passage connected to an engine 2.
- a diesel exhaust particulate filter (DPF) 6, a selective reduction catalyst (SCR) 7 and an oxidation catalyst (ASC: Ammonia Slip Catalyst) 8 are provided.
- the heat exchanger 4 transfers heat between the exhaust from the engine 2 and a reaction material 14 described later.
- the heat exchanger 4 has a honeycomb structure, for example.
- the DOC 5 oxidizes and purifies HC and CO contained in the exhaust.
- the DPF 6 collects and removes particulate matter (PM) contained in the exhaust gas.
- the SCR 7 reduces and purifies NOx contained in the exhaust with urea or ammonia (NH 3 ).
- the ASC 8 oxidizes and purifies NH 3 that has passed through the SCR 7 and has flowed downstream of the SCR 7.
- Exhaust temperature sensors 18 are arranged on the upstream side and the downstream side of the heat exchanger 4 in the exhaust pipe 3.
- the exhaust temperature sensor 18 detects the temperature of exhaust from the engine 2 that flows in the exhaust pipe 3.
- the exhaust temperature sensor 18 detects the temperature of the exhaust from the engine 2 at regular intervals, for example, and outputs the detected temperature information to the controller 20 described later.
- Each catalyst of DOC5, SCR7, and ASC8 has a temperature range that can exhibit the ability to purify environmental pollutants, that is, an activation temperature.
- an activation temperature immediately after the engine 2 is started, the temperature of the exhaust gas immediately after being discharged from the engine 2 is as low as about 100 ° C., and may be lower than the activation temperature of each catalyst. Even in such a case, it is necessary to quickly bring the temperature at each catalyst to the activation temperature in order to exhibit the purification ability of each catalyst.
- the exhaust gas purification system 1 includes a chemical heat storage device 10 that heats the exhaust gas via the heat exchanger 4 arranged on the most upstream side of the exhaust pipe 3.
- a chemical heat storage device 10 that heats the exhaust gas via the heat exchanger 4 arranged on the most upstream side of the exhaust pipe 3.
- the chemical heat storage device 10 uses the NH 3 as a reaction medium and utilizes a reversible chemical reaction to heat the exhaust gas to be heated via the heat exchanger 4 without any external energy. That is, the chemical heat storage device 10 normally stores heat by separating a reaction material 14 and a reaction medium, which will be described later, and reacts the reaction medium when the heat exchanger 4 needs to be heated. By supplying to the material 14, heat is generated from the reaction material 14 and the exhaust gas is heated through the heat exchanger 4.
- the chemical heat storage device 10 includes a storage 11 (reservoir), a heater 12 (reactor), a supply pipe 15, a valve 16, a controller 20, pressure sensors 21 and 23, and a temperature sensor 19. .
- the storage 11 includes an adsorbent 13 that can hold and desorb NH 3 by physical adsorption of NH 3 as a reaction medium.
- an adsorbent 13 that can hold and desorb NH 3 by physical adsorption of NH 3 as a reaction medium.
- the adsorbent 13 activated carbon, carbon black, mesoporous carbon, nanocarbon, zeolite, or the like is used.
- the heater 12 is disposed around the exhaust pipe 3 so as to correspond to the heat exchanger 4 in the exhaust pipe 3. That is, the heater 12 is disposed so as to heat the heat exchanger 4.
- the heater 12 has, for example, an annular cross section surrounding the exhaust pipe 3.
- the cross-section of the annular cross section is a surface obtained by cutting the heater 12 perpendicular to the exhaust flow direction in the exhaust pipe 3.
- the heater 12 has a reaction material 14 that chemically reacts with NH 3 to generate heat, and stores the heat by desorption of NH 3 by being heated by the heat of exhaust gas that has become high temperature. Therefore, in the heater 12, when NH 3 is supplied from the storage 11, the NH 3 and the reaction material 14 chemically react to generate heat. In the heater 12, when heat equal to or higher than the desorption start temperature is applied, NH 3 is desorbed from the reaction material 14 and begins to release NH 3 . Since the exothermic temperature and desorption start temperature differ depending on the combination of the reaction medium (NH 3 in this embodiment) and the reaction material 14, the reaction medium and the reaction material 14 are appropriately selected according to the target heating temperature to be heated. The
- a halide represented by the composition formula MXa is used as the reaction material 14.
- M is an alkaline earth metal such as Mg, Ca, or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu, or Zn.
- X is Cl, Br, I or the like.
- a is a number specified by the valence of M, and is 2 to 3.
- the reaction material 14 may be press-molded at a pressure of 20 to 100 MPa, for example. By this press molding, the reaction material 14 is molded into a molded body such as a plate, pellet, or tablet.
- the reaction material 14 disposed in the heater 12 is made of a heat conduction material that has a higher thermal conductivity than the reaction material 14 and serves as a heat conduction path for efficiently transmitting heat generated in the reaction material 14 to the heat exchanger 4.
- the powdered reaction material 14 and the heat conducting material are uniformly mixed with a powder mixer or the like, and the mixture is molded. It is also possible to press and harden it into
- the heat conducting material for example, carbon fiber, carbon bead, SiC bead, metal bead, polymer bead, polymer fiber, or the like is used.
- metal beads for example, metal beads such as Cu, Ag, Ni, Ci—Cr, Al, Fe, or stainless steel are used. Moreover, you may use the material which processed metal sheets, such as a graphite sheet or aluminum, as a heat conductive material.
- the supply pipe 15 connects the storage 11 and the heater 12.
- the supply pipe 15 constitutes a supply flow path through which NH 3 can flow between the storage 11 and the heater 12.
- the valve 16 is disposed in the supply pipe 15.
- the valve 16 opens and closes the NH 3 flow path between the storage 11 and the heater 12.
- the valve 16 is an electromagnetic on-off valve.
- the controller 20 performs opening control and closing control of the valve 16.
- the temperature sensor 19 is provided in the storage 11.
- the temperature sensor 19 detects the temperature of the storage 11 (for example, the temperature in the storage 11) at regular intervals, and outputs the detected temperature information to the controller 20.
- the pressure sensor 21 is provided in the heater 12.
- the pressure sensor 21 detects the pressure in the heater 12 at regular time intervals, for example, and outputs the detected pressure information to the controller 20.
- the pressure sensor 21 is a reactor pressure acquisition unit that acquires the pressure of the heater 12 (for example, the pressure in the heater 12).
- the pressure sensor 23 is provided in the storage 11.
- the pressure sensor 23 detects the pressure in the storage 11 at regular intervals, for example, and outputs the detected pressure information to the controller 20.
- the pressure sensor 23 is a reservoir pressure acquisition unit that acquires the pressure of the storage 11 (for example, the pressure in the storage 11).
- the controller 20 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
- Various sensors such as an exhaust temperature sensor 18, a temperature sensor 19, and pressure sensors 21, 23 are connected to the controller 20, and information necessary for control is appropriately acquired from the plurality of sensors. Further, the controller 20 is connected to the valve 16, performs a predetermined process based on the acquired information, and performs open control and close control of the valve 16 as necessary.
- the controller 20 may be dedicated to the chemical heat storage device 10 or may be incorporated as a function of an ECU such as an engine ECU (Electronic Control Unit).
- the controller 20 includes a valve opening / closing unit 24 and a storage amount acquiring unit 25.
- the valve opening / closing unit 24 is a control unit that performs opening control and closing control of the valve 16.
- the valve opening / closing unit 24 determines whether or not the temperature of the exhaust gas upstream of the heat exchanger 4 detected by the exhaust gas temperature sensor 18 is lower than the warm-up start temperature during the operation of the engine 2. If the valve opening / closing unit 24 determines that the exhaust gas temperature is lower than the warm-up start temperature, for example, when the exhaust gas temperature is low, such as immediately after the engine 2 is started, the valve opening / closing unit 24 performs the opening control of the valve 16. . That is, the valve opening / closing unit 24 supplies current to the valve 16 to switch the valve 16 from closed to open.
- the warm-up start temperature is set, for example, as a catalyst activation temperature such as DOC 5 of the exhaust purification system 1 or a threshold temperature lower than the catalyst activation temperature by a predetermined value.
- This warm-up start temperature is set based on the activation temperature of a catalyst such as DOC5.
- the valve opening / closing unit 24 closes the valve 16 and warms up while the engine 2 is in operation.
- the machine ends.
- the warm-up when the engine 2 enters a steady operation state and the temperature of the exhaust gas discharged from the engine 2 becomes sufficiently high, the heat of the exhaust gas reacts with the heater 12 via the heat exchanger 4 this time. It will be given to the material 14. That is, the reaction material 14 is heated by the exhaust gas through the heat exchanger 4.
- the predetermined recovery temperature is the temperature of the exhaust gas that can give the reaction material 14 heat sufficient to desorb NH 3 from the reaction material 14.
- the valve opening / closing unit 24 controls the opening and closing of the valve 16 based on the pressure in the heater 12 acquired by the pressure sensor 21 and the pressure in the storage 11 acquired by the pressure sensor 23. Take control. Specifically, the valve opening / closing unit 24 first determines whether or not the pressure in the heater 12 is equal to or higher than the pressure in the storage 11. The valve opening / closing unit 24 controls the opening of the valve 16 when the pressure in the heater 12 is equal to or higher than the pressure in the storage 11. That is, the valve opening / closing unit 24 supplies current to the valve 16. Further, the valve opening / closing unit 24 controls the closing of the valve 16 when the pressure in the heater 12 is lower than the pressure in the storage 11. That is, the valve opening / closing unit 24 stops the supply of current to the valve 16.
- the valve 16 is opened when the pressure in the storage 11 is larger than the pressure in the heater 12.
- NH 3 cannot be efficiently collected in the storage 11.
- the valve 16 is opened by the valve opening / closing unit 24 when the pressure in the heater 12 is equal to or higher than the pressure in the storage 11. That is, when the valve 16 is opened, the pressure in the heater 12 is either the same as the pressure in at least the storage 11, or so is greater than the pressure in the storage 11, the recovery loss of such NH 3 Can be prevented.
- the valve 16 is not opened. Recovery is not performed at a timing when recovery is possible, and NH 3 cannot be efficiently recovered in the storage 11.
- the valve 16 is opened by the valve opening / closing unit 24, so that NH 3 is efficiently stored at an appropriate timing. 11 can be recovered.
- the valve opening / closing unit 24 may perform the opening control and the closing control of the valve 16 until the accommodation amount of NH 3 acquired by the accommodation amount acquisition unit 25 becomes equal to or greater than the target recovery value.
- the capacity of NH 3, the NH 3 contained in the storage 11 the amount may be the (initial storage amount or recovery amount of NH 3), the NH 3 contained in the first storage 11 It may be a ratio of the amount of NH 3 currently stored in the storage 11 to the initial storage amount (NH 3 recovery rate).
- the recovery amount of NH 3 may be obtained by subtracting the amount of NH 3 of the heater 12 from a preset amount of NH 3 as contained amount contained in the entire storage 11 and the heater 12 .
- the initial capacity of NH 3 which is initially housed in a reference value to become storage 11 for determining the recovery of NH 3 is eg, NH required to fully react with the reactive material 14 in the heater 12 Set as an amount of three .
- capacity of NH 3 it is used the recovery of NH 3.
- the NH 3 recovery rate is also referred to as “NH 3 recovery rate”.
- the accommodation amount acquisition unit 25 acquires the NH 3 recovery rate in the storage 11 and determines whether the acquired NH 3 recovery rate is equal to or higher than the target recovery value.
- the target recovery value here is a value that is appropriately set by the user or the like, and is, for example, the amount of NH 3 that can heat the heating target to the target temperature in the next exothermic reaction.
- the target recovery value is set to 80% in consideration of NH 3 that remains in the heater 12 or the supply pipe 15 without being recovered in the storage 11.
- the accommodation amount acquisition unit 25 acquires the NH 3 recovery rate using, for example, the map data shown in FIG.
- FIG. 2 is a graph showing map data used for obtaining the NH 3 recovery rate.
- FIG. 2A is a graph showing the relationship between the temperature in the storage 11 and the saturated vapor pressure of NH 3 , the horizontal axis shows the temperature [° C.] in the storage 11, and the vertical axis shows the saturation of NH 3 . Vapor pressure [kPa] is shown.
- FIG. 2B is a graph showing the relationship between the relative pressure of the adsorbent 13 in the storage 11 and the NH 3 adsorption amount, the horizontal axis represents the relative pressure, and the vertical axis represents the NH 3 adsorption amount [g]. Indicates.
- the relative pressure is the pressure in the storage 11 with respect to the saturated vapor pressure of NH 3 .
- the NH 3 adsorption amount relative to the relative pressure of the adsorbent 13 is obtained in advance by experiments
- Map data shown in the graphs of FIGS. 2A and 2B is preset in the accommodation amount acquisition unit 25.
- the accommodation amount acquisition unit 25 acquires the NH 3 adsorption amount using the relationship, and acquires the NH 3 recovery rate based on the acquired NH 3 adsorption amount.
- the accommodation amount acquisition unit 25 uses map data having the relationship shown in the graph of FIG. 2A based on the temperature T in the storage 11 indicated by the temperature information output from the temperature sensor 19. To obtain the saturated vapor pressure Psat of NH 3 .
- the accommodation amount acquisition unit 25 determines the pressure P2 with respect to the saturated vapor pressure Psat based on the acquired saturated vapor pressure Psat of NH 3 and the pressure P2 in the storage 11 indicated by the pressure information output from the pressure sensor 23.
- the accommodation amount acquisition unit 25 acquires the NH 3 adsorption amount Y using the map data having the relationship indicated by the graph of FIG. 2B based on the calculated relative pressure Prela.
- the accommodation amount acquisition unit 25 subtracts the remaining amount in order to keep the pressure of the storage 11 and the heater 12 at a predetermined pressure from the acquired NH 3 adsorption amount Y, and acquires the current accommodation amount of NH 3. . Moreover, storage capacity obtaining unit 25, the capacity of the current NH 3, divided by the initial capacity of NH 3 (capacity of NH 3 necessary for the exothermic reaction in order to obtain the desired amount of heat), NH 3 Get the recovery rate.
- FIG. 3 is a flowchart showing a processing procedure of the valve opening / closing part 24.
- the flowchart of FIG. 3 shows the processing procedure of the valve opening / closing unit 24 when NH 3 is recovered after the warm-up is completed.
- the valve opening / closing unit 24 starts control as the NH 3 recovery mode.
- the valve opening / closing unit 24 determines whether or not the pressure P1 in the heater 12 acquired by the pressure sensor 21 is equal to or higher than the pressure P2 in the storage 11 acquired by the pressure sensor 23 (S1). Specifically, the valve opening / closing unit 24 determines whether or not the pressure P1 in the heater 12 output from the pressure sensor 21 is equal to or higher than the pressure P2 in the storage 11 output from the pressure sensor 23.
- the valve opening / closing unit 24 determines that the pressure P1 is lower than the pressure P2 (S1; NO)
- the valve opening / closing unit 24 performs the closing control of the valve 16 (S2). That is, the valve opening / closing unit 24 stops supplying current to the valve 16 when the valve 16 is open and closes the valve 16, and stops supplying current to the valve 16 when the valve 16 is closed. In this state, the valve 16 is kept closed.
- the valve opening / closing unit 24 determines that the pressure P1 is equal to or higher than the pressure P2 (S1; YES)
- the valve opening / closing unit 24 performs the opening control of the valve 16 (S3). That is, the valve opening / closing unit 24 supplies current to the valve 16 when the valve 16 is closed to open the valve 16, and keeps supplying current to the valve 16 when the valve 16 is opened. The valve 16 is kept open.
- NH 3 desorbed from the reaction material 14 returns to the storage 11 from the heater 12 through the supply pipe 15 and is physically adsorbed by the adsorbent 13 in the storage 11 and collected.
- the valve opening / closing unit 24 determines whether or not the NH 3 recovery rate output from the accommodation amount acquiring unit 25 is, for example, 80% or more (S4). For example, when the NH 3 recovery rate is lower than 80% (S4; NO), the valve opening / closing unit 24 continues to control the recovery mode. That is, the valve opening / closing unit 24 returns to the process of S1. For example, when the NH 3 recovery rate is 80% or more (S4; YES), the valve opening / closing unit 24 ends the control of the recovery mode. Thus, the control of the valve opening / closing part 24 at the time of NH 3 recovery after the warm-up is completed.
- S4 80% or more
- the valve opening / closing unit 24 opens the valve 16. Control is performed. Therefore, when the valve 16 is opened, the pressure P1 in the heater 12 is equal to or higher than the pressure P2 in the storage 11. For this reason, for example, when the pressure P2 in the storage 11 is larger than the pressure P1 in the heater 12, and the NH 3 cannot move from the heater 12 to the storage 11, the valve 16 is prevented from being opened.
- the pressure P1 in the heater 12 is equal to or higher than the pressure P2 in the storage 11, and the valve 16 is not opened even though NH 3 can move from the heater 12 to the storage 11 unit. Is prevented.
- the valve 16 can be opened at an appropriate timing for recovering NH 3. As a result, NH 3 can be efficiently recovered from the heater 12 to the storage 11.
- FIG. 4 is a schematic configuration diagram of an exhaust purification system including a chemical heat storage device according to the second embodiment.
- the chemical heat storage device 10A according to the second embodiment is provided in the exhaust purification system 1 in the same manner as the chemical heat storage device 10 according to the first embodiment.
- the chemical heat storage device 10 ⁇ / b> A includes a storage 11, a heater 12, a supply pipe 15, a valve 16, a controller 20, a pressure sensor 23, and a temperature sensor 19.
- the temperature sensor 19 is a reservoir temperature acquisition unit that acquires the temperature of the storage 11 (for example, the temperature in the storage 11).
- the chemical heat storage device 10A differs from the chemical heat storage device 10 in that it does not include the pressure sensor 21 (see FIG. 1) that detects the pressure P1 in the heater 12, and the pressure P1 in the heater 12 is acquired by the pressure sensor. It is a point estimated (acquired) by the controller 20 instead of. This will be specifically described below.
- the controller 20 includes a valve opening / closing unit 24, an accommodation amount acquisition unit 25, a heater temperature acquisition unit 26, and a heater pressure acquisition unit 27.
- the valve opening / closing unit 24 of the present embodiment is different from the pressure P1 in the heater 12 acquired by the pressure sensor 21 described above, in the heater 12 acquired by the heater pressure acquisition unit 27. Opening control and closing control of the valve 16 are performed using the pressure P1. That is, the valve opening / closing unit 24 determines whether or not the pressure P1 in the heater 12 acquired by the heater pressure acquisition unit 27 is equal to or higher than the pressure P2 in the storage 11 acquired by the pressure sensor 23 at the time of NH 3 recovery. When the pressure P1 is equal to or higher than the pressure P2, the valve 16 is controlled to be opened.
- the capacity acquisition unit 25 uses the map data shown in the graph of FIG. 2 to determine the NH based on the temperature and pressure P2 in the storage 11 detected by the temperature sensor 19 and the pressure sensor 23, respectively. 3 Get the recovery rate.
- the heater temperature acquisition unit 26 is a reactor temperature acquisition unit that acquires the temperature of the heater 12 (for example, the temperature in the heater 12).
- the heater temperature acquisition unit 26 acquires the temperature in the heater 12 based on the exhaust temperature detected by the exhaust temperature sensor 18.
- the heater temperature acquisition unit 26 calculates the estimated temperature in the heater 12 from the exhaust temperature detected by the exhaust temperature sensor 18 located on the upstream side and the downstream side of the heat exchanger 4 using a predetermined conversion formula.
- the estimated temperature is acquired as the temperature in the heater 12.
- the heater pressure acquisition unit 27 is a reactor pressure acquisition unit that acquires the pressure of the heater 12 (for example, the pressure in the heater 12).
- the heater pressure acquisition unit 27 acquires the pressure P1 in the heater 12 based on the temperature in the heater 12 acquired by the heater temperature acquisition unit 26 and the NH 3 recovery rate acquired by the accommodation amount acquisition unit 25.
- the heater pressure acquisition unit 27 acquires the pressure P1 in the heater 12 using the map data shown in FIG.
- FIG. 5 is a graph showing map data used for obtaining the pressure in the heater 12 by the heater pressure obtaining unit 27 shown in FIG. 5 represents the temperature in the heater 12, that is, the temperature [° C.] of the reaction material 14, and the vertical axis in FIG. 5 represents the pressure [MPa] in the heater 12.
- the graph of FIG. 5 shows the relationship between the temperature of the reaction material 14, the pressure in the heater 12, and the NH 3 recovery rate.
- map data having the relationship shown in the graph of FIG. 5 is created based on data collected by conducting an experiment in advance using, for example, the chemical heat storage device 10A.
- the heater pressure acquisition unit 27 acquires the pressure P1 in the heater 12 using the map data.
- FIG. 5 there is a relationship between the temperature of the reaction material 14 and the pressure in the heater 12, for example, as shown in the graphs a, b, and c.
- Each graph a, b, c are of different NH 3 recovery, NH 3 recovery rate increases graph c, graph b, the order of the graph a.
- storage amount obtaining section 25 NH 3 recovery obtained by be a NH 3 recovery corresponding to the graph b, with reference to the graph b, the heater 12 obtained by the heater temperature acquiring unit 26
- the pressure P1 in the heater 12 can be acquired from the temperature (that is, the temperature of the reaction material 14) T1.
- NH 3 recovery obtained by the accommodation amount acquisition unit 25 is NH 3 recovery between graph each stage (if there is no graph corresponding to NH 3 recovery) is in its NH 3 recovery
- the pressure P1 in the heater 12 may be acquired by performing interpolation using two close graphs.
- the pressure P1 in the heater 12 acquired by the heater pressure acquisition unit 27 is output to the valve opening / closing unit 24.
- the output pressure P1 in the heater 12 is used for opening control of the valve 16 by the valve opening / closing part 24 as described above.
- the valve opening / closing unit 24 controls the opening of the valve 16. Is done. Accordingly, the results that can open the valve 16 at the right time to perform the recovery of NH 3, can be recovered NH 3 from the heater 12 to the storage 11 efficiently.
- the pressure P1 in the heater 12 is acquired by the heater pressure acquisition unit 27 based on the temperature in the heater 12 and the NH 3 recovery rate. Even if it is not provided in the heater 12, the pressure P1 in the heater 12 can be acquired. As a result, cost reduction can be realized by reducing the number of parts in the chemical heat storage device 10A.
- the NH 3 recovery rate is acquired based on the temperature and pressure in the storage 11, the NH 3 is considered in consideration of fluctuations in both the temperature and pressure in the storage 11. 3 recovery rate can be acquired correctly, and by extension, the pressure P1 in the heater 12 based on the NH 3 recovery rate can be acquired accurately. Thereby, the opening control of the valve 16 based on the pressure P1 in the heater 12 can be performed more appropriately. As a result, more efficient recovery of NH 3 is possible.
- the exhaust gas temperature necessary for combustion control is acquired by the exhaust gas temperature sensor 18. That is, the exhaust temperature sensor 18 is a sensor originally provided in the exhaust purification system 1. Therefore, by using the exhaust temperature sensor 18 to acquire the temperature in the heater 12 in the chemical heat storage device 10A, there is no need to separately provide a temperature sensor for acquiring the temperature in the heater 12, and the number of parts and the cost are reduced. Can be suppressed.
- FIG. 6 is a schematic configuration diagram of an exhaust purification system including a chemical heat storage device according to the third embodiment.
- the chemical heat storage device 10B according to the third embodiment is provided in the exhaust purification system 1 in the same manner as the chemical heat storage device 10 according to the first embodiment.
- the chemical heat storage device 10 ⁇ / b> B includes a storage 11, a heater 12, a supply pipe 15, a valve 16, a controller 20, a pressure sensor 21, and a temperature sensor 19.
- the temperature sensor 19 is a reservoir temperature acquisition unit that acquires the temperature of the storage 11 (for example, the temperature in the storage 11).
- the chemical heat storage device 10B is different from the chemical heat storage device 10 in that the pressure sensor 23 (see FIG. 1) for detecting the pressure P2 in the storage 11 is not provided, and the pressure P2 in the storage 11 is acquired by the pressure sensor. It is a point estimated (acquired) by the controller 20 instead of. This will be specifically described below.
- the controller 20 includes a valve opening / closing unit 24, an accommodation amount acquisition unit 25, a heater temperature acquisition unit 26, and a storage pressure acquisition unit 28.
- the valve opening / closing unit 24 of the present embodiment is different from the pressure P2 in the storage 11 acquired by the pressure sensor 23 described above, in the storage 11 acquired by the storage pressure acquisition unit 28. Opening control and closing control of the valve 16 are performed using the pressure P2. That is, the valve opening / closing unit 24 determines whether or not the pressure P1 in the heater 12 acquired by the pressure sensor 21 is equal to or higher than the pressure P2 in the storage 11 acquired by the storage pressure acquisition unit 28 at the time of NH 3 recovery. When the pressure P1 is equal to or higher than the pressure P2, the valve 16 is controlled to be opened.
- the method for obtaining the NH 3 recovery rate is different from that in the first embodiment. That is, in the present embodiment, the capacity acquisition unit 25 does not acquire the NH 3 recovery rate based on the temperature and pressure in the storage 11 using the map data shown in FIG. 2 as in the first embodiment.
- the NH 3 recovery rate is acquired based on the temperature and pressure in the heater 12 using the map data shown in FIG.
- FIG. 7 is a graph showing map data used for acquisition of the NH 3 recovery rate by the capacity acquisition unit 25 shown in FIG. 7 indicates the temperature in the heater 12, that is, the temperature [° C.] of the reaction material 14, and the vertical axis in FIG. 7 indicates the pressure [MPa] in the heater 12.
- the graph of FIG. 7 shows the relationship between the temperature of the reaction material 14, the pressure P1 in the heater 12, and the NH 3 recovery rate, as in the graph of FIG.
- map data having a relationship shown by the graph in FIG. 7 is set in advance.
- the map data having the relationship shown in the graph of FIG. 7 is created based on data collected by conducting an experiment in advance using, for example, the chemical heat storage device 10B.
- the accommodation amount acquisition unit 25 acquires the NH 3 recovery rate using the map data.
- each graph a, b, c there is a relationship as shown in each graph a, b, c between the temperature of the reaction material 14 and the pressure P ⁇ b> 1 in the heater 12.
- Each graph a, b, c are of different NH 3 recovery, NH 3 recovery rate increases graph c, graph b, the order of the graph a. For example, based on the temperature T1 in the heater 12 acquired by the heater temperature acquisition unit 26 and the pressure P1 in the heater 12 acquired by the pressure sensor 21, the NH 3 recovery rate corresponding to the graph b from the relationship of FIG. Can be obtained.
- NH 3 recovery rate may be used, or a four-stage or higher NH 3 recovery ratio may be used. Also good. If there is no NH 3 recovery rate corresponding to the temperature T1 in the heater 12 acquired by the heater temperature acquisition unit 26 and the pressure P1 in the heater 12 acquired by the pressure sensor 21, the NH 3 recovery rate is Interpolation may be performed using two near graphs to obtain the NH 3 recovery rate.
- the heater temperature acquisition unit 26 is a reactor temperature acquisition unit that acquires the temperature of the heater 12 (for example, the temperature in the heater 12).
- the heater temperature acquisition unit 26 acquires the temperature in the heater 12 based on the exhaust temperature detected by the exhaust temperature sensor 18.
- the heater temperature acquisition unit 26 calculates the estimated temperature in the heater 12 from the exhaust temperature detected by the exhaust temperature sensor 18 located on the upstream side and the downstream side of the heat exchanger 4 using a predetermined conversion formula.
- the estimated temperature is acquired as the temperature in the heater 12.
- the storage pressure acquisition unit 28 is a reservoir pressure acquisition unit that acquires the pressure of the storage 11 (for example, the pressure in the storage 11).
- the storage pressure acquisition unit 28 acquires the pressure P2 in the storage 11 based on the temperature T2 in the storage 11 acquired by the temperature sensor 19 and the NH 3 recovery rate acquired by the storage amount acquisition unit 25.
- the storage pressure acquisition unit 28 acquires the pressure P2 in the storage 11 using the map data shown in FIG.
- FIG. 8 is a graph showing map data used for obtaining the pressure P2 in the storage 11 by the storage pressure obtaining unit 28 shown in FIG.
- the horizontal axis in FIG. 8 indicates the temperature [° C.] in the storage 11, and the vertical axis in FIG. 8 indicates the pressure [MPa] in the storage 11.
- the graph of FIG. 8 shows the relationship between the temperature in the storage 11, the pressure in the storage 11, and the NH 3 recovery rate.
- map data having the relationship shown in the graph of FIG. 8 is set in advance.
- the map data having the relationship shown in the graph of FIG. 8 is created based on data collected by conducting an experiment in advance using, for example, the chemical heat storage device 10B.
- the storage pressure acquisition unit 28 acquires the pressure P2 in the storage 11 using the map data.
- each graph a, b, c there is a relationship as shown in each graph a, b, c between the temperature in the storage 11 and the pressure in the storage 11.
- Each graph a, b, c are of different NH 3 recovery, NH 3 recovery rate increases graph c, graph b, the order of the graph a.
- the NH 3 recovery obtained by the accommodation amount acquisition unit 25 is NH 3 recovery corresponding to the graph b
- the temperature in the storage 11 obtained by the temperature sensor 19 T2 From this, the pressure P2 in the storage 11 can be acquired.
- NH 3 recovery obtained by the accommodation amount acquisition unit 25 is NH 3 recovery between graph each stage (if there is no graph corresponding to NH 3 recovery) is in its NH 3 recovery
- the pressure P2 in the storage 11 may be acquired by interpolating using two near graphs.
- the pressure P ⁇ b> 2 in the storage 11 acquired by the storage pressure acquisition unit 28 is output to the valve opening / closing unit 24.
- the output pressure P2 in the storage 11 is used for opening control of the valve 16 by the valve opening / closing part 24 as described above.
- the valve opening / closing unit 24 controls the opening of the valve 16. Is done. Accordingly, the results that can open the valve 16 at the right time to perform the recovery of NH 3, can be recovered NH 3 from the heater 12 to the storage 11 efficiently.
- the storage pressure acquisition unit 28 acquires the pressure P2 in the storage 11 based on the temperature in the storage 11 and the NH 3 recovery rate. Even if the storage 11 is not provided, the pressure P1 in the storage 11 can be acquired. As a result, cost reduction can be realized by reducing the number of components in the chemical heat storage device 10B.
- the NH 3 recovery rate is acquired based on the temperature and pressure in the heater 12, the NH 3 is taken into consideration when both the temperature and pressure in the heater 12 are changed. 3 recovery rate can be acquired correctly, and by extension, the pressure P2 in the storage 11 based on the NH 3 recovery rate can be acquired accurately. Thereby, the opening control of the valve 16 based on the pressure P2 in the storage 11 can be performed more appropriately. As a result, more efficient recovery of NH 3 is possible.
- FIG. 9 is a schematic configuration diagram illustrating an exhaust purification system including the chemical heat storage device according to the fourth embodiment.
- a chemical heat storage device 10C according to the fourth embodiment is provided in the exhaust purification system 1 in the same manner as the chemical heat storage device 10 according to the first embodiment.
- the chemical heat storage device 10 ⁇ / b> C includes a storage 11, a heater 12, a supply pipe 15, a valve 16, a controller 20, a pressure sensor 23, and a temperature sensor 19.
- the difference between the chemical heat storage device 10C and the chemical heat storage device 10 is that the controller 20 obtains the temperature of the heating target and is based not only on the pressure in the storage 11 and the pressure in the heater 12, but also on the temperature of the heating target. Based on this, the valve opening / closing control is performed.
- the heating target is DOC5, but is not limited thereto, and the heating target may be, for example, exhaust itself, a heat exchanger 4, or a catalyst such as SCR7 or ASC8.
- the heating target will be described as DOC5.
- the controller 20 includes a valve opening / closing unit 24, an accommodation amount acquisition unit 25, and a heating target temperature acquisition unit 29.
- the valve opening / closing unit 24 of the present embodiment is a case where the pressure P1 in the heater 12 acquired by the pressure sensor 21 is equal to or higher than the pressure P2 in the storage 11 acquired by the pressure sensor 23 at the time of NH 3 recovery.
- bulb 16 is performed.
- the predetermined value is a temperature at which the DOC 5 can obtain the catalyst activity, for example, a catalyst activation temperature at which CO in the exhaust gas is sufficiently oxidized by the DOC 5 to become CO 2.
- the temperature at which DOC5 can obtain catalytic activity is also simply referred to as “catalytic activity temperature”.
- the catalyst activation temperature is, for example, 180 ° C. or higher.
- the valve 16 when the temperature of the DOC 5 is lower than the catalyst activation temperature (when the temperature to be heated is lower than a predetermined value), that is, NH 3 is recovered from the heater 12 to the storage 11. If the timing is not appropriate, the valve 16 is closed. In the chemical heat storage device 10 ⁇ / b> C, the temperature of the DOC 5 to be heated becomes equal to or higher than a predetermined value, and the valve 16 is opened at an appropriate timing when the NH 3 regeneration reaction occurs in the heater 12. Therefore, the opening control of the valve 16 is performed at a more appropriate timing, and NH 3 is recovered more efficiently and appropriately.
- the accommodation amount acquisition unit 25 acquires the NH 3 recovery rate using, for example, the map data shown in FIG. 2 as in the first embodiment.
- the heating target temperature acquisition unit 29 acquires the temperature of the DOC 5.
- the heating target temperature acquisition unit 29 acquires the temperature of the DOC 5 based on, for example, the temperature detected by the catalyst temperature sensor 30 provided in the DOC 5.
- the heating target temperature acquisition unit 29 may estimate (acquire) the temperature of the DOC 5 from, for example, exhaust temperature sensors provided upstream and downstream of the DOC 5. Further, the heating target temperature acquisition unit 29 may estimate (acquire) the temperature of the DOC 5 from the exhaust temperature sensor 18.
- FIG. 10 is a flowchart showing a processing procedure of the valve opening / closing unit 24.
- the flowchart of FIG. 10 shows the processing procedure of the valve opening / closing part 24 at the time of NH 3 recovery after completion of warm-up.
- the processing procedure of the valve opening / closing unit 24 according to the present embodiment is different from the above-described embodiment in that a determination step of S11 is included between step S1 and step S3.
- the valve opening / closing unit 24 starts control as the NH 3 recovery mode.
- the valve opening / closing unit 24 determines whether or not the pressure P1 in the heater 12 acquired by the pressure sensor 21 is equal to or higher than the pressure P2 in the storage 11 acquired by the pressure sensor 23 (S1). Specifically, the valve opening / closing unit 24 determines whether or not the pressure P1 in the heater 12 output from the pressure sensor 21 is equal to or higher than the pressure P2 in the storage 11 output from the pressure sensor 23.
- the valve opening / closing unit 24 determines that the pressure P1 is lower than the pressure P2 (S1; NO)
- the valve opening / closing unit 24 performs the closing control of the valve 16 (S2).
- valve opening / closing part 24 determines whether the pressure P1 is equal to or higher than the pressure P2 (S1; YES), it determines whether the temperature of the heating target is equal to or higher than a predetermined value (S11). That is, the valve opening / closing unit 24 determines whether or not the temperature of the DOC 5 acquired by the heating target temperature acquisition unit 29 is equal to or higher than the catalyst activation temperature (predetermined value). When the temperature of the DOC 5 acquired by the heating target temperature acquisition unit 29 is lower than the catalyst activation temperature (S11; NO), the valve opening / closing unit 24 performs the closing control of the valve 16 (S2).
- the valve opening / closing unit 24 performs opening control of the valve 16 (S3).
- S3 the catalyst activation temperature
- the valve opening / closing unit 24 determines whether or not the NH 3 recovery rate output from the accommodation amount acquiring unit 25 is, for example, 80% or more (S4). For example, when the NH 3 recovery rate is lower than 80% (S4; NO), the valve opening / closing unit 24 continues to control the recovery mode. That is, the valve opening / closing unit 24 returns to the process of S1. For example, when the NH 3 recovery rate is 80% or more (S4; YES), the valve opening / closing unit 24 ends the control of the recovery mode. Thus, the control of the valve opening / closing part 24 at the time of NH 3 recovery after the warm-up is completed.
- S4 80% or more
- the pressure P1 in the heater 12 is equal to or higher than the pressure P2 in the storage 11, and NH 3 can move from the heater 12 to the storage 11.
- the valve 16 is opened when the temperature of the DOC 5 is equal to or higher than the catalyst activation temperature and the DOC 5 is sufficiently warmed to obtain the catalyst activity.
- the valve 16 can be prevented from being opened for NH 3 recovery while the temperature of the DOC 5 is being raised, and the valve 16 can be controlled to open at a more appropriate timing.
- NH 3 can be recovered more efficiently from the heater 12 to the storage 11.
- the valve 16 when the temperature of the DOC 5 to be heated is lower than the catalyst activation temperature, the valve 16 is closed even if the pressure P1 is equal to or higher than the pressure P2. Such endothermic reaction does not occur. As a result, the temperature of the DOC 5 can be raised earlier.
- the NH 3 recovery rate corresponding to the temperature of the reaction material 14 and the pressure in the heater 12 is shown, but the NH 3 recovery rate is acquired based on the recovery amount of NH 3. May be. That is, the recovery of NH 3, by dividing an amount of NH 3 necessary for complete reaction with the reactive material 14 in the heater 12, may acquire the NH 3 recovery.
- the amount of NH 3 recovered is, for example, the amount of NH 3 in the heater 12 is acquired based on the temperature of the reaction material 14 and the pressure in the heater 12, and the acquired amount of NH 3 is used for the entire storage 11 and the heater 12. it may be obtained by subtracting from the NH 3 storage amount set in advance as the contained contained amount.
- the pressure P2 in the pressure P1 and the storage 11 in the heater 12, instead of the NH 3 recovery may be obtained by using a capacity of NH 3 (initial storage amount or recovery amount of NH 3). That is, the heater pressure acquisition unit 27 is based on the temperature in the heater 12 acquired by the heater temperature acquisition unit 26 and the initial storage amount or recovery amount of NH 3 acquired by the storage amount acquisition unit 25. The pressure P1 may be acquired. Further, the storage pressure acquisition unit 28 is based on the temperature T2 in the storage 11 acquired by the temperature sensor 19 and the initial storage amount or recovery amount of NH 3 acquired by the storage amount acquisition unit 25. The pressure P2 may be acquired.
- the heater temperature acquisition unit 26 acquires the estimated temperature based on the exhaust gas temperature detected by the exhaust gas temperature sensor 18 as the temperature in the heater 12, but is not limited thereto.
- the temperature in the heater 12 may be acquired by providing a temperature sensor in the heater 12 and detecting the temperature in the heater 12 by the temperature sensor.
- the heater 12 is arranged around the exhaust pipe 3 so as to correspond to the heat exchanger 4 and has an annular cross section, but is not limited thereto.
- position a heater so that it may correspond only to a part of heating object.
- the heater may be arranged at a place other than the outside of the exhaust pipe, for example, may be arranged inside the exhaust pipe in order to heat the exhaust.
- a heater is arranged inside the exhaust pipe, for example, a configuration in which a plurality of heaters and a heat exchange unit are alternately stacked, the heat exchange unit is integrated with the heater, and the exhaust is heated by the heater through the heat exchange unit. May be.
- a catalyst coat layer may be formed on part or all of the surface of the heat exchanger 4.
- the heating object is the heat exchanger 4, but the heating object may be another catalyst such as DOC 5 or exhaust gas flowing through the exhaust pipe 3.
- the heating target temperature acquisition unit 29 may acquire the temperature of the heating target by a temperature sensor provided in the heating target itself, or around the heating target acquired by the temperature sensor provided around the heating target. The temperature of the heating target may be estimated based on the temperature, and the estimated temperature may be acquired as the temperature of the heating target.
- the valve 16 may be a valve other than an electromagnetic type. Further, the valve 16 is not limited to a binary control on-off valve, and may be a proportional valve or a valve configured by combining an on-off valve and a proportional valve.
- the reaction medium introduced into the reactor is not limited to NH 3 and may be, for example, H 2 O, alcohol, CO 2 or the like.
- the chemical heat storage device is applied to the diesel engine 2 that is an internal combustion engine of the vehicle, but is not limited thereto.
- the chemical heat storage device may be applied to a gasoline engine or the like.
- the chemical heat storage device may be a device that heats a heating target provided other than the exhaust system of the engine.
- a heating target may be various heat media such as engine oil, cooling water, or air.
- a heat exchanger may be disposed on the path through which the heat medium flows, and the heat exchanger may be heated by the chemical heat storage device.
- the chemical heat storage device may be applied to other than the engine.
- the heating target is DOC5, and the valve 16 is controlled to open when the temperature of the DOC5 acquired by the heating target temperature acquisition unit 29 is equal to or higher than the catalyst activation temperature.
- the valve 16 The opening control may be performed.
- the predetermined value when the heating target is exhaust may be a temperature that can be warmed up to a catalyst activation temperature of a desired catalyst, for example, or may be warmed up to a desorption start temperature of the reactant 14. It may be a temperature (recovery temperature) at which
- the predetermined value when the heating target is engine oil may be, for example, a temperature (recovery temperature) at which the reaction material 14 can be warmed up to the desorption start temperature.
- the valve opening / closing unit 24 controls the opening of the valve 16 using the pressure P1 in the heater 12 acquired by the pressure sensor 21 and the pressure P2 in the storage 11 acquired by the pressure sensor 23.
- the present invention is not limited to this.
- the pressure P1 in the heater 12 acquired by the pressure sensor 21 the pressure P1 in the heater 12 acquired by the heater pressure acquisition unit 27 may be used as in the second embodiment.
- the pressure P2 in the storage 11 acquired by 23 the pressure P2 in the storage 11 acquired by the storage pressure acquisition unit 28 may be used as in the second embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
加熱対象を加熱する化学蓄熱装置であって、反応媒体を貯蔵する貯蔵器と、反応媒体との化学反応により発熱すると共に加熱されると反応媒体を脱離する反応材を有する反応器と、貯蔵器と反応器とを接続する供給管と、供給管に配設され、反応媒体の流路を開閉するバルブと、反応器の圧力を取得する反応器圧力取得部と、貯蔵器の圧力を取得する貯蔵器圧力取得部と、反応器圧力取得部により取得された反応器の圧力と、貯蔵器圧力取得部により取得された貯蔵器の圧力とに基づき、バルブの開制御及び閉制御を行う制御部と、を備え、制御部は、反応器から貯蔵器への反応媒体の回収時において、反応器圧力取得部により取得された反応器の圧力が、貯蔵器圧力取得部により取得された貯蔵器の圧力以上である場合に、バルブの開制御を行う、化学蓄熱装置。
Description
本発明の一側面は、化学蓄熱装置に関する。
従来の化学蓄熱装置として、車両の内燃機関から排出される排気を浄化する排気浄化システムに適用される化学蓄熱装置が知られている。排気浄化システムに適用される化学蓄熱装置では、内燃機関から排出された排気の温度が暖機開始温度よりも低くなると、貯蔵器に貯蔵された反応媒体が供給管を通って反応器に供給され、供給された反応媒体と反応器の反応材とが化学反応し、熱が発生する。この熱によって熱交換器等を介して加熱対象としての排気が加熱される。また、内燃機関から排出された排気の温度が反応媒体再生温度より高くなると、排気の熱が反応器内の反応材に与えられ、反応器内において反応媒体が反応材から脱離する。そして、脱離された反応媒体が供給管を通って貯蔵器に回収される。
上記のような化学蓄熱装置として、例えば特許文献1には、排気を加熱するための化学蓄熱装置であって、ガス通路管内の触媒体の上流側に配設され、反応媒体である水の吸着及び脱離により発熱及び吸熱する反応材を収納した第1容器と、ガス通路管の外部に配設され、第1容器に反応媒体を供給すると共に第1容器から戻ってくる反応媒体を回収する第2容器と、第1容器と第2容器とを連通する連通管と、連通管の途中に設けられた開閉弁とを備えた化学蓄熱装置が記載されている。
上記特許文献1に記載の化学蓄熱装置では、イグニッションキーがオンとされると開閉弁が開き、第1容器と第2容器との間を反応媒体が連通管を通って移動可能となる。また、イグニッションキーがオフとされると開閉弁が閉じ、連通管が遮断されて第1容器と第2容器との間を反応媒体が移動できなくなる。
上記のようにイグニッションキーのオン及びオフに基づき開閉弁の開閉を制御する場合、第1容器から第2容器へ反応媒体を回収している回収モードの途中において、一時的に加熱対象(排気)の温度が下がると、それまでに第2容器に回収した反応媒体が再び第2容器から第1容器へ供給されてしまうことになる。すなわち、反応媒体を回収する際に適切なタイミングで開閉弁を開閉制御することができず、その結果、第1容器から第2容器へ反応媒体を効率的に回収できないという問題が発生する。
本発明の一側面は、反応媒体の回収を効率的に行うことができる化学蓄熱装置を提供することを目的とする。
本発明の一側面に係る化学蓄熱装置は、加熱対象を加熱する化学蓄熱装置であって、反応媒体を貯蔵する貯蔵器と、反応媒体との化学反応により発熱すると共に加熱されると反応媒体を脱離する反応材を有する反応器と、貯蔵器と反応器とを接続する供給管と、供給管に配設され、反応媒体の流路を開閉するバルブと、反応器の圧力を取得する反応器圧力取得部と、貯蔵器の圧力を取得する貯蔵器圧力取得部と、反応器圧力取得部により取得された反応器の圧力と、貯蔵器圧力取得部により取得された貯蔵器の圧力とに基づき、バルブの開制御及び閉制御を行う制御部と、を備え、制御部は、反応器から貯蔵器への反応媒体の回収時において、反応器圧力取得部により取得された反応器の圧力が、貯蔵器圧力取得部により取得された貯蔵器の圧力以上である場合に、バルブの開制御を行う。
本発明の一側面に係る化学蓄熱装置では、反応媒体の回収時において、反応器の圧力が貯蔵器内の圧力以上である場合に、制御部によりバルブの開制御が行われる。よって、バルブが開かれたときには反応器の圧力が貯蔵器の圧力以上となっている。このため、例えば反応器の圧力よりも貯蔵器の圧力が大きく、反応器から貯蔵器へと反応媒体が移動できないときにバルブが開かれることが防止される。また、例えば反応器の圧力が貯蔵器の圧力以上となっており、反応器から貯蔵器へと反応媒体が移動可能であるにも関わらずバルブが開かれないということが防止される。このように、反応媒体の回収を行うのに適切なタイミングでバルブを開くことができる結果、反応器から貯蔵器へと反応媒体を効率的に回収することができる。
本発明の一側面に係る化学蓄熱装置において、反応器の温度を取得する反応器温度取得部と、貯蔵器に収容される反応媒体の収容量を取得する収容量取得部と、を備え、反応器圧力取得部は、反応器温度取得部により取得された反応器の温度と、収容量取得部により取得された収容量とに基づき、反応器の圧力を取得してもよい。この場合、反応器圧力取得部によって、反応器の温度及び反応媒体の収容量に基づき反応器の圧力が取得されるので、圧力センサ等を反応器に設けなくても反応器の圧力を取得できる。その結果、化学蓄熱装置における部品点数を減らしてコスト削減を実現することができる。
本発明の一側面に係る化学蓄熱装置において、貯蔵器の温度を取得する貯蔵器温度取得部を備え、収容量取得部は、貯蔵器温度取得部により取得された貯蔵器の温度と、貯蔵器圧力取得部により取得された貯蔵器の圧力とに基づき、収容量を取得してもよい。この場合、貯蔵器の温度及び圧力に基づき反応媒体の収容量が取得されるので、貯蔵器の温度及び圧力の双方の変動を考慮して反応媒体の収容量を正確に取得することができ、ひいては収容量に基づく反応器の圧力を正確に取得することができる。これにより、反応器の圧力に基づくバルブの開制御をより適切に行うことができる。その結果、より効率的な反応媒体の回収が可能となる。
本発明の一側面に係る化学蓄熱装置において、貯蔵器の温度を取得する貯蔵器温度取得部と、貯蔵器に収容される反応媒体の収容量を取得する収容量取得部と、を備え、貯蔵器圧力取得部は、貯蔵器温度取得部により取得された貯蔵器の温度と、収容量取得部により取得された収容量とに基づき、貯蔵器の圧力を取得してもよい。この場合、貯蔵器圧力取得部によって、貯蔵器の温度及び反応媒体の収容量に基づき貯蔵器の温度が取得されるので、圧力センサ等を貯蔵器に設けなくても貯蔵器の圧力を取得できる。その結果、化学蓄熱装置における部品点数を減らしてコスト削減を実現することができる。
本発明の一側面に係る化学蓄熱装置において、反応器の温度を取得する反応器温度取得部を備え、収容量取得部は、反応器温度取得部により取得された反応器の温度と、反応器圧力取得部により取得された反応器の圧力とに基づき、収容量を取得してもよい。この場合、反応器の温度及び圧力に基づき反応媒体の収容量が取得されるので、反応器の温度及び圧力の双方の変動を考慮して反応媒体の収容量を正確に取得することができ、ひいては収容量に基づく貯蔵器の圧力を正確に取得することができる。これにより、貯蔵器の圧力に基づくバルブの開制御をより適切に行うことができる。その結果、より効率的な反応媒体の回収が可能となる。
本発明の一側面に係る化学蓄熱装置において、加熱対象の温度を取得する加熱対象温度取得部を備え、制御部は、反応器から貯蔵器への反応媒体の回収時において、反応器圧力取得部により取得された反応器の圧力が、貯蔵器圧力取得部により取得された貯蔵器の圧力以上であり、且つ、加熱対象温度取得部により取得された加熱対象の温度が所定値以上である場合に、バルブの開制御を行ってもよい。この場合、反応器の圧力が貯蔵器の圧力以上となっており、反応器から貯蔵器へと反応媒体が移動可能な状態であることに加えて、加熱対象の温度が所定値以上となって加熱対象が十分に暖められている場合(例えば、触媒が触媒活性を得ることができる温度まで触媒又は排気等の加熱対象が十分に暖められている場合等、又は、反応材から反応媒体が脱離する温度まで排気又はオイル等が十分に暖められている場合)にバルブが開かれる。これにより、加熱対象が十分に暖まっていない状態でバルブが開かれることを防止することができる。すなわち、より適切なタイミングでバルブの開制御を行うことができる。その結果、反応器から貯蔵器へと反応媒体をより効率的に回収することができる。
本発明の一側面によれば、反応媒体の回収を効率的に行うことができる化学蓄熱装置が提供される。
以下、添付図面を参照して、本発明の一側面の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
図1を参照して、本発明の第1実施形態に係る化学蓄熱装置を備えた排気浄化システムを説明する。図1は、本発明の第1実施形態に係る化学蓄熱装置を備えた排気浄化システムを示す概略構成図である。
図1を参照して、本発明の第1実施形態に係る化学蓄熱装置を備えた排気浄化システムを説明する。図1は、本発明の第1実施形態に係る化学蓄熱装置を備えた排気浄化システムを示す概略構成図である。
排気浄化システム1は、車両の内燃機関であるディーゼルエンジン2(以下、単にエンジン2という)の排気系に配設され、エンジン2から排出される排気中に含まれる有害物質(環境汚染物質)を浄化する。排気浄化システム1は、エンジン2と接続された排気通路である排気管3の途中に上流側から下流側に向けて順に配置された熱交換器4、酸化触媒(DOC:Diesel Oxidation Catalyst)5、ディーゼル排気微粒子除去フィルタ(DPF:Diesel Particulate Filter)6、選択還元触媒(SCR:SelectiveCatalytic Reduction)7、及び酸化触媒(ASC:Ammonia Slip Catalyst)8を備えている。
熱交換器4は、エンジン2からの排気と後述する反応材14との間で熱の伝達を行う。熱交換器4は、例えばハニカム構造をなしている。DOC5は、排気中に含まれるHC及びCO等を酸化して浄化する。DPF6は、排気中に含まれる粒子状物質(PM:Particulate Matter)を捕集して取り除く。SCR7は、尿素またはアンモニア(NH3)によって、排気中に含まれるNOxを還元して浄化する。ASC8は、SCR7をすり抜けてSCR7の下流側に流れたNH3を酸化して浄化する。
排気管3における熱交換器4の上流側及び下流側には、排気温度センサ18が配置されている。排気温度センサ18は、排気管3内を流れるエンジン2からの排気の温度を検出する。排気温度センサ18では、例えば一定時間毎に、エンジン2からの排気の温度を検出し、検出した温度情報を後述するコントローラ20に出力する。
DOC5、SCR7、及びASC8の各触媒には環境汚染物質の浄化能力を発揮できる温度領域、すなわち活性温度が存在する。しかし、エンジン2の始動直後等は、エンジン2から排出された直後の排気の温度は100℃程度と比較的低温であり、各触媒の活性温度より低い場合がある。このような場合でも各触媒で浄化能力を発揮させるために、各触媒での温度を迅速に活性温度にする必要がある。
そこで、本実施形態に係る排気浄化システム1は、排気管3の最も上流側に配置される熱交換器4を介して排気を加熱する化学蓄熱装置10を備えている。熱交換器4を介して排気を加熱することによって、熱交換器4の下流側には上流側よりも温度が上昇した排気が流れることとなり、DOC5等の触媒を早期に活性化することができる。
化学蓄熱装置10は、反応媒体としてNH3を用いて、可逆的な化学反応を利用することにより、外部エネルギーレスで加熱対象である排気を、熱交換器4を介して加熱する。つまり、化学蓄熱装置10は、通常は、後述する反応材14と反応媒体とを分離した状態にすることで熱を蓄えておき、熱交換器4の加熱が必要なときに、反応媒体を反応材14に供給することで反応材14から熱を発生させて熱交換器4を介して排気を加熱する。
化学蓄熱装置10は、ストレージ11(貯蔵器)と、ヒータ12(反応器)と、供給管15と、バルブ16と、コントローラ20と、圧力センサ21,23と、温度センサ19とを備えている。
ストレージ11は、反応媒体であるNH3の物理吸着による保持及びNH3の脱離が可能な吸着材13を含む。吸着材13としては、活性炭、カーボンブラック、メソポーラスカーボン、ナノカーボン、又はゼオライト等が用いられる。ストレージ11は、NH3を吸着材13に物理吸着させることで、NH3を貯蔵する。
ヒータ12は、排気管3における熱交換器4に対応するように排気管3の周囲に配置されている。すなわち、ヒータ12は、熱交換器4を加熱可能に配置されている。ヒータ12は、例えば排気管3を囲む断面円環形状を有している。この断面円環形状の断面は、ヒータ12を排気管3における排気の流れ方向に対して垂直に切った面である。
ヒータ12は、NH3と化学反応して熱を発生すると共に、高温となった排気の熱により加熱されることで蓄熱してNH3を脱離する反応材14を有している。よって、ヒータ12においては、ストレージ11からNH3が供給されると、当該NH3と反応材14とが化学反応して、発熱する。また、ヒータ12においては、脱離開始温度以上の熱が加えられると反応材14からNH3が脱離して、NH3を放出し始める。その発熱温度及び脱離開始温度は、反応媒体(本実施形態ではNH3)と反応材14の組み合わせによって異なるため、加熱対象の目標加熱温度に応じて、反応媒体及び反応材14が適宜選択される。
反応材14としては、組成式MXaで表されるハロゲン化物が用いられる。ここで、Mは、Mg、Ca、若しくはSr等のアルカリ土類金属、又は、Cr、Mn、Fe、Co、Ni、Cu、若しくはZn等の遷移金属である。Xは、Cl、Br、又はI等である。aは、Mの価数により特定される数であり、2~3である。反応材14は、例えば、20~100MPaの圧力でプレス成型されていてもよい。このプレス成型により反応材14は板状、ペレット状、又はタブレット状等の成型体に成型される。
ヒータ12内に配置される反応材14には、反応材14よりも熱伝導率が高く、反応材14で発生した熱を熱交換器4に効率的に伝える熱伝導パスとなる熱伝導材料を混合してもよい。例えば、反応材14を板状、ペレット状、又はタブレット状の成型体に成型する際に粉末状の反応材14と熱伝導材料とを粉体混合器等で均一に混合し、その混合物を型に入れてプレス成型加工を施して押し固めてもよい。熱伝導材料としては、例えばカーボンファイバ、カーボンビーズ、SiCビーズ、金属ビーズ、高分子ビーズ、又は高分子ファイバ等が用いられる。金属ビーズとしては、例えばCu、Ag、Ni、Ci-Cr、Al、Fe、又はステンレス鋼等の金属ビーズが用いられる。また、熱伝導材料として、グラファイトシート、又はアルミ等の金属シート等を加工した材料を用いてもよい。
供給管15は、ストレージ11とヒータ12とを接続する。供給管15は、ストレージ11とヒータ12との間をNH3が流通可能となる供給流路を構成している。バルブ16は、供給管15に配設されている。バルブ16は、ストレージ11とヒータ12との間でNH3の流路を開閉させる。例えば、バルブ16は、電磁開閉弁である。バルブ16の開制御及び閉制御は、コントローラ20によって行われる。
温度センサ19は、ストレージ11に設けられている。温度センサ19は、例えば一定時間毎に、ストレージ11の温度(例えば、ストレージ11内の温度)を検出し、検出した温度情報をコントローラ20に出力する。
圧力センサ21は、ヒータ12に設けられている。圧力センサ21は、例えば一定時間毎に、ヒータ12内の圧力を検出し、検出した圧力情報をコントローラ20に出力する。圧力センサ21は、ヒータ12の圧力(例えば、ヒータ12内の圧力)を取得する反応器圧力取得部である。
圧力センサ23は、ストレージ11に設けられている。圧力センサ23は、例えば一定時間毎に、ストレージ11内の圧力を検出し、検出した圧力情報をコントローラ20に出力する。圧力センサ23は、ストレージ11の圧力(例えば、ストレージ11内の圧力)を取得する貯蔵器圧力取得部である。
コントローラ20は、CPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等からなる。コントローラ20には、排気温度センサ18、温度センサ19、及び圧力センサ21,23等の各種センサが接続されており、これら複数のセンサより、適宜、制御に必要な情報を取得する。また、コントローラ20は、バルブ16が接続されており、取得した情報に基づいて所定の処理を行い、必要に応じてバルブ16の開制御及び閉制御を行う。なお、コントローラ20は、化学蓄熱装置10専用でもよいし、エンジンECU(Electronic Control Unit)等のECUの一機能として組み込まれていてもよい。
コントローラ20は、バルブ開閉部24と、収容量取得部25とを有している。バルブ開閉部24は、バルブ16の開制御及び閉制御を行う制御部である。バルブ開閉部24は、エンジン2の稼働中、排気温度センサ18で検出された熱交換器4の上流側での排気の温度が暖機開始温度より低いか否かを判定する。そして、バルブ開閉部24は、例えば、エンジン2の起動直後などの排気の温度が低温である場合等に、排気の温度が暖機開始温度よりも低いと判定すると、バルブ16の開制御を行う。すなわちバルブ開閉部24は、バルブ16に電流を供給してバルブ16を閉から開に切り替える。ここで、暖機開始温度は、例えば、排気浄化システム1のDOC5等の触媒活性温度、又は、触媒活性温度よりも所定値だけ低い閾値温度として設定される。この暖機開始温度は、DOC5等の触媒の活性温度等に基づき設定される。
上記のように排気の温度が暖機開始温度より低いときにバルブ16が開かれることで、ストレージ11内に収容されたNH3が供給管15を通してヒータ12に供給され、ヒータ12の反応材14(例えばMgBr2)とNH3とが化学反応して化学吸着(配位結合)し、反応材14から熱が発生する。つまり、下記の反応式(A)における左辺から右辺への反応(発熱反応)が起こる。ヒータ12で発生した熱によって熱交換器4が加熱され、熱交換器4を介して排気が加熱される。
MgBr2+xNH3 ⇔ Mg(NH3)xBr2+熱 …(A)
MgBr2+xNH3 ⇔ Mg(NH3)xBr2+熱 …(A)
バルブ16が開かれてから所定時間経過後、又はエンジン2からの排気の温度が予め設定された暖機終了温度以上となると、バルブ開閉部24はバルブ16を閉じてエンジン2の稼働中における暖機が終了する。そして暖機終了後、エンジン2が定常運転状態となり、エンジン2から排出される排気の温度が十分に高くなってくると、今度は、排気の熱が熱交換器4を介してヒータ12の反応材14に与えられることになる。つまり、反応材14は熱交換器4を介して排気により加熱される。そして、排気の温度が所定の回収温度(所定値)以上となると、ヒータ12の内部ではNH3を化学吸着した状態の反応材14からNH3が脱離する再生反応(上記の反応式(A)における右辺から左辺への反応)が生じる。ここで、所定の回収温度(所定値)とは、反応材14からNH3を脱離させるのに十分な熱を反応材14に与えることができる排気の温度である。反応材14からNH3が脱離したとき、バルブ16が開かれていると、反応材14から脱離したNH3が供給管15を通ってヒータ12からストレージ11へ移動可能となる。ストレージ11内にNH3が戻ると、NH3がストレージ11内の吸着材13に物理吸着されて回収される。
当該NH3回収時において、バルブ開閉部24は、圧力センサ21により取得されたヒータ12内の圧力と、圧力センサ23により取得されたストレージ11内の圧力とに基づき、バルブ16の開制御及び閉制御を行う。具体的に、まずバルブ開閉部24は、ヒータ12内の圧力がストレージ11内の圧力以上であるか否かを判定する。そしてバルブ開閉部24は、ヒータ12内の圧力がストレージ11内の圧力以上である場合には、バルブ16の開制御を行う。すなわちバルブ開閉部24は、バルブ16に電流を供給する。また、バルブ開閉部24は、ヒータ12内の圧力がストレージ11内の圧力未満である場合には、バルブ16の閉制御を行う。すなわちバルブ開閉部24は、バルブ16への電流の供給を停止する。
ここで、化学蓄熱装置10がヒータ12からストレージ11へのNH3の回収を行っている最中に、ヒータ12内の圧力よりもストレージ11内の圧力が大きいときにバルブ16が開かれると、NH3を効率的にストレージ11内に回収することができないという問題がある。その理由は、例えば、NH3の回収がしばらくの間行われていてストレージ11に既に回収済みのNH3が存在する場合、バルブ16が開かれることにより、ヒータ12による加熱対象の加熱が不要であるにもかかわらず、せっかく回収したNH3がストレージ11からより内圧の低いヒータ12へと移動してしまうためである。これがNH3の回収ロスである。本実施形態の化学蓄熱装置10では、バルブ開閉部24によって、ヒータ12内の圧力がストレージ11内の圧力以上である場合にバルブ16が開かれる。すなわち、バルブ16が開かれるとき、ヒータ12内の圧力が、少なくともストレージ11内の圧力と同じであるか、又はストレージ11内の圧力より大きくなっているので、このようなNH3の回収ロスを防ぐことができる。
また、仮にヒータ12内の圧力がストレージ11内の圧力よりも大きく、ヒータ12からストレージ11へとNH3が移動可能となっているにも関わらず、バルブ16が開かれない場合にも、本来回収できるタイミングで回収が行われずNH3を効率的にストレージ11内に回収することができない。本実施形態の化学蓄熱装置10では、ヒータ12内の圧力がストレージ11内の圧力よりも大きい場合にはバルブ開閉部24によってバルブ16が開かれるので、適切なタイミングでNH3を効率的にストレージ11内に回収することができる。
なお、バルブ開閉部24は、収容量取得部25により取得されたNH3の収容量が目標回収値以上となるまで、バルブ16の開制御及び閉制御を行ってもよい。ここで、NH3の収容量とは、ストレージ11内に収容されているNH3の量(NH3の初期収容量又は回収量)でもよいし、最初にストレージ11内に収容されるNH3の初期収容量に対する現在ストレージ11内に収容されているNH3の量の割合(NH3の回収率)であってもよい。なお、NH3の回収量は、ストレージ11及びヒータ12の全体に収容された収容量として予め設定されたNH3の量からヒータ12内のNH3の量を減算することにより取得してもよい。NH3の回収率を求めるための基準値となるストレージ11内に最初に収容されているNH3の初期収容量は、例えば、ヒータ12内における反応材14と完全に反応させるために必要なNH3の量として設定される。本実施形態では、NH3の収容量として、NH3の回収率を用いている。以下、NH3の回収率を「NH3回収率」ともいう。収容量取得部25は、ストレージ11内のNH3回収率を取得し、取得したNH3回収率が目標回収値以上であるか否かを判定する。ここでいう目標回収値は、使用者等によって適宜設定される値であって、例えば、次回の発熱反応において加熱対象を目標温度に加熱することができるNH3の量である。ここでは、ストレージ11に回収されずにヒータ12又は供給管15に留まるNH3を考慮して、目標回収値を80%に設定している。
収容量取得部25は、例えば図2に示すマップデータを用いてNH3回収率を取得する。図2は、NH3回収率の取得に用いられるマップデータを示すグラフである。図2の(a)は、ストレージ11内の温度とNH3の飽和蒸気圧との関係を示すグラフであり、横軸はストレージ11内の温度[℃]を示し、縦軸はNH3の飽和蒸気圧[kPa]を示す。図2の(b)は、ストレージ11内の吸着材13の相対圧に対するNH3吸着量との関係を示すグラフであり、横軸は相対圧を示し、縦軸はNH3吸着量[g]を示す。ここで、相対圧とは、NH3の飽和蒸気圧に対するストレージ11内の圧力である。なお、吸着材13の相対圧に対するNH3吸着量は、予め実験により求められている。
収容量取得部25には、図2の(a)及び(b)のグラフで示されるマップデータが予め設定されている。収容量取得部25は、当該関係を用いてNH3吸着量を取得し、取得したNH3吸着量に基づきNH3回収率を取得する。具体的には、収容量取得部25は、温度センサ19から出力された温度情報が示すストレージ11内の温度Tに基づき、図2の(a)のグラフで示される関係を有するマップデータを用いてNH3の飽和蒸気圧Psatを取得する。
続いて、収容量取得部25は、取得したNH3の飽和蒸気圧Psatと、圧力センサ23から出力された圧力情報が示すストレージ11内の圧力P2とに基づき、飽和蒸気圧Psatに対する圧力P2の割合である相対圧Prela(=P2/Psat)を算出する。続いて、収容量取得部25は、算出した相対圧Prelaに基づき、図2の(b)のグラフで示される関係を有するマップデータを用いてNH3吸着量Yを取得する。収容量取得部25は、取得したNH3吸着量Yからストレージ11及びヒータ12の圧力を所定圧に保つために残存している残存量を減算して、現在のNH3の収容量を取得する。さらに、収容量取得部25は、現在のNH3の収容量を、NH3の初期収容量(所望の熱量を得るために発熱反応に必要なNH3の収容量)で除算することにより、NH3回収率を取得する。
次に、図3を参照して、バルブ開閉部24の制御手順を説明する。図3は、バルブ開閉部24の処理手順を示すフロー図である。なお、図3のフロー図では、暖機終了後のNH3回収時におけるバルブ開閉部24の処理手順を示している。
エンジン2の稼働中における暖機が終了すると、バルブ開閉部24は、NH3回収モードとしての制御を開始する。まず、バルブ開閉部24は、圧力センサ21により取得されたヒータ12内の圧力P1が、圧力センサ23により取得されたストレージ11内の圧力P2以上であるか否かの判定を行う(S1)。具体的には、バルブ開閉部24は、圧力センサ21から出力されたヒータ12内の圧力P1が、圧力センサ23から出力されたストレージ11内の圧力P2以上であるか否かを判定する。バルブ開閉部24は、圧力P1が圧力P2よりも低いと判定すると(S1;NO)、バルブ16の閉制御を行う(S2)。すなわち、バルブ開閉部24は、バルブ16が開かれている場合にはバルブ16への電流供給を停止してバルブ16を閉じ、バルブ16が閉じている場合にはバルブ16への電流供給を停止したままにしてバルブ16が閉じた状態を維持する。
一方、バルブ開閉部24は、圧力P1が圧力P2以上であると判定すると(S1;YES)、バルブ16の開制御を行う(S3)。すなわち、バルブ開閉部24は、バルブ16が閉じている場合にはバルブ16へ電流を供給してバルブ16を開き、バルブ16が開かれている場合にはバルブ16へ電流を供給したままにしてバルブ16が開いた状態を維持する。バルブ16が開かれると、反応材14から脱離したNH3が供給管15を通ってヒータ12からストレージ11へ戻り、ストレージ11内の吸着材13に物理吸着されて回収される。
続いて、バルブ開閉部24は、収容量取得部25から出力されたNH3回収率が例えば80%以上であるか否かを判定する(S4)。バルブ開閉部24は、例えばNH3回収率が80%より低い場合(S4;NO)、回収モードの制御を続ける。すなわちバルブ開閉部24は、S1の処理に戻る。バルブ開閉部24は、例えばNH3回収率が80%以上である場合(S4;YES)、回収モードの制御を終了する。以上により、暖機終了後のNH3回収時におけるバルブ開閉部24の制御が終了する。
以上、本実施形態に係る化学蓄熱装置10によれば、NH3の回収時において、ヒータ12内の圧力P1がストレージ11内の圧力P2以上である場合に、バルブ開閉部24によりバルブ16の開制御が行われる。よって、バルブ16が開かれたときにはヒータ12内の圧力P1がストレージ11内の圧力P2以上となっている。このため、例えばヒータ12内の圧力P1よりもストレージ11内の圧力P2が大きく、ヒータ12からストレージ11へとNH3が移動できないときにバルブ16が開かれることが防止される。また、例えばヒータ12内の圧力P1がストレージ11内の圧力P2以上となっており、ヒータ12からストレージ11器へとNH3が移動可能であるにも関わらずバルブ16が開かれないということが防止される。このように、NH3の回収を行うのに適切なタイミングでバルブ16を開くことができる結果、ヒータ12からストレージ11へとNH3を効率的に回収することができる。
(第2実施形態)
次に、図4を参照して、第2実施形態に係る化学蓄熱装置を備えた排気浄化システムの構成について説明する。図4は、第2実施形態に係る化学蓄熱装置を備えた排気浄化システムの概略構成図である。
次に、図4を参照して、第2実施形態に係る化学蓄熱装置を備えた排気浄化システムの構成について説明する。図4は、第2実施形態に係る化学蓄熱装置を備えた排気浄化システムの概略構成図である。
図4に示すように、第2実施形態に係る化学蓄熱装置10Aは、第1実施形態に係る化学蓄熱装置10と同じく排気浄化システム1に備えられている。化学蓄熱装置10Aは、化学蓄熱装置10と同じく、ストレージ11と、ヒータ12と、供給管15と、バルブ16と、コントローラ20と、圧力センサ23と、温度センサ19とを備えている。本実施形態において、温度センサ19は、ストレージ11の温度(例えば、ストレージ11内の温度)を取得する貯蔵器温度取得部である。
化学蓄熱装置10Aが化学蓄熱装置10と異なる点は、ヒータ12内の圧力P1を検出する圧力センサ21(図1参照)を備えておらず、ヒータ12内の圧力P1が圧力センサにより取得されるのではなくコントローラ20において推定(取得)される点である。以下、具体的に説明する。
本実施形態において、コントローラ20は、バルブ開閉部24と、収容量取得部25と、ヒータ温度取得部26と、ヒータ圧取得部27とを有している。本実施形態のバルブ開閉部24は、第1実施形態とは異なり、上記の圧力センサ21によって取得されたヒータ12内の圧力P1の代わりに、ヒータ圧取得部27によって取得されたヒータ12内の圧力P1を用いてバルブ16の開制御及び閉制御を行う。すなわち、バルブ開閉部24は、NH3回収時において、ヒータ圧取得部27によって取得されたヒータ12内の圧力P1が、圧力センサ23によって取得されたストレージ11内の圧力P2以上か否かの判定を行い、圧力P1が圧力P2以上である場合にバルブ16の開制御を行う。
本実施形態においても、第1実施形態と同様、NH3の収容量として、NH3回収率を用いている。収容量取得部25は、第1実施形態と同じく、図2のグラフで示されるマップデータを用いて、温度センサ19及び圧力センサ23によりそれぞれ検出されたストレージ11内の温度及び圧力P2に基づきNH3回収率を取得する。
ヒータ温度取得部26は、ヒータ12の温度(例えば、ヒータ12内の温度)を取得する反応器温度取得部である。ヒータ温度取得部26は、排気温度センサ18で検出される排気の温度に基づき、ヒータ12内の温度を取得する。例えば、ヒータ温度取得部26は、熱交換器4の上流側及び下流側に位置する排気温度センサ18で検出された排気の温度から、所定の換算式を用いてヒータ12内の推定温度を算出し、当該推定温度をヒータ12内の温度として取得する。
ヒータ圧取得部27は、ヒータ12の圧力(例えば、ヒータ12内の圧力)を取得する反応器圧力取得部である。ヒータ圧取得部27は、ヒータ温度取得部26により取得されたヒータ12内の温度と、収容量取得部25により取得されたNH3回収率とに基づき、ヒータ12内の圧力P1を取得する。例えば、ヒータ圧取得部27は、図5に示すマップデータを用いて、ヒータ12内の圧力P1を取得する。図5は、図4に示すヒータ圧取得部27によるヒータ12内の圧力の取得に用いられるマップデータを示すグラフである。図5の横軸は、ヒータ12内の温度、すなわち、反応材14の温度[℃]を示し、図5の縦軸は、ヒータ12内の圧力[MPa]を示す。
図5のグラフは、反応材14の温度、ヒータ12内の圧力、及びNH3回収率の関係を示している。ヒータ圧取得部27には、図5のグラフで示される関係を有するマップデータが予め設定されている。図5のグラフで示される関係を有するマップデータは、例えば化学蓄熱装置10Aを用いて予め実験を行い、収集したデータに基づき作成される。ヒータ圧取得部27は、当該マップデータを用いてヒータ12内の圧力P1を取得する。
具体的には、図5に示すように、反応材14の温度とヒータ12内の圧力との間には、例えば各グラフa,b,cに示すような関係性がある。各グラフa,b,cは、NH3回収率が異なり、グラフc、グラフb、グラフaの順でNH3回収率が高くなる。例えば、収容量取得部25により取得されたNH3回収率がグラフbに対応するNH3回収率である場合、当該グラフbを参照して、ヒータ温度取得部26により取得されたヒータ12内の温度(すなわち、反応材14の温度)T1から、ヒータ12内の圧力P1を取得することができる。
なお、図5に示す例では三段階のグラフa,b,cを示しているが、二段階のNH3回収率を用いてもよいし、あるいは、四段階以上のNH3回収率を用いてもよい。収容量取得部25により取得されたNH3回収率が各段階のグラフの間のNH3回収率である場合(NH3回収率に該当するグラフがない場合)には、そのNH3回収率に近い二つのグラフを用いて補間し、ヒータ12内の圧力P1を取得してもよい。ヒータ圧取得部27により取得されたヒータ12内の圧力P1は、バルブ開閉部24へ出力される。出力されたヒータ12内の圧力P1は、上述したようにバルブ開閉部24によるバルブ16の開制御に用いられる。
以上、本実施形態に係る化学蓄熱装置10Aにおいても、NH3の回収時において、ヒータ12内の圧力P1がストレージ11内の圧力P2以上である場合に、バルブ開閉部24によりバルブ16の開制御が行われる。よって、NH3の回収を行うのに適切なタイミングでバルブ16を開くことができる結果、ヒータ12からストレージ11へとNH3を効率的に回収することができる。
また、本実施形態に係る化学蓄熱装置10Aによれば、ヒータ圧取得部27によって、ヒータ12内の温度及びNH3回収率に基づきヒータ12内の圧力P1が取得されるので、圧力センサ等をヒータ12に設けなくてもヒータ12内の圧力P1を取得できる。その結果、化学蓄熱装置10Aにおける部品点数を減らしてコスト削減を実現することができる。
さらに、本実施形態に係る化学蓄熱装置10Aによれば、ストレージ11内の温度及び圧力に基づきNH3回収率が取得されるので、ストレージ11内の温度及び圧力の双方の変動を考慮してNH3回収率を正確に取得することができ、ひいてはNH3回収率に基づくヒータ12内の圧力P1を正確に取得することができる。これにより、ヒータ12内の圧力P1に基づくバルブ16の開制御をより適切に行うことができる。その結果、より効率的なNH3の回収が可能となる。
なお、エンジン2では、燃焼制御のために必要な排気の温度を排気温度センサ18により取得している。つまり、排気温度センサ18は排気浄化システム1において元々備えられたセンサである。したがって、当該排気温度センサ18を化学蓄熱装置10Aにおけるヒータ12内の温度を取得するのに用いることにより、ヒータ12内の温度を取得するための温度センサを別途設ける必要がなくなり、部品点数及びコストの増加を抑制することができる。
(第3実施形態)
次に、図6を参照して、第3実施形態に係る化学蓄熱装置を備えた排気浄化システムの構成について説明する。図6は、第3実施形態に係る化学蓄熱装置を備えた排気浄化システムの概略構成図である。
次に、図6を参照して、第3実施形態に係る化学蓄熱装置を備えた排気浄化システムの構成について説明する。図6は、第3実施形態に係る化学蓄熱装置を備えた排気浄化システムの概略構成図である。
図6に示すように、第3実施形態に係る化学蓄熱装置10Bは、第1実施形態に係る化学蓄熱装置10と同じく排気浄化システム1に備えられている。化学蓄熱装置10Bは、化学蓄熱装置10と同じく、ストレージ11と、ヒータ12と、供給管15と、バルブ16と、コントローラ20と、圧力センサ21と、温度センサ19とを備えている。本実施形態において、温度センサ19は、ストレージ11の温度(例えば、ストレージ11内の温度)を取得する貯蔵器温度取得部である。
化学蓄熱装置10Bが化学蓄熱装置10と異なる点は、ストレージ11内の圧力P2を検出する圧力センサ23(図1参照)を備えておらず、ストレージ11内の圧力P2が圧力センサにより取得されるのではなくコントローラ20において推定(取得)される点である。以下、具体的に説明する。
本実施形態において、コントローラ20は、バルブ開閉部24と、収容量取得部25と、ヒータ温度取得部26と、ストレージ圧取得部28とを有している。本実施形態のバルブ開閉部24は、第1実施形態とは異なり、上記の圧力センサ23によって取得されたストレージ11内の圧力P2の代わりに、ストレージ圧取得部28によって取得されたストレージ11内の圧力P2を用いてバルブ16の開制御及び閉制御を行う。すなわち、バルブ開閉部24は、NH3回収時において、圧力センサ21によって取得されたヒータ12内の圧力P1が、ストレージ圧取得部28によって取得されたストレージ11内の圧力P2以上か否かの判定を行い、圧力P1が圧力P2以上である場合にバルブ16の開制御を行う。
本実施形態においても、第1実施形態と同様、NH3の収容量として、NH3回収率を用いている。一方、本実施形態では、NH3回収率の取得の仕方が第1実施形態と異なる。すなわち、本実施形態において、収容量取得部25は、第1実施形態のように図2に示すマップデータを用いてストレージ11内の温度及び圧力に基づきNH3回収率を取得するのではなく、図7に示すマップデータを用いてヒータ12内の温度及び圧力に基づきNH3回収率を取得する。図7は、図6に示す収容量取得部25によるNH3回収率の取得に用いられるマップデータを示すグラフである。図7の横軸は、ヒータ12内の温度、すなわち、反応材14の温度[℃]を示し、図7の縦軸は、ヒータ12内の圧力[MPa]を示す。
図7のグラフは、図5のグラフと同じく、反応材14の温度、ヒータ12内の圧力P1、及びNH3回収率の関係を示している。本実施形態に係る収容量取得部25には、図7のグラフで示される関係を有するマップデータが予め設定されている。図7のグラフで示される関係を有するマップデータは、例えば化学蓄熱装置10Bを用いて予め実験を行い、収集したデータに基づき作成される。収容量取得部25は、当該マップデータを用いてNH3回収率を取得する。
具体的には、図7に示すように、反応材14の温度とヒータ12内の圧力P1との間には、各グラフa,b,cに示すような関係性がある。各グラフa,b,cは、NH3回収率が異なり、グラフc、グラフb、グラフaの順でNH3回収率が高くなる。例えば、ヒータ温度取得部26により取得されたヒータ12内の温度T1と、圧力センサ21により取得されたヒータ12内の圧力P1とに基づき、図7の関係からグラフbに対応するNH3回収率を取得することができる。
なお、図7に示す例では三段階のグラフa,b,cを示しているが、二段階のNH3回収率を用いてもよいし、あるいは、四段階以上のNH3回収率を用いてもよい。ヒータ温度取得部26により取得されたヒータ12内の温度T1と、圧力センサ21により取得されたヒータ12内の圧力P1とに対応するNH3回収率がない場合には、そのNH3回収率に近い二つのグラフを用いて補間し、NH3回収率を取得してもよい。
ヒータ温度取得部26は、ヒータ12の温度(例えば、ヒータ12内の温度)を取得する反応器温度取得部である。ヒータ温度取得部26は、排気温度センサ18で検出される排気の温度に基づき、ヒータ12内の温度を取得する。例えば、ヒータ温度取得部26は、熱交換器4の上流側及び下流側に位置する排気温度センサ18で検出された排気の温度から、所定の換算式を用いてヒータ12内の推定温度を算出し、当該推定温度をヒータ12内の温度として取得する。
ストレージ圧取得部28は、ストレージ11の圧力(例えば、ストレージ11内の圧力)を取得する貯蔵器圧力取得部である。ストレージ圧取得部28は、温度センサ19により取得されたストレージ11内の温度T2と、収容量取得部25により取得されたNH3回収率とに基づき、ストレージ11内の圧力P2を取得する。例えば、ストレージ圧取得部28は、図8に示すマップデータを用いて、ストレージ11内の圧力P2を取得する。図8は、図6に示すストレージ圧取得部28によるストレージ11内の圧力P2の取得に用いられるマップデータを示すグラフである。図8の横軸は、ストレージ11内の温度[℃]を示し、図8の縦軸は、ストレージ11内の圧力[MPa]を示す。
図8のグラフは、ストレージ11内の温度、ストレージ11内の圧力、及びNH3回収率の関係を示している。ストレージ圧取得部28には、図8のグラフで示される関係を有するマップデータが予め設定されている。図8のグラフで示される関係を有するマップデータは、例えば化学蓄熱装置10Bを用いて予め実験を行い、収集したデータに基づき作成される。ストレージ圧取得部28は、当該マップデータを用いてストレージ11内の圧力P2を取得する。
具体的には、図8に示すように、ストレージ11内の温度とストレージ11内の圧力との間には、各グラフa,b,cに示すような関係性がある。各グラフa,b,cは、NH3回収率が異なり、グラフc、グラフb、グラフaの順でNH3回収率が高くなる。例えば、収容量取得部25により取得されたNH3回収率がグラフbに対応するNH3回収率である場合、当該グラフbを参照して、温度センサ19により取得されたストレージ11内の温度T2から、ストレージ11内の圧力P2を取得することができる。
なお、図8に示す例では三段階のグラフa,b,cを示しているが、二段階のNH3回収率を用いてもよいし、あるいは、四段階以上のNH3回収率を用いてもよい。収容量取得部25により取得されたNH3回収率が各段階のグラフの間のNH3回収率である場合(NH3回収率に該当するグラフがない場合)には、そのNH3回収率に近い二つのグラフを用いて補間し、ストレージ11内の圧力P2を取得してもよい。ストレージ圧取得部28により取得されたストレージ11内の圧力P2は、バルブ開閉部24へ出力される。出力されたストレージ11内の圧力P2は、上述したようにバルブ開閉部24によるバルブ16の開制御に用いられる。
以上、本実施形態に係る化学蓄熱装置10Bにおいても、NH3の回収時において、ヒータ12内の圧力P1がストレージ11内の圧力P2以上である場合に、バルブ開閉部24によりバルブ16の開制御が行われる。よって、NH3の回収を行うのに適切なタイミングでバルブ16を開くことができる結果、ヒータ12からストレージ11へとNH3を効率的に回収することができる。
また、本実施形態に係る化学蓄熱装置10Bによれば、ストレージ圧取得部28によって、ストレージ11内の温度及びNH3回収率に基づきストレージ11内の圧力P2が取得されるので、圧力センサ等をストレージ11に設けなくてもストレージ11内の圧力P1を取得できる。その結果、化学蓄熱装置10Bにおける部品点数を減らしてコスト削減を実現することができる。
さらに、本実施形態に係る化学蓄熱装置10Bによれば、ヒータ12内の温度及び圧力に基づきNH3回収率が取得されるので、ヒータ12内の温度及び圧力の双方の変動を考慮してNH3回収率を正確に取得することができ、ひいてはNH3回収率に基づくストレージ11内の圧力P2を正確に取得することができる。これにより、ストレージ11内の圧力P2に基づくバルブ16の開制御をより適切に行うことができる。その結果、より効率的なNH3の回収が可能となる。
なお、本実施形態においても、排気温度センサ18を化学蓄熱装置10Bにおけるヒータ12内の温度を取得するのに用いることにより、ヒータ12内の温度を取得するための温度センサを別途設ける必要がなくなり、部品点数及びコストの増加を抑制することができる。
(第4実施形態)
次に、図9を参照して、第4実施形態に係る化学蓄熱装置を備えた排気浄化システムの構成について説明する。図9は、第4実施形態に係る化学蓄熱装置を備えた排気浄化システムを示す概略構成図である。
次に、図9を参照して、第4実施形態に係る化学蓄熱装置を備えた排気浄化システムの構成について説明する。図9は、第4実施形態に係る化学蓄熱装置を備えた排気浄化システムを示す概略構成図である。
図9に示すように、第4実施形態に係る化学蓄熱装置10Cは、第1実施形態に係る化学蓄熱装置10と同じく排気浄化システム1に備えられている。化学蓄熱装置10Cは、化学蓄熱装置10と同じく、ストレージ11と、ヒータ12と、供給管15と、バルブ16と、コントローラ20と、圧力センサ23と、温度センサ19とを備えている。
化学蓄熱装置10Cが化学蓄熱装置10と異なる点は、コントローラ20において、加熱対象の温度を取得すると共に、ストレージ11内の圧力及びヒータ12内の圧力に基づくだけでなく、当該加熱対象の温度に基づき、バルブ開閉の制御を行う点である。ここで、本実施形態において、加熱対象はDOC5であるが、これに限られず、加熱対象は、例えば、排気そのもの、熱交換器4、又はSCR7若しくはASC8等の触媒等であってもよい。以下、加熱対象をDOC5として説明する。
本実施形態において、コントローラ20は、バルブ開閉部24と、収容量取得部25と、加熱対象温度取得部29とを有している。本実施形態のバルブ開閉部24は、NH3回収時において、圧力センサ21によって取得されたヒータ12内の圧力P1が圧力センサ23によって取得されたストレージ11内の圧力P2以上である場合であって、且つ、加熱対象温度取得部29によって取得されたDOC5の温度が所定値以上である場合に、バルブ16の開制御を行う。所定値とは、DOC5が触媒活性を得ることができる温度であって、例えばDOC5によって排気中のCOが十分に酸化してCO2となる触媒活性温度である。以下、DOC5が触媒活性を得ることができる温度を単に「触媒活性温度」ともいう。触媒活性温度は、例えば180℃以上である。
ここで、ヒータ12内の圧力P1がストレージ11内の圧力P2よりも大きくなっている場合にバルブ16が開かれると、ヒータ12からストレージ11へとNH3が移動する。この場合、加熱対象であるDOC5の温度が触媒活性温度(所定値)よりも小さいときにヒータ12とストレージ11との圧力差に応じてヒータ12からストレージ11へとNH3を移動させると、NH3の移動に伴ってヒータ12では吸熱反応が生じて熱交換器4出口の排気温度が下がってしまうこととなる。このため、加熱対象であるDOC5の昇温が妨げられてしまう。
本実施形態の化学蓄熱装置10Cでは、このようなDOC5の温度が触媒活性温度よりも低い場合(加熱対象の温度が所定値よりも低い場合)、すなわちNH3をヒータ12からストレージ11へ回収するのに適切なタイミングではない場合にはバルブ16が閉じられている。そして、化学蓄熱装置10Cでは、加熱対象であるDOC5の温度が所定値以上となり、ヒータ12内でNH3の再生反応が生じている適切なタイミングでバルブ16が開かれる。よって、より適切なタイミングでバルブ16の開制御が行われ、より効率よく適切にNH3が回収される。
本実施形態においても、第1実施形態と同様、NH3の収容量として、NH3回収率を用いている。収容量取得部25は、第1実施形態同様、例えば図2に示すマップデータを用いてNH3回収率を取得する。
加熱対象温度取得部29は、DOC5の温度を取得する。加熱対象温度取得部29は、例えばDOC5に設けられた触媒温度センサ30で検出される温度に基づき、DOC5の温度を取得する。なお、加熱対象温度取得部29は、例えばDOC5の上流及び下流に設けられた排気温度センサからDOC5の温度を推定(取得)してもよい。また、加熱対象温度取得部29は、排気温度センサ18からDOC5の温度を推定(取得)してもよい。
次に、図10を参照して、バルブ開閉部24の制御手順を説明する。図10は、バルブ開閉部24の処理手順を示すフロー図である。なお、図10のフロー図では、暖機終了後のNH3回収時におけるバルブ開閉部24の処理手順を示している。本実施形態に係るバルブ開閉部24の処理手順が上記実施形態と異なる点は、ステップS1とステップS3との間においてS11の判定ステップを含んでいる点である。
エンジン2の稼働中における暖機が終了すると、バルブ開閉部24は、NH3回収モードとしての制御を開始する。まず、バルブ開閉部24は、圧力センサ21により取得されたヒータ12内の圧力P1が、圧力センサ23により取得されたストレージ11内の圧力P2以上であるか否かの判定を行う(S1)。具体的には、バルブ開閉部24は、圧力センサ21から出力されたヒータ12内の圧力P1が、圧力センサ23から出力されたストレージ11内の圧力P2以上であるか否かを判定する。バルブ開閉部24は、圧力P1が圧力P2よりも低いと判定すると(S1;NO)、バルブ16の閉制御を行う(S2)。
一方、バルブ開閉部24は、圧力P1が圧力P2以上であると判定すると(S1;YES)、加熱対象の温度が所定値以上であるか否かを判定する(S11)。すなわち、バルブ開閉部24は、加熱対象温度取得部29により取得されたDOC5の温度が触媒活性温度(所定値)以上であるか否かを判定する。バルブ開閉部24は、加熱対象温度取得部29により取得されたDOC5の温度が触媒活性温度より小さい場合(S11;NO)には、バルブ16の閉制御を行う(S2)。
一方、バルブ開閉部24は、加熱対象温度取得部29により取得されたDOC5の温度が触媒活性温度以上である場合(S11;YES)には、バルブ16の開制御を行う(S3)。バルブ16が開かれると、反応材14から脱離したNH3が供給管15を通ってヒータ12からストレージ11へ戻り、ストレージ11内の吸着材13に物理吸着されて回収される。
続いて、バルブ開閉部24は、収容量取得部25から出力されたNH3回収率が例えば80%以上であるか否かを判定する(S4)。バルブ開閉部24は、例えばNH3回収率が80%より低い場合(S4;NO)、回収モードの制御を続ける。すなわちバルブ開閉部24は、S1の処理に戻る。バルブ開閉部24は、例えばNH3回収率が80%以上である場合(S4;YES)、回収モードの制御を終了する。以上により、暖機終了後のNH3回収時におけるバルブ開閉部24の制御が終了する。
以上、本実施形態に係る化学蓄熱装置10Cによれば、ヒータ12内の圧力P1がストレージ11内の圧力P2以上となっており、ヒータ12からストレージ11へとNH3が移動可能な状態であることに加えて、DOC5の温度が触媒活性温度以上となっており、DOC5が十分に暖められて触媒活性が得られている場合にバルブ16が開かれる。これにより、例えばDOC5の昇温を行っている途中でNH3回収のためにバルブ16が開かれることを防止することができ、より適切なタイミングでバルブ16の開制御を行うことができる。その結果、ヒータ12からストレージ11へとNH3をより効率的に回収することができる。
さらに、仮にヒータ12内の圧力P1がストレージ11内の圧力P2以上の場合であっても、DOC5の温度が触媒活性温度よりも低い場合にバルブ16が開かれると、圧力P1が圧力P2以上であることにより、強制的に反応材14からNH3が脱離する状態となり、吸熱反応が生じる可能性がある。このような吸熱反応が生じると、排気の温度が下がり、元々所定値より低い温度であったDOC5を排気の熱で十分に加熱できず、その結果、DOC5の昇温が遅くなってしまう。本実施形態に係る化学蓄熱装置10Cによれば、加熱対象であるDOC5の温度が触媒活性温度より低い場合には、圧力P1が圧力P2以上であっても、バルブ16が閉じられているため、このような吸熱反応が生じない。その結果、DOC5をより早期に昇温することができる。
以上、本発明の一側面の種々の実施形態について説明したが、本発明は上記実施形態に限定されず、各請求項に記載した要旨を変更しない範囲で変形し、又は他に適用してもよい。
上記実施形態における図7のグラフでは、反応材14の温度及びヒータ12内の圧力に対応したNH3回収率が示されているが、NH3回収率は、NH3の回収量に基づき取得してもよい。すなわち、NH3の回収量を、ヒータ12における反応材14と完全に反応させるために必要なNH3の量で除算することにより、NH3回収率を取得してもよい。なお、NH3の回収量は、例えば反応材14の温度及びヒータ12内の圧力に基づきヒータ12内のNH3の量を取得し、取得したNH3の量を、ストレージ11及びヒータ12の全体に収容された収容量として予め設定されたNH3収容量から減算することにより取得してもよい。
また、ヒータ12内の圧力P1及びストレージ11内の圧力P2は、NH3回収率に代えて、NH3の収容量(NH3の初期収容量又は回収量)を用いて取得されてもよい。すなわち、ヒータ圧取得部27は、ヒータ温度取得部26により取得されたヒータ12内の温度と、収容量取得部25により取得されたNH3の初期収容量又は回収量とに基づき、ヒータ12内の圧力P1を取得してもよい。また、ストレージ圧取得部28は、温度センサ19により取得されたストレージ11内の温度T2と、収容量取得部25により取得されたNH3の初期収容量又は回収量とに基づき、ストレージ11内の圧力P2を取得してもよい。
上記実施形態において、ヒータ温度取得部26は、排気温度センサ18で検出される排気の温度に基づく推定温度をヒータ12内の温度として取得しているが、これに限られない。例えば、ヒータ12内の温度は、ヒータ12に温度センサを設けて、当該温度センサによってヒータ12内の温度を検出することで取得してもよい。
上記実施形態において、ヒータ12は、熱交換器4に対応するように排気管3の周囲に配置され、断面円環形状を有しているとしたが、これに限られない。例えば、加熱対象の一部分にだけ対応するようにヒータを配置してもよい。また、ヒータは、排気管の外部以外の箇所に配置してもよく、例えば排気を加熱するために排気管の内部に配置してもよい。排気管の内部にヒータを配置する場合には、例えば複数のヒータと熱交換部とを交互に積層した構成として、ヒータに熱交換部を一体化し、ヒータによって熱交換部を介して排気を加熱してもよい。
熱交換器4の表面の一部又は全部には、触媒コート層が形成されていてもよい。また、上記実施形態では、加熱対象を熱交換器4としたが、加熱対象としては、例えばDOC5等の他の触媒、又は排気管3を流れる排気でもよい。なお、加熱対象温度取得部29は、加熱対象そのものに設けられた温度センサによって加熱対象の温度を取得してもよく、加熱対象の周囲に設けられた温度センサによって取得された加熱対象の周囲の温度に基づき加熱対象の温度を推定し、当該推定温度を加熱対象の温度として取得してもよい。
バルブ16は、電磁式以外のバルブでもよい。また、バルブ16は、二値制御の開閉弁に限られず、比例弁であってもよく、又は、開閉弁と比例弁とを組み合わせて構成されるバルブであってもよい。
反応器に導入される反応媒体は、NH3に限られず、例えばH2О、アルコール、CO2等でもよい。
上記実施形態では、化学蓄熱装置は、車両の内燃機関であるディーゼルエンジン2に適用されるとしたが、これに限られない。例えば、化学蓄熱装置は、ガソリンエンジン等に適用されてもよい。
また、化学蓄熱装置は、エンジンの排気系以外に設けられた加熱対象を加熱する装置であってもよい。そのような加熱対象としては、エンジンオイル、冷却水、又は空気等の種々の熱媒体等であってもよい。このとき、熱媒体が流れる経路上に熱交換器を配置して、その熱交換器を化学蓄熱装置で加熱するとしてもよい。さらに、化学蓄熱装置は、エンジン以外に適用するとしてもよい。
上記第4実施形態では、加熱対象をDOC5としており、加熱対象温度取得部29によって取得されたDOC5の温度が触媒活性温度以上である場合に、バルブ16の開制御を行っているが、これに限られない。例えば、加熱対象が排気又はエンジンオイル等である場合にも、加熱対象温度取得部29によりこれらの加熱対象の温度を取得し、これらの加熱対象の温度が所定値以上である場合に、バルブ16の開制御を行ってもよい。この際、加熱対象が排気である場合の所定値とは、例えば所望の触媒等の触媒活性温度まで暖めることができる温度であってもよく、又は、反応材14の脱離開始温度まで暖めることができる温度(回収温度)であってもよい。また、加熱対象がエンジンオイルである場合の所定値とは、例えば反応材14の脱離開始温度まで暖めることができる温度(回収温度)であってもよい。
上記第4実施形態において、バルブ開閉部24は、圧力センサ21によって取得されたヒータ12内の圧力P1と、圧力センサ23によって取得されたストレージ11内の圧力P2とを用いてバルブ16の開制御及び閉制御を行っているが、これに限られない。例えば、圧力センサ21によって取得されたヒータ12内の圧力P1に代えて、第2実施形態のように、ヒータ圧取得部27によって取得されたヒータ12内の圧力P1を用いてもよく、圧力センサ23によって取得されたストレージ11内の圧力P2に代えて、第2実施形態のように、ストレージ圧取得部28によって取得されたストレージ11内の圧力P2を用いてもよい。
本発明の一側面によれば、反応媒体の回収を効率的に行うことができる化学蓄熱装置を提供することができる。
4…熱交換器(加熱対象)、5…DOC(加熱対象)、10,10A,10B…化学蓄熱装置、11…ストレージ(貯蔵器)、12…ヒータ(反応器)、14…反応材、15…供給管、16…バルブ、19…温度センサ(貯蔵器温度取得部)、21…圧力センサ(反応器圧力取得部)、23…圧力センサ(貯蔵器圧力取得部)、24…バルブ開閉部(制御部)、25…収容量取得部、26…ヒータ温度取得部(反応器温度取得部)、27…ヒータ圧取得部(反応器圧力取得部)、28…ストレージ圧取得部(貯蔵器圧力取得部)、29…加熱対象温度取得部。
Claims (6)
- 加熱対象を加熱する化学蓄熱装置であって、
反応媒体を貯蔵する貯蔵器と、
反応媒体との化学反応により発熱すると共に加熱されると反応媒体を脱離する反応材を有する反応器と、
前記貯蔵器と前記反応器とを接続する供給管と、
前記供給管に配設され、反応媒体の流路を開閉するバルブと、
前記反応器の圧力を取得する反応器圧力取得部と、
前記貯蔵器の圧力を取得する貯蔵器圧力取得部と、
前記反応器圧力取得部により取得された前記反応器の圧力と、前記貯蔵器圧力取得部により取得された前記貯蔵器の圧力とに基づき、前記バルブの開制御及び閉制御を行う制御部と、を備え、
前記制御部は、前記反応器から前記貯蔵器への反応媒体の回収時において、前記反応器圧力取得部により取得された前記反応器の圧力が、前記貯蔵器圧力取得部により取得された前記貯蔵器の圧力以上である場合に、前記バルブの開制御を行う、化学蓄熱装置。 - 前記反応器の温度を取得する反応器温度取得部と、
前記貯蔵器に収容される反応媒体の収容量を取得する収容量取得部と、を備え、
前記反応器圧力取得部は、前記反応器温度取得部により取得された前記反応器の温度と、前記収容量取得部により取得された前記収容量とに基づき、前記反応器の圧力を取得する、請求項1に記載の化学蓄熱装置。 - 前記貯蔵器の温度を取得する貯蔵器温度取得部を備え、
前記収容量取得部は、前記貯蔵器温度取得部により取得された前記貯蔵器の温度と、前記貯蔵器圧力取得部により取得された前記貯蔵器の圧力とに基づき、前記収容量を取得する、請求項2に記載の化学蓄熱装置。 - 前記貯蔵器の温度を取得する貯蔵器温度取得部と、
前記貯蔵器に収容される反応媒体の収容量を取得する収容量取得部と、を備え、
前記貯蔵器圧力取得部は、前記貯蔵器温度取得部により取得された前記貯蔵器の温度と、前記収容量取得部により取得された前記収容量とに基づき、前記貯蔵器の圧力を取得する、請求項1に記載の化学蓄熱装置。 - 前記反応器の温度を取得する反応器温度取得部を備え、
前記収容量取得部は、前記反応器温度取得部により取得された前記反応器の温度と、前記反応器圧力取得部により取得された前記反応器の圧力とに基づき、前記収容量を取得する、請求項4に記載の化学蓄熱装置。 - 前記加熱対象の温度を取得する加熱対象温度取得部を備え、
前記制御部は、前記反応器から前記貯蔵器への反応媒体の回収時において、前記反応器圧力取得部により取得された前記反応器の圧力が、前記貯蔵器圧力取得部により取得された前記貯蔵器の圧力以上であり、且つ、前記加熱対象温度取得部により取得された前記加熱対象の温度が所定値以上である場合に、前記バルブの開制御を行う、請求項1~5の何れか一項に記載の化学蓄熱装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015142738A JP2017026186A (ja) | 2015-07-17 | 2015-07-17 | 化学蓄熱装置 |
JP2015-142738 | 2015-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017013907A1 true WO2017013907A1 (ja) | 2017-01-26 |
Family
ID=57834240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060379 WO2017013907A1 (ja) | 2015-07-17 | 2016-03-30 | 化学蓄熱装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017026186A (ja) |
WO (1) | WO2017013907A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024099998A1 (en) * | 2022-11-07 | 2024-05-16 | Volvo Truck Corporation | Thermochemical catalyst kick-start |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04347320A (ja) * | 1991-05-21 | 1992-12-02 | Toyota Motor Corp | 触媒加熱装置 |
JP2014092348A (ja) * | 2012-11-06 | 2014-05-19 | Toyota Industries Corp | 化学蓄熱装置 |
-
2015
- 2015-07-17 JP JP2015142738A patent/JP2017026186A/ja active Pending
-
2016
- 2016-03-30 WO PCT/JP2016/060379 patent/WO2017013907A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04347320A (ja) * | 1991-05-21 | 1992-12-02 | Toyota Motor Corp | 触媒加熱装置 |
JP2014092348A (ja) * | 2012-11-06 | 2014-05-19 | Toyota Industries Corp | 化学蓄熱装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024099998A1 (en) * | 2022-11-07 | 2024-05-16 | Volvo Truck Corporation | Thermochemical catalyst kick-start |
Also Published As
Publication number | Publication date |
---|---|
JP2017026186A (ja) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2884071B1 (en) | Catalytic reactor and vehicle equipped with said catalytic reactor | |
JP5954123B2 (ja) | 排気ガス浄化システム | |
WO2017013907A1 (ja) | 化学蓄熱装置 | |
JP6107563B2 (ja) | 化学蓄熱装置 | |
JP2015121382A (ja) | 化学蓄熱装置 | |
WO2016072331A1 (ja) | 化学蓄熱装置 | |
JP6131777B2 (ja) | 化学蓄熱装置 | |
JP6102527B2 (ja) | 化学蓄熱装置 | |
WO2016163289A1 (ja) | 化学蓄熱装置 | |
JP2016148482A (ja) | 化学蓄熱装置 | |
JP6111905B2 (ja) | 化学蓄熱装置 | |
WO2016056488A1 (ja) | 化学蓄熱装置 | |
WO2017110812A1 (ja) | 化学蓄熱装置 | |
JP6320551B2 (ja) | 化学蓄熱装置 | |
JP2016053439A (ja) | 化学蓄熱装置 | |
JP2015081519A (ja) | 排気ガス浄化システム | |
WO2016163167A1 (ja) | 化学蓄熱装置 | |
JP2017120130A (ja) | 化学蓄熱装置 | |
JP2014152997A (ja) | 化学蓄熱装置 | |
JP2017072310A (ja) | 化学蓄熱装置 | |
JP6424716B2 (ja) | 化学蓄熱装置 | |
JP2015183635A (ja) | 化学蓄熱装置 | |
JP2016090171A (ja) | 化学蓄熱装置 | |
WO2015174291A1 (ja) | 化学蓄熱装置 | |
JP2015108471A (ja) | 化学蓄熱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827471 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827471 Country of ref document: EP Kind code of ref document: A1 |