WO2016163289A1 - 化学蓄熱装置 - Google Patents

化学蓄熱装置 Download PDF

Info

Publication number
WO2016163289A1
WO2016163289A1 PCT/JP2016/060515 JP2016060515W WO2016163289A1 WO 2016163289 A1 WO2016163289 A1 WO 2016163289A1 JP 2016060515 W JP2016060515 W JP 2016060515W WO 2016163289 A1 WO2016163289 A1 WO 2016163289A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
reactor
ammonia
reservoir
reaction medium
Prior art date
Application number
PCT/JP2016/060515
Other languages
English (en)
French (fr)
Inventor
康 佐竹
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016163289A1 publication Critical patent/WO2016163289A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a chemical heat storage device.
  • a device described in Patent Document 1 As a conventional chemical heat storage device, for example, a device described in Patent Document 1 is known.
  • a catalyst body is disposed in a gas passage tube through which exhaust gas of an automobile flows, and heat and heat are absorbed by adsorption / desorption of an adsorbed medium (reaction medium) such as water on the upstream side.
  • a first container storing an adsorbent (heat storage material) is disposed, the second container storing the adsorbed medium and the first container are communicated by a communication pipe, and an on-off valve is provided in the middle of the communication pipe.
  • the on / off valve is opened when the ignition switch is turned on, and the on / off valve is closed when the ignition switch is turned off.
  • the adsorbent When the temperature of the exhaust gas is low and the temperature of the catalyst body is low, the adsorbent adsorbs the adsorbed medium to generate heat in the first container, and the exhaust gas is heated by the heat generation of the adsorbent. The catalyst body is heated by the heated exhaust gas. Thereafter, when the temperature of the exhaust gas passing through the first container rises, in the first container, the adsorbent absorbs the heat of the exhaust gas and desorbs the adsorbed medium. As the adsorbent is desorbed from the adsorbent in the first container, the adsorbed medium desorbed from the adsorbent is recovered in the second container.
  • the exhaust gas temperature varies depending on the driving condition of the car. Due to this temperature variation, the temperature of the first container may rise below a predetermined temperature at which the adsorbed medium is desorbed and then drop below the predetermined temperature in a short time. In such a case, in the device described in Patent Document 1, the on-off valve is always opened after the ignition switch is turned on. Accordingly, the adsorbed medium is desorbed from the adsorbent when the first container reaches a predetermined temperature or higher. The adsorbed medium is collected in the second container for a short time and then moved again from the second container to the first container as the temperature of the first container decreases, and used for heat generation. Therefore, the recovery of the adsorbed medium in the second container does not proceed and there is a possibility that a sufficient amount of the adsorbed medium cannot be supplied to the first container even if the exhaust gas needs to be heated in the first container. .
  • an object of the present invention is to propose a chemical heat storage device that can efficiently perform heating of a heating target and recovery of a reaction medium.
  • a chemical heat storage device is a chemical heat storage device that heats an object to be heated, and generates heat due to a chemical reaction with the reaction medium when the reaction medium is supplied and absorbs heat when the reaction medium is heated.
  • a reactor having a heat storage material that desorbs the reaction medium, a reservoir that stores the reaction medium, a connection pipe that connects the reactor and the reservoir, and that circulates the reaction medium between the reactor and the reservoir, and a connection
  • An opening / closing valve provided in the pipe, a control unit for controlling opening / closing of the opening / closing valve, and a temperature acquisition unit for acquiring the temperature of the reactor, and the control unit controls the opening of the opening / closing valve to react from the reservoir.
  • a heating mode in which the reaction medium is moved to the reactor and the object to be heated is heated in the reactor, and a recovery mode in which the reaction medium desorbed from the heat storage material of the reactor is collected in the reservoir.
  • the temperature of the reactor acquired by the temperature acquisition unit during When the temperature exceeds the allowable temperature the system switches from the heating mode to the recovery mode.
  • the open / close valve is closed.
  • the open / close valve is controlled to open.
  • the control unit shifts to the reaction medium recovery mode.
  • the control unit only recovers the reaction medium by closing the on-off valve so that the reaction medium cannot move to the reactor side.
  • a sufficient amount of reaction medium capable of obtaining a heating effect can be recovered.
  • a sufficient amount of the reaction medium is supplied at the time of heating, so that the heating effect can be exhibited.
  • control unit may maintain the recovery mode until the recovery amount of the reaction medium recovered in the reservoir reaches a predetermined amount or more after the transition to the recovery mode. Thereby, in the storage device, a sufficient amount of the reaction medium capable of obtaining the heating effect can be reliably recovered.
  • the chemical heat storage device of one embodiment includes a heating target temperature detection unit that detects the temperature of the heating target, and the control unit detects the temperature after the recovery amount of the reaction medium recovered in the reservoir reaches a predetermined amount or more.
  • the on-off valve is controlled to be closed, and after the close control is performed, the temperature of the heating target detected by the heating target temperature detection unit is not heated to the heating target.
  • the opening / closing valve may be controlled to open when the temperature is lower than the required predetermined temperature.
  • the chemical heat storage device of one embodiment includes a reservoir temperature detection unit that detects the temperature of the reservoir and a reservoir pressure detection unit that detects the pressure of the reservoir, and the control unit is detected by the reservoir temperature detection unit.
  • the recovered amount may be calculated using the detected temperature and the pressure detected by the storage pressure detector. Thereby, the recovery amount of the reaction medium recovered in the reservoir can be easily obtained from the temperature and pressure of the reservoir.
  • the temperature acquisition unit may acquire the temperature of the reactor from the temperature of the heating target heated in the reactor. Thereby, the temperature of the reactor can be acquired without directly detecting the temperature of the reactor.
  • heating of the heating target and recovery of the reaction medium can be performed efficiently.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas purification system including a chemical heat storage device according to an embodiment.
  • FIG. 2 is a graph showing the relationship between parameters for the reservoir
  • FIG. 2 (a) is a graph showing the relationship between the reservoir temperature and the ammonia saturated vapor pressure
  • FIG. 2 (b) is the relative pressure-ammonia adsorption. It is a graph which shows the relationship of quantity.
  • FIG. 3 is a graph showing an example of the time change of the reactor temperature.
  • FIG. 4 is a flowchart showing the processing flow of the controller.
  • An exhaust gas purification system is a system that purifies harmful substances (environmental pollutants) contained in exhaust gas discharged from an engine (particularly a diesel engine), and is a catalyst DOC [Diesel Oxidation Catalyst], SCR [Selective Catalytic Reduction], ASC [Ammonia Slip Catalyst] and DPF [Diesel Particulate Filter] of filter are provided. Furthermore, the exhaust gas purification system according to the embodiment includes a chemical heat storage device for warming up the catalyst.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas purification system 1 according to an embodiment.
  • the exhaust gas purification system 1 includes a heat exchanger 4, a DOC (diesel oxidation catalyst) 5, and a DPF (diesel exhaust particulate removal filter) from the upstream side to the downstream side of the exhaust pipe 3 connected to the exhaust side of the engine 2. 6, an SCR (selective reduction catalyst) 7 and an ASC (ammonia slip catalyst) 8 are provided.
  • the exhaust gas discharged from the engine 2 flows through the exhaust pipe 3, the heat exchanger 4, the DOC 5, the DPF 6, the SCR 7, and the ASC 8.
  • the upstream side and the downstream side are defined by the flow direction of the exhaust gas.
  • the heat exchanger 4 performs heat exchange between the exhaust gas discharged from the engine 2 and a reactor 11 described later.
  • the DOC 5 is a catalyst that oxidizes HC, CO, and the like contained in the exhaust gas.
  • the DPF 6 is a filter that collects and removes PM contained in the exhaust gas.
  • ammonia (NH 3 ) or urea water (hydrolyzed to generate ammonia) is supplied to the upstream side of the SCR 7 in the exhaust pipe 3, the SCR 7 chemically reacts ammonia and NOx contained in the exhaust gas.
  • the ASC 8 is a catalyst that oxidizes ammonia that has passed through the SCR 7 and has flowed downstream.
  • Each catalyst 5, 7, and 8 has a temperature range (that is, an active temperature) that can exhibit a purification ability against environmental pollutants.
  • the temperature of each catalyst 5, 7, 8 is lower than the activation temperature (for example, when the engine 2 is cold-started), each catalyst 5, 7, 8 cannot exhibit sufficient purification capacity.
  • the exhaust gas purification system 1 includes a chemical heat storage device 10 in order to warm up the catalysts 5, 7, and 8 by heating the exhaust gas (heating target) via the most upstream heat exchanger 4. ing.
  • the chemical heat storage device 10 is a device that heats exhaust gas without external energy using a reversible chemical reaction. Specifically, the chemical heat storage device 10 stores the heat (exhaust heat) of the exhaust gas inside by separating the heat storage material and the reaction medium. And the chemical heat storage apparatus 10 supplies a reaction medium to a heat storage material at the time of warming-up, and heat-exchanges using the reaction heat of this chemical reaction by making a chemical reaction (chemical adsorption) with a heat storage material and a reaction medium. The exhaust gas is heated via the vessel 4. In this embodiment, the reaction medium is ammonia.
  • the chemical heat storage device 10 includes a reactor 11, a reservoir 12, a connecting pipe 13, an on-off valve 14, and a controller 15 (control unit).
  • the reactor 11 functions as a heater, and heats the exhaust gas via the heat exchanger 4 on the upstream side of the DOC 5 that is a catalyst arranged in the uppermost stream.
  • the exhaust gas heated by the heating flows into each downstream catalyst (DOC5, SCR7, ASC8). Thereby, each catalyst is warmed up.
  • DOC5 downstream catalyst
  • a cylindrical heat exchanger 4 and an annular reactor 11 surrounding the outer periphery thereof may be used, or a plurality of heat exchangers 4 and a plurality of reactors 11 (heat storage materials) are alternately stacked. It may be a thing.
  • the reactor 11 has a heat storage material 11a, and this heat storage material 11a is stored in a container.
  • the heat storage material 11a chemically reacts with the ammonia (chemical adsorption) and generates heat. Further, when the heat storage material 11a is heated by the heat of the exhaust gas, the heat storage material 11a absorbs the heat (heat storage) and desorbs the chemically adsorbed ammonia.
  • the temperature at which ammonia is desorbed is determined by a combination of the heat storage material 11a used in the reactor 11 and ammonia (reaction medium).
  • a halogen compound represented by the composition formula MXa is used as the heat storage material 11a.
  • M is an alkaline earth metal such as Mg, Ca, or Sr, or a transition metal such as Cr, Mn, Fe, Co, Ni, Cu, or Zn.
  • X is Cl, Br, I or the like.
  • a is a number specified by the valence of M, and is 2 or 3.
  • the heat storage material 11a may be mixed with an additive for improving thermal conductivity.
  • the additive include carbon fiber, carbon bead, SiC bead, metal bead, polymer bead, and polymer fiber.
  • the metal material of the metal beads include Cu, Ag, Ni, Ci—Cr, Al, Fe, and stainless steel.
  • you may provide a heat insulating material between the thermal storage material 11a and a container, and you may provide the heat conductive sheet formed with metal sheets, such as a graphite sheet and aluminum.
  • the reservoir 12 has an adsorbent 12a.
  • the adsorbent 12a holds ammonia by physical adsorption, and releases (desorbs) ammonia as the pressure in the reservoir 12 changes.
  • activated carbon is used as the adsorbent 12a.
  • ammonia is desorbed from the adsorbent 12a during warm-up and supplied to the reactor 11 (heat storage material 11a). After the warm-up, the ammonia desorbed from the heat storage material 11a is physically supplied to the adsorbent 12a. Recover by adsorbing.
  • the adsorbent 12a is not limited to activated carbon, and for example, mesoporous material having mesopores such as mesoporous silica, mesoporous carbon, and mesoporous alumina, or zeolite and silica gel may be used.
  • the total amount of ammonia that can be stored is determined according to the size of the reservoir 12 (particularly, the amount of the adsorbent 12a).
  • FIG. 2A is a graph showing the relationship between the temperature of the reservoir 12 and the ammonia saturated vapor pressure, where the horizontal axis is temperature (° C.) and the vertical axis is ammonia saturated vapor pressure (kPa).
  • Adsorption amount (g) is a graph showing the relationship between the temperature of the reservoir 12 and the ammonia saturated vapor pressure, where the horizontal axis is temperature (° C.) and the vertical axis is ammonia saturated vapor pressure (kPa).
  • the temperature of the reservoir 12 and the ammonia saturated vapor pressure have a relationship indicated by an ammonia saturated vapor pressure curve A in which the ammonia saturated vapor pressure increases as the temperature increases.
  • the ammonia saturated vapor pressure of the reservoir 12 can be determined from the temperature of the reservoir 12.
  • the relative pressure of the reservoir 12 and the ammonia adsorption amount have a relationship indicated by an ammonia adsorption amount curve B in which the ammonia adsorption amount increases as the relative pressure increases.
  • the ammonia adsorption amount in the reservoir 12 can be determined from the relative pressure.
  • the relative pressure can be obtained by dividing the pressure in the reservoir 12 by the ammonia saturated vapor pressure. Therefore, the ammonia adsorption amount (ammonia storage amount) in the reservoir 12 is obtained from the temperature and pressure of the reservoir 12 using these two relationships (ammonia saturated vapor pressure curve A, ammonia adsorption amount curve B). Can do.
  • the amount of ammonia recovered in the reservoir 12 is the amount of ammonia remaining in the reservoir 12 in order to keep the pressure of the reservoir 12 and the reactor 11 at a predetermined pressure during warm-up. It can be obtained by subtraction. Further, the recovery rate of ammonia in the reservoir 12 is obtained by converting the recovery amount of ammonia into the amount of ammonia required to obtain a desired amount of heat in the exothermic reaction in the reactor 11, that is, the reaction from the reservoir 12. It can be obtained by dividing by the amount of ammonia to be transferred to the vessel 11 (this amount is hereinafter referred to as “total ammonia recovery amount”).
  • the connecting pipe 13 is a pipe connecting the reactor 11 and the reservoir 12.
  • the connecting pipe 13 serves as a flow path for ammonia to flow between the reactor 11 and the reservoir 12.
  • the on-off valve 14 is a valve that opens and closes the ammonia flow path between the reactor 11 and the reservoir 12.
  • the on-off valve 14 is disposed in the middle of the connecting pipe 13. When the on-off valve 14 is opened, the reactor 11 and the reservoir 12 communicate with each other through the connecting pipe 13, and ammonia can move between the reactor 11 and the reservoir 12 through the connecting pipe 13. On the other hand, when the on-off valve 14 is closed, the reactor 11 and the reservoir 12 are disconnected, and ammonia cannot move between the reactor 11 and the reservoir 12 via the connection pipe 13.
  • the controller 15 controls the opening / closing of the opening / closing valve 14.
  • the on-off valve 14 is an electromagnetic normally closed on-off valve that opens when a voltage is applied.
  • the on-off valve 14 may be an on-off valve other than an electromagnetic type.
  • the controller 15 includes a CPU [Central Processing Unit], ROM [Read Only Memory], RAM [Random Access Memory], and the like, and is a control unit of the chemical heat storage device 10.
  • the controller 15 includes various sensors such as a temperature sensor 16 (heating target temperature detection unit), a temperature sensor 17 (temperature acquisition unit), a temperature sensor 18 (reservoir temperature detection unit), and a pressure sensor 19 (reservoir pressure detection unit). Are connected, and information necessary for control is acquired from the plurality of sensors.
  • the controller 15 is connected to an on-off valve 14.
  • the controller 15 stores in advance information necessary for control such as the ammonia saturated vapor pressure curve A and the ammonia adsorption amount curve B shown in FIG.
  • the controller 15 performs each process described below using these pieces of information, and performs opening / closing control of the opening / closing valve 14. Before describing specific processing in the controller 15, the temperature sensors 16, 17, 18, and the pressure sensor 19 will be described.
  • the controller 15 may be dedicated to the chemical heat storage device 10 or may be incorporated as a function of an ECU such as an engine ECU [Electronic Control Unit].
  • the temperature sensor 16 is a sensor that detects the temperature of the exhaust gas flowing in the exhaust pipe 3 between the engine 2 and the heat exchanger 4 (upstream side of the reactor 11). The temperature sensor 16 detects the temperature of the exhaust gas and transmits the detected temperature information to the controller 15.
  • the temperature sensor 17 is a sensor that detects the temperature of the exhaust gas flowing in the exhaust pipe 3 between the heat exchanger 4 and the DOC 5 (downstream of the reactor 11). The temperature sensor 17 detects the temperature of the exhaust gas, and transmits the detected temperature information to the controller 15.
  • the temperature of the exhaust gas detected by the temperature sensor 17 is the temperature of the exhaust gas downstream of the reactor 11. Therefore, since the temperature of the exhaust gas is the temperature of the exhaust gas after being heated in the reactor 11, the temperature corresponds to the temperature of the reactor 11. Therefore, in the processing of the controller 15 below, the temperature of the exhaust gas detected by the temperature sensor 17 is used as the temperature of the reactor 11. In order to obtain the temperature of the reactor 11 more accurately, the temperature of the reactor 11 is estimated more accurately by converting the temperature of the exhaust gas detected by the temperature sensor 17 using a predetermined conversion formula. The estimated temperature may be used in the processing of the controller 15.
  • the volume of the heat storage material 11a expands due to a chemical reaction with ammonia. Therefore, for example, when a temperature sensor is provided inside the reactor 11, it is necessary to prevent the temperature sensor from being damaged by receiving pressure due to expansion of the heat storage material 11 a. Further, in the reactor 11, a sealed space is formed so that the heat storage material 11a enclosed in the container can repeatedly react with ammonia. Therefore, when a temperature sensor is provided inside the reactor 11, it is necessary to sufficiently ensure the airtightness of the sealed space. Thus, in order to estimate the temperature of the heat storage material 11a from the temperature of the reactor 11, it may be difficult to provide a temperature sensor inside the reactor 11 for reasons such as an increase in cost and the number of parts. Therefore, instead of directly providing a temperature sensor in the reactor 11, the temperature of the reactor 11 is acquired using a temperature sensor 17 that detects the temperature of the exhaust gas downstream of the reactor 11.
  • the engine ECU obtains the temperature of the exhaust gas necessary for controlling the engine 2 by the temperature sensors 16 and 17. That is, the temperature sensors 16 and 17 that detect the temperature of the exhaust gas are essential sensors for controlling the engine 2. Therefore, by using these temperature sensors 16 and 17 also for controlling the chemical heat storage device 10, there is no need to separately provide a temperature sensor for acquiring the temperature of the reactor 11, and an increase in cost and the number of parts can be suppressed. Can do.
  • the temperature sensor 18 is a sensor that detects the temperature inside the reservoir 12. The temperature sensor 18 detects the temperature and transmits the detected temperature information to the controller 15.
  • the pressure sensor 19 is a sensor that detects the pressure inside the reservoir 12. The pressure sensor 19 detects pressure and transmits the detected pressure information to the controller 15.
  • the controller 15 includes a warm-up mode (heating mode) in which the exhaust gas is heated by the reactor 11 to warm up, and a recovery mode in which ammonia is recovered by the reservoir 12.
  • warm-up mode heating mode
  • recovery mode recovery mode
  • ammonia ammonia
  • the controller 15 detects the temperature of the exhaust gas upstream of the reactor 11 (heat exchanger 4) detected by the temperature sensor 16 during operation of the engine 2 (this temperature is hereinafter referred to as “upstream exhaust gas temperature”). Call) is less than the warm-up start temperature.
  • upstream exhaust gas temperature this temperature is hereinafter referred to as “upstream exhaust gas temperature”.
  • the controller 15 determines that the upstream side exhaust gas temperature is lower than the warm-up start temperature, the controller 15 shifts to the warm-up mode and applies a voltage to the on-off valve 14 in order to open the on-off valve 14.
  • the warm-up start temperature is a temperature that requires warm-up (heating of the exhaust gas) for the catalysts 5, 7, and 8.
  • the warm-up start temperature is set based on the activation temperature of the catalysts 5, 7, 8 and the amount of heat mounted on the reactor 11.
  • the controller 15 After shifting to the warm-up mode, the controller 15 measures the time from the start of warm-up and determines whether or not the warm-up duration has elapsed from the start of warm-up. When the controller 15 determines that the warm-up duration has elapsed, the controller 15 ends the warm-up mode.
  • the warm-up duration is set to a time during which the catalysts 5, 7, and 8 can be sufficiently heated to the activation temperature based on the heating capacity of the chemical heat storage device 10 and the like.
  • the warm-up duration is several hundred seconds, for example.
  • warm-up includes warm-up when the temperature of the exhaust gas is low when the vehicle starts running (when the engine 2 is cold-started) and exhaust gas depending on the running state of the vehicle (such as the low load of the engine 2).
  • warm-up re-warm-up
  • the warm-up duration may be set differently for warm-up at the start of travel and for re-warm-up during travel. For example, in the case of re-warm-up during travel, The time may be shorter by several tens of seconds than the warm-up at the start.
  • the controller 15 After completion of the warm-up mode, the controller 15 detects the temperature of the exhaust gas downstream of the reactor 11 (heat exchanger 4) detected by the temperature sensor 17 substituted for the temperature of the reactor 11 (this temperature is referred to below). In this case, it is determined whether or not the “downstream exhaust gas temperature” is equal to or higher than the ammonia recoverable temperature. When the controller 15 determines that the downstream exhaust gas temperature is lower than the ammonia recoverable temperature, the controller 15 stops applying the voltage to the on-off valve 14 in order to close the on-off valve 14 once.
  • the ammonia recoverable temperature is a temperature at which ammonia can be recovered from the heat storage material 11a in the reactor 11 after warming up and ammonia can be recovered from the reactor 11.
  • the ammonia recoverable temperature is set based on the temperature at which ammonia is desorbed from the heat storage material 11a determined by the combination of the heat storage material 11a and ammonia.
  • the temperature at which ammonia can be recovered is, for example, two hundred and several tens of degrees Celsius.
  • the controller 15 acquires the ammonia saturation vapor pressure from the ammonia saturation vapor pressure curve A using the temperature of the reservoir 12 detected by the temperature sensor 18 (see FIG. 2A).
  • the controller 15 calculates the relative pressure by dividing the pressure of the reservoir 12 detected by the pressure sensor 19 by the ammonia saturated vapor pressure.
  • the controller 15 uses this relative pressure to acquire the ammonia adsorption amount in the reservoir 12 from the ammonia adsorption amount curve B (see FIG. 2B).
  • the controller 15 obtains the ammonia recovery amount by subtracting the remaining ammonia amount from the ammonia adsorption amount in order to keep the pressure in the reservoir 12 and the reactor 11 at a predetermined pressure.
  • the controller 15 calculates the ammonia recovery rate by dividing the ammonia recovery amount by the total ammonia recovery amount. Then, the controller 15 determines whether or not the ammonia recovery rate is equal to or higher than the warm-up possible recovery rate. The controller 15 continues the recovery mode while determining that the ammonia recovery rate is less than the recoverable recovery rate.
  • the warm-up possible recovery rate is a threshold value for determining whether a sufficient amount of ammonia that can provide a warm-up effect during warm-up is recovered in the storage 12.
  • the recovery rate is a value of 0 to 100%, and is 100% when the recovered amount recovered in the reservoir 12 is equal to the total recovered amount of ammonia.
  • the warm-up possible recovery rate is, for example, 80%.
  • each of the catalysts 5, 7, and 8 can be sufficiently heated to the activation temperature by heating in the reactor 11 during warming up. Heating effect).
  • the controller 15 determines whether or not the ammonia recovery amount is equal to or greater than the warm-up possible recovery amount.
  • the recoverable amount of warm-up is an amount less than or equal to the total recovered amount of ammonia.
  • the pressure of the reservoir 12 may be other than the pressure detected by the pressure sensor 19 that directly detects the pressure of the reservoir 12. For example, it was detected by the pressure sensor that detects the pressure of the reactor 11 when the on-off valve 14 is opened (when the reactor 11 and the reservoir 12 are communicated with each other via the connection pipe 13). The pressure of the reactor 11 may be used.
  • the controller 15 determines whether or not the downstream exhaust gas temperature is lower than the ammonia recoverable temperature. If the controller 15 determines that the downstream exhaust gas temperature is equal to or higher than the ammonia recoverable temperature, the controller 15 continues the recovery mode. When the controller 15 determines that the downstream side exhaust gas temperature is lower than the ammonia recoverable temperature, the controller 15 ends the recovery mode and stops applying the voltage to the on-off valve 14 in order to close the on-off valve 14. After completion of the recovery mode, the controller 15 determines whether or not to shift to the warm-up mode by determining whether or not the upstream side exhaust gas temperature is lower than the warm-up start temperature in the same manner as described above. The above process is a basic process in the controller 15.
  • FIG. 3 is a graph showing an example of the time change of the temperature of the reactor 11, where the horizontal axis is time (seconds) and the vertical axis is temperature (° C.).
  • the temperature change C of the reactor 11 from the start of traveling of the vehicle is shown.
  • the temperature indicated by the symbol D in FIG. 3 is an ammonia recoverable temperature.
  • the reactor 11 When the vehicle starts to run (when the engine 2 is cold started), the exhaust gas temperature is low, so the mode is shifted to the warm-up mode. During the warm-up mode, the reactor 11 generates heat due to a chemical reaction between the heat storage material 11a and ammonia. Further, since the engine 2 is operating, the temperature of the exhaust gas discharged from the engine 2 rises. Thereby, as shown by the temperature change C, the temperature of the reactor 11 rises. Eventually, the temperature of the reactor 11 becomes equal to or higher than the ammonia recoverable temperature D. If it becomes more than the temperature D which can collect
  • the time from the start of warm-up until the temperature becomes higher than the ammonia recovery temperature D may be shorter than the warm-up duration.
  • the temperature of exhaust gas exhausted from the engine 2 rapidly rises due to a high load on the engine 2 due to sudden acceleration of the vehicle.
  • the temperature of the reactor 11 also rises rapidly according to the temperature of the exhaust gas.
  • the temperature of the exhaust gas discharged from the engine 2 may decrease immediately after the temperature increases.
  • the temperature of the reactor 11 may drop below the ammonia recoverable temperature D in a short time after the temperature becomes equal to or higher than the ammonia recoverable temperature D.
  • the warm-up mode is continued for the warm-up duration and the open / close valve 14 is maintained in the open state, ammonia is collected in the reservoir 12 only for a short time. After a short time, ammonia moves to the reactor 11 side, and heat is generated again in the reactor 11.
  • the reservoir 12 can recover only a small amount of ammonia. Therefore, even if it returns to warm-up, since the amount of supplied ammonia is small in the reactor 11, the calorific value is small. In this case, the warm-up effect is hardly obtained, and the ammonia recovered by the storage 12 is wasted. Further, as indicated by the temperature change C, even if the temperature of the exhaust gas temporarily drops below the ammonia recoverable temperature D, the temperature of the exhaust gas is relatively high. Therefore, the catalysts 5, 7, and 8 are active, and it is often unnecessary to warm up the catalysts 5, 7, and 8.
  • the mode is switched to the recovery mode even when the warm-up duration has not elapsed since the start of the warm-up, and the process proceeds to the recovery of ammonia. Better. And once it transfers to collection
  • the controller 15 performs processing described below in addition to the basic processing described above.
  • the controller 15 determines whether or not the downstream side exhaust gas temperature is equal to or higher than the ammonia recoverable temperature. When the controller 15 determines that the downstream exhaust gas temperature is equal to or higher than the ammonia recoverable temperature, the controller 15 switches from the warm-up mode to the recovery mode. Even if the warm-up continuation time has not elapsed since the start of the warm-up, when the downstream exhaust gas temperature (corresponding to the temperature of the reactor 11) becomes equal to or higher than the ammonia recoverable temperature, the process is forcibly shifted to the recovery mode. .
  • the controller 15 determines whether the downstream exhaust gas temperature is equal to or higher than the ammonia recoverable temperature at regular time intervals. When the controller 15 determines that the downstream exhaust gas temperature is lower than the ammonia recoverable temperature, the controller 15 stops applying the voltage to the on-off valve 14 in order to close the on-off valve 14 once. When the controller 15 determines that the downstream exhaust gas temperature is equal to or higher than the ammonia recoverable temperature after closing the on-off valve 14, the controller 15 applies a voltage to the on-off valve 14 to reopen the on-off valve 14. By this treatment, the on-off valve 14 is closed every time the downstream exhaust gas temperature becomes lower than the ammonia recoverable temperature until the ammonia recovery rate becomes equal to or higher than the warmable recovery rate, and the ammonia moves to the reactor 11 side. Can not.
  • FIG. 4 is a flowchart showing a process flow of the controller 15.
  • the on-off valve 14 closes the valve. Thereby, even if ammonia is desorbed from the adsorbent 12 a in the reservoir 12, ammonia is not supplied to the reactor 11 through the connection pipe 13.
  • the controller 15 determines whether or not the upstream side exhaust gas temperature detected by the temperature sensor 16 is lower than the warm-up start temperature (S1). When it is determined in S1 that the upstream exhaust gas temperature is equal to or higher than the warm-up start temperature, the controller 15 does not apply a voltage to the on-off valve 14 (S2). Since the voltage is not applied, the on-off valve 14 maintains the closed state.
  • the controller 15 shifts to the warm-up mode and applies a voltage to the on-off valve 14 (S3).
  • the open / close valve 14 opens when a voltage is applied.
  • ammonia can be moved in the connecting pipe 13.
  • ammonia moves to the reactor 11 side through the connection pipe 13.
  • ammonia flowing in the connection pipe 13 is supplied to the reactor 11.
  • the supplied ammonia and the heat storage material 11 a chemically react and chemisorb to generate heat.
  • the generated heat is transmitted to the heat exchanger 4.
  • the heat exchanger 4 exchanges heat with the exhaust gas flowing inside.
  • the exhaust gas is heated. Further, the exhaust gas whose temperature has been increased flows downstream, and the temperatures of the catalysts 5, 7, and 8 are increased. When the temperatures of the catalysts 5, 7, and 8 become the activation temperature or higher, the catalysts 5, 7, and 8 purify the exhaust gas.
  • the controller 15 determines whether or not the downstream exhaust gas temperature (corresponding to the temperature of the reactor 11) detected by the temperature sensor 17 is equal to or higher than the ammonia recoverable temperature (S4). When it is determined in S4 that the downstream exhaust gas temperature is lower than the ammonia recoverable temperature, the controller 15 determines whether or not the warm-up duration has elapsed since the start of warm-up (S5). If it is determined in S5 that the warm-up continuation time has not elapsed since the start of warm-up, the controller 15 continues the warm-up mode and performs the determination in S4 after a predetermined time.
  • the controller 15 switches from the warm-up mode to the recovery mode and performs the process of S8.
  • the warm-up continuation time has not elapsed since the start of warm-up, but the mode shifts to the ammonia recovery mode.
  • the controller 15 ends the warm-up mode. After the warm-up mode ends, the controller 15 determines whether or not the downstream side exhaust gas temperature is equal to or higher than the ammonia recoverable temperature (S6). When it is determined in S6 that the downstream exhaust gas temperature is lower than the ammonia recoverable temperature, the controller 15 stops applying the voltage to the on-off valve 14, and performs the determination in S6 after a certain time (S7). The on-off valve 14 closes the valve. In this case, since ammonia cannot move through the connecting pipe 13, warm-up and recovery are not performed. On the other hand, when it is determined in S6 that the downstream side exhaust gas temperature is equal to or higher than the temperature at which ammonia can be recovered, the controller 15 shifts to the recovery mode and performs the process of S8.
  • the controller 15 applies a voltage to the on-off valve 14 (S8).
  • the open / close valve 14 opens when a voltage is applied.
  • ammonia can be moved in the connecting pipe 13.
  • ammonia moves to the reservoir 12 side through the connection pipe 13.
  • ammonia is recovered in the reservoir 12.
  • the storage 12 adsorbs and stores ammonia with the adsorbent 12a.
  • the controller 15 uses the ammonia saturated vapor pressure curve A and the ammonia adsorption amount curve B shown in FIG. 2 to detect the temperature of the reservoir 12 detected by the temperature sensor 18 and the reservoir detected by the pressure sensor 19.
  • the ammonia adsorption amount in the reservoir 12 is acquired from the pressure of 12 (S9).
  • the controller 15 obtains an ammonia recovery amount by subtracting the residual amount of ammonia from the ammonia adsorption amount, and obtains an ammonia recovery rate by dividing the ammonia recovery amount by the total ammonia recovery amount (S9). Then, the controller 15 determines whether or not the ammonia recovery rate is equal to or higher than the warm-up possible recovery rate (S10).
  • the controller 15 continues the recovery mode and determines whether or not the downstream exhaust gas temperature is equal to or higher than the ammonia recoverable temperature at regular intervals ( S6). If it is determined in S6 that the downstream exhaust gas temperature is lower than the ammonia recoverable temperature, the controller 15 stops applying the voltage to the on-off valve 14 (S7). The on-off valve 14 closes the valve. In this case, ammonia cannot move through the connecting pipe 13, and therefore ammonia cannot move to the reactor 11 side. On the other hand, when it is determined in S6 that the downstream side exhaust gas temperature is equal to or higher than the temperature at which ammonia can be recovered, the controller 15 performs the processing after S8 in the same manner as described above.
  • the recovery mode is continued until the ammonia recovery rate becomes equal to or higher than the recoverable recovery rate by the processing of S6 to S10, and the recovery of the ammonia is concentrated.
  • the downstream exhaust gas temperature is lower than the temperature at which ammonia can be recovered during the recovery mode, ammonia cannot be moved to the reactor 11 side, so that the ammonia recovered in the reservoir 12 is used in the reactor 11. There is no.
  • the controller 15 determines whether or not the downstream exhaust gas temperature is lower than the ammonia recoverable temperature (S11). If it is determined in S11 that the downstream exhaust gas temperature is equal to or higher than the ammonia recoverable temperature, the controller 15 continues to apply a voltage to the on-off valve 14 (S12). The on-off valve 14 maintains a state in which the valve is opened. The determination of S11 is repeatedly performed at regular intervals until the downstream exhaust gas temperature becomes lower than the ammonia recoverable temperature.
  • the controller 15 stops the application of voltage to the on-off valve 14 and ends the recovery mode (S13).
  • the on-off valve 14 closes the valve when voltage application is stopped. Thereby, ammonia cannot move through the connecting pipe 13. Here, the recovery of ammonia is completed.
  • the reservoir 12 collects (stores) a sufficient amount of ammonia that can raise the temperature of the catalysts 5, 7, and 8 to the activation temperature at the next warm-up.
  • the controller 15 determines whether or not the upstream side exhaust gas temperature is lower than the warm-up start temperature (S14). When it is determined in S14 that the upstream side exhaust gas temperature is equal to or higher than the warm-up start temperature, the controller 15 performs the determination in S11 after a predetermined time. Until the upstream exhaust gas temperature becomes lower than the warm-up start temperature, ammonia cannot move through the connection pipe 13, and therefore warm-up and recovery are not performed.
  • the controller 15 shifts to the warm-up mode and applies a voltage to the on-off valve 14 (S15).
  • the open / close valve 14 opens when a voltage is applied.
  • ammonia can be moved in the connection pipe 13, and the exhaust gas is heated in the reactor 11 to warm up.
  • the reactor 11 is supplied with a sufficient amount of ammonia that provides a warm-up effect.
  • the controller 15 determines whether or not the downstream side exhaust gas temperature is equal to or higher than the ammonia recoverable temperature (S16). If it is determined in S16 that the downstream exhaust gas temperature is lower than the ammonia recoverable temperature, the controller 15 determines whether or not the warm-up continuation time has elapsed since the start of re-warming (S17). If it is determined in S17 that the warm-up duration has not elapsed since the start of re-warming, the controller 15 continues the warm-up mode and performs the determination in S16 after a certain time.
  • the controller 15 switches from the warm-up mode to the recovery mode, and performs the process of S8. Also in this case, as in the case where it is determined that the temperature is higher than the ammonia recoverable temperature in S4, the warm-up continuation time has not elapsed since the start of re-warming, but the mode shifts to the ammonia recovery mode.
  • the controller 15 ends the warm-up mode and returns to the determination in S6. The above operation is continued until the ignition switch is turned off and the engine 2 is stopped.
  • the chemical heat storage device 10 when the downstream exhaust gas temperature (corresponding to the temperature of the reactor 11) becomes equal to or higher than the ammonia recoverable temperature during the warm-up mode, the warm-up mode is stopped and the recovery mode is entered.
  • the temperature is lower than the temperature at which ammonia can be recovered after the transition to the recovery mode, only the ammonia is recovered by closing the on-off valve 14 so that the ammonia cannot move to the reactor 11 side.
  • the storage device 12 it is possible to recover a sufficient amount of ammonia that provides a warm-up effect (heating effect).
  • a sufficient amount of ammonia is supplied in the warm-up mode, so that the temperature of the catalysts 5, 7, and 8 can be raised to the activation temperature.
  • heating of the exhaust gas in the reactor 11 warming up of the catalysts 5, 7, 8) and recovery of ammonia in the storage device 12 can be performed efficiently.
  • a sufficient amount of warming-up effect can be obtained in the reservoir 12 by performing only ammonia recovery until the ammonia recovery rate is equal to or higher than the recoverable recovery rate after shifting to the recovery mode. Can be reliably recovered.
  • the on-off valve 14 when the downstream exhaust gas temperature becomes lower than the ammonia recoverable temperature after the ammonia recovery rate becomes equal to or higher than the warm-up recoverable rate, the on-off valve 14 is temporarily closed, whereby the ammonia is converted into the reactor. Cannot move to 11 side. As a result, ammonia is not wasted in the reactor 11 when the temperature of the exhaust gas is high and it is not necessary to warm up the catalysts 5, 7, and 8.
  • the on-off valve 14 when the on-off valve 14 is once closed and the upstream exhaust gas temperature becomes lower than the warm-up start temperature, the on-off valve 14 is opened so that ammonia can be transferred to the reactor 11. Become. Thereby, ammonia can be supplied from the reservoir 12 to the reactor 11 when the temperature of the exhaust gas decreases and the catalysts 5, 7, and 8 need to be warmed up. At this time, the reactor 11 is supplied with a sufficient amount of ammonia that can provide a warm-up effect (that is, an amount capable of raising the temperature of the catalysts 5, 7, and 8 to the activation temperature).
  • the recovery amount (recovery rate) of ammonia recovered in the reservoir 12 can be easily obtained from the temperature and pressure of the reservoir 12.
  • the downstream exhaust gas temperature (the temperature of the exhaust gas heated by the reactor 11) detected by the temperature sensor 17 is used as the temperature of the reactor 11, thereby replacing the reactor 11. There is no need to detect the temperature directly. Since the temperature sensor 17 used in the control of the engine 2 is effectively used, a separate temperature sensor is not necessary, and costs can be reduced.
  • the recovery mode is continued until the ammonia recovery rate becomes equal to or higher than the recoverable recovery rate after shifting to the recovery mode.
  • the present invention is not particularly limited to this, for example, sufficient recovery from the start of the recovery mode.
  • the recovery mode may be continued until a predetermined time when the amount can be expected, or the recovery mode may be continued until the total ammonia recovery amount is recovered.
  • a temperature sensor that detects the temperature of the exhaust gas downstream of the reactor is used.
  • the present invention is not particularly limited to this, for example, the upstream side of the reactor.
  • the temperature of the reactor may be estimated from the two detected temperatures using a temperature sensor that detects the temperature of the exhaust gas and a temperature sensor that detects the temperature of the exhaust gas downstream of the reactor.
  • a temperature sensor may be provided in the reactor to directly detect the temperature of the reactor.
  • the reaction medium is ammonia, but other reaction medium such as alcohol or water may be used.
  • each of the heat storage material and adsorbent material when the reaction medium is ammonia is exemplified, but a heat storage material and adsorbent suitable for the reaction medium used in the chemical heat storage device may be used as appropriate.
  • the reactor may be disposed on the outer periphery of the catalyst.
  • the chemical thermal storage apparatus which heats (warms up) the exhaust gas discharged
  • the heating target is exhaust gas discharged from the engine.
  • a gaseous or liquid fluid for example, oil (engine oil, transmission oil, etc.), Water, air, water vapor
  • a chemical heat storage device may be applied to a garbage incineration plant, a power plant, various plant factories, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

加熱対象を加熱する化学蓄熱装置10であって、反応媒体との化学反応により発熱しかつ吸熱により反応媒体を脱離する蓄熱材11aを有する反応器11と、反応媒体を貯蔵する貯蔵器12と、反応器11と貯蔵器12とを連通し、反応媒体を流通させる接続管13と、接続管13に設けられた開閉弁14と、開閉弁14の開閉を制御する制御部15と、反応器11の温度を取得する温度取得部とを備え、制御部15は、反応器11で加熱対象を加熱する加熱モード中に反応器11の温度が反応媒体の回収可能温度以上になった場合、反応媒体を回収する回収モードに移行し、回収モードの制御において反応器11の温度が回収可能温度未満になった場合には開閉弁14を閉制御し、回収可能温度以上になった場合には開閉弁14を開制御する。

Description

化学蓄熱装置
 本発明は、化学蓄熱装置に関する。
 従来の化学蓄熱装置として、例えば、特許文献1に記載された装置が知られている。特許文献1に記載の装置は、自動車の排気ガスが流れるガス通路管内に触媒体が配設され、その上流側に水などの被吸着媒体(反応媒体)の吸着・脱離により発熱・吸熱する吸着剤(蓄熱材)を収納した第1容器が配設され、被吸着媒体を収納する第2容器と第1容器とが連通管により連通され、連通管の途中に開閉弁が設けられている。この装置では、イグニッションスイッチがオンされると開閉弁が開かれ、オフされると開閉弁が閉じられる。排気ガスの温度が低く、触媒体の温度が低い場合、第1容器では、吸着剤が被吸着媒体を吸着して発熱し、吸着剤の発熱により排気ガスが加熱される。この加熱された排気ガスにより触媒体が加熱される。その後、第1容器を通過する排気ガスの温度が上昇した場合、第1容器では、吸着剤がその排気ガスの熱を吸熱して被吸着媒体を脱離する。そして、第1容器における吸着剤の被吸着媒体の脱離に伴って、第2容器では、この吸着剤から脱離した被吸着媒体を回収する。
特開平11-311117号公報
 排気ガスの温度は、自動車の走行状態によって変動する。この温度変動により、第1容器の温度が、被吸着媒体が脱離する所定温度以上まで上昇した後に、短時間で所定温度未満に低下する場合がある。このような場合、特許文献1に記載の装置ではイグニッションスイッチがオンされた後は開閉弁が常に開かれた状態となっている。従って、被吸着媒体は、第1容器が所定温度以上となって吸着剤より脱離する。その被吸着媒体は、第2容器で短時間だけ回収された後、第1容器の温度低下に伴って再び第2容器から第1容器に移動して発熱に使用されてしまう。そのため、第2容器での被吸着媒体の回収が進まず、仮に第1容器で排気ガスの加熱が必要な状況になっても第1容器に十分な量の被吸着媒体を供給できない虞がある。
 そこで、本発明においては、加熱対象に対する加熱と反応媒体の回収とを効率良く行うことができる化学蓄熱装置を提案することを課題とする。
 本発明の一側面に係る化学蓄熱装置は、加熱対象を加熱する化学蓄熱装置であって、反応媒体が供給されると反応媒体との化学反応により発熱しかつ加熱されると吸熱して反応媒体を脱離する蓄熱材を有する反応器と、反応媒体を貯蔵する貯蔵器と、反応器と貯蔵器とを連通し、反応器と貯蔵器との間で反応媒体を流通させる接続管と、接続管に設けられた開閉弁と、開閉弁の開閉を制御する制御部と、反応器の温度を取得する温度取得部と、を備え、制御部は、開閉弁を開制御して貯蔵器から反応器へ反応媒体を移動させて反応器で加熱対象を加熱する加熱モードと、反応器の蓄熱材から脱離した反応媒体を貯蔵器で回収する回収モードと、を備え、制御部は、加熱モードでの制御中に温度取得部で取得した反応器の温度が反応媒体の回収可能温度以上になった場合、加熱モードから回収モードに移行し、回収モードでの制御において、温度取得部で取得した反応器の温度が回収可能温度未満になった場合、開閉弁を閉制御し、回収モードでの制御において、温度取得部で取得した反応器の温度が回収可能温度以上になった場合、開閉弁を開制御する。
 この化学蓄熱装置では、加熱モード中に反応器の温度が回収可能温度以上になった場合、制御部は、反応媒体の回収モードに移行する。制御部は、回収モード中に回収可能温度未満のときには開閉弁を閉じて反応媒体が反応器側に移動できないようにすることにより、反応媒体の回収のみを行う。これにより、貯蔵器では、加熱効果が得られる十分な量の反応媒体を回収できる。また、反応器では、加熱時にその十分な量の反応媒体が供給されるので、加熱効果を発揮できる。このように、化学蓄熱装置では、加熱対象に対する加熱と反応媒体の回収とを効率良く行うことができる。
 一実施形態の化学蓄熱装置では、制御部は、回収モードへの移行後において、貯蔵器に回収された反応媒体の回収量が所定量以上になるまで回収モードを維持するようにしてもよい。これにより、貯蔵器では、加熱効果が得られる十分な量の反応媒体を確実に回収できる。
 一実施形態の化学蓄熱装置では、加熱対象の温度を検出する加熱対象温度検出部を備え、制御部は、貯蔵器に回収された反応媒体の回収量が所定量以上になった後において、温度取得部で取得した反応器の温度が回収可能温度未満になると、開閉弁を閉制御し、当該閉制御した後において、加熱対象温度検出部で検出した加熱対象の温度が、加熱対象に対する加熱が必要な所定温度未満になると開閉弁を開制御するようにしてもよい。これにより、加熱対象に対する加熱が不要なときに、反応媒体が反応器で無駄に使われない。また、加熱対象に対する加熱が必要になったときに、貯蔵器から反応器への反応媒体の移動が可能となり、反応器に反応媒体を供給できる。
 一実施形態の化学蓄熱装置では、貯蔵器の温度を検出する貯蔵器温度検出部と、貯蔵器の圧力を検出する貯蔵器圧力検出部とを備え、制御部は、貯蔵器温度検出部で検出した温度と貯蔵器圧力検出部で検出した圧力とを用いて回収量を算出するようにしてもよい。これにより、貯蔵器の温度と圧力とから簡単に貯蔵器に回収されている反応媒体の回収量を取得できる。
 一実施形態の化学蓄熱装置では、温度取得部は、反応器で加熱される加熱対象の温度から反応器の温度を取得するようにしてもよい。これにより、反応器の温度を直接検出することなく、反応器の温度を取得できる。
 本発明によれば、加熱対象に対する加熱と反応媒体の回収とを効率良く行うことができる。
図1は、一実施形態に係る化学蓄熱装置を備えた排気ガス浄化システムの概略構成図である。 図2は、貯蔵器に関する各パラメータの関係を示すグラフであり、図2(a)が貯蔵器温度-アンモニア飽和蒸気圧の関係を示すグラフであり、図2(b)が相対圧力-アンモニア吸着量の関係を示すグラフである。 図3は、反応器温度の時間変化の一例を示すグラフである。 図4は、コントローラの処理の流れを示すフローチャートである。
 以下、図面を参照して、本発明の実施形態に係る化学蓄熱装置を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。
 実施形態は、車両のエンジン(内燃機関)の排気系に設けられる排気ガス浄化システムに備えられる化学蓄熱装置に適用される。実施形態に係る排気ガス浄化システムは、エンジン(特に、ディーゼルエンジン)から排出される排気ガス中に含まれる有害物質(環境汚染物質)を浄化するシステムであり、触媒のDOC[Diesel Oxidation Catalyst]、SCR[SelectiveCatalytic Reduction]とASC[Ammonia Slip Catalyst]及びフィルタのDPF[Diesel Particulate Filter]を備えている。さらに、実施形態に係る排気ガス浄化システムは、触媒暖機用に化学蓄熱装置を備えている。
 図1を参照して、一実施形態に係る排気ガス浄化システム1の全体構成について説明する。図1は、一実施形態に係る排気ガス浄化システム1の概略構成図である。
 排気ガス浄化システム1は、エンジン2の排気側に接続された排気管3の上流側から下流側に向けて、熱交換器4、DOC(ディーゼル酸化触媒)5、DPF(ディーゼル排気微粒子除去フィルタ)6、SCR(選択還元触媒)7、ASC(アンモニアスリップ触媒)8が設けられている。排気管3、熱交換器4、DOC5、DPF6、SCR7、ASC8の内部には、エンジン2から排出された排気ガスが流れる。この排気ガスの流れる方向により、上流側及び下流側が規定される。
 熱交換器4は、エンジン2から排出された排気ガスと後述する反応器11との間で熱交換を行う。DOC5は、排気ガス中に含まれるHC、COなどを酸化する触媒である。DPF6は、排気ガス中に含まれるPMを捕集して取り除くフィルタである。SCR7は、排気管3内のSCR7の上流側にアンモニア(NH)あるいは尿素水(加水分解してアンモニアが発生)が供給されると、アンモニアと排気ガス中に含まれるNOxとを化学反応させることで、NOxを還元して浄化する触媒である。ASC8は、SCR7をすり抜けて下流側に流れたアンモニアを酸化する触媒である。
 各触媒5,7,8には、環境汚染物質に対する浄化能力を発揮できる温度領域(すなわち、活性温度)がある。各触媒5,7,8の温度が活性温度よりも低くなっている場合(例えば、エンジン2の冷間始動時)、各触媒5,7,8では十分な浄化能力を発揮することができない。また、エンジン2から排出された排気ガスにより触媒を暖機する場合、エンジン2の冷間始動直後は、排気ガスの温度が比較的低温であるので、触媒を迅速に暖めることができない。そこで、排気ガス浄化システム1は、最上流の熱交換器4を介して排気ガス(加熱対象)を加熱することで触媒5,7,8の暖機を行うために、化学蓄熱装置10を備えている。
 化学蓄熱装置10は、可逆的な化学反応を利用して、外部エネルギレスで排気ガスを加熱する装置である。具体的には、化学蓄熱装置10は、蓄熱材と反応媒体とを分離した状態にすることで、排気ガスの熱(排熱)を内部に蓄えておく。そして、化学蓄熱装置10は、暖機時に反応媒体を蓄熱材に供給して、蓄熱材と反応媒体とを化学反応(化学吸着)させることで、この化学反応の反応熱を利用して熱交換器4を介して排気ガスを加熱する。本実施形態では、反応媒体はアンモニアである。
 化学蓄熱装置10について詳細に説明する。化学蓄熱装置10は、反応器11と、貯蔵器12と、接続管13と、開閉弁14と、コントローラ15(制御部)とを備えている。反応器11は、ヒータとして機能し、最上流に配置される触媒であるDOC5よりも上流側で熱交換器4を介して排気ガスを加熱する。加熱により昇温された排気ガスは、下流の各触媒(DOC5、SCR7、ASC8)の内部に流れる。これにより、各触媒は、暖機される。なお、反応器11と熱交換器4との構成については、適宜の構成としてよい。例えば、円筒状の熱交換器4とその外周を取り囲む環状の反応器11としてもよいし、複数個の熱交換器4と複数個の反応器11(蓄熱材)とを交互に積み重ねて配置したものとしてもよい。
 反応器11は、蓄熱材11aを有しており、この蓄熱材11aが容器に収納されている。蓄熱材11aは、アンモニアが供給されるとアンモニアと化学反応(化学吸着)して発熱する。また、蓄熱材11aは、排気ガスの熱により加熱されると、その熱を吸熱(蓄熱)して化学吸着していたアンモニアを脱離する。このアンモニアが脱離する温度は、反応器11で用いられる蓄熱材11aとアンモニア(反応媒体)との組み合わせなどによって決まる。蓄熱材11aとしては、組成式MXaで表されるハロゲン化合物が用いられる。Mは、Mg、Ca、Srなどのアルカリ土類金属、若しくはCr、Mn、Fe、Co、Ni、Cu、Znなどの遷移金属である。Xは、Cl、Br、Iなどである。aは、Mの価数により特定される数であり、2、3である。蓄熱材11aには、熱伝導性を向上させる添加物が混合されていてもよい。添加物としては、例えば、カーボンファイバ、カーボンビーズ、SiCビーズ、金属ビーズ、高分子ビーズ、高分子ファイバである。金属ビーズの金属材料としては、例えば、Cu、Ag、Ni、Ci-Cr、Al、Fe、ステンレス鋼である。なお、蓄熱材11aと容器との間に断熱材を設けてもよいし、グラファイトシート、アルミニウムなどの金属シートなどで形成された熱伝導シートを設けてもよい。
 貯蔵器12は、吸着材12aを有している。吸着材12aは、アンモニアを物理吸着により保持し、かつ、貯蔵器12内の圧力変化に伴ってアンモニアを放出(脱離)する。吸着材12aとしては、例えば、活性炭が用いられる。貯蔵器12では、暖機時にアンモニアを吸着材12aから脱離させて反応器11(蓄熱材11a)に供給すると共に、暖機終了後には蓄熱材11aから脱離したアンモニアを吸着材12aに物理吸着させることで回収する。なお、吸着材12aとしては、活性炭に限られず、例えば、メソポーラスシリカ、メソポーラスカーボン、メソポーラスアルミナなどのメソ孔を有するメソポーラス材、または、ゼオライト、シリカゲルを用いてもよい。なお、貯蔵器12のサイズ(特に、吸着材12aの量)に応じて、貯蔵可能なアンモニアの総貯蔵量が決まっている。
 図2を参照して、貯蔵器12の温度、圧力、アンモニア吸着量(貯蔵器12で貯蔵されているアンモニアの貯蔵量)の関係について説明する。図2(a)は、貯蔵器12の温度-アンモニア飽和蒸気圧の関係を示すグラフであり、横軸が温度(℃)であり、縦軸がアンモニア飽和蒸気圧(kPa)である。図2(b)は、貯蔵器12の相対圧力(=貯蔵器12の圧力/アンモニア飽和蒸気圧)-アンモニア吸着量の関係を示すグラフであり、横軸が相対圧力であり、縦軸がアンモニア吸着量(g)である。
 貯蔵器12の温度とアンモニア飽和蒸気圧とは、図2(a)に示すように、温度が高くなるとアンモニア飽和蒸気圧が高くなるアンモニア飽和蒸気圧曲線Aで示す関係がある。このアンモニア飽和蒸気圧曲線Aを参照して、貯蔵器12の温度から貯蔵器12のアンモニア飽和蒸気圧を求めることができる。また、貯蔵器12の相対圧力とアンモニア吸着量とは、図2(b)に示すように、相対圧力が高くなるとアンモニア吸着量が増加するアンモニア吸着量曲線Bで示す関係がある。このアンモニア吸着量曲線Bを参照して、相対圧力から貯蔵器12でのアンモニア吸着量を求めることができる。相対圧力は、貯蔵器12の圧力をアンモニア飽和蒸気圧で除算することで得ることができる。したがって、貯蔵器12でのアンモニア吸着量(アンモニアの貯蔵量)は、この2つの関係(アンモニア飽和蒸気圧曲線A、アンモニア吸着量曲線B)を用いて、貯蔵器12の温度と圧力から得ることができる。
 貯蔵器12でのアンモニアの回収量は、このアンモニア吸着量から、暖機時において貯蔵器12及び反応器11の圧力を所定圧に保つために貯蔵器12に残存しているアンモニアの残存量を減算することで得ることができる。さらに、貯蔵器12でのアンモニアの回収率は、このアンモニアの回収量を、反応器11での発熱反応において所望の熱量を得るために必要とされるアンモニアの量、つまり、貯蔵器12から反応器11へ移動させるアンモニアの量(この量を、以下では「アンモニア総回収量」と呼ぶ))で除算することで得ることができる。
 接続管13は、反応器11と貯蔵器12とを接続する管である。接続管13は、反応器11と貯蔵器12との間でアンモニアが流れる流路となる。開閉弁14は、反応器11と貯蔵器12との間のアンモニアの流路を開閉する弁である。開閉弁14は、接続管13の途中に配設されている。開閉弁14が開かれると、接続管13により反応器11と貯蔵器12とが連通し、アンモニアが接続管13を介して反応器11と貯蔵器12との間を移動できる。一方、開閉弁14が閉じられると、反応器11と貯蔵器12とが非連通となり、アンモニアが接続管13を介して反応器11と貯蔵器12との間を移動できない。開閉弁14の開閉制御は、コントローラ15で行われる。開閉弁14は、電磁式のノーマリクローズの開閉弁であり、電圧印加時に弁が開く。なお、開閉弁14は、電磁式以外の開閉弁でもよい。
 コントローラ15は、CPU[CentralProcessing Unit]、ROM[ReadOnly Memory]、RAM[Random Access Memory]などからなり、化学蓄熱装置10の制御部である。コントローラ15には、温度センサ16(加熱対象温度検出部),温度センサ17(温度取得部),温度センサ18(貯蔵器温度検出部)、圧力センサ19(貯蔵器圧力検出部)などの各種センサが接続されており、これら複数のセンサより制御に必要な情報を取得する。また、コントローラ15には、開閉弁14が接続されている。また、コントローラ15には、図2に示すアンモニア飽和蒸気圧曲線A及びアンモニア吸着量曲線Bなどの制御に必要な情報が予め記憶されている。コントローラ15は、これらの情報を用いて以下で説明する各処理を行い、開閉弁14の開閉制御を行う。コントローラ15での具体的な処理について説明する前に、温度センサ16,17,18、圧力センサ19について説明しておく。なお、コントローラ15は、化学蓄熱装置10専用のものでもよいし、エンジンECU[Electronic Control Unit]などのECUの一機能として組み込まれるものとしてもよい。
 温度センサ16は、エンジン2と熱交換器4との間(反応器11の上流側)の排気管3内を流れる排気ガスの温度を検出するセンサである。温度センサ16では、排気ガスの温度を検出し、その検出した温度情報をコントローラ15に送信する。温度センサ17は、熱交換器4とDOC5との間(反応器11の下流側)の排気管3内を流れる排気ガスの温度を検出するセンサである。温度センサ17では、排気ガスの温度を検出し、その検出した温度情報をコントローラ15に送信する。
 温度センサ17で検出される排気ガスの温度は、反応器11の下流側の排気ガスの温度である。したがって、この排気ガスの温度は、反応器11で加熱された後の排気ガスの温度であるので、反応器11の温度に応じた温度となっている。そこで、以下のコントローラ15の処理では、温度センサ17で検出される排気ガスの温度を反応器11の温度として用いている。なお、反応器11の温度をより正確に取得するために、温度センサ17で検出される排気ガスの温度を所定の換算式で換算することで反応器11の温度をより正確に推定し、その推定温度をコントローラ15の処理で用いてもよい。
 なお、蓄熱材11aは、アンモニアとの化学反応によりその体積が膨張する。そのため、例えば、反応器11の内部に温度センサを設けた場合には、温度センサが蓄熱材11aの膨張による圧力を受けて壊れることを防止する必要がある。また、反応器11では、容器内に封入された蓄熱材11aがアンモニアと繰り返し化学反応できるように、密閉空間を形成している。そのため、反応器11の内部に温度センサを設けた場合には、密閉空間の気密性を十分に確保する必要がある。このように蓄熱材11aの温度を反応器11の温度から推定するために反応器11の内部に温度センサを設けることが、コスト増加や部品点数増加などの理由で困難となる場合がある。そこで、反応器11に温度センサを直接設ける代わりに、反応器11の下流側の排気ガスの温度を検出する温度センサ17を用いて反応器11の温度を取得している。
 また、エンジンECUでは、エンジン2の制御に必要な排気ガスの温度を温度センサ16,17により取得している。つまり、排気ガスの温度を検出する温度センサ16,17は、エンジン2の制御において必須のセンサである。したがって、この温度センサ16,17を化学蓄熱装置10の制御にも利用することで、反応器11の温度を取得するための温度センサを別途設ける必要がなくなり、コストや部品点数の増加を抑えることができる。
 温度センサ18は、貯蔵器12の内部の温度を検出するセンサである。温度センサ18では、温度を検出し、その検出した温度情報をコントローラ15に送信する。圧力センサ19は、貯蔵器12の内部の圧力を検出するセンサである。圧力センサ19では、圧力を検出し、その検出した圧力情報をコントローラ15に送信する。
 それでは、コントローラ15での具体的な処理について説明する。コントローラ15には、反応器11で排気ガスを加熱して暖機する暖機モード(加熱モード)と、貯蔵器12でアンモニアを回収する回収モードと、を備える。但し、暖機及び回収が行われない場合もあり、この場合には暖機モード及び回収モードの何れもモードも設定されない。
 コントローラ15は、エンジン2の稼働中、温度センサ16で検出された反応器11(熱交換器4)の上流側での排気ガスの温度(この温度を、以下では「上流側排気ガス温度」と呼ぶ)が暖機開始温度未満か否かを判定する。コントローラ15は、上流側排気ガス温度が暖機開始温度未満と判定すると、暖機モードに移行し、開閉弁14を開くために開閉弁14に電圧を印加する。暖機開始温度は、触媒5,7,8に対する暖機(排気ガスに対する加熱)が必要な温度である。暖機開始温度は、触媒5,7,8の活性温度や反応器11の搭載熱量などに基づいて設定される。
 暖機モードに移行後、コントローラ15は、暖機開始からの時間を計測し、暖機開始から暖機継続時間経過したか否かを判定する。コントローラ15は、暖機継続時間経過したと判定すると、暖機モードを終了する。暖機継続時間は、化学蓄熱装置10の加熱能力などに基づいて触媒5,7,8を活性温度まで十分に昇温できる時間が設定される。暖機継続時間は、例えば、数百秒である。
 なお、暖機には、車両の走行開始時(エンジン2の冷間始動時)の排気ガスの温度が低いときの暖機と、車両の走行状態(エンジン2の低負荷など)により排気ガスの温度が低下したときの暖機(再暖機)とがある。再暖機の場合、排気ガスの温度は、走行開始時の暖機時に比べて高い(例えば、暖機開始温度よりも少し低い温度)。そこで、暖機継続時間については、走行開始時の暖機の場合と走行中の再暖機の場合とで異なる時間を設定してもよく、例えば、走行中の再暖機の場合には走行開始時の暖機の場合よりも数十秒程度短い時間としてよい。
 暖機モード終了後、コントローラ15は、反応器11の温度として代用される温度センサ17で検出された反応器11(熱交換器4)の下流側での排気ガスの温度(この温度を、以下では「下流側排気ガス温度」と呼ぶ)がアンモニア回収可能温度以上か否かを判定する。コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度未満と判定すると、開閉弁14を一旦閉じるために開閉弁14への電圧の印加を停止する。コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度以上と判定すると、アンモニアの回収モードに移行し、開閉弁14を開くために開閉弁14に電圧を印加する。アンモニア回収可能温度は、暖機後に反応器11で蓄熱材11aからアンモニアが脱離し、反応器11からアンモニアを回収可能な温度である。アンモニア回収可能温度は、蓄熱材11aとアンモニアとの組み合わせによって決まる蓄熱材11aからアンモニアが脱離する温度などに基づいて設定される。アンモニア回収可能温度は、例えば、二百数十℃である。
 回収モード中、コントローラ15は、温度センサ18で検出された貯蔵器12の温度を用いて、アンモニア飽和蒸気圧曲線Aからアンモニア飽和蒸気圧を取得する(図2(a)参照)。コントローラ15は、圧力センサ19で検出された貯蔵器12の圧力をこのアンモニア飽和蒸気圧で除算して相対圧力を算出する。コントローラ15は、この相対圧力を用いて、アンモニア吸着量曲線Bから貯蔵器12でのアンモニア吸着量を取得する(図2(b)参照)。コントローラ15は、このアンモニア吸着量から、貯蔵器12及び反応器11の圧力を所定圧に保つために残存しているアンモニアの残存量を減算してアンモニア回収量を取得する。コントローラ15は、このアンモニア回収量をアンモニア総回収量で除算してアンモニア回収率を算出する。そして、コントローラ15は、このアンモニア回収率が暖機可能回収率以上か否かを判定する。コントローラ15は、アンモニア回収率が暖機可能回収率未満と判定している間は、回収モードを継続する。暖機可能回収率は、暖機時に暖機効果が得られる十分な量のアンモニアが貯蔵器12に回収されているかを判定するための閾値である。回収率は、0~100%の値であり、貯蔵器12に回収されている回収量がアンモニア総回収量と等しい量になった場合が100%である。暖機可能回収率は、例えば、80%である。暖機可能回収率以上のアンモニアが貯蔵器12に回収されていれば、暖機時に反応器11での加熱により各触媒5,7,8を活性温度まで十分に昇温でき、暖機効果(加熱効果)が得られる。なお、この実施形態では上記のように判定にアンモニア回収率(=アンモニア回収量/アンモニア総回収量)を用いたが、アンモニア回収量から回収率を算出せずに、アンモニア回収量を用いて判定を行ってもよい。この場合、コントローラ15は、アンモニア回収量が暖機可能回収量以上か否かを判定する。暖機可能回収量は、アンモニア総回収量以下の量である。なお、貯蔵器12の圧力としては、貯蔵器12の圧力を直接検出する圧力センサ19で検出された圧力以外を用いてもよい。例えば、反応器11の圧力を検出する圧力センサにより、開閉弁14が開かれているときに(接続管13を介して反応器11と貯蔵器12とが連通している場合)に検出された反応器11の圧力を用いてもよい。
 コントローラ15は、アンモニア回収率が暖機可能回収率以上と判定した場合、下流側排気ガス温度がアンモニア回収可能温度未満か否かを判定する。コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度以上と判定した場合、回収モードを継続する。コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度未満と判定すると、回収モードを終了し、開閉弁14を閉じるために開閉弁14への電圧の印加を停止する。回収モード終了後、コントローラ15は、上記と同様に上流側排気ガス温度が暖機開始温度未満か否かを判定することで暖機モードに移行するか否かを判定する。以上の処理が、コントローラ15での基本となる処理である。
 ここで、図3を参照して、アンモニア回収可能温度付近で反応器11の温度が変化した場合について説明する。図3は、反応器11の温度の時間変化の一例を示すグラフであり、横軸が時間(秒)であり、縦軸が温度(℃)である。図3に示す例では、車両の走行開始時からの反応器11の温度変化Cを示している。図3の符号Dで示す温度は、アンモニア回収可能温度である。
 車両の走行開始時(エンジン2の冷間始動時)は、排気ガスの温度が低いので、暖機モードに移行する。暖機モード中、反応器11では、蓄熱材11aとアンモニアとの化学反応により発熱する。また、エンジン2が稼動しているので、エンジン2から排出される排気ガスの温度が上昇する。これにより、温度変化Cで示すように、反応器11の温度は上昇する。やがて、反応器11の温度は、アンモニア回収可能温度D以上になる。アンモニア回収可能温度D以上になると、反応器11では、蓄熱材11aからアンモニアが脱離する。この脱離したアンモニアは、貯蔵器12側に移動し、貯蔵器12で回収される。
 反応器11の温度が急速に上昇すると、暖機開始からアンモニア回収可能温度D以上になるまでの時間が暖機継続時間よりも短い場合がある。例えば、車両の急加速などによるエンジン2の高負荷により、エンジン2から排出される排気ガスの温度が急速に上昇する。この場合、反応器11の温度も、排気ガスの温度に応じて急速に上昇する。さらに、その後の減速などによるエンジン2の低負荷により、エンジン2から排出される排気ガスの温度が上昇した直後に低下することがある。これにより、温度変化Cで示すように、反応器11の温度が、アンモニア回収可能温度D以上になった後に短時間でアンモニア回収可能温度D未満に低下する場合がある。この場合に、暖機モードが暖機継続時間継続され、開閉弁14が開かれた状態が維持されていると、短時間の間だけアンモニアが貯蔵器12で回収される。短時間後にはアンモニアが反応器11側に移動し、反応器11で再度発熱する。図3に示す例では、反応器11の温度がアンモニア回収可能温度D以上になった直後にアンモニア回収可能温度D未満になる温度変化が2回ある。
 このように、短時間の間だけアンモニアを回収し、短時間後に暖機に戻ると、貯蔵器12では少量のアンモニアしか回収できない。そのため、暖機に戻っても、反応器11では、供給されるアンモニアの量が少ないので、発熱量が少ない。この場合、暖機効果が殆ど得られず、貯蔵器12で回収したアンモニアが無駄に使われることになる。また、温度変化Cで示すように、一時的に排気ガスの温度がアンモニア回収可能温度D未満に低下しても、排気ガスの温度は比較的高い状態である。そのため、触媒5,7,8は活性しており、触媒5,7,8を暖機する必要がない場合が多い。
 そこで、暖機中に反応器11の温度がアンモニア回収可能温度D以上になった場合には、暖機開始から暖機継続時間経過していなくても回収モードに切り替え、アンモニアの回収に移行したほうがよい。そして、回収に一旦移行すると、暖機効果が得られる十分な量のアンモニアを回収できるまで、アンモニアが反応器11側に移動しないようにしたほうがよい。これに対応するために、コントローラ15は、上記した基本の処理に加えて、以下で説明する処理も行う。
 暖機モード中(反応器11での加熱中)に、コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度以上か否かを判定する。コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度以上と判定すると、暖機モードから回収モードに切り替える。この処理により、暖機開始から暖機継続時間経過していなくても、下流側排気ガス温度(反応器11の温度に相当)がアンモニア回収可能温度以上になると、強制的に回収モードに移行する。
 回収モード中、コントローラ15は、一定時間毎に、下流側排気ガス温度がアンモニア回収可能温度以上か否かを判定する。コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度未満と判定すると、開閉弁14を一旦閉じるために開閉弁14への電圧の印加を停止する。コントローラ15は、開閉弁14を閉じた後に下流側排気ガス温度がアンモニア回収可能温度以上と判定すると、開閉弁14を再度開くために開閉弁14に電圧を印加する。この処理により、アンモニアの回収率が暖機可能回収率以上になるまでは、下流側排気ガス温度がアンモニア回収可能温度未満になる毎に開閉弁14が閉じられ、アンモニアが反応器11側に移動できない。
 以上のように構成した化学蓄熱装置10の動作を説明する。特に、コントローラ15での処理については図4のフローチャートに沿って説明する。図4は、コントローラ15の処理の流れを示すフローチャートである。
 エンジン2が停止中、開閉弁14には電圧が印加されていない。したがって、開閉弁14は、弁を閉じている。これにより、貯蔵器12において吸着材12aからアンモニアが脱離していても、アンモニアが接続管13を介して反応器11に供給されない。車両の運転者によってイグニッションスイッチがオンされると、エンジン2が始動され、コントローラ15も起動される。コントローラ15は、温度センサ16で検出された上流側排気ガス温度が暖機開始温度未満か否かを判定する(S1)。S1にて上流側排気ガス温度が暖機開始温度以上と判定した場合、コントローラ15は、開閉弁14に電圧を印加しない(S2)。開閉弁14は、電圧が印加されないので、弁を閉じた状態を維持する。
 S1にて上流側排気ガス温度が暖機開始温度未満と判定した場合、コントローラ15は、暖機モードに移行し、開閉弁14に電圧を印加する(S3)。開閉弁14は、電圧が印加されると、弁を開く。これにより、接続管13では、アンモニアの移動が可能となる。このとき、貯蔵器12の圧力が反応器11の圧力よりも高いので、アンモニアが接続管13を介して反応器11側に移動する。そして、接続管13内を流れるアンモニアが、反応器11に供給される。反応器11では、この供給されたアンモニアと蓄熱材11aとが化学反応して化学吸着し、熱を発生する。この発生した熱は、熱交換器4に伝わる。熱交換器4は、内部を流れる排気ガスと熱交換する。これにより、排気ガスは、昇温する。さらに、この昇温された排気ガスは、下流側に流れ、各触媒5,7,8を昇温する。そして、この各触媒5,7,8の温度が活性温度以上になると、各触媒5,7,8は排気ガスを浄化する。
 暖機モード中、コントローラ15は、温度センサ17で検出された下流側排気ガス温度(反応器11の温度に相当)がアンモニア回収可能温度以上か否かを判定する(S4)。S4にて下流側排気ガス温度がアンモニア回収可能温度未満と判定した場合、コントローラ15は、暖機開始から暖機継続時間経過したか否かを判定する(S5)。S5にて暖機開始から暖機継続時間経過していないと判定した場合、コントローラ15は、暖機モードを継続し、一定時間後にS4の判定を行う。
 S4にて下流側排気ガス温度がアンモニア回収可能温度以上と判定した場合、コントローラ15は、暖機モードから回収モードに切り替え、S8の処理を行う。この場合、暖機開始から暖機継続時間経過していないが、アンモニアの回収モードに移行する。
 S5にて暖機開始から暖機継続時間経過したと判定した場合、コントローラ15は、暖機モードを終了する。暖機モード終了後、コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度以上か否かを判定する(S6)。S6にて下流側排気ガス温度がアンモニア回収可能温度未満と判定した場合、コントローラ15は、開閉弁14への電圧の印加を停止し、一定時間後にS6の判定を行う(S7)。開閉弁14は、弁を閉じる。この場合、アンモニアが接続管13を介して移動できなくなるので、暖機及び回収が行われない。一方、S6にて下流側排気ガス温度がアンモニア回収可能温度以上と判定した場合、コントローラ15は、回収モードに移行し、S8の処理を行う。
 回収モードに移行すると、コントローラ15は、開閉弁14に電圧を印加する(S8)。開閉弁14は、電圧が印加されると、弁を開く。これにより、接続管13では、アンモニアの移動が可能となる。このとき、反応器11の圧力が貯蔵器12の圧力よりも高いので、アンモニアが接続管13を介して貯蔵器12側に移動する。そして、アンモニアが、貯蔵器12で回収される。貯蔵器12は、吸着材12aでアンモニアを吸着して貯蔵する。
 回収モード中、コントローラ15は、図2に示すアンモニア飽和蒸気圧曲線A及びアンモニア吸着量曲線Bを用いて、温度センサ18で検出された貯蔵器12の温度と圧力センサ19で検出された貯蔵器12の圧力とから貯蔵器12でのアンモニア吸着量を取得する(S9)。さらに、コントローラ15は、このアンモニア吸着量からアンモニアの残存量を減算してアンモニア回収量を取得し、このアンモニア回収量をアンモニア総回収量で除算してアンモニア回収率を取得する(S9)。そして、コントローラ15は、アンモニア回収率が暖機可能回収率以上か否かを判定する(S10)。
 S10にてアンモニア回収率が暖機可能回収率未満と判定した場合、コントローラ15は、回収モードを継続し、一定時間毎に下流側排気ガス温度がアンモニア回収可能温度以上か否かを判定する(S6)。S6にて下流側排気ガス温度がアンモニア回収可能温度未満と判定した場合、コントローラ15は、開閉弁14への電圧の印加を停止する(S7)。開閉弁14は、弁を閉じる。この場合、アンモニアが接続管13を介して移動できなくなるので、アンモニアが反応器11側に移動できない。一方、S6にて下流側排気ガス温度がアンモニア回収可能温度以上と判定した場合、コントローラ15は、上記と同様にS8以降の処理を行う。
 この回収モード中のS6~S10の処理により、アンモニア回収率が暖機可能回収率以上になるまで回収モードが継続され、アンモニアの回収に専念することになる。特に、回収モード中に下流側排気ガス温度がアンモニア回収可能温度より低くなっても、アンモニアが反応器11側に移動できないので、貯蔵器12に回収されているアンモニアが反応器11で使われることはない。
 S10にてアンモニア回収率が暖機可能回収率以上と判定した場合、コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度未満か否かを判定する(S11)。S11にて下流側排気ガス温度がアンモニア回収可能温度以上と判定した場合、コントローラ15は、開閉弁14への電圧の印加を継続する(S12)。開閉弁14は、弁を開いた状態を維持する。このS11の判定は、下流側排気ガス温度がアンモニア回収可能温度未満になるまで一定時間毎に繰り返し行われる。
 S11にて下流側排気ガス温度がアンモニア回収可能温度未満と判定した場合、コントローラ15は、開閉弁14への電圧の印加を停止し、回収モードを終了する(S13)。開閉弁14は、電圧の印加が停止されると、弁を閉じる。これにより、アンモニアが、接続管13を介して移動できない。ここで、アンモニアの回収が終了する。貯蔵器12には、次回の暖機時に各触媒5,7,8を活性温度まで昇温できる十分な量のアンモニアが回収(貯蔵)されている。
 回収モード終了後、コントローラ15は、上流側排気ガス温度が暖機開始温度未満か否かを判定する(S14)。S14にて上流側排気ガス温度が暖機開始温度以上と判定した場合、コントローラ15は、一定時間後にS11の判定を行う。上流側排気ガス温度が暖機開始温度未満になるまでは、アンモニアが接続管13を介して移動できないので、暖機及び回収が行われない。
 S14にて上流側排気ガス温度が暖機開始温度未満と判定した場合、コントローラ15は、暖機モードに移行し、開閉弁14に電圧を印加する(S15)。開閉弁14は、電圧が印加されると、弁を開く。これにより上記の暖機モードでの動作と同様に、接続管13でのアンモニアの移動が可能となり、反応器11で排気ガスを加熱して暖機を行う。この際、反応器11には、暖機効果が得られる十分の量のアンモニアが供給される。
 暖機モード中(再暖機中)、コントローラ15は、下流側排気ガス温度がアンモニア回収可能温度以上か否かを判定する(S16)。S16にて下流側排気ガス温度がアンモニア回収可能温度未満と判定した場合、コントローラ15は、再暖機開始から暖機継続時間経過したか否かを判定する(S17)。S17にて再暖機開始から暖機継続時間経過していないと判定した場合、コントローラ15は、暖機モードを継続し、一定時間後にS16の判定を行う。
 S16にて下流側排気ガス温度がアンモニア回収可能温度以上と判定した場合、コントローラ15は、暖機モードから回収モードに切り替え、S8の処理を行う。この場合も、上記のS4にてアンモニア回収可能温度以上と判定した場合と同様に、再暖機開始から暖機継続時間が経過していないが、アンモニアの回収モードに移行する。
 S17にて再暖機開始から暖機継続時間経過したと判定した場合、コントローラ15は、暖機モードを終了し、S6の判定に戻る。以上の動作が、イグニッションスイッチがオフされて、エンジン2が停止するまで続けられる。
 この化学蓄熱装置10によれば、暖機モード中に下流側排気ガス温度(反応器11の温度に相当)がアンモニア回収可能温度以上になった場合、暖機モードを停止して回収モードに移行し、回収モードの移行後にアンモニア回収可能温度未満のときには開閉弁14を閉じてアンモニアが反応器11側に移動できないようにすることにより、アンモニアの回収のみを行う。これにより、貯蔵器12では、暖機効果(加熱効果)が得られる十分な量のアンモニアを回収できる。また、反応器11では、暖機モードになったときにその十分な量のアンモニアが供給されるので、触媒5,7,8を活性温度まで昇温できる。このように、化学蓄熱装置10では、反応器11での排気ガスに対する加熱(触媒5,7,8に対する暖機)と貯蔵器12でのアンモニアの回収とを効率良く行うことができる。
 また、化学蓄熱装置10によれば、回収モードに移行後にアンモニア回収率が暖機可能回収率以上になるまでアンモニアの回収のみを行うことにより、貯蔵器12で暖機効果が得られる十分な量のアンモニアを確実に回収できる。
 なお、図3に示す例の場合、暖機モード中に温度変化Cで示す温度が最初にアンモニア回収可能温度D以上になったときに、暖機開始から暖機継続時間経過していない場合でも回収モードに移行する。回収モードに移行すると、温度変化Cで示す温度がアンモニア回収可能温度D未満になる毎に、開閉弁14が閉じられる。したがって、回収モード移行後に温度変化Cがアンモニア回収可能温度D未満になっている間は、アンモニアが接続管13を介して反応器11側に移動できない。一方、回収モード移行後に温度変化Cがアンモニア回収可能温度D以上になっている間は、アンモニアが接続管13を介して貯蔵器12側に移動でき、貯蔵器12で回収される。これにより、回収モード移行後、貯蔵器12でのアンモニアの回収量は、温度変化Cがアンモニア回収可能温度D未満になっている間に減ることはなく、アンモニア回収可能温度D以上になっている間に増加する。
 また、化学蓄熱装置10によれば、アンモニア回収率が暖機可能回収率以上になった後に下流側排気ガス温度がアンモニア回収可能温度未満になると開閉弁14を一旦閉じることにより、アンモニアが反応器11側に移動できない。これにより、排気ガスの温度が高く、触媒5,7,8の暖機が不要なときに、アンモニアが反応器11で無駄に使われることがない。
 また、化学蓄熱装置10によれば、開閉弁14を一旦閉じた後に上流側排気ガス温度が暖機開始温度未満になると開閉弁14を開くことにより、反応器11へのアンモニアの移動が可能となる。これにより、排気ガスの温度が低くなり、触媒5,7,8の暖機が必要になったときに、貯蔵器12から反応器11にアンモニアを供給できる。この際、反応器11には、暖機効果が得られる十分な量(つまり、触媒5,7,8を活性温度まで昇温できる量)のアンモニアが供給される。
 また、化学蓄熱装置10によれば、貯蔵器12の温度と圧力とから簡単に貯蔵器12に回収されているアンモニアの回収量(回収率)を取得できる。また、化学蓄熱装置10によれば、温度センサ17に検出された下流側排気ガス温度(反応器11で加熱された排気ガスの温度)を反応器11の温度として代用することにより、反応器11の温度を直接検出する必要がない。エンジン2の制御で用いる温度センサ17を有効利用しているので、別途に温度センサが必要なく、コストを抑えることができる。
 以上、本発明の実施形態について説明したが、上記実施形態に限定されることなく様々な形態で実施される。
 例えば、上記実施形態では回収モードに移行後にアンモニア回収率が暖機可能回収率以上になるまで回収モードを継続する構成としたが、特にこれに限定されず、例えば、回収モード開始から十分な回収量を見込める所定時間経過するまで回収モードを継続するようにしてもよいし、また、アンモニア総回収量全てを回収するまで回収モードを継続するようにしてもよい。
 また、上記実施形態では反応器の温度を取得するために、反応器の下流側の排気ガスの温度を検出する温度センサを利用したが、特にこれに限定されず、例えば、反応器の上流側の排気ガスの温度を検出する温度センサと反応器の下流側の排気ガスの温度を検出する温度センサを利用して、この検出された2つの温度から反応器の温度を推定してもよいし、また、反応器に温度センサを設けて、反応器の温度を直接検出してもよい。
 また、上記実施形態では反応媒体をアンモニアとしたが、アルコール、水などの他の反応媒体でもよい。また、上記実施形態では反応媒体がアンモニアの場合の蓄熱材、吸着材の各材料をそれぞれ例示したが、化学蓄熱装置で用いられる反応媒体に適した蓄熱材、吸着材を適宜用いるとよい。
 また、上記実施形態ではDOCの上流側に熱交換器を設け、熱交換器に沿わせて反応器を配置する構成としたが、他の箇所に反応器を配置してもよく、例えば、DOC、SCR、ASCのうちのいずれかの触媒の外周部などに反応器を配置させてもよい。また、上記実施形態ではディーゼルエンジンから排出される排気ガスを加熱(暖機)する化学蓄熱装置としたが、特にこれに限られず、ガソリンエンジンから排出される排気ガスを加熱する化学蓄熱装置などに適用してもよい。また、上記実施形態では加熱対象をエンジンから排出される排気ガスとしたが、特にこれに限定されず、例えば、気体状または液体状の流体(例えば、オイル(エンジンオイル、変速機オイル等)、水、空気、水蒸気)を加熱対象としてもよい。また、エンジン以外にも、ごみ焼却工場、発電所、各種プラント工場などに化学蓄熱装置を適用してもよい。
 1…排気ガス浄化システム、2…エンジン、3…排気管、4…熱交換器、5…DOC、6…DPF、7…SCR、8…ASC、10…化学蓄熱装置、11…反応器、11a…蓄熱材、12…貯蔵器、12a…吸着材、13…接続管、14…開閉弁、15…コントローラ、16,17,18…温度センサ、19…圧力センサ。

Claims (5)

  1.  加熱対象を加熱する化学蓄熱装置であって、
     反応媒体が供給されると前記反応媒体との化学反応により発熱し、かつ、加熱されると吸熱して前記反応媒体を脱離する蓄熱材を有する反応器と、
     前記反応媒体を貯蔵する貯蔵器と、
     前記反応器と前記貯蔵器とを連通し、前記反応器と前記貯蔵器との間で前記反応媒体を流通させる接続管と、
     前記接続管に設けられた開閉弁と、
     前記開閉弁の開閉を制御する制御部と、
     前記反応器の温度を取得する温度取得部と、
     を備え、
     前記制御部は、
      前記開閉弁を開制御して前記貯蔵器から前記反応器へ前記反応媒体を移動させて前記反応器で前記加熱対象を加熱する加熱モードと、
      前記反応器の前記蓄熱材から脱離した前記反応媒体を前記貯蔵器で回収する回収モードと、を備える、
     前記制御部は、
      加熱モードでの制御中に前記温度取得部で取得した前記反応器の温度が前記反応媒体の回収可能温度以上になった場合、前記加熱モードから回収モードに移行し、
      前記回収モードでの制御において、前記温度取得部で取得した前記反応器の温度が前記回収可能温度未満になった場合、前記開閉弁を閉制御し、
      前記回収モードでの制御において、前記温度取得部で取得した前記反応器の温度が前記回収可能温度以上になった場合、前記開閉弁を開制御する、化学蓄熱装置。
  2.  前記制御部は、前記回収モードへの移行後において、前記貯蔵器に回収された前記反応媒体の回収量が所定量以上になるまで前記回収モードを維持する、請求項1に記載の化学蓄熱装置。
  3.  前記加熱対象の温度を検出する加熱対象温度検出部を備え、
     前記制御部は、
      前記貯蔵器に回収された前記反応媒体の前記回収量が前記所定量以上になった後において、前記温度取得部で取得した前記反応器の温度が前記回収可能温度未満になると、前記開閉弁を閉制御し、
      当該閉制御した後において、前記加熱対象温度検出部で検出した前記加熱対象の温度が、前記加熱対象に対する加熱が必要な所定温度未満になると、前記開閉弁を開制御する、請求項2に記載の化学蓄熱装置。
  4.  前記貯蔵器の温度を検出する貯蔵器温度検出部と、
     前記貯蔵器の圧力を検出する貯蔵器圧力検出部と、
     を備え、
     前記制御部は、前記貯蔵器温度検出部で検出した温度と前記貯蔵器圧力検出部で検出した圧力とを用いて前記回収量を算出する、請求項2又は請求項3に記載の化学蓄熱装置。
  5.  前記温度取得部は、前記反応器で加熱される前記加熱対象の温度から前記反応器の温度を取得する、請求項1~請求項4の何れか一項に記載の化学蓄熱装置。
PCT/JP2016/060515 2015-04-09 2016-03-30 化学蓄熱装置 WO2016163289A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-079974 2015-04-09
JP2015079974A JP2016200321A (ja) 2015-04-09 2015-04-09 化学蓄熱装置

Publications (1)

Publication Number Publication Date
WO2016163289A1 true WO2016163289A1 (ja) 2016-10-13

Family

ID=57072381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060515 WO2016163289A1 (ja) 2015-04-09 2016-03-30 化学蓄熱装置

Country Status (2)

Country Link
JP (1) JP2016200321A (ja)
WO (1) WO2016163289A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259925A (zh) * 2019-05-22 2019-09-20 潍柴动力股份有限公司 车辆换挡装置、车辆及车辆换挡方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347320A (ja) * 1991-05-21 1992-12-02 Toyota Motor Corp 触媒加熱装置
JP2015014234A (ja) * 2013-07-04 2015-01-22 株式会社豊田自動織機 化学蓄熱装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347320A (ja) * 1991-05-21 1992-12-02 Toyota Motor Corp 触媒加熱装置
JP2015014234A (ja) * 2013-07-04 2015-01-22 株式会社豊田自動織機 化学蓄熱装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259925A (zh) * 2019-05-22 2019-09-20 潍柴动力股份有限公司 车辆换挡装置、车辆及车辆换挡方法

Also Published As

Publication number Publication date
JP2016200321A (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5954123B2 (ja) 排気ガス浄化システム
WO2016163289A1 (ja) 化学蓄熱装置
JP6107563B2 (ja) 化学蓄熱装置
JP2015121382A (ja) 化学蓄熱装置
WO2015174243A1 (ja) 化学蓄熱装置
JP6493338B2 (ja) 化学蓄熱装置
EP3217133A1 (en) Chemical heat storage apparatus
WO2015194400A1 (ja) 化学蓄熱装置
WO2016084564A1 (ja) エンジンの排気浄化制御方法
JP2015081519A (ja) 排気ガス浄化システム
JP6102527B2 (ja) 化学蓄熱装置
JP6111905B2 (ja) 化学蓄熱装置
WO2017013907A1 (ja) 化学蓄熱装置
JP6131777B2 (ja) 化学蓄熱装置
WO2016056488A1 (ja) 化学蓄熱装置
JP6007859B2 (ja) 化学蓄熱装置
WO2016163167A1 (ja) 化学蓄熱装置
WO2015174291A1 (ja) 化学蓄熱装置
JP2015218957A (ja) 化学蓄熱装置
WO2015182275A1 (ja) 化学蓄熱装置
JP2016148482A (ja) 化学蓄熱装置
WO2015178137A1 (ja) 化学蓄熱装置
JP2015052442A (ja) 化学蓄熱装置
JP6320551B2 (ja) 化学蓄熱装置
JP2016090171A (ja) 化学蓄熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776456

Country of ref document: EP

Kind code of ref document: A1