WO2017012245A1 - 一种制备缩醛羰化物的方法 - Google Patents

一种制备缩醛羰化物的方法 Download PDF

Info

Publication number
WO2017012245A1
WO2017012245A1 PCT/CN2015/096647 CN2015096647W WO2017012245A1 WO 2017012245 A1 WO2017012245 A1 WO 2017012245A1 CN 2015096647 W CN2015096647 W CN 2015096647W WO 2017012245 A1 WO2017012245 A1 WO 2017012245A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetal
molecular sieve
raw material
reaction
sapo
Prior art date
Application number
PCT/CN2015/096647
Other languages
English (en)
French (fr)
Inventor
倪友明
朱文良
刘勇
刘红超
刘中民
杨淼
田鹏
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EA201890300A priority Critical patent/EA035211B1/ru
Priority to JP2018502115A priority patent/JP6523548B2/ja
Priority to EP15898801.4A priority patent/EP3326995B1/en
Priority to US15/743,698 priority patent/US10508073B2/en
Publication of WO2017012245A1 publication Critical patent/WO2017012245A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/37Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by reaction of ethers with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/17Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/18Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/32Gallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)

Definitions

  • the present invention relates to a process for preparing an acetal carbonyl compound as an intermediate for the production of ethylene glycol.
  • Ethylene glycol is an important chemical raw material and strategic material for the manufacture of polyester (which can further produce polyester, PET bottles, films), explosives, glyoxal, and as an antifreeze, plasticizer, hydraulic fluid and solvent. Wait. In 2009, China's ethylene glycol imports exceeded 5.8 million tons. It is estimated that China's ethylene glycol demand will reach 11.2 million tons in 2015, the production capacity will be about 5 million tons, and the supply and demand gap will still reach 6.2 million tons. Therefore, China's ethylene glycol production The development and application of new technologies has a good market prospect. Internationally, petroleum cracked ethylene is mainly oxidized to obtain ethylene oxide, and ethylene oxide is hydrated to obtain ethylene glycol.
  • coal-based ethylene glycol new coal chemical technology can not only ensure the country's energy security, but also make full use of China's coal resources. It is the most realistic choice for the future coal chemical industry.
  • Polymethoxy dimethyl ether (or polymethoxy acetal, English name Polyoxymethylene dimethyl ethers) has the formula CH 3 O(CH 2 O) n CH 3 , where n ⁇ 2, generally referred to as DMM n (or PODE n ).
  • DMM n or PODE n
  • the product distribution is unreasonable, and the methylal and DMM 2 are higher, while the DMM 3 to 4 which can be used as a diesel additive is less selective, therefore, often It is necessary to repeatedly separate and re-react the by-products in the preparation process, so that the energy consumption is large and the economy is poor. Therefore, the direct processing of methylal and DMM 2 as by-products into products of higher economic value will increase the economics of this process.
  • US 2010/0105947 A discloses a process for the preparation of methyl methoxyacetate prepared by the carbonylation of dimethoxymethane in the presence of a zeolite molecular sieve catalyst, wherein the catalyst is selected from the group consisting of FAU, ZSM-5, MOR, ⁇ . - Zeolite.
  • EP 0 00 885 29 A2 discloses a process for the preparation of methyl methoxyacetate obtained by the carbonylation of dimethoxymethane in the presence of a solid catalyst selected from the group consisting of acidic cation exchange resins, clays, zeolites, solids. Acids, inorganic oxides, inorganic salts and oxides.
  • CN104119228 A discloses a process for preparing methyl methoxyacetate, which synthesizes methyl methoxyacetate by using methylal and CO as raw materials, wherein the catalyst is a molecular sieve having a MWW type skeleton structure.
  • CN103894228 A discloses a preparation method of methyl methoxyacetate, which synthesizes methyl methoxyacetate by using methylal and CO as raw materials, wherein the catalyst is a solid catalyst supporting a strong acid of organic sulfonic acid, the catalyst The carrier is one or more selected from the group consisting of activated carbon, SBA-15 and MCM-41.
  • CN103172517 A discloses a process for producing methyl methoxyacetate in which a vapor phase carbonylation reaction of methylal and CO in the presence of a solid acid catalyst produces methyl methoxyacetate.
  • the present invention provides a process for preparing an acetal carbonyl compound as an intermediate for producing ethylene glycol, which comprises passing a raw material acetal and a feed gas carbon monoxide through an acidic small pore silicoaluminophosphate molecular sieve loaded as a catalyst.
  • the acidic small pore silicoaluminophosphate molecular sieve has an eight-membered ring orifice structure.
  • the acidic small pore silicoaluminophosphate molecular sieve is one or more selected from the group consisting of molecular sieves of the structural types CHA, RHO, LEV, ERI, AEI and AFX; more preferably, the acidity
  • the small pore silicoaluminophosphate molecular sieve is one or more selected from the group consisting of SAPO-34, DNL-6, SAPO-35, SAPO-17, SAPO-18, and SAPO-56 molecular sieves.
  • the acidic small-cell silicoaluminophosphate molecular sieve contains a metal having a mass fraction of 0 to 10%, preferably 0 to 2%; preferably, the metal is copper, iron, gallium, silver, nickel, One or more of cobalt, palladium and platinum.
  • the metal is located in the ion exchange sites, in the pores, on the surface, and/or on the backbone of the acidic pore aluminosilicate molecular sieve; the metal is synthesized by in situ synthesis, impregnation or ion exchange Introduced in one or more ways.
  • the catalyst contains a molding agent in a mass fraction of from 1 to 60%, preferably from 10 to 30%; preferably, the molding agent is one or more of alumina, silica or kaolin .
  • the starting acetal is CH 3 OCH 2 OCH 3 , C 2 H 5 OCH 2 OC 2 H 5 or CH 3 O(CH 2 O) 2 CH 3
  • the acetal carbonyl compound Is one or more of the following: CH 3 -O-(CO)-CH 2 -O-CH 3 , C 2 H 5 -O-(CO)-CH 2 -OC 2 H 5 ,CH 3 -O -(CO)-CH 2 -O-CH 2 -O-CH 3 and CH 3 -O-CH 2 -(CO)-O-CH 2 -O-CH 3 .
  • the carbonylation reaction is carried out under the following conditions: a reaction temperature of 60 to 140 ° C, a reaction pressure of 1 to 15 MPa, a mass acetal mass space velocity of 0.1 to 10.0 h -1 , a raw material gas carbon monoxide and a raw material.
  • the acetal molar ratio is from 2:1 to 20:1, and no other solvent is added; preferably, the carbonylation reaction is carried out at a reaction temperature of 70 to 120 ° C, a reaction pressure of 3 to 10 MPa, and a raw material acetal.
  • the mass space velocity is 0.5 to 3 h -1
  • the molar ratio of the raw material carbon monoxide to the raw material acetal is 5:1 to 15:1, and no other solvent is added.
  • the reactor is a fixed bed reactor, a tank reactor, a moving bed reactor or a fluidized bed reactor that effects a continuous reaction.
  • the beneficial effects produced by the present invention include at least but not limited to: compared with the prior art, the present invention adopts an acidic small pore silicoaluminophosphate molecular sieve catalyst, and has high acetal conversion rate and acetal carbonyl selectivity. high. Moreover, compared with the prior art, the catalyst of the invention has a long service life, does not require the use of an external solvent during the reaction, has mild reaction conditions, can be continuously produced, and has industrial application potential.
  • Example 1 is an X-ray powder diffraction (XRD) pattern of the SAPO-34 molecular sieve in Example 1 of the present application.
  • XRD X-ray powder diffraction
  • Example 2 is a scanning electron microscope (SEM) image of the SAPO-34 molecular sieve in Example 1 of the present application.
  • the present invention relates to a process for preparing an acetal carbonylate as an intermediate for the production of ethylene glycol by carbonylation, which comprises passing a raw material acetal and a feed gas carbon monoxide through a reactor carrying a catalyst of an acidic small pore silicoaluminophosphate molecular sieve. The carbonylation reaction takes place to prepare the product acetal carbonyl.
  • the acidic small pore silicoaluminophosphate molecule has an eight-membered ring pore structure.
  • the acidic small pore silicoaluminophosphate molecules are selected from the structural types of ABW, ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATN, ATT, ATV, AWO, AWW, BIK, BRE , CAS, CHA, DOR, DFY, LAB, EDI, ERI, ESV, GIS, GOO, ITE, JBW, KFI, LEV, LTA, MER, MON, MTF, PAU, PHI, RHO, RTE, RTH, SAS, SAT One or more of the molecular sieves of SAV, THO, TSC, VNI, YUG, ZON.
  • the acidic small pore silicoaluminophosphate molecular sieve is preferably one or more of the molecular sieves of the structure type CHA, RHO, LEV, ERI, AEI, AFX.
  • the acidic small pore silicoaluminophosphate molecular sieve is preferably one or more of SAPO-34, DNL-6, SAPO-35, SAPO-17, SAPO-18, SAPO-56 molecular sieves.
  • the acidic small pore silicoaluminophosphate molecular sieve contains a metal having a mass fraction of 0 to 10%.
  • the acidic small pore silicoaluminophosphate molecular sieve contains a metal having a mass fraction of preferably 0 to 2%.
  • the metal is one or more of copper, iron, gallium, silver, nickel, cobalt, palladium, and platinum.
  • the location of the metal in the molecular sieve is one or more of the ion exchange sites of the molecular sieve, or the channels or surfaces of the molecular sieve, or the backbone of the molecular sieve.
  • the manner in which the metal is introduced is one or more of in situ synthesis, impregnation or ion exchange.
  • the metal is present in the ionic state with the ion exchange site, or in the metal oxide state in the pores or on the molecular sieve, or in the form of isomorphous substitution into the molecular sieve backbone T atom.
  • the catalyst contains a molding agent having a mass fraction of from 1 to 60%.
  • the mass fraction of the catalyst containing the molding agent is preferably from 10 to 30%.
  • the forming agent in the catalyst is one or more of alumina, silica or kaolin.
  • the raw acetal is preferably CH 3 OCH 2 OCH 3 , C 2 H 5 OCH 2 OC 2 H 5 or CH 3 O(CH 2 O) 2 CH 3 .
  • the product acetal carbonyl is formed by inserting one or more carbonyl-CO- groups on the -O-CH 2 -O- structural unit of the molecular chain of the raw acetal R 1 O(CH 2 O) n R 2 a product of -O-(CO)-CH 2 -O- or -O-CH 2 -(CO)-O- structural unit.
  • the acetal carbonylation process can be represented by the following chemical reaction equation:
  • the product acetal carbonyl is preferably one or more of the following:
  • the feed gas carbon monoxide is separated by synthesis gas.
  • the raw material gas may also be a mixed raw material gas having a carbon monoxide volume content of 50% or more, which may include hydrogen and any of nitrogen, helium, argon, carbon dioxide, methane and ethane. One or any of several inert gases.
  • the reaction conditions are: a reaction temperature of 60 to 140 ° C, a reaction pressure of 1 to 15 MPa, a mass acetal mass space velocity of 0.1 to 10.0 h -1 , and a molar ratio of the raw material carbon monoxide to the raw material acetal of 2:1. ⁇ 20:1 without adding any other solvent.
  • the reaction conditions are: a reaction temperature of 70 to 120 ° C, a reaction pressure of 3 to 10 MPa, a mass acetal mass space velocity of 0.5 to 3 h -1 , and a molar ratio of the raw material carbon monoxide to the raw material acetal of 5:1. 15:1 without adding any other solvent.
  • the reaction at least one of the raw material acetal and the product acetal carbonyl compound is in a liquid phase, the acidic small pore silicoaluminophosphate molecular sieve catalyst is a solid phase, and the raw material gas carbon monoxide is a gas phase, and thus the reaction
  • the process is a gas-liquid-solid three-phase reaction.
  • the product acetal carbonyl compound can be further hydrogenated to produce a glycol ether.
  • the glycol ether is ethylene glycol monomethyl ether; ethylene glycol monomethyl ether is hydrolyzed to prepare ethylene glycol.
  • the reactor is a fixed bed reactor, a tank reactor, a moving bed reactor or a fluidized bed reactor that effects a continuous reaction.
  • the reactor is one or more fixed bed reactors. Take the form of continuous reaction.
  • the fixed bed reactor may be one or plural. When multiple fixed bed reactors are employed, the reactors may be in series, in parallel, or in a combination of series and parallel.
  • both the acetal conversion and the acetal carbonyl selectivity are calculated based on the moles of acetal carbon:
  • Acetal conversion [( moles of acetal carbon in the feed) - (number of moles of acetal carbon in the discharge)] ⁇ (number of moles of acetal carbon in the feed) ⁇ (100%)
  • Acetal carbonyl selectivity (carbon number of acetal carbonyls in the output minus carbonyl) ⁇ [(mole of acetal carbon in the feed) - (moles of acetal carbon in the discharge) ] ⁇ (100%)
  • the pseudo-aluminum talc was added to the phosphoric acid solution and stirred for 2 hours to form a uniform gel. Then, the silica sol and diethylamine (DEA) were added and stirred for 3 hours, and the obtained sol was placed in a crystallization tank with a polytetrafluoro inner jacket, crystallized at 200 ° C for 2 days, cooled and centrifuged.
  • DEA diethylamine
  • the molar ratio of the gel is 2.0 DEA: 1.0 Al 2 O 3 : 0.8 P 2 O 5 : 0.4 TEOS : 0.2 CTAB : 100 H 2 O, aluminum isopropoxide, deionized water, phosphoric acid and ethyl orthosilicate ( After mixing, TEOS was stirred at room temperature for 3 h to obtain a homogeneous gel system, and then cetyltrimethylammonium bromide (CTAB) and ethylenediamine (DEA) solution were added to the above gel.
  • CTAB cetyltrimethylammonium bromide
  • DEA ethylenediamine
  • the obtained sol was placed in a crystallization tank with a polytetrafluoro inner jacket, crystallized at 200 ° C for 1 day, cooled, centrifuged, dried at 120 ° C, placed in a muffle furnace, and 550 in an air atmosphere.
  • the DNL-6 molecular sieve raw powder with a chemical composition ratio of (Si 0.14 Al 0.37 P 0.49 )O 2 was obtained by calcination at °C for 4 h.
  • the acid DNL-6 molecular sieve was obtained by calcination at 500 ° C for 4 h in an air atmosphere, and then molded with 10% silica to prepare a rod-shaped catalyst B having a diameter of 3 mm and a length of 3 mm.
  • the pseudo-aluminum talc was added to the phosphoric acid solution and stirred for 2 hours to form a uniform gel. Then, the silica sol and diethylamine (DEA) were added and stirred for 3 hours, and the obtained sol was placed in a crystallization tank with a polytetrafluoro inner jacket, crystallized at 200 ° C for 2 days, cooled and centrifuged.
  • DEA diethylamine
  • SAPO-34 molecular sieve raw powder having a chemical composition ratio of (Si 0.16 Al 0.48 P 0.36 )O 2 .
  • This SAPO-34 molecular sieve was exchanged three times with a 0.8 mol/L aqueous solution of ammonium nitrate at 80 ° C to obtain an ammonium type SAPO-34 molecular sieve.
  • the copper ion exchange modified SAPO-34 molecular sieve was obtained by ion exchange with a 0.05 mol/L aqueous solution of copper nitrate and ammonium SAPO-34 molecular sieve.
  • the molar ratio of the gel is 2.0 DEA: 1.0 Al 2 O 3 : 0.8 P 2 O 5 : 0.4 TEOS : 0.2 CTAB : 100 H 2 O, aluminum isopropoxide, deionized water, phosphoric acid and ethyl orthosilicate ( After mixing, TEOS was stirred at room temperature for 3 h to obtain a homogeneous gel system, and then cetyltrimethylammonium bromide (CTAB) and ethylenediamine (DEA) solution were added to the above gel.
  • CTAB cetyltrimethylammonium bromide
  • DEA ethylenediamine
  • the obtained sol was placed in a crystallization tank with a polytetrafluoro inner jacket, crystallized at 200 ° C for 1 day, cooled, centrifuged, dried at 120 ° C, placed in a muffle furnace, and 550 in an air atmosphere.
  • the DNL-6 molecular sieve raw powder with a chemical composition ratio of (Si 0.14 Al 0.37 P 0.49 )O 2 was obtained by calcination at °C for 4 h.
  • the palladium-impregnated modified DNL-6 molecular sieve was obtained by using an aqueous solution of palladium nitrate and DNL-6 molecular sieve in an equal volume.
  • the pseudo-thin aluminum talc, silica sol, deionized water, aqueous phosphoric acid and cycloheximide were prepared at a gel molar ratio of 0.96 P 2 O 5 : 1.0 Al 2 O 3 : 1.0 SiO 2 : 1.51 HMT : 55.47H 2 O. (HMI) was added to the beaker in sequence and stirred at room temperature.
  • the obtained sol was placed in a crystallization tank with a polytetrafluoro inner jacket, crystallized at 200 ° C for 1 day, cooled, centrifuged, dried at 120 ° C, placed in a muffle furnace, and 550 in an air atmosphere.
  • SAPO-35 molecular sieve raw powder having a chemical composition ratio of (Si 0.18 Al 0.46 P 0.36 )O 2 .
  • a silver impregnated modified SAPO-35 molecular sieve was obtained by using an aqueous solution of silver nitrate and an SAPO-35 molecular sieve in an equal volume.
  • Calcination at 500 ° C for 4 h in an air atmosphere gave an acidic SAPO-35 molecular sieve having a silver content of 0.1%, and then molding with 15% kaolin to prepare a rod-shaped catalyst E having a diameter of 3 mm and a length of 3 mm.
  • Calcination at °C for 4 h gave a raw material of SAPO-17 molecular sieve having a chemical composition ratio of (Si 0.14 Al 0.51 P 0.35 )O 2 .
  • the nickel-impregnated modified SAPO-17 molecular sieve was obtained by using an aqueous solution of nickel nitrate and an SAPO-17 molecular sieve in an equal volume.
  • Calcination at 500 ° C for 4 h in an air atmosphere gave an acidic SAPO-17 molecular sieve containing 2% of nickel, and then molding with 30% alumina to prepare a rod-shaped catalyst F having a diameter of 3 mm and a length of 3 mm.
  • the pseudo-thin aluminum talc, silica sol, deionized water, aqueous phosphoric acid solution and N were obtained at a gel molar ratio of 0.2 SiO 2 : 1.0 Al 2 O 3 : 1.0 P 2 O 5 : 1.6 C 8 H 19 N: 55H 2 O.
  • N-diisopropylethylamine (C 8 H 19 N) was sequentially added to a beaker and stirred at room temperature.
  • the obtained sol was placed in a crystallization tank with a polytetrafluoro inner jacket, crystallized at 180 ° C for 3 days, cooled, centrifuged, dried at 120 ° C, and placed in a muffle furnace, 550 in an air atmosphere.
  • the pseudo-thin aluminum talc, silica sol, deionized water, aqueous phosphoric acid solution and N, N, N' are obtained at a gel molar ratio of 2.0TMHD:0.6SiO 2 : 0.8Al 2 O 3 : P 2 O 5 : 40H 2 O.
  • N'-tetramethyl-1,6-hexanediamine (TMHD) was sequentially added to a beaker and stirred at room temperature for mixing.
  • the obtained sol was placed in a crystallization tank with a polytetrafluoro inner jacket, crystallized at 200 ° C for 3 days, cooled, centrifuged, dried at 120 ° C, and placed in a muffle furnace, 550 in an air atmosphere.
  • SAPO-56 molecular sieve having a chemical composition ratio of (Si 0.10 Al 0.42 P 0.48 )O 2 was obtained.
  • This SAPO-56 molecular sieve was exchanged three times with a 0.8 mol/L aqueous solution of ammonium nitrate at 80 ° C to obtain an ammonium type SAPO-56 molecular sieve.
  • the copper ion exchange modified SAPO-56 molecular sieve was obtained by ion exchange with a 0.04 mol/L aqueous solution of copper nitrate and ammonium SAPO-56 molecular sieve.
  • the Y-Al 2.3 Y-type molecular sieve purchased by Nankai University Catalyst Factory was taken. This Y molecular sieve was exchanged three times with a 0.8 mol/L aqueous solution of ammonium nitrate at 80 ° C to obtain an ammonium type Y molecular sieve.
  • the copper ion exchange modified Y molecular sieve was obtained by ion exchange with a 0.05 mol/L aqueous solution of copper nitrate and an ammonium type Y molecular sieve.
  • P reaction pressure
  • WHSV 3.0 h -1
  • the product was analyzed by gas chromatography, and the conversion of the raw material acetal and the one-way selectivity of the product acetal carbonyl compound were calculated. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提出了一种通过缩醛羰基化反应制备作为生产乙二醇的中间体的缩醛羰化物的方法,所述方法包括将原料缩醛和原料气一氧化碳通过载有酸性小孔磷酸硅铝分子筛的催化剂的反应器进行羰基化反应,得到产物缩醛羰化物。本发明方法中原料缩醛的转化率高,缩醛羰化物的选择性高,催化剂寿命长,不需要使用外加溶剂,反应条件比较温和,能够连续生产,具备工业化应用潜力。而且,所获得的缩醛羰化物产物能够通过加氢后水解生产乙二醇。

Description

一种制备缩醛羰化物的方法 技术领域
本发明涉及一种制备作为生产乙二醇的中间体的缩醛羰化物的方法。
背景技术
乙二醇是国家重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、PET瓶子、薄膜)、炸药、乙二醛,并可作为防冻剂、增塑剂、水力流体和溶剂等。2009年中国的乙二醇进口量超过580万吨,预计2015年我国乙二醇需求将达到1120万吨,生产能力约500万吨,供需缺口仍达620万吨,因此,我国乙二醇生产新技术的开发应用具有很好的市场前景。国际上主要采用石油裂解的乙烯经氧化得到环氧乙烷,环氧乙烷水合得到乙二醇。鉴于我国“富煤缺油少气”的能源资源结构与原油价格长期维持高位运行等现状,煤制乙二醇新型煤化工技术既能保障国家的能源安全,又充分利用了我国的煤炭资源,是未来煤化工产业最现实的选择。
目前,国内比较成熟的技术是由中国科学院福建物质结构研究所开发的“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇成套工艺技术。”2009年12月上旬,备受业界瞩目的全球首套工业化示范装置-内蒙古通辽金煤化工公司“煤制乙二醇项目”一期工程、年产20万吨煤制乙二醇项目顺利打通全线工艺流程,生产出合格乙二醇产品。然而工艺单元较多,工业气体纯度要求高,在氧化偶联过程中需要使用贵金属催化剂,需要利用潜在环境污染的氮氧化合物等会制约该流程的经济性、环保性、节能性以及进一步工程放大。
聚甲氧基二甲醚(或称作聚甲氧基甲缩醛,英文名为Polyoxymethylene dimethyl ethers)的分子式为CH3O(CH2O)nCH3,其中n≥2,一般简称为DMMn(或PODEn)。在制备聚甲氧基二甲醚的过程中,其生成的产物分布不合理,甲缩醛和DMM2较高,而可以用作柴油添加剂的DMM3~4选择性却较低,因此,常常需要对其制备过程中的副产物进行反复分离再反应,这样能耗较大,经济性较差。因此,如果能将作为副产物的甲缩醛和DMM2 直接加工成经济价值更高的产品将会提高此过程的经济性。
US2010/0105947 A公开了一种甲氧基乙酸甲酯的制备方法,其是在沸石分子筛催化剂存在下,将二甲氧基甲烷羰基化制备,其中催化剂选自FAU,ZSM-5,MOR,β-沸石。EP0088529 A2公开了一种甲氧基乙酸甲酯的制备方法,其是在固体催化剂存在下,将二甲氧基甲烷羰基化制备得到,所述催化剂选自酸性阳离子交换树脂,粘土,沸石,固体酸,无机氧化物,无机盐和氧化物。CN104119228 A公开了一种甲氧基乙酸甲酯的制备方法,其以甲缩醛和CO为原料催化合成甲氧基乙酸甲酯,其中,催化剂为具有MWW型骨架结构的分子筛。CN103894228 A公开了一种甲氧基乙酸甲酯的制备方法,其以甲缩醛和CO为原料催化合成甲氧基乙酸甲酯,其中,催化剂为负载有机磺酸强酸的固体催化剂,所述催化剂的载体为选自活性炭,SBA-15和MCM-41的一种或多种。CN103172517 A公开了一种生产甲氧基乙酸甲酯的方法,其中,在固体酸催化剂存在下,甲缩醛和CO进行气相羰基化反应生成甲氧基乙酸甲酯。
近年来,美国UC,Berkeley的Alexis T.Bell教授课题组提出利用甲缩醛气相羰基化法制备甲氧基乙酸甲酯,然后加氢水解得到乙二醇的一条新路线,其中最关键的一步是气相羰基化反应。然而催化剂寿命短、原料气中甲缩醛浓度低、甲缩醛转化率与甲氧基乙酸甲酯选择性都不够理想,离工业化还有相当长的距离(Angew.Chem.Int.Ed.,2009,48,4813~4815;J.Catal.,2010,270,185~195;J.Catal.,2010,274,150~162;WO2010/048300 A1)。
发明内容
本发明的目的在于提供一种通过羰基化制备作为生产乙二醇的中间体的缩醛羰化物的方法。
为此,本发明提供一种制备作为生产乙二醇的中间体的缩醛羰化物的方法,所述方法包括将原料缩醛和原料气一氧化碳通过载有作为催化剂的酸性小孔磷酸硅铝分子筛的反应器进行羰基化反应,其中所述酸性小孔磷酸硅铝分子筛的化学组成为(SixAlyPz)O2,x=0.01~0.60,y=0.2~0.60,z=0.2~0.60,且x+y+z=1;并且其中所述原料缩醛为R1O(CH2O)nR2,n=1、 2、3或4;R1和R2分别独立地为C1~C3烷基。
在一个优选实施方案中,所述酸性小孔磷酸硅铝分子筛具有八元环孔口结构。
在一个优选实施方案中,所述酸性小孔磷酸硅铝分子筛是选自结构类型为CHA、RHO、LEV、ERI、AEI和AFX的分子筛中的一种或多种;更优选地,所述酸性小孔磷酸硅铝分子筛是选自SAPO-34、DNL-6、SAPO-35、SAPO-17、SAPO-18和SAPO-56分子筛中的一种或多种。
在一个优选实施方案中,所述酸性小孔磷酸硅铝分子筛含有质量分数为0~10%,优选0~2%的金属;优选地,所述金属为铜、铁、镓、银、镍、钴、钯和铂中的一种或者多种。
在一个优选实施方案中,所述金属位于所述酸性小孔磷酸硅铝分子筛的离子交换位、孔道中、表面上和/或骨架上;所述金属通过原位合成、浸渍或离子交换中的一种或者多种方式引入。
在一个优选实施方案中,所述催化剂含有质量分数为1~60%,优选10~30%的成型剂;优选地,所述成型剂是氧化铝、氧化硅或高岭土中的一种或多种。
在一个优选实施方案中,所述原料缩醛是CH3OCH2OCH3、C2H5OCH2OC2H5或CH3O(CH2O)2CH3,并且所述缩醛羰化物为以下中的一种或多种:CH3-O-(CO)-CH2-O-CH3,C2H5-O-(CO)-CH2-O-C2H5,CH3-O-(CO)-CH2-O-CH2-O-CH3和CH3-O-CH2-(CO)-O-CH2-O-CH3
在一个优选实施方案中,所述羰基化反应的条件是:反应温度为60~140℃,反应压力为1~15MPa,原料缩醛质量空速为0.1~10.0h-1,原料气一氧化碳与原料缩醛的摩尔比为2∶1~20∶1,且不添加任何其它溶剂;优选地,所述羰基化反应的是:反应温度为70~120℃,反应压力为3~10MPa,原料缩醛质量空速为0.5~3h-1,原料气一氧化碳与原料缩醛的摩尔比为5∶1~15∶1,且不添加任何其它溶剂。
在一个优选实施方案中,所述反应器是实现连续反应的固定床反应器、釜式反应器、移动床反应器或流化床反应器。
本发明产生的有益效果至少包括但不限于:与现有技术相比,本发明采用酸性小孔磷酸硅铝分子筛催化剂,缩醛转化率高,缩醛羰化物选择性 高。而且,与现有技术相比,本发明的催化剂寿命长,反应过程中不需要使用外加溶剂,反应条件比较温和,能够连续生产,具备工业化应用潜力。
附图说明
图1为本申请实施例1中的SAPO-34分子筛的X射线粉末衍射(XRD)图。
图2为本申请实施例1中的SAPO-34分子筛的扫描电镜(SEM)图。
具体实施方式
本发明涉及一种通过羰基化制备作为生产乙二醇的中间体缩醛羰化物的方法,包括将原料缩醛和原料气一氧化碳通过在载有酸性小孔磷酸硅铝分子筛的催化剂的反应器中发生羰基化反应而制备产物缩醛羰化物。
优选地,所述酸性小孔磷酸硅铝分子具有八元环孔口结构。
优选地,所述酸性小孔磷酸硅铝分子筛化学组成表达为(SixAlyPz)O2;x,y,z分别是Si,Al,P的摩尔分数,其中x=0.01~0.60,y=0.2~0.60,z=0.2~0.60,且x+y+z=1。
优选地,所述酸性小孔磷酸硅铝分子筛选自结构类型为ABW、ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATN、ATT、ATV、AWO、AWW、BIK、BRE、CAS、CHA、DOR、DFY、LAB、EDI、ERI、ESV、GIS、GOO、ITE、JBW、KFI、LEV、LTA、MER、MON、MTF、PAU、PHI、RHO、RTE、RTH、SAS、SAT、SAV、THO、TSC、VNI、YUG、ZON的分子筛中的一种或多种。
优选地,所述酸性小孔磷酸硅铝分子筛优选结构类型为CHA、RHO、LEV、ERI、AEI、AFX的分子筛中的一种或多种。
优选地,所述酸性小孔磷酸硅铝分子筛优选SAPO-34、DNL-6、SAPO-35、SAPO-17、SAPO-18、SAPO-56分子筛中的一种或多种。
优选地,所述酸性小孔磷酸硅铝分子筛中含有质量分数为0~10%的金属。
优选地,所述酸性小孔磷酸硅铝分子筛中含有质量分数优选0~2%的金属。
优选地,所述金属为铜、铁、镓、银、镍、钴、钯、铂中的一种或者多种。
优选地,所述金属在分子筛中的位置是分子筛的离子交换位置,或分子筛的孔道或表面上,或分子筛的骨架上的一种或者多种。
优选地,所述金属引入的方式是原位合成、浸渍或者离子交换中的一种或者多种。
优选地,所述金属以离子状态存在与离子交换位置,或以金属氧化物状态存在于分子筛的孔道或表明上,或以同晶取代的形式进入分子筛骨架T原子上。
优选地,所述催化剂中含有质量分数为1~60%的成型剂。
优选地,所述催化剂中含有成型剂的质量分数优选10~30%。
优选地,所述催化剂中成型剂是氧化铝、氧化硅或高岭土中的一种或多种。
优选地,所述原料缩醛为R1O(CH2O)nR2,其中n=1,或2,或3,或4;R1和R2分别独立地为C1~C3烷基基团。所述原料缩醛优选CH3OCH2OCH3,C2H5OCH2OC2H5或CH3O(CH2O)2CH3
所述产物缩醛羰化物是在原料缩醛R1O(CH2O)nR2分子链的-O-CH2-O-结构单元上插入一个或多个羰基-CO-后形成的具有-O-(CO)-CH2-O-或-O-CH2-(CO)-O-结构单元的产物。
缩醛羰基化过程可以用下列化学反应方程式表示:
CH3OCH2OCH3+CO=CH3O(CO)CH2OCH3  (I)
C2H5OCH2OC2H5+CO=C2H5O(CO)CH2OC2H5  (II)
CH3O(CH2O)2CH3+CO=CH3O(CO)CH2OCH2OCH3  (III)
CH3O(CH2O)2CH3+CO=CH3OCH2(CO)OCH2OCH3  (IV)
优选地,所述产物缩醛羰化物优选以下产物中的一种或多种:
CH3-O-(CO)-CH2-O-CH3,C2H5-O-(CO)-CH2-O-C2H5
CH3-O-(CO)-CH2-O-CH2-O-CH3和CH3-O-CH2-(CO)-O-CH2-O-CH3
优选地,所述原料气一氧化碳通过合成气分离得到。另外,在本发明方法中,原料气也可以是一氧化碳体积含量为50%以上的混合原料气,其可以包括氢气以及氮气、氦气、氩气、二氧化碳、甲烷和乙烷等中的任意 一种或任意几种的惰性气体。
优选地,反应条件是:反应温度为60~140℃,反应压力为1~15MPa,原料缩醛质量空速为0.1~10.0h-1,原料气一氧化碳与原料缩醛的摩尔比为2∶1~20∶1,且不添加任何其它溶剂。
优选地,反应条件是:反应温度为70~120℃,反应压力为3~10MPa,原料缩醛质量空速为0.5~3h-1,原料气一氧化碳与原料缩醛的摩尔比为5∶1~15∶1,且不添加任何其它溶剂。
在反应中,所述原料缩醛与所述产物缩醛羰化物中的至少一种为液相,所述酸性小孔磷酸硅铝分子筛催化剂为固相,所述原料气一氧化碳为气相,因此反应过程为气液固三相反应。
优选地,产物缩醛羰化物可以进一步加氢制备乙二醇醚。进一步优选地,所述乙二醇醚为乙二醇单甲醚;乙二醇单甲醚水解可以制备乙二醇。
优选地,所述反应器是实现连续反应的固定床反应器、釜式反应器、移动床反应器或流化床反应器。
优选地,所述反应器为一个或多个固定床反应器。采用连续反应的形式。固定床反应器可以为一个,也可以为多个。当采用多个固定床反应器时,反应器之间可以是串联、并联、或者串联与并联相结合的形式。
实施例
实施例中的分析方法以及转化率和选择性计算如下:
利用带有气体自动进样器、FID检测器以及FFAP毛细管柱的Agilent7890气相色谱仪进行气/液相组分的成分自动分析。
在本发明的一些实施例中,缩醛转化率和缩醛羰化物的选择性都基于缩醛碳摩尔数进行计算:
缩醛转化率=[(进料中的缩醛碳摩尔数)-(出料中的缩醛碳摩尔数)]÷(进料中的缩醛碳摩尔数)×(100%)
缩醛羰化物选择性=(出料中的缩醛羰化物减去羰基后的碳摩尔数)÷[(进料中的缩醛碳摩尔数)-(出料中的缩醛碳摩尔数)]×(100%)
下面通过实施例详述本发明,但本发明并不局限于这些实施例。
催化剂制备例
实施例1
在室温下,以凝胶摩尔配比为2.0DEA∶0.6SiO2∶1.0Al2O3∶0.8P2O5∶50H2O,将拟薄铝滑石加入到磷酸溶液中搅拌2h形成均匀凝胶,然后加入硅溶胶和二乙胺(DEA)混合并搅拌3h,将得到的溶胶置入有聚四氟内套的晶化釜中,在200℃下晶化2天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h,得到化学组成比为(Si0.16Al0.48P0.36)O2的SAPO-34分子筛原粉,在空气气氛下500℃煅烧4h得到酸性SAPO-34分子筛,其X射线粉末衍射图与高分辨扫描电镜图分别见附图1与附图2。然后用20%氧化铝成型,制备成直径为3mm,长度为3mm的棒状催化剂A。
实施例2
以凝胶摩尔配比为2.0DEA∶1.0Al2O3∶0.8P2O5∶0.4TEOS∶0.2CTAB∶100H2O,将异丙醇铝、去离子水、磷酸以及正硅酸乙酯(TEOS)混合后室温搅拌3h,得到均匀凝胶体系,然后将十六烷基三甲基溴化铵(CTAB)与乙二胺(DEA)溶液加入到上述凝胶中。将得到的溶胶置入有聚四氟内套的晶化釜中,在200℃下晶化1天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h得到化学组成比为(Si0.14Al0.37P0.49)O2的DNL-6分子筛原粉。在空气气氛下500℃煅烧4h得到酸性DNL-6分子筛,然后用10%氧化硅成型,制备成直径为3mm,长度为3mm的棒状催化剂B。
实施例3
在室温下,以凝胶摩尔配比为2.0DEA∶0.6SiO2∶1.0Al2O3∶0.8P2O5∶50H2O,将拟薄铝滑石加入到磷酸溶液中搅拌2h形成均匀凝胶,然后加入硅溶胶和二乙胺(DEA)混合并搅拌3h,将得到的溶胶置入有聚四氟内套的晶化釜中,在200℃下晶化2天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h,得到化学组成比为(Si0.16Al0.48P0.36)O2的SAPO-34分子筛原粉。将此SAPO-34分子筛用0.8 mol/L的硝酸铵水溶液在80℃交换3次,得到铵型SAPO-34分子筛。利用0.05mol/L的硝酸铜水溶液与铵型SAPO-34分子筛离子交换,得到铜离子交换改性的SAPO-34分子筛。在空气气氛下500℃煅烧4h得到含铜量为0.5%的酸性SAPO-34分子筛,然后用20%氧化铝成型,制备成直径为3mm,长度为3mm的棒状催化剂C。
实施例4
以凝胶摩尔配比为2.0DEA∶1.0Al2O3∶0.8P2O5∶0.4TEOS∶0.2CTAB∶100H2O,将异丙醇铝、去离子水、磷酸以及正硅酸乙酯(TEOS)混合后室温搅拌3h,得到均匀凝胶体系,然后将十六烷基三甲基溴化铵(CTAB)与乙二胺(DEA)溶液加入到上述凝胶中。将得到的溶胶置入有聚四氟内套的晶化釜中,在200℃下晶化1天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h得到化学组成比为(Si0.14Al0.37P0.49)O2的DNL-6分子筛原粉。利用硝酸钯水溶液与DNL-6分子筛等体积浸渍,得到钯浸渍改性的DNL-6分子筛。在空气气氛下500℃煅烧4h得到含钯量为1%的酸性DNL-6分子筛,然后用10%氧化硅成型,制备成直径为3mm,长度为3mm的棒状催化剂D。
实施例5
以凝胶摩尔比为0.96P2O5∶1.0Al2O3∶1.0SiO2∶1.51HMT∶55.47H2O,将拟薄铝滑石、硅溶胶、去离子水、磷酸水溶液以及环己亚胺(HMI)依次加入烧杯并室温搅拌混合。将得到的溶胶置入有聚四氟内套的晶化釜中,在200℃下晶化1天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h得到化学组成比为(Si0.18Al0.46P0.36)O2的SAPO-35分子筛原粉。利用硝酸银水溶液与SAPO-35分子筛等体积浸渍,得到银浸渍改性的SAPO-35分子筛。在空气气氛下500℃煅烧4h得到含银量为0.1%的酸性SAPO-35分子筛,然后用15%高岭土成型,制备成直径为3mm,长度为3mm的棒状催化剂E。
实施例6
以凝胶摩尔比为0.11SiO2∶1Al2O3∶1P2O5∶1Cha∶50H2O,将异丙醇铝、硅溶胶、去离子水、磷酸水溶液以及环己胺(Cha)依次加入烧杯并室温搅拌混合。将得到的溶胶置入有聚四氟内套的晶化釜中,在200℃下晶化1天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h得到化学组成比为(Si0.14Al0.51P0.35)O2的SAPO-17分子筛原粉。利用硝酸镍水溶液与SAPO-17分子筛等体积浸渍,得到镍浸渍改性的SAPO-17分子筛。在空气气氛下500℃煅烧4h得到含镍量为2%的酸性SAPO-17分子筛,然后用30%氧化铝成型,制备成直径为3mm,长度为3mm的棒状催化剂F。
实施例7
以凝胶摩尔比为0.2SiO2∶1.0Al2O3∶1.0P2O5∶1.6C8H19N∶55H2O,将拟薄铝滑石、硅溶胶、去离子水、磷酸水溶液以及N,N-二异丙基乙胺(C8H19N)依次加入烧杯并室温搅拌混合。将得到的溶胶置入有聚四氟内套的晶化釜中,在180℃下晶化3天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h得到化学组成比为(Si0.11Al0.57P0.32)O2的SAPO-18分子筛原粉。利用硝酸镓水溶液与SAPO-18分子筛等体积浸渍,得到镓浸渍改性的SAPO-18分子筛。在空气气氛下500℃煅烧4h得到含镓量为0.3%的酸性SAPO-18分子筛,然后用20%氧化铝成型,制备成直径为3mm,长度为3mm的棒状催化剂G。
实施例8
以凝胶摩尔比为2.0TMHD∶0.6SiO2∶0.8Al2O3∶P2O5∶40H2O,将拟薄铝滑石、硅溶胶、去离子水、磷酸水溶液以及N,N,N′,N′-四甲基-1,6-己二胺(TMHD)依次加入烧杯并室温搅拌混合。将得到的溶胶置入有聚四氟内套的晶化釜中,在200℃下晶化3天,冷却后离心分离,在120℃下干燥后放入马弗炉中,在空气气氛下550℃煅烧4h得到化学组成比为(Si0.10Al0.42P0.48)O2的SAPO-56分子筛原粉。将此SAPO-56分子筛用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型SAPO-56分子筛。利用 0.04mol/L的硝酸铜水溶液与铵型SAPO-56分子筛离子交换,得到铜离子交换改性的SAPO-56分子筛。在空气气氛下500℃煅烧4h得到含铜量为0.3%的酸性SAPO-56分子筛,然后用20%氧化铝成型,制备成直径为3mm,长度为3mm的棒状催化剂H。
对比例1
取南开大学催化剂厂购买的Si/Al=2.3的Y型分子筛。将此Y分子筛用0.8mol/L的硝酸铵水溶液在80℃交换3次得到铵型Y分子筛。利用0.05mol/L的硝酸铜水溶液与铵型Y分子筛离子交换,得到铜离子交换改性的Y分子筛。在空气气氛下500℃煅烧4h得到含铜量为0.5%的酸性Y分子筛,然后用20%氧化铝成型,制备成直径为3mm,长度为3mm的棒状催化剂I。
催化剂性能测试例
实施例9
取1.0kg催化剂A装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=90℃,通入的新鲜原料的摩尔比为CO∶CH3OCH2OCH3=7∶1,反应压力(简写为P)=15MPa,新鲜原料中CH3OCH2OCH3质量空速(简写为WHSV)=0.1h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物缩醛羰化物的单程选择性,反应结果见表1。
实施例10
取1.0kg催化剂B装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=60℃,通入的新鲜原料的摩尔比为CO∶CH3OCH2OCH3=13∶1,反应压力(简写为P)=1MPa,新鲜原料中CH3OCH2OCH3质量空速(简写为WHSV)=10h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物缩醛羰化物的单程选择性,反应结果见表1。
实施例11
取1.0kg催化剂C装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=90℃,通入的新鲜原料的摩尔比为CO∶CH3OCH2OCH3=7∶1,反应压力(简写为P)=15MPa,新鲜原料中CH3OCH2OCH3质量空速(简写为WHSV)=0.1h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物缩醛羰化物的单程选择性,反应结果见表1。
实施例12
取1.0kg催化剂D装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=60℃,通入的新鲜原料的摩尔比为CO∶CH3OCH2OCH3=13∶1,反应压力(简写为P)=1MPa,新鲜原料中CH3OCH2OCH3质量空速(简写为WHSV)=10h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物缩醛羰化物的单程选择性,反应结果见表1。
实施例13
取1.0kg催化剂E装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=140℃,通入的新鲜原料的摩尔比为CO∶CH3OCH2OCH=2∶1,反应压力(简写为P)=6.5MPa,新鲜原料中CH3OCH2OCH3质量空速(简写为WHSV)=3.0h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物缩醛羰化物的单程选择性,反应结果见表1。
实施例14
取1.0kg催化剂F装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=140℃,通入的新鲜原料的摩尔比为CO∶C2H5OCH2OC2H5=2∶1,反应压力(简写为P)=6.5MPa,新鲜原料中C2H5OCH2OC2H5质量空速(简写为WHSV)=3.0h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物 缩醛羰化物的单程选择性,反应结果见表1。
实施例15
取1.0kg催化剂G装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=73℃,通入的新鲜原料的摩尔比为CO∶CH3O(CH2O)2CH3=10∶1,反应压力(简写为P)=2.0MPa,新鲜原料中CH3O(CH2O)2CH3质量空速(简写为WHSV)=0.3h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物缩醛羰化物的单程选择性,反应结果见表1。
实施例16
取1.0kg催化剂H装入内径为32mm的不锈钢固定床反应器内,在常压、500℃下用氮气活化4小时,然后降到反应温度(简写为T)=120℃,通入的新鲜原料的摩尔比为CO∶CH3OCH2OCH3=15∶1,反应压力(简写为P)=4.7MPa,新鲜原料中CH3OCH2OCH3质量空速(简写为WHSV)=0.5h-1,反应稳定后,用气相色谱分析产物,计算原料缩醛转化率和产物缩醛羰化物的单程选择性,反应结果见表1。
对比例2
将实施例11中的催化剂C换成催化剂I,其它条件相同,反应结果见表1。
表1 缩醛羰基化反应结果
Figure PCTCN2015096647-appb-000001
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具体实施方式。本领域技术人员理解,在不背离本发明范围的情况下,可以作出其他更改和变形。本发明的范围由所附权利要求限定。

Claims (10)

  1. 一种制备作为生产乙二醇的中间体的缩醛羰化物的方法,所述方法包括将原料缩醛和原料气一氧化碳通过载有作为催化剂的酸性小孔磷酸硅铝分子筛的反应器进行羰基化反应,其中所述酸性小孔磷酸硅铝分子筛的化学组成为(SixAlyPz)O2,x=0.01~0.60,y=0.2~0.60,z=0.2~0.60,且x+y+z=1;并且其中所述原料缩醛为R1O(CH2O)nR2,n=1、2、3或4;R1和R2分别独立地为C1~C3烷基。
  2. 根据权利要求1所述的方法,其特征在于,所述酸性小孔磷酸硅铝分子筛具有八元环孔口结构。
  3. 根据权利要求1所述的方法,其特征在于,所述酸性小孔磷酸硅铝分子筛是选自结构类型为CHA、RHO、LEV、ERI、AEI和AFX的分子筛中的一种或多种。
  4. 根据权利要求1所述的方法,其特征在于,所述酸性小孔磷酸硅铝分子筛是选自SAPO-34、DNL-6、SAPO-35、SAPO-17、SAPO-18和SAPO-56分子筛中的一种或多种。
  5. 根据权利要求1所述的方法,其特征在于,所述酸性小孔磷酸硅铝分子筛含有质量分数为0~10%,优选0~2%的金属;优选地,所述金属为铜、铁、镓、银、镍、钴、钯和铂中的一种或者多种。
  6. 根据权利要求5所述的方法,其特征在于,所述金属位于所述酸性小孔磷酸硅铝分子筛的离子交换位、孔道中、表面上和/或骨架上;所述金属通过原位合成、浸渍或离子交换中的一种或者多种方式引入。
  7. 根据权利要求1所述的方法,其特征在于,所述催化剂含有质量分数为1~60%,优选10~30%的成型剂;优选地,所述成型剂是氧化铝、氧化硅或高岭土中的一种或多种。
  8. 根据权利要求1所述的方法,其特征在于,所述原料缩醛是CH3OCH2OCH3、C2H5OCH2OC2H5或CH3O(CH2O)2CH3,并且所述缩醛羰化物为以下中的一种或多种:CH3-O-(CO)-CH2-O-CH3,C2H5-O-(CO)-CH2-O-C2H5,CH3-O-(CO)-CH2-O-CH2-O-CH3和CH3-O-CH2-(CO)-O-CH2-O-CH3
  9. 根据权利要求1所述的方法,其特征在于,所述羰基化反应的条件是:反应温度为60~140℃,反应压力为1~15MPa,原料缩醛质量空速为0.1~10.0h-1,原料气一氧化碳与原料缩醛的摩尔比为2∶1~20∶1,且不添加任何其它溶剂;优选地,所述羰基化反应的是:反应温度为70~120℃,反应压力为3~10MPa,原料缩醛质量空速为0.5~3h-1,原料气一氧化碳与原料缩醛的摩尔比为5∶1~15∶1,且不添加任何其它溶剂。
  10. 根据权利要求1所述的方法,其特征在于,所述反应器是实现连续反应的固定床反应器、釜式反应器、移动床反应器或流化床反应器。
PCT/CN2015/096647 2015-07-20 2015-12-08 一种制备缩醛羰化物的方法 WO2017012245A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EA201890300A EA035211B1 (ru) 2015-07-20 2015-12-08 Способ получения карбонильного соединения ацеталя
JP2018502115A JP6523548B2 (ja) 2015-07-20 2015-12-08 アセタールカルボニル化合物の製造方法
EP15898801.4A EP3326995B1 (en) 2015-07-20 2015-12-08 Method for preparing acetal carbonyl compound
US15/743,698 US10508073B2 (en) 2015-07-20 2015-12-08 Method for preparing acetal carbonyl compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510426676.1A CN106365992B (zh) 2015-07-20 2015-07-20 一种制备缩醛羰化物的方法
CN201510426676.1 2015-07-20

Publications (1)

Publication Number Publication Date
WO2017012245A1 true WO2017012245A1 (zh) 2017-01-26

Family

ID=57833585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096647 WO2017012245A1 (zh) 2015-07-20 2015-12-08 一种制备缩醛羰化物的方法

Country Status (6)

Country Link
US (1) US10508073B2 (zh)
EP (1) EP3326995B1 (zh)
JP (1) JP6523548B2 (zh)
CN (1) CN106365992B (zh)
EA (1) EA035211B1 (zh)
WO (1) WO2017012245A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292761B2 (en) * 2017-09-29 2022-04-05 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for directly producing methyl acetate and/or acetic acid from syngas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833905A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 分子筛催化剂及其制备方法和应用
CN114345401B (zh) * 2022-01-10 2023-06-02 万华化学集团股份有限公司 一种对羟基苯氧乙醇的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088529A2 (en) * 1982-03-08 1983-09-14 Toa Nenryo Kogyo Kabushiki Kaisha Process for producing alkoxyacetic esters
CN1525940A (zh) * 2001-03-01 2004-09-01 ����ɭ���ڻ�ѧר����˾ 磷酸硅铝分子筛
US20100105947A1 (en) * 2008-10-23 2010-04-29 Celik Fuat E Process for the production of alkyl alkoxyacetates
CN103831124A (zh) * 2012-11-26 2014-06-04 上海碧科清洁能源技术有限公司 一种用于二甲醚羰基化合成乙酸甲酯的含磷沸石催化剂以及使用该催化剂的方法
CN104119228A (zh) * 2013-04-26 2014-10-29 中国科学院大连化学物理研究所 一种合成甲氧基乙酸甲酯的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792620A (en) * 1983-10-14 1988-12-20 Bp Chemicals Limited Carbonylation catalysts
US6127432A (en) * 1998-01-29 2000-10-03 Union Carbide Chemicals & Plastics Technology Corporation Processes for preparing oxygenates and catalysts therefor
EP2114850A4 (en) * 2006-12-15 2013-03-27 Univ California PROCESS FOR THE CARBONYLATION OF ALIPHATIC ALCOHOLS AND / OR THEIR REACTIVE DERIVATIVES
CN103172516B (zh) * 2011-12-20 2014-11-26 中国科学院大连化学物理研究所 一种负载型杂多酸催化剂用于甲缩醛气相羰基化生产甲氧基乙酸甲酯的方法
CN103172517B (zh) * 2011-12-20 2015-05-27 中国科学院大连化学物理研究所 一种生产甲氧基乙酸甲酯的方法
BR112016013837B1 (pt) 2013-12-23 2021-06-08 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences processo de preparação de composto éter dimetílico de polioximetileno carbonila e metoxilato de metila
CN104725224B (zh) * 2013-12-23 2017-04-12 中国科学院大连化学物理研究所 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法
US9873113B2 (en) * 2014-01-22 2018-01-23 California Institute Of Technology Methods for producing crystalline microporous solids with a new CIT-7 topology and compositions derived from the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088529A2 (en) * 1982-03-08 1983-09-14 Toa Nenryo Kogyo Kabushiki Kaisha Process for producing alkoxyacetic esters
CN1525940A (zh) * 2001-03-01 2004-09-01 ����ɭ���ڻ�ѧר����˾ 磷酸硅铝分子筛
US20100105947A1 (en) * 2008-10-23 2010-04-29 Celik Fuat E Process for the production of alkyl alkoxyacetates
CN103831124A (zh) * 2012-11-26 2014-06-04 上海碧科清洁能源技术有限公司 一种用于二甲醚羰基化合成乙酸甲酯的含磷沸石催化剂以及使用该催化剂的方法
CN104119228A (zh) * 2013-04-26 2014-10-29 中国科学院大连化学物理研究所 一种合成甲氧基乙酸甲酯的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292761B2 (en) * 2017-09-29 2022-04-05 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for directly producing methyl acetate and/or acetic acid from syngas

Also Published As

Publication number Publication date
EA201890300A1 (ru) 2018-08-31
US20180201567A1 (en) 2018-07-19
EP3326995A1 (en) 2018-05-30
EP3326995A4 (en) 2018-08-15
EP3326995B1 (en) 2019-07-31
EA035211B1 (ru) 2020-05-15
CN106365992A (zh) 2017-02-01
JP2018522010A (ja) 2018-08-09
CN106365992B (zh) 2019-01-01
US10508073B2 (en) 2019-12-17
JP6523548B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
Wu et al. Confinement effects in zeolite‐confined noble metals
EP3593901A1 (en) Catalyst for preparing hydrocarbons from carbon dioxide by one-step hydrogenation and method for preparing same
US11014076B2 (en) Catalyst for synthesizing aromatic hydrocarbons and preparation method therefor
WO2017012245A1 (zh) 一种制备缩醛羰化物的方法
CN104725224A (zh) 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法
US8080692B2 (en) Catalytic process for the production of oxygenated hydrocarbons
CN101081799A (zh) 一种由含氧化合物制取小分子烯烃的方法
JP2017510556A (ja) 脱水‐加水分解方法およびそのための触媒
KR101862042B1 (ko) 폴리옥시메틸렌 디메틸 에테르 카보닐 화합물 및 메틸 메톡시아세테이트의 제조방법
CN101817731B (zh) 一种甲醇转化制备聚甲氧基二甲醚的方法
EP3947332B1 (en) Use of a catalyst for production of methanol from methane, a method of production of methanol from methane
CN103880661A (zh) 一种催化乙醇直接脱氢制备乙酸乙酯的方法
CN101279281B (zh) 甲醇转化制丙烯的高稳定性分子筛催化剂及其制备方法
CN102173977A (zh) Cu/Al2O3催化剂、制备方法及催化甘油氢解方法
Chotiwan et al. Two-step catalytic hydrogenation of methanol to hydrocarbons conversion
CN112495433B (zh) 一种吡唑盐改性的氢型丝光沸石催化剂及其制备方法与应用
CN104672058A (zh) 一种甘油加氢制1,3-丙二醇的方法
KR101268831B1 (ko) 선택적 고리 열림 반응용 니켈 담지 촉매
CN106669817A (zh) 原位一步合成mcm-22和zsm-35分子筛催化剂的方法
CN113042097A (zh) 分子筛催化剂、其制备方法及分子筛催化剂的应用
BR112017012865B1 (pt) processo para a produção de n-butanol e 1,4-butanodiol a partir de furano
CN106365993B (zh) 一种制备缩醛羰化物的方法
US20230257334A1 (en) Method for Partially Oxidizing Alkane
KR102391647B1 (ko) 2-isopropoxy-1-propanol 생성용 제올라이트 기반 불균일계 촉매 및 상기 촉매를 이용한 2-isopropoxy-1-propanol 제조방법
CN108178725A (zh) 由糠醛生产乙酰丙酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743698

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018502115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201890300

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2015898801

Country of ref document: EP