WO2017010620A1 - 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름 - Google Patents

수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름 Download PDF

Info

Publication number
WO2017010620A1
WO2017010620A1 PCT/KR2015/011622 KR2015011622W WO2017010620A1 WO 2017010620 A1 WO2017010620 A1 WO 2017010620A1 KR 2015011622 W KR2015011622 W KR 2015011622W WO 2017010620 A1 WO2017010620 A1 WO 2017010620A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
water
polyurethane resin
resin
resin composition
Prior art date
Application number
PCT/KR2015/011622
Other languages
English (en)
French (fr)
Inventor
이정운
Original Assignee
주식회사 영우티피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 영우티피 filed Critical 주식회사 영우티피
Publication of WO2017010620A1 publication Critical patent/WO2017010620A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a method for manufacturing a water-dispersed polyurethane resin-based conductive film and to a water-dispersed polyurethane resin-based conductive film produced in more detail, and to more specifically, to increase productivity and to produce small units through a characteristic manufacturing environment.
  • Eco-friendly harmless to human body, lightweight, excellent elasticity, excellent mechanical, chemical and electrical properties as well as water-resistant polyurethane resin-based conductivity that can have flexibility in sub-zero environment It relates to a method for producing a film and a water-dispersed polyurethane resin-based conductive film produced thereby.
  • the present applicant has applied for "Thermoplastic / antistatic film thermoplastic polymer composition and its manufacturing method and the conductive / antistatic film thermoplastic polymer resin produced by this" as the application No. 10-2015-0064889.
  • the production loss occurs, it is difficult to produce a small unit, the need for research to improve the difficulty of producing less than 100um ultra-thin film has emerged.
  • the present invention has been proposed to solve the above-mentioned problems, the production loss is low, the production of a small amount of unit, the production method of the water-based polyurethane resin-based conductive film which can produce ultra-thin film of less than 100um. And it is an object to provide a water-based polyurethane resin-based conductive film produced by it.
  • the present invention is to provide a method for producing a water-dispersed polyurethane resin-based conductive film excellent in elasticity and environmentally friendly, harmless, lightweight, and a water-dispersed polyurethane resin-based conductive film produced by the other object have
  • the present invention not only possesses excellent mechanical, chemical and electrical properties, but also has a scratch impact strength and can be flexible even in sub-zero environments. It is another object to provide a resin-based conductive film.
  • a resin composition for a conductive film for providing a resin composition for a conductive film; A defoaming step for removing bubbles contained in the resin composition provided in the conductive film resin composition; A coating step of coating the degassed resin composition on a heat resistant release paper; And a drying / foaming step of obtaining a conductive film by drying and foaming the resin composition coated on a release paper.
  • a method of manufacturing a water-based polyurethane resin-based conductive film comprising a.
  • the step of preparing a resin composition for the conductive film may be prepared by mixing a predetermined amount of water dispersion polyurethane resin (PUD), metal powder, expanded or unexpanded foam, dispersant, and additives. Can be.
  • PID water dispersion polyurethane resin
  • metal powder expanded or unexpanded foam
  • dispersant and additives.
  • the resin composition for the conductive film is 100 parts by weight of a one-component water dispersion polyurethane resin; 20 to 50 parts by weight of the conductive metal powder with respect to the resin: 0.3 to 5 parts by weight of the foam in the form of microcapsules containing hydrocarbons in the polymer shell and coated with inorganic powder on the surface thereof; 1-3 parts by weight of a liquid dispersant based on the resin;
  • the resin may be prepared by mixing 0.5 to 2 parts by weight of an additive including a pigment, an antioxidant, and a commercial reagent.
  • the foam is expanded foam or unexpanded foam, 0.3 to 1 parts by weight when the foam is expanded foam, 1 to 5 when the foam is unexpanded foam It is preferable that a weight part mix.
  • the conductive metal powder is silver (Ag), silver coated copper (Ag coated Cu), copper (Copper), aluminum (Aluminium), nickel (Nikel), iron (Iron), tin ( Sn) and zinc (Zn) powder and the powder containing two or more of these conductive powders may be included.
  • the conductive metal powder has a size of 7 to 15um in the shape of pine needles, preferably a silver coated Cu powder of the dendrite structure.
  • the liquid dispersant is a polymer type wet dispersion agent (CPT type) or a wet dispersion agent for water-based paints
  • the pigment is preferably mixed 0.1 to 0.6 parts by weight.
  • the degassing step is degassing while stirring in a vacuum degassing machine at a low speed
  • the coating step is a heat-resistant release paper that is introduced at the same time by using a comma coater or gravure roll coater in the dry coating equipment in a dry coating equipment
  • the drying / foaming step (S400) may include drying and foaming at a temperature of 100 °C to 150 °C while passing through a drying furnace is dried by hot air.
  • a water-dispersed polyurethane resin-based conductive film prepared by the method for producing a water-dispersible polyurethane resin-based conductive film according to one aspect of the present invention.
  • the production method of the water-dispersed polyurethane resin-based conductive film according to the present invention and the effect of the water-dispersed polyurethane resin-based conductive film produced by the same are as follows.
  • the present invention solves the problem that the foam having an independent cell structure is dissolved in an organic solvent by using a water-dispersed polyurethane (PUD) to reduce the foaming efficiency, and when foamed by using a spherical closed microsphere foaming agent.
  • PID water-dispersed polyurethane
  • the present invention has a relatively large volume of foam, so that even when the content of the conductive filler is greatly reduced when forming the film, the connection of the conductive filler in the film is facilitated, thereby reducing the cost, and at the same time, reducing the weight, elasticity, and flexibility.
  • Good physical properties and extremely good conductivity have the effect of producing electrode materials or parts packaging products for photochemical cells, hard or flexible electronic products.
  • the present invention is environmentally friendly, harmless to the human body, PUD (water-dispersed polyurethane resin) does not contain VOCs because it does not contain an organic solvent, has a soft and ductile properties, and does not contain chlorine There is an effect that does not emit dioxin during combustion.
  • PUD water-dispersed polyurethane resin
  • the present invention can be easily produced in a dry coating equipment, at the same time, it is possible to manufacture a thin film with excellent flexibility and elasticity, not only has excellent mechanical, chemical and electrical properties, but also scratch damage strength below zero environment There is an effect that can produce a product that can have flexibility.
  • FIG. 1 is a flowchart showing a method of manufacturing a water-based polyurethane resin-based conductive film according to the present invention.
  • FIG. 2 is a cross-sectional view conceptually showing the configuration of a water-dispersed polyurethane resin-based conductive film prepared by a method for producing a water-dispersible polyurethane resin-based conductive film according to the present invention.
  • Figure 3 is a photograph taken with an electron microscope of the foam injected in the process of preparing a water-dispersed polyurethane resin composition in the method for producing a water-dispersible polyurethane resin-based conductive film according to the present invention.
  • Figure 4 is an enlarged cross-sectional photograph of the prototype of the water-dispersed polyurethane resin-based conductive film prepared by the method for producing a water-dispersible polyurethane resin-based conductive film according to the present invention.
  • FIG. 5 is a photograph for measuring the resistance to the prototype of the water-dispersed polyurethane resin-based conductive film prepared by the method for producing a water-dispersible polyurethane resin-based conductive film according to the present invention.
  • ... unit ... unit
  • ... module etc. described in the specification may mean a unit for processing at least one function or operation.
  • FIGS. 1 is a flowchart showing a method of manufacturing a water-dispersed polyurethane resin-based conductive film according to the present invention
  • Figure 2 is a water-dispersed polyurethane resin prepared by a method of manufacturing a water-dispersible polyurethane resin-based conductive film according to the present invention
  • 3 is a cross-sectional view conceptually showing the structure of a conductive film based
  • FIG. 3 is an electron microscope photograph of a foam injected in the process of preparing a water-dispersed polyurethane resin composition in a method of manufacturing a water-dispersed polyurethane resin-based conductive film according to the present invention.
  • FIGS. 1 is a flowchart showing a method of manufacturing a water-dispersed polyurethane resin-based conductive film according to the present invention
  • Figure 2 is a water-dispersed polyurethane resin prepared by a method of manufacturing a water-dispersible polyurethane resin-based conductive film according
  • Method for producing a water-based polyurethane resin-based conductive film as shown in Figures 1 to 3, the step of preparing a resin composition for a conductive film for preparing a resin composition for a conductive film (S100); Degassing step (S200) for removing the bubbles contained in the resin composition provided in the conductive film resin composition; A coating step of coating the degassed resin composition on a heat resistant release paper (S300); And a drying / foaming step (S400) of drying and foaming the resin composition coated on the release paper to obtain a conductive film.
  • PID water dispersion polyurethane resin
  • metal powder expanded or unexpanded foam
  • a dispersant and an additive in a predetermined ratio.
  • the resin composition for the conductive film is 100 parts by weight of a one-component water dispersion polyurethane resin; 20 to 50 parts by weight of conductive metal powder such as silver (Ag) coated copper (Cu) and nanowires having various shapes such as dendrite with respect to the resin: Acrylonitrile-copolymer (AN-copolymer) , Foamed in the form of a microcapsule containing hydrocarbons in a polymer shell made of vinylidene chloride resin (PVDC) and the like coated with inorganic powder such as tar and calcium carbonate. 5 parts by weight; 1-3 parts by weight of a liquid dispersant based on the resin; 0.5 to 2 parts by weight of an additive including a pigment, an antioxidant, and a commercial reagent are mixed with the resin to prepare a resin composition for dry coating.
  • conductive metal powder such as silver (Ag) coated copper (Cu) and nanowires having various shapes such as dendrite with respect to the resin: Acrylonitrile-copoly
  • the water-dispersed polyurethane resin is currently commercially available as a coating or impregnating agent in the processing of the adherend (Touch), bulky (Wet), wet (waxy), waxy, gloss, wash resistance Polyurethane aqueous dispersion with excellent wear resistance and durability can be used.
  • a method for producing a water-dispersible polyurethane is roughly described as a block copolymer in which diols or triols in crystalline or amorphous polyester polyols, diols or triols in polyether polyols, ethylene oxide and propylene oxide are added.
  • a polyol comprising a polyol composed of a polyol having 4 or more -OH groups and a low molecular weight polyol, and, if necessary, an aromatic or aliphatic polyisocyanate.
  • ionic imparting compound 4 to 50% by weight, and the ionic imparting compound are reacted in the presence of 1.5 to 20% by weight with respect to the polyurethane solid to obtain an ionic prepolymer having terminal isocyanates, and a blocking agent is added to the ionic prepolymer to terminate After blocking the solution, add viscosity regulator and neutralizer Adjustment, and can be obtained by using a vacuum pump, and then dissolving it in distilled water to extract the solvent, the viscosity adjusting agent is added under reduced pressure.
  • the water-dispersed polyurethane can be obtained by using a solid content of about 40% to reduce the hassle of thickening with a separate thickener and easy mixing and dispersing with other additives.
  • the water-dispersed polyurethane is preferable because it can produce a product with excellent elasticity and cushioning that 100% Modulus is 2 to 30 kgf / cm2.
  • the conductive metal powder is silver (Ag), copper coated with silver (Ag coated Cu), copper (copper), aluminum (Aluminium), nickel (Nikel), iron (Iron), tin (Sn) and zinc (Zn) powder And powders in which two or more conductive powders are mixed.
  • the conductive powder may be more preferably used silver coated copper (Ag coated Cu) powder having a dendrite structure of the size of 7 to 15um in the shape of pine needles in order to maximize the bonding area between the powders.
  • Ag coated Cu silver coated copper
  • the conductive metal powder is 20 to 50 parts by weight or preferably 30 to 40 parts by weight.
  • the foam to which the inorganic powder is coated is expanded foam or unexpanded foam, 0.3 to 1 parts by weight in the case of expanded foam, and 1 to 5 parts by weight in the case of unexpanded foam.
  • the expanded foam is preferably in the form of microcapsules containing a hydrocarbon inside the polymer shell made of acrylonitrile copolymer (AN-copolymer), vinylidene chloride resin (PVDC) and the like.
  • AN-copolymer acrylonitrile copolymer
  • PVDC vinylidene chloride resin
  • the expanded foam in the form of microcapsules may be formed in the form of coating inorganic powder such as Tarc, Calcium Carbonate, etc. on its surface in order to prevent scattering and increase bonding strength with the resin. It can be used preferably (refer FIG. 3).
  • the expanded microcapsules preferably have an average diameter of 20 to 50 um.
  • the unexpanded foam is an average of an unexpanded cell in the form of microcapsules containing hydrocarbons inside a polymer shell made of acrylonitrile copolymer (AN-copolymer), vinylidene chloride resin (PVDC), and the like. It is preferable that the diameter is 5-20um.
  • the liquid dispersant may be a polymer type wet dispersion agent (CPT type) or a wet dispersion agent for water-based coatings.
  • the additive applied to the resin composition contains 0.5 to 2 parts by weight of a pigment, an antioxidant, a compatibilizer, and the like.
  • the antioxidant prevents aging of the mixed PUD resin and improves weather resistance, aging resistance, light resistance, and the like
  • a compatibilizer improves cold resistance.
  • the amount of the antioxidant is less than 0.1 parts by weight, it is preferable to use the antioxidant in an amount of 0.5 parts by weight or less, and more preferably 0.2 to 0.3 parts by weight, since the oxidation of the PUD resin is not prevented.
  • the antioxidant may use a primary antioxidant, a secondary antioxidant or a mixture thereof.
  • a primary antioxidant Ciba-Gelgy's phenol-based Ultranox 1010 or the like may be used
  • the second antioxidant General Electric Specialty Chemicals' phosphate-based Ultranox 626 may be used.
  • Pigments of the above additives may be applied to the coloration to the conductive film and to adjust its viscosity.
  • the pigment may include 0.1 to 0.6 parts by weight or 0.2 to 0.5 parts by weight.
  • the pigment is excellent in heat resistance, weather resistance, chemical resistance, it is preferable to use a water-dispersed one that does not contain heavy metal compounds and does not penetrate various solvents.
  • the pigments include black pigments, white pigments, yellow pigments, red pigments, blue pigments, and the like.
  • the present invention may further include other additives, such as antimicrobial agents and flame retardants, as necessary in addition to the above additives.
  • the degassing step (S200) of the resin composition for example, by degassing the resin composition with a low speed stirring in a vacuum degassing machine, bubbles are removed and the composition is more uniformly dispersed.
  • the step of coating on the heat-resistant release paper (S300) for example, coating the degassed resin composition on a heat-resistant release paper that is simultaneously introduced in the direction of progress using a comma coater, gravure roll coater, etc. in a dry coating equipment It may include doing.
  • the drying / foaming step (S400) is dried and foamed at a temperature of 100 °C to 150 °C while passing through a drying furnace for example, dried by hot air, and then foamed and dried conductive film to a constant length in the winder It can wind up and complete a roll-shaped product.
  • Figure 4 is an enlarged cross-sectional photograph of the prototype of the water-dispersed polyurethane resin-based conductive film prepared by the method for producing a water-dispersible polyurethane resin-based conductive film according to the present invention
  • Figure 5 is a water-dispersible poly according to the present invention This is a photograph for measuring the resistance to the prototype of the water-dispersed polyurethane resin-based conductive film prepared by the method for producing a urethane resin-based conductive film.
  • a one-component PUD water dispersion polyurethane resin
  • 40 parts by weight of silver (Ag) coated copper (Cu) having a particle size of about 10 ⁇ m having a dendrite shape with respect to the resin Hydrocarbon is contained in the polymer shell made of AN-copolymer (acrylonitrile copolymer) to the resin.
  • the resin mixture was then degassed with low speed stirring in a vacuum degassing machine to obtain a composition in which bubbles were removed and more uniformly dispersed.
  • the degassed resin mixture is coated with a thickness of 200um on a release paper made of PET material simultaneously introduced in the direction of travel using a comma coater in a dry coating equipment, and the temperature inside the chamber is passed through a drying furnace dried by hot air. It dried and foamed at the temperature of 100 degreeC, the secondary side 130 degreeC, and the tertiary side 150 degreeC, and the speed
  • a coating thickness of 120 ⁇ m on a release paper made of PET was used to prepare a PUD-based conductive film having a thickness of 80 ⁇ m in a foamed and dried state (sample 2).
  • a one-component PUD water dispersion polyurethane resin
  • 1 part by weight of a liquid dispersant based on the resin 1 part by weight of an additive containing a pigment, an antioxidant, and a commercial reagent was stirred at a high speed for 10 minutes with a stirrer to obtain a resin composition for a conductive film.
  • the resin mixture was then degassed with low speed stirring in a vacuum degassing machine to obtain a composition in which bubbles were removed and more uniformly dispersed.
  • the degassed resin mixture is coated with a thickness of 80um on a release paper made of PET material simultaneously introduced in the advancing direction using a comma coater in a dry coating equipment, and the temperature inside the chamber is passed through a drying furnace dried by hot air. It dried and foamed at the temperature of 90 degreeC, the secondary side 120 degreeC, and the tertiary side 140 degreeC, and the speed
  • a coating thickness of 50 ⁇ m on a release paper made of PET was used to prepare a PUD-based conductive film having a thickness of 80 ⁇ m in a foamed and dried state (sample 4).
  • Table 1 is a table showing the results of measuring specific gravity and volume resistance for the four samples prepared in Examples 1 and 2.
  • the water-dispersed polyurethane resin-based conductive film prepared by the method for producing a water-dispersible polyurethane resin-based conductive film according to the present invention was found to have a significantly low volume resistance.
  • a foam having an independent cell structure using a water-dispersed polyurethane (PUD) Solves the problem of lowering foaming efficiency by dissolving in organic solvents, and by using spherical closed microsphere foaming agent, no gas is generated during foaming and cushion and flexibility can be easily controlled according to the amount of foaming agent. It can be, and there is an advantage in producing a thin film product while being lightweight and good elasticity.
  • the present invention has a relatively large volume of foam, so that even when the content of the conductive filler is greatly reduced when the film is formed, the connection of the conductive filler in the film is facilitated, thereby reducing the cost, and at the same time reducing the weight, elasticity, and flexibility, Good physical properties and extremely good conductivity have the advantage of manufacturing an electrode material or a part packaging product for a photochemical battery, a hard or flexible electronic product.
  • PUD water-dispersed polyurethane resin
  • VOCs which is environmentally friendly, harmless to humans
  • has a soft and ductile property and does not contain chlorine.
  • the present invention can be easily produced in a dry coating equipment, at the same time, the flexibility and elasticity of the ultra-thin film can be produced, not only has excellent mechanical, chemical and electrical properties, but also scratch damage strength below zero environment There is an advantage to manufacture a product that can have flexibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 특성 제작 환경을 통하여 생산성 증대와 소량 단위 생산을 가능하게 하고, 친환경성, 인체무해성, 경량성을 갖추면서 탄성이 우수하며, 우수한 기계적, 화학적 및 전기적 특성을 보유할 뿐만 아니라 흠집 충격강도가 영하의 환경에서도 유연성을 가질 수 있는 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름에 관한 것이다. 본 발명에 따르면, 도전성 필름용 수지조성물을 마련하는 도전성필름용 수지조성물 마련 단계; 상기 도전성필름 수지조성물에서 마련된 수지조성물에 포함된 기포를 제거하기 위한 탈포 단계; 상기 탈포된 수지조성물을 내열성 이형지에 코팅하는 코팅 단계; 및 이형지에 코팅된 수지조성물을 건조 및 발포시켜 도전성필름을 얻는 건조/발포 단계;를 포함하는 수분산폴리우레탄수지 기반 도전성필름의 제조방법이 제공된다.

Description

수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름
본 발명은 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름에 관한 것으로, 더욱 상세하게는 특성 제작 환경을 통하여 생산성 증대와 소량 단위 생산을 가능하게 하고, 친환경성, 인체무해성, 경량성을 갖추면서 탄성이 우수하며, 우수한 기계적, 화학적 및 전기적 특성을 보유할 뿐만 아니라 흠집 충격강도가 영하의 환경에서도 유연성을 가질 수 있는 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름에 관한 것이다.
최근 전자제품의 사용이 급속히 확대되면서 가정, 산업현장, 사무실 등에서 다양한 도전성 필름의 용도가 증대하고 있으며 제품의 소형화, 박막화, 경량화, 연성(Flexibility)을 선호하는 추세에서 이러한 요구는 더욱 늘어날 전망이다.
종래 탄성이 있으면서 10-2 이하의 우수한 도전성 필름을 얻기 위하기 위해서는 부직포 등의 직물에 무전해방식 금속도금을 입히는 방법 등을 써 왔으나 제조공정상 생산효율이 떨어지고, 광폭의 필름을 연속식으로 생산하기가 어렵고 더욱이 탄성이 좋으면서 150um 미만의 박막제품을 형성하는데 어려운 문제가 있었다.
이러한 문제점을 해결하기 위해 본 발명인은 출원번호 제10-2015-0064889호로 "도전/대전방지필름용 열가소성 고분자수지 조성물과 이의 제조방법 및 이에 의해 제조된 도전/대전방지 필름용 열가소성 고분자수지"를 출원한 바 있으나, 압출 공법으로 이루어짐으로 인해 생산 로스가 발생하고, 소량 단위 생산이 어려우며 100um 미만의 초박막필름을 생산하는데 용이하지 못한 점을 개선하기 위한 연구에 대한 필요성이 대두되었다.
따라서, 본 발명은 상기한 종래의 문제점을 해결하기 위하여 제안된 것으로서, 생산 로스가 적고, 소량 단위 생산이 가능하며, 100um미만의 초박막필름을 제작할 수 있는 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름을 제공하는데 그 목적이 있다.
또한, 본 발명은 친환경성, 인체무해성, 경량성을 갖추면서 탄성이 우수한 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름을 제공하는데 다른 목적이 있다
또한, 본 발명은 우수한 기계적, 화학적 및 전기적 특성을 보유할 뿐만 아니라 흠집 충격강도가 영하의 환경에서도 유연성을 갖출 수 있는 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름을 제공하는데 또 다른 목적이 있다.
본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기한 목적을 달성하기 위한 본 발명의 일 관점에 따르면, 도전성 필름용 수지조성물을 마련하는 도전성필름용 수지조성물 마련 단계; 상기 도전성필름 수지조성물에서 마련된 수지조성물에 포함된 기포를 제거하기 위한 탈포 단계; 상기 탈포된 수지조성물을 내열성 이형지에 코팅하는 코팅 단계; 및 이형지에 코팅된 수지조성물을 건조 및 발포시켜 도전성필름을 얻는 건조/발포 단계;를 포함하는 수분산폴리우레탄수지 기반 도전성필름의 제조방법이 제공된다.
본 발명의 일 관점에 있어서, 상기 도전성필름용 수지조성물 마련 단계는 수분산폴리우레탄 수지(PUD)와, 금속분말과, 팽창 또는 미팽창된 발포체와, 분산제, 및 첨가제를 소정 비율 혼합하여 마련될 수 있다.
본 발명의 일 관점에 있어서, 상기 도전성필름용 수지조성물은 일액형 수분산폴리우레탄 수지 100 중량부; 상기 수지에 대하여 도전성 금속분말 20 내지 50 중량부: 상기 수지에 대하여 폴리머 쉘의 내부에 탄화수소가 들어있는 마이크로캡슐 형태이며 그 표면에 무기질 파우더가 코팅된 형태의 발포체 0.3 내지 5 중량부; 상기 수지에 대하여 액상의 분산제 1 내지 3 중량부; 상기 수지에 대하여 안료와 산화방지제 및 상용시약을 포함하는 첨가제 0.5 내지 2 중량부를 혼합하여 마련될 수 있다.
본 발명의 일 관점에 있어서, 상기 발포체는 팽창된 발포구체 또는 미팽창된 발포체이며, 상기 발포체가 팽창된 발포구체인 경우는 0.3 내지 1 중량부, 상기 발포체가 미팽창된 발포체인 경우 1 내지 5 중량부가 혼합되는 것이 바람직하다.
본 발명의 일 관점에 있어서, 상기 도전성 금속분말은 은(Ag), 은이 코팅된 동(Ag coated Cu), 동 (Copper), 알루미늄(Aluminium), 니켈(Nikel), 철(Iron), 주석(Sn)과 아연(Zn)분말 및 이들 도전성 분말이 2 이상 혼합된 분말을 포함할 수 있다.
본 발명의 일 관점에 있어서, 상기 도전성 금속분말은 솔잎가지 모양으로 된 7 내지 15um 크기를 가지며, 덴드라이트 구조의 은이 코팅된 동(Ag coated Cu) 분말인 것이 바람직하다.
본 발명의 일 관점에 있어서, 상기 액상의 분산제는 고분자형 습윤분산제(CPT계) 또는 수계도료용 습윤분산제이고, 상기 안료는 0.1 내지 0.6 중량부 혼합되는 것이 바람직하다.
본 발명의 일 관점에 있어서, 상기 탈포 단계는 진공 탈포기에서 저속 교반하면서 탈포시키고, 상기 코팅 단계는 탈포된 수지조성물을 건식 코팅설비에서 콤마코터이나 그라비아 롤코터를 이용하여 동시에 투입되는 내열성 이형지에 코팅하는 것을 포함하고, 상기 건조/발포 단계(S400)는 열풍으로 건조되는 건조로를 통과시키면서 100℃에서 150℃의 온도로 건조 및 발포시키는 것을 포함할 수 있다.
본 발명의 다른 관점에 따르면, 상기한 본 발명의 일 관점에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름이 제공된다.
상기한 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름의 효과는 다음과 같다.
첫째, 본 발명은 수분산폴리우레탄(PUD)을 사용하여 독립된 셀 구조를 가지는 발포체가 유기용제에 녹아 발포효율이 저하되는 문제점을 해결하고, 구형의 폐쇄형태의 마이크로스피어인 발포제를 사용함으로써 발포 시에 가스의 발생이 없으며 발포제의 함량에 따라 쿠션과 연성(Flexibility)를 용이하게 컨트롤할 수 있으며, 경량성을 갖추고 탄성이 좋으면서 박막의 제품을 제조할 수 있는 효과가 있다.
둘째, 본 발명은 발포체가 차지하는 부피가 상대적으로 커서 필름 형성시 도전성 필러의 함량을 대폭 줄여도 필름 내 도전성 필러의 연결이 용이해지므로 원가절감이 가능함과 동시에, 경량화, 탄성, 유연성이 획득되며, 기계적 물성이 양호하고 전도성이 극히 우수하여 광전화학 전지, 하드 혹은 플렉서블 전자제품의 전극재료나 부품 패키징용 제품을 제조할 수 있는 효과가 있다.
셋째, 본 발명은 주원료인 PUD(수분산폴리우레탄 수지)가 유기용제가 함유되어있지 않아 VOC를 배출하지 않는 친환경적이고, 인체에 무해하며, 또한 부드럽고 연성이 뛰어난 특성을 갖고, 염소를 포함하지 않으므로 연소 시에 다이옥신을 배출하지 않는 효과가 있다.
넷째, 본 발명은 건식 코팅설비에서 용이하게 생산이 가능함과 동시에, 유연성과 탄성이 좋으면서 초박막의 필름 제조가 가능하며, 우수한 기계적, 화학적 및 전기적 특성을 보유할 뿐만 아니라 흠집충격강도가 영하의 환경에서도 유연성을 가질 수 있는 제품을 제조할 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.
도 1은 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법을 나타낸 플로차트이다.
도 2는 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름의 구성을 개념적으로 나타낸 단면도이다.
도 3은 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에서 수분산폴리우레탄수지 조성물을 마련하는 과정에서 투입되는 발포체를 전자현미경을 촬영한 사진이다.
도 4는 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름의 시작품을 촬영한 단면 확대사진이다.
도 5는 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름의 시작품에 대한 저항을 측정하는 사진이다.
본 발명의 추가적인 목적들, 특징들 및 장점들은 다음의 상세한 설명 및 첨부도면으로부터 보다 명료하게 이해될 수 있다.
본 발명의 상세한 설명에 앞서, 본 발명은 다양한 변경을 도모할 수 있고, 여러 가지 실시 예를 가질 수 있는바, 아래에서 설명되고 도면에 도시된 예시들은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 명세서에 기재된 "...부", "...유닛", "...모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미할 수 있다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이하 본 발명의 바람직한 실시 예에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름에 대하여 첨부 도면을 참조하여 상세히 설명한다.
먼저, 본 발명의 바람직한 실시 예에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 대하여 도 1 내지 도 3을 참조하여 설명한다. 도 1은 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법을 나타낸 플로차트이고, 도 2는 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름의 구성을 개념적으로 나타낸 단면도이며, 도 3은 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에서 수분산폴리우레탄수지 조성물을 마련하는 과정에서 투입되는 발포체를 전자현미경을 촬영한 사진이다.
본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법은 도 1 내지 도 3에 도시된 바와 같이, 도전성 필름용 수지조성물을 마련하는 도전성필름용 수지조성물 마련 단계(S100); 상기 도전성필름 수지조성물에서 마련된 수지조성물에 포함된 기포를 제거하기 위한 탈포 단계(S200); 탈포된 수지조성물을 내열성 이형지에 코팅하는 코팅 단계(S300); 및 이형지에 코팅된 수지조성물을 건조 및 발포시켜 도전성필름을 얻는 건조/발포 단계(S400)를 포함한다.
상기 도전성필름용 수지조성물 마련 단계(S100)는, 수분산폴리우레탄 수지(PUD)와, 금속분말과, 팽창 또는 미팽창된 발포체와, 분산제, 및 첨가제를 소정 비율 혼합하여 이루어지는 도전성필름용 수지조성물로 마련된다.
구체적으로, 상기 도전성필름용 수지조성물은 일액형 수분산폴리우레탄 수지 100 중량부; 상기 수지에 대하여 덴드라이트 등 여러 가지 형상을 갖는 은(Ag) 코팅 구리(Cu), 나노와이어 등의 도전성 금속분말 20 내지 50 중량부: 상기 수지에 대하여 아크릴로니트릴-공중합체(AN-copolymer), 염화비닐리덴수지(PVDC) 등으로 이루어진 폴리머 쉘의 내부에 탄화수소가 들어있는 마이크로캡슐 상이며 그 표면에 탈크(Tarc), 칼슘카보네이트(Calcium Carbonate) 등의 무기질 파우더가 코팅된 형태의 발포체 0.3 내지 5 중량부; 상기 수지에 대하여 액상의 분산제 1 내지 3 중량부; 상기 수지에 대하여 안료와 산화방지제 및 상용시약을 포함하는 첨가제 0.5 내지 2 중량부를 혼합하여 건식 코팅용 수지조성물로 마련된다.
상기 수분산폴리우레탄 수지는 현재 상용화되어 코팅제 또는 함침제로서 피착체의 가공시 터치(Touch)감이나 벌키(Bulky)성, 웨트(Wet)감, 왁시(Waxy)감, 광택성, 내세탁성, 내마모성, 내구성이 우수한 폴리우레탄 수분산액을 사용할 수 있다.
여기에서, 수분산성 폴리우레탄의 제조 방법을 설명하면, 개략적으로 결정 또는 비결정성의 폴리에스테르 폴리올 중 디올이나 트리올, 폴리에테르 폴리올 중 디올이나 트리올, 에틸렌옥사이드와 프로필렌옥사이드가 부가된 블록 코폴리머형 폴리올, 필요한 경우에는 -OH기가 4개 이상인 다가알콜, 저분자량의 폴리올로 구성되어 있는 폴리올의 혼합물을 폴리우레탄 고형분에 대하여 40 내지 85중량%와, 아로마틱 또는 알리파틱계 폴리이소시아네이트를 폴리우레탄 고형분에 대하여 4 내지 50중량%, 및 이온성 부여화합물을 폴리우레탄 고형분에 대하여 1.5 내지 20중량%의 존재하에 반응시켜 말단 이소시아네이트를 갖는 이온성 프레폴리머를 얻고, 이온성 프레폴리머에 블록킹제를 가하여 말단을 블록킹한 후, 여기에 점도조정제와 중화제를 투입하여 액성을 조정하고, 이를 증류수에 용해한 다음 진공펌프를 이용하여 감압하에서 점도 조정제로 첨가된 용매를 추출하여 얻을 수 있다.
바람직하게, 수분산 폴리우레탄은 고형분 함량이 40% 내외인 것을 사용하는 것이 별도의 증점제로 증점하는 번거로움을 덜 수 있고 타 첨가제와 혼합 및 분산이 용이하므로 좋은 결과를 얻을 수 있다.
또한, 상기 수분산폴리우레탄은 100% Modulus가 2 내지 30 kgf/㎠인 것을 사용하는 것이 우수한 탄성과 쿠션이 있는 제품을 생산할 수 있으므로 바람직하다.
상기 도전성 금속분말은 은(Ag), 은이 코팅된 동(Ag coated Cu), 동 (Copper), 알루미늄(Aluminium), 니켈(Nikel), 철(Iron), 주석(Sn)과 아연(Zn)분말 및 이들 도전성 분말이 2 이상 혼합된 분말을 포함하는 것이 바람직하다.
또한, 상기 도전성 분말은 분말 상호 간에 결합 면적을 최대한 높이기 위하여 그 형상이 솔잎가지 모양으로 된 7 내지 15um 크기인 덴드라이트 구조의 은이 코팅된 동(Ag coated Cu) 분말을 더욱 바람직하게 사용할 수 있다.
여기에서, 상기 도전성 분말의 사용량이 20 중량부 미만이면 체적 저항이 10-2이하의 필름을 수득하기 어렵고, 50 중량부를 초과하면 필름의 형성이 어렵고 생산비용이 과다해지며 제품의 무게가 무거워지는 단점이 있다. 따라서, 본 발명에서 도전성 금속분말은 20 내지 50 중량부이거나 바람직하게는 30 내지 40중량부로 사용되어진다.
상기 무기질파우더가 코팅되는 발포체는 팽창된 발포구체 또는 미팽창된 발포체이며, 팽창된 발포구체인 경우는 0.3 내지 1 중량부이며, 미팽창된 발포체인 경우 1 내지 5 중량부인 것이 바람직하다.
또한, 상기 팽창된 발포구체는 아크릴로니트릴 공중합체(AN-copolymer), 염화비닐리덴수지(PVDC) 등으로 이루어진 폴리머 쉘 내부에 탄화수소가 들어있는 마이크로캡슐 형태인 것이 바람직하다.
여기에서, 상기 마이크로 캡슐 형태의 팽창된 발포체는 제조과정에서 비산 방지와 수지와의 결합력을 높이기 위하여 그 표면에 탈크(Tarc), 칼슘카보네이트(Calcium Carbonate) 등의 무기질 파우더가 코팅된 형태의 것을 보다 바람직하게 사용할 수 있다(도 3 참조)
이때, 상기 팽창된 마이크로캡슐은 평균 직경이 20 내지 50 um인 것이 바람직하다.
또한, 상기 미팽창된 발포체는 아크릴로니트릴 공중합체(AN-copolymer), 염화비닐리덴수지(PVDC) 등으로 이루어진 폴리머 쉘 내부에 탄화수소가 들어있는 마이크로캡슐 형태인 미발포된 셀(Cell)로 평균 직경이 5 내지 20um인 것이 바람직하다.
상기 액상의 분산제는 고분자형 습윤분산제(CPT계) 또는 수계도료용 습윤분산제를 사용할 수 있다.
계속해서, 상기 수지조성물에 적용되는 첨가제는 안료, 산화방지제 및 상용화제 등을 0.5 내지 2중량부를 포함한다. 상기 첨가제 중 산화방지제는 혼합된 PUD 수지의 노화를 방지하며 내후성, 내노화성, 내광성 등을 향상시키고, 상용화제는 내한성을 향상시킨다.
상기 산화방지제의 사용량이 0.1 중량부 미만이면 PUD 수지의 산화작용 억제를 방지하지 못하기 때문에 상기 산화방지제를 0.5 중량부 이하로 사용하는 것이 바람직하며, 0.2 내지 0.3 중량부를 포함하는 것이 더욱 바람직하다.
일 예로서, 상기 산화방지제는 1차 산화방지제, 2차 산화방지제 또는 이들을 혼합물을 사용할 수 있다. 상기 1차 산화방지제로서, Ciba-Gelgy사의 페놀계 Ultranox 1010 등을 사용할 수 있고, 2차 산화방지제로서 General Electric Specialty Chemicals 사의 포스페이트계 Ultranox 626 등을 사용할 수 있다.
상기 첨가제 중 안료는 도전성 필름에 색상 부여 및 이의 점도를 조정하기 위해 적용될 수 있다. 일 예로서, 상기 안료는 0.1 내지 0.6 중량부를 포함하거나 0.2 내지 0.5 중량부를 포함하는 것이 바람직하다. 상기 안료는 내열성, 내후성, 내약품성이 우수하며 중금속 화합물을 포함하지 않으며 각종 용매에 스며 나오지 않는 수분산된 것을 사용하는 것이 바람직하다. 상기 안료의 예로는 흑색 안료, 백색 안료, 황색 안료, 적색 안료, 청색 안료 등을 들 수 있다.
본 발명은 상기한 첨가제 이외에 필요에 따라 항균제, 난연제 등 기타 첨가제를 더 포함할 수 있다.
다음으로, 상기 수지조성물의 탈포 단계(S200)는 예를 들어 수지조성물을 진공 탈포기에서 저속 교반하면서 탈포시킴으로써 기포가 제거되고 더욱 균일하게 조성물이 분산된다.
계속해서, 내열성 이형지에 코팅하는 단계(S300)는 예를 들면 탈포된 수지조성물을 건식 코팅설비에서 콤마 코터, 그라비아 롤코터 등을 이용해 진행방향으로 동시에 투입되는 내열성 이형지 상에 일정한 두께와 폭으로 코팅하는것을 포함할 수 있다.
그런 다음, 상기 건조/발포 단계(S400)는 예를 들면 열풍으로 건조되는 건조로를 통과시키면서 100℃에서 150℃의 온도로 건조 및 발포시킨 다음, 발포 및 건조된 도전성필름을 와인더에서 일정한 길이로 권취하여 롤상의 제품을 완성할 수 있다.
다음으로, 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름을 제조하고, 이에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름에 대하여 비중과 체적저항을 측정한 실험 결과에 대하여 설명한다. 도 4는 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름의 시작품을 촬영한 단면 확대사진이고, 도 5는 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름의 시작품에 대한 저항을 측정하는 사진이다.
(실시 예1)
먼저, 고형분 함량 40%의 일액형 PUD(수분산폴리우레탄 수지) 100 중량부; 상기 수지에 대하여 덴드라이트 형상을 갖는 입자크기 10um 내외의 은(Ag) 코팅 구리(Cu) 40 중량부: 상기 수지에 대하여 AN-copolymer(아크릴로니트릴 공중합체)로 이루어진 폴리머 쉘 내부에 탄화수소가 들어있는 마이크로캡슐 상이며 그 표면에 칼슘카보네이트(Calcium Carbonate)가 코팅된 형태의 평균입자크기 30um의 팽창된 발포구체 0.5 중량부; 상기 수지에 대하여 액상의 분산제 1 중량부; 상기 수지에 대하여 안료와 산화방지제 및 상용시약을 포함하는 첨가제 1 중량부를 교반기에서 10분간 고속 교반하여 도전성 필름용 수지 조성물을 수득하였다.
이어서 상기 수지 혼합물을 진공 탈포기에서 저속 교반하면서 탈포시키는 단계를 거치면서 기포가 제거되고 더욱 균일하게 분산된 조성물을 얻었다.
또한, 상기 탈포된 수지 혼합물을 건식 코팅설비에서 콤마 코터를 이용해 진행방향으로 동시에 투입되는 PET 재질의 이형지 상에 200um의 두께로 코팅하고, 열풍으로 건조되는 건조로를 통과시키면서 챔버 내 온도를 1차 측 100℃, 2차 측 130℃, 3차 측 150℃의 온도와 2m/min의 속도로 건조 및 발포시키고, 발포 및 건조된 도전성필름을 와인더에서 일정한 길이로 권취하여 롤상의 제품을 완성하였다.
그 결과 발포 및 건조된 상태에서 두께가 130um인 PUD 기반 도전성필름을 수득하였다(시료 1).
이어서, 상기와 동일한 조건에서 PET 재질의 이형지 상에 코팅두께를 120um으로 하여 발포 및 건조된 상태에서 두께가 80um인 PUD 기반 도전성필름을 제조하였다(시료 2).
(실시 예2)
먼저, 고형분 함량 40%의 일액형 PUD(수분산폴리우레탄 수지) 100 중량부; 상기 수지에 대하여 덴드라이트 형상을 갖는 은(Ag) 코팅 구리(Cu) 40 중량부: 상기 수지에 대하여 AN-copolymer(아크릴로니트릴 공중합체)로 이루어진 폴리머 쉘 내부에 탄화수소가 들어있는 마이크로캡슐 상의 평균입자크기가 10um인 미팽창된 발포구체 2 중량부; 상기 수지에 대하여 액상의 분산제 1 중량부; 상기 수지에 대하여 안료와 산화방지제 및 상용시약을 포함하는 첨가제 1 중량부를 교반기에서 10분간 고속 교반하여 도전성 필름용 수지 조성물을 수득하였다.
이어서 상기 수지 혼합물을 진공 탈포기에서 저속 교반하면서 탈포시키는 단계를 거치면서 기포가 제거되고 더욱 균일하게 분산된 조성물을 얻었다.
또한, 상기 탈포된 수지 혼합물을 건식 코팅설비에서 콤마 코터를 이용해 진행방향으로 동시에 투입되는 PET 재질의 이형지 상에 80um의 두께로 코팅하고, 열풍으로 건조되는 건조로를 통과시키면서 챔버 내 온도를 1차 측 90℃, 2차 측 120℃, 3차 측 140℃의 온도와 2m/min의 속도로 건조 및 발포시키고, 발포 및 건조된 도전성필름을 와인더에서 일정한 길이로 권취하여 롤상의 제품을 완성하였다.
그 결과 발포 및 건조된 상태에서 두께가 130um인 PUD 기반 도전성필름을 수득하였다(시료 3).
이어서, 상기와 동일한 조건에서 PET 재질의 이형지 상에 코팅두께를 50um으로 하여 발포 및 건조된 상태에서 두께가 80um인 PUD 기반 도전성필름을 제조하였다(시료 4).
상기 방법에 의해 제조된 시료 4가지에 대해 비중과 체적저항을 측정하여 그 결과는 표 1과 같다. 아래 표 1은 실시 예 1과 2에 의해 제조된 시료 4가지에 대해 비중과 체적저항을 측정한 결과를 나타낸 표이다.
구 분 비중 체적저항(Ω)
시료 1 0.7 0.003
시료 2 0.7 0.002
시료 3 0.65 0.003
시료 4 0.65 0.002
표 1로부터 알 수 있듯이, 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름은 체적 저항이 현저히 낮음을 알 수 있었다.
상기한 바와 같은 본 발명에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름은, 수분산폴리우레탄(PUD)을 사용하여 독립된 셀 구조를 가지는 발포체가 유기용제에 녹아 발포효율이 저하되는 문제점을 해결하고, 구형의 폐쇄형태의 마이크로스피어인 발포제를 사용함으로써 발포 시에 가스의 발생이 없으며 발포제의 함량에 따라 쿠션과 연성(Flexibility)를 용이하게 컨트롤할 수 있으며, 경량성을 갖추고 탄성이 좋으면서 박막의 제품을 제조할 수 있는 이점이 있다.
또한, 본 발명은 발포체가 차지하는 부피가 상대적으로 커서 필름 형성시 도전성 필러의 함량을 대폭 줄여도 필름 내 도전성 필러의 연결이 용이해지므로 원가절감이 가능함과 동시에, 경량화, 탄성, 유연성이 획득되며, 기계적 물성이 양호하고 전도성이 극히 우수하여 광전화학 전지, 하드 혹은 플렉서블 전자제품의 전극재료나 부품 패키징용 제품을 제조할 수 있는 이점이 있다.
그리고 본 발명은 주원료인 PUD(수분산폴리우레탄 수지)가 유기용제가 함유되어있지 않아 VOC를 배출하지 않는 친환경적이고, 인체에 무해하며, 또한 부드럽고 연성이 뛰어난 특성을 갖고, 염소를 포함하지 않으므로 연소 시에 다이옥신을 배출하지 않는 이점이 있다.
또한, 본 발명은 건식 코팅설비에서 용이하게 생산이 가능함과 동시에, 유연성과 탄성이 좋으면서 초박막의 필름 제조가 가능하며, 우수한 기계적, 화학적 및 전기적 특성을 보유할 뿐만 아니라 흠집충격강도가 영하의 환경에서도 유연성을 가질 수 있는 제품을 제조할 수 있는 이점이 있다.
본 명세서에서 설명되는 실시 예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시 예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
S100: 도전성필름용 수지조성물 마련 단계
S200: 탈포 단계
S300: 이형지에 코팅 단계(탈포된 수지조성물을 이형지에 코팅하는 단계)
S400: 건조/발포 단계

Claims (9)

  1. 도전성 필름용 수지조성물을 마련하는 도전성필름용 수지조성물 마련 단계(S100);
    상기 도전성필름 수지조성물에서 마련된 수지조성물에 포함된 기포를 제거하기 위한 탈포 단계(S200);
    상기 탈포된 수지조성물을 내열성 이형지에 코팅하는 코팅 단계(S300); 및
    이형지에 코팅된 수지조성물을 건조 및 발포시켜 도전성필름을 얻는 건조/발포 단계(S400);
    를 포함하는 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  2. 청구항 1에 있어서,
    상기 도전성필름용 수지조성물 마련 단계(S100)는 수분산폴리우레탄 수지(PUD)와, 금속분말과, 팽창 또는 미팽창된 발포체와, 분산제, 및 첨가제를 소정 비율 혼합하여 마련되는 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  3. 청구항 2에 있어서,
    상기 도전성필름용 수지조성물은 일액형 수분산폴리우레탄 수지 100 중량부; 상기 수지에 대하여 도전성 금속분말 20 내지 50 중량부: 상기 수지에 대하여 폴리머 쉘의 내부에 탄화수소가 들어있는 마이크로캡슐 형태이며 그 표면에 무기질 파우더가 코팅된 형태의 발포체 0.3 내지 5 중량부; 상기 수지에 대하여 액상의 분산제 1 내지 3 중량부; 상기 수지에 대하여 안료와 산화방지제 및 상용시약을 포함하는 첨가제 0.5 내지 2 중량부를 혼합하여 마련되는 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  4. 청구항 2에 있어서,
    청구항 3에 있어서,
    상기 발포체는 팽창된 발포구체 또는 미팽창된 발포체이며, 상기 발포체가 팽창된 발포구체인 경우는 0.3 내지 1 중량부, 상기 발포체가 미팽창된 발포체인 경우 1 내지 5 중량부가 혼합되는 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  5. 청구항 2에 있어서,
    상기 도전성 금속분말은 은(Ag), 은이 코팅된 동(Ag coated Cu), 동 (Copper), 알루미늄(Aluminium), 니켈(Nikel), 철(Iron), 주석(Sn)과 아연(Zn)분말 및 이들 도전성 분말이 2 이상 혼합된 분말을 포함하는 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  6. 청구항 2에 있어서,
    상기 도전성 금속분말은 솔잎가지 모양으로 된 7 내지 15um 크기를 가지며, 덴드라이트 구조의 은이 코팅된 동(Ag coated Cu) 분말인 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  7. 청구항 2에 있어서,
    상기 액상의 분산제는 고분자형 습윤분산제(CPT계) 또는 수계도료용 습윤분산제이고, 상기 안료는 0.1 내지 0.6 중량부 혼합되는 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  8. 청구항 1에 있어서,
    상기 탈포 단계(S200)는 진공 탈포기에서 저속 교반하면서 탈포시키고,
    상기 코팅 단계(S300)는 탈포된 수지조성물을 건식 코팅설비에서 콤마 코터이나 그라비아 롤코터를 이용하여 투입되는 내열성 이형지에 코팅하는 것을 포함하고, 상기 건조/발포 단계(S400)는 열풍으로 건조되는 건조로를 통과시키면서 100℃에서 150℃의 온도로 건조 및 발포시키는 수분산폴리우레탄수지 기반 도전성필름의 제조방법.
  9. 청구항 1 내지 청구항 8중 어느 한 항에 따른 수분산폴리우레탄수지 기반 도전성필름의 제조방법에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름.
PCT/KR2015/011622 2015-07-16 2015-11-02 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름 WO2017010620A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150101044A KR101588788B1 (ko) 2015-07-16 2015-07-16 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름
KR10-2015-0101044 2015-07-16

Publications (1)

Publication Number Publication Date
WO2017010620A1 true WO2017010620A1 (ko) 2017-01-19

Family

ID=55307551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011622 WO2017010620A1 (ko) 2015-07-16 2015-11-02 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름

Country Status (2)

Country Link
KR (1) KR101588788B1 (ko)
WO (1) WO2017010620A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138836A (zh) * 2020-01-02 2020-05-12 深圳先进技术研究院 一种柔性电磁屏蔽复合材料及其制备方法
CN112391111A (zh) * 2019-07-30 2021-02-23 赛柯赛斯新能源科技(苏州)有限公司 一种弹性热熔型导电涂料、弹性热熔型导电膜及制备方法
CN113529432A (zh) * 2020-04-22 2021-10-22 财团法人纺织产业综合研究所 导电织物及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235227A (zh) * 2021-12-03 2022-03-25 明鑫(深圳)技术研究有限公司 一种柔性应力电极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090028278A (ko) * 2007-09-14 2009-03-18 주식회사 유비텍 도전성 탄성 복합 시트와 그 제조 방법
JP2009286969A (ja) * 2008-05-30 2009-12-10 Ix Co Ltd 樹脂発泡シート、該樹脂発泡シートを備えた積層樹脂シートおよびその製造方法
KR101074346B1 (ko) * 2011-05-23 2011-10-17 한국신발피혁연구소 전기 전도성이 우수한 습식 폴리우레탄 복합체의 제조방법 및 이 방법에 의해 제조된 습식 폴리우레탄 복합체와 이를 이용한 발포필름
JP2012211256A (ja) * 2011-03-31 2012-11-01 Toyo Ink Sc Holdings Co Ltd 導電性樹脂組成物および導電性接着シ−ト
JP5503813B1 (ja) * 2012-08-02 2014-05-28 三井金属鉱業株式会社 導電性フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643530B1 (ko) 2004-11-30 2006-11-10 김용문 열가소성수지 또는 열경화성수지로 이루어지는 본체에금속피막을 입히기 위한 도금방법
KR100625231B1 (ko) 2004-12-24 2006-09-18 주식회사 선경홀로그램 도전성이 우수한 열가소성 수지 필름 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090028278A (ko) * 2007-09-14 2009-03-18 주식회사 유비텍 도전성 탄성 복합 시트와 그 제조 방법
JP2009286969A (ja) * 2008-05-30 2009-12-10 Ix Co Ltd 樹脂発泡シート、該樹脂発泡シートを備えた積層樹脂シートおよびその製造方法
JP2012211256A (ja) * 2011-03-31 2012-11-01 Toyo Ink Sc Holdings Co Ltd 導電性樹脂組成物および導電性接着シ−ト
KR101074346B1 (ko) * 2011-05-23 2011-10-17 한국신발피혁연구소 전기 전도성이 우수한 습식 폴리우레탄 복합체의 제조방법 및 이 방법에 의해 제조된 습식 폴리우레탄 복합체와 이를 이용한 발포필름
JP5503813B1 (ja) * 2012-08-02 2014-05-28 三井金属鉱業株式会社 導電性フィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391111A (zh) * 2019-07-30 2021-02-23 赛柯赛斯新能源科技(苏州)有限公司 一种弹性热熔型导电涂料、弹性热熔型导电膜及制备方法
CN111138836A (zh) * 2020-01-02 2020-05-12 深圳先进技术研究院 一种柔性电磁屏蔽复合材料及其制备方法
CN113529432A (zh) * 2020-04-22 2021-10-22 财团法人纺织产业综合研究所 导电织物及其制备方法

Also Published As

Publication number Publication date
KR101588788B1 (ko) 2016-01-26

Similar Documents

Publication Publication Date Title
WO2017010620A1 (ko) 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름
CN107383848B (zh) 一种水性聚氨酯/石墨烯纳米复合乳液的制备方法
WO2010053270A2 (ko) 강판 표면처리용 수지 조성물 및 이를 이용한 표면처리 강판
DE102006062148B4 (de) Feuerbeständiges Beschichtungsmaterial
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
CN110204682B (zh) 含有反应型非离子乳化剂和磺酸盐基团的聚氨酯水分散体
WO2013089387A1 (ko) 가교된 폴리락트산을 이용한 발포 시트 및 이의 제조방법
WO2022193572A1 (zh) 氮化硼散热膜及其制备方法和应用
WO2017164437A1 (ko) 방열특성이 우수한 방열시트 및 이의 제조방법
WO2010059008A2 (ko) 복합탄소소재를 포함하는 전도성 수지조성물
CN111087651B (zh) 一种高导电水性聚氨酯/改性石墨烯复合乳液及制备方法
CN105144853B (zh) 导电性高精细图案的形成方法、导电性高精细图案及电路
WO2015152636A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2017115921A1 (ko) 그래핀 분산액 및 그래핀-고분자 복합체 제조방법, 및 이를 이용한 배리어 필름 제조방법
WO2019066262A1 (ko) 탄소나노튜브 슬러리 조성물
CN103476897B (zh) 剥离剂组合物及陶瓷生坯成型用剥离膜
CN114479574A (zh) 一种水性导电涂料及其制备方法
WO2012044068A2 (en) Manufacturing method of electrode substrate
CN110563991B (zh) 一种硅橡胶抗电磁干扰绝缘布及其制备方法
WO2012018227A2 (en) Optical film
CN116218360A (zh) 遮光片涂料及其制备方法、以及遮光片
CN112812370B (zh) 一种无机阻燃剂及其制备方法和在制备密封胶中的应用
CN107892814A (zh) 一种抗冲击改性聚醚砜材料及其制备方法
CN113337101A (zh) 一种电子用高阻隔性tpu薄膜及其制备方法
CN111072908B (zh) 一种高阻氧水性聚氨酯/蒙脱土纳米复合乳液及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898380

Country of ref document: EP

Kind code of ref document: A1