WO2017010219A1 - 電流センサ - Google Patents

電流センサ Download PDF

Info

Publication number
WO2017010219A1
WO2017010219A1 PCT/JP2016/067879 JP2016067879W WO2017010219A1 WO 2017010219 A1 WO2017010219 A1 WO 2017010219A1 JP 2016067879 W JP2016067879 W JP 2016067879W WO 2017010219 A1 WO2017010219 A1 WO 2017010219A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor element
magnetic sensor
flow path
conductor
current
Prior art date
Application number
PCT/JP2016/067879
Other languages
English (en)
French (fr)
Inventor
清水 康弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680024042.6A priority Critical patent/CN107533089B/zh
Priority to JP2017528340A priority patent/JP6414641B2/ja
Publication of WO2017010219A1 publication Critical patent/WO2017010219A1/ja
Priority to US15/726,492 priority patent/US10281497B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the present invention relates to a current sensor, and more particularly to a current sensor that detects a value of a current to be measured by measuring a magnetic field generated according to the current to be measured.
  • Patent Document 1 JP-A 2007-78418 (Patent Document 1) and JP-A 2014-10075 (Patent Document 2) as prior documents disclosing the configuration of the current sensor.
  • an integrated chip is arranged in a form sandwiched between two parallel lines of bus bars.
  • the integrated chip is disposed in a step space provided between two lines so that the line is located on the front side and the line is located on the back side.
  • the magnetic detection elements mounted on the integrated chip individually detect magnetic vectors in opposite directions that are generated due to currents flowing in two lines (currents in the same direction in each line).
  • the current sensor described in Patent Document 2 is provided with a case in which a conductor can be disposed between a pair of arms, and a cover in which the conductor is disposed so as to sandwich the position of the conductor in the case. And a plurality of magnetoelectric transducers having a sensitivity axis in a direction orthogonal to the direction in which the measurement current flows.
  • the case is attached so that different edge portions in the thickness direction of the pair of arm portions are in contact with the conductor, and the magnet is inclined to one side with the sensitivity axis direction of the magnetoelectric conversion element as the axial direction.
  • the interval between the magnetic detection elements is larger than the interval between the lines in the line width direction.
  • the measurement error of the current sensor due to the displacement of the integrated chip in the line width direction becomes large.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a small current sensor in which a measurement error due to a positional deviation of a magnetic sensor element with respect to a conductor through which a current to be measured flows is reduced. .
  • the current sensor according to the present invention includes a current to be measured, includes a front surface and a back surface, and includes a length direction, a width direction orthogonal to the length direction, and a thickness orthogonal to the length direction and the width direction.
  • a plate-like conductor having a vertical direction, and a first magnetic sensor element and a second magnetic sensor element for detecting the strength of a magnetic field generated by the current.
  • the conductor includes a first flow path section and a second flow path section in which the current flows in the middle in the length direction.
  • the first flow path part and the second flow path part are located at a distance from each other in each of the width direction and the thickness direction.
  • the first magnetic sensor element and the second magnetic sensor element are provided between the first flow path part and the second flow path part in the thickness direction. At least a part of each of the first magnetic sensor element and the second magnetic sensor element is provided between the first flow path part and the second flow path part in the width direction. In the width direction, the distance between the center of the first magnetic sensor element and the center of the second magnetic sensor element is not more than the distance between the first flow path part and the second flow path part.
  • the first magnetic sensor element and the second magnetic sensor element are arranged in the width direction.
  • each of the center of the first magnetic sensor element and the center of the second magnetic sensor element is located between the first flow path portion and the second flow path portion in the width direction. Yes.
  • each of the entire first magnetic sensor element and the entire second magnetic sensor element is located between the first flow path portion and the second flow path portion in the width direction. Yes.
  • a part of the first magnetic sensor element is positioned so as to overlap with a conductor of a portion constituting the first flow path portion when viewed from the thickness direction.
  • a part of the second magnetic sensor element is positioned so as to overlap with a conductor of a portion constituting the second flow path portion when viewed from the thickness direction.
  • the conductor includes an arched portion that is bent so as to protrude in one of the thickness directions and extends in the length direction, and constitutes a first flow path portion.
  • the conductor further includes an inverted arch-shaped portion that is bent so as to protrude to the other side in the thickness direction and extends in the length direction, and constitutes a second flow path portion.
  • a part of the first magnetic sensor element is disposed inside the arch-shaped portion and is located on the back side of the conductor.
  • a part of the second magnetic sensor element is disposed on the inner side of the reverse arched portion and is located on the surface side of the conductor.
  • the arched portion and the reverse arched portion have the same shape.
  • the first flow path portion bulges to the surface side of the conductor when viewed from the width direction.
  • the second flow path portion bulges to the back side of the conductor when viewed from the width direction.
  • each of the first channel portion and the second channel portion has one end and the other end in the length direction.
  • One end of the first flow path portion and the other end of the first flow path portion in the length direction are different from each other in the thickness direction.
  • One end of the second flow path portion and the other end of the second flow path portion in the length direction are different from each other in the thickness direction.
  • the positions in the thickness direction of the one end of the first flow path portion and the one end of the second flow path portion in the length direction are equal to each other.
  • the other end of the first flow path portion and the other end of the second flow path portion in the length direction have the same position in the thickness direction.
  • the first flow path part includes a bent part that connects the position of one end of the first flow path part and the position of the other end of the first flow path part in the thickness direction.
  • the second flow path part includes a bent part that connects the position of the one end of the second flow path part in the thickness direction and the position of the other end of the second flow path part.
  • the bent part of the first flow path part and the bent part of the second flow path part are located at a distance from each other in the length direction.
  • the first flow path part and the second flow path part have point-symmetric shapes.
  • the conductor is provided with the slit extending in the length direction, so that the first flow path portion and the second flow path portion are spaced from each other in the width direction. Is located.
  • the slit is located in the center of the conductor in the said width direction. In one embodiment of the present invention, the center of the slit is located between the first magnetic sensor element and the second magnetic sensor element in the width direction as viewed from the thickness direction.
  • the conductor is comprised with one conductor.
  • each of the first magnetic sensor element and the second magnetic sensor element is located at an intermediate position between the first flow path portion and the second flow path portion in the thickness direction. .
  • the first magnetic sensor element and the second magnetic sensor element are arranged in the thickness direction.
  • each of the first magnetic sensor element and the second magnetic sensor element detects the magnetic field component in the width direction.
  • the first magnetic sensor element is disposed at a position where a magnetic field component directed to one of the width directions in the magnetic field is applied.
  • the second magnetic sensor element is disposed at a position to which a magnetic field component directed to the other of the width direction in the magnetic field is applied.
  • the first magnetic sensor element and the second magnetic sensor element are mounted on one substrate.
  • the first magnetic sensor element and the second magnetic sensor element are mounted on separate substrates.
  • a housing for accommodating the first magnetic sensor element and the second magnetic sensor element is further provided.
  • the housing is in contact with at least a part of the back surface of the first flow path portion.
  • the first flow path portion includes an extending portion extending in the length direction.
  • the housing is in contact with at least a part of the back surface of the extending portion.
  • a housing for accommodating the first magnetic sensor element and the second magnetic sensor element is further provided.
  • the housing is in contact with each of at least a part of the back surface of the first flow path part and at least a part of the surface of the second flow path part.
  • each of the first flow path part and the second flow path part includes an extension part extending in the length direction.
  • the housing is in contact with at least a part of the back surface of the extending part of the first flow path part and at least a part of the surface of the extending part of the second flow path part.
  • the current sensor further includes a calculation unit that calculates the value of the current by calculating a detection value of the first magnetic sensor element and a detection value of the second magnetic sensor element. Regarding the strength of the magnetic field generated by the current flowing through the conductor, the phase of the detection value of the first magnetic sensor element and the phase of the detection value of the second magnetic sensor element are opposite to each other.
  • the calculation unit is a subtractor or a differential amplifier.
  • the apparatus further includes a calculation unit that calculates the value of the current by calculating a detection value of the first magnetic sensor element and a detection value of the second magnetic sensor element.
  • the calculation unit is an adder or a summing amplifier.
  • the present invention it is possible to reduce the size of the current sensor while reducing measurement errors due to the displacement of the magnetic sensor element with respect to the conductor through which the current to be measured flows.
  • FIG. 1 It is a perspective view which shows the external appearance of the current sensor which concerns on Embodiment 1 of this invention. It is sectional drawing of the current sensor which concerns on Embodiment 1 of this invention, and is the figure seen from the II-II line arrow direction of FIG. It is sectional drawing which shows typically the magnetic field which generate
  • FIG. 4 is a contour diagram showing a result of a simulation analysis of a magnetic flux density of a magnetic field to be measured generated when a current to be measured flows through a primary conductor, in the same cross-sectional view as FIG. 3. It is a graph which shows the displacement of the magnetic flux density of the X-axis direction component from the start point on the centerline Lc of FIG. 5 to an end point.
  • FIG. 6 is a graph showing the results of simulation analysis of the error distribution of the current sensor when the width Hb of the vertical gap of the primary conductor 110 is 2.5 and the width Mb of the horizontal gap of the primary conductor 110 is changed to eight ways. is there.
  • FIG. 1 is a contour diagram showing a result of a simulation analysis of a magnetic flux density of a magnetic field to be measured generated when a current to be measured flows through a primary conductor, in the same cross-sectional view as FIG. 3. It is a graph which shows the displacement of the magnetic flux density of the X-axis direction component from the start point on
  • FIG. 6 is a graph showing the results of simulation analysis of the error distribution of the current sensor when the width Hb of the vertical gap of the primary conductor 110 is set to 3.5 and the width Mb of the horizontal gap of the primary conductor 110 is changed to eight ways. is there. It is a graph which shows the result of having carried out the simulation analysis about the distribution of the error of a current sensor, changing the width Hb of the horizontal gap of the primary conductor 110 into eight ways, changing the width Hb of the vertical gap of the primary conductor 110 to 5.
  • FIG. It is a graph which shows the result of having conducted the simulation analysis about the distribution of the error of a current sensor, changing the width Hb of the horizontal gap of the primary conductor 110 to eight ways, changing the width Hb of the vertical gap of the primary conductor 110 to 10.
  • FIG. 1 The amount of displacement Dc in the X-axis direction of the magnetic sensor element is set to 0.5 mm, and the width Hb of the vertical gap of the primary conductor 110 is changed in four ways, and the simulation analysis is performed on the distribution of absolute values of current sensor errors. It is a graph which shows a result. It is sectional drawing which shows the 1st magnetic sensor element and 2nd magnetic sensor element in the current sensor which concerns on the modification 1 of Embodiment 1 of this invention. It is sectional drawing which shows the 1st magnetic sensor element and 2nd magnetic sensor element in the current sensor which concerns on the modification 2 of Embodiment 1 of this invention. It is a perspective view which shows the external appearance of the current sensor which concerns on Embodiment 2 of this invention.
  • FIG. 1 It is a perspective view which shows the external appearance of the primary conductor with which the current sensor which concerns on Embodiment 2 of this invention is provided. It is sectional drawing of the current sensor which concerns on Embodiment 2 of this invention, and is the figure seen from the XVI-XVI line arrow direction of FIG. It is sectional drawing of the current sensor which concerns on Embodiment 2 of this invention, and is the figure seen from the XVII-XVII line arrow direction of FIG. It is a perspective view which shows the external appearance of the current sensor which concerns on Embodiment 3 of this invention. It is a perspective view which shows the external appearance of the primary conductor with which the current sensor which concerns on Embodiment 3 of this invention is provided.
  • FIG. 31 It is a perspective view which shows the external appearance of the primary conductor with which the current sensor which concerns on Embodiment 5 of this invention is provided. It is the side view which looked at the primary conductor of FIG. 31 from the arrow XXXII direction. It is the top view which looked at the primary conductor of FIG. 31 from the arrow XXXIII direction. It is the front view which looked at the primary conductor of FIG. 31 from the arrow XXXIV direction. It is a perspective view which shows the external appearance of the current sensor which concerns on the modification of Embodiment 5 of this invention. It is the side view which looked at the current sensor of FIG. 35 from the arrow XXXVI direction.
  • FIG. 1 is a perspective view showing an appearance of a current sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the current sensor according to the first embodiment of the present invention, as viewed from the direction of arrows II-II in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a magnetic field generated when a current to be measured flows through the primary conductor of the current sensor according to Embodiment 1 of the present invention.
  • FIG. 4 is a circuit diagram showing a circuit configuration of the current sensor according to Embodiment 1 of the present invention.
  • the width direction of a primary conductor 110 which will be described later, is illustrated as an X-axis direction, the length direction of the primary conductor 110 is defined as a Y-axis direction, and the thickness direction of the primary conductor 110 is illustrated as a Z-axis direction. ing.
  • FIG. 3 the same cross-sectional view as FIG. 2 is shown.
  • the current sensor 100 is generated by a primary conductor 110 that is a conductor through which a current to be measured flows and a current to be measured that flows through the primary conductor 110.
  • a first magnetic sensor element 120a and a second magnetic sensor element 120b that detect the strength of the magnetic field are provided.
  • the primary conductor 110 includes a front surface and a back surface, the length direction (Y-axis direction), the width direction (X-axis direction) orthogonal to the length direction (Y-axis direction), and the length direction.
  • a plate shape having a thickness direction (Z-axis direction) orthogonal to the (Y-axis direction) and the width direction (X-axis direction).
  • the current to be measured is divided into two flow paths and flows in the length direction (Y-axis direction) of the primary conductor 110 as shown by the arrow 1 in the primary conductor 110.
  • the primary conductor 110 includes a first flow path portion and a second flow path portion in which a current to be measured flows in a halfway direction in the length direction (Y-axis direction).
  • the first flow path portion that is one of the two flow paths and the second flow path portion that is the other flow path are the width direction (X-axis direction) of the primary conductor 110 and the primary conductor 110. In the respective thickness directions (Z-axis direction), they are spaced from each other.
  • the primary conductor 110 is composed of two conductors whose both ends are electrically connected to each other.
  • the first conductor 110a of the two conductors constitutes a first flow path portion
  • the second conductor 110b of the two conductors constitutes a second flow path portion.
  • Each of the first conductor 110a and the second conductor 110b has a flat shape.
  • the first conductor 110a and the second conductor 110b extend in parallel to each other and are connected to each other at both ends by connection wiring (not shown).
  • the primary conductor 110 is made of copper.
  • the material of the primary conductor 110 is not limited to this, and may be a metal such as silver, aluminum, or iron, or an alloy containing these metals.
  • the surface treatment of the primary conductor 110 may be performed.
  • at least one plating layer made of a metal such as nickel, tin, silver, or copper, or an alloy containing these metals may be provided on the surface of the primary conductor 110.
  • the primary conductor 110 is formed by press working.
  • the method of forming the primary conductor 110 is not limited to this, and the primary conductor 110 may be formed by cutting or casting.
  • the first magnetic sensor element 120a and the second magnetic sensor element 120b are provided between the first flow path portion and the second flow path portion in the thickness direction (Z-axis direction) of the primary conductor 110. 110 are aligned in the width direction (X-axis direction).
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is mounted on one substrate 130.
  • Each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is mounted on the substrate 130 together with electronic components such as an amplifier and a passive element.
  • the amplifier and the passive element are not shown in FIGS. However, the amplifier and the passive element may be mounted on a substrate different from the substrate 130 on which each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is mounted.
  • the substrate 130 is a printed wiring board, and includes a base material such as glass epoxy or alumina, and a wiring formed by patterning a metal foil such as copper provided on the surface of the base material.
  • the substrate 130 on which the first magnetic sensor element 120a and the second magnetic sensor element 120b are mounted is inserted between the first conductor 110a and the second conductor 110b.
  • the substrate 130 is positioned substantially parallel to each of the first conductor 110a and the second conductor 110b with a space between each other.
  • the substrate 130 is formed of the first conductor 110a and the second conductor 110b. May be arranged so as to be substantially perpendicular to each other.
  • a center line passing through the centers of the first magnetic sensor element 120a and the second magnetic sensor element 120b in the width direction (X-axis direction) of the primary conductor 110 is indicated by Lc.
  • the center line passing through the center of the first magnetic sensor element 120a is C 1
  • the center line passing through the center of the second magnetic sensor element 120b is C 2
  • the center A center line between the line C 1 and the center line C 2 is indicated by Cc.
  • the distance (sensor interval) between the center line C 1 and the center line C 2 is Mc.
  • the center of each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is the center of a later-described magnetic element formation region included in each of the first magnetic sensor element 120a and the second magnetic sensor element 120b.
  • the center of the first magnetic sensor element 120a is the center of the formation region including the four AMR elements
  • the center line C 1 is It passes through an intermediate point between the position on the most one side and the position on the other side in the width direction (X-axis direction) of the primary conductor 110 in the formation region including the four AMR elements.
  • a center line passing through the center between the first conductor 110a and the second conductor 110b is indicated by Cb, and between the first conductor 110a and the second conductor 110b.
  • the width of the lateral gap of the primary conductor 110 is Mb.
  • the distance (position shift amount) between the center line Cb and the center line Cc is Dc.
  • the distance between the first conductor 110a and the second conductor 110b is Hb.
  • the center line Lc passes through the approximate center between the first conductor 110a and the second conductor 110b.
  • the distance Mc between the center of the first magnetic sensor element 120a and the center of the second magnetic sensor element 120b is between the first conductor 110a and the second conductor 110b.
  • the distance Mb or less.
  • the center of the first magnetic sensor element 120a and the center of the second magnetic sensor element 120b are respectively the first conductor 110a and the second conductor in the width direction (X-axis direction) of the primary conductor 110. 110b.
  • each of the entire first magnetic sensor element 120a and the entire second magnetic sensor element 120b is between the first conductor 110a and the second conductor 110b in the width direction (X-axis direction) of the primary conductor 110. positioned.
  • the first magnetic sensor element 120a is composed of four AMR elements
  • the entire formation region including the four AMR elements is located between the first conductor 110a and the second conductor 110b. .
  • Each of the first magnetic sensor element 120a and the second magnetic sensor element 120b detects a magnetic field in the width direction (X-axis direction) of the primary conductor 110.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b has a detection axis 2 oriented in the width direction (X-axis direction) of the primary conductor 110, as shown in FIG. ing.
  • Each of the first magnetic sensor element 120a and the second magnetic sensor element 120b outputs a positive value when a magnetic field directed in one direction of the detection axis 2 is detected, and is opposite to the one direction of the detection axis 2. It has an odd function input / output characteristic that outputs a negative value when a magnetic field directed in the direction is detected.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is a Wheatstone bridge type bridge composed of four AMR (Anisotropic Magneto Resistance) elements. It has a circuit.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is replaced with an AMR element, GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), CMR (Colossal Magneto Magneto). It may have a magnetoresistive element such as Resistance).
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b may have a half-bridge circuit composed of two magnetoresistive elements.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b includes a magnetic sensor element having a Hall element, a magnetic sensor element having an MI (Magneto Impedance) element utilizing a magnetic impedance effect, or a fluxgate type. It may be a magnetic sensor element or the like. Magnetic elements such as a magnetoresistive element and a Hall element may be packaged with a resin, or may be potted with a silicone resin or an epoxy resin.
  • the plurality of magnetic elements When a plurality of magnetic elements are packaged, the plurality of magnetic elements may be packaged in one, or each of the plurality of magnetic elements may be packaged separately. In addition, a plurality of magnetic elements and electronic components may be integrated and packaged together.
  • the AMR element has an odd function input / output characteristic by including a barber pole type electrode.
  • each of the magnetoresistive elements of the first magnetic sensor element 120a and the second magnetic sensor element 120b includes a barber pole type electrode, and thereby has a predetermined direction with respect to the magnetization direction of the magnetoresistive film in the magnetoresistive element. It is biased so that current flows in an angled direction.
  • the magnetization direction of the magnetoresistive film is determined by the shape anisotropy of the magnetoresistive film.
  • the method of adjusting the magnetization direction of the magnetoresistive film is not limited to the method using the shape anisotropy of the magnetoresistive film, but a method of arranging a permanent magnet in the vicinity of the magnetoresistive film constituting the AMR element, or AMR A method of providing exchange coupling in the magnetoresistive film constituting the element may be used.
  • the permanent magnet may be composed of a sintered magnet, a bonded magnet, or a thin film.
  • the kind of permanent magnet is not particularly limited, and a ferrite magnet, a samarium cobalt magnet, an alnico magnet, a neodymium magnet, or the like can be used.
  • the magnetization direction of the magnetoresistive film in the magnetoresistive element of the first magnetic sensor element 120a and the magnetization direction of the magnetoresistive film in the magnetoresistive element of the second magnetic sensor element 120b are the same direction. Thereby, the fall of the output accuracy by the influence of an external magnetic field can be made small.
  • the current sensor 100 calculates the value of the current to be measured flowing through the primary conductor 110 by calculating the detection value of the first magnetic sensor element 120a and the detection value of the second magnetic sensor element 120b.
  • a calculation unit 190 for calculating is further provided.
  • the calculation unit 190 is a differential amplifier.
  • the calculation unit 190 may be a subtracter.
  • the current to be measured flowing through the primary conductor 110 is divided into two parts, a first flow path section that passes through the first conductor 110a and a second flow path section that passes through the second conductor 110b. It flows in divided flow paths.
  • a magnetic field 110ae that circulates around the first conductor 110a and a magnetic field 110be that circulates around the second conductor 110b are generated according to the so-called right-handed screw law.
  • a magnetic field to be measured in which the magnetic field 110ae and the magnetic field 110be are combined acts on each of the first magnetic sensor element 120a and the second magnetic sensor element 120b.
  • the first magnetic sensor element 120a is disposed at a position where a magnetic field component directed to one side in the width direction (X-axis direction) of the primary conductor 110 in the magnetic field to be measured is applied. Specifically, the first magnetic sensor element 120a is disposed at a position to which a magnetic field component directed in the direction opposite to the arrow direction of the detection axis 2 is applied.
  • the second magnetic sensor element 120b is disposed at a position where a magnetic field component directed to the other side in the width direction (X-axis direction) of the primary conductor 110 in the magnetic field to be measured is applied. Specifically, the second magnetic sensor element 120b is disposed at a position to which a magnetic field component directed in the arrow direction of the detection axis 2 is applied.
  • the direction of the magnetic flux in the width direction (X-axis direction) of the primary conductor 110 acting on the first magnetic sensor element 120a and the width direction (X-axis direction) of the primary conductor 110 acting on the second magnetic sensor element 120b Since the direction of the magnetic flux is opposite, the phase of the detected value of the first magnetic sensor element 120a and the second magnetic sensor element are measured with respect to the strength of the magnetic field to be measured generated by the current to be measured flowing through the primary conductor 110.
  • the phase of the detected value of 120b is opposite to that of the detected value. Therefore, if the strength of the magnetic field to be measured detected by the first magnetic sensor element 120a is a negative value, the strength of the magnetic field to be measured detected by the second magnetic sensor element 120b is a positive value.
  • the detection value of the first magnetic sensor element 120a and the detection value of the second magnetic sensor element 120b are calculated by the calculation unit 190. Specifically, the calculation unit 190 subtracts the detection value of the first magnetic sensor element 120a from the detection value of the second magnetic sensor element 120b. From this result, the value of the current to be measured flowing through the primary conductor 110 is calculated.
  • the external magnetic field source is physically the first magnetic sensor element 120a and the second magnetic sensor. It cannot be located between the element 120b.
  • the direction of the magnetic field component in the direction of the detection axis 2 is the same direction. Therefore, when the strength of the external magnetic field detected by the first magnetic sensor element 120a is a positive value, the strength of the external magnetic field detected by the second magnetic sensor element 120b is also a positive value.
  • the calculation unit 190 subtracts the detection value of the first magnetic sensor element 120a from the detection value of the second magnetic sensor element 120b, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • a current of 300 A was passed through each of the first conductor 110a and the second conductor 110b.
  • the magnetic flux density distribution of the magnetic field to be measured on the center line Lc was analyzed by simulation.
  • the starting point of the center line Lc is a position 1.5 mm from one end of the first conductor 110a (the position on the left side in FIG. 5).
  • the end point of Lc is the position on the other side by 1.5 mm from the other end of the second conductor 110b (the position on the right side in FIG. 5).
  • FIG. 5 is a contour diagram showing the result of a simulation analysis of the magnetic flux density of the magnetic field to be measured generated when the current to be measured is passed through the primary conductor, in the same sectional view as FIG.
  • the magnetic flux density of the magnetic field directed to one side in the width direction (X-axis direction) of the primary conductor 110 is directed to the other in the width direction (X-axis direction) E1 to E4 in descending order.
  • E11 to E14 are shown in descending order of the magnetic flux density of the magnetic field.
  • FIG. 6 is a graph showing the displacement of the magnetic flux density of the X-axis direction component from the start point to the end point on the center line Lc in FIG.
  • the vertical axis represents the magnetic flux density (T) in the X-axis direction component
  • the horizontal axis represents the distance (mm) from the starting point in the X-axis direction.
  • a magnetic field directed to one side in the width direction (X-axis direction) of the primary conductor 110 is generated below the first conductor 110a and below the second conductor 110b.
  • a magnetic field directed to the other side in the width direction (X-axis direction) of the primary conductor 110 is generated above the first conductor 110a and the second conductor 110b.
  • the absolute value of the magnetic flux density of the magnetic field directed to one side in the width direction (X-axis direction) of the primary conductor 110 becomes the largest.
  • the absolute value of the magnetic flux density of the magnetic field directed to the other side in the width direction (X-axis direction) of the primary conductor 110 is the largest.
  • the magnetic flux density of the magnetic field directed to the other side in the width direction (X-axis direction) of the primary conductor 110 is increased in proportion to the distance from the starting point. That is, in the robust region T, the linearity between the position in the width direction (X-axis direction) of the primary conductor 110 and the magnetic flux density in the width direction (X-axis direction) of the primary conductor 110 of the magnetic field to be measured is maintained high. Has been.
  • the length of the robust region T in the width direction (X-axis direction) of the primary conductor 110 is longer than the width Mb of the lateral gap of the primary conductor 110. That is, the robust region T includes a gap region between the first conductor 110a and the second conductor 110b in the width direction (X-axis direction) of the primary conductor 110.
  • the distance Mc is not more than the distance Mb in the width direction (X-axis direction) of the primary conductor 110
  • the first magnetic sensor element 120a is the primary conductor 110 in the magnetic field to be measured.
  • the second magnetic sensor element 120b is disposed at a position where a magnetic field component directed in one of the width direction (X-axis direction) of the first conductor 110 is applied to the other of the width direction (X-axis direction) of the primary conductor 110 in the measured magnetic field. It is arrange
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is formed between the first flow path portion and the second flow path portion in the width direction (X-axis direction) of the primary conductor 110. It is provided in between.
  • the linearity between the position in the width direction (X-axis direction) of the primary conductor 110 and the magnetic flux density in the width direction (X-axis direction) of the primary conductor 110 of the measured magnetic field is If the positions of the first magnetic sensor element 120a and the second magnetic sensor element 120b in the width direction (X-axis direction) of the first magnetic sensor element 120a and the second magnetic sensor element 120b are shifted in the robust region T, the second magnetic sensor The value obtained by subtracting the detection value of the first magnetic sensor element 120a from the detection value of the element 120b is substantially constant and hardly changes.
  • the measurement error of the current sensor 100 due to the displacement of the first magnetic sensor element 120a and the second magnetic sensor element 120b with respect to the primary conductor 110 through which the current to be measured flows can be reduced.
  • Each of the center of the first magnetic sensor element 120a and the center of the second magnetic sensor element 120b is located between the first conductor 110a and the second conductor 110b in the width direction (X-axis direction) of the primary conductor 110. If more than half of each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is located in the robust region T, the first magnetic sensor element 120a and the second magnetic sensor element 120b are misaligned. The measurement error of the current sensor 100 due to can be stably reduced.
  • Each of the entire first magnetic sensor element 120a and the entire second magnetic sensor element 120b is located between the first conductor 110a and the second conductor 110b in the width direction (X-axis direction) of the primary conductor 110. In this case, the measurement error of the current sensor 100 due to the positional deviation between the first magnetic sensor element 120a and the second magnetic sensor element 120b can be reduced most.
  • each of the first conductor 110a and the second conductor 110b has a width of 5.5 mm and a thickness of 1.5 mm.
  • a current of 300 A was passed through each of the first conductor 110a and the second conductor 110b.
  • the width Mb of the lateral gap of the primary conductor 110 is eight types of 0.5, 1, 2, 2.75, 3, 5, 10, and 15.
  • the width Hb of the vertical gap of the primary conductor 110 is 2.5. , 3.5, 5 and 10, and the simulation analysis was performed by changing the conditions to 32 in total.
  • Each value of the width Mb of the horizontal gap of the primary conductor 110 and the width Hb of the vertical gap of the primary conductor 110 is a value normalized by the sensor interval Mc.
  • FIG. 7 shows the result of simulation analysis of the error distribution of the current sensor with the width Hb of the vertical gap of the primary conductor 110 set to 2.5 and the width Mb of the horizontal gap of the primary conductor 110 changed to eight ways. It is a graph which shows.
  • FIG. 8 shows the result of simulation analysis of the error distribution of the current sensor with the width Hb of the vertical gap of the primary conductor 110 set to 3.5 and the width Mb of the horizontal gap of the primary conductor 110 changed to 8 types. It is a graph which shows.
  • FIG. 9 shows the result of simulation analysis of the distribution of error of the current sensor with the width Hb of the vertical gap of the primary conductor 110 set to 5 and the width Mb of the horizontal gap of the primary conductor 110 changed to 8 ways. It is a graph.
  • FIG. 10 shows the result of simulation analysis of the error distribution of the current sensor with the vertical gap width Hb of the primary conductor 110 set to 10 and the lateral gap width Mb of the primary conductor 110 changed to 8 ways. It is a graph.
  • the positional deviation amount Dc is a negative value for a deviation amount on one side in the width direction (X-axis direction) of the primary conductor 110, and a positive value for a deviation amount on the other side in the width direction (X-axis direction) of the primary conductor 110. Shown by value.
  • FIG. 11 shows a simulation of the distribution of absolute values of current sensor errors by changing the positional deviation amount Dc in the X-axis direction of the magnetic sensor element to 0.5 mm and changing the width Hb of the vertical gap of the primary conductor 110 in four ways. It is a graph which shows the result of having analyzed.
  • the absolute value of the output error of the current sensor is such that the width Mb of the lateral gap of the primary conductor 110 is not less than 1 and not more than 15 regardless of the width Hb of the longitudinal gap of the primary conductor 110. In some cases, the width Mb of the lateral gap of the primary conductor 110 was lower than when it was less than 1. As shown in FIG. 11, when the positional deviation amount Dc of the magnetic sensor element in the X-axis direction is 0.5 mm, the output of the current sensor is within the range where the width Mb of the lateral gap of the primary conductor 110 is 2 or more and 15 or less. The absolute value of the error was reduced to 1.5% or less.
  • the measurement error of the current sensor can be reduced when the sensor interval Mc is equal to or less than the width Mb of the lateral gap regardless of the width Hb of the vertical gap of the primary conductor 110. Further, it was confirmed that the measurement error of the current sensor can be greatly reduced when the sensor interval Mc is not more than half the width Mb of the lateral gap.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is mounted on one substrate 130, the first magnetic sensor element 120a and the second magnetic sensor The current sensor 100 can be downsized by integrating the element 120b.
  • FIG. 12 is a cross-sectional view showing a first magnetic sensor element and a second magnetic sensor element in a current sensor according to Modification 1 of Embodiment 1 of the present invention.
  • FIG. 12 shows the same cross-sectional view as FIG.
  • the first magnetic sensor element 120 a and the second magnetic sensor element 120 b in the current sensor according to the first modification of the first embodiment of the present invention are configured as a single body by a resin package 160. It is mounted on the substrate 130 by the agent 170.
  • the current sensor can be reduced in size by integrating the first magnetic sensor element 120a and the second magnetic sensor element 120b into a single package.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b may face the primary conductor 110 in the thickness direction (Z-axis direction) of the primary conductor 110.
  • FIG. 13 is a cross-sectional view showing a first magnetic sensor element and a second magnetic sensor element in a current sensor according to Modification 2 of Embodiment 1 of the present invention.
  • FIG. 13 shows the same cross-sectional view as FIG.
  • the sensor interval Mc is increased, and the first magnetic field is increased in the thickness direction (Z-axis direction) of the primary conductor 110.
  • a part of the sensor element 120a and the first conductor 110a face each other, and a part of the second magnetic sensor element 120b and the second conductor 110b face each other. That is, a part of the first magnetic sensor element 120a is positioned so as to overlap the first conductor 110a when viewed from the thickness direction (Z-axis direction) of the primary conductor 110.
  • a part of the second magnetic sensor element 120b is positioned so as to overlap the second conductor 110b when viewed from the thickness direction (Z-axis direction) of the primary conductor 110.
  • the center of the first magnetic sensor element 120a and the center of the second magnetic sensor element 120b are each in the width direction (X-axis direction) of the primary conductor 110.
  • the present invention is not limited to this, and the center of the first magnetic sensor element 120a or the center of the second magnetic sensor element 120b is not limited to that of the primary conductor 110.
  • You may be located in the outer side between the 1st conductor 110a and the 2nd conductor 110b in the width direction (X-axis direction).
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is in the thickness direction of the primary conductor 110 (Z-axis direction).
  • X-axis direction the width direction of the primary conductor 110 in the magnetic field to be measured acting on each of the first magnetic sensor element 120a and the second magnetic sensor element 120b.
  • Ingredients can be increased. Thereby, the output of the current sensor can be increased.
  • the effect of reducing the measurement error of the current sensor due to the positional deviation between the first magnetic sensor element 120a and the second magnetic sensor element 120b is reduced. Therefore, each of the center of the first magnetic sensor element 120a and the center of the second magnetic sensor element 120b is between the first conductor 110a and the second conductor 110b in the width direction (X-axis direction) of the primary conductor 110. By being positioned, the effect of reducing the measurement error of the current sensor due to the displacement of the first magnetic sensor element 120a and the second magnetic sensor element 120b can be maintained high.
  • each of the center of the first magnetic sensor element 120a and the center of the second magnetic sensor element 120b is set in the width direction (X-axis) of the primary conductor 110.
  • a part of each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is disposed in the thickness direction of the primary conductor 110 (positioned between the first conductor 110a and the second conductor 110b).
  • Embodiment 2 a current sensor according to Embodiment 2 of the present invention will be described.
  • the current sensor 200 according to the second embodiment is different from the current sensor 100 according to the first embodiment mainly in that the primary conductor is configured by one conductor, and thus is the same as the current sensor 100 according to the first embodiment.
  • the same reference numerals are assigned to the configurations that are, and the description thereof will not be repeated.
  • FIG. 14 is a perspective view showing an appearance of a current sensor according to Embodiment 2 of the present invention.
  • FIG. 15 is a perspective view showing an external appearance of a primary conductor included in a current sensor according to Embodiment 2 of the present invention.
  • 16 is a cross-sectional view of the current sensor according to Embodiment 2 of the present invention, as viewed from the direction of the arrow XVI-XVI in FIG. 17 is a cross-sectional view of the current sensor according to the second embodiment of the present invention, as viewed from the direction of the arrow XVII-XVII in FIG.
  • the width direction of the primary conductor 210 is shown as the X-axis direction
  • the length direction of the primary conductor 210 is shown as the Y-axis direction
  • the thickness direction of the primary conductor 210 is shown as the Z-axis direction.
  • the current sensor 200 includes a primary conductor 210 through which a current to be measured flows and a strength of a magnetic field generated by the current to be measured through the primary conductor 210.
  • the current to be measured is divided into two flow paths as will be described later, and flows through the primary conductor 210 in the length direction (Y-axis direction) of the primary conductor 210 as indicated by an arrow 1.
  • the primary conductor 210 is bent so as to protrude in one of the thickness directions (Z-axis direction) of the primary conductor 210 and extends in the length direction (Y-axis direction).
  • the arch-shaped part 211 which comprises a flow-path part is included. That is, the first flow path portion bulges to the surface side of the primary conductor 110 when viewed from the width direction (X-axis direction).
  • the second flow path portion of the two flow paths is configured by a flat portion 215 aligned with the arch-shaped portion 211 in the width direction (X-axis direction) of the primary conductor 210. That is, the second flow path part is flat.
  • the primary conductor 210 is provided with a slit 216 extending in the length direction (Y-axis direction) of the primary conductor 210.
  • the slit 216 is adjacent to the arch-shaped portion 211 in the width direction (X-axis direction) of the primary conductor 210. That is, the slit 216 is provided between the arched portion 211 and the flat portion 215.
  • the primary conductor 210 is provided with the slit 216 extending in the length direction (Y-axis direction) between the first flow path portion and the second flow path portion. Yes.
  • a lateral gap of the primary conductor 210 is formed between the arched portion 211 and the flat portion 215. That is, the width of the slit 216 becomes the width Mb of the lateral gap of the primary conductor 110.
  • an opening 211h leading to the inside of the arch-shaped portion 211 is formed between the arch-shaped portion 211 and the flat portion 215. That is, an opening 211h that is a region surrounded by the first flow path portion and the second flow path portion is formed when viewed from the width direction (X-axis direction).
  • the arch-shaped portion 211 has a first protrusion 212 and a second protrusion 213 that protrude so as to be orthogonal to the main surface of the primary conductor 210 at intervals. And an extended portion 214 that extends in the length direction (Y-axis direction) of the primary conductor 210 and connects the first protruding portion 212 and the second protruding portion 213.
  • a vertical gap of the primary conductor 210 is formed between the extending part 214 and the flat part 215. That is, the distance between the extending portion 214 and the flat portion 215 in the thickness direction (Z-axis direction) of the primary conductor 210 is the width Hb of the vertical gap of the primary conductor 210.
  • the shape of the arch-shaped portion 211 is not limited to this, and may be, for example, a C-shape or a semicircular shape when viewed from the width direction (X-axis direction) of the primary conductor 210.
  • a part of the substrate 130 on which the first magnetic sensor element 120a and the second magnetic sensor element 120b are mounted is inserted into the opening 211h.
  • the remaining part of the substrate 130 is placed on the flat part 215.
  • a part of the first magnetic sensor element 120 a is disposed on the inner side of the arch-shaped portion 211 and is located on the back surface side of the extending portion 214.
  • a part of the second magnetic sensor element 120 b is located on the surface side of the flat portion 215. That is, the first magnetic sensor element 120a and the second magnetic sensor element 120b are provided between the first flow path portion and the second flow path portion in the thickness direction (Z-axis direction) of the primary conductor 210.
  • the secondary conductors 210 are arranged side by side in the width direction (X-axis direction).
  • the substrate 130 is disposed so that the mounting surface of the substrate 130 and the surface of the flat portion 215 are parallel to each other, but the mounting surface of the substrate 130 and the surface of the flat portion 215 are perpendicular to each other.
  • a substrate 130 may be disposed on the substrate.
  • the current to be measured flowing through the primary conductor 210 is divided into two flows: a first channel portion that passes through the arch-shaped portion 211 and a second channel portion that passes through the flat portion 215. It flows in divided roads.
  • a magnetic field that circulates around each of the first flow path section and the second flow path section is generated according to the so-called right-handed screw law.
  • the first magnetic sensor element 120 a since a part of the first magnetic sensor element 120 a is disposed inside the arch-shaped portion 211, the first magnetic sensor element 120 a has a magnetic field that circulates around the first protrusion 212. 212e, a magnetic field 213e that circulates around the second protrusion 213, and a magnetic field 214e that circulates around the extension 214 are applied. As a result, the magnetic field applied to the magnetoresistive element of the first magnetic sensor element 120a becomes stronger, so that the sensitivity of the first magnetic sensor element 120a to the measurement current flowing through the primary conductor 210 is increased. A magnetic field 215e that goes around the flat portion 215 is applied to the second magnetic sensor element 120b.
  • the direction of the magnetic flux in the width direction (X-axis direction) of the primary conductor 110 is opposite to the position on the back surface side of the extending portion 214 and the position on the front surface side of the flat portion 215. That is, since the direction of the magnetic flux acting on the first magnetic sensor element 120a is opposite to the direction of the magnetic flux acting on the second magnetic sensor element 120b, the magnetic field generated by the current to be measured flowing through the primary conductor 210 is Regarding the strength, the phase of the detection value of the first magnetic sensor element 120a is opposite to the phase of the detection value of the second magnetic sensor element 120b.
  • the current sensor 200 can increase the sensitivity of the current sensor 200 by increasing the sensitivity of the first magnetic sensor element 120a with respect to the measurement current flowing through the primary conductor 210.
  • the current sensor 200 a part of the substrate 130 on which the first magnetic sensor element 120a and the second magnetic sensor element 120b are mounted is inserted into the opening 211h, and the remaining part of the substrate 130 is placed on the flat part 215.
  • the current sensor 200 can be reduced in height, integrated, and downsized.
  • the current sensor 200 has a structure in which the substrate 130 on which the first magnetic sensor element 120a and the second magnetic sensor element 120b are mounted is assembled to one primary conductor 210.
  • the assembly of the sensor 200 is easy, and the number of parts can be reduced and the cost can be reduced as compared with the case where two primary conductors are used.
  • Embodiment 3 a current sensor according to Embodiment 3 of the present invention will be described.
  • the current sensor 300 according to the third embodiment is different from the current sensor 200 according to the second embodiment only in that the primary conductor is provided with an inverted arch-shaped portion instead of the flat portion.
  • the same components as those of the sensor 200 are denoted by the same reference numerals, and description thereof will not be repeated.
  • FIG. 18 is a perspective view showing an appearance of a current sensor according to Embodiment 3 of the present invention.
  • FIG. 19 is a perspective view illustrating an appearance of a primary conductor included in a current sensor according to Embodiment 3 of the present invention.
  • FIG. 20 is an exploded perspective view showing the configuration of the magnetic sensor unit provided in the current sensor according to Embodiment 3 of the present invention.
  • FIG. 21 is a perspective view showing an appearance of a housing of a magnetic sensor unit provided in a current sensor according to Embodiment 3 of the present invention.
  • the current sensor 300 includes a primary conductor 310 through which a current to be measured flows and a strength of a magnetic field generated by the current through the primary conductor 310.
  • the primary conductor 310 protrudes on the opposite side of the slit 216 from the arched portion 211 side and protrudes to the other side in the thickness direction (Z-axis direction) of the primary conductor 310.
  • a reverse arch-shaped portion 317 is provided that is bent in the direction of the primary conductor 310 and extends in the length direction (Y-axis direction) of the primary conductor 310 and constitutes another flow path.
  • the reverse arched portion 317 is aligned with the arched portion 211 adjacent to the slit 216 in the width direction (X-axis direction) of the primary conductor 310.
  • the slit 216 is located at the center of the primary conductor 310 in the width direction (X-axis direction) of the primary conductor 310.
  • the slit 216 is located between the arched portion 211 and the reverse arched portion 317.
  • the inverted arch-shaped portion 317 has a third projecting portion 318 and a fourth projecting portion that project so as to be orthogonal to the main surface of the primary conductor 310 at a distance from each other. 319 and an extending portion 315 that extends in the length direction (Y-axis direction) of the primary conductor 310 and connects the third protruding portion 318 and the fourth protruding portion 319.
  • a vertical gap of the primary conductor 310 is formed between the extending part 214 and the extending part 315. That is, the distance between the extending portion 214 and the extending portion 315 in the thickness direction (Z-axis direction) of the primary conductor 310 is the width Hb of the vertical gap of the primary conductor 310.
  • the shape of the inverted arch-shaped portion 317 is not limited to this, and may be, for example, a C-shape or a semicircular shape when viewed from the width direction (X-axis direction) of the primary conductor 310.
  • the arched portion 211 and the reverse arched portion 317 have the same shape. That is, the first flow path part and the second flow path part have a point-symmetric shape.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is mounted on a substrate 130 together with electronic components 340a and 340b such as an amplifier and a passive element.
  • the first magnetic sensor element 120a and the second magnetic sensor element 120b are displaced from each other in the length direction (Y-axis direction) of the primary conductor 310, while the width direction of the primary conductor 310 (X-axis direction).
  • the magnetic sensor unit 360 is configured by fixing the substrate 130 in a casing 350 having electrical insulation. That is, each of the first magnetic sensor element 120a, the second magnetic sensor element 120b, the electronic components 340a and 340b, and the substrate 130 is accommodated in the housing 350.
  • the casing 350 has a substantially rectangular parallelepiped outer shape and includes a lower casing 351 and an upper casing 352.
  • the upper housing 352 is provided with a wire harness outlet 352 p connected to the substrate 130.
  • the housing 350 is made of an engineering plastic such as PPS (polyphenylene sulfide). Since PPS has high heat resistance, it is preferable as a material for the casing 350 in consideration of heat generation of the primary conductor 310.
  • PPS polyphenylene sulfide
  • fastening with screws thermal welding with resin, bonding with an adhesive, or the like can be used.
  • nonmagnetic screws it is preferable to use nonmagnetic screws so that the magnetic field is not disturbed.
  • a magnetic sensor unit 360 is inserted in a space formed by the arched portion 211 and the reverse arched portion 317. Thereby, a part of the first magnetic sensor element 120a is disposed inside the arch-shaped part 211 and is located on the back side of the extending part 214, and a part of the second magnetic sensor element 120b is a reverse arch-shaped part. It is arranged inside 317 and is located on the surface side of the extension 315.
  • the casing 350 is in contact with at least a part of the inner surface of the arched portion 211.
  • the upper housing 352 is in contact with at least a part of the back surface of the extending portion 214.
  • the casing 350 is in contact with at least a part of the inner surface of the inverted arcuate portion 317.
  • the lower housing 351 is in contact with at least a part of the surface of the extending part 315.
  • the first magnetic sensor with respect to the arch-shaped portion 211 is narrowed while the distance between the first magnetic sensor element 120a and the arch-shaped portion 211 and the distance between the second magnetic sensor element 120b and the reverse arch-shaped portion 317 are narrowed. It is possible to reduce the variation in measurement accuracy while increasing the sensitivity of the current sensor 300 by reducing each of the variation in the position of the sensor element 120a and the variation in the position of the second magnetic sensor element 120b with respect to the reverse arcuate portion 317. it can. As a result, the measurement reproducibility and mass productivity of the current sensor 300 can be improved. Further, the arch-shaped portion 211 and the reverse arch-shaped portion 317 can protect the components of the magnetic sensor unit 360 from external force.
  • the center of the slit 216 is located at an intermediate position.
  • each of the first magnetic sensor element 120a and the second magnetic sensor element 120b is positioned at an intermediate position between the first flow path portion and the second flow path portion. is doing.
  • the positional relationship between the first magnetic sensor element 120a and the primary conductor 310 and the positional relationship between the second magnetic sensor element 120b and the primary conductor 310 can be made substantially the same.
  • the second magnetic sensor element 120b since a part of the second magnetic sensor element 120b is disposed inside the inverted arch-shaped portion 317, the second magnetic sensor element 120b includes a magnetic field that circulates around the third protrusion 318. A magnetic field that circulates around the fourth projecting portion 319 and a magnetic field that circulates around the extended portion 315 are applied. As a result, the magnetic field applied to the magnetoresistive element of the second magnetic sensor element 120b becomes stronger, so that the sensitivity of the second magnetic sensor element 120b to the measurement current flowing through the primary conductor 310 is increased.
  • the current sensor 300 can increase the sensitivity of the current sensor 300 by increasing the sensitivity of each of the first magnetic sensor element 120a and the second magnetic sensor element 120b with respect to the measurement current flowing through the primary conductor 310. .
  • the arch shape is caused by the measurement current flowing through the primary conductor 310.
  • the amount of heat generated by the portion 211 and the amount of heat generated by the reverse arcuate portion 317 can be made equal.
  • the temperature around the magnetoresistive element of the first magnetic sensor element 120a can be made substantially the same as the temperature around the magnetoresistive element of the second magnetic sensor element 120b.
  • the error of the measured value of the current sensor 300 due to can be reduced.
  • FIG. 22 is a perspective view illustrating an appearance of a primary conductor included in a current sensor according to a modification of Embodiment 3 of the present invention.
  • the primary conductors 310a included in the current sensor according to the modification of the present embodiment have semicircular shapes as viewed from the width direction (X-axis direction) of the primary conductors 310a.
  • a reverse arcuate portion 317a In the current sensor according to the modification of the present embodiment, the housing of the magnetic sensor unit has a substantially cylindrical outer shape.
  • the magnetic sensor unit 360 may be inserted into the arch-shaped portion 211 in the current sensors 100 and 200 according to the first and second embodiments.
  • the casing 350 is in contact with at least a part of the inner surface of the arched portion 211.
  • the upper housing 352 is in contact with at least a part of the back surface of the extending portion 214.
  • the lower housing 351 is in contact with at least a part of the surface of the flat portion 215.
  • the housing may be configured integrally with the primary conductor, or may be configured to be removable from the primary conductor.
  • Embodiment 4 a current sensor according to Embodiment 4 of the present invention will be described.
  • the current sensor 400 according to the fourth embodiment is different from the current sensor 300 according to the third embodiment mainly in the shapes of the first flow path portion and the second flow path portion. Constituent elements that are the same are denoted by the same reference numerals and description thereof will not be repeated.
  • FIG. 23 is a perspective view showing an appearance of a current sensor according to Embodiment 4 of the present invention.
  • FIG. 24 is a perspective view showing an appearance of a primary conductor included in a current sensor according to Embodiment 4 of the present invention.
  • FIG. 25 is a side view of the primary conductor of FIG. 24 as viewed from the direction of the arrow XXV.
  • the current sensor 400 flows a current to be measured, includes a front surface and a back surface, and includes a length direction (Y axis direction), a length direction (Y axis Plate-shaped primary having a width direction (X-axis direction) orthogonal to the direction) and a thickness direction (Z-axis direction) orthogonal to the length direction (Y-axis direction) and the width direction (X-axis direction).
  • a conductor 410 is provided.
  • the first flow path portion 411 bulges to the surface side of the primary conductor 410 when viewed from the width direction (X-axis direction).
  • the second flow path portion 417 bulges to the back surface side of the primary conductor 410 when viewed from the width direction (X-axis direction).
  • the second flow path portion 417 is aligned with the first flow path portion 411 in the width direction (X-axis direction) of the primary conductor 410.
  • a region 411h surrounded by the first flow path portion 411 and the second flow path portion 417 is formed when viewed from the width direction (X-axis direction).
  • the slit 416 is located at the center of the primary conductor 410 in the width direction (X-axis direction) of the primary conductor 410.
  • Each of the first flow path portion 411 and the second flow path portion 417 has a semi-oval shape when viewed from the width direction (X-axis direction) of the primary conductor 410.
  • the first flow path part 411 is spaced apart from each other by a first protrusion part 412 and a second protrusion part 413 protruding in an arc shape from the surface of the primary conductor 410, and the length direction of the primary conductor 410 (Y-axis) Direction) and an extended portion 414 connecting the first protruding portion 412 and the second protruding portion 413.
  • the second flow path portion 417 is spaced apart from each other by a third protrusion portion 418 and a fourth protrusion portion 419 protruding in an arc shape from the back surface of the primary conductor 410, and the length direction of the primary conductor 410 (Y-axis Direction) and an extended portion 415 that connects the third protrusion 418 and the fourth protrusion 419.
  • the magnetic sensor unit 460 is inserted in a space formed by the first flow path part 411 and the second flow path part 417.
  • the first magnetic sensor element 120a is located inside the region 411h when viewed from the width direction (X-axis direction), and a part of the first magnetic sensor element 120a is the thickness of the primary conductor 410.
  • the first flow path portion 411 is overlapped.
  • the second magnetic sensor element 120b is located inside the region 411h when viewed from the width direction (X-axis direction), and a part of the second magnetic sensor element 120b is in the thickness direction (Z When viewed from the axial direction, the second flow path portion 417 is overlapped.
  • the current sensor 400 increases the sensitivity of the current sensor 400 by increasing the sensitivity of each of the first magnetic sensor element 120a and the second magnetic sensor element 120b with respect to the current to be measured flowing through the primary conductor 410.
  • the influence of an external magnetic field can be reduced.
  • the current to be measured is measured in the primary conductor 410.
  • the heat generation amount of the first flow path portion 411 and the heat generation amount of the second flow path portion 417 due to the flow can be made equal.
  • the temperature around the magnetoresistive element of the first magnetic sensor element 120a can be made substantially the same as the temperature around the magnetoresistive element of the second magnetic sensor element 120b.
  • the error of the measured value of the current sensor 400 due to can be reduced.
  • FIG. 26 is a perspective view showing an appearance of a current sensor according to a modification of Embodiment 4 of the present invention.
  • FIG. 27 is a side view of the current sensor of FIG. 26 viewed from the direction of arrow XXVII.
  • FIG. 28 is a view of a substrate of a magnetic sensor unit provided in a current sensor according to a modification of Embodiment 4 of the present invention, as viewed from the front side.
  • FIG. 29 is a view of a substrate of a magnetic sensor unit provided in a current sensor according to a modification of Embodiment 4 of the present invention, as viewed from the back side.
  • a current sensor 400a includes a primary conductor 410a and a magnetic sensor unit 460a.
  • the magnetic sensor unit 460a includes a magnetic sensor housing portion 460i located inside the region 411h, an electronic component housing portion 460o located outside the region 411h, and a flange portion 460f when viewed from the width direction (X-axis direction).
  • electronic components 440a, 440b, and 441 are mounted on the surface of a portion of the substrate 430 located inside the electronic component housing portion 460o.
  • the electronic components 440a, 440b, and 441 constitute an arithmetic circuit.
  • the first magnetic sensor element 120a and the second magnetic sensor element 120b are mounted on the back surface of the portion of the substrate 430 located inside the magnetic sensor housing portion 460i.
  • a through hole (not shown) is provided in the flange portion 460f.
  • the primary conductor 410a is provided with a through hole (not shown) at a position corresponding to the through hole of the flange portion 460f.
  • the magnetic sensor unit 460a and the primary conductor 410a can be fastened by screwing the bolt 470 and the nut 480 inserted through the through hole of the flange portion 460f and the through hole of the primary conductor 410a.
  • Each of the bolt 470 and the nut 480 is made of a nonmagnetic material.
  • the magnetic sensor unit 460a can be securely attached to the primary conductor 410a by the bolt 470 and the nut 480. Further, by arranging the electronic components 440a, 440b, and 441 constituting the arithmetic circuit outside the region 411h, the region 411h can be reduced. By reducing the area 411h, the distance between the first flow path part 411 and the first magnetic sensor element 120a and the distance between the second flow path part 417 and the second magnetic sensor element 120b are reduced. Therefore, the sensitivity of each of the first magnetic sensor element 120a and the second magnetic sensor element 120b can be increased. As a result, it is possible to reduce the influence of the external magnetic field while increasing the sensitivity of the current sensor 400a.
  • Embodiment 5 a current sensor according to Embodiment 5 of the present invention will be described.
  • the current sensor 500 according to the fifth embodiment is different from the current sensor 300 according to the third embodiment mainly in the shapes of the first flow path portion and the second flow path portion. Constituent elements that are the same are denoted by the same reference numerals and description thereof will not be repeated.
  • FIG. 30 is a perspective view showing an appearance of a current sensor according to Embodiment 5 of the present invention.
  • FIG. 31 is a perspective view showing an appearance of a primary conductor included in a current sensor according to Embodiment 5 of the present invention.
  • FIG. 32 is a side view of the primary conductor of FIG. 31 as viewed from the direction of arrow XXXII.
  • 33 is a top view of the primary conductor of FIG. 31 as viewed from the direction of arrow XXXIII.
  • FIG. 34 is a front view of the primary conductor of FIG. 31 as viewed from the direction of arrow XXXIV.
  • the current sensor 500 flows a current to be measured, includes a front surface and a back surface, and includes a length direction (Y-axis direction) and a length direction (Y-axis).
  • Plate-shaped primary having a width direction (X-axis direction) orthogonal to the direction) and a thickness direction (Z-axis direction) orthogonal to the length direction (Y-axis direction) and the width direction (X-axis direction).
  • a conductor 510 is provided.
  • the second flow path portion 517 is aligned with the first flow path portion 511 in the width direction (X-axis direction) of the primary conductor 510.
  • a region 511h surrounded by the first flow path part 511 and the second flow path part 517 is formed when viewed from the width direction (X-axis direction).
  • the slit 516 is located at the center of the primary conductor 510 in the width direction (X-axis direction) of the primary conductor 510.
  • the first flow path portion 511 has one end 511a and the other end 511b in the length direction (Y-axis direction).
  • the second flow path portion 517 has one end 517a and the other end 517b in the length direction (Y-axis direction).
  • One end 511a of the first flow path portion 511 and one end 517a of the second flow path portion 517 are arranged in the width direction (X-axis direction) with the slit 516 interposed therebetween.
  • the other end 511b of the first channel portion 511 and the other end 517b of the second channel portion 517 are arranged in the width direction (X-axis direction) with the slit 516 interposed therebetween.
  • the one end 511a of the first flow path portion 511 and the other end 511b of the first flow path portion 511 in the length direction (Y-axis direction) are different from each other in the thickness direction (Z-axis direction).
  • One end 517a of the second flow path portion 517 and the other end 517b of the second flow path portion 517 in the length direction (Y-axis direction) are different from each other in the thickness direction (Z-axis direction).
  • the one end 511a of the first flow path section 511 and the one end 517a of the second flow path section 517 in the length direction (Y-axis direction) are equal to each other in the thickness direction (Z-axis direction).
  • the other end 511b of the first flow path portion 511 and the other end 517b of the second flow path portion 517 in the length direction (Y-axis direction) have the same position in the thickness direction (Z-axis direction).
  • the first flow path part 511 includes a bent part 513 that connects the position of one end 511a of the first flow path part 511 and the position of the other end 511b of the first flow path part 511 in the thickness direction (Z-axis direction).
  • the second flow path part 517 includes a bent part 518 that connects the position of the one end 517a of the second flow path part 517 and the position of the other end 517b of the second flow path part 517 in the thickness direction (Z-axis direction).
  • the bent portion 513 of the first flow path portion 511 and the bent portion 518 of the second flow path portion 517 are located at a distance from each other in the length direction (Y-axis direction).
  • the first flow path portion 511 includes an extended portion 514 extending in the length direction (Y-axis direction) from one end 511a, and an end of the extension portion 514 in the length direction (Y-axis direction).
  • a bent portion 513 extending linearly from the portion in the thickness direction (Z-axis direction) toward the other end 511b. That is, the first flow path portion 511 is formed in a step shape.
  • the extending part 514 is in contact with one end 511 a of the first flow path part 511.
  • the bent part 513 is in contact with the other end 511 b of the first flow path part 511.
  • the shape of the bent portion 513 is not limited to the above, and the direction intersecting each of the length direction (Y-axis direction) and the thickness direction (Z-axis direction) when viewed from the width direction (X-axis direction). It may extend linearly or may be curved.
  • the second flow path portion 517 includes a bent portion 518 linearly extending from the one end 517a in the thickness direction (Z-axis direction), and a length direction from the end portion of the bent portion 518 in the thickness direction (Z-axis direction). And an extending portion 515 extending in the (Y-axis direction) toward the other end 517b. That is, the second flow path portion 517 is formed in a step shape. The extending part 515 is in contact with the other end 517 b of the second flow path part 517. The bent portion 518 is in contact with one end 517 a of the second flow path portion 517.
  • the shape of the bent portion 518 is not limited to the above, and the direction intersecting each of the length direction (Y-axis direction) and the thickness direction (Z-axis direction) when viewed from the width direction (X-axis direction). It may extend linearly or may be curved.
  • a magnetic sensor unit 560 is inserted in a space formed by the first flow path portion 511 and the second flow path portion 517.
  • the first magnetic sensor element 120a is located inside the region 511h when viewed from the width direction (X-axis direction), and a part of the first magnetic sensor element 120a is the thickness of the primary conductor 510.
  • the first channel portion 511 is overlapped.
  • the second magnetic sensor element 120b is located inside the region 511h when viewed from the width direction (X-axis direction), and a part of the second magnetic sensor element 120b is in the thickness direction (Z As viewed from the axial direction, the second flow path portion 517 is overlapped.
  • the current sensor 500 increases the sensitivity of the current sensor 500 by increasing the sensitivity of each of the first magnetic sensor element 120a and the second magnetic sensor element 120b with respect to the current to be measured flowing through the primary conductor 510.
  • the influence of an external magnetic field can be reduced.
  • the current to be measured in the primary conductor 510 is measured.
  • the heat generation amount of the first flow path portion 511 and the heat generation amount of the second flow path portion 517 due to the flow can be made equal.
  • the temperature around the magnetoresistive element of the first magnetic sensor element 120a can be made substantially the same as the temperature around the magnetoresistive element of the second magnetic sensor element 120b.
  • the error of the measured value of the current sensor 500 due to can be reduced.
  • FIG. 35 is a perspective view showing an appearance of a current sensor according to a modification of Embodiment 5 of the present invention.
  • FIG. 36 is a side view of the current sensor of FIG. 35 viewed from the direction of arrow XXXVI.
  • a current sensor 500a includes a primary conductor 510a and a magnetic sensor unit 560a.
  • the casing of the magnetic sensor unit 560a is provided with a through-hole (not shown) in the flange portion 560f provided with the flange portion 560f.
  • the primary conductor 510a is provided with a through hole (not shown) at a position corresponding to the through hole of the flange portion 560f.
  • the magnetic sensor unit 560a and the primary conductor 510a can be fastened by screwing the bolt 570 and the nut 580 inserted through the through hole of the flange portion 560f and the through hole of the primary conductor 510a.
  • Each of the bolt 570 and the nut 580 is made of a nonmagnetic material.
  • the magnetic sensor unit 560a can be securely attached to the primary conductor 510a by the bolt 570 and the nut 580.
  • the current sensor 600 according to the sixth embodiment is mainly different from the first embodiment in that the first magnetic sensor element and the second magnetic sensor element are aligned in the thickness direction (Z-axis direction) of the primary conductor. Since the current sensor 100 is different from the current sensor 100, the same reference numerals are given to the same components as those of the current sensor 100 according to the first embodiment, and the description thereof will not be repeated.
  • FIG. 37 is a cross-sectional view showing a configuration of a current sensor according to Embodiment 6 of the present invention.
  • FIG. 38 is a cross-sectional view schematically showing a magnetic field generated when a current to be measured flows through the primary conductor of the current sensor according to Embodiment 6 of the present invention. 37 and 38 are shown in a cross-sectional view similar to FIG.
  • the first magnetic sensor element 120a and the second magnetic sensor element 120b are arranged in the thickness direction of the primary conductor 610 (Z-axis). Direction).
  • the first magnetic sensor element 120a and the second magnetic sensor element 120b are mounted on different substrates. Specifically, the first magnetic sensor element 120a is mounted on the first substrate 630a.
  • the second magnetic sensor element 120b is mounted on the second substrate 630b.
  • the first substrate 630a on which the first magnetic sensor element 120a is mounted is inserted between the first conductor 110a and the second conductor 110b.
  • the second substrate 630b on which the second magnetic sensor element 120b is mounted is inserted between the first conductor 110a and the second conductor 110b.
  • the first substrate 630a is positioned substantially parallel to each of the first conductor 110a and the second conductor 110b with a space therebetween.
  • the second substrate 630b is positioned substantially parallel to each of the first conductor 110a and the second conductor 110b with a space therebetween.
  • the first substrate 630a and the second substrate 630b are positioned substantially parallel to each other with a space therebetween.
  • the first magnetic sensor element 120a and the second magnetic sensor element 120b may be mounted on a single substrate disposed so as to be substantially perpendicular to each of the first conductor 110a and the second conductor 110b.
  • the center line passing through the center of the first magnetic sensor element 120a is Lca
  • the center line passing through the center of the second magnetic sensor element 120b is Lcb.
  • the center line between the center line Lca and the center line Lcb is indicated by Lcc.
  • the center line Lca passes through the center of the magnetoresistive film constituting the first magnetic sensor element 120a.
  • the center line Lcb passes through the center of the magnetoresistive film constituting the second magnetic sensor element 120b.
  • the distance (sensor interval) between the center line Lca and the center line Lcb in the thickness direction (Z-axis direction) of the primary conductor 610 is Mh.
  • a center line passing through the center between the first conductor 110a and the second conductor 110b is indicated by Hc.
  • a distance (a positional deviation amount) between the center line Hc and the center line Lcc in the thickness direction (Z-axis direction) of the primary conductor 610 is Dh.
  • the direction of the detection axis 2 of the first magnetic sensor element 120a and the direction of the detection axis 2 of the second magnetic sensor element 120b are opposite to each other.
  • the first magnetic sensor element 120a is disposed at a position where a magnetic field component directed to one side in the width direction (X-axis direction) of the primary conductor 110 in the magnetic field to be measured is applied.
  • the first magnetic sensor element 120a is disposed at a position where a magnetic field component directed in the direction of the arrow of the detection axis 2 is applied.
  • the second magnetic sensor element 120b is disposed at a position where a magnetic field component directed to the other side in the width direction (X-axis direction) of the primary conductor 110 in the magnetic field to be measured is applied. Specifically, the second magnetic sensor element 120b is disposed at a position to which a magnetic field component directed in the arrow direction of the detection axis 2 is applied.
  • the strength of the external magnetic field detected by the first magnetic sensor element 120a is a positive value
  • the strength of the external magnetic field detected by the second magnetic sensor element 120b is a negative value.
  • the phase of the detection value of the first magnetic sensor element 120a and the phase of the detection value of the second magnetic sensor element 120b element are in phase. Become.
  • an adder or an addition amplifier is used as the calculation unit 190 instead of the differential amplifier.
  • the detection value of the first magnetic sensor element 120a is added to the detection value of the first magnetic sensor element 120a and the detection value of the second magnetic sensor element 120b by an adder or an addition amplifier.
  • the absolute value and the absolute value of the detection value of the second magnetic sensor element 120b are subtracted. Thereby, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • the detection value of the first magnetic sensor element 120a and the detection value of the second magnetic sensor element 120b are added by an adder or an addition amplifier.
  • the value of the current to be measured flowing through the primary conductor 110 is calculated.
  • an adder or an addition amplifier may be used as the calculation unit in place of the differential amplifier while the input / output characteristics of the first magnetic sensor element 120a and the second magnetic sensor element 120b have opposite polarities.
  • the primary of the magnetic field to be measured due to the position in the thickness direction (Z-axis direction) of the primary conductor 110.
  • the change rate of the magnetic flux density in the width direction (X-axis direction) of the conductor 110 is small.
  • the positions of the first magnetic sensor element 120a and the second magnetic sensor element 120b in the width direction (X-axis direction) of the primary conductor 110 are within the robust region T, and the first magnetic sensor element 120a and the second magnetic sensor
  • the position in the thickness direction (Z-axis direction) of the primary conductor 110 of the element 120b is shifted, each of the detection value of the first magnetic sensor element 120a and the detection value of the second magnetic sensor element 120b hardly changes. . That is, the sum of the detection value of the first magnetic sensor element 120a and the detection value of the second magnetic sensor element 120b hardly changes.
  • the measurement error of the current sensor 600 due to the displacement of the first magnetic sensor element 120a and the second magnetic sensor element 120b with respect to the primary conductor 110 through which the current to be measured flows can be reduced.
  • the stress caused by the deflection of the substrate can be reduced. It is possible to prevent the element 120a and the second magnetic sensor element 120b from being damaged by the stress generated by the deflection of the substrate.
  • the primary conductor 110 may be provided with an inverted arched portion 317 instead of the flat portion 115.
  • the magnetic sensor unit 360 may be inserted into the arch-shaped portion 111 in the current sensors 100 and 200 according to the first and second embodiments.
  • the housing 350 is in contact with at least a part of the inner surface of the arch-shaped portion 111.
  • the upper housing 352 is in contact with at least a part of the back surface of the extending portion 114.
  • the lower housing 351 is in contact with at least a part of the surface of the flat portion 115.
  • the housing may be configured integrally with the primary conductor, or may be configured to be removable from the primary conductor.
  • 2 detection axis 100, 200, 300, 400, 400a, 500, 500a, 600 current sensor, 110, 210, 310, 310a, 410, 410a, 510, 510a, 610 primary conductor, 110a first conductor, 110ae, 110be, 212e, 213e, 214e, 215e magnetic field, 110b second conductor, 120a first magnetic sensor element, 120b second magnetic sensor element, 130, 430 substrate, 160 resin package, 170 bonding agent, 190 calculation unit, 211 arch shape Part, 211h opening part, 212, 412 first protrusion part, 213, 413 second protrusion part, 114, 214, 315, 414, 415, 514, 515 extension part, 215 flat part, 216, 416, 516 slit, 317, 317a Reverse arcuate portion, 318, 418 Third protrusion 319, 419 Fourth protruding portion, 340a, 340b, 440a, 440b, 441

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

電流センサは、測定対象の電流が流れる導体と、上記電流により発生する磁界の強さを検出する第1磁気センサ素子(120a)および第2磁気センサ素子(120b)とを備える。導体は、上記電流が分流されて流れる第1流路部(110a)および第2流路部(110b)を含む。第1磁気センサ素子(120a)および第2磁気センサ素子(120b)は、導体の厚さ方向において第1流路部(110a)と第2流路部(110b)との間に設けられている。第1磁気センサ素子(120a)および第2磁気センサ素子(120b)の各々の少なくとも一部は、導体の幅方向において第1流路部(110a)と第2流路部(110b)との間に設けられている。導体の幅方向において、第1磁気センサ素子(120a)の中心と第2磁気センサ素子(120b)の中心との間の距離(Mc)は、第1流路部(110a)と第2流路部(110b)との間の距離(Mb)以下である。

Description

電流センサ
 本発明は、電流センサに関し、被測定電流に応じて発生する磁界を測定することで被測定電流の値を検出する電流センサに関する。
 電流センサの構成を開示した先行文献として、特開2007-78418号公報(特許文献1)および特開2014-10075号公報(特許文献2)がある。
 特許文献1に記載された電流センサにおいては、集積チップが、バスバーからなる平行な2本のラインに挟まれるかたちで配設される。集積チップは、2本のラインの間に設けられた段差空間へ、ラインが表側に、またラインが裏側に位置するように配設される。集積チップに搭載された磁気検出素子により、2本のラインに電流(各ラインとも同一方向の電流)が流れることに起因して発生する、相反する方向の磁気ベクトルを各別に検出する。
 特許文献2に記載された電流センサは、一対の腕部間に導体が配設可能なケースと、ケース内において導体の配設位置を挟むように対向して設けられ、導体を通流する被測定電流の通流方向と直交する方向に感度軸を有する複数の磁電変換素子とを備えている。ケースは、一対の腕部の厚み方向における異なるエッジ部をそれぞれ導体に接触させ、導体に対して磁電変換素子の感度軸方向を軸方向として一方側に傾くように取付けられている。
特開2007-78418号公報 特開2014-10075号公報
 特許文献1に記載された電流センサにおいては、ラインの幅方向において、磁気検出素子同士の間隔が、ライン同士の間隔より大きい。磁気検出素子同士の間隔がライン同士の間隔より大きい場合、ラインの幅方向における集積チップの位置ずれによる電流センサの測定誤差が大きくなる。
 特許文献2に記載された電流センサにおいては、2つの磁電変換素子の間に導体が位置しており、2つの磁電変換素子を1つのチップに集積化することが難しく、電流センサの小形化を阻害している。
 本発明は上記の問題点に鑑みてなされたものであって、測定対象の電流が流れる導体に対する磁気センサ素子の位置ずれによる測定誤差が低減された小型の電流センサを提供することを目的とする。
 本発明に基づく電流センサは、測定対象の電流が流れ、表面および裏面を含み、長さ方向、上記長さ方向と直交する幅方向、および、上記長さ方向と上記幅方向とに直交する厚さ方向を有する板状の導体と、上記電流により発生する磁界の強さを検出する、第1磁気センサ素子および第2磁気センサ素子とを備える。導体は、上記長さ方向における途中で、上記電流が分流されて流れる第1流路部および第2流路部を含む。第1流路部と第2流路部とは、上記幅方向および上記厚さ方向の各々において、互いに間隔をあけて位置している。第1磁気センサ素子および第2磁気センサ素子は、上記厚さ方向において第1流路部と第2流路部との間に設けられている。第1磁気センサ素子および第2磁気センサ素子の各々の少なくとも一部は、上記幅方向において第1流路部と第2流路部との間に設けられている。上記幅方向において、第1磁気センサ素子の中心と第2磁気センサ素子の中心との間の距離は、第1流路部と第2流路部との間の距離以下である。
 本発明の一形態においては、第1磁気センサ素子と第2磁気センサ素子とが、上記幅方向に並んでいる。
 本発明の一形態においては、第1磁気センサ素子の中心および第2磁気センサ素子の中心の各々は、上記幅方向において、第1流路部と第2流路部との間に位置している。
 本発明の一形態においては、第1磁気センサ素子の全体および第2磁気センサ素子の全体の各々は、上記幅方向において、第1流路部と第2流路部との間に位置している。
 本発明の一形態においては、第1磁気センサ素子の一部は、上記厚さ方向から見て、第1流路部を構成する部分の導体と重なって位置している。第2磁気センサ素子の一部は、上記厚さ方向から見て、第2流路部を構成する部分の導体と重なって位置している。
 本発明の一形態においては、導体は、上記厚さ方向の一方に突出するように曲がって上記長さ方向に延在し、第1流路部を構成するアーチ状部を含む。
 本発明の一形態においては、導体は、上記厚さ方向の他方に突出するように曲がって上記長さ方向に延在し、第2流路部を構成する逆アーチ状部をさらに含む。
 本発明の一形態においては、第1磁気センサ素子の一部は、アーチ状部の内側に配置されて導体の裏面側に位置している。第2磁気センサ素子の一部は、逆アーチ状部の内側に配置されて導体の表面側に位置している。
 本発明の一形態においては、アーチ状部と逆アーチ状部とが、互いに同一形状を有する。
 本発明の一形態においては、第1流路部は、上記幅方向から見て、導体の表面側に膨出している。
 本発明の一形態においては、第2流路部は、上記幅方向から見て、導体の裏面側に膨出している。
 本発明の一形態においては、第1流路部および第2流路部の各々は、上記長さ方向における一端と他端とを有する。上記長さ方向における第1流路部の一端と第1流路部の他端とは、上記厚さ方向における位置が互いに異なっている。上記長さ方向における第2流路部の一端と第2流路部の他端とは、上記厚さ方向における位置が互いに異なっている。上記長さ方向における第1流路部の一端と第2流路部の一端とは、上記厚さ方向における位置が互いに等しい。上記長さ方向における第1流路部の他端と第2流路部の他端とは、上記厚さ方向における位置が互いに等しい。第1流路部は、上記厚さ方向における第1流路部の一端の位置と第1流路部の他端の位置とを繋ぐ曲折部を含む。第2流路部は、上記厚さ方向における第2流路部の上記一端の位置と第2流路部の他端の位置とを繋ぐ曲折部を含む。第1流路部の曲折部と、第2流路部の曲折部とは、上記長さ方向において互いに間隔を置いて位置している。
 本発明の一形態においては、第1流路部と第2流路部とが、互いに点対称な形状を有する。
 本発明の一形態においては、導体に、上記長さ方向に延在するスリットが設けられていることにより、第1流路部と第2流路部とが、上記幅方向において互いに間隔をあけて位置している。
 本発明の一形態においては、スリットは、上記幅方向にて導体の中央に位置している。
 本発明の一形態においては、上記厚さ方向から見て、上記幅方向にて、第1磁気センサ素子と第2磁気センサ素子との中間にスリットの中心が位置している。
 本発明の一形態においては、導体は、1つの導体で構成されている。
 本発明の一形態においては、上記厚さ方向において、第1流路部と第2流路部との中間の位置に、第1磁気センサ素子および第2磁気センサ素子の各々が位置している。
 本発明の一形態においては、第1磁気センサ素子と第2磁気センサ素子とが、上記厚さ方向に並んでいる。
 本発明の一形態においては、第1磁気センサ素子および第2磁気センサ素子の各々は、上記幅方向の磁界成分を検出する。第1磁気センサ素子は、上記磁界における上記幅方向の一方に向いた磁界成分が印加される位置に配置されている。第2磁気センサ素子は、上記磁界における上記幅方向の他方に向いた磁界成分が印加される位置に配置されている。
 本発明の一形態においては、第1磁気センサ素子および第2磁気センサ素子が、1つの基板に実装されている。
 本発明の一形態においては、第1磁気センサ素子および第2磁気センサ素子が、互いに別々の基板に実装されている。
 本発明の一形態においては、第1磁気センサ素子および第2磁気センサ素子を収容する筐体をさらに備える。筐体は、第1流路部の裏面の少なくとも一部と接している。
 本発明の一形態においては、第1流路部は、上記長さ方向に延在する延在部を含む。筐体は、延在部の裏面の少なくとも一部と接している。
 本発明の一形態においては、第1磁気センサ素子および第2磁気センサ素子を収容する筐体をさらに備える。筐体は、第1流路部の裏面の少なくとも一部、および、第2流路部の表面の少なくとも一部、の各々と接している。
 本発明の一形態においては、第1流路部および第2流路部の各々は、上記長さ方向に延在する延在部を含む。筐体は、第1流路部の延在部の裏面の少なくとも一部、および、第2流路部の延在部の表面の少なくとも一部、の各々と接している。
 本発明の一形態においては、電流センサは、第1磁気センサ素子の検出値と第2磁気センサ素子の検出値とを演算することにより上記電流の値を算出する算出部をさらに備える。導体を流れる上記電流により発生する磁界の強さについて、第1磁気センサ素子の検出値の位相と第2磁気センサ素子の検出値の位相とが逆相である。算出部が減算器または差動増幅器である。
 本発明の一形態においては、第1磁気センサ素子の検出値と第2磁気センサ素子の検出値とを演算することにより上記電流の値を算出する算出部をさらに備える。第1磁気センサ素子と第2磁気センサ素子とは、上記磁界の各々の検出値が互いに同相である。算出部が加算器または加算増幅器である。
 本発明によれば、電流センサにおいて、測定対象の電流が流れる導体に対する磁気センサ素子の位置ずれによる測定誤差を低減しつつ小型化を図れる。
本発明の実施形態1に係る電流センサの外観を示す斜視図である。 本発明の実施形態1に係る電流センサの断面図であり、図1のII-II線矢印方向から見た図である。 本発明の実施形態1に係る電流センサの1次導体に測定対象の電流が流れた際に発生する磁界を模式的に示す断面図である。 本発明の実施形態1に係る電流センサの回路構成を示す回路図である。 1次導体に測定対象の電流を流した際に発生する被測定磁界の磁束密度をシミュレーション解析した結果を、図3と同一の断面視にて示した等高線図である。 図5の中心線Lc上の始点から終点までのX軸方向成分の磁束密度の変位を示すグラフである。 1次導体110の縦ギャップの幅Hbを2.5にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。 1次導体110の縦ギャップの幅Hbを3.5にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。 1次導体110の縦ギャップの幅Hbを5にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。 1次導体110の縦ギャップの幅Hbを10にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。 磁気センサ素子のX軸方向の位置ずれ量Dcを0.5mmとして、1次導体110の縦ギャップの幅Hbを4通りに変えて、電流センサの誤差の絶対値の分布についてシミュレーション解析を行なった結果を示すグラフである。 本発明の実施形態1の変形例1に係る電流センサにおける第1磁気センサ素子および第2磁気センサ素子を示す断面図である。 本発明の実施形態1の変形例2に係る電流センサにおける第1磁気センサ素子および第2磁気センサ素子を示す断面図である。 本発明の実施形態2に係る電流センサの外観を示す斜視図である。 本発明の実施形態2に係る電流センサが備える1次導体の外観を示す斜視図である。 本発明の実施形態2に係る電流センサの断面図であり、図14のXVI-XVI線矢印方向から見た図である。 本発明の実施形態2に係る電流センサの断面図であり、図14のXVII-XVII線矢印方向から見た図である。 本発明の実施形態3に係る電流センサの外観を示す斜視図である。 本発明の実施形態3に係る電流センサが備える1次導体の外観を示す斜視図である。 本発明の実施形態3に係る電流センサが備える磁気センサユニットの構成を示す分解斜視図である。 本発明の実施形態3に係る電流センサが備える磁気センサユニットの筐体の外観を示す斜視図である。 本発明の実施形態3の変形例に係る電流センサが備える1次導体の外観を示す斜視図である。 本発明の実施形態4に係る電流センサの外観を示す斜視図である。 本発明の実施形態4に係る電流センサが備える1次導体の外観を示す斜視図である。 図24の1次導体を矢印XXV方向から見た側面図である。 本発明の実施形態4の変形例に係る電流センサの外観を示す斜視図である。 図26の電流センサを矢印XXVII方向から見た側面図である。 本発明の実施形態4の変形例に係る電流センサが備える磁気センサユニットの基板を表面側から見た図である。 本発明の実施形態4の変形例に係る電流センサが備える磁気センサユニットの基板を裏面側から見た図である。 本発明の実施形態5に係る電流センサの外観を示す斜視図である。 本発明の実施形態5に係る電流センサが備える1次導体の外観を示す斜視図である。 図31の1次導体を矢印XXXII方向から見た側面図である。 図31の1次導体を矢印XXXIII方向から見た上面図である。 図31の1次導体を矢印XXXIV方向から見た正面図である。 本発明の実施形態5の変形例に係る電流センサの外観を示す斜視図である。 図35の電流センサを矢印XXXVI方向から見た側面図である。 本発明の実施形態6に係る電流センサの構成を示す断面図である。 本発明の実施形態6に係る電流センサの1次導体に測定対象の電流が流れた際に発生する磁界を模式的に示す断面図である。
 以下、本発明の各実施形態に係る電流センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る電流センサの外観を示す斜視図である。図2は、本発明の実施形態1に係る電流センサの断面図であり、図1のII-II線矢印方向から見た図である。図3は、本発明の実施形態1に係る電流センサの1次導体に測定対象の電流が流れた際に発生する磁界を模式的に示す断面図である。図4は、本発明の実施形態1に係る電流センサの回路構成を示す回路図である。図1~3においては、後述する1次導体110の幅方向をX軸方向、1次導体110の長さ方向をY軸方向、1次導体110の厚さ方向をZ軸方向として、図示している。図3においては、図2と同じ断面視にて示している。
 図1~4に示すように、本発明の実施形態1に係る電流センサ100は、測定対象の電流が流れる導体である1次導体110と、1次導体110を流れる測定対象の電流により発生する磁界の強さを検出する、第1磁気センサ素子120aおよび第2磁気センサ素子120bとを備える。具体的には、1次導体110は、表面および裏面を含み、長さ方向(Y軸方向)、長さ方向(Y軸方向)と直交する幅方向(X軸方向)、および、長さ方向(Y軸方向)と幅方向(X軸方向)とに直交する厚さ方向(Z軸方向)を有する板状である。
 測定対象の電流は、2つの流路に分流されて1次導体110を矢印1で示すように1次導体110の長さ方向(Y軸方向)に流れる。1次導体110は、長さ方向(Y軸方向)における途中で、測定対象の電流が分流されて流れる第1流路部および第2流路部を含む。2つの流路のうちの一方の流路となる第1流路部と他方の流路となる第2流路部とは、1次導体110の幅方向(X軸方向)および1次導体110の厚さ方向(Z軸方向)の各々において、互いに間隔をあけて位置している。
 本実施形態においては、1次導体110は、互いに両端同士が電気的に接続された2つの導体で構成されている。2つの導体のうちの第1導体110aは第1流路部を構成し、2つの導体のうちの第2導体110bは第2流路部を構成している。第1導体110aおよび第2導体110bの各々は、平板状の形状を有している。第1導体110aと第2導体110bとは、互いに平行に延在し、図示しない接続配線により両端を互いに接続されている。
 1次導体110は、銅で構成されている。ただし、1次導体110の材料はこれに限られず、銀、アルミニウム若しくは鉄などの金属、またはこれらの金属を含む合金でもよい。
 1次導体110は、表面処理が施されていてもよい。たとえば、ニッケル、錫、銀若しくは銅などの金属、またはこれらの金属を含む合金からなる、少なくとも1層のめっき層が、1次導体110の表面に設けられていてもよい。
 本実施形態においては、プレス加工により1次導体110を形成している。ただし、1次導体110の形成方法はこれに限られず、切削加工または鋳造などにより1次導体110を形成してもよい。
 第1磁気センサ素子120aおよび第2磁気センサ素子120bは、1次導体110の厚さ方向(Z軸方向)において第1流路部と第2流路部との間に設けられ、1次導体110の幅方向(X軸方向)に並んで位置している。
 本実施形態においては、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、1つの基板130に実装されている。第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、アンプおよび受動素子などの電子部品と共に基板130に実装されている。なお、図1~3においては、アンプおよび受動素子は図示していない。ただし、アンプおよび受動素子は、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々が実装されている基板130とは異なる基板に、実装されていてもよい。
 基板130は、プリント配線板であり、ガラスエポキシまたはアルミナなどの基材と、基材の表面上に設けられた銅などの金属箔がパターニングされて形成された配線とから構成されている。
 第1磁気センサ素子120aおよび第2磁気センサ素子120bが実装された基板130は、第1導体110aと第2導体110bとの間に挿入されている。本実施形態においては、基板130は、第1導体110aおよび第2導体110bの各々と、互いに間隔をあけて略平行に位置しているが、基板130が、第1導体110aおよび第2導体110bの各々と互いに略垂直であるように配置されていてもよい。
 図2においては、1次導体110の幅方向(X軸方向)において、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の中心を通過する中心線をLcで示している。1次導体110の厚さ方向(Z軸方向)において、第1磁気センサ素子120aの中心を通過する中心線をC1、第2磁気センサ素子120bの中心を通過する中心線をC2、中心線C1と中心線C2との間の中央線をCcで示している。中心線C1と中心線C2との間の距離(センサ間隔)はMcである。
 なお、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の中心は、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々が有する後述する磁気素子の形成領域の中心である。たとえば、第1磁気センサ素子120aが4つのAMR素子から構成されている場合、第1磁気センサ素子120aの中心は、4つのAMR素子を包含する形成領域の中心であり、中心線C1は、4つのAMR素子を包含する形成領域における1次導体110の幅方向(X軸方向)の最も一方側の位置と最も他方側の位置との中間点を通過している。
 1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間の中央を通過する中央線をCbで示し、第1導体110aと第2導体110bとの間の距離(1次導体110の横ギャップの幅)はMbである。中央線Cbと中央線Ccとの間の距離(位置ずれ量)はDcである。1次導体110の厚さ方向(Z軸方向)において、第1導体110aと第2導体110bとの間の距離(1次導体110の縦ギャップの幅)はHbである。本実施形態においては、中心線Lcは、第1導体110aと第2導体110bとの間の略中央を通過している。
 1次導体110の幅方向(X軸方向)において、第1磁気センサ素子120aの中心と第2磁気センサ素子120bの中心との距離Mcは、第1導体110aと第2導体110bとの間の距離Mb以下である。
 本実施形態にいては、第1磁気センサ素子120aの中心および第2磁気センサ素子120bの中心の各々は、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間に位置している。
 さらに、第1磁気センサ素子120aの全体および第2磁気センサ素子120bの全体の各々は、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間に位置している。たとえば、第1磁気センサ素子120aが4つのAMR素子から構成されている場合、4つのAMR素子を包含する形成領域の全体が、第1導体110aと第2導体110bとの間に位置している。
 第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、1次導体110の幅方向(X軸方向)の磁界を検出する。具体的には、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、図3に示すように、1次導体110の幅方向(X軸方向)に向いた検出軸2を有している。
 第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、検出軸2の一方向に向いた磁界を検出した場合に正の値で出力し、かつ、検出軸2の一方向とは反対方向に向いた磁界を検出した場合に負の値で出力する、奇関数入出力特性を有している。
 図4に示すように、本実施形態に係る電流センサ100において、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、4つのAMR(Anisotropic Magneto Resistance)素子からなるホイートストンブリッジ型のブリッジ回路を有する。なお、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々が、AMR素子に代えて、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Ballistic Magneto Resistance)、CMR(Colossal Magneto Resistance)などの磁気抵抗素子を有していてもよい。
 また、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々が、2つの磁気抵抗素子からなるハーフブリッジ回路を有していてもよい。その他にも、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、ホール素子を有する磁気センサ素子、磁気インピーダンス効果を利用するMI(Magneto Impedance)素子を有する磁気センサ素子またはフラックスゲート型磁気センサ素子などであってもよい。磁気抵抗素子およびホール素子などの磁気素子は、樹脂パッケージされていてもよく、または、シリコーン樹脂若しくはエポキシ樹脂などでポッティングされていてもよい。
 複数の磁気素子がパッケージされている場合、複数の磁気素子が1つにパッケージされていてもよいし、複数の磁気素子の各々が別々にパッケージされていてもよい。また、複数の磁気素子と電子部品とが集積された状態で、1つにパッケージされていてもよい。
 本実施形態においては、AMR素子は、バーバーポール型電極を含むことによって、奇関数入出力特性を有している。具体的には、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の磁気抵抗素子は、バーバーポール型電極を含むことにより、磁気抵抗素子における磁気抵抗膜の磁化方向に対して所定の角度をなす方向に電流が流れるようにバイアスされている。
 磁気抵抗膜の磁化方向は、磁気抵抗膜の形状異方性によって決まる。なお、磁気抵抗膜の磁化方向を調整する方法として、磁気抵抗膜の形状異方性を用いる方法に限られず、AMR素子を構成する磁気抵抗膜の近傍に永久磁石を配置する方法、または、AMR素子を構成する磁気抵抗膜において交換結合を設ける方法などを用いてもよい。永久磁石は、焼結磁石、ボンド磁石または薄膜で構成されていてもよい。永久磁石の種類は、特に限定されず、フェライト磁石、サマリウムコバルト磁石、アルニコ磁石またはネオジム磁石などを用いることができる。
 第1磁気センサ素子120aの磁気抵抗素子における磁気抵抗膜の磁化方向と、第2磁気センサ素子120bの磁気抵抗素子における磁気抵抗膜の磁化方向とは、同一方向である。これにより、外部磁界の影響による出力精度の低下を小さくすることができる。
 図4に示すように、電流センサ100は、第1磁気センサ素子120aの検出値と第2磁気センサ素子120bの検出値とを演算することにより1次導体110を流れる測定対象の電流の値を算出する算出部190をさらに備える。本実施形態においては、算出部190は、差動増幅器である。ただし、算出部190が減算器であってもよい。
 図3に示すように、1次導体110を流れる測定対象の電流は、第1導体110aを通過する第1流路部と、第2導体110bを通過する第2流路部との、2つの流路に分かれて流れる。1次導体110において2つの流路に分かれて電流が流れることにより、いわゆる右ねじの法則によって、第1導体110aを周回する磁界110ae、および、第2導体110bを周回する磁界110beが発生する。
 1次導体110を測定対象の電流が流れることによって、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々には、磁界110aeと磁界110beとが合成された被測定磁界が作用する。
 第1磁気センサ素子120aは、被測定磁界における1次導体110の幅方向(X軸方向)の一方に向いた磁界成分が印加される位置に配置されている。具体的には、第1磁気センサ素子120aは、検出軸2の矢印方向とは反対方向に向いた磁界成分が印加される位置に配置されている。
 第2磁気センサ素子120bは、被測定磁界における1次導体110の幅方向(X軸方向)の他方に向いた磁界成分が印加される位置に配置されている。具体的には、第2磁気センサ素子120bは、検出軸2の矢印方向に向いた磁界成分が印加される位置に配置されている。
 すなわち、第1磁気センサ素子120aに作用する1次導体110の幅方向(X軸方向)の磁束の向きと、第2磁気センサ素子120bに作用する1次導体110の幅方向(X軸方向)の磁束の向きとが反対であるため、1次導体110を流れる測定対象の電流により発生する被測定磁界の強さについて、第1磁気センサ素子120aの検出値の位相と、第2磁気センサ素子120bの検出値の位相とは、逆相となる。よって、第1磁気センサ素子120aの検出した被測定磁界の強さを負の値とすると、第2磁気センサ素子120bの検出した被測定磁界の強さは正の値となる。
 第1磁気センサ素子120aの検出値と第2磁気センサ素子120bの検出値とは、算出部190にて演算される。具体的には、算出部190は、第2磁気センサ素子120bの検出値から第1磁気センサ素子120aの検出値を減算する。この結果から、1次導体110を流れた測定対象の電流の値が算出される。
 本実施形態に係る電流センサ100においては、第1磁気センサ素子120aと第2磁気センサ素子120bとの間隔が狭いため、外部磁界源は、物理的に第1磁気センサ素子120aと第2磁気センサ素子120bとの間に位置することができない。
 そのため、外部磁界源から第1磁気センサ素子120aに印加される磁界のうちの検出軸2の方向における磁界成分の向きと、外部磁界源から第2磁気センサ素子120bに印加される磁界のうちの検出軸2の方向における磁界成分の向きとは、同じ向きとなる。よって、第1磁気センサ素子120aの検出した外部磁界の強さを正の値とすると、第2磁気センサ素子120bの検出した外部磁界の強さも正の値となる。
 その結果、算出部190が第2磁気センサ素子120bの検出値から第1磁気センサ素子120aの検出値を減算することにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。
 ここで、上記の距離Mbと距離Mcとの関係が電流センサ100の測定精度に及ぼす影響を検証したシミュレーション解析結果について説明する。
 シミュレーション解析の条件としては、第1導体110aおよび第2導体110bの各々の、幅を5.5mm、厚さを1.5mmとし、Mb=6.0mm、Hb=7.0mmとした。第1導体110aおよび第2導体110bの各々に、300Aの電流を流した。この条件で、中心線Lc上における被測定磁界の磁束密度分布をシミュレーション解析した。1次導体110の幅方向(X軸方向)において、中心線Lcの始点は、第1導体110aの一端より1.5mmだけ一方側の位置(図5中の左側の位置)であり、中心線Lcの終点は、第2導体110bの他端より1.5mmだけ他方側の位置(図5中の右側の位置)である。
 図5は、1次導体に測定対象の電流を流した際に発生する被測定磁界の磁束密度をシミュレーション解析した結果を、図3と同一の断面視にて示した等高線図である。図5においては、1次導体110の幅方向(X軸方向)の一方に向いた磁界の磁束密度が高い順にE1~E4、1次導体110の幅方向(X軸方向)の他方に向いた磁界の磁束密度が高い順にE11~E14を示している。
 図6は、図5の中心線Lc上の始点から終点までのX軸方向成分の磁束密度の変位を示すグラフである。図6においては、縦軸にX軸方向成分の磁束密度(T)、横軸にX軸方向における始点からの距離(mm)を示している。
 図5に示すように、第1導体110aの下方および第2導体110bの下方に、1次導体110の幅方向(X軸方向)の一方に向いた磁界が発生している。第1導体110aの上方および第2導体110bの上方に、1次導体110の幅方向(X軸方向)の他方に向いた磁界が発生している。
 図6に示すように、第1導体110aの中心の下方の位置にて、1次導体110の幅方向(X軸方向)の一方に向いた磁界の磁束密度の絶対値がもっとも大きくなり、第2導体110bの中心の上方の位置にて、1次導体110の幅方向(X軸方向)の他方に向いた磁界の磁束密度の絶対値がもっとも大きくなっている。
 図6中に示すロバスト領域Tにおいては、始点からの距離に比例して、1次導体110の幅方向(X軸方向)の他方に向いた磁界の磁束密度が大きくなっている。すなわち、ロバスト領域Tにおいては、1次導体110の幅方向(X軸方向)の位置と被測定磁界の1次導体110の幅方向(X軸方向)の磁束密度との線形性が、高く維持されている。
 なお、1次導体110の幅方向(X軸方向)におけるロバスト領域Tの長さは、1次導体110の横ギャップの幅Mbより長い。すなわち、ロバスト領域Tは、1次導体110の幅方向(X軸方向)における第1導体110aと第2導体110bとの間の隙間の領域を内包している。
 本実施形態に係る電流センサ100においては、1次導体110の幅方向(X軸方向)において、距離Mcが距離Mb以下であり、第1磁気センサ素子120aは、被測定磁界における1次導体110の幅方向(X軸方向)の一方に向いた磁界成分が印加される位置に配置され、第2磁気センサ素子120bは、被測定磁界における1次導体110の幅方向(X軸方向)の他方に向いた磁界成分が印加される位置に配置されている。そのため、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の少なくとも一部は、ロバスト領域T内に位置している。その結果、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の少なくとも一部は、1次導体110の幅方向(X軸方向)において第1流路部と第2流路部との間に設けられている。
 上記のようにロバスト領域T内においては、1次導体110の幅方向(X軸方向)の位置と被測定磁界の1次導体110の幅方向(X軸方向)の磁束密度との線形性が高く維持されているため、第1磁気センサ素子120aおよび第2磁気センサ素子120bの1次導体110の幅方向(X軸方向)における位置がロバスト領域T内においてともにずれた場合、第2磁気センサ素子120bの検出値から第1磁気センサ素子120aの検出値を減算した値は、略一定となりほとんど変化しない。
 その結果、測定対象の電流が流れる1次導体110に対する第1磁気センサ素子120aおよび第2磁気センサ素子120bの位置ずれによる電流センサ100の測定誤差を低減することができる。
 第1磁気センサ素子120aの中心および第2磁気センサ素子120bの中心の各々が、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間に位置している場合、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の半分以上がロバスト領域T内に位置しているため、第1磁気センサ素子120aおよび第2磁気センサ素子120bの位置ずれによる電流センサ100の測定誤差を安定して低減することができる。
 第1磁気センサ素子120aの全体および第2磁気センサ素子120bの全体の各々が、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間に位置している場合、第1磁気センサ素子120aおよび第2磁気センサ素子120bの位置ずれによる電流センサ100の測定誤差を最も低減することができる。
 次に、1次導体110の横ギャップの幅Mbおよび1次導体110の縦ギャップの幅Hbが、磁気センサ素子の位置ずれによる電流センサの出力の誤差に与える影響を検証したシミュレーション解析結果について説明する。
 シミュレーション解析の共通条件としては、第1導体110aおよび第2導体110bの各々の、幅を5.5mm、厚さを1.5mmとした。第1導体110aおよび第2導体110bの各々に、300Aの電流を流した。
 1次導体110の横ギャップの幅Mbを、0.5,1,2,2.75,3,5,10,15の8通り、1次導体110の縦ギャップの幅Hbを、2.5,3.5,5,10の4通り、合計32通りに条件を変えてシミュレーション解析を行なった。1次導体110の横ギャップの幅Mbおよび1次導体110の縦ギャップの幅Hbの各々の値は、センサ間隔Mcにて規格化した値である。
 図7は、1次導体110の縦ギャップの幅Hbを2.5にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。図8は、1次導体110の縦ギャップの幅Hbを3.5にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。図9は、1次導体110の縦ギャップの幅Hbを5にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。図10は、1次導体110の縦ギャップの幅Hbを10にし、1次導体110の横ギャップの幅Mbを8通りに変えて、電流センサの誤差の分布についてシミュレーション解析を行なった結果を示すグラフである。
 図7~10においては、縦軸に、位置ずれ量Dc=0のときの電流センサの出力に対する出力の誤差(%)、横軸に、磁気センサ素子の1次導体110の幅方向(X軸方向)の位置ずれ量Dc(mm)を示している。位置ずれ量Dcは、1次導体110の幅方向(X軸方向)の一方側のずれ量を負の値、1次導体110の幅方向(X軸方向)の他方側のずれ量を正の値で示している。Mb=0.5のデータを点線、Mb=1のデータを1点鎖線、Mb=2のデータを2点鎖線、Mb=2.75のデータを実線、Mb=3のデータを太い点線、Mb=5のデータを太い1点鎖線、Mb=10のデータを太い2点鎖線、Mb=15のデータを太い実線で示している。
 図11は、磁気センサ素子のX軸方向の位置ずれ量Dcを0.5mmとして、1次導体110の縦ギャップの幅Hbを4通りに変えて、電流センサの誤差の絶対値の分布についてシミュレーション解析を行なった結果を示すグラフである。図11においては、縦軸に、位置ずれ量Dc=0のときの電流センサの出力に対する出力の誤差の絶対値(%)、横軸に、1次導体110の横ギャップの幅Mb(センサ間隔Mcにて規格化)を示している。Hb=2.5のデータを実線、Hb=3.5のデータを1点鎖線、Hb=5のデータを2点鎖線、Hb=10のデータを実線で示している。
 図7~11に示すように、電流センサの出力の誤差の絶対値は、1次導体110の縦ギャップの幅Hbに関わらず、1次導体110の横ギャップの幅Mbが1以上15以下であるときは、1次導体110の横ギャップの幅Mbが1未満であるときより低かった。図11に示すように、磁気センサ素子のX軸方向の位置ずれ量Dcが0.5mmである場合、1次導体110の横ギャップの幅Mbが2以上15以下の範囲において、電流センサの出力の誤差の絶対値を1.5%以下に低減できていた。
 このことから、1次導体110の縦ギャップの幅Hbに関わらず、センサ間隔Mcが横ギャップの幅Mb以下であることにより、電流センサの測定誤差を低減できることが確認できた。また、センサ間隔Mcが横ギャップの幅Mbの半分以下であることにより、電流センサの測定誤差を大幅に低減できることが確認できた。
 本実施形態に係る電流センサ100においては、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、1つの基板130に実装されているため、第1磁気センサ素子120aおよび第2磁気センサ素子120bを集積化して電流センサ100を小型化することができる。
 第1磁気センサ素子120aおよび第2磁気センサ素子120bは、集積化されて1つにパッケージされていてもよい。図12は、本発明の実施形態1の変形例1に係る電流センサにおける第1磁気センサ素子および第2磁気センサ素子を示す断面図である。図12においては、図2と同じ断面視にて示している。
 図12に示すように、本発明の実施形態1の変形例1に係る電流センサにおける第1磁気センサ素子120aおよび第2磁気センサ素子120bは、樹脂パッケージ160により1体に構成されており、接合剤170によって基板130上に実装されている。このように、第1磁気センサ素子120aおよび第2磁気センサ素子120bを集積化して1つにパッケージすることにより、電流センサを小型化することができる。
 また、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の少なくとも一部が、1次導体110の厚さ方向(Z軸方向)において1次導体110と対向していてもよい。
 図13は、本発明の実施形態1の変形例2に係る電流センサにおける第1磁気センサ素子および第2磁気センサ素子を示す断面図である。図13においては、図2と同じ断面視にて示している。
 図13に示すように、本発明の実施形態1の変形例2に係る電流センサにおいては、センサ間隔Mcが大きくなって、1次導体110の厚さ方向(Z軸方向)において、第1磁気センサ素子120aの一部と第1導体110aとが互いに対向し、第2磁気センサ素子120bの一部と第2導体110bとが互いに対向している。すなわち、第1磁気センサ素子120aの一部は、1次導体110の厚さ方向(Z軸方向)から見て、第1導体110aと重なって位置している。第2磁気センサ素子120bの一部は、1次導体110の厚さ方向(Z軸方向)から見て、第2導体110bと重なって位置している。
 本発明の実施形態1の変形例2に係る電流センサにおいては、第1磁気センサ素子120aの中心および第2磁気センサ素子120bの中心の各々が、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間に位置しているが、これに限られず、第1磁気センサ素子120aの中心または第2磁気センサ素子120bの中心が、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間の外側に位置していてもよい。
 本発明の実施形態1の変形例2に係る電流センサにおいては、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の少なくとも一部が、1次導体110の厚さ方向(Z軸方向)において1次導体110と対向していることにより、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々に作用する被測定磁界における1次導体110の幅方向(X軸方向)の磁界成分を多くすることができる。これにより、電流センサの出力を高くすることができる。
 一方、第1磁気センサ素子120aおよび第2磁気センサ素子120bにおいて、1次導体110の厚さ方向(Z軸方向)にて1次導体110と対向している部分の割合が増加するに従って、第1磁気センサ素子120aおよび第2磁気センサ素子120bの位置ずれによる電流センサの測定誤差を低減する効果が少なくなる。そのため、第1磁気センサ素子120aの中心および第2磁気センサ素子120bの中心の各々が、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間に位置していることにより、第1磁気センサ素子120aおよび第2磁気センサ素子120bの位置ずれによる電流センサの測定誤差を低減する効果を高く維持することができる。
 よって、本発明の実施形態1の変形例2に係る電流センサにおいては、第1磁気センサ素子120aの中心および第2磁気センサ素子120bの中心の各々を、1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間に位置させつつ、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の一部を、1次導体110の厚さ方向(Z軸方向)において1次導体110と対向させていることにより、第1磁気センサ素子120aおよび第2磁気センサ素子120bの位置ずれによる電流センサの測定誤差を低減しつつ、電流センサの出力を高くすることができる。
 (実施形態2)
 以下、本発明の実施形態2に電流センサについて説明する。なお、実施形態2に係る電流センサ200は、1次導体が1つの導体で構成されている点が主に実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図14は、本発明の実施形態2に係る電流センサの外観を示す斜視図である。図15は、本発明の実施形態2に係る電流センサが備える1次導体の外観を示す斜視図である。図16は、本発明の実施形態2に係る電流センサの断面図であり、図14のXVI-XVI線矢印方向から見た図である。図17は、本発明の実施形態2に係る電流センサの断面図であり、図14のXVII-XVII線矢印方向から見た図である。図14~17においては、1次導体210の幅方向をX軸方向、1次導体210の長さ方向をY軸方向、1次導体210の厚さ方向をZ軸方向として、図示している。
 図14~17に示すように、本発明の実施形態2に係る電流センサ200は、測定対象の電流が流れる1次導体210と、1次導体210を流れる測定対象の電流により発生する磁界の強さをそれぞれ検出する第1磁気センサ素子120aおよび第2磁気センサ素子120bとを備える。測定対象の電流は、後述するように2つの流路に分流されて1次導体210を矢印1で示すように1次導体210の長さ方向(Y軸方向)に流れる。
 1次導体210は、1次導体210の厚さ方向(Z軸方向)の一方に突出するように曲がって長さ方向(Y軸方向)に延在し、2つの流路のうちの第1流路部を構成するアーチ状部211を含む。すなわち、第1流路部は、幅方向(X軸方向)から見て、1次導体110の表面側に膨出している。2つの流路のうちの第2流路部は、1次導体210の幅方向(X軸方向)にてアーチ状部211と並ぶ平坦部215により構成されている。すなわち、第2流路部は、平坦である。
 1次導体210に、1次導体210の長さ方向(Y軸方向)に延在するスリット216が設けられている。スリット216は、1次導体210の幅方向(X軸方向)にてアーチ状部211に隣接している。すなわち、スリット216は、アーチ状部211と平坦部215との間に設けられている。このように、電流センサ200においては、1次導体210は、第1流路部と第2流路部との間に、長さ方向(Y軸方向)に延在するスリット216が設けられている。
 スリット216が設けられることにより、アーチ状部211と平坦部215との間に1次導体210の横ギャップが形成される。すなわち、スリット216の幅が、1次導体110の横ギャップの幅Mbとなる。
 1次導体210の幅方向(X軸方向)から見て、アーチ状部211と平坦部215との間には、アーチ状部211の内側に通じる開口部211hが形成されている。すなわち、幅方向(X軸方向)から見て、第1流路部と第2流路部とによって囲まれた領域である開口部211hが形成されている。
 図15に示すように、本実施形態においては、アーチ状部211は、互いに間隔を置いて、1次導体210の主面に直交するように突出する第1突出部212および第2突出部213と、1次導体210の長さ方向(Y軸方向)に延在し、第1突出部212と第2突出部213とを繋ぐ延在部214とから構成されている。
 延在部214と平坦部215との間に1次導体210の縦ギャップが形成されている。すなわち、1次導体210の厚さ方向(Z軸方向)における延在部214と平坦部215との間の距離が、1次導体210の縦ギャップの幅Hbとなる。ただし、アーチ状部211の形状はこれに限られず、たとえば、1次導体210の幅方向(X軸方向)から見て、C字状または半円状の形状を有していてもよい。
 第1磁気センサ素子120aおよび第2磁気センサ素子120bが実装された基板130の一部は、開口部211hに挿入されている。基板130の残部は、平坦部215上に載置されている。これにより、第1磁気センサ素子120aの一部は、アーチ状部211の内側に配置されて延在部214の裏面側に位置している。第2磁気センサ素子120bの一部は、平坦部215の表面側に位置している。すなわち、第1磁気センサ素子120aおよび第2磁気センサ素子120bは、1次導体210の厚さ方向(Z軸方向)において第1流路部と第2流路部との間に設けられ、1次導体210の幅方向(X軸方向)に並んで位置している。
 本実施形態においては、基板130の実装面と平坦部215の表面とが平行になるように基板130が配置されているが、基板130の実装面と平坦部215の表面とが垂直になるように基板130が配置されていてもよい。
 図16に示すように、1次導体210を流れる測定対象の電流は、アーチ状部211を通過する第1流路部と、平坦部215を通過する第2流路部との、2つの流路に分かれて流れる。1次導体210において2つの流路に分かれて電流が流れることにより、いわゆる右ねじの法則によって、第1流路部および第2流路部の各々を周回する磁界が発生する。
 図16,17に示すように、第1磁気センサ素子120aの一部はアーチ状部211の内側に配置されているため、第1磁気センサ素子120aには、第1突出部212を周回する磁界212eと、第2突出部213を周回する磁界213eと、延在部214を周回する磁界214eとが印加される。これにより、第1磁気センサ素子120aの磁気抵抗素子に印加される磁界が強くなるため、1次導体210を流れる測定電流に対する第1磁気センサ素子120aの感度が高くなる。第2磁気センサ素子120bには、平坦部215を周回する磁界215eが印加される。
 延在部214の裏面側の位置と、平坦部215の表面側の位置とでは、1次導体110の幅方向(X軸方向)の磁束の向きが互いに反対方向となる。すなわち、第1磁気センサ素子120aに作用する磁束の向きと、第2磁気センサ素子120bに作用する磁束の向きとが反対であるため、1次導体210を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ素子120aの検出値の位相と、第2磁気センサ素子120bの検出値の位相とは、逆相である。
 上記のように、本実施形態に係る電流センサ200は、1次導体210を流れる測定電流に対する第1磁気センサ素子120aの感度を高めることによって電流センサ200の感度を高めることができる。
 また、電流センサ200においては、第1磁気センサ素子120aおよび第2磁気センサ素子120bが実装された基板130の一部が開口部211hに挿入され、基板130の残部が平坦部215上に載置されていることにより、電流センサ200の低背化、集積化および小型化を図ることができる。
 さらに、本実施形態に係る電流センサ200は、1つの1次導体210に、第1磁気センサ素子120aおよび第2磁気センサ素子120bが実装された基板130を組み付ける構造を有しているため、電流センサ200の組み立てが容易であり、また、2つの1次導体を用いる場合に比較して、部品点数を削減して低コスト化を図ることができる。
 (実施形態3)
 以下、本発明の実施形態3に係る電流センサについて説明する。なお、実施形態3に係る電流センサ300は、1次導体に平坦部に代えて逆アーチ状部が設けられている点のみ実施形態2に係る電流センサ200と異なるため、実施形態2に係る電流センサ200と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図18は、本発明の実施形態3に係る電流センサの外観を示す斜視図である。図19は、本発明の実施形態3に係る電流センサが備える1次導体の外観を示す斜視図である。図20は、本発明の実施形態3に係る電流センサが備える磁気センサユニットの構成を示す分解斜視図である。図21は、本発明の実施形態3に係る電流センサが備える磁気センサユニットの筐体の外観を示す斜視図である。
 図18~21に示すように、本発明の実施形態3に係る電流センサ300は、測定対象の電流が流れる1次導体310と、1次導体310を流れる測定対象の電流により発生する磁界の強さをそれぞれ検出する第1磁気センサ素子120aおよび第2磁気センサ素子120bとを備える。
 本実施形態に係る電流センサ300においては、1次導体310にてスリット216のアーチ状部211側とは反対側に、1次導体310の厚さ方向(Z軸方向)の他方に突出するように曲がって1次導体310の長さ方向(Y軸方向)に延在し、他の1つの流路を構成する逆アーチ状部317が設けられている。逆アーチ状部317は、1次導体310の幅方向(X軸方向)にてスリット216に隣接してアーチ状部211と並んでいる。スリット216は、1次導体310の幅方向(X軸方向)にて1次導体310の中央に位置している。スリット216は、アーチ状部211と逆アーチ状部317とに挟まれて位置している。
 図19に示すように、本実施形態においては、逆アーチ状部317は、互いに間隔を置いて、1次導体310の主面に直交するように突出する第3突出部318および第4突出部319と、1次導体310の長さ方向(Y軸方向)に延在し、第3突出部318と第4突出部319とを繋ぐ延在部315とから構成されている。
 延在部214と延在部315との間に1次導体310の縦ギャップが形成されている。すなわち、1次導体310の厚さ方向(Z軸方向)における延在部214と延在部315との間の距離が、1次導体310の縦ギャップの幅Hbとなる。ただし、逆アーチ状部317の形状はこれに限られず、たとえば、1次導体310の幅方向(X軸方向)から見て、C字状または半円状の形状を有していてもよい。アーチ状部211と逆アーチ状部317とは、互いに同一形状を有する。すなわち、第1流路部と第2流路部とは、互いに点対称な形状を有する。
 図20に示すように、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々は、アンプおよび受動素子などの電子部品340a,340bと共に基板130に実装されている。本実施形態においては、第1磁気センサ素子120aおよび第2磁気センサ素子120bは、1次導体310の長さ方向(Y軸方向)において互いにずれつつ、1次導体310の幅方向(X軸方向)に並んで位置している。基板130が電気絶縁性を有する筐体350内に固定されることにより、磁気センサユニット360が構成されている。すなわち、第1磁気センサ素子120a、第2磁気センサ素子120b、電子部品340a,340bおよび基板130の各々は、筐体350に収容されている。
 図20,21に示すように、筐体350は、略直方体状の外形を有し、下部筐体351と上部筐体352とから構成されている。上部筐体352には、基板130と接続されるワイヤーハネースの取出し口352pが設けられている。
 筐体350は、PPS(ポリフェニレンスルファイド)などのエンジニアリングプラスチックで形成されている。PPSは、耐熱性が高いため、1次導体310の発熱を考慮した場合、筐体350の材料として好ましい。
 基板130を筐体350に固定する方法としては、螺子による締結、樹脂による熱溶着、または、接着剤による接合などを用いることができる。螺子を用いて基板130と筐体350とを締結する場合には、磁界の乱れが生じないように、非磁性の螺子を用いることが好ましい。
 アーチ状部211と逆アーチ状部317とによって形成される空間に、磁気センサユニット360が挿入されている。これにより、第1磁気センサ素子120aの一部は、アーチ状部211の内側に配置されて延在部214の裏面側に位置し、第2磁気センサ素子120bの一部は、逆アーチ状部317の内側に配置されて延在部315の表面側に位置している。
 上記の状態において、筐体350は、アーチ状部211の内側の面の少なくとも一部と接している。たとえば、上部筐体352が、延在部214の裏面の少なくとも一部と接している。さらに、筐体350は、逆アーチ状部317の内側の面の少なくとも一部と接している。たとえば、下部筐体351が、延在部315の表面の少なくとも一部と接している。
 これにより、第1磁気センサ素子120aとアーチ状部211との間隔、および、第2磁気センサ素子120bと逆アーチ状部317との間隔の各々を狭くしつつ、アーチ状部211に対する第1磁気センサ素子120aの位置のばらつき、および、逆アーチ状部317に対する第2磁気センサ素子120bの位置のばらつきの各々を低減して、電流センサ300の感度を高めつつ測定精度のばらつきを低減することができる。その結果、電流センサ300の測定再現性および量産性を高めることができる。また、アーチ状部211および逆アーチ状部317によって、磁気センサユニット360の構成部品を外力から保護することができる。
 本実施形態においては、1次導体310の厚さ方向(Z軸方向)から見て、1次導体310の幅方向(X軸方向)において、第1磁気センサ素子120aと第2磁気センサ素子120bとの中間の位置に、スリット216の中心が位置している。1次導体310の厚さ方向(Z軸方向)において、第1流路部と第2流路部との中間の位置に、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々が位置している。これにより、第1磁気センサ素子120aと1次導体310との位置関係と、第2磁気センサ素子120bと1次導体310との位置関係とを、略同一にすることができる。
 本実施形態においては、第2磁気センサ素子120bの一部は、逆アーチ状部317の内側に配置されているため、第2磁気センサ素子120bには、第3突出部318を周回する磁界と、第4突出部319を周回する磁界と、延在部315を周回する磁界とが印加される。これにより、第2磁気センサ素子120bの磁気抵抗素子に印加される磁界が強くなるため、1次導体310を流れる測定電流に対する第2磁気センサ素子120bの感度が高くなる。
 本実施形態に係る電流センサ300は、1次導体310を流れる測定電流に対する第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の感度を高めることによって電流センサ300の感度を高めることができる。
 本実施形態に係る電流センサ300においては、アーチ状部211の電気抵抗値と逆アーチ状部317の電気抵抗値とが略同一であるため、1次導体310を測定電流が流れることによるアーチ状部211の発熱量と逆アーチ状部317の発熱量とを同等にすることができる。その結果、第1磁気センサ素子120aの磁気抵抗素子の周囲の温度と、第2磁気センサ素子120bの磁気抵抗素子の周囲の温度とを略同じにすることができるため、磁気抵抗素子の温度特性による電流センサ300の測定値の誤差を低減することができる。
 なお、アーチ状部211および逆アーチ状部317の形状は上記に限られない。図22は、本発明の実施形態3の変形例に係る電流センサが備える1次導体の外観を示す斜視図である。図22に示すように、本実施形態の変形例に係る電流センサが備える1次導体310aは、1次導体310aの幅方向(X軸方向)から見て半円状の形状をそれぞれ有する、アーチ状部311および逆アーチ状部317aを含む。本実施形態の変形例に係る電流センサにおいては、磁気センサユニットの筐体は、略円柱状の外形を有している。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。たとえば、実施形態1,2に係る電流センサ100,200におけるアーチ状部211に、磁気センサユニット360が挿入されていてもよい。この場合、筐体350は、アーチ状部211の内側の面の少なくとも一部と接している。たとえば、上部筐体352が、延在部214の裏面の少なくとも一部と接している。下部筐体351が、平坦部215の表面の少なくとも一部と接している。電流センサにおいて、筐体が、1次導体と一体に構成されていてもよいし、1次導体に対して付け外し可能に構成されていてもよい。
 (実施形態4)
 以下、本発明の実施形態4に係る電流センサについて説明する。なお、実施形態4に係る電流センサ400は、第1流路部および第2流路部の形状が主に、実施形態3に係る電流センサ300と異なるため、実施形態3に係る電流センサ300と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図23は、本発明の実施形態4に係る電流センサの外観を示す斜視図である。図24は、本発明の実施形態4に係る電流センサが備える1次導体の外観を示す斜視図である。図25は、図24の1次導体を矢印XXV方向から見た側面図である。
 図23~25に示すように、本発明の実施形態4に係る電流センサ400は、測定対象の電流が流れ、表面および裏面を含み、長さ方向(Y軸方向)、長さ方向(Y軸方向)と直交する幅方向(X軸方向)、および、長さ方向(Y軸方向)と幅方向(X軸方向)とに直交する厚さ方向(Z軸方向)を有する板状の1次導体410を備える。
 本実施形態においては、第1流路部411は、幅方向(X軸方向)から見て、1次導体410の表面側に膨出している。第2流路部417は、幅方向(X軸方向)から見て、1次導体410の裏面側に膨出している。第2流路部417は、1次導体410の幅方向(X軸方向)にて第1流路部411と並んでいる。幅方向(X軸方向)から見て、第1流路部411と第2流路部417とによって囲まれた領域411hが形成されている。スリット416は、1次導体410の幅方向(X軸方向)にて1次導体410の中央に位置している。
 第1流路部411および第2流路部417の各々は、1次導体410の幅方向(X軸方向)から見て、半長円状の形状を有している。第1流路部411は、互いに間隔を置いて、1次導体410の表面から円弧状に突出する第1突出部412および第2突出部413と、1次導体410の長さ方向(Y軸方向)に延在し、第1突出部412と第2突出部413とを繋ぐ延在部414とから構成されている。第2流路部417は、互いに間隔を置いて、1次導体410の裏面から円弧状に突出する第3突出部418および第4突出部419と、1次導体410の長さ方向(Y軸方向)に延在し、第3突出部418と第4突出部419とを繋ぐ延在部415とから構成されている。
 第1流路部411と第2流路部417とによって形成される空間に、磁気センサユニット460が挿入されている。これにより、第1磁気センサ素子120aは、幅方向(X軸方向)から見て、領域411hの内部に位置し、かつ、第1磁気センサ素子120aの一部は、1次導体410の厚さ方向(Z軸方向)から見て、第1流路部411と重なって位置している。第2磁気センサ素子120bは、幅方向(X軸方向)から見て、領域411hの内部に位置し、かつ、第2磁気センサ素子120bの一部は、1次導体410の厚さ方向(Z軸方向)から見て、第2流路部417と重なって位置している。
 本実施形態に係る電流センサ400は、1次導体410を流れる測定対象の電流に対する第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の感度を高めることによって電流センサ400の感度を高めつつ、外部磁界の影響を低減することができる。
 本実施形態に係る電流センサ400においては、第1流路部411の電気抵抗値と第2流路部417の電気抵抗値とが略同一であるため、1次導体410を測定対象の電流が流れることによる第1流路部411の発熱量と第2流路部417の発熱量とを同等にすることができる。その結果、第1磁気センサ素子120aの磁気抵抗素子の周囲の温度と、第2磁気センサ素子120bの磁気抵抗素子の周囲の温度とを略同じにすることができるため、磁気抵抗素子の温度特性による電流センサ400の測定値の誤差を低減することができる。
 なお、磁気センサユニット460の一部が、第1流路部411と第2流路部417とによって形成される空間の外側に配置されていてもよい。図26は、本発明の実施形態4の変形例に係る電流センサの外観を示す斜視図である。図27は、図26の電流センサを矢印XXVII方向から見た側面図である。図28は、本発明の実施形態4の変形例に係る電流センサが備える磁気センサユニットの基板を表面側から見た図である。図29は、本発明の実施形態4の変形例に係る電流センサが備える磁気センサユニットの基板を裏面側から見た図である。
 図26,27に示すように、本発明の実施形態4の変形例に係る電流センサ400aは、1次導体410aと磁気センサユニット460aとを備える。磁気センサユニット460aは、幅方向(X軸方向)から見て、領域411hの内部に位置する磁気センサ収容部460iと、領域411hの外側に位置する電子部品収容部460oと、フランジ部460fとを含む。図28,29に示すように、電子部品収容部460oの内部に位置する部分の基板430の表面上に、電子部品440a,440b,441が実装されている。電子部品440a,440b,441は、演算回路を構成している。磁気センサ収容部460iの内部に位置する部分の基板430の裏面上に、第1磁気センサ素子120aおよび第2磁気センサ素子120bが実装されている。
 フランジ部460fには、図示しない貫通孔が設けられている。1次導体410aには、フランジ部460fの貫通孔に対応する位置に、図示しない貫通孔が設けられている。フランジ部460fの貫通孔および1次導体410aの貫通孔を挿通したボルト470とナット480とを螺合させることにより、磁気センサユニット460aと1次導体410aとを締結することができる。ボルト470およびナット480の各々は、非磁性材料で構成されている。
 本発明の実施形態4の変形例に係る電流センサ400aにおいては、ボルト470およびナット480により、磁気センサユニット460aを1次導体410aに確実に取り付けることができる。また、演算回路を構成する電子部品440a,440b,441を領域411hの外側に配置することにより、領域411hを小さくすることができる。領域411hを小さくすることにより、第1流路部411と第1磁気センサ素子120aとの間の距離、および、第2流路部417と第2磁気センサ素子120bとの間の距離を、小さくすることができるため、第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の感度を高めることができる。その結果、電流センサ400aの感度を高めつつ、外部磁界の影響を低減することができる。
 (実施形態5)
 以下、本発明の実施形態5に係る電流センサについて説明する。なお、実施形態5に係る電流センサ500は、第1流路部および第2流路部の形状が主に、実施形態3に係る電流センサ300と異なるため、実施形態3に係る電流センサ300と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図30は、本発明の実施形態5に係る電流センサの外観を示す斜視図である。図31は、本発明の実施形態5に係る電流センサが備える1次導体の外観を示す斜視図である。図32は、図31の1次導体を矢印XXXII方向から見た側面図である。図33は、図31の1次導体を矢印XXXIII方向から見た上面図である。図34は、図31の1次導体を矢印XXXIV方向から見た正面図である。
 図30~34に示すように、本発明の実施形態5に係る電流センサ500は、測定対象の電流が流れ、表面および裏面を含み、長さ方向(Y軸方向)、長さ方向(Y軸方向)と直交する幅方向(X軸方向)、および、長さ方向(Y軸方向)と幅方向(X軸方向)とに直交する厚さ方向(Z軸方向)を有する板状の1次導体510を備える。
 本実施形態においては、第2流路部517は、1次導体510の幅方向(X軸方向)にて第1流路部511と並んでいる。幅方向(X軸方向)から見て、第1流路部511と第2流路部517とによって囲まれた領域511hが形成されている。スリット516は、1次導体510の幅方向(X軸方向)にて1次導体510の中央に位置している。
 第1流路部511は、長さ方向(Y軸方向)における一端511aと他端511bとを有する。第2流路部517は、長さ方向(Y軸方向)における一端517aと他端517bとを有する。第1流路部511の一端511aと第2流路部517の一端517aとは、スリット516を間に挟んで、幅方向(X軸方向)に並んでいる。第1流路部511の他端511bと第2流路部517の他端517bとは、スリット516を間に挟んで、幅方向(X軸方向)に並んでいる。
 長さ方向(Y軸方向)における第1流路部511の一端511aと第1流路部511の他端511bとは、厚さ方向(Z軸方向)における位置が互いに異なっている。長さ方向(Y軸方向)における第2流路部517の一端517aと第2流路部517の他端517bとは、厚さ方向(Z軸方向)における位置が互いに異なっている。長さ方向(Y軸方向)における第1流路部511の一端511aと第2流路部517の一端517aとは、厚さ方向(Z軸方向)における位置が互いに等しい。長さ方向(Y軸方向)における第1流路部511の他端511bと第2流路部517の他端517bとは、厚さ方向(Z軸方向)における位置が互いに等しい。
 第1流路部511は、厚さ方向(Z軸方向)における第1流路部511の一端511aの位置と第1流路部511の他端511bの位置とを繋ぐ曲折部513を含む。第2流路部517は、厚さ方向(Z軸方向)における第2流路部517の一端517aの位置と第2流路部517の他端517bの位置とを繋ぐ曲折部518を含む。第1流路部511の曲折部513と、第2流路部517の曲折部518とは、長さ方向(Y軸方向)において互いに間隔を置いて位置している。
 本実施形態においては、第1流路部511は、一端511aから長さ方向(Y軸方向)に延在する延在部514と、延在部514の長さ方向(Y軸方向)の端部から厚さ方向(Z軸方向)に直線状に延在して他端511bに向かう曲折部513とを含む。すなわち、第1流路部511は、段状に形成されている。延在部514は、第1流路部511の一端511aと接している。曲折部513は、第1流路部511の他端511bと接している。なお、曲折部513の形状は、上記に限られず、幅方向(X軸方向)から見て、長さ方向(Y軸方向)および厚さ方向(Z軸方向)の各々に対して交差する方向に直線状に延在していてもよいし、湾曲していてもよい。
 第2流路部517は、一端517aから厚さ方向(Z軸方向)に直線状に延在する曲折部518と、曲折部518の厚さ方向(Z軸方向)の端部から長さ方向(Y軸方向)に延在して他端517bに向かう延在部515とを含む。すなわち、第2流路部517は、段状に形成されている。延在部515は、第2流路部517の他端517bと接している。曲折部518は、第2流路部517の一端517aと接している。なお、曲折部518の形状は、上記に限られず、幅方向(X軸方向)から見て、長さ方向(Y軸方向)および厚さ方向(Z軸方向)の各々に対して交差する方向に直線状に延在していてもよいし、湾曲していてもよい。
 第1流路部511と第2流路部517とによって形成される空間に、磁気センサユニット560が挿入されている。これにより、第1磁気センサ素子120aは、幅方向(X軸方向)から見て、領域511hの内部に位置し、かつ、第1磁気センサ素子120aの一部は、1次導体510の厚さ方向(Z軸方向)から見て、第1流路部511と重なって位置している。第2磁気センサ素子120bは、幅方向(X軸方向)から見て、領域511hの内部に位置し、かつ、第2磁気センサ素子120bの一部は、1次導体510の厚さ方向(Z軸方向)から見て、第2流路部517と重なって位置している。
 本実施形態に係る電流センサ500は、1次導体510を流れる測定対象の電流に対する第1磁気センサ素子120aおよび第2磁気センサ素子120bの各々の感度を高めることによって電流センサ500の感度を高めつつ、外部磁界の影響を低減することができる。
 本実施形態に係る電流センサ500においては、第1流路部511の電気抵抗値と第2流路部517の電気抵抗値とが略同一であるため、1次導体510を測定対象の電流が流れることによる第1流路部511の発熱量と第2流路部517の発熱量とを同等にすることができる。その結果、第1磁気センサ素子120aの磁気抵抗素子の周囲の温度と、第2磁気センサ素子120bの磁気抵抗素子の周囲の温度とを略同じにすることができるため、磁気抵抗素子の温度特性による電流センサ500の測定値の誤差を低減することができる。
 なお、磁気センサユニット560の筐体に、導体固定用のフランジが設けられていてもよい。図35は、本発明の実施形態5の変形例に係る電流センサの外観を示す斜視図である。図36は、図35の電流センサを矢印XXXVI方向から見た側面図である。
 図35,36に示すように、本発明の実施形態5の変形例に係る電流センサ500aは、1次導体510aと磁気センサユニット560aとを備える。磁気センサユニット560aの筐体には、フランジ部560fが設けられているフランジ部560fには、図示しない貫通孔が設けられている。1次導体510aには、フランジ部560fの貫通孔に対応する位置に、図示しない貫通孔が設けられている。フランジ部560fの貫通孔および1次導体510aの貫通孔を挿通したボルト570とナット580とを螺合させることにより、磁気センサユニット560aと1次導体510aとを締結することができる。ボルト570およびナット580の各々は、非磁性材料で構成されている。
 本発明の実施形態5の変形例に係る電流センサ500aにおいては、ボルト570およびナット580により、磁気センサユニット560aを1次導体510aに確実に取り付けることができる。
 (実施形態6)
 以下、本発明の実施形態6に係る電流センサについて説明する。なお、実施形態6に係る電流センサ600は、第1磁気センサ素子と第2磁気センサ素子とが1次導体の厚さ方向(Z軸方向)に並んでいる点が主に、実施形態1に係る電流センサ100と異なるため、実施形態1に係る電流センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図37は、本発明の実施形態6に係る電流センサの構成を示す断面図である。図38は、本発明の実施形態6に係る電流センサの1次導体に測定対象の電流が流れた際に発生する磁界を模式的に示す断面図である。なお、図37,38においては、図2と同様の断面視にて図示している。
 図37,38に示すように、本発明の実施形態6に係る電流センサ600においては、第1磁気センサ素子120aと第2磁気センサ素子120bとが、1次導体610の厚さ方向(Z軸方向)に並んでいる。第1磁気センサ素子120aおよび第2磁気センサ素子120bが、互いに別々の基板に実装されている。具体的には、第1磁気センサ素子120aは、第1基板630aに実装されている。第2磁気センサ素子120bは、第2基板630bに実装されている。
 第1磁気センサ素子120aが実装された第1基板630aは、第1導体110aと第2導体110bとの間に挿入されている。第2磁気センサ素子120bが実装された第2基板630bは、第1導体110aと第2導体110bとの間に挿入されている。本実施形態においては、第1基板630aは、第1導体110aおよび第2導体110bの各々と、互いに間隔をあけて略平行に位置している。第2基板630bは、第1導体110aおよび第2導体110bの各々と、互いに間隔をあけて略平行に位置している。第1基板630aと第2基板630bとは、互いに間隔をあけて略平行に位置している。ただし、第1磁気センサ素子120aおよび第2磁気センサ素子120bが、第1導体110aおよび第2導体110bの各々と互いに略垂直であるように配置された1つの基板に実装されていてもよい。
 図37においては、1次導体110の幅方向(X軸方向)において、第1磁気センサ素子120aの中心を通過する中心線をLca、第2磁気センサ素子120bの中心を通過する中心線をLcb、中心線Lcaと中心線Lcbとの間の中央線をLccで示している。中心線をLcaは、第1磁気センサ素子120aを構成する磁気抵抗膜の中心を通過している。中心線Lcbは、第2磁気センサ素子120bを構成する磁気抵抗膜の中心を通過している。1次導体610の厚さ方向(Z軸方向)における中心線Lcaと中心線Lcbとの間の距離(センサ間隔)はMhである。
 1次導体110の幅方向(X軸方向)において、第1導体110aと第2導体110bとの間の中央を通過する中央線をHcで示している。1次導体610の厚さ方向(Z軸方向)における中央線Hcと中央線Lccとの間の距離(位置ずれ量)はDhである。
 本実施形態においては、図38に示すように、第1磁気センサ素子120aの検出軸2の向きと、第2磁気センサ素子120b検出軸2の向きとは、互いに反対である。第1磁気センサ素子120aは、被測定磁界における1次導体110の幅方向(X軸方向)の一方に向いた磁界成分が印加される位置に配置されている。具体的には、第1磁気センサ素子120aは、検出軸2の矢印方向に向いた磁界成分が印加される位置に配置されている。
 第2磁気センサ素子120bは、被測定磁界における1次導体110の幅方向(X軸方向)の他方に向いた磁界成分が印加される位置に配置されている。具体的には、第2磁気センサ素子120bは、検出軸2の矢印方向に向いた磁界成分が印加される位置に配置されている。
 この場合、第1磁気センサ素子120aの検出する外部磁界の強さを正の値とすると、第2磁気センサ素子120bの検出する外部磁界の強さは負の値となる。一方、1次導体110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ素子120aの検出値の位相と、第2磁気センサ素子120b素子の検出値の位相とは同相となる。
 本実施形態においては、算出部190として差動増幅器に代えて加算器または加算増幅器を用いる。外部磁界の強さについては、第1磁気センサ素子120aの検出値と第2磁気センサ素子120bの検出値とを加算器または加算増幅器によって加算することにより、第1磁気センサ素子120aの検出値の絶対値と、第2磁気センサ素子120bの検出値の絶対値とが減算される。これにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。
 一方、1次導体110を流れる電流により発生する磁界の強さについては、第1磁気センサ素子120aの検出値と第2磁気センサ素子120bの検出値とを加算器または加算増幅器によって加算することにより、1次導体110を流れた測定対象の電流の値が算出される。
 このように、第1磁気センサ素子120aと第2磁気センサ素子120bとの入出力特性を互いに逆の極性にしつつ、差動増幅器に代えて加算器または加算増幅器を算出部として用いてもよい。
 図5,6に示すように、1次導体110の幅方向(X軸方向)におけるロバスト領域Tにおいては、1次導体110の厚さ方向(Z軸方向)の位置による被測定磁界の1次導体110の幅方向(X軸方向)の磁束密度の変化率が小さい。そのため、第1磁気センサ素子120aおよび第2磁気センサ素子120bの1次導体110の幅方向(X軸方向)における位置がロバスト領域T内であって、第1磁気センサ素子120aおよび第2磁気センサ素子120bの1次導体110の厚さ方向(Z軸方向)の位置がともにずれた場合、第1磁気センサ素子120aの検出値および第2磁気センサ素子120bの検出値の各々は、ほとんど変化しない。すなわち、第1磁気センサ素子120aの検出値と第2磁気センサ素子120bの検出値とを合算した値は、ほとんど変化しない。
 その結果、測定対象の電流が流れる1次導体110に対する第1磁気センサ素子120aおよび第2磁気センサ素子120bの位置ずれによる電流センサ600の測定誤差を低減することができる。
 本実施形態においては、第1磁気センサ素子120aおよび第2磁気センサ素子120bが互いに別々の基板に実装されていることにより、基板のたわみによって生じる応力を低減することができるため、第1磁気センサ素子120aおよび第2磁気センサ素子120bが基板のたわみによって生じる応力によって損傷することを抑制できる。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。たとえば、実施形態1に係る電流センサ100において、平坦部115に代えて逆アーチ状部317を1次導体110に設けてもよい。実施形態1,2に係る電流センサ100,200におけるアーチ状部111に、磁気センサユニット360が挿入されていてもよい。この場合、筐体350は、アーチ状部111の内側の面の少なくとも一部と接している。たとえば、上部筐体352が、延在部114の裏面の少なくとも一部と接している。下部筐体351が、平坦部115の表面の少なくとも一部と接している。電流センサにおいて、筐体が、1次導体と一体に構成されていてもよいし、1次導体に対して付け外し可能に構成されていてもよい。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 2 検出軸、100,200,300,400,400a,500,500a,600 電流センサ、110,210,310,310a,410,410a,510,510a,610 1次導体、110a 第1導体、110ae,110be,212e,213e,214e,215e 磁界、110b 第2導体、120a 第1磁気センサ素子、120b 第2磁気センサ素子、130,430 基板、160 樹脂パッケージ、170 接合剤、190 算出部、211 アーチ状部、211h 開口部、212,412 第1突出部、213,413 第2突出部、114,214,315,414,415,514,515 延在部、215 平坦部、216,416,516 スリット、317,317a 逆アーチ状部、318,418 第3突出部、319,419 第4突出部、340a,340b,440a,440b,441 電子部品、350 筐体、351 下部筐体、352 上部筐体、352p 取出し口、360,460,460a,560,560a 磁気センサユニット、411,511 第1流路部、411h,511h 囲まれた領域、417,517 第2流路部、460f,560f フランジ部、460i 磁気センサ収容部、460o 電子部品収容部、470,570 ボルト、480,580 ナット、511a,517a 一端、511b,517b 他端、513,518 曲折部、630a 第1基板、630b 第2基板、C1,C2,Lc,Lca,Lcb 中心線、Cb,Cc,Hc,Lcc 中央線、T ロバスト領域。

Claims (28)

  1.  測定対象の電流が流れ、表面および裏面を含み、長さ方向、該長さ方向と直交する幅方向、および、前記長さ方向と前記幅方向とに直交する厚さ方向を有する板状の導体と、
     前記電流により発生する磁界の強さを検出する、第1磁気センサ素子および第2磁気センサ素子とを備え、
     前記導体は、前記長さ方向における途中で、前記電流が分流されて流れる第1流路部および第2流路部を含み、
     前記第1流路部と前記第2流路部とは、前記幅方向および前記厚さ方向の各々において、互いに間隔をあけて位置し、
     前記第1磁気センサ素子および前記第2磁気センサ素子は、前記厚さ方向において前記第1流路部と前記第2流路部との間に設けられており、
     前記第1磁気センサ素子および前記第2磁気センサ素子の各々の少なくとも一部は、前記幅方向において前記第1流路部と前記第2流路部との間に設けられており、
     前記幅方向において、前記第1磁気センサ素子の中心と前記第2磁気センサ素子の中心との間の距離は、前記第1流路部と前記第2流路部との間の距離以下である、電流センサ。
  2.  前記第1磁気センサ素子と前記第2磁気センサ素子とが、前記幅方向に並んでいる、請求項1に記載の電流センサ。
  3.  前記第1磁気センサ素子の中心および前記第2磁気センサ素子の中心の各々は、前記幅方向において、前記第1流路部と前記第2流路部との間に位置している、請求項2に記載の電流センサ。
  4.  前記第1磁気センサ素子の全体および前記第2磁気センサ素子の全体の各々は、前記幅方向において、前記第1流路部と前記第2流路部との間に位置している、請求項2に記載の電流センサ。
  5.  前記第1磁気センサ素子の一部は、前記厚さ方向から見て、前記第1流路部を構成する部分の前記導体と重なって位置し、
     前記第2磁気センサ素子の一部は、前記厚さ方向から見て、前記第2流路部を構成する部分の前記導体と重なって位置している、請求項3に記載の電流センサ。
  6.  前記導体は、前記厚さ方向の一方に突出するように曲がって前記長さ方向に延在し、前記第1流路部を構成するアーチ状部を含む、請求項1から請求項5のいずれか1項に記載の電流センサ。
  7.  前記導体は、前記厚さ方向の他方に突出するように曲がって前記長さ方向に延在し、前記第2流路部を構成する逆アーチ状部をさらに含む、請求項6に記載の電流センサ。
  8.  前記第1磁気センサ素子の一部は、前記アーチ状部の内側に配置されて前記導体の裏面側に位置し、
     前記第2磁気センサ素子の一部は、前記逆アーチ状部の内側に配置されて前記導体の前記表面側に位置している、請求項7に記載の電流センサ。
  9.  前記アーチ状部と前記逆アーチ状部とが、互いに同一形状を有する、請求項7または請求項8に記載の電流センサ。
  10.  前記第1流路部は、前記幅方向から見て、前記導体の表面側に膨出している、請求項1から請求項5のいずれか1項に記載の電流センサ。
  11.  前記第2流路部は、前記幅方向から見て、前記導体の裏面側に膨出している、請求項10項に記載の電流センサ。
  12.  前記第1流路部および前記第2流路部の各々は、前記長さ方向における一端と他端とを有し、
     前記長さ方向における前記第1流路部の一端と前記第1流路部の他端とは、前記厚さ方向における位置が互いに異なっており、
     前記長さ方向における前記第2流路部の一端と前記第2流路部の他端とは、前記厚さ方向における位置が互いに異なっており、
     前記長さ方向における前記第1流路部の一端と前記第2流路部の一端とは、前記厚さ方向における位置が互いに等しく、
     前記長さ方向における前記第1流路部の他端と前記第2流路部の他端とは、前記厚さ方向における位置が互いに等しく、
     前記第1流路部は、前記厚さ方向における前記第1流路部の前記一端の位置と前記第1流路部の前記他端の位置とを繋ぐ曲折部を含み、
     前記第2流路部は、前記厚さ方向における前記第2流路部の前記一端の位置と前記第2流路部の前記他端の位置とを繋ぐ曲折部を含み、
     前記第1流路部の前記曲折部と、前記第2流路部の前記曲折部とは、前記長さ方向において互いに間隔を置いて位置している、請求項1から請求項5のいずれか1項に記載の電流センサ。
  13.  前記第1流路部と前記第2流路部とが、互いに点対称な形状を有する、請求項11または請求項12に記載の電流センサ。
  14.  前記導体に、前記長さ方向に延在するスリットが設けられていることにより、前記第1流路部と前記第2流路部とが、前記幅方向において互いに間隔をあけて位置している、請求項1から請求項13のいずれか1項に記載の電流センサ。
  15.  前記スリットは、前記幅方向にて前記導体の中央に位置している、請求項14に記載の電流センサ。
  16.  前記厚さ方向から見て、前記幅方向にて、前記第1磁気センサ素子と前記第2磁気センサ素子との中間に前記スリットの中心が位置している、請求項14または請求項15に記載の電流センサ。
  17.  前記導体は、1つの導体で構成されている、請求項1から請求項16のいずれか1項に記載の電流センサ。
  18.  前記厚さ方向にて、前記第1流路部と前記第2流路部との中間の位置に、前記第1磁気センサ素子および前記第2磁気センサ素子の各々が位置している、請求項15または請求項16に記載の電流センサ。
  19.  前記第1磁気センサ素子と前記第2磁気センサ素子とが、前記厚さ方向に並んでいる、請求項1に記載の電流センサ。
  20.  前記第1磁気センサ素子および前記第2磁気センサ素子の各々は、前記幅方向の磁界成分を検出し、
     前記第1磁気センサ素子は、前記磁界における前記幅方向の一方に向いた磁界成分が印加される位置に配置されており、
     前記第2磁気センサ素子は、前記磁界における前記幅方向の他方に向いた磁界成分が印加される位置に配置されている、請求項1から請求項19のいずれか1項に記載の電流センサ。
  21.  前記第1磁気センサ素子および前記第2磁気センサ素子が、1つの基板に実装されている、請求項1から請求項20のいずれか1項に記載の電流センサ。
  22.  前記第1磁気センサ素子および前記第2磁気センサ素子が、互いに別々の基板に実装されている、請求項1から請求項20のいずれか1項に記載の電流センサ。
  23.  前記第1磁気センサ素子および前記第2磁気センサ素子を収容する筐体をさらに備え、
     前記筐体は、前記第1流路部の裏面の少なくとも一部と接している、請求項1から請求項22のいずれか1項に記載の電流センサ。
  24.  前記第1流路部は、前記長さ方向に延在する延在部を含み、
     前記筐体は、前記延在部の裏面の少なくとも一部と接している、請求項23に記載の電流センサ。
  25.  前記第1磁気センサ素子および前記第2磁気センサ素子を収容する筐体をさらに備え、
     前記筐体は、前記第1流路部の裏面の少なくとも一部、および、前記第2流路部の表面の少なくとも一部、の各々と接している、請求項11に記載の電流センサ。
  26.  前記第1流路部および前記第2流路部の各々は、前記長さ方向に延在する延在部を含み、
     前記筐体は、前記第1流路部の前記延在部の裏面の少なくとも一部、および、前記第2流路部の前記延在部の表面の少なくとも一部、の各々と接している、請求項25に記載の電流センサ。
  27.  前記第1磁気センサ素子の検出値と前記第2磁気センサ素子の検出値とを演算することにより前記電流の値を算出する算出部をさらに備え、
     前記導体を流れる前記電流により発生する磁界の強さについて、前記第1磁気センサ素子の検出値の位相と前記第2磁気センサ素子の検出値の位相とが逆相であり、
     前記算出部が減算器または差動増幅器である、請求項1から請求項26のいずれか1項に記載の電流センサ。
  28.  前記第1磁気センサ素子の検出値と前記第2磁気センサ素子の検出値とを演算することにより前記電流の値を算出する算出部をさらに備え、
     前記導体を流れる前記電流により発生する磁界の強さについて、前記第1磁気センサ素子の検出値の位相と前記第2磁気センサ素子の検出値の位相とが同相であり、
     前記算出部が加算器または加算増幅器である、請求項1から請求項26のいずれか1項に記載の電流センサ。
PCT/JP2016/067879 2015-07-10 2016-06-16 電流センサ WO2017010219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680024042.6A CN107533089B (zh) 2015-07-10 2016-06-16 电流传感器
JP2017528340A JP6414641B2 (ja) 2015-07-10 2016-06-16 電流センサ
US15/726,492 US10281497B2 (en) 2015-07-10 2017-10-06 Current sensor including a first flow portion and a second flow portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-138530 2015-07-10
JP2015138530 2015-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/726,492 Continuation US10281497B2 (en) 2015-07-10 2017-10-06 Current sensor including a first flow portion and a second flow portion

Publications (1)

Publication Number Publication Date
WO2017010219A1 true WO2017010219A1 (ja) 2017-01-19

Family

ID=57756996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067879 WO2017010219A1 (ja) 2015-07-10 2016-06-16 電流センサ

Country Status (4)

Country Link
US (1) US10281497B2 (ja)
JP (1) JP6414641B2 (ja)
CN (1) CN107533089B (ja)
WO (1) WO2017010219A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017018306A1 (ja) * 2015-07-24 2017-11-24 株式会社村田製作所 電流センサ
WO2018185964A1 (ja) * 2017-04-04 2018-10-11 株式会社村田製作所 電流センサ
WO2019035230A1 (ja) * 2017-08-16 2019-02-21 株式会社村田製作所 電流センサ
WO2019069500A1 (ja) * 2017-10-06 2019-04-11 株式会社村田製作所 磁気センサ及び電流センサ
EP3508863A1 (en) * 2018-01-05 2019-07-10 Melexis Technologies SA Offset current sensor structure
CN110226094A (zh) * 2017-02-17 2019-09-10 阿尔卑斯阿尔派株式会社 电流传感器
CN114002633A (zh) * 2021-09-30 2022-02-01 南方电网数字电网研究院有限公司 基于磁场的电流测量误差分析方法及系统
US20220178972A1 (en) * 2019-03-15 2022-06-09 Tdk Corporation Current sensor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124406B1 (en) * 2014-07-13 2021-09-21 Sestra Systems, Inc. System and method for piston detection in a metering mechanism for use with beverage dispensing system
CN110226093B (zh) 2017-02-10 2022-04-15 阿尔卑斯阿尔派株式会社 电流传感器
US11982693B2 (en) * 2018-10-11 2024-05-14 The University Of North Carolina At Charlotte Systems and methods to detect and measure the current mismatch among parallel semiconductor devices
DE102019121385A1 (de) * 2019-08-07 2021-02-11 Infineon Technologies Ag Vorrichtung und verfahren zum montieren eines magnetfeldsensor-chips an einer stromschiene
JP7099483B2 (ja) * 2020-02-21 2022-07-12 Tdk株式会社 電流センサ
US11467188B2 (en) * 2020-02-25 2022-10-11 Infineon Technologies Ag Current sensor for improved functional safety
EP4075151A1 (en) * 2021-04-18 2022-10-19 Melexis Technologies SA Current sensor system
JP2023043550A (ja) * 2021-09-16 2023-03-29 株式会社東芝 電流検出装置
CN114264859A (zh) * 2021-12-21 2022-04-01 江苏多维科技有限公司 一种电流传感器
CN114264861B (zh) * 2021-12-21 2023-10-31 江苏多维科技有限公司 一种电流传感器
CN115902345B (zh) * 2022-10-18 2024-07-02 苏州纳芯微电子股份有限公司 电流检测模块、用电设备及电流检测方法
CN115902346A (zh) * 2022-10-18 2023-04-04 苏州纳芯微电子股份有限公司 电流感测模块、用电设备及电流感测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107386A (ja) * 2000-10-03 2002-04-10 Stanley Electric Co Ltd 電流センサ
JP2005236134A (ja) * 2004-02-20 2005-09-02 Tdk Corp 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
JP2007078418A (ja) * 2005-09-12 2007-03-29 Denso Corp 電流センサおよび電流検出方法
JP2008039734A (ja) * 2006-08-10 2008-02-21 Koshin Denki Kk 電流センサ
JP2013088370A (ja) * 2011-10-21 2013-05-13 Alps Green Devices Co Ltd 電流センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681584B2 (ja) * 1999-08-27 2005-08-10 矢崎総業株式会社 電流センサ及びこれを用いた電気回路
JP5544502B2 (ja) * 2011-03-07 2014-07-09 アルプス・グリーンデバイス株式会社 電流センサ
CN103733079B (zh) * 2011-09-13 2015-12-23 阿尔卑斯绿色器件株式会社 电流传感器
JP2014010075A (ja) 2012-06-29 2014-01-20 Alps Green Devices Co Ltd 電流センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107386A (ja) * 2000-10-03 2002-04-10 Stanley Electric Co Ltd 電流センサ
JP2005236134A (ja) * 2004-02-20 2005-09-02 Tdk Corp 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
JP2007078418A (ja) * 2005-09-12 2007-03-29 Denso Corp 電流センサおよび電流検出方法
JP2008039734A (ja) * 2006-08-10 2008-02-21 Koshin Denki Kk 電流センサ
JP2013088370A (ja) * 2011-10-21 2013-05-13 Alps Green Devices Co Ltd 電流センサ

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017018306A1 (ja) * 2015-07-24 2017-11-24 株式会社村田製作所 電流センサ
CN110226094A (zh) * 2017-02-17 2019-09-10 阿尔卑斯阿尔派株式会社 电流传感器
CN110226094B (zh) * 2017-02-17 2021-04-20 阿尔卑斯阿尔派株式会社 电流传感器
WO2018185964A1 (ja) * 2017-04-04 2018-10-11 株式会社村田製作所 電流センサ
US11047884B2 (en) 2017-04-04 2021-06-29 Murata Manufacturing Co., Ltd. Current sensor
WO2019035230A1 (ja) * 2017-08-16 2019-02-21 株式会社村田製作所 電流センサ
WO2019069500A1 (ja) * 2017-10-06 2019-04-11 株式会社村田製作所 磁気センサ及び電流センサ
US11143719B2 (en) 2017-10-06 2021-10-12 Murata Manufacturing Co., Ltd. Magnetic sensor and current sensor
CN110741269A (zh) * 2017-10-06 2020-01-31 株式会社村田制作所 磁传感器以及电流传感器
EP3508863A1 (en) * 2018-01-05 2019-07-10 Melexis Technologies SA Offset current sensor structure
CN110007123A (zh) * 2018-01-05 2019-07-12 迈来芯电子科技有限公司 偏移电流传感器结构
US20190212372A1 (en) * 2018-01-05 2019-07-11 Melexis Technologies Sa Offset current sensor structure
US20190212371A1 (en) * 2018-01-05 2019-07-11 Melexis Technologies Sa Offset current sensor structure
EP3508864A1 (en) * 2018-01-05 2019-07-10 Melexis Technologies SA Offset current sensor structure
US11480591B2 (en) 2018-01-05 2022-10-25 Melexis Technologies Sa Offset current sensor structure
US11480590B2 (en) 2018-01-05 2022-10-25 Melexis Technologies Sa Offset current sensor structure
CN110007123B (zh) * 2018-01-05 2023-11-07 迈来芯电子科技有限公司 偏移电流传感器结构
US20220178972A1 (en) * 2019-03-15 2022-06-09 Tdk Corporation Current sensor
CN114002633A (zh) * 2021-09-30 2022-02-01 南方电网数字电网研究院有限公司 基于磁场的电流测量误差分析方法及系统

Also Published As

Publication number Publication date
US20180038898A1 (en) 2018-02-08
JP6414641B2 (ja) 2018-10-31
CN107533089A (zh) 2018-01-02
US10281497B2 (en) 2019-05-07
JPWO2017010219A1 (ja) 2017-11-16
CN107533089B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
JP6414641B2 (ja) 電流センサ
CN107250813B (zh) 电流传感器
US10274523B2 (en) Current sensor including a first current sensor and a second current sensor unit
US10605835B2 (en) Current sensor
JP6504260B2 (ja) 電流センサおよびこれを備える電力変換装置
JP6696571B2 (ja) 電流センサおよび電流センサモジュール
US10267825B2 (en) Current sensor including a housing surrounded by bent portions of primary conductors
JP6384677B2 (ja) 電流センサ
JP6540802B2 (ja) 電流センサ
JP6311790B2 (ja) 電流センサ
WO2019038964A1 (ja) 電流センサ
JPWO2015029736A1 (ja) 電流センサ
JP2015036636A (ja) 電流センサ
WO2014123007A1 (ja) 電流センサ
WO2017010210A1 (ja) 電流センサ
JP2019100922A (ja) 電流センサ
CN109328307B (zh) 磁传感器以及具备该磁传感器的电流传感器
JP2014085251A (ja) 電流センサ
WO2016076114A1 (ja) 電流センサ
WO2022030177A1 (ja) 電流センサ
JP2017058275A (ja) 電流センサおよびそれを備える電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824199

Country of ref document: EP

Kind code of ref document: A1