WO2017010059A1 - 複層摺動部材 - Google Patents

複層摺動部材 Download PDF

Info

Publication number
WO2017010059A1
WO2017010059A1 PCT/JP2016/003186 JP2016003186W WO2017010059A1 WO 2017010059 A1 WO2017010059 A1 WO 2017010059A1 JP 2016003186 W JP2016003186 W JP 2016003186W WO 2017010059 A1 WO2017010059 A1 WO 2017010059A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
mass
steel plate
sliding member
copper
Prior art date
Application number
PCT/JP2016/003186
Other languages
English (en)
French (fr)
Inventor
康弘 白坂
大野 正人
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Priority to US15/742,579 priority Critical patent/US20180200994A1/en
Priority to KR1020187001214A priority patent/KR20180030530A/ko
Priority to CN201680041667.3A priority patent/CN107848035A/zh
Priority to EP16824045.5A priority patent/EP3323536A4/en
Publication of WO2017010059A1 publication Critical patent/WO2017010059A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • F16C33/206Multilayer structures, e.g. sleeves comprising a plastic lining with three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/52Alloys based on nickel, e.g. Inconel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/58Several materials as provided for in F16C2208/30 - F16C2208/54 mentioned as option
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines

Definitions

  • the present invention provides a back metal having a steel plate and a porous sintered alloy layer integrally formed on one surface of the back metal, or further, a pore of the porous sintered alloy layer and a fixed adhesion to one surface of the porous sintered alloy layer. More particularly, it is used in the presence of a lubricating oil containing an extreme pressure additive containing chlorine or sulfur in a sliding part of an internal combustion engine or a transmission. And a suitable multilayer sliding member.
  • Multi-layer sliding comprising a back plate made of a steel plate and a porous sintered alloy layer formed integrally with one side of the back plate and made of a bronze-based copper alloy such as bronze, lead bronze or phosphor bronze A member has been proposed (see Patent Documents 1 to 3).
  • a bronze-based copper alloy such as bronze, lead bronze or phosphor bronze
  • Patent Documents 4 and 5 In order to improve the wear resistance, seizure resistance and conformability of this porous sintered alloy layer, for example, phosphorus, aluminum and Proposals for adding bismuth or the like have also been made (see Patent Documents 4 and 5).
  • the multi-layer sliding member is used under many different conditions such as dry friction conditions or in oil or oil lubrication conditions. Under extreme pressure conditions where the surface pressure at the surface is high and seizure due to the rupture of the oil film is likely to occur, and contains an extreme pressure additive containing chlorine, particularly sulfur (S), phosphorus (P), etc. When used in oil or under oil-lubricated conditions, it contains copper (Cu) of the porous sintered alloy layer exposed on the cutting surface or sliding surface of the multi-layer sliding member, and as an extreme pressure additive.
  • S sulfur
  • P phosphorus
  • the multilayer sliding member of the present invention is composed of a back plate having a steel plate, integrally joined to one surface of the back plate, and 25 to 60% by mass of nickel, 2 to 7% by mass of phosphorus, and the balance copper. And a porous sintered alloy layer.
  • the present invention has been made paying attention to nickel (Ni) which has an effect of suppressing the formation of sulfides in a sulfidation corrosion environment in the same manner as zinc, and has a predetermined amount with respect to copper (Cu) as a main component.
  • Ni nickel
  • Cu copper
  • the porous sliding member is porous even in an oil or an oil lubrication condition using a lubricating oil containing an extreme pressure additive containing sulfur.
  • the progress of sulfidation corrosion of the porous sintered alloy layer is suppressed as much as possible, and the porous sintered alloy layer does not fall off from the back metal due to the formation of sulfide due to sulfidation corrosion.
  • the multi-layer sliding member of the present invention is a coating that includes at least a synthetic resin and is filled and fixed to the pores and one surface of the porous sintered alloy layer in order to add low friction to the porous sintered alloy layer.
  • the coating layer does not peel from the porous sintered alloy layer.
  • the synthetic resin includes at least one main component selected from a fluororesin (polytetrafluoroethylene resin, etc.), a polyacetal resin, a polyamide resin, a polyphenylene sulfide resin, a polyether ether ketone resin, and a polyamideimide resin, and a polyimide.
  • at least one additional component comprising an organic material selected from a resin, a baked phenolic resin, a polyphenylene sulfone resin and an oxybenzoyl polyester resin, and the coating layer includes a phosphate, barium sulfate and a solid lubricant. It may contain at least one inorganic material selected from.
  • the coating layer include barium sulfate 5 to 40% by mass, phosphate 1 to 30% by mass, one or more organic materials 1 to 2 selected from polyimide resin, calcined phenol resin and polyphenylene sulfone resin.
  • synthetic resin consisting of the remainder polytetrafluoroethylene resin or oxybenzoyl polyester resin 1-25% by volume, phosphate 1-15% by volume, barium sulfate 1-20% by volume, synthesis consisting of the remainder polytetrafluoroethylene resin Resin, and further synthetic resin comprising 0.5 to 5% by weight of polyhydric alcohol fatty acid ester derived from saturated fatty acid and polyhydric alcohol, 0.5 to 3% by weight of jojoba oil, and the remainder polyacetal resin, etc. Can be illustrated.
  • the porous sintered alloy layer is integrally joined to one surface of the back metal, and nickel is 25 to 60 mass%, phosphorus is 2 to 7 mass%, tin is 3 to 8 It may consist of mass% and the balance copper, and such tin exhibits an inhibitory action against the progress of sulfidation corrosion of the porous sintered alloy layer.
  • the steel plate is made of a ferritic, austenitic or martensitic stainless (SUS) steel plate according to the use of the multilayer sliding member,
  • One surface of the stainless steel plate may be provided, and the back metal is composed of the stainless steel plate and a nickel film covering one surface of the stainless steel plate, and the one surface of the back metal is formed of the nickel film.
  • the back metal may be a general structural rolled steel plate (SS400 or the like) defined in JISG3101 as a steel plate or a cold rolled steel plate (SPCC) defined in JISG3141 as a general steel plate.
  • nickel top steel plate comprising a nickel film coated with electrolytic nickel plating or the like on one surface of a structural rolled steel plate or a cold rolled steel plate
  • One surface of the gold may be one surface of the nickel coating
  • the stainless steel plate of the back metal is usually covered with a passive coating on both surfaces, and the corrosion resistance on both surfaces is stably maintained. Therefore, a nickel film is not usually required on both sides, but this passive film is extremely thin and fragile. Therefore, on one side of the stainless steel plate, as described above, the purpose is to reinforce the passive film.
  • a nickel film may be formed by nickel plating, and the thickness of these nickel films is preferably about 3 to 50 ⁇ m.
  • a cold rolled stainless steel plate is suitable, and among these, examples of the JIS steel types of the ferritic stainless steel plate include SUS405, SUS410L, SUS429, SUS430, SUS434, SUS436L, SUS444, and SUS447J1.
  • Examples of the JIS steel grade of the austenitic stainless steel sheet include SUS301, SUS302, SUS303, SUS304, SUS305, SUS309S, SUS310S, SUS316, SUS317, SUS321, SUS347, and SUS384. Examples include SUS403, SUS410, SUS416, SUS420J1, SUS431, and SUS440A. It is.
  • nickel is a solid solution with copper, which is the main component of the porous sintered alloy layer
  • the sintering proceeds due to the so-called mutual diffusion phenomenon in which nickel diffuses into copper and copper diffuses into nickel.
  • a matrix containing a dense copper-nickel alloy (CuNi) is formed on the porous sintered alloy layer.
  • the matrix containing the copper-nickel alloy contributes to the improvement of the wear resistance, load resistance, corrosion resistance and strength of the porous sintered alloy layer and exhibits the effect of suppressing the progress of sulfidation corrosion.
  • Nickel diffuses to one side of the back metal during sintering and alloyes its interface, improving the bonding strength of the porous sintered alloy layer to one side of the back metal and partially alloying with phosphorus.
  • NiP nickel-phosphorus alloy
  • nickel in the porous sintered alloy layer is preferably contained in an amount of 25 to 60% by mass, especially 25 to 50% by mass.
  • the porous sintered alloy layer includes a matrix containing a copper-nickel alloy and a nickel-phosphorus alloy phase crystallized at a grain boundary of the matrix. It has a hardness (HMV) (hereinafter referred to as hardness) 170, and the nickel-phosphorus alloy phase has a hardness of at least 600.
  • HMV hardness
  • the nickel-phosphorus alloy phase has a hardness of at least 600.
  • Phosphorus is alloyed with copper and nickel, which are the main components, to increase the strength of the matrix as a copper-nickel-phosphorus alloy and to produce a liquid phase of the nickel-phosphorus alloy at a temperature around 875 ° C.
  • the nickel-phosphorus alloy phase having a hardness higher than that of the matrix is crystallized at the grain boundary of the matrix including the alloy phase, thereby exhibiting the effect of further improving the wear resistance of the porous sintered alloy layer.
  • phosphorus since phosphorus has a strong reducing power, it exhibits an effect of purifying one side of the back metal by its reducing action and promoting alloying by diffusion of nickel to one side of the back metal.
  • phosphorus is preferably contained in the porous sintered alloy layer in an amount of 2 to 7% by mass, especially 3 to 5% by mass.
  • the porous sintered alloy layer may further contain tin in addition to nickel and phosphorus with respect to copper as a main component.
  • Tin is alloyed with copper, which is the main component, to form a copper-tin alloy (CuSn), which promotes sintering and contributes to improvement of the strength, toughness and wear resistance of the porous sintered alloy layer.
  • CuSn copper-tin alloy
  • nickel like nickel, it exhibits an inhibitory action against the progress of sulfidation corrosion.
  • the content of tin is less than 3% by mass, the above effect is not sufficiently exhibited.
  • tin is preferably contained in the porous sintered alloy layer in an amount of 3 to 8% by mass, especially 5 to 7% by mass.
  • the copper which is the main component of the porous sintered alloy layer is in the form of a simple copper powder, or a copper-nickel alloy powder or a copper-phosphorus alloy (CuP) powder.
  • the nickel is usually used in the form of a copper-nickel alloy powder, for example, an atomized copper-nickel alloy powder of copper-20 to 40% by mass nickel or a simple nickel powder with respect to copper as a main component.
  • Phosphorous may be used in the form of a nickel-phosphorus alloy powder, such as nickel-4 mass% phosphorous atomized nickel-phosphorus alloy powder or copper-phosphorus alloy powder, eg copper-15 mass% phosphorous atomized copper.
  • tin may be used in the form of a simple tin powder or in the form of a copper-tin alloy powder, for example, an atomized copper-tin alloy powder of copper-10 wt% tin, -nickel- Alternatively, each individual powder and alloy powder are appropriately combined so that copper-nickel-phosphorus-tin has a desired content, and these are melted to prepare a molten alloy, and then the molten alloy is pulverized by a gas atomization method.
  • Atomized copper-nickel-phosphorus alloy (CuNiP) powder or atomized copper-tin-nickel-phosphorus alloy (CuSnNiP) powder may be used, and this atomized copper-nickel-phosphorus alloy powder or atomized copper-tin- When used in the form of a nickel-phosphorus alloy powder, there is an advantage that so-called segregation, which is caused by the powder when copper, tin and nickel are used as a single powder and becomes non-uniform, can be avoided.
  • the porous sintered alloy layer has a thickness of about 0.1 to 0.5 mm, especially 0.3 to 0.4 mm, and the covering layer has a thickness of 0.02 to It has a thickness of 0.1 mm.
  • the multilayer sliding member according to the present invention is a flat sliding plate, and when a porous sintered alloy layer is provided with a coating layer in addition to the porous sintered alloy layer, the coating layer is disposed inside. It can be used as a cylindrically wound bush that is round and bent.
  • Low can suppress the progress of sulfidation corrosion, does not cause the porous sintered alloy layer to fall off due to the formation of sulfides due to sulfidation corrosion, and is firmly fixed to the porous sintered alloy layer It is possible to provide a multilayer sliding member that does not cause peeling of the covering layer.
  • FIG. 1 is a longitudinal sectional explanatory view of a preferred example of an embodiment of a multilayer sliding member of the present invention.
  • FIG. 2 is a longitudinal sectional explanatory view of a preferred example of another embodiment of the multilayer sliding member of the present invention.
  • 3 is an explanatory view of a micrograph of a porous sintered alloy layer based on Example 1.
  • FIG. 4 is an explanatory view of a micrograph of a porous sintered alloy layer based on Example 3.
  • FIG. FIG. 5 is an explanatory view of a micrograph of a porous sintered alloy layer based on Example 5.
  • FIG. 6 is an explanatory perspective view for explaining the thrust test method.
  • a stainless steel plate made of a continuous strip having a thickness of 0.3 to 1.0 mm provided as a hoop material is prepared by being wound in a coil shape.
  • the stainless steel plate to be prepared is not necessarily a continuous strip, but may be a strip cut to an appropriate length.
  • This mixed powder is spread on one side of the back metal 2 to a uniform thickness, and this is mixed in a vacuum or with hydrogen gas, hydrogen / nitrogen mixed gas (25 vol% H 2 -75 vol% N 2 ), ammonia decomposition gas (AX Sintering is performed at a temperature of 870 to 950 ° C. for 5 to 10 minutes in a heating furnace adjusted to a reducing atmosphere such as gas (mixed gas of 75 vol% H 2 and 25 vol% N 2 ).
  • Porous firing containing nickel 25 to 60% by mass, phosphorus 2 to 7% by mass and the balance copper or nickel 25 to 60% by mass, phosphorus 2 to 7% by mass, tin 3 to 8% by mass and the balance copper A multilayer sliding member 1 in which the bonding gold layer 3 is integrally diffusion bonded can be obtained.
  • the porous sintered alloy layer 3 includes a matrix containing a soft copper-nickel alloy having a hardness (HMV) of 170 or more, and a hard nickel-phosphorus alloy having a hardness (HMV) of 600 or more at the grain boundary of the matrix. It was observed with a microscope that the phases were dispersed and crystallized.
  • barium sulfate 5 to 40% by mass of barium sulfate, 1 to 30% by mass of phosphate, 1 to 10% by mass of a resin made of one or more organic materials selected from polyimide resin, calcined phenol resin and polyphenylene sulfone resin, 15 to 30 parts by weight of a petroleum solvent is blended with 100 parts by weight of a mixture containing polytetrafluoroethylene resin mixed with the rest of the polytetrafluoroethylene resin with a Henschel mixer, a resin made of barium sulfate, a phosphate and an organic material.
  • a synthetic resin is prepared by mixing at a temperature below the room temperature transition point of the polytetrafluoroethylene resin (15 ° C.), and the produced synthetic resin is sprayed and supplied to one surface of the porous sintered alloy layer 3. Rolling with a roller so that the thickness of the synthetic resin becomes a predetermined thickness, and filling and fixing the synthetic resin to the pores and one surface of the porous sintered alloy layer 3, Ide, after holding to remove the solvent which 200 ⁇ 250 ° C. for a few minutes in a hot air drying oven heated to a temperature of 300 to dry synthetic resin to a predetermined thickness ⁇ 600 kgf / cm 2 in the pressurizing Treat with pressure roller under pressure.
  • the multi-layer sliding member 1a is provided with the pores of the porous sintered alloy layer 3 integrally diffusion-bonded to the surface and the covering layer 4 filled and fixed on one surface.
  • Example 1 A back metal 2 made of a ferritic stainless steel plate (SUS430) having a thickness of 0.65 mm cut to a width of 170 mm and a length of 600 mm was used.
  • SUS430 ferritic stainless steel plate
  • This alloy powder is sprayed in a uniform thickness on one side of a back metal 2 degreased and cleaned in advance with trichrene, and this is reduced in a reducing atmosphere of hydrogen / nitrogen mixed gas (25 vol% H 2 -75 vol% N 2 ).
  • a reducing atmosphere of hydrogen / nitrogen mixed gas 25 vol% H 2 -75 vol% N 2 .
  • a multilayer sliding member 1 comprising 3% by mass and a porous sintered alloy layer 3 made of the remaining copper was produced. As is apparent from FIG.
  • the porous sintered alloy layer 3 in the produced multilayer sliding member 1 has a matrix 5 containing a dense copper-nickel alloy as a result of sintering by mutual diffusion of nickel and copper.
  • the nickel-phosphorus alloy phase 6 is dispersed and crystallized at the grain boundaries.
  • the hardness of the matrix 5 was 174, and the hardness of the nickel-phosphorus alloy phase 6 was 629.
  • Example 2 The same backing metal as in Example 1 was used.
  • a copper alloy powder (30 mass% nickel, 30 mass% nickel, phosphorous) was obtained in the same manner as in Example 1 from 75 mass% copper-40 mass% nickel alloy powder, 20 mass% copper-15 mass% phosphorus alloy powder, and 5 mass% copper powder. 3 mass% and copper 67 mass%) were produced.
  • a multilayer sliding member 1 having a backing metal 2 and a porous sintered alloy layer 3 was produced in the same manner as in Example 1 except that this copper alloy powder was sintered at a temperature of 900 ° C.
  • the porous sintered alloy layer 3 in the produced multilayer sliding member 1 exhibited the same structure as in Example 1.
  • the hardness of the matrix containing the copper-nickel alloy was 214, and the hardness of the nickel-phosphorus alloy phase was 630.
  • Example 3 A backing metal 2 having a nickel film with a thickness of 20 ⁇ m formed by electrolytic nickel plating on the entire surface including both surfaces of a ferritic stainless steel plate (SUS430) similar to that in Example 1 was used.
  • a mixed powder (37.8 mass% nickel, 2.2 mass% phosphorus, and 60 mass% copper) was prepared from 80 mass% copper-25 mass% nickel alloy powder and 20 mass% nickel-11 mass% phosphorous alloy powder.
  • one surface of the nickel coating applied to one surface of the ferritic stainless steel plate (SUS430) is degreased and cleaned with trichlene, and this degreased and cleaned nickel
  • the mixed powder thus prepared was spread on one surface of the coating to a uniform thickness, and a multilayer sliding member 1 having a backing metal 2 and a porous sintered alloy layer 3 was prepared in the same manner as in Example 2. did.
  • the porous sintered alloy layer 3 integrally diffusion-bonded to one surface of the nickel film of the back metal 2 is formed by the mutual interaction between nickel and copper as is apparent from FIG.
  • the nickel-phosphorus alloy phase 6 is dispersed and crystallized at the grain boundaries of the matrix 5 containing a dense copper-nickel alloy.
  • the hardness of the matrix 5 was 222, and the hardness of the nickel-phosphorus alloy phase 6 was 632.
  • Example 4 A back metal 2 similar to that in Example 3 was used.
  • a mixed powder (nickel 40% by mass, phosphorus 3.5% by mass and copper 56.5% by mass) was prepared from 43.5% by mass of nickel-8% by mass phosphorus alloy powder and 56.5% by mass of copper powder.
  • a multilayer sliding member 1 having a backing metal 2 and a porous sintered alloy layer 3 was produced in the same manner as in Example 3.
  • the porous sintered alloy layer 3 integrally diffusion-bonded to one surface of the nickel coating of the back metal 2 undergoes sintering by mutual diffusion between nickel and copper. It exhibited a structure in which the nickel-phosphorus alloy phase was dispersed and crystallized at the grain boundaries of the matrix containing a dense copper-nickel alloy.
  • the hardness of the matrix was 243, and the hardness of the nickel-phosphorus alloy phase was 633.
  • Example 5 instead of the ferritic stainless steel plate (SUS430), a back metal 2 similar to that in Example 3 was used except that a cold rolled steel plate (SPCC) was used.
  • SPCC cold rolled steel plate
  • Copper alloy powder (50 mass% nickel, 3 mass% phosphorous and 47 mass% copper) was prepared in the same manner as in Example 1 from 30 mass% copper powder, 50 mass% nickel powder, and 20 mass% copper-15 mass% phosphorous alloy powder. Mass%).
  • a multilayer sliding member 1 comprising a back metal 2 and a porous sintered alloy layer 3 was produced in the same manner as in Example 1 except that this copper alloy powder was sintered at a temperature of 895 ° C.
  • the porous sintered alloy layer 3 integrally diffusion-bonded to one surface of the nickel film of the back metal 2 is formed by mutual bonding of nickel and copper as is apparent from FIG. Sintering by diffusion progresses, and the nickel-phosphorus alloy phase 6 is dispersed and crystallized at the grain boundaries of the matrix 5 containing a dense copper-nickel alloy.
  • the hardness of the matrix 5 was 259, and the hardness of the nickel-phosphorus alloy phase 6 was 636.
  • Example 6 A back metal 2 similar to that used in Example 5 was used.
  • a mixed powder (57.6 mass% nickel, 2.4 mass% phosphorus, and 40 mass% copper) was prepared from 60 mass% nickel-4 mass% phosphorus alloy powder and 40 mass% copper powder.
  • a multilayer sliding member 1 having a backing metal 2 and a porous sintered alloy layer 3 was produced in the same manner as in Example 3.
  • the porous sintered alloy layer 3 in the produced multi-layer sliding member 1 has a nickel-phosphorus alloy phase at the grain boundary of a matrix containing a dense copper-nickel alloy as the sintering by the mutual diffusion of nickel and copper proceeds. Had a crystallized structure which was dispersed and crystallized.
  • the hardness of the matrix was 262 and the hardness of the nickel-phosphorus alloy phase was 639.
  • Example 7 A backing metal 2 similar to that used in Example 1 was used.
  • a multilayer sliding member 1 having a backing metal 2 and a porous sintered alloy layer 3 was produced in the same manner as in Example 3.
  • the porous sintered alloy layer 3 integrally diffusion-bonded to one surface of the back metal 2 has a dense copper structure due to the progress of sintering by mutual diffusion of nickel and copper.
  • -A structure in which the nickel-phosphorus alloy phase was dispersed and crystallized at the grain boundaries of the matrix containing the nickel alloy was exhibited.
  • the tin of the porous sintered alloy layer 3 was alloyed with matrix copper to form a copper-tin alloy.
  • the hardness of the matrix was 237, and the hardness of the nickel-phosphorus alloy phase was 633.
  • Example 8 Barium sulfate 15% by mass, calcium pyrophosphate 10% by mass, polyimide resin 2% by mass, graphite 0.5% by mass and the remainder polytetrafluoroethylene resin were fed into a Henschel mixer and stirred and mixed, and the resulting mixture 100 parts by weight
  • the porous sintered alloy layer of the multilayer sliding member 1 similar to that of Example 1 was prepared by mixing 20 parts by weight of a petroleum-based solvent with a synthetic resin mixed at a temperature below the room temperature transition point of PTFE (15 ° C.). 3 was sprayed and supplied to one surface, and rolled with a roller to fill and fix the pores of the porous sintered alloy layer 3 and the synthetic resin to one surface.
  • the dried synthetic resin was rolled with a roller at a pressure of 400 kgf / cm 2 to obtain a porous sintered alloy layer 3.
  • a coating layer 4 having a thickness of 0.05 mm is formed on one surface, and then heated and baked at 370 ° C. for 10 minutes in a heating furnace, and then subjected to pressure treatment again with a roller to adjust dimensions, swell, etc.
  • the porous sintered alloy layer 3 made of 25% by mass of nickel, 3% by mass of phosphorus, and the remaining copper is integrally diffusion bonded to one surface of the back metal 2.
  • the porous sintered alloy layer 3 has a pore and a coating layer comprising, on one surface, 15% by mass of barium sulfate, 10% by mass of calcium pyrophosphate, 2% by mass of polyimide resin, 0.5% by mass of graphite, and the remainder polytetrafluoroethylene resin. 4
  • the provided multilayer sliding member 1a was produced.
  • Comparative Example 1 Backing metal 2 similar to Example 5 was obtained by mixing a mixed powder obtained by mixing 10% by weight of atomized tin powder passing through a 350 mesh sieve and 90% by mass of electrolytic copper powder passing through a 150 mesh sieve with a V-type mixer for 20 minutes. A uniform thickness is applied to one side of the substrate, and this is sintered for 10 minutes at a temperature of 860 ° C. in a heating furnace adjusted to a hydrogen gas atmosphere. A multilayer sliding member 1 in which a porous sintered alloy layer 3 composed of 10% by mass of tin and the remaining copper was integrally diffusion-bonded was produced.
  • Comparative Example 2 Covering layer 4 made of the same synthetic resin as in Example 8 having a thickness of 0.05 mm filled and fixed on one surface of the porous sintered alloy layer 3 of the multilayer sintered member 1 of the multilayer sliding member 1 similar to Comparative Example 1.
  • Eneos gear oil GL-5 (trade name) manufactured by JX Nippon Oil & Energy is used as a gear oil to which an extreme pressure additive, a metal corrosion inhibitor, a cleaning dispersant, etc. are added to the base oil.
  • the multi-layer sliding members 1 and 1a of Examples 1 to 8 and Comparative Examples 1 and 2 are immersed for 500 hours in this gear oil held at 150 ° C. and taken out every 100 hours.
  • the mass change rate (%) of the porous sintered alloy layer 3 of the layer sliding members 1 and 1a was measured.
  • the cylindrical body 12 is fixed to the one side 13 of the plate-shaped bearing test piece 11 from the cylindrical body 12 as a counterpart material while applying a predetermined load in the direction A perpendicular to the surface 13 to the axis of the cylindrical body 12.
  • the sample was rotated in the direction B around the core 14, and the friction coefficient between the plate-shaped bearing test piece 11 and the cylindrical body 12 and the wear amount of the surface 13 after the 20-hour test were measured.
  • the multilayer sliding member 1 of Comparative Example 1 showed a friction coefficient of 0.36 under the condition of a surface pressure of 200 kgf / cm 2 in the test (thrust test) for the friction coefficient and the wear amount. The test under conditions was discontinued. Further, in the multilayer sliding member 1 a of Example 8, no defects such as peeling were observed on the coating layer 4 due to the sulfide corrosion of the porous sintered alloy layer 3. On the other hand, in the multilayer sliding member 1a of Comparative Example 2, sulfides (CuS, etc.) due to sulfidation corrosion are generated in a patchy manner on the coating layer 4 on one side after being immersed in gear oil containing an extreme pressure additive for 100 hours. As a result, further testing was discontinued.
  • CuS sulfides
  • the multi-layer sliding members 1 and 1a according to the present invention showed the progress of sulfidation corrosion in the sulfidation corrosion resistance test by immersion in gear oil containing an extreme pressure additive. It can be seen that it has excellent sliding characteristics and greatly improved load resistance even under high surface pressure conditions where the surface pressure is 800 kgf / cm 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

複層摺動部材1は、鋼板を有したからなる裏金2と、裏金2の一方の面に一体的に接合されていると共に銅に加えてニッケル25~60質量%、及び燐2~7質量%及び残部銅からなる多孔質焼結合金層3とを具備している。

Description

複層摺動部材
 本発明は、鋼板を有した裏金とこの裏金の一方の面に一体的に形成された多孔質焼結合金層とを又はこれらに更に多孔質焼結合金層の孔隙及び一方の面に充填固着されている被覆層を備えた複層摺動部材に関し、更に詳しくは、内燃機関又はトランスミッション等の摺動部において塩素又は硫黄等を含む極圧添加剤を含有する潤滑油の存在下で用いられて好適な複層摺動部材に関する。
 鋼板からなる裏金と、この裏金の一方の面に一体的に形成されていると共に青銅、鉛青銅又は燐青銅等の青銅系銅合金からなる多孔質焼結合金層とを具備した複層摺動部材が提案されており(特許文献1から3参照)、この多孔質焼結合金層の耐摩耗性、耐焼付性及びなじみ性を向上させるべく、多孔質焼結合金層に例えば燐、アルミニウム及びビスマス等を添加したりする提案もなされている(特許文献4及び5参照)。
特開昭50-43006号公報 特開昭53-117149号公報 特開平11-173331号公報 特開平10-330868号公報 特開2005-163074号公報
 ところで、複層摺動部材は、多くの異なった条件下、例えば乾燥摩擦条件又は油中若しくは油潤滑条件等の条件下で使用されるが、油中又は油潤滑条件下の使用、特に摩擦面での面圧が高く、油膜の破断に起因する焼付きを生じやすい極圧条件下であって、塩素、硫黄(S)、燐(P)等、特に硫黄を含む極圧添加剤を含有する油中又は油潤滑条件下の使用では、複層摺動部材の切削加工による切削面又は摺動面に露出した多孔質焼結合金層の銅(Cu)と、極圧添加剤として含有されている潤滑油中の硫黄との反応により硫化物(CuS、CuS等)の生成に伴う青銅系銅合金からなる多孔質焼結合金層に硫化腐食を生じさせ、この生成された硫化物は、多孔質焼結合金層の強度を低下させ、かつ被覆層の摩耗を促進させる。
 本発明は、前記諸点に鑑みてなされたものであり、その目的とするところは、硫黄等を含む極圧添加剤を含有する潤滑油の使用条件下においても、硫化腐食の進行を抑えることができると共に摩擦摩耗特性及び耐荷重性に優れた多孔質焼結合金層を備えた複層摺動部材を提供することにある。
 本発明の複層摺動部材は、鋼板を有した裏金と、この裏金の一方の面に一体的に接合されていると共にニッケル25~60質量%、燐2~7質量%及び残部銅からなる多孔質焼結合金層とを具備している。
 本発明は、亜鉛と同様に硫化腐食環境下において硫化物の生成を抑制する効果を有するニッケル(Ni)に着目してなされたものであり、主成分をなす銅(Cu)に対して所定量のニッケルと燐とを含む多孔質焼結合金層を具備した複層摺動部材では、硫黄等を含む極圧添加剤を含有する潤滑油を用いた油中又は油潤滑条件下においても、多孔質焼結合金層の硫化腐食の進行が極力抑えられ、硫化腐食に起因する硫化物の生成による多孔質焼結合金層の裏金からの脱落が生じない。
 本発明の複層摺動部材は、多孔質焼結合金層に低摩擦性を追加するべく、多孔質焼結合金層の孔隙及び一方の面に充填固着されていると共に少なくとも合成樹脂を含む被覆層を更に具備していてもよく、斯かる被覆層を具備している本発明の複層摺動部材では、多孔質焼結合金層からの被覆層の剥離が生じない。
 合成樹脂は、好ましい例では、フッ素樹脂(ポリテトラフルオロエチレン樹脂等)、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂及びポリアミドイミド樹脂から選択される少なくとも一つの主成分と、ポリイミド樹脂、焼成フェノール樹脂、ポリフェニレンスルホン樹脂及びオキシベンゾイルポリエステル樹脂から選択される有機材料からなる少なくとも一つの追加成分とを含んでおり、また、被覆層は、これらに燐酸塩、硫酸バリウム及び固体潤滑剤から選択される少なくとも一つの無機材料を含んでいてもよい。
 被覆層のより具体例としては、硫酸バリウム5~40質量%、燐酸塩1~30質量%、ポリイミド樹脂、焼成フェノール樹脂及びポリフェニレンスルホン樹脂から選択される1種又は2種以上の有機材料1~10質量%、残部ポリテトラフルオロエチレン樹脂からなる合成樹脂又はオキシベンゾイルポリエステル樹脂1~25体積%、燐酸塩1~15体積%、硫酸バリウム1~20体積%、残部ポリテトラフルオロエチレン樹脂からなる合成樹脂、更には、飽和脂肪酸と多価アルコールとから誘導される多価アルコール脂肪酸エステル0.5~5重量%と、ホホバ油0.5~3重量%と、残部ポリアセタール樹脂とからなる合成樹脂等を例示することができる。
 本発明の複層摺動部材において、多孔質焼結合金層は、裏金の一方の面に一体的に接合されていると共にニッケル25~60質量%、燐2~7質量%、錫3~8質量%及び残部銅からなっていてもよく、斯かる錫は、多孔質焼結合金層の硫化腐食の進行に対する抑制作用を発揮する。
 本発明の複層摺動部材において、鋼板は、複層摺動部材の用途に応じて、フェライト系、オーステナイト系又はマルテンサイト系のステンレス(SUS)鋼板からなって、裏金の一方の面は、このステンレス鋼板の一方の面であってもよく、また、裏金は、このステンレス鋼板と当該ステンレス鋼板の一方の面を被覆したニッケル皮膜とからなって、裏金の一方の面は、このニッケル皮膜の一方の面であってもよく、更には、裏金は、鋼板としてのJISG3101に規定されている一般構造用圧延鋼板(SS400等)又はJISG3141に規定されている冷間圧延鋼板(SPCC)とこの一般構造用圧延鋼板又は冷間圧延鋼板の一方の面を電解ニッケルめっき等で被覆したニッケル皮膜とからなる所謂ニッケルトップ鋼板であって、裏金の一方の面は、このニッケル皮膜の一方の面であってもよく、斯かる裏金のステンレス鋼板は、その両面が通常不働態皮膜によって覆われて、その両面の耐食性が安定に維持されることから、その両面にニッケル皮膜を通常必要としないが、この不働態皮膜は、極薄で壊れやすいため、上記のように、ステンレス鋼板の一方の面には、当該不働態皮膜の補強を目的としてニッケルめっきによるニッケル皮膜が形成されていてもよく、これらのニッケル皮膜の厚さは、概ね3~50μmであることが好ましい。
 ステンレス鋼板には、冷間圧延ステンレス鋼板が好適であり、このうち、フェライト系ステンレス鋼板のJIS鋼種としては、例えば、SUS405、SUS410L、SUS429、SUS430、SUS434、SUS436L、SUS444及びSUS447J1等が挙げられ、オーステナイト系ステンレス鋼板のJIS鋼種としては、例えば、SUS301、SUS302、SUS303、SUS304、SUS305、SUS309S、SUS310S、SUS316、SUS317、SUS321、SUS347及びSUS384等が挙げられ、更に、マルテンサイト系ステンレス鋼板のJIS鋼種としては、例えば、SUS403、SUS410、SUS416、SUS420J1、SUS431及びSUS440A等が挙げられる。
 ニッケルは、多孔質焼結合金層の主成分をなす銅と全率固溶であることから、ニッケルが銅中に、また銅がニッケル中に拡散する所謂相互拡散現象による焼結が進行して緻密な銅-ニッケル合金(CuNi)を含むマトリックスを多孔質焼結合金層に形成する。この銅-ニッケル合金を含むマトリックスは、多孔質焼結合金層の耐摩耗性、耐荷重性、耐食性及び強度の向上に寄与すると共に硫化腐食の進行を抑制する効果を発揮する。また、ニッケルは、焼結時に裏金の一方の面に拡散してその界面を合金化し、多孔質焼結合金層の裏金の一方の面への接合強度を向上させると共に燐と一部合金化してニッケル-燐合金(NiP)の液相を形成し、裏金と親和性の良いニッケル-燐合金が多孔質焼結合金層の裏金の一方の面との界面に介在して、界面でニッケルの拡散による合金化と相俟って多孔質焼結合金層を裏金の一方の面に強固に接合一体化させる作用をなす。更に、ニッケルは、焼結時に銅に拡散する際に多孔質焼結合金層に空隙を形成して多孔性を増大させる効果がある。
 ニッケルは、25質量%未満では、多孔質焼結合金層の耐摩耗性、耐荷重性、耐食性及び強度の向上に十分な効果が発現せず、また硫化腐食の進行を抑制する効果が十分発揮されず、硫化腐食に起因する多孔質焼結合金層の重量減少が発現する虞があり、60質量%を超えると、多孔質焼結合金層の耐食性は向上するが、多孔質焼結合金層の強度を低下させる虞がある。したがって、多孔質焼結合金層でのニッケルは、25~60質量%、就中25~50質量%含んでいるとよい。
 本発明の好ましい例では、多孔質焼結合金層は、銅-ニッケル合金を含むマトリックスと、このマトリックスの粒界に晶出したニッケル-燐合金相とを含んでおり、マトリックスは、少なくともマイクロビッカース硬度(HMV)(以下、硬度という)170を有しており、ニッケル-燐合金相は、少なくとも硬度600を有している。
 燐は、主成分をなす銅とニッケルの一部と合金化して銅-ニッケル-燐合金としてマトリックスの強度を高めると共に875℃付近の温度でニッケル-燐合金の液相を生成して銅-ニッケル合金相を含むマトリックスの粒界に該マトリックスの硬度よりも高い硬度のニッケル-燐合金相を晶出させ、多孔質焼結合金層の耐摩耗性を一層向上させる効果を発揮する。また、燐は、還元力が強いため、裏金の一方の面をその還元作用により清浄化し、ニッケルの裏金の一方の面への拡散による合金化を助長する効果を発揮する。
 多孔質焼結合金層において、燐は、2質量%未満では、上記効果が十分発揮されない一方、7質量%を超えるとニッケル-燐合金相のマトリックスの粒界への晶出割合が多くなり、相手材の表面を損傷させる虞がある。したがって、燐は、多孔質焼結合金層に2~7質量%、就中3~5質量%含んでいるとよい。
 多孔質焼結合金層は、主成分をなす銅に対して、ニッケル及び燐に加えて更に錫を含んでいてもよい。錫は、主成分をなす銅と合金化して銅-錫合金(CuSn)を形成し、焼結を促進して多孔質焼結合金層の地の強度、靭性及び耐摩耗性の向上に寄与すると共にニッケルと同様、硫化腐食の進行に対する抑制作用を発揮する。多孔質焼結合金層において、錫は、3質量%未満では上記効果が十分発揮されず、また8質量%を超えていると、多孔質焼結合金層の孔隙を消失させ、多孔質焼結合金層の孔隙に充填される被覆層の保持力、所謂アンカー効果を低下させる上に、硬い銅-ニッケル-錫の金属間化合物を生成して多孔質焼結合金層の地の強度や靭性を低下させる虞がある。従って、錫は、多孔質焼結合金層に、3~8質量%、就中5~7質量%含んでいるとよい。
 本発明の複層摺動部材の製造において、多孔質焼結合金層の主成分をなす銅は、銅の単体粉末の形態又は銅-ニッケル合金粉末若しくは銅-燐合金(CuP)粉末の形態で用いられてもよく、ニッケルは、主成分をなす銅に対し、通常、銅-ニッケル合金粉末、例えば銅-20~40質量%ニッケルのアトマイズ銅-ニッケル合金粉末の形態で又はニッケルの単体粉末の形態で用いられてもよく、また、燐は、ニッケル-燐合金粉末、例えばニッケル-4質量%燐のアトマイズニッケル-燐合金粉末又は銅-燐合金粉末、例えば銅-15質量%燐のアトマイズ銅-燐合金粉末の形態で、錫は、錫単体粉末の形態で又は銅-錫合金粉末、例えば銅-10質量%錫のアトマイズ銅-錫合金粉末の形態で用いられてもよく、更に、銅-ニッケル-燐又は銅-ニッケル-燐-錫が予め所望の含有量となるように、各単体粉末及び合金粉末を適宜組み合わせ、これらを溶解して合金溶湯を作製したのち、当該合金溶湯をガスアトマイズ法により粉末化したアトマイズ銅-ニッケル-燐合金(CuNiP)粉末又はアトマイズ銅-錫-ニッケル-燐合金(CuSnNiP)粉末の形態で用いられてもよく、このアトマイズ銅-ニッケル-燐合金粉末又はアトマイズ銅-錫-ニッケル-燐合金粉末の形態で使用すると、銅、錫、ニッケルを単体粉末で使用する際の粉末にかたよりを生じて不均一となる所謂偏析を回避できるという利点を有する。
 本発明において、好ましくは、多孔質焼結合金層は、概ね0.1~0.5mm、就中0.3~0.4mmの厚さを有しており、被覆層は、0.02~0.1mmの厚さを有している。
 本発明による複層摺動部材は、平板の滑り板として、また、多孔質焼結合金層を、多孔質焼結合金層に加えて被覆層を備えている場合には、被覆層を内側にして丸曲げした円筒状の巻きブッシュとして使用され得る。
 本発明によれば、潤滑油中、特に硫黄等を含む極圧添加剤を含有する潤滑油を用いた油中又は油潤滑条件下においても、多孔質焼結合金層に生じる硫化腐食の生成が低く、かつ硫化腐食の進行を抑制することができ、硫化腐食に起因する硫化物の生成による多孔質焼結合金層の脱落を生じることがなく、また、多孔質焼結合金層に充填固着された被覆層の剥離を生じることがない複層摺動部材を提供することができる。
図1は、本発明の複層摺動部材の実施の形態の好ましい例の縦断面説明図である。 図2は、本発明の複層摺動部材の他の実施の形態の好ましい例の縦断面説明図である。 図3は、実施例1に基づく多孔質焼結合金層の顕微鏡写真の説明図である。 図4は、実施例3に基づく多孔質焼結合金層の顕微鏡写真の説明図である。 図5は、実施例5に基づく多孔質焼結合金層の顕微鏡写真の説明図である。 図6は、スラスト試験方法を説明するための斜視説明図である。
 次に、本発明及びその実施の形態を、図に示す好ましい実施例に基づいて更に詳細に説明する。なお、本発明はこれらの実施例に何等限定されないのである。
 まず、図1に示すような本発明に係る複層摺動部材1の製造方法の一例について説明する。
 裏金2として、コイル状に巻いてフープ材として提供される厚さ0.3~1.0mmの連続条片からなるステンレス鋼板を準備する。準備するステンレス鋼板は、必ずしも連続条片に限らず、適当な長さに切断した条片でもよい。
 150メッシュ(97μm)の篩を通過する電解銅粉末と、250メッシュ(60μm)の篩を通過する電解ニッケル粉末と、200メッシュ(74μm)の篩を通過する銅-25~40質量%ニッケルのアトマイズ銅-ニッケル合金粉末と、350メッシュ(44μm)の篩を通過するニッケル-4~11質量%燐のアトマイズニッケル-燐合金粉末と、350メッシュ(44μm)の篩を通過する銅-15質量%燐のアトマイズ銅-燐合金粉末と、350メッシュの篩を通過するアトマイズ錫粉末を準備すると共にこれらの粉末を適宜組み合わせて使用し、配合割合がニッケル25~60質量%、燐2~7質量%及び残部銅又はニッケル25~60質量%、燐2~7質量%、錫3~8質量%及び残部銅となるように調整した後、V型ミキサーに投入し20~60分間混合して混合粉末を作製する。
 この混合粉末を裏金2の一方の面に一様な厚さに散布し、これを真空中又は水素ガス、水素・窒素混合ガス(25vol%H-75vol%N)、アンモニア分解ガス(AXガス:75vol%H、25vol%Nの混合ガス)等の還元性雰囲気に調整された加熱炉内で870~950℃の温度で5~10分間焼結し、この焼結で、裏金2の一方の面にニッケル25~60質量%、燐2~7質量%及び残部銅又はニッケル25~60質量%、燐2~7質量%、錫3~8質量%及び残部銅を含む多孔質焼結合金層3を一体的に拡散接合した複層摺動部材1を得ることができる。
 多孔質焼結合金層3は、硬度(HMV)が170以上を呈する軟質な銅-ニッケル合金を含むマトリックスと、このマトリックスの粒界に硬度(HMV)が600以上を呈する硬質なニッケル-燐合金相とが分散して晶出していることを顕微鏡により観察した。
 斯かる多孔質焼結合金層3に更に図2に示すような被覆層4を備えた複層摺動部材1aの製造方法の一例について説明する。
 硫酸バリウム5~40質量%と、燐酸塩1~30質量%と、ポリイミド樹脂、焼成フェノール樹脂及びポリフェニレンスルホン樹脂から選択される1種又は2種以上の有機材料からなる樹脂1~10質量%と残部ポリテトラフルオロエチレン樹脂とをヘンシェルミキサーで撹拌混合したポリテトラフルオロエチレン樹脂と硫酸バリウムと燐酸塩と有機材料からなる樹脂とを含む混合物100重量部に対し石油系溶剤を15~30重量部配合し、ポリテトラフルオロエチレン樹脂の室温転移点以下の温度(15℃)で混合して合成樹脂を作製し、この作製した合成樹脂を多孔質焼結合金層3の一方の面に散布供給し、合成樹脂の厚さが所定の厚さになるようにローラで圧延して多孔質焼結合金層3の孔隙及び一方の面に合成樹脂を充填固着し、ついで、これを200~250℃の温度に加熱した熱風乾燥炉中に数分間保持して溶剤を除去した後、乾燥した合成樹脂を所定の厚さになるように300~600kgf/cmの加圧下で加圧ローラ処理する。そして、これを加熱炉に導入して360~380℃の温度で数分乃至10数分間加熱して焼成した後、炉から取り出し、再度ローラ処理によって寸法のばらつきを調整し、裏金2の一方の面に一体的に拡散接合された多孔質焼結合金層3の孔隙及び一方の面に充填固着された被覆層4を備えた複層摺動部材1aとする。
 以下、実施例1から8並びに比較例1及び2について説明する。
 実施例1
 幅170mm及び長さ600mmに切断した厚さ0.65mmのフェライト系ステンレス鋼板(SUS430)からなる裏金2を用いた。
 銅粉末55質量%と、ニッケル粉末25質量%と、銅-15質量%燐合金粉末20質量%とを溶解して得た合金溶湯をガスアトマイズ法により粉末化して得られた合金粉末(ニッケル25質量%、燐3質量%及び銅72質量%)からサテライトを減らすべくローラミルを使用して摩砕した後、分級して200メッシュの篩を通過する合金粉末を作製した。
 この合金粉末を、予めトリクレンにて脱脂清浄した裏金2の一方の面に一様な厚さに散布し、これを水素・窒素混合ガス(25vol%H-75vol%N)の還元性雰囲気に調整した加熱炉内で910℃の温度で10分間焼結し、裏金2と、裏金2の一方の面に一体的に拡散接合されていると共に厚さ0.3mmのニッケル25質量%、燐3質量%及び残部銅からなる多孔質焼結合金層3とを具備した複層摺動部材1を作製した。作製した複層摺動部材1における多孔質焼結合金層3は、図3から明らかなように、ニッケルと銅との相互拡散による焼結が進行して緻密な銅-ニッケル合金を含むマトリックス5の粒界にニッケル-燐合金相6が分散して晶出した組織を呈している。マトリックス5の硬度は、174を示し、ニッケル-燐合金相6の硬度は、629を示した。
 実施例2
 実施例1と同様の裏金を用いた。
 銅-40質量%ニッケル合金粉末75質量%と、銅-15質量%燐合金粉末20質量%と、銅粉末5質量%とから実施例1と同様にして銅合金粉末(ニッケル30質量%、燐3質量%及び銅67質量%)を作製した。
 この銅合金粉末を900℃の温度で焼結する以外は、実施例1と同様にして、裏金2と多孔質焼結合金層3とを具備した複層摺動部材1を作製した。作製した複層摺動部材1における多孔質焼結合金層3は、実施例1と同様の組織を呈していた。銅-ニッケル合金を含むマトリックスの硬度は、214を示し、ニッケル-燐合金相の硬度は、630を示した。
 実施例3
 実施例1と同様のフェライト系ステンレス鋼板(SUS430)の両面を含む全面に電解ニッケルめっきによる厚さ20μmのニッケル皮膜を施した裏金2を用いた。
 銅-25質量%ニッケル合金粉末80質量%とニッケル-11質量%燐合金粉末20質量%から混合粉末(ニッケル37.8質量%、燐2.2質量%及び銅60質量%)を作製した。
 フェライト系ステンレス鋼板(SUS430)に施されたニッケル被膜のうちのフェライト系ステンレス鋼板(SUS430)の一方の面に施されたニッケル皮膜の一方の面をトリクレンにて脱脂清浄し、この脱脂清浄したニッケル皮膜の一方の面に、作製した混合粉末を一様な厚さに散布して実施例2と同様にして裏金2と多孔質焼結合金層3とを具備した複層摺動部材1を作製した。作製した複層摺動部材1において、裏金2のニッケル皮膜の一方の面に一体的に拡散接合された多孔質焼結合金層3は、図4から明らかなように、ニッケルと銅との相互拡散による焼結が進行して緻密な銅-ニッケル合金を含むマトリックス5の粒界にニッケル-燐合金相6が分散して晶出した組織を呈している。マトリックス5の硬度は、222を示し、ニッケル-燐合金相6の硬度は、632を示した。
 実施例4
 実施例3と同様の裏金2を用いた。
 ニッケル-8質量%燐合金粉末43.5質量%と銅粉末56.5質量%とから混合粉末(ニッケル40質量%、燐3.5質量%及び銅56.5質量%)を作製した。
 この混合粉末から実施例3と同様にして裏金2と多孔質焼結合金層3とを具備した複層摺動部材1を作製した。作製した複層摺動部材1において、裏金2のニッケル皮膜の一方の面に一体的に拡散接合された多孔質焼結合金層3は、ニッケルと銅との相互拡散による焼結が進行して緻密な銅-ニッケル合金を含むマトリックスの粒界にニッケル-燐合金相が分散して晶出した組織を呈していた。マトリックスの硬度は、243を示し、ニッケル-燐合金相の硬度は、633を示した。
 実施例5
 フェライト系ステンレス鋼板(SUS430)に代えて、冷間圧延鋼板(SPCC)を使用した以外、実施例3と同様の裏金2を用いた。
 銅粉末30質量%と、ニッケル粉末50質量%と、銅-15質量%燐合金粉末20質量%とから実施例1と同様にして銅合金粉末(ニッケル50質量%、燐3質量%及び銅47質量%)を作製した。
 この銅合金粉末を895℃の温度で焼結する以外は、実施例1と同様にして、裏金2と多孔質焼結合金層3とを具備した複層摺動部材1を作製した。作製した複層摺動部材1において、裏金2のニッケル皮膜の一方の面に一体的に拡散接合された多孔質焼結合金層3は、図5から明らかなように、ニッケルと銅との相互拡散による焼結が進行して緻密な銅-ニッケル合金を含むマトリックス5の粒界にニッケル-燐合金相6が分散して晶出した組織を呈している。マトリックス5の硬度は、259を示し、ニッケル-燐合金相6の硬度は、636を示した。
 実施例6
 実施例5と同様の裏金2を用いた。
 ニッケル-4質量%燐合金粉末60質量%と、銅粉末40質量%とから混合粉末(ニッケル57.6質量%、燐2.4質量%及び銅40質量%)を作製した。
 この混合粉末から実施例3と同様にして裏金2と多孔質焼結合金層3とを具備した複層摺動部材1を作製した。作製した複層摺動部材1における多孔質焼結合金層3は、ニッケルと銅との相互拡散による焼結が進行して緻密な銅-ニッケル合金を含むマトリックスの粒界にニッケル-燐合金相が分散して晶出した組織を呈していた。マトリックスの硬度は、262を示し、ニッケル-燐合金相の硬度は、639を示した。
 実施例7
 実施例1と同様の裏金2を用いた。
 ニッケル-11質量%燐合金粉末40質量%と、錫粉末6質量%及び銅粉末54質量%とから混合粉末(ニッケル35.6質量%、燐4.4質量%、錫6質量%及び銅54質量%)を作製した。
 この混合粉末から実施例3と同様にして裏金2と多孔質焼結合金層3とを具備した複層摺動部材1を作製した。作製した複層摺動部材1において、裏金2の一方の面に一体的に拡散接合された多孔質焼結合金層3は、ニッケルと銅との相互拡散による焼結が進行して緻密な銅-ニッケル合金を含むマトリックスの粒界にニッケル-燐合金相が分散して晶出した組織を呈していた。多孔質焼結合金層3の錫はマトリックスの銅と合金化して銅-錫合金を形成していた。マトリックスの硬度は、237を示し、ニッケル-燐合金相の硬度は、633を示した。
 実施例8
 硫酸バリウム15質量%、ピロリン酸カルシウム10質量%、ポリイミド樹脂2質量%、黒鉛0.5質量%及び残部ポリテトラフルオロエチレン樹脂をヘンシェルミキサー内に供給して攪拌混合し、得られた混合物100重量部に対し石油系溶剤20重量部を配合し、PTFEの室温転移点以下の温度(15℃)で混合した合成樹脂を、実施例1と同様の複層摺動部材1の多孔質焼結合金層3の一方の面に散布供給し、ローラで圧延して多孔質焼結合金層3の孔隙および一方の面に合成樹脂を充填固着した。ついで、200℃の温度に加熱した熱風乾燥炉中に5分間保持して溶剤を除去した後、乾燥した合成樹脂をローラによって加圧力400kgf/cmにて圧延し、多孔質焼結合金層3の孔隙及び一方の面に厚さ0.05mmの被覆層4を形成した後、これを加熱炉で370℃、10分間加熱焼成した後、再度、ローラで加圧処理し、寸法調整およびうねり等の矯正を行なって、裏金2の一方の面に、厚さ0.3mmのニッケル25質量%、燐3質量%及び残部銅からなる多孔質焼結合金層3が一体的に拡散接合されていると共に多孔質焼結合金層3の孔隙及び一方の面に硫酸バリウム15質量%、ピロリン酸カルシウム10質量%、ポリイミド樹脂2質量%、黒鉛0.5質量%及び残部ポリテトラフルオロエチレン樹脂からなる被覆層4を備えた複層摺動部材1aを作製した。
 比較例1
 350メッシュの篩を通過するアトマイズ錫粉末10重量%と、150メッシュの篩を通過する電解銅粉末90質量%とをV型ミキサーで20分間混合した混合粉末を、実施例5と同様の裏金2の一方の面に一様な厚さに散布し、これを水素ガス雰囲気に調整した加熱炉内で860℃の温度で10分間焼結し、裏金2の一方の面に、厚さ0.3mmの錫10質量%及び残部銅からなる多孔質焼結合金層3が一体的に拡散接合された複層摺動部材1を作製した。
 比較例2
 比較例1と同様の複層摺動部材1の多孔質焼結合金層3の孔隙及び一方の面に充填固着された厚さ0.05mmの実施例8と同様の合成樹脂からなる被覆層4を備えた複層摺動部材1aを作製した。
 以上の実施例1から8並びに比較例1及び2の複層摺動部材1及び1aについて、耐硫化腐食性及び摩擦摩耗特性を試験した。
 <耐硫化腐食性についての試験方法>
 ベースオイルに優れた極圧添加剤、金属腐食防止剤、清浄分散剤等が添加されたギヤオイルとして、JX日鉱日石エネルギー社製のエネオスギヤオイルGL-5(商品名)を使用し、このギヤオイルを容器に収容し、150℃の温度に保持されたこのギヤオイル中に実施例1から8並びに比較例1及び2の複層摺動部材1及び1aを500時間浸漬し、100時間毎に取出して当該複層摺動部材1及び1aの多孔質焼結合金層3の質量変化率(%)を測定した。
 <摩擦係数及び摩耗量についての試験条件及び試験方法>
 <試験条件>
 速度 1.3m/min
 荷重(面圧) 200~800kgf/cm
 試験時間 20時間
 相手材 機械構造用炭素鋼(S45C)
 潤滑 油(出光興産社製の商品名「ダフニースーパーマルチオイル#32」)中条件
 <試験方法>
 図6に示すように、実施例1から8並びに比較例1及び2の夫々の複層摺動部材1及び1aから作製された一辺が30mmの方形状の板状軸受試験片11を試験台に固定し、相手材となる円筒体12から板状軸受試験片11の一方の面13に、当該面13に直交する方向Aの所定の荷重をかけながら、円筒体12を当該円筒体12の軸心14の周りで方向Bに回転させ、板状軸受試験片11と円筒体12との間の摩擦係数及び20時間試験後の面13の摩耗量を測定した。
 試験結果を表1から表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1の複層摺動部材1は、摩擦係数及び摩耗量についての試験(スラスト試験)において、面圧200kgf/cmの条件で摩擦係数が0.36を示したため、それ以上の面圧条件下での試験を中止した。また、実施例8の複層摺動部材1aにおいては、多孔質焼結合金層3の硫化腐食に起因する被覆層4に剥離等の不具合は観察されなかった。一方、比較例2の複層摺動部材1aは、極圧添加剤を含むギヤオイル中に100時間浸漬後、一方の面の被覆層4に硫化腐食による硫化物(CuS等)が斑状に生成されていることが観察されたので、それ以上の試験を中止した。
 表1及び表2に示す試験結果から、本発明に係る複層摺動部材1及び1aは、極圧添加剤を含むギヤオイル中への浸漬による耐硫化腐食性の試験において、硫化腐食の進行を抑制することができ、また、面圧が800kgf/cmの高面圧条件下においても優れた摺動特性と、大幅に向上した耐荷重性とを有することが分かる。
 1、1a 複層摺動部材
 2 裏金
 3 多孔質焼結合金層
 4 被覆層

Claims (8)

  1.  鋼板を有した裏金と、この裏金の一方の面に一体的に接合されていると共にニッケル25~60質量%、燐2~7質量%及び残部銅からなる多孔質焼結合金層とを具備した複層摺動部材。
  2.  鋼板を有した裏金と、この裏金の一方の面に一体的に接合されていると共にニッケル25~60質量%、燐2~7質量%、錫3~8質量%及び残部銅からなる多孔質焼結合金層とを具備した複層摺動部材。
  3.  鋼板は、フェライト系、オーステナイト系又はマルテンサイト系のステンレス鋼板からなり、裏金の一方の面は、このステンレス鋼板の一方の面である請求項1又は2に記載の複層摺動部材。
  4.  鋼板は、フェライト系、オーステナイト系又はマルテンサイト系のステンレス鋼板からなり、裏金は、このステンレス鋼板の一方の面を被覆したニッケル皮膜を更に有しており、裏金の一方の面は、このニッケル皮膜の一方の面である請求項1又は2に記載の複層摺動部材。
  5.  鋼板は、一般構造用圧延鋼板又は冷間圧延鋼板からなり、裏金は、この一般構造用圧延鋼板又は冷間圧延鋼板の一方の面を被覆したニッケル皮膜を更に有しており、裏金の一方の面は、このニッケル皮膜の一方の面である請求項1又は2に記載の複層摺動部材。
  6.  多孔質焼結合金層は、銅-ニッケル合金を含むマトリックスと、このマトリックスの粒界に晶出したニッケル-燐合金相とを含んでおり、マトリックスは、少なくともマイクロビッカース硬度(HMV)170を有しており、ニッケル-燐合金相は、少なくともマイクロビッカース硬度(HMV)600を有している請求項1から5のいずれか一項に記載の複層摺動部材。
  7.  多孔質焼結合金層の孔隙及び一方の面に充填固着されていると共に合成樹脂を含む被覆層を更に具備している請求項1から6のいずれか一項に記載の複層摺動部材。
  8.  合成樹脂は、フッ素樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂及びポリアミドイミド樹脂から選択される少なくとも一つを含んでいる請求項7に記載の複層摺動部材。
PCT/JP2016/003186 2015-07-16 2016-07-04 複層摺動部材 WO2017010059A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/742,579 US20180200994A1 (en) 2015-07-16 2016-07-04 Multilayered sliding member
KR1020187001214A KR20180030530A (ko) 2015-07-16 2016-07-04 복층 슬라이딩 부재
CN201680041667.3A CN107848035A (zh) 2015-07-16 2016-07-04 多层滑动构件
EP16824045.5A EP3323536A4 (en) 2015-07-16 2016-07-04 MULTILAYER SLIDING ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-142524 2015-07-16
JP2015142524A JP6779600B2 (ja) 2015-07-16 2015-07-16 複層摺動部材

Publications (1)

Publication Number Publication Date
WO2017010059A1 true WO2017010059A1 (ja) 2017-01-19

Family

ID=57756874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003186 WO2017010059A1 (ja) 2015-07-16 2016-07-04 複層摺動部材

Country Status (6)

Country Link
US (1) US20180200994A1 (ja)
EP (1) EP3323536A4 (ja)
JP (1) JP6779600B2 (ja)
KR (1) KR20180030530A (ja)
CN (1) CN107848035A (ja)
WO (1) WO2017010059A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021122A1 (ja) * 2016-07-27 2018-02-01 オイレス工業株式会社 複層焼結板及びそれを用いた複層摺動部材並びに複層焼結板の製造方法
WO2021206127A1 (ja) * 2020-04-08 2021-10-14 大豊工業株式会社 摺動部材

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6893836B2 (ja) * 2017-07-03 2021-06-23 オイレス工業株式会社 複層焼結板及びその製造方法
KR102098084B1 (ko) * 2017-12-28 2020-05-26 창원금속공업(주) 미끄럼 지지층과 슬라이드층 사이에 추가적으로 중간 코팅층이 형성된 복합 코팅층을 갖는 무급유 베어링
CN110653375B (zh) * 2018-06-29 2022-04-01 中国科学院苏州纳米技术与纳米仿生研究所 一种层状复合材料及其制备方法与应用
CN110935880A (zh) * 2019-10-14 2020-03-31 融之航信息科技(苏州)有限公司 一种氟塑料金属带烧结工艺
CN110935879A (zh) * 2019-10-14 2020-03-31 融之航信息科技(苏州)有限公司 一种氟塑料与青铜粉的烧结复合工艺
CN110681865A (zh) * 2019-10-14 2020-01-14 融之航信息科技(苏州)有限公司 一种氟塑料金属带的结构
CN110985529A (zh) * 2019-12-31 2020-04-10 湖南崇德工业科技有限公司 一种聚醚复合止推轴承
CN117447799B (zh) * 2023-12-26 2024-03-15 江西理工大学 一种自润滑层及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133027A (ja) * 1985-12-05 1987-06-16 Honda Motor Co Ltd 自己潤滑性を有する焼結銅合金の製造方法
JP2006097797A (ja) * 2004-09-29 2006-04-13 Oiles Ind Co Ltd 多孔質静圧気体軸受及びその製造方法
WO2009016840A1 (ja) * 2007-07-31 2009-02-05 Caterpillar Japan Ltd. 複層焼結摺動部材
JP2009285983A (ja) * 2008-05-29 2009-12-10 Nissei Plastics Ind Co 射出成形機の関節部構造
JP2011080525A (ja) * 2009-10-07 2011-04-21 Oiles Corp 複層摺動部材
WO2012063786A1 (ja) * 2010-11-08 2012-05-18 株式会社ダイヤメット Cu基焼結含油軸受

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024153B2 (ja) * 1990-02-07 2000-03-21 オイレス工業株式会社 複層焼結摺動部材
JPH07317771A (ja) * 1994-05-26 1995-12-08 Ndc Co Ltd 複層軸受ならびにその製造方法
JP4385618B2 (ja) * 2002-08-28 2009-12-16 オイレス工業株式会社 多孔質静圧気体軸受用の軸受素材及びこれを用いた多孔質静圧気体軸受
CA2636900C (en) * 2006-01-16 2014-02-25 Oiles Corporation Copper-based sintered slide member
JP5386585B2 (ja) * 2009-06-18 2014-01-15 株式会社ダイヤメット 焼結摺動材料及びその製造方法
US9663844B2 (en) * 2012-02-29 2017-05-30 Diamet Corporation Sintered alloy superior in wear resistance
EP2944708B1 (en) * 2014-05-14 2019-01-09 Daido Metal Company Ltd. Sliding member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133027A (ja) * 1985-12-05 1987-06-16 Honda Motor Co Ltd 自己潤滑性を有する焼結銅合金の製造方法
JP2006097797A (ja) * 2004-09-29 2006-04-13 Oiles Ind Co Ltd 多孔質静圧気体軸受及びその製造方法
WO2009016840A1 (ja) * 2007-07-31 2009-02-05 Caterpillar Japan Ltd. 複層焼結摺動部材
JP2009285983A (ja) * 2008-05-29 2009-12-10 Nissei Plastics Ind Co 射出成形機の関節部構造
JP2011080525A (ja) * 2009-10-07 2011-04-21 Oiles Corp 複層摺動部材
WO2012063786A1 (ja) * 2010-11-08 2012-05-18 株式会社ダイヤメット Cu基焼結含油軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3323536A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021122A1 (ja) * 2016-07-27 2018-02-01 オイレス工業株式会社 複層焼結板及びそれを用いた複層摺動部材並びに複層焼結板の製造方法
WO2021206127A1 (ja) * 2020-04-08 2021-10-14 大豊工業株式会社 摺動部材
JP2021167608A (ja) * 2020-04-08 2021-10-21 大豊工業株式会社 摺動部材
JP7339202B2 (ja) 2020-04-08 2023-09-05 大豊工業株式会社 摺動部材

Also Published As

Publication number Publication date
EP3323536A1 (en) 2018-05-23
KR20180030530A (ko) 2018-03-23
JP6779600B2 (ja) 2020-11-04
CN107848035A (zh) 2018-03-27
JP2017025358A (ja) 2017-02-02
US20180200994A1 (en) 2018-07-19
EP3323536A4 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2017010059A1 (ja) 複層摺動部材
KR101953634B1 (ko) 내마모 무연 합금 슬라이딩 요소 및 제조 방법
US6607820B2 (en) Composite sliding material
JP2011080525A (ja) 複層摺動部材
WO2018021122A1 (ja) 複層焼結板及びそれを用いた複層摺動部材並びに複層焼結板の製造方法
JP3373709B2 (ja) 銅系すべり軸受材料および内燃機関用すべり軸受
JP6328043B2 (ja) 摺動部材
JP2008019929A (ja) 焼結含油軸受
JP6705631B2 (ja) 複層摺動部材
EP3093136B1 (en) Sliding member
JP6466268B2 (ja) 摺動部材
JP6198653B2 (ja) 摺動部材
JP6198652B2 (ja) 摺動部材
JP6258121B2 (ja) 摺動部材
JP6381430B2 (ja) 摺動部材
JPH11293304A (ja) 複層焼結摺動部材とその製造方法
US11097344B2 (en) Multilayered sintered plate and manufacturing method thereof
JP6258139B2 (ja) 摺動部材
JP6466246B2 (ja) 摺動部材
JP4349719B2 (ja) アルミニウム青銅焼結軸受材料およびその製造方法
JP6466245B2 (ja) 摺動部材
JP2017218622A (ja) 摺動部材の製造方法
JP2004263735A (ja) 複層摺動部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15742579

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187001214

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824045

Country of ref document: EP