WO2017008332A1 - Tft基板结构及其制作方法 - Google Patents
Tft基板结构及其制作方法 Download PDFInfo
- Publication number
- WO2017008332A1 WO2017008332A1 PCT/CN2015/085159 CN2015085159W WO2017008332A1 WO 2017008332 A1 WO2017008332 A1 WO 2017008332A1 CN 2015085159 W CN2015085159 W CN 2015085159W WO 2017008332 A1 WO2017008332 A1 WO 2017008332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- metal oxide
- oxide semiconductor
- amorphous silicon
- silicon layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 125
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000004065 semiconductor Substances 0.000 claims abstract description 133
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 120
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 120
- 238000000034 method Methods 0.000 claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 230000004888 barrier function Effects 0.000 claims abstract description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 95
- 238000000059 patterning Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 13
- 238000001039 wet etching Methods 0.000 claims description 11
- 238000001312 dry etching Methods 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 5
- 229910021419 crystalline silicon Inorganic materials 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 4
- 238000005530 etching Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1604—Amorphous materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/24—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/26—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
- H01L29/267—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66765—Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
- H01L29/78618—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78651—Silicon transistors
- H01L29/7866—Non-monocrystalline silicon transistors
- H01L29/78663—Amorphous silicon transistors
- H01L29/78669—Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
Definitions
- the present invention relates to the field of display technologies, and in particular, to a TFT substrate structure and a method of fabricating the same.
- Amorphous silicon is the most widely used semiconductor layer material in the semiconductor industry.
- A-Si materials are in contact with metals, it is difficult to form ohmic contacts because of the large potential difference.
- the ohmic contact between them generally super-does the P element on the semiconductor surface, reduces the contact resistance between the metal and the semiconductor, and improves the current efficiency.
- FIG. 1 is a schematic cross-sectional view showing a structure of a conventional TFT substrate.
- the TFT substrate structure includes a substrate 100, a gate electrode 200 disposed on the substrate 100, a gate insulating layer 300 disposed on the substrate 100 and covering the gate electrode 200, and corresponding to the gate electrode 200.
- the amorphous silicon layer 400 on the gate insulating layer 300 and the source 500 and the drain 600 provided on the gate insulating layer 300 are described.
- the central portion of the amorphous silicon layer 400 is recessed downward, and a channel region 450 is formed above the gate electrode 200; the surface of the amorphous silicon layer 400 is ion-doped corresponding to both sides of the channel region 450.
- the first and second N-type heavily doped regions 410, 420 are formed.
- the source 500 and the drain 600 are in contact with the surfaces of the first and second N-type heavily doped regions 410, 420, respectively.
- FIG. 2 is a graph showing leakage current of an A-Si device having the TFT substrate structure of FIG. 1.
- the TFT substrate structure of FIG. 1 has a certain operating current (Ion), and there is also a certain
- Ion operating current
- the problem is that when a negative voltage is applied to a certain level, a positive charge is formed to form a hole conducting channel, and a leakage current (Ioff) is also increased, and the curve warpage is severe, causing a problem of reliability.
- An object of the present invention is to provide a TFT substrate structure in which a metal oxide semiconductor layer is used instead of the N-type heavily doped layer, and a barrier between the metal oxide semiconductor layer and the metal layer is small, an ohmic contact can be formed, and current efficiency is improved. And reduce leakage current.
- Another object of the present invention is to provide a method for fabricating a TFT substrate structure by forming a metal oxide semiconductor layer on an amorphous silicon layer instead of an N-type heavily doped layer, and a barrier between the metal oxide semiconductor layer and the metal layer. Smaller, ohmic contact can be formed, no need to dope other ions to form an N-type heavily doped layer, and the leakage current of the hole conducting region is reduced, the curve warpage is slowed, and the reliability of the TFT substrate structure is improved.
- the present invention provides a TFT substrate structure including a substrate, a gate electrode disposed on the substrate, a gate insulating layer disposed on the substrate and covering the gate electrode, and the gate insulating layer disposed on the gate electrode.
- a TFT substrate structure including a substrate, a gate electrode disposed on the substrate, a gate insulating layer disposed on the substrate and covering the gate electrode, and the gate insulating layer disposed on the gate electrode.
- the second metal layer includes a first strip-shaped channel and a source and a drain respectively disposed on opposite sides of the first strip-shaped channel;
- the island-shaped active layer includes an amorphous silicon layer and a metal oxide semiconductor layer disposed on the amorphous silicon layer;
- the metal oxide semiconductor layer includes a second corresponding to the first strip-shaped channel a strip-shaped channel, and first and second metal-oxide-semiconductor segments respectively disposed on two sides of the second strip-shaped channel; forming a groove on the amorphous silicon layer corresponding to a position below the second strip-shaped channel a track region, wherein a thickness of the amorphous silicon layer is less than or equal to a thickness of the other region;
- the source and the drain are respectively in contact with the surfaces of the first metal oxide semiconductor segment and the second metal oxide semiconductor segment, and an area of the source distributed on the substrate is greater than the first metal oxide The area of the semiconductor segment distributed on the substrate, the area of the drain distributed on the substrate being larger than the area of the second metal oxide semiconductor segment distributed on the substrate.
- the material of the metal oxide semiconductor layer is IGZO.
- the invention also provides a method for fabricating a TFT substrate structure, comprising the following steps:
- Step 1 providing a substrate, depositing a first metal layer on the substrate, and patterning the first metal layer to form a gate;
- Step 2 sequentially depositing a gate insulating layer, an amorphous silicon layer, and a metal oxide semiconductor layer on the substrate and the gate;
- Step 3 sequentially patterning the metal oxide semiconductor layer and the amorphous silicon layer to obtain an island-shaped active layer, wherein the island-shaped active layer includes an amorphous silicon layer corresponding to the gate and Metal oxide semiconductor layer;
- Step 4 depositing a second metal layer on the gate insulating layer and the island active layer, and patterning the second metal layer and the metal oxide semiconductor layer by using a photolithography process; Forming a first strip-shaped channel corresponding to the upper surface of the gate and a source and a drain respectively disposed on opposite sides of the first strip-shaped channel; and the metal oxide semiconductor layer Forming a second strip-shaped channel corresponding to the first strip-shaped channel, and first metal oxide semiconductor segments and second metal-oxide semiconductor segments respectively disposed on two sides of the second strip-shaped channel; Forming a channel region on the amorphous silicon layer corresponding to a position below the second strip-shaped channel, and a thickness of the amorphous silicon layer on the channel region is equal to a thickness of other regions;
- the source and the drain are respectively in contact with the surfaces of the first metal oxide semiconductor segment and the second metal oxide semiconductor segment, and an area of the source distributed on the substrate is larger than the first An area of a metal oxide semiconductor segment distributed over the substrate, the area of the drain distributed on the substrate being greater than the area of the second metal oxide semiconductor segment distributed over the substrate.
- the method further includes the step of: surface-treating the amorphous silicon layer located in the channel region, removing the residual metal oxide semiconductor layer located above the channel region, and the thickness of the amorphous silicon layer on the channel region after the treatment remains Equal to the thickness of other areas.
- the method further includes the step of: partially etching the amorphous silicon layer located in the channel region by using the source, the drain, and the first and second metal oxide semiconductor segments as an etch barrier layer, thereby making the amorphous
- the thickness of the silicon layer on the channel region is smaller than the thickness of other regions.
- the step 2 deposits the gate insulating layer and the amorphous silicon layer by chemical vapor deposition, and deposits the metal oxide semiconductor layer by physical vapor deposition.
- the material of the metal oxide semiconductor layer is IGZO.
- the step 3 performs a patterning process on the metal oxide semiconductor layer by a wet etching process; the amorphous silicon layer is patterned by a dry etching process.
- the second metal layer and the metal oxide semiconductor layer are patterned by a wet etching process.
- the step 5 etches the amorphous silicon layer located in the channel region by a dry etching process.
- the invention also provides a method for fabricating a TFT substrate structure, comprising the following steps:
- Step 1 providing a substrate, depositing a first metal layer on the substrate, and patterning the first metal layer to form a gate;
- Step 2 sequentially depositing a gate insulating layer, an amorphous silicon layer, and a metal oxide semiconductor layer on the substrate and the gate;
- Step 3 sequentially patterning the metal oxide semiconductor layer and the amorphous silicon layer to obtain an island-shaped active layer, wherein the island-shaped active layer includes an amorphous silicon layer corresponding to the gate and Metal oxide semiconductor layer;
- Step 4 depositing a second metal layer on the gate insulating layer and the island active layer, and patterning the second metal layer and the metal oxide semiconductor layer by using a photolithography process; Forming a first strip-shaped channel corresponding to the upper surface of the gate and a source and a drain respectively disposed on opposite sides of the first strip-shaped channel; and the metal oxide semiconductor layer Forming a second strip-shaped channel corresponding to the first strip-shaped channel, and first metal oxide semiconductor segments and second metal-oxide semiconductor segments respectively disposed on two sides of the second strip-shaped channel; Forming a channel region on the amorphous silicon layer corresponding to a position below the second strip-shaped channel, and a thickness of the amorphous silicon layer on the channel region is equal to a thickness of other regions;
- the source and the drain are respectively in contact with the surfaces of the first metal oxide semiconductor segment and the second metal oxide semiconductor segment, and an area of the source distributed on the substrate is larger than the first An area of a metal oxide semiconductor segment distributed on the substrate, an area of the drain distributed on the substrate being larger than an area of the second metal oxide semiconductor segment distributed on the substrate;
- step 2 deposits the gate insulating layer and the amorphous silicon layer by chemical vapor deposition, and deposits the metal oxide semiconductor layer by physical vapor deposition;
- the material of the metal oxide semiconductor layer is IGZO;
- the metal oxide semiconductor layer is patterned by a wet etching process; the amorphous silicon layer is patterned by a dry etching process;
- the second metal layer and the metal oxide semiconductor layer are patterned by a wet etching process.
- a metal oxide semiconductor layer is disposed on the amorphous silicon layer instead of the N-type heavily doped layer, and a barrier between the amorphous silicon layer and the metal layer is small, and an ohmic layer can be formed. Contact to improve current efficiency.
- the barrier between the amorphous silicon layer and the metal layer is small, and an ohmic contact can be formed.
- FIG. 1 is a schematic cross-sectional view showing a structure of a conventional TFT substrate
- FIG. 2 is a graph showing leakage current of an A-Si device having the TFT substrate structure of FIG. 1;
- FIG. 3 is a cross-sectional view showing a first embodiment of a TFT substrate structure of the present invention.
- FIG. 4 is a cross-sectional view showing a second embodiment of a TFT substrate structure of the present invention.
- FIG. 5 is a graph comparing curves of leakage current of an A-Si device having the TFT substrate structure of FIG. 4 and leakage current of an A-Si device having the TFT substrate structure of FIG. 1;
- FIG. 6 is a flow chart showing a method of fabricating a TFT substrate structure of the present invention.
- step 7 is a schematic diagram of step 1 of a method for fabricating a TFT substrate structure according to the present invention.
- step 2 is a schematic diagram of step 2 of a method for fabricating a TFT substrate structure according to the present invention.
- Fig. 9 is a schematic view showing the third step of the method for fabricating the TFT substrate structure of the present invention.
- the present invention firstly provides a TFT substrate structure, including a substrate 1, a gate 2 disposed on the substrate 1, and a gate insulation disposed on the substrate 1 to cover the gate 2. a layer 3, an island-shaped active layer 4 disposed on the gate insulating layer 3 corresponding to the gate electrode 2, and a second metal disposed on the gate insulating layer 3 and the island-shaped active layer 4 Layer 5.
- the second metal layer 5 includes a first strip-shaped channel 51 and a source 52 and a drain 53 respectively disposed on opposite sides of the first strip-shaped channel 51.
- the island-shaped active layer 4 includes an amorphous silicon layer 41 and a metal oxide semiconductor layer 42 disposed on the amorphous silicon layer 41;
- the metal oxide semiconductor layer 42 includes a corresponding one of the first strips a second strip-shaped channel 421 of the shaped channel 51, and first and second metal-oxide-semiconductor segments 422, 423 respectively disposed on opposite sides of the second strip-shaped channel 421;
- the amorphous silicon layer 41 corresponds to A position below the second strip-shaped channel 421 forms a channel region 415, and the thickness of the amorphous silicon layer 41 at the channel region 415 is less than or equal to the thickness of other regions.
- the source 52 and the drain 52 are in contact with the surfaces of the first metal oxide semiconductor segment 422 and the second metal oxide semiconductor segment 423, respectively, and the area of the source 52 distributed on the substrate 1 is larger than An area of the first metal oxide semiconductor segment 422 distributed on the substrate 1 , an area of the drain electrode 53 distributed on the substrate 1 is larger than an area of the second metal oxide semiconductor segment 423 distributed on the substrate 1 .
- first strip-shaped channel 51 and the second strip-shaped channel 421 have the same width and are smaller than the width of the gate 2 .
- FIG 3 is a schematic cross-sectional view showing a first embodiment of a TFT substrate structure according to the present invention, wherein the amorphous silicon layer 41 has a thickness in the channel region 415 equal to the thickness of other regions.
- FIG. 4 is a schematic cross-sectional view showing a second embodiment of the TFT substrate structure of the present invention, wherein the thickness of the amorphous silicon layer 41 on the channel region 415 is smaller than the thickness of other regions.
- the substrate 1 is a glass substrate.
- the material of the gate 2, the source 52 and the drain 53 may be a stacked combination of one or more of molybdenum, titanium, aluminum, and copper.
- the material of the gate insulating layer 3 may be silicon oxide, silicon nitride, or a combination of both.
- the material of the metal oxide semiconductor layer 5 is IGZO (Indium Gallium Zinc Oxide).
- FIG. 5 is a graph comparing curves of leakage current of an A-Si device having the TFT substrate structure of FIG. 4 and leakage current of an A-Si device having the TFT substrate structure of FIG. 1, wherein "N+” represents the TFT having FIG.
- the leakage current Ioff of the A-Si device of the substrate structure changes with the gate voltage Vg
- "IGZO" represents the curve of the leakage current Ioff of the A-Si device having the TFT substrate structure of FIG. 4 as a function of the gate voltage Vg, from FIG.
- the leakage current Ioff of the A-Si device having the TFT substrate structure of FIG. 4 (present invention) is lower than that of the A-Si device having the TFT substrate structure of FIG. 1 (prior art), and the curve is curved.
- the warpage is slowed (shown in the dashed box), which improves the reliability of the A-Si device.
- an IGZO layer is provided on the amorphous silicon layer instead of the N-type heavily doped layer, and a barrier between the IGZO layer and the source/drain is small, an ohmic contact can be formed, and current efficiency is improved.
- the present invention also provides a method of fabricating a TFT substrate structure.
- a method for fabricating a TFT substrate structure of the present invention includes the following steps:
- Step 1 As shown in FIG. 7, a substrate 1 is provided, a first metal layer is deposited on the substrate 1, and the first metal layer is patterned to form a gate 2.
- the substrate 1 is a glass substrate.
- the material of the gate 2 may be a stacked combination of one or more of molybdenum, titanium, aluminum, and copper.
- Step 2 As shown in FIG. 8, a gate insulating layer 3, an amorphous silicon layer 41, and a metal oxide semiconductor layer 42 are sequentially deposited on the substrate 1 and the gate 2.
- the gate insulating layer 3 and the amorphous silicon layer 41 are deposited by a chemical vapor deposition (CVD) method, and the metal oxide semiconductor layer 42 is deposited by a physical vapor deposition (PVD) method.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- the material of the gate insulating layer 3 may be silicon oxide, silicon nitride, or a combination of the two.
- the material of the metal oxide semiconductor layer 42 is IGZO.
- Step 3 as shown in FIG. 9, the metal oxide semiconductor layer 42 and the amorphous silicon layer 41 are sequentially patterned to obtain an island-shaped active layer 4, and the island-shaped active layer 4 includes a corresponding The amorphous silicon layer 41 above the gate electrode 2 and the metal oxide semiconductor layer 42 are described.
- the metal oxide semiconductor layer 42 is patterned by a wet etching (Wet Etch) process, and the semiconductor layer 41 is patterned by a dry etching process.
- Wet Etch wet etching
- Step 4 referring to FIG. 3, depositing a second metal layer 5 on the gate insulating layer 3 and the island-shaped active layer 4, and using a photolithography process to the second metal layer 5 and the metal oxide
- the semiconductor layer 42 is patterned; a first strip-shaped channel 51 corresponding to the upper portion of the gate 2 is formed on the second metal layer 5, and is respectively disposed on both sides of the first strip-shaped channel 51.
- a source 52 and a drain 53 forming a corresponding one on the metal oxide semiconductor layer 42 corresponding to the first strip channel a second strip-shaped channel 421 of 51, and first and second metal-oxide-semiconductor segments 422, 423 respectively disposed on two sides of the second strip-shaped channel 421; the amorphous silicon layer 41 corresponding to the a position below the second strip-shaped channel 421 forms a channel region 415;
- the source 52 and the drain 52 are in contact with the surfaces of the first metal oxide semiconductor segment 422 and the second metal oxide semiconductor segment 423, respectively, and the area of the source 52 distributed on the substrate 1 is larger than An area of the first metal oxide semiconductor segment 422 distributed on the substrate 1 , an area of the drain electrode 53 distributed on the substrate 1 is larger than an area of the second metal oxide semiconductor segment 423 distributed on the substrate 1 .
- first strip-shaped channel 51 and the second strip-shaped channel 421 have the same width and are smaller than the width of the gate 2 .
- the second metal layer 5 and the metal oxide semiconductor layer 42 are patterned by a wet etching process; the etching conditions need to be debugged during the wet etching process to avoid an Undercut phenomenon.
- step 4 If the step 4 is completed, no metal oxide semiconductor layer 42 remains above the amorphous silicon layer 41 located in the channel region 415, that is, the step 4 can place the metal oxide semiconductor layer 42 over the channel region 415. If the etching is clean, no further steps are required, and the TFT substrate structure as shown in FIG. 3 is obtained;
- step 4 does not etch the metal oxide semiconductor layer 42 over the channel region 415, proceed to step 5 or step 5':
- Step 5 surface treatment is performed on the amorphous silicon layer 41 located in the channel region 415 to remove the residual metal oxide semiconductor layer 42 located above the channel region 415. After the processing, the amorphous silicon layer 41 is located in the channel region. The thickness of 415 is still equal to the thickness of other regions, resulting in a TFT substrate structure as shown in FIG.
- Step 5 ′ partially etching the amorphous silicon layer 41 located in the channel region 415 by using the source, the drains 52 and 53 , and the first and second metal oxide semiconductor segments 52 and 53 as an etch barrier layer. Therefore, the thickness of the amorphous silicon layer 41 on the channel region 415 is smaller than that of the other regions, and finally the TFT substrate structure as shown in FIG. 4 is obtained.
- the amorphous silicon layer 41 located in the channel region 415 is etched by a dry etching process.
- the barrier between the IGZO layer and the source/drain is small, and ohmic contact can be formed.
- no need to dope other ions to form an N-type heavily doped layer and because there are many defects in the IGZO layer that trap holes, even if a large negative pressure is applied to the gate during TFT operation, hole conduction is formed.
- Channels and holes are also difficult to pass from the source/drain through the IGZO layer and the amorphous silicon layer to the conductive path, which improves the leakage problem of the hole conduction region of the conventional TFT substrate structure. At the same time, the problem of serious hole current warpage and poor reliability is improved.
- a metal oxide semiconductor layer is disposed on the amorphous silicon layer instead of the N-type heavily doped layer, and a barrier between the amorphous silicon layer and the metal layer is small, and an ohmic contact can be formed.
- Improve current efficiency in the method for fabricating the TFT substrate structure of the present invention, by forming a metal oxide semiconductor layer on the amorphous silicon layer instead of the N-type heavily doped layer, the barrier between the amorphous silicon layer and the metal layer is small, and an ohmic contact can be formed.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明提供一种TFT基板结构及其制作方法,通过在非晶硅层上形成金属氧化物半导体层代替N型重掺杂层,非晶硅层与金属层间的势垒较小,可形成欧姆接触,提高电流效率,无需再掺杂其它离子形成N型重掺杂层,并且由于金属氧化物半导体层中有很多抓空穴的缺陷,在TFT工作过程中即使栅极施加很大负压,形成空穴导电通道,空穴也很难由源/漏极通过金属氧化物半导体层及半导体层到达导电通道,改善了传统TFT基板结构的空穴导电区的漏电问题,同时改善了空穴电流翘曲严重,信赖性差的问题。
Description
本发明涉及显示技术领域,尤其涉及一种TFT基板结构及其制作方法。
非晶硅(A-Si)是目前半导体行业应用最广泛的半导体层材料,A-Si材料与金属接触时因为有较大的势能差,难以形成欧姆接触,实际应用中,为了获得金属和半导体之间的欧姆接触,一般对半导体表面进行重掺杂P元素,降低金属和半导体的接触阻抗,提高电流效率。
图1所示为一种现有TFT基板结构的剖面示意图。该TFT基板结构包括基板100、设于所述基板100上的栅极200、设于所述基板100上覆盖所述栅极200的栅极绝缘层300、对应所述栅极200上方设于所述栅极绝缘层300上的非晶硅层400、及设于所述栅极绝缘层300上的源极500与漏极600。所述非晶硅层400的中部向下凹陷,对应所述栅极200的上方形成有沟道区450;所述非晶硅层400表面对应所述沟道区450的两侧分别经过离子掺杂,形成有第一、第二N型重掺杂区410、420。所述源极500与漏极600分别与所述第一、第二N型重掺杂区410、420的表面相接触。
图2为具有图1的TFT基板结构的A-Si器件的漏电流的曲线图,从图2中可以看出,图1的TFT基板结构在增大工作电流(Ion)的同时,也存在一定的问题,当加负电压到一定程度时,会引出正电荷形成空穴导电通道,漏电流(Ioff)也随之增大,曲线翘曲严重,造成信赖性的问题。
因此,有必要提供一种TFT基板结构及其制作方法,以解决上述问题。
发明内容
本发明的目的在于提供一种TFT基板结构,采用金属氧化物半导体层代替N型重掺杂层,金属氧化物半导体层与金属层间的势垒较小,可形成欧姆接触,提高电流效率,并降低漏电流。
本发明的目的还在于提供一种TFT基板结构的制作方法,通过在非晶硅层上形成金属氧化物半导体层以代替N型重掺杂层,金属氧化物半导体层与金属层间的势垒较小,可形成欧姆接触,无需再掺杂其它离子形成N型重掺杂层,同时使得空穴导电区的漏电流降低,曲线翘曲变缓,提升了TFT基板结构的信赖性。
为实现上述目的,本发明提供一种TFT基板结构,包括基板、设于所述基板上的栅极、设于所述基板上覆盖所述栅极的栅极绝缘层、设于所述栅极绝缘层上对应所述栅极上方的岛状有源层、及设于所述栅极绝缘层与岛状有源层上的第二金属层;
所述第二金属层包括一第一条形通道、及分别设于所述第一条形通道两侧的源极与漏极;
所述岛状有源层包括非晶硅层及设于所述非晶硅层上的金属氧化物半导体层;所述金属氧化物半导体层包括一对应于所述第一条形通道的第二条形通道、及分别设于所述第二条形通道两侧的第一、第二金属氧化物半导体段;所述非晶硅层上对应于所述第二条形通道下方的位置形成沟道区,所述非晶硅层上位于沟道区的厚度小于或等于其它区域的厚度;
所述源极与漏极分别与所述第一金属氧化物半导体段、及第二金属氧化物半导体段的表面相接触,且所述源极在基板上分布的面积大于所述第一金属氧化物半导体段在基板上分布的面积,所述漏极在基板上分布的面积大于所述第二金属氧化物半导体段在基板上分布的面积。
所述金属氧化物半导体层的材料为IGZO。
本发明还提供一种TFT基板结构的制作方法,包括如下步骤:
步骤1、提供基板,在所述基板上沉积第一金属层,并对所述第一金属层进行图案化处理,形成栅极;
步骤2、依次在所述基板与栅极上沉积栅极绝缘层、非晶硅层、及金属氧化物半导体层;
步骤3、依次对所述金属氧化物半导体层、及非晶硅层进行图案化处理,得到岛状有源层,所述岛状有源层包括对应所述栅极上方的非晶硅层及金属氧化物半导体层;
步骤4、在所述栅极绝缘层、及岛状有源层上沉积第二金属层,并采用一道光刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理;在所述第二金属层上形成一对应于所述栅极上方的第一条形通道、及分别设于所述第一条形通道两侧的源极与漏极;在所述金属氧化物半导体层上形成一对应于所述第一条形通道的第二条形通道、及分别设于所述第二条形通道两侧的第一金属氧化物半导体段、及第二金属氧化物半导体段;所述非晶硅层上对应于所述第二条形通道下方的位置形成沟道区,且所述非晶硅层上位于沟道区的厚度等于其它区域的厚度;
所述源极与漏极分别与所述第一金属氧化物半导体段、及第二金属氧化物半导体段的表面相接触,且所述源极在基板上分布的面积大于所述第
一金属氧化物半导体段在基板上分布的面积,所述漏极在基板上分布的面积大于所述第二金属氧化物半导体段在基板上分布的面积。
还包括步骤5、对位于沟道区的非晶硅层进行表面处理,去除位于沟道区上方的残留的金属氧化物半导体层,处理后所述非晶硅层上位于沟道区的厚度依然等于其它区域的厚度。
还包括步骤5、以所述源、漏极、及第一、第二金属氧化物半导体段为刻蚀阻挡层,对位于沟道区的非晶硅层进行部分蚀刻,从而使得所述非晶硅层上位于沟道区的厚度小于其它区域的厚度。
所述步骤2采用化学气相沉积法沉积所述栅极绝缘层、及非晶硅层,采用物理气相沉积法沉积所述金属氧化物半导体层。
所述金属氧化物半导体层的材料为IGZO。
所述步骤3采用湿法蚀刻制程对所述金属氧化物半导体层进行图案化处理;采用干法蚀刻制程对所述非晶硅层进行图案化处理。
所述步骤4采用湿法蚀刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理。
所述步骤5采用干法蚀刻制程对位于沟道区的非晶硅层进行蚀刻。
本发明还提供一种TFT基板结构的制作方法,包括如下步骤:
步骤1、提供基板,在所述基板上沉积第一金属层,并对所述第一金属层进行图案化处理,形成栅极;
步骤2、依次在所述基板与栅极上沉积栅极绝缘层、非晶硅层、及金属氧化物半导体层;
步骤3、依次对所述金属氧化物半导体层、及非晶硅层进行图案化处理,得到岛状有源层,所述岛状有源层包括对应所述栅极上方的非晶硅层及金属氧化物半导体层;
步骤4、在所述栅极绝缘层、及岛状有源层上沉积第二金属层,并采用一道光刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理;在所述第二金属层上形成一对应于所述栅极上方的第一条形通道、及分别设于所述第一条形通道两侧的源极与漏极;在所述金属氧化物半导体层上形成一对应于所述第一条形通道的第二条形通道、及分别设于所述第二条形通道两侧的第一金属氧化物半导体段、及第二金属氧化物半导体段;所述非晶硅层上对应于所述第二条形通道下方的位置形成沟道区,且所述非晶硅层上位于沟道区的厚度等于其它区域的厚度;
所述源极与漏极分别与所述第一金属氧化物半导体段、及第二金属氧化物半导体段的表面相接触,且所述源极在基板上分布的面积大于所述第
一金属氧化物半导体段在基板上分布的面积,所述漏极在基板上分布的面积大于所述第二金属氧化物半导体段在基板上分布的面积;
其中,所述步骤2采用化学气相沉积法沉积所述栅极绝缘层、及非晶硅层,采用物理气相沉积法沉积所述金属氧化物半导体层;
其中,所述金属氧化物半导体层的材料为IGZO;
其中,所述步骤3采用湿法蚀刻制程对所述金属氧化物半导体层进行图案化处理;采用干法蚀刻制程对所述非晶硅层进行图案化处理;
其中,所述步骤4采用湿法蚀刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理。
本发明的有益效果:本发明的TFT基板结构,非晶硅层上设有金属氧化物半导体层代替N型重掺杂层,非晶硅层与金属层间的势垒较小,可形成欧姆接触,提高电流效率。本发明的TFT基板结构的制作方法,通过在非晶硅层上形成金属氧化物半导体层代替N型重掺杂层,非晶硅层与金属层间的势垒较小,可形成欧姆接触,提高电流效率,无需再掺杂其它离子形成N型重掺杂层,并且由于金属氧化物半导体层中有很多抓空穴的缺陷,在TFT工作过程中即使栅极施加很大负压,形成空穴导电通道,空穴也很难由源/漏极通过金属氧化物半导体层及半导体层到达导电通道,改善了传统TFT基板结构的空穴导电区的漏电问题,同时改善了空穴电流翘曲严重,信赖性差的问题。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为一种现有TFT基板结构的剖面示意图;
图2为具有图1的TFT基板结构的A-Si器件的漏电流的曲线图;
图3为本发明的TFT基板结构第一实施例的剖面示意图;
图4为本发明的TFT基板结构第二实施例的剖面示意图;
图5为具有图4的TFT基板结构的A-Si器件的漏电流与具有图1的TFT基板结构的A-Si器件的漏电流的曲线对比图;
图6为本发明的TFT基板结构的制作方法的流程图;
图7为本发明的TFT基板结构的制作方法的步骤1的示意图;
图8为本发明的TFT基板结构的制作方法的步骤2的示意图;
图9为本发明的TFT基板结构的制作方法的步骤3的示意图。
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3-4,本发明首先提供一种TFT基板结构,包括基板1、设于所述基板1上的栅极2、设于所述基板1上覆盖所述栅极2的栅极绝缘层3、设于所述栅极绝缘层3上对应所述栅极2上方的岛状有源层4、及设于所述栅极绝缘层3与岛状有源层4上的第二金属层5。
所述第二金属层5包括一第一条形通道51、及分别设于所述第一条形通道51两侧的源极52与漏极53。
所述岛状有源层4包括非晶硅层41及设于所述非晶硅层41上的金属氧化物半导体层42;所述金属氧化物半导体层42包括一对应于所述第一条形通道51的第二条形通道421、及分别设于所述第二条形通道421两侧的第一、第二金属氧化物半导体段422、423;所述非晶硅层41上对应于所述第二条形通道421下方的位置形成沟道区415,所述非晶硅层41上位于沟道区415的厚度小于或等于其它区域的厚度。
所述源极52与漏极52分别与所述第一金属氧化物半导体段422、及第二金属氧化物半导体段423的表面相接触,且所述源极52在基板1上分布的面积大于所述第一金属氧化物半导体段422在基板1上分布的面积,所述漏极53在基板1上分布的面积大于所述第二金属氧化物半导体段423在基板1上分布的面积。
具体的,所述第一条形通道51与第二条形通道421的宽度相同,且小于所述栅极2的宽度。
如图3所示,为本发明的TFT基板结构第一实施例的剖面示意图,其中,所述非晶硅层41上位于沟道区415的厚度等于其它区域的厚度。
如图4所示,为本发明的TFT基板结构第二实施例的剖面示意图,其中,所述非晶硅层41上位于沟道区415的厚度小于其它区域的厚度。
具体的,所述基板1为玻璃基板。
所述栅极2、源极52与漏极53的材料可以是钼、钛、铝和铜中的一种或多种的堆栈组合。
所述栅极绝缘层3的材料可以是氧化硅、氮化硅、或二者的组合。
具体的,所述金属氧化物半导体层5的材料为IGZO(Indium Gallium Zinc Oxide,氧化铟镓锌)。
图5为具有图4的TFT基板结构的A-Si器件的漏电流与具有图1的TFT基板结构的A-Si器件的漏电流的曲线对比图,其中,“N+”代表具有图1的TFT基板结构的A-Si器件的漏电流Ioff随栅电压Vg变化的曲线,“IGZO”代表具有图4的TFT基板结构的A-Si器件的漏电流Ioff随栅电压Vg变化的曲线,从图5中可以看出,与具有图1(现有技术)的TFT基板结构的A-Si器件相比,具有图4(本发明)的TFT基板结构的A-Si器件的漏电流Ioff降低,曲线的翘曲变缓(虚线框内所示),提高了A-Si器件的信赖性。
上述TFT基板结构中,非晶硅层上设有IGZO层以代替N型重掺杂层,IGZO层与源/漏极间的势垒较小,可形成欧姆接触,提高电流效率。
基于同一发明构思,本发明还提供一种TFT基板结构的制作方法。
请参阅图6,本发明的TFT基板结构的制作方法包括如下步骤:
步骤1、如图7所示,提供基板1,在所述基板1上沉积第一金属层,并对所述第一金属层进行图案化处理,形成栅极2。
具体的,所述基板1为玻璃基板。所述栅极2的材料可以是钼、钛、铝和铜中的一种或多种的堆栈组合。
步骤2、如图8所示,依次在所述基板1与栅极2上沉积栅极绝缘层3、非晶硅层41、及金属氧化物半导体层42。
具体的,采用化学气相沉积(CVD)法沉积所述栅极绝缘层3、及非晶硅层41,采用物理气相沉积(PVD)法沉积所述金属氧化物半导体层42。
具体的,所述栅极绝缘层3的材料可以是氧化硅、氮化硅、或二者的组合。
具体的,所述金属氧化物半导体层42的材料为IGZO。
步骤3、如图9所示,依次对所述金属氧化物半导体层42、及非晶硅层41进行图案化处理,得到岛状有源层4,所述岛状有源层4包括对应所述栅极2上方的非晶硅层41、及金属氧化物半导体层42。
具体的,采用湿法蚀刻(Wet Etch)制程对所述金属氧化物半导体层42进行图案化处理,采用干法蚀刻(Dry Etch)制程对所述半导体层41进行图案化处理。
步骤4、请参阅图3,在所述栅极绝缘层3、及岛状有源层4上沉积第二金属层5,并采用一道光刻制程对所述第二金属层5及金属氧化物半导体层42进行图案化处理;在所述第二金属层5上形成一对应于所述栅极2上方的第一条形通道51、及分别设于所述第一条形通道51两侧的源极52与漏极53;在所述金属氧化物半导体层42上形成一对应于所述第一条形通道
51的第二条形通道421、及分别设于所述第二条形通道421两侧的第一、第二金属氧化物半导体段422、423;所述非晶硅层41上对应于所述第二条形通道421下方的位置形成沟道区415;
所述源极52与漏极52分别与所述第一金属氧化物半导体段422、及第二金属氧化物半导体段423的表面相接触,且所述源极52在基板1上分布的面积大于所述第一金属氧化物半导体段422在基板1上分布的面积,所述漏极53在基板1上分布的面积大于所述第二金属氧化物半导体段423在基板1上分布的面积。
具体的,所述第一条形通道51与第二条形通道421的宽度相同,且小于所述栅极2的宽度。
具体的,采用湿法蚀刻制程对所述第二金属层5及金属氧化物半导体层42进行图案化处理;在湿蚀刻过程中需要对蚀刻条件进行调试以避免产生Undercut(底切)现象。
如果所述步骤4进行完之后,位于沟道区415的非晶硅层41上方没有金属氧化物半导体层42残留,即所述步骤4能够将位于沟道区415上方的金属氧化物半导体层42蚀刻干净的话,就无需再进行其它步骤,得到如图3所示的TFT基板结构;
如果所述步骤4没有将位于沟道区415上方的金属氧化物半导体层42蚀刻干净的话,则继续进行步骤5或步骤5’:
步骤5、对位于沟道区415的非晶硅层41进行表面处理,去除位于沟道区415上方的残留的金属氧化物半导体层42,处理后所述非晶硅层41上位于沟道区415的厚度依然等于其它区域的厚度,得到如图3所示的TFT基板结构。
步骤5’、以所述源、漏极52、53、及第一、第二金属氧化物半导体段52、53为刻蚀阻挡层,对位于沟道区415的非晶硅层41进行部分蚀刻,从而使得所述非晶硅层41上位于沟道区415的厚度小于其它区域的厚度,最终制得如图4所示的TFT基板结构。
具体的,采用干法蚀刻制程对位于沟道区415的非晶硅层41进行蚀刻。
上述TFT基板结构的制作方法,通过在非晶硅层上形成IGZO层,以代替传统结构中的N型重掺杂层,IGZO层与源/漏极间的势垒较小,可形成欧姆接触,提高电流效率,无需再掺杂其它离子形成N型重掺杂层,并且由于IGZO层中有很多抓空穴的缺陷,在TFT工作过程中即使栅极施加很大负压,形成空穴导电通道,空穴也很难由源/漏极通过IGZO层及非晶硅层到达导电通道,改善了传统TFT基板结构的空穴导电区的漏电问题,
同时改善了空穴电流翘曲严重,信赖性差的问题。
综上所述,本发明的TFT基板结构,非晶硅层上设有金属氧化物半导体层代替N型重掺杂层,非晶硅层与金属层间的势垒较小,可形成欧姆接触,提高电流效率。本发明的TFT基板结构的制作方法,通过在非晶硅层上形成金属氧化物半导体层代替N型重掺杂层,非晶硅层与金属层间的势垒较小,可形成欧姆接触,提高电流效率,无需再掺杂其它离子形成N型重掺杂层,并且由于金属氧化物半导体层中有很多抓空穴的缺陷,在TFT工作过程中即使栅极施加很大负压,形成空穴导电通道,空穴也很难由源/漏极通过金属氧化物半导体层及半导体层到达导电通道,改善了传统TFT基板结构的空穴导电区的漏电问题,同时改善了空穴电流翘曲严重,信赖性差的问题。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。
Claims (14)
- 一种TFT基板结构,包括基板、设于所述基板上的栅极、设于所述基板上覆盖所述栅极的栅极绝缘层、设于所述栅极绝缘层上对应所述栅极上方的岛状有源层、及设于所述栅极绝缘层与岛状有源层上的第二金属层;所述第二金属层包括一第一条形通道、及分别设于所述第一条形通道两侧的源极与漏极;所述岛状有源层包括非晶硅层及设于所述非晶硅层上的金属氧化物半导体层;所述金属氧化物半导体层包括一对应于所述第一条形通道的第二条形通道、及分别设于所述第二条形通道两侧的第一、第二金属氧化物半导体段;所述非晶硅层上对应于所述第二条形通道下方的位置形成沟道区,所述非晶硅层上位于沟道区的厚度小于或等于其它区域的厚度;所述源极与漏极分别与所述第一金属氧化物半导体段、及第二金属氧化物半导体段的表面相接触,且所述源极在基板上分布的面积大于所述第一金属氧化物半导体段在基板上分布的面积,所述漏极在基板上分布的面积大于所述第二金属氧化物半导体段在基板上分布的面积。
- 如权利要求1所述的TFT基板结构,其中,所述金属氧化物半导体层的材料为IGZO。
- 一种TFT基板结构的制作方法,包括如下步骤:步骤1、提供基板,在所述基板上沉积第一金属层,并对所述第一金属层进行图案化处理,形成栅极;步骤2、依次在所述基板与栅极上沉积栅极绝缘层、非晶硅层、及金属氧化物半导体层;步骤3、依次对所述金属氧化物半导体层、及非晶硅层进行图案化处理,得到岛状有源层,所述岛状有源层包括对应所述栅极上方的非晶硅层及金属氧化物半导体层;步骤4、在所述栅极绝缘层、及岛状有源层上沉积第二金属层,并采用一道光刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理;在所述第二金属层上形成一对应于所述栅极上方的第一条形通道、及分别设于所述第一条形通道两侧的源极与漏极;在所述金属氧化物半导体层上形成一对应于所述第一条形通道的第二条形通道、及分别设于所述第二条形通道两侧的第一金属氧化物半导体段、及第二金属氧化物半导体段;所述非晶硅层上对应于所述第二条形通道下方的位置形成沟道区,且所述非 晶硅层上位于沟道区的厚度等于其它区域的厚度;所述源极与漏极分别与所述第一金属氧化物半导体段、及第二金属氧化物半导体段的表面相接触,且所述源极在基板上分布的面积大于所述第一金属氧化物半导体段在基板上分布的面积,所述漏极在基板上分布的面积大于所述第二金属氧化物半导体段在基板上分布的面积。
- 如权利要求3所述的TFT基板结构的制作方法,其中,还包括步骤5、对位于沟道区的非晶硅层进行表面处理,去除位于沟道区上方的残留的金属氧化物半导体层,处理后所述非晶硅层上位于沟道区的厚度依然等于其它区域的厚度。
- 如权利要求3所述的TFT基板结构的制作方法,其中,还包括步骤5、以所述源、漏极、及第一、第二金属氧化物半导体段为刻蚀阻挡层,对位于沟道区的非晶硅层进行部分蚀刻,从而使得所述非晶硅层上位于沟道区的厚度小于其它区域的厚度。
- 如权利要求3所述的TFT基板结构的制作方法,其中,所述步骤2采用化学气相沉积法沉积所述栅极绝缘层、及非晶硅层,采用物理气相沉积法沉积所述金属氧化物半导体层。
- 如权利要求3所述的TFT基板结构的制作方法,其中,所述金属氧化物半导体层的材料为IGZO。
- 如权利要求3所述的TFT基板结构的制作方法,其中,所述步骤3采用湿法蚀刻制程对所述金属氧化物半导体层进行图案化处理;采用干法蚀刻制程对所述非晶硅层进行图案化处理。
- 如权利要求3所述的TFT基板结构的制作方法,其中,所述步骤4采用湿法蚀刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理。
- 如权利要求5所述的TFT基板结构的制作方法,其中,所述步骤5采用干法蚀刻制程对位于沟道区的非晶硅层进行蚀刻。
- 一种TFT基板结构的制作方法,包括如下步骤:步骤1、提供基板,在所述基板上沉积第一金属层,并对所述第一金属层进行图案化处理,形成栅极;步骤2、依次在所述基板与栅极上沉积栅极绝缘层、非晶硅层、及金属氧化物半导体层;步骤3、依次对所述金属氧化物半导体层、及非晶硅层进行图案化处理,得到岛状有源层,所述岛状有源层包括对应所述栅极上方的非晶硅层及金属氧化物半导体层;步骤4、在所述栅极绝缘层、及岛状有源层上沉积第二金属层,并采用一道光刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理;在所述第二金属层上形成一对应于所述栅极上方的第一条形通道、及分别设于所述第一条形通道两侧的源极与漏极;在所述金属氧化物半导体层上形成一对应于所述第一条形通道的第二条形通道、及分别设于所述第二条形通道两侧的第一金属氧化物半导体段、及第二金属氧化物半导体段;所述非晶硅层上对应于所述第二条形通道下方的位置形成沟道区,且所述非晶硅层上位于沟道区的厚度等于其它区域的厚度;所述源极与漏极分别与所述第一金属氧化物半导体段、及第二金属氧化物半导体段的表面相接触,且所述源极在基板上分布的面积大于所述第一金属氧化物半导体段在基板上分布的面积,所述漏极在基板上分布的面积大于所述第二金属氧化物半导体段在基板上分布的面积;其中,所述步骤2采用化学气相沉积法沉积所述栅极绝缘层、及非晶硅层,采用物理气相沉积法沉积所述金属氧化物半导体层;其中,所述金属氧化物半导体层的材料为IGZO;其中,所述步骤3采用湿法蚀刻制程对所述金属氧化物半导体层进行图案化处理;采用干法蚀刻制程对所述非晶硅层进行图案化处理;其中,所述步骤4采用湿法蚀刻制程对所述第二金属层及金属氧化物半导体层进行图案化处理。
- 如权利要求11所述的TFT基板结构的制作方法,其中,还包括步骤5、对位于沟道区的非晶硅层进行表面处理,去除位于沟道区上方的残留的金属氧化物半导体层,处理后所述非晶硅层上位于沟道区的厚度依然等于其它区域的厚度。
- 如权利要求11所述的TFT基板结构的制作方法,其中,还包括步骤5、以所述源、漏极、及第一、第二金属氧化物半导体段为刻蚀阻挡层,对位于沟道区的非晶硅层进行部分蚀刻,从而使得所述非晶硅层上位于沟道区的厚度小于其它区域的厚度。
- 如权利要求13所述的TFT基板结构的制作方法,其中,所述步骤5采用干法蚀刻制程对位于沟道区的非晶硅层进行蚀刻。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/778,080 US9570617B2 (en) | 2015-07-14 | 2015-07-27 | TFT substrate structure and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510414025.0A CN105070722A (zh) | 2015-07-14 | 2015-07-14 | Tft基板结构及其制作方法 |
CN201510414025.0 | 2015-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017008332A1 true WO2017008332A1 (zh) | 2017-01-19 |
Family
ID=54500052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/085159 WO2017008332A1 (zh) | 2015-07-14 | 2015-07-27 | Tft基板结构及其制作方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9570617B2 (zh) |
CN (1) | CN105070722A (zh) |
WO (1) | WO2017008332A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11646237B2 (en) * | 2020-01-19 | 2023-05-09 | Applied Materials, Inc. | Methods and apparatuses for depositing amorphous silicon atop metal oxide |
CN111477686B (zh) * | 2020-03-16 | 2022-12-09 | 福建华佳彩有限公司 | 一种多开口式面板结构 |
CN112071862B (zh) * | 2020-09-03 | 2024-01-19 | Tcl华星光电技术有限公司 | 发光面板及其制备方法、显示面板 |
CN114609812B (zh) * | 2022-04-11 | 2023-06-27 | 深圳市华星光电半导体显示技术有限公司 | 基板检测方法、基板检测治具 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1901169A (zh) * | 2005-07-20 | 2007-01-24 | 三星电子株式会社 | 制造薄膜晶体管基板的方法 |
CN101471348A (zh) * | 2007-12-28 | 2009-07-01 | 胜华科技股份有限公司 | 面板结构及其制造方法 |
CN101640219A (zh) * | 2008-07-31 | 2010-02-03 | 株式会社半导体能源研究所 | 半导体装置及其制造方法 |
CN102751240A (zh) * | 2012-05-18 | 2012-10-24 | 京东方科技集团股份有限公司 | 薄膜晶体管阵列基板及其制造方法、显示面板、显示装置 |
CN104576526A (zh) * | 2013-12-19 | 2015-04-29 | 北京京东方光电科技有限公司 | 一种阵列基板及其制备方法和显示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101325053B1 (ko) * | 2007-04-18 | 2013-11-05 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이의 제조 방법 |
KR101593443B1 (ko) * | 2009-02-19 | 2016-02-12 | 엘지디스플레이 주식회사 | 어레이 기판의 제조방법 |
JP5564331B2 (ja) * | 2009-05-29 | 2014-07-30 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
KR20110077264A (ko) * | 2009-12-30 | 2011-07-07 | 엘지디스플레이 주식회사 | 박막 트랜지스터 및 그 제조 방법 |
-
2015
- 2015-07-14 CN CN201510414025.0A patent/CN105070722A/zh active Pending
- 2015-07-27 WO PCT/CN2015/085159 patent/WO2017008332A1/zh active Application Filing
- 2015-07-27 US US14/778,080 patent/US9570617B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1901169A (zh) * | 2005-07-20 | 2007-01-24 | 三星电子株式会社 | 制造薄膜晶体管基板的方法 |
CN101471348A (zh) * | 2007-12-28 | 2009-07-01 | 胜华科技股份有限公司 | 面板结构及其制造方法 |
CN101640219A (zh) * | 2008-07-31 | 2010-02-03 | 株式会社半导体能源研究所 | 半导体装置及其制造方法 |
CN102751240A (zh) * | 2012-05-18 | 2012-10-24 | 京东方科技集团股份有限公司 | 薄膜晶体管阵列基板及其制造方法、显示面板、显示装置 |
CN104576526A (zh) * | 2013-12-19 | 2015-04-29 | 北京京东方光电科技有限公司 | 一种阵列基板及其制备方法和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20170018651A1 (en) | 2017-01-19 |
US9570617B2 (en) | 2017-02-14 |
CN105070722A (zh) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Smets et al. | Ultra-scaled MOCVD MoS 2 MOSFETs with 42nm contact pitch and 250µA/µm drain current | |
US9882055B2 (en) | TFT substrate structure and manufacturing method thereof | |
WO2017008331A1 (zh) | Tft基板结构及其制作方法 | |
WO2017008334A1 (zh) | Tft基板结构及其制作方法 | |
WO2017008332A1 (zh) | Tft基板结构及其制作方法 | |
CN105453216A (zh) | 用于增强模式氮化镓晶体管的具有自对准凸出部的栅极 | |
TW201310656A (zh) | 顯示面板之薄膜電晶體及其製作方法 | |
US20180219088A1 (en) | Method for manufacturing semiconductor device | |
US9525070B1 (en) | TFT substrate structure and manufacturing method thereof | |
CN105990332B (zh) | 薄膜晶体管基板及其显示面板 | |
CN108878515B (zh) | 薄膜晶体管及其制备方法、阵列基板 | |
US20130237009A1 (en) | Method for manufacturing a gate-control diode semiconductor device | |
KR102280449B1 (ko) | 산화물 박막트랜지스터의 제조방법 | |
CN105529265A (zh) | Mos晶体管的制作方法及mos晶体管 | |
CN105074888A (zh) | 氮化物半导体器件 | |
JP5564790B2 (ja) | 半導体装置及びその製造方法 | |
US10700210B2 (en) | Semiconductor device, and manufacturing method for same | |
JP6457896B2 (ja) | 半導体装置及び半導体装置の製造方法 | |
US10672623B2 (en) | Transistor and method of manufacturing the same | |
KR20160084923A (ko) | 박막 트랜지스터 기판 및 그 제조 방법 | |
US20130237010A1 (en) | Method for manufacturing a gate-control diode semiconductor memory device | |
KR102382762B1 (ko) | 실리콘계 박막 반도체 장치 및 실리콘계 박막 반도체 장치의 제조 방법 | |
EP4020588A1 (en) | Method for processing a fet device | |
CN112928023B (zh) | 半导体结构及其形成方法 | |
WO2016106895A1 (zh) | 薄膜晶体管及薄膜晶体管的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14778080 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15898059 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15898059 Country of ref document: EP Kind code of ref document: A1 |