WO2017006831A1 - 陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜 - Google Patents

陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜 Download PDF

Info

Publication number
WO2017006831A1
WO2017006831A1 PCT/JP2016/069364 JP2016069364W WO2017006831A1 WO 2017006831 A1 WO2017006831 A1 WO 2017006831A1 JP 2016069364 W JP2016069364 W JP 2016069364W WO 2017006831 A1 WO2017006831 A1 WO 2017006831A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cation exchange
divalent
containing group
carbon
Prior art date
Application number
PCT/JP2016/069364
Other languages
English (en)
French (fr)
Inventor
宮武 健治
内田 誠
純平 三宅
崇史 望月
小野 英明
愛生 島田
尚樹 横田
菜摘 吉村
Original Assignee
国立大学法人山梨大学
タカハタプレシジョンジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学, タカハタプレシジョンジャパン株式会社 filed Critical 国立大学法人山梨大学
Priority to US15/738,270 priority Critical patent/US10471420B2/en
Publication of WO2017006831A1 publication Critical patent/WO2017006831A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/19Definition of the polymer structure partially conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cation exchange resin, a cation exchange membrane using the same, and an electrolyte membrane for a fuel cell.
  • Nafion registered trademark
  • a cation exchange resin Since Nafion (registered trademark), which is a cation exchange resin, has high conductivity, it is used as a standard electrolyte membrane for fuel cells (Patent Documents 1 to 3, Non-Patent Documents 1 to 3).
  • Patent Document 1 has a problem that the chemical stability (durability, particularly radical resistance) is not sufficient. Moreover, the subject that the gas permeation
  • the present invention provides a cation exchange resin excellent in chemical characteristics (durability, solubility, gas permeation suppression effect) and mechanical characteristics (flexibility), and a cation exchange membrane and a fuel cell electrolyte using the same.
  • the object is to provide a membrane.
  • the cation exchange resin of the present invention is: A divalent hydrophobic unit represented by the following formula (1): A single aromatic ring or a divalent hydrocarbon group, a divalent silicon-containing group, a divalent nitrogen-containing group, a divalent phosphorus-containing group, a divalent oxygen-containing group, a divalent sulfur-containing group Or a divalent hydrophilic group consisting of a plurality of aromatic rings bonded to each other via a carbon-carbon bond, and at least one of the aromatic rings having a cation exchange group is repeated via a carbon-carbon bond. Having a divalent hydrophilic unit, The hydrophobic unit and the hydrophilic unit are bonded via a carbon-carbon bond.
  • Z 1 to Z 9 are the same or different from each other and represent a carbon atom or a silicon atom
  • R 1 to R 8 are the same or different from each other to represent a silicon-containing group, a nitrogen-containing group, or a phosphorus-containing group.
  • X 1 to X 18 are the same or different from each other, and represent a halogen atom, a pseudohalide, or a hydrogen atom
  • a is an integer of 1 or more
  • b, c, d, e, f, g, h, and i are the same or different from each other and represent an integer of 0 or more.
  • the hydrophilic group is a bisphenol residue substituted with a substituent having the cation exchange group represented by the following formula (2), or the following formula (2 ′).
  • the o-, m-, or p-phenylene group is preferably substituted with a substituent having the cation exchange group shown.
  • R is a hydrocarbon group, a silicon-containing group, a nitrogen-containing group, a phosphorus-containing group, an oxygen-containing group, a sulfur-containing group, or an aromatic group, which may be substituted with a substituent having the cation exchange group.
  • Alk is the same or different from each other and represents an alkyl group
  • Ion is the same or different from each other, and represents a substituent having a cation exchange group
  • a ′ and b ′ are Are the same or different from each other and represent an integer of 0 to 4
  • s, t and u are the same or different from each other and represent an integer of 0 to 4, and at least one of s, t and u is 1 The above is shown.
  • Alk represents an alkyl group
  • Ion represents a substituent having a cation exchange group
  • a ′ represents an integer of 0 to 4
  • s represents an integer of 1 to 4.
  • the hydrophobic unit is a divalent fluorinated saturated hydrocarbon group or a divalent saturated hydrocarbon group.
  • the cation exchange membrane of the present invention is characterized by containing the above-mentioned cation exchange resin.
  • an electrolyte membrane for a fuel cell according to the present invention includes the cation exchange resin described above.
  • a cation exchange resin excellent in chemical characteristics and mechanical characteristics a cation exchange membrane using the cation exchange resin, and an electrolyte membrane for fuel cells.
  • the cation exchange resin of the present invention has a divalent hydrophobic unit and a divalent hydrophilic unit.
  • the divalent hydrophobic unit is represented by the following formula (1).
  • Z 1 to Z 9 are the same or different from each other and represent a carbon atom or a silicon atom
  • R 1 to R 8 are the same or different from each other to represent a silicon-containing group, a nitrogen-containing group, or a phosphorus-containing group.
  • X 1 to X 18 are the same or different from each other, and represent a halogen atom, a pseudohalide, or a hydrogen atom
  • a is an integer of 1 or more
  • b, c, d, e, f, g, h, and i are the same or different from each other and represent an integer of 0 or more.
  • Z 1 to Z 9 are the same or different from each other and represent a carbon atom or a silicon atom, preferably a carbon atom.
  • R 1 to R 8 are the same or different from each other and each represents a silicon-containing group, a nitrogen-containing group, a phosphorus-containing group, an oxygen-containing group, a sulfur-containing group, or a direct bond, preferably directly Indicates binding.
  • X 1 to X 18 are the same as or different from each other, and represent the above-described halogen atom or pseudohalide, or a hydrogen atom, preferably a halogen atom or a hydrogen atom.
  • examples of the halogen atom include fluorine, chlorine, bromine, and iodine.
  • Pseudohalides include trifluoromethyl groups, —CN, —NC, —OCN, —NCO, —ONC, —SCN, —NCS, —SeCN, —NCSe, —TeCN, —NCTe, —N 3. .
  • a represents an integer of 1 or more, preferably an integer of 1 to 20, more preferably an integer of 4 to 8.
  • b, c, d, e, f, g, h and i are the same or different from each other, and represent an integer of 0 or more, preferably an integer of 0 to 10, more preferably Represents an integer of 0 to 3, more preferably 0 or 1.
  • the divalent hydrophobic unit is bonded to each other via a divalent hydrocarbon group and a carbon-carbon bond or a carbon-silicon bond, as represented by the following formula (1 ′). It may be. In this case, a hydrophobic unit including a divalent hydrocarbon group is used.
  • Z 1 to Z 9 , R 1 to R 8 , X 1 to X 18 , a, b, c, d, e, f, g, h, and i are the same as Z 1 to Z 9 , R 1 to R 8 , X 1 to X 18 , a, b, c, d, e, f, g, h and i have the same meanings, and R ′ is the same or different from each other and is divalent. Represents a hydrocarbon group or a direct bond.
  • divalent hydrocarbon group examples include methylene (—CH 2 —), ethylene, propylene, isopropylene (—C (CH 3 ) 2 —), butylene, isobutylene, sec-butylene, pentylene (pentene), and isopentylene.
  • a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane (above, a divalent aliphatic cyclic hydrocarbon group), o-, m -Or carbon atoms such as p-phenylene group 6 ⁇ Divalent aromatic hydrocarbon group 0 and the like.
  • the divalent hydrocarbon group is preferably a divalent saturated hydrocarbon group having 1 to 3 carbon atoms, specifically methylene (—CH 2 —), ethylene, propylene, isopropylene (—C (CH 3 ) 2- ), more preferably methylene (—CH 2 —), isopropylene (—C (CH 3 ) 2 —), particularly preferably isopropylene (—C (CH 3 ) 2 -).
  • the divalent hydrocarbon group is preferably an o-, m- or p-phenylene group.
  • the divalent hydrocarbon group may be optionally substituted with a substituent such as a halogen atom, an alkyl group, or a pseudohalide.
  • a substituent such as a halogen atom, an alkyl group, or a pseudohalide
  • the number of substitutions and the substitution position of the substituent such as a halogen atom, an alkyl group, or a pseudohalide are as follows: It is set as appropriate according to the purpose and application.
  • alkyl group examples include methyl group, ethyl group, propyl group, i-propyl group, butyl group, i-butyl group, sec-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.
  • alkyl groups having 1 to 20 carbon atoms examples include alkyl groups having 1 to 20 carbon atoms; cycloalkyl groups having 1 to 20 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • Such a divalent hydrophobic unit is preferably a divalent fluorinated saturated hydrocarbon group or a divalent saturated hydrocarbon group, and more preferably one having the following structure.
  • R ′ has the same meaning as R ′ in formula (1 ′).
  • a represents an integer of 1 or more, preferably an integer of 1 to 10, more preferably An integer of 2 to 6 is shown.
  • a divalent hydrophilic group is repeated via a carbon-carbon bond.
  • the divalent hydrophilic group consists of a single aromatic ring, or a divalent hydrocarbon group, a divalent silicon-containing group, a divalent nitrogen-containing group, a divalent phosphorus-containing group, and a divalent oxygen-containing group.
  • aromatic ring examples include monocyclic or polycyclic aromatic hydrocarbons having 6 to 20 carbon atoms such as benzene ring, naphthalene ring, indene ring, azulene ring, fluorene ring, anthracene ring, phenanthrene ring, and azole, Examples include heterocyclic compounds such as oxole, thiophene, oxazole, thiazole, pyridine and the like.
  • the aromatic ring is preferably a monocyclic aromatic hydrocarbon having 6 to 14 carbon atoms, and more preferably a benzene ring.
  • the aromatic ring may be substituted with a substituent such as a halogen atom, an alkyl group, or a pseudohalide if necessary.
  • a substituent such as a halogen atom, an alkyl group, or a pseudohalide
  • the number and position of substitution of the substituent such as a halogen atom, an alkyl group, or a pseudohalide depends on the purpose and application. It is set accordingly.
  • examples of the aromatic ring substituted with a halogen atom include a benzene ring substituted with 1 to 4 halogen atoms (for example, a benzene ring substituted with 1 to 4 fluorine atoms, and 1 to 4 chlorine atoms).
  • 1 to 4 halogen atoms are the same or different from each other, such as a benzene ring substituted with 1, a benzene ring substituted with 1 to 4 bromine, a benzene ring substituted with 1 to 4 iodine, etc. May be included).
  • divalent hydrocarbon group examples include the divalent hydrocarbon groups described above.
  • the number of aromatic rings bonded to the divalent hydrocarbon group is one or two, and preferably two.
  • the hydrocarbon group when one aromatic ring is further bonded to a divalent hydrocarbon group, the hydrocarbon group is trivalent, and when two more aromatic rings are bonded, The hydrocarbon group is tetravalent (in the case of 1 carbon atom, it is a carbon atom).
  • the aromatic rings when two aromatic rings are bonded to a divalent hydrocarbon group, the aromatic rings may be bonded through, for example, a carbon-carbon bond.
  • the cation exchange group is introduced into the main chain or the side chain in the hydrophilic group, and specifically, is not particularly limited, and is a sulfonic acid group (—SO 3 H), a phosphoric acid group (—PO 3 H), a carboxylic acid Any known cation exchange group such as an acid (—COOH) can be employed. From the viewpoint of cation conductivity, a sulfonic acid group is preferable.
  • the substituent having a cation exchange group may be substituted with at least one of the aromatic rings, and may be substituted with a plurality of aromatic rings. , All aromatic rings may be substituted. Further, when two aromatic rings are bonded to a divalent hydrocarbon group, the substituent having a cation exchange group may be substituted with at least one of the aromatic rings, for example, the side One of the aromatic rings in the chain may be substituted, or both may be substituted. A plurality of substituents having a cation exchange group may be substituted on one aromatic ring.
  • Such a hydrophilic group is preferably a bisphenol residue substituted with a substituent having the cation exchange group represented by the following formula (2), or the cation represented by the following formula (2 ′).
  • An o-, m- or p-phenylene group substituted with a substituent having an ion exchange group can be mentioned.
  • R is a hydrocarbon group, a silicon-containing group, a nitrogen-containing group, a phosphorus-containing group, an oxygen-containing group, a sulfur-containing group, or an aromatic group, which may be substituted with a substituent having the cation exchange group.
  • Alk is the same or different from each other and represents an alkyl group
  • Ion is the same or different from each other, and represents a substituent having a cation exchange group
  • a ′ and b ′ are Are the same or different from each other and represent an integer of 0 to 4
  • s, t and u are the same or different from each other and represent an integer of 0 to 4, and at least one of s, t and u is 1 The above is shown.
  • Alk represents an alkyl group
  • Ion represents a substituent having a cation exchange group
  • a ′ represents an integer of 0 to 4
  • s represents an integer of 1 to 4.
  • R represents a hydrocarbon group, a silicon-containing group, a nitrogen-containing group, a phosphorus-containing group, an oxygen-containing group, a sulfur-containing group, or a direct bond, preferably isopropylene (—C (CH 3 ) 2- ). R may be substituted with a substituent having a cation exchange group.
  • Alk is the same as or different from each other and represents an alkyl group.
  • alkyl group examples include methyl group, ethyl group, propyl group, i-propyl group, butyl group, i-butyl group, sec-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.
  • alkyl groups having 1 to 20 carbon atoms examples include alkyl groups having 1 to 20 carbon atoms; cycloalkyl groups having 1 to 20 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • Ion is the same or different from each other, and represents a substituent having the above-described cation exchange group, and preferably represents the above-described sulfonic acid group.
  • a ′ and b ′ are the same or different from each other, and represent an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably a and b are both 0 is shown.
  • s, t, and u are the same or different from each other and represent an integer of 0 to 4, and at least one of s, t, and u represents 1 or more.
  • Alk is the same as or different from each other and represents the above-described alkyl group.
  • Ion represents a substituent having the above-described cation exchange group, and preferably represents the above-described sulfonic acid group.
  • a ′ represents an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0.
  • s represents an integer of 1 to 4.
  • substitution position of the substituent having a cation exchange group is appropriately set according to the purpose and application.
  • hydrophilic groups include those having the following structure.
  • Ion represents a substituent having a cation exchange group or a hydrogen atom, and at least one is a substituent having a cation exchange group.
  • a plurality of Ions are bonded to one benzene ring structure. May be.
  • hydrophilic group examples include a p-phenylene group represented by the following formula (3 ′) and an m-phenylene group represented by the following formula (3 ′′).
  • Ion ′ represents a substituent having a cation exchange group.
  • the divalent hydrophilic unit is formed by repeating a divalent hydrophilic group via a carbon-carbon bond, but the divalent hydrophilic group is a carbon-carbon. It is preferably formed repeatedly through bonding.
  • the unit corresponds to a block of a generally used block copolymer.
  • the hydrophilic unit is preferably a bisphenol A residue (hydrophilic group) substituted with a substituent having a cation exchange group represented by the above formula (2) and / or represented by the above formula (2 ′). And a unit formed by bonding o-, m- or p-phenylene groups (hydrophilic groups) substituted with a substituent having a cation exchange group to each other via a carbon-carbon bond. It may be a unit formed by bonding a plurality of types of hydrophilic groups to each other via a carbon-carbon bond.
  • Such a hydrophilic unit is represented by, for example, the following formula (4) or the following formula (4 ′).
  • R, Alk, Ion, a ′, b ′, s, t and u have the same meaning as R, Alk, Ion, a ′, b ′, s, t and u in the above formula (2).
  • M represents an integer of 1 to 200.
  • Alk, Ion, a ′ and s are the same as Alk, Ion, a ′ and s in the above formula (2 ′), and m is a numerical value of 1 to 200.
  • Such a hydrophilic unit is particularly preferably a unit formed by bonding p-phenylenes represented by the above formula (3 ′) to each other via a carbon-carbon bond, represented by the above formula (3 ′′).
  • Such a hydrophilic unit is represented by, for example, the following formula (5 ′), the following formula (5 ′′), or the following formula (5 ′ ′′).
  • the hydrophobic unit and the hydrophilic unit described above are bonded via a carbon-carbon bond.
  • a hydrophobic unit represented by the above formula (1 ′) and a hydrophilic unit represented by the above formula (4) are each a carbon-carbon bond. And a cation exchange resin bonded via the. Further, as represented by the following formula (6 ′), the hydrophobic unit represented by the above formula (1 ′) and the hydrophilic unit represented by the above formula (4 ′) are bonded via a carbon-carbon bond. And cation exchange resins.
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h, and i are represented by the above formula (1 ′)
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h and i have the same meanings as R, Alk, Ion , A ′, b ′, s, t and u have the same significance as R, Alk, Ion, a ′, b ′, s, t and u in the above formula (2), and l and m are blending ratios And o represents an integer of 1 to 100.)
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h, and i are represented by the above formula (1 ′)
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h and i have the same meanings as Alk, Ion, a 'And s have the same meaning as Alk, Ion, a' and s in the above formula (2)
  • l and m represent the compounding ratio
  • o represents an integer of 1 to 100.
  • the number average molecular weight of the cation exchange resin is adjusted to 10 to 1000 kDa, preferably 30 to 500 kDa.
  • a cation exchange resin more preferably, as shown by the following formula (7), a hydrophobic unit represented by the above formula (1a ′) and a hydrophilic unit represented by the above formula (5 ′ ′′) And a cation exchange resin bonded through a carbon-carbon bond.
  • the hydrophobic unit represented by the above formula (1c ′) and the hydrophilic unit represented by the above formula (5 ′ ′′) are bonded via a carbon-carbon bond.
  • Examples include bound cation exchange resins. Particularly preferred is a cation exchange resin represented by the following formula (7 ") or (7" ').
  • R ′ and a are the same as R ′ and a in the above formula (1 ′), and Ion ′ and Ion ′′ are Ion ′ in the above formula (3 ′) and the above formula (3 ′ ') Is the same as Ion'', l, m and n are compounding ratios, and o is an integer of 1 to 100.
  • R ′ and a are the same as R ′ and a in the above formula (1 ′), and Ion ′ and Ion ′′ are Ion ′ in the above formula (3 ′) and the above formula (3 ′ ') Is the same as Ion'', l, m and n are compounding ratios, and o is an integer of 1 to 100.
  • Ion ′ and Ion ′′ have the same meanings as Ion ′ in the above formula (3 ′) and Ion ′′ in the above formula (3 ′′), and l, m, and n represent the compounding ratio. , O represents an integer of 1-100.
  • Ion ′ and Ion ′′ have the same meanings as Ion ′ in the above formula (3 ′) and Ion ′′ in the above formula (3 ′′), and l, m, and n represent the compounding ratio. , O represents an integer of 1-100.
  • the number average molecular weight of such a cation exchange resin is, for example, 10 to 1000 kDa, preferably 30 to 500 kDa.
  • the method for producing the cation exchange resin is not particularly limited, and a known method can be adopted. Preferably, a method using a polycondensation reaction is employed.
  • first monomer a monomer for forming a divalent hydrophobic unit
  • second monomer a monomer for forming a hydrophilic unit
  • a conventionally known general method can be employed.
  • cross coupling in which dihalides react with each other to form a carbon-carbon direct bond is employed.
  • Examples of the first monomer for forming the divalent hydrophobic unit include compounds represented by the following formula (11).
  • Z 1 to Z 9 , R 1 to R 8 , X 1 to X 18 , b, c, d, e, f, g, h and i are Z 1 to Z in the above formula (1 ′)).
  • 9 , R 1 to R 8 , X 1 to X 18 , b, c, d, e, f, g, h, and i, and X ′ are the same or different from each other, Indicates a halide.
  • the first monomer for forming the divalent hydrophobic unit is bonded to each other via a divalent hydrocarbon group and a carbon-carbon bond or a carbon-silicon bond, as shown by the following formula (11 ′). May be.
  • the first monomer including a divalent hydrocarbon group is used.
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h, and i are represented by the above formula (1 ′)
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h and i have the same meanings
  • X ′ is the above (It has the same meaning as X ′ in formula (11).)
  • R ′ and a are the same as those in the above formula (1a ′), formula (1b ′), formula (1c ′).
  • X ′ has the same meaning as X ′ in formula (11 ′).
  • Particularly preferable examples of the first monomer include compounds represented by the following formula (11a ′′) and the following formula (11c ′′).
  • the second monomer for forming the hydrophilic unit consists of a single aromatic ring, or a divalent hydrocarbon group, a divalent silicon-containing group, a divalent nitrogen-containing group, a divalent phosphorus-containing group, Examples thereof include dihalogenated compounds composed of a divalent oxygen-containing group, a divalent sulfur-containing group, or a plurality of aromatic rings bonded to each other via a carbon-carbon bond.
  • the dihalogenated compound for forming such a hydrophilic unit is preferably a compound represented by the following formula (12) corresponding to the above formula (2), and a formula represented by the following formula (3 ′). And a compound represented by (12 ′).
  • X ′ is the same or different from each other and represents a halogen atom or a pseudohalide.
  • X ′ is the same or different from each other and represents a halogen atom or a pseudohalide.
  • a compound represented by the following formula (13 ′) is particularly preferable.
  • the blending amounts of the first monomer and the second monomer are respectively the desired hydrophobic unit and hydrophilic unit in the obtained cation exchange resin precursor polymer.
  • the blending ratio is adjusted.
  • the first monomer and the second monomer are dissolved in a solvent such as N, N-dimethylacetamide or dimethyl sulfoxide, and bis (cycloocta-1,5-diene) nickel (0) or the like is used as a catalyst.
  • a solvent such as N, N-dimethylacetamide or dimethyl sulfoxide
  • bis (cycloocta-1,5-diene) nickel (0) or the like is used as a catalyst.
  • a known method such as a polymerization method can be employed.
  • the reaction temperature in the cross coupling reaction is, for example, ⁇ 100 to 300 ° C., preferably ⁇ 50 to 200 ° C., and the reaction time is, for example, 1 to 48 hours, preferably 2 to 5 hours.
  • a cation exchange resin precursor polymer preferably a cation exchange resin precursor polymer represented by the following formula (16) or a cation exchange resin precursor polymer represented by the following formula (16 ′) is obtained. It is done.
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h, i, R, Alk, a ′, b ′, l, m, and o are Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g in the above formula (6).
  • H, i, R, Alk, a ′, b ′, l, m, and o are the same.
  • Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h, i, Alk, a ′, l, m and o are Z 1 to Z 9 , R 1 to R 8 , R ′, X 1 to X 18 , a, b, c, d, e, f, g, h, i in the above formula (6 ′).
  • Alk, a ′, l, m and o are the same.
  • the cation exchange resin precursor polymer is more preferably a cation exchange resin precursor polymer represented by the following formula (17) or the following formula (17 ′), and particularly preferably the following formula (17 ′). ') Or a cation exchange resin precursor polymer represented by the following formula (17' '').
  • R ′, a, R ′′, l, m and n have the same meaning as R ′, a, R ′′, l, m and n in the above formula (7).
  • R ′, a, R ′′, l, m and n have the same meaning as R ′, a, R ′′, l, m and n in the above formula (7 ′).
  • the method for introducing a substituent having a cation exchange group is not particularly limited, and a known method can be employed.
  • a substituent having a cation exchange group is introduced by an aromatic electrophilic substitution reaction.
  • the substituent which has a cation exchange group is introduce
  • it is a cation exchange resin shown by said Formula (6), or said Formula (6)
  • the cation exchange group capacity of the cation exchange resin is, for example, 0.1 to 5.0 meq. / G, preferably 0.5 to 4.0 meq. / G.
  • capacitance can be calculated
  • Capacity of cation exchange group (meq./g)] Introduction amount of cation exchange group per hydrophilic unit ⁇ repeating unit of hydrophilic unit ⁇ 1000 / (molecular weight of hydrophobic unit ⁇ number of repeating units of hydrophobic unit + molecular weight of hydrophilic unit) X number of repeating units of hydrophilic unit + molecular weight of cation exchange group x amount of cation exchange group introduced per hydrophilic unit x number of repeating units of hydrophilic unit) (20)
  • the amount of cation exchange groups introduced is defined as the number of cation exchange groups per unit hydrophilic group.
  • the amount of cation exchange group introduced is the number of moles (mol) of the cation exchange group introduced into the main chain or side chain in the hydrophilic unit.
  • Such a cation exchange resin comprises a divalent hydrophobic unit represented by the above formula (1) and a single aromatic ring, or a divalent hydrocarbon group, a divalent silicon-containing group, A divalent nitrogen-containing group, a divalent phosphorus-containing group, a divalent oxygen-containing group, a divalent sulfur-containing group, or a plurality of aromatic rings bonded to each other via a carbon-carbon bond, A divalent hydrophilic group, at least one of which has a cation exchange group, has a divalent hydrophilic unit repeated through a carbon-carbon bond, and the hydrophobic unit and the hydrophilic unit are carbon-carbon. Are connected through bonds.
  • this cation exchange resin has a hydrophobic unit having excellent chemical and mechanical properties and a hydrophilic unit in which a cation exchange group is introduced into a structure containing an aromatic ring excellent in gas permeation suppression effect. Excellent mechanical properties (durability, solubility, gas permeation suppressing effect) and mechanical properties (flexibility).
  • this cation exchange resin has high flexibility, it is possible to improve the handling property when a membrane-electrode assembly (MEA) using the cation exchange resin is produced.
  • this cation exchange resin has high solubility in an organic solvent (for example, it dissolves in a low boiling point organic solvent such as methanol or ethanol), when used as a binder for forming an electrode catalyst layer, an electrode catalyst It is expected that the durability can be improved without requiring a high boiling point solvent such as dimethyl sulfoxide, which may cause deterioration of the above.
  • the hydrophilic group has a hydrophilic unit that is repeated via a carbon-carbon bond (that is, it does not contain an ether bond), it is excellent in durability such as radical resistance. More specifically, when an ether bond is contained in the hydrophilic unit, for example, as described below, decomposition by hydroxyl radical (.OH) may occur, and radical resistance may not be sufficient.
  • the hydrophilic unit of the cation exchange resin having a hydrophilic unit in which the hydrophilic group is repeated via a carbon-carbon bond does not contain an ether bond, decomposition by the above mechanism does not occur. As a result, it has excellent durability such as radical resistance.
  • the present invention includes a cation exchange membrane obtained using such a cation exchange resin. More specifically, it includes a cation exchange membrane containing a cation exchange resin into which a cation exchange group has been introduced. The present invention also includes a fuel cell electrolyte membrane containing such a cation exchange resin.
  • the cation exchange membrane for example, it can be reinforced by a known reinforcing material such as a porous substrate, and further, for example, biaxial stretching treatment for controlling molecular orientation, crystallinity, residual Various treatments such as heat treatment for controlling the stress can be performed.
  • a known filler can be added to the cation exchange membrane in order to increase its mechanical strength, and the cation exchange membrane and a reinforcing agent such as a glass nonwoven fabric can be combined by pressing.
  • compatibilizers for improving compatibility for example, antioxidants for preventing resin deterioration, for example, handling in molding as a film
  • An antistatic agent, a lubricant, and the like for improving the properties can be appropriately contained as long as the processing and performance as a cation exchange membrane are not affected.
  • the thickness of the cation exchange membrane is not particularly limited, and is appropriately set according to the purpose and application.
  • the thickness of the cation exchange membrane is, for example, 1 to 350 ⁇ m, preferably 5 to 200 ⁇ m.
  • Applications of the fuel cell of the present invention include, for example, power sources for driving motors in automobiles, ships, airplanes, etc., and power sources in communication terminals such as mobile phones.
  • the reaction was stopped by dropping the reaction mixture into a 0.1 M aqueous nitric acid solution, and the precipitated reddish brown solid was collected by filtration.
  • the obtained reddish brown solid was washed with methanol, and the filtrate was recovered. Furthermore, it wash
  • reaction was stopped by dropping the reaction mixture into methanol, and the precipitated white solid was collected by filtration.
  • the resulting black solid was washed several times with concentrated hydrochloric acid, pure water and methanol, and then vacuum dried at 60 ° C. overnight.
  • cation exchange resin precursor polymer (0.50 g) and a 30% aqueous fuming sulfuric acid solution (9 mL) were added to a 50 mL round bottom flask and allowed to react at room temperature for 3 days.
  • the reaction was stopped by dropping the reaction mixture into ice water, and the precipitated brown solid was collected by filtration. The obtained brown solid was washed several times with pure water and then vacuum dried at 80 ° C. overnight.
  • a cation exchange resin SPAF was formed by a solution casting method.
  • CCM catalyst coated film
  • FIG. 1 shows the results of linear sweep voltammetry when a SPAF film or Nafion (registered trademark) NRE211 is used in the cell.
  • gas humidification 100% RH, 80% RH, 53% RH, and 30% RH potential sweep range 0.15-0.60 V, potential sweep speed 0.5 mV / s, Measurement was performed by controlling the potential.
  • 100 ml / min of hydrogen was supplied to the anode side and 100 ml / min of nitrogen was supplied to the cathode side.
  • the current value detected at this time indicates the oxidation current at the cathode of hydrogen gas that has permeated through the electrolyte membrane from the anode to the cathode, and serves as an index of the amount of hydrogen permeated through the membrane.
  • the hydrogen permeation amount of the SPAF cell is about 25% of the Nafion (registered trademark) NRE211 cell having the same perfluoro main chain, and SPAF shows a high gas barrier property. all right.
  • FIG. 2 shows current density-voltage characteristics when a SPAF film or Nafion (registered trademark) NRE211 is used in a cell. This power generation characteristic was evaluated under the conditions of a cell temperature of 80 ° C. and 100% RH. Hydrogen (utilization rate 70%) was used as the anode gas, and air (utilization rate 40%) was used as the cathode gas. The cell resistance was measured with a resistance measuring instrument with a fixed frequency of 1 kHz.
  • the SPAF cell showed a performance higher than that of the Nafion (registered trademark) NRE211 cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

化学的特性および機械的特性に優れる陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜を提供する。 2価の疎水ユニットと、単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素-炭素結合を介して互いに結合する複数の芳香環からなり、前記芳香環のうち少なくとも1つが陽イオン交換基を有する2価の親水性基が、炭素-炭素結合を介して繰り返される2価の親水ユニットとを有し、前記疎水ユニットと前記親水ユニットとが、炭素-炭素結合を介して結合している陽イオン交換樹脂を用いる。

Description

陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜
 本発明は、陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜に関する。
 陽イオン交換樹脂であるNafion(登録商標)は、高い導電率を有することから、標準的な燃料電池用電解質膜として使用されている(特許文献1~3、非特許文献1~3)。
米国特許第3,969,285号明細書 米国特許第4,026,783号明細書 米国特許第4,030,988号明細書
Chem. Rev. 2004,104,4535-4586. J. Am. Chem. Soc. 2013,135,8181-8184. J. Am. Chem. Soc. 2013,135,15923-15932.
 しかし、特許文献1に記載された陽イオン交換樹脂には、化学的安定性(耐久性、特に耐ラジカル性)が十分ではないという課題が存在した。また、ガス透過抑制効果が十分でないという課題も存在した。
 そこで、本発明は、化学的特性(耐久性、溶解性、ガス透過抑制効果)および機械的特性(柔軟性)に優れる陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜を提供することを目的とする。
 前記課題を解決するために、本発明の陽イオン交換樹脂は、
 下記式(1)で表される2価の疎水ユニットと、
 単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素-炭素結合を介して互いに結合する複数の芳香環からなり、前記芳香環のうち少なくとも1つが陽イオン交換基を有する2価の親水性基が、炭素-炭素結合を介して繰り返される2価の親水ユニットと
を有し、
 前記疎水ユニットと前記親水ユニットとが、炭素-炭素結合を介して結合していることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
(式中、Z~Zは、互いに同一または相異なって、炭素原子またはケイ素原子を示し、R~Rは、互いに同一または相異なって、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、X~X18は、互いに同一または相異なって、ハロゲン原子、擬ハロゲン化物、または水素原子を示し、aは、1以上の整数を示し、b、c、d、e、f、g、hおよびiは、互いに同一または相異なって、0以上の整数を示す。)
 本発明の陽イオン交換樹脂では、前記親水性基が、下記式(2)で示される、前記陽イオン交換基を有する置換基で置換されているビスフェノール残基、または下記式(2’)で示される、前記陽イオン交換基を有する置換基で置換されているo-、m-またはp-フェニレン基であることが好適である。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、前記陽イオン交換基を有する置換基で置換されていてもよい、炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、芳香族基、または直接結合を示し、Alkは、互いに同一または相異なって、アルキル基を示し、Ionは、互いに同一または相異なって、陽イオン交換基を有する置換基を示し、a’およびb’は、互いに同一または相異なって、0~4の整数を示し、s、tおよびuは、互いに同一または相異なって、0~4の整数を示すとともに、s、tおよびuの少なくとも一つが、1以上を示す。)
Figure JPOXMLDOC01-appb-C000006
(式中、Alkは、アルキル基を示し、Ionは、陽イオン交換基を有する置換基を示し、a’は、0~4の整数を示し、sは、1~4の整数を示す。)
 本発明の陽イオン交換樹脂では、前記疎水ユニットが、2価のフッ素化飽和炭化水素基または2価の飽和炭化水素基であることが好適である。
 前記課題を解決するために、本発明の陽イオン交換膜は、上記の陽イオン交換樹脂を含むことを特徴とする。
 前記課題を解決するために、本発明の燃料電池用電解質膜は、上記の陽イオン交換樹脂を含むことを特徴とする。
 本発明によれば、化学的特性および機械的特性に優れる陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜を提供できる。
SPAF膜またはNafion(登録商標)NRE211膜をセルに用いたときのリニアスイープボルタンメトリーの結果を示すグラフである。 SPAF膜またはNafion(登録商標)NRE211膜をセルに用いたときの電流密度-電圧特性を示すグラフである。
 本発明の陽イオン交換樹脂は、2価の疎水ユニットと、2価の親水ユニットとを有する。
 本発明の陽イオン交換樹脂において、2価の疎水ユニットは、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000007
(式中、Z~Zは、互いに同一または相異なって、炭素原子またはケイ素原子を示し、R~Rは、互いに同一または相異なって、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、X~X18は、互いに同一または相異なって、ハロゲン原子、擬ハロゲン化物、または水素原子を示し、aは、1以上の整数を示し、b、c、d、e、f、g、hおよびiは、互いに同一または相異なって、0以上の整数を示す。)
 上記式(1)において、Z~Zは、互いに同一または相異なって、炭素原子またはケイ素原子を示し、好ましくは炭素原子を示す。
 上記式(1)において、R~Rは、互いに同一または相異なって、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、好ましくは直接結合を示す。
 上記式(1)において、X~X18は、互いに同一または相異なって、上記したハロゲン原子もしくは擬ハロゲン化物、または水素原子を示し、好ましくはハロゲン原子または水素原子を示す。なお、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。擬ハロゲン化物としては、トリフルオロメチル基、-CN、-NC、-OCN、-NCO、-ONC、-SCN、-NCS、-SeCN、-NCSe、-TeCN、-NCTe、-Nが挙げられる。
 上記式(1)において、aは、1以上の整数を示し、好ましくは1~20の整数を示し、より好ましくは4~8の整数を示す。
 上記式(1)において、b、c、d、e、f、g、hおよびiは、互いに同一または相異なって、0以上の整数を示し、好ましくは0~10の整数を示し、より好ましくは0~3の整数を示し、さらに好ましくは0または1を示す。
 本発明の陽イオン交換樹脂において、2価の疎水ユニットは、下記式(1’)で示されるように、2価の炭化水素基と炭素-炭素結合または炭素-ケイ素結合を介して互いに結合していてもよい。なお、この場合、2価の炭化水素基まで含めて疎水ユニットとする。
Figure JPOXMLDOC01-appb-C000008
(式中、Z~Z、R~R、X~X18、a、b、c、d、e、f、g、hおよびiは、上記式(1)のZ~Z、R~R、X~X18、a、b、c、d、e、f、g、hおよびiと同意義を示し、R’は、互いに同一または相異なって2価の炭化水素基または直接結合を示す。)
 2価の炭化水素基としては、例えば、メチレン(-CH-)、エチレン、プロピレン、イソプロピレン(-C(CH-)、ブチレン、イソブチレン、sec-ブチレン、ペンチレン(ペンテン)、イソペンチレン、sec-ペンチレン、ヘキシレン(ヘキサメチレン)、3-メチルペンテン、ヘプチレン、オクチレン、2-エチルヘキシレン、ノニレン、デシレン、イソデシレン、ドデシレン、テトラデシレン、ヘキサデシレン、オクタデシレン(以上、2価の飽和炭化水素基)、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン(以上、2価の脂肪族環状炭化水素基)などの炭素数1~20の2価の脂肪族炭化水素基、o-、m-またはp-フェニレン基などの炭素数6~20の2価の芳香族炭化水素基が挙げられる。
 2価の炭化水素基として、好ましくは、炭素数1~3の2価の飽和炭化水素基、具体的には、メチレン(-CH-)、エチレン、プロピレン、イソプロピレン(-C(CH-)が挙げられ、より好ましくは、メチレン(-CH-)、イソプロピレン(-C(CH-)が挙げられ、とりわけ好ましくは、イソプロピレン(-C(CH-)が挙げられる。また、2価の炭化水素基として、好ましくは、o-、m-またはp-フェニレン基が挙げられる。
 2価の炭化水素基は、必要により、ハロゲン原子、アルキル基、擬ハロゲン化物などの置換基により置換されていてもよい。なお、2価の炭化水素基がハロゲン原子、アルキル基、擬ハロゲン化物などの置換基により置換される場合において、ハロゲン原子、アルキル基、擬ハロゲン化物などの置換基の置換数および置換位置は、目的および用途に応じて、適宜設定される。
 アルキル基としては、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の炭素数1~20のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数1~20のシクロアルキル基が挙げられる。
 このような2価の疎水ユニットとして、好ましくは、2価のフッ素化飽和炭化水素基または2価の飽和炭化水素基が挙げられ、より好ましくは、以下の構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記式(1a’)、式(1b’)、式(1c’)、および式(1d’)において、R’は、上記式(1’)のR’と同意義を示す。
 上記式(1a’)、式(1b’)、式(1c’)、および式(1d’)において、aは、1以上の整数を示し、好ましくは1~10の整数を示し、より好ましくは2~6の整数を示す。
 本発明の陽イオン交換樹脂において、2価の親水ユニットは、2価の親水性基が、炭素-炭素結合を介して繰り返される。2価の親水性基は、単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素-炭素結合を介して互いに結合する複数の芳香環からなり、前記芳香環のうち少なくとも1つが陽イオン交換基を有する。
 芳香環としては、例えば、ベンゼン環、ナフタレン環、インデン環、アズレン環、フルオレン環、アントラセン環、フェナントレン環などの、炭素数6~20の単環または多環芳香族炭化水素、および、アゾール、オキソール、チオフェン、オキサゾール、チアゾール、ピリジンなどの、複素環式化合物が挙げられる。
 芳香環として、好ましくは、炭素数6~14の単環芳香族炭化水素が挙げられ、より好ましくは、ベンゼン環が挙げられる。
 また、芳香環は、必要により、ハロゲン原子、アルキル基、擬ハロゲン化物などの置換基に置換されていてもよい。なお、芳香環がハロゲン原子、アルキル基、擬ハロゲン化物などの置換基により置換される場合において、ハロゲン原子、アルキル基、擬ハロゲン化物などの置換基の置換数および置換位置は、目的および用途に応じて、適宜設定される。
 ハロゲン原子に置換された芳香環として、より具体的には、例えば、1~4つのハロゲン原子で置換されたベンゼン環(例えば、1~4つのフッ素で置換されたベンゼン環、1~4つの塩素で置換されたベンゼン環、1~4つの臭素で置換されたベンゼン環、1~4つのヨウ素で置換されたベンゼン環など、1~4のハロゲン原子は、全て同一であっても、相異なっていてもよい)などが挙げられる。
 2価の炭化水素基としては、上記した2価の炭化水素基が挙げられる。
 また、2価の炭化水素基に結合する芳香環の数は、1つまたは2つであって、好ましくは、2つである。
 なお、2価の炭化水素基に対して、さらに1つの芳香環が結合する場合には、その炭化水素基は、3価になり、また、さらに2つの芳香環が結合する場合には、その炭化水素基は、4価(炭素数が1の場合には、炭素原子)になる。
 また、2価の炭化水素基に対して2つの芳香環が結合する場合には、それら芳香環は、例えば、炭素-炭素結合を介して結合していてもよい。
 陽イオン交換基は、親水性基において主鎖または側鎖に導入され、具体的には、特に制限されず、スルホン酸基(-SOH)、リン酸基(-POH)、カルボン酸(-COOH)など、公知の陽イオン交換基をいずれも採用することができる。陽イオン伝導性の観点から、好ましくは、スルホン酸基が挙げられる。
 親水性基が複数の芳香環を有する場合には、陽イオン交換基を有する置換基は、それら芳香環の少なくとも1つに置換されていればよく、複数の芳香環に置換されていてもよく、全ての芳香環に置換されていてもよい。また、2価の炭化水素基に対して2つの芳香環が結合する場合には、陽イオン交換基を有する置換基は、それら芳香環の少なくとも1つに置換されていればよく、例えば、側鎖の芳香環の一方に置換されていてもよく、その両方に置換されていてもよい。また、陽イオン交換基を有する置換基は、1つの芳香環に複数個置換されていてもよい。
 このような親水性基として、好ましくは、下記式(2)で示される、前記陽イオン交換基を有する置換基で置換されているビスフェノール残基、下記式(2’)で示される、前記陽イオン交換基を有する置換基で置換されているo-、m-またはp-フェニレン基が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、Rは、前記陽イオン交換基を有する置換基で置換されていてもよい、炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、芳香族基、または直接結合を示し、Alkは、互いに同一または相異なって、アルキル基を示し、Ionは、互いに同一または相異なって、陽イオン交換基を有する置換基を示し、a’およびb’は、互いに同一または相異なって、0~4の整数を示し、s、tおよびuは、互いに同一または相異なって、0~4の整数を示すとともに、s、tおよびuの少なくとも一つが、1以上を示す。)
Figure JPOXMLDOC01-appb-C000014
(式中、Alkは、アルキル基を示し、Ionは、陽イオン交換基を有する置換基を示し、a’は、0~4の整数を示し、sは、1~4の整数を示す。)
 上記式(2)において、Rは、炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、好ましくは、イソプロピレン(-C(CH-)を示す。Rは、陽イオン交換基を有する置換基で置換されていてもよい。
 上記式(2)において、Alkは、互いに同一または相異なって、アルキル基を示す。アルキル基としては、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の炭素数1~20のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数1~20のシクロアルキル基が挙げられる。
 上記式(2)において、Ionは、互いに同一または相異なって、上記した陽イオン交換基を有する置換基を示し、好ましくは、上記したスルホン酸基を示す。
 上記式(2)において、a’およびb’は、互いに同一または相異なって、0~4の整数を示し、好ましくは、0~2の整数を示し、さらに好ましくは、aおよびbが、ともに0を示す。
 上記式(2)において、s、t、およびuは、互いに同一または相異なって、0~4の整数を示すとともに、s、t、およびuの少なくとも一つが、1以上を示す。
 なお、上記式(2)において、s、t、および/またはuが、1~3の範囲である場合には、陽イオン交換基を有する置換基の置換位置は、目的および用途に応じて、適宜設定される。
 上記式(2’)において、Alkは、互いに同一または相異なって、上記したアルキル基を示す。
 上記式(2’)において、Ionは、上記した陽イオン交換基を有する置換基を示し、好ましくは、上記したスルホン酸基を示す。
 上記式(2’)において、a’は、0~4の整数を示し、好ましくは、0~2の整数を示し、さらに好ましくは、0を示す。
 上記式(2’)において、sは、1~4の整数を示す。なお、陽イオン交換基を有する置換基の置換位置は、目的および用途に応じて、適宜設定される。
 親水性基として、その他にも、以下の構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式中、Ionは、陽イオン交換基を有する置換基または水素原子を示し、少なくとも1つは陽イオン交換基を有する置換基である。また、1つのベンゼン環構造に複数のIonが結合していてもよい。)
 このような親水性基として、とりわけ好ましくは、下記式(3’)で示されるp-フェニレン基、下記式(3’’)で示されるm-フェニレン基が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、Ion’は、陽イオン交換基を有する置換基を示す。)
Figure JPOXMLDOC01-appb-C000017
(式中、Ion’’は、陽イオン交換基を有する置換基を示す。)
 本発明の陽イオン交換樹脂において、2価の親水ユニットは、2価の親水性基が、炭素-炭素結合を介して繰り返されて形成されているが、2価の親水性基が炭素-炭素結合を介して繰り返されて形成されていることが好ましい。なお、ユニットとは一般に用いられるブロック共重合体のブロックに相当する。
 親水ユニットとして、好ましくは、上記式(2)で示される陽イオン交換基を有する置換基で置換されているビスフェノールA残基(親水性基)、および/または、上記式(2’)で示される陽イオン交換基を有する置換基で置換されているo-、m-またはp-フェニレン基(親水性基)が炭素-炭素結合を介して互いに結合して形成されるユニットが挙げられる。複数種の親水性基が炭素-炭素結合を介して互いに結合して形成されるユニットでもよい。
 このような親水ユニットは、例えば、下記式(4)、または下記式(4’)で示される。
Figure JPOXMLDOC01-appb-C000018
(式中、R、Alk、Ion、a’、b’、s、tおよびuは、上記式(2)のR、Alk、Ion、a’、b’、s、tおよびuと同意義を示し、mは、1~200の整数を示す。)
Figure JPOXMLDOC01-appb-C000019
(式中、Alk、Ion、a’およびsは、上記式(2’)のAlk、Ion、a’およびsと同意義を示し、mは、1~200の数値を示す。)
 このような親水ユニットとして、とりわけ好ましくは、上記式(3’)で示されるp-フェニレンが炭素-炭素結合を介して互いに結合して形成されるユニット、上記式(3’’)で示されるm-フェニレン基が炭素-炭素結合を介して互いに結合して形成されるユニット、上記式(3’)で示されるp-フェニレンおよび上記式(3’’)で示されるm-フェニレン基が炭素-炭素結合を介して互いに結合して形成されるユニットが挙げられる。
 このような親水ユニットは、例えば、下記式(5’)、下記式(5’’)、または下記式(5’’’)で示される。
Figure JPOXMLDOC01-appb-C000020
(式中、Ion’は、上記式(3’)のIon’と同意義を示し、mは、上記式(4’)のmと同意義を示す。)
Figure JPOXMLDOC01-appb-C000021
(式中、Ion’’は、上記式(3’’)のIon’’と同意義を示し、mは、上記式(4’)のmと同意義を示す。)
Figure JPOXMLDOC01-appb-C000022
(式中、Ion’およびIon’’は、上記式(3’)のIon’および上記式(3’’)のIon’’と同意義を示し、mおよびnは、上記式(4’)のmと同意義を示す。)
 本発明の陽イオン交換樹脂では、上記した疎水ユニットと上記した親水ユニットとが、炭素-炭素結合を介して結合している。特に、上記した疎水ユニットと上記した親水ユニットとが、炭素-炭素結合を介して結合していることが好ましい。
 陽イオン交換樹脂として、好ましくは、下記式(6)で示されるように、上記式(1’)で示される疎水ユニットと、上記式(4)で示される親水ユニットとが、炭素-炭素結合を介して結合された陽イオン交換樹脂が挙げられる。また、下記式(6’)で示されるように、上記式(1’)で示される疎水ユニットと、上記式(4’)で示される親水ユニットとが、炭素-炭素結合を介して結合された陽イオン交換樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000023
(式中、Z~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、hおよびiは、上記式(1’)のZ~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、hおよびiと同意義を示し、R、Alk、Ion、a’、b’、s、tおよびuは、上記式(2)のR、Alk、Ion、a’、b’、s、tおよびuと同意義を示し、lおよびmは、配合比を示し、oは、1~100の整数を示す。)
(式中、Z~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、hおよびiは、上記式(1’)のZ~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、hおよびiと同意義を示し、Alk、Ion、a’およびsは、上記式(2)のAlk、Ion、a’およびsと同意義を示し、lおよびmは、配合比を示し、oは、1~100の整数を示す。)
 なお、陽イオン交換樹脂の数平均分子量が、10~1000kDa、好ましくは、30~500kDaとなるように、調整される。
 このような陽イオン交換樹脂として、さらに好ましくは、下記式(7)で示されるように、上記式(1a’)で示される疎水ユニットと、上記式(5’’’)で示される親水ユニットとが、炭素-炭素結合を介して結合された陽イオン交換樹脂が挙げられる。また、下記式(7’)で示されるように、上記式(1c’)で示される疎水ユニットと、上記式(5’’’)で示される親水ユニットとが、炭素-炭素結合を介して結合された陽イオン交換樹脂が挙げられる。とりわけ好ましくは、下記式(7’’)または下記式(7’’’)で示されるような陽イオン交換樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000025
(式中、R’およびaは、上記式(1’)のR’およびaと同意義を示し、Ion’およびIon’’は、上記式(3’)のIon’および上記式(3’’)のIon’’と同意義を示し、l、mおよびnは、配合比を示し、oは、1~100の整数を示す。)
Figure JPOXMLDOC01-appb-C000026
(式中、R’およびaは、上記式(1’)のR’およびaと同意義を示し、Ion’およびIon’’は、上記式(3’)のIon’および上記式(3’’)のIon’’と同意義を示し、l、mおよびnは、配合比を示し、oは、1~100の整数を示す。)
Figure JPOXMLDOC01-appb-C000027
(式中、Ion’およびIon’’は、上記式(3’)のIon’および上記式(3’’)のIon’’と同意義を示し、l、mおよびnは、配合比を示し、oは、1~100の整数を示す。)
Figure JPOXMLDOC01-appb-C000028
(式中、Ion’およびIon’’は、上記式(3’)のIon’および上記式(3’’)のIon’’と同意義を示し、l、mおよびnは、配合比を示し、oは、1~100の整数を示す。)
 このような陽イオン交換樹脂の数平均分子量は、上記したように、例えば、10~1000kDa、好ましくは、30~500kDaである。
 陽イオン交換樹脂を製造する方法としては、特に制限されず、公知の方法を採用することができる。好ましくは、重縮合反応による方法が、採用される。
 この方法により陽イオン交換樹脂を製造する場合には、例えば、まず、2価の疎水ユニットを形成するためのモノマー(ここでは「第1モノマー」と称する。)と親水ユニットを形成するためのモノマー(ここでは「第2モノマー」と称する。)を重縮合反応により重合させた後、得られる陽イオン交換樹脂前駆体ポリマーに、陽イオン交換基を有する置換基を導入する。
 重縮合反応については、従来公知の一般的な方法を採用することができる。好ましくは、炭素-炭素直接結合を形成する、ジハロゲン化物同士を反応させるクロスカップリングが採用される。
 2価の疎水ユニットを形成するための第1モノマーは、下記式(11)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000029
(式中、Z~Z、R~R、X~X18、b、c、d、e、f、g、hおよびiは、上記式(1’)のZ~Z、R~R、X~X18、b、c、d、e、f、g、hおよびiと同意義を示し、X’は、互いに同一または相異なって、ハロゲン原子または擬ハロゲン化物を示す。)
 2価の疎水ユニットを形成するための第1モノマーは、下記式(11’)で示されるように、2価の炭化水素基と炭素-炭素結合または炭素-ケイ素結合を介して互いに結合していてもよい。この場合、2価の炭化水素基まで含めて第1モノマーとする。
Figure JPOXMLDOC01-appb-C000030
(式中、Z~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、hおよびiは、上記式(1’)のZ~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、hおよびiと同意義を示し、X’は、上記式(11)のX’と同意義を示す。)
 第1モノマーとして、好ましくは、上記式(1a’)に対応した下記式(11a’)で示される化合物、上記式(1b’)に対応した下記式(11b’)で示される化合物、上記式(1c’)に対応した下記式(11c’)で示される化合物、および上記式(1d’)に対応した下記式(11d’)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 上記式(11a’)、式(11b’)、式(11c’)、および式(11d’)において、R’およびaは、上記式(1a’)、式(1b’)、式(1c’)、および式(1d’)のR’およびaと同意義を示し、X’は、上記式(11’)のX’と同意義を示す。
 第1モノマーとして、とりわけ好ましくは、下記式(11a’’)および下記式(11c’’)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000035
(式中、X’は、上記式(11a’)とX’同意義を示す。)
Figure JPOXMLDOC01-appb-C000036
(式中、X’は、上記式(11c’)とX’同意義を示す。)
 親水ユニットを形成するための第2モノマーとしては、単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素-炭素結合を介して互いに結合する複数の芳香環からなるジハロゲン化化合物が挙げられる。
 このような親水ユニットを形成するためのジハロゲン化化合物として、好ましくは、上記式(2)に対応する、下記式(12)で示される化合物、および上記式(3’)に対応する、下記式(12’)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000037
(式中、X’は、互いに同一または相異なって、ハロゲン原子または擬ハロゲン化物を示す。)
Figure JPOXMLDOC01-appb-C000038
(式中、X’は、互いに同一または相異なって、ハロゲン原子または擬ハロゲン化物を示す。)
 このような親水ユニットを形成するためのジハロゲン化化合物として、とりわけ好ましくは、下記式(13’)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000039
(式中、X’は、上記式(12’)のX’と同意義を示す。)
 第1モノマーと第2モノマーとをクロスカップリング反応により重合させる際において、第1モノマーと第2モノマーの配合量は、それぞれ、得られる陽イオン交換樹脂前駆体ポリマーにおいて所望の疎水ユニットと親水ユニットの配合比になるように調整される。
 この方法では、第1モノマーと第2モノマーとを、例えば、N,N-ジメチルアセトアミド、ジメチルスルホキシドなどの溶媒に溶解させ、ビス(シクロオクタ-1,5-ジエン)ニッケル(0)などを触媒として、重合する方法など、公知の方法を採用することができる。
 クロスカップリング反応における反応温度は、例えば、-100~300℃、好ましくは、-50~200℃であり、反応時間は、例えば、1~48時間、好ましくは、2~5時間である。
 これにより、陽イオン交換樹脂前駆体ポリマー、好ましくは、下記式(16)で示される陽イオン交換樹脂前駆体ポリマー、または、下記式(16’)で示される陽イオン交換樹脂前駆体ポリマーが得られる。
Figure JPOXMLDOC01-appb-C000040
(式中、Z~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、h、i、R、Alk、a’、b’、l、mおよびoは、上記式(6)のZ~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、h、i、R、Alk、a’、b’、l、mおよびoと同意義を示す。)
Figure JPOXMLDOC01-appb-C000041
(式中、Z~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、h、i、Alk、a’、l、mおよびoは、上記式(6’)のZ~Z、R~R、R’、X~X18、a、b、c、d、e、f、g、h、i、Alk、a’、l、mおよびoと同意義を示す。)
 また、陽イオン交換樹脂前駆体ポリマーとして、さらに好ましくは、下記式(17)または下記式(17’)で示される陽イオン交換樹脂前駆体ポリマーが挙げられ、とりわけ好ましくは、下記式(17’’)または下記式(17’’’)で示される陽イオン交換樹脂前駆体ポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000042
(式中、R’、a、R’’、l、mおよびnは、上記式(7)のR’、a、R’’、l、mおよびnと同意義を示す。)
Figure JPOXMLDOC01-appb-C000043
(式中、R’、a、R’’、l、mおよびnは、上記式(7’)のR’、a、R’’、l、mおよびnと同意義を示す。)
Figure JPOXMLDOC01-appb-C000044
(式中、l、mおよびnは、上記式(7’’)のl、mおよびnと同意義を示す。)
Figure JPOXMLDOC01-appb-C000045
(式中、l、mおよびnは、上記式(7’’’)のl、mおよびnと同意義を示す。)
 次いで、この方法では、陽イオン交換樹脂前駆体ポリマーに、陽イオン交換基を有する置換基を導入する。
 陽イオン交換基を有する置換基を導入する方法としては、特に制限されず、公知の方法を採用することができる。
 例えば、芳香族求電子置換反応により、陽イオン交換基を有する置換基を導入する。
 これにより、上記陽イオン交換樹脂前駆体ポリマーに、陽イオン交換基を有する置換基が導入され、陽イオン交換樹脂、好ましくは、上記式(6)で示される陽イオン交換樹脂または上記式(6’)で示される陽イオン交換樹脂、とりわけ好ましくは、上記式(7)で示される陽イオン交換樹脂または上記式(7’)で示される陽イオン交換樹脂が得られる。
 また、陽イオン交換樹脂の陽イオン交換基容量は、例えば、0.1~5.0meq./g、好ましくは、0.5~4.0meq./gである。
 なお、陽イオン交換基容量は、下記式(20)により求めることができる。
  [陽イオン交換基容量(meq./g)]=親水ユニット当たりの陽イオン交換基導入量×親水ユニットの繰り返し単位×1000/(疎水ユニットの分子量×疎水ユニットの繰り返し単位数+親水ユニットの分子量×親水ユニットの繰り返し単位数+陽イオン交換基の分子量×親水ユニット当たりの陽イオン交換基導入量×親水ユニットの繰り返し単位数) (20)
 なお、陽イオン交換基導入量とは、単位親水性基あたりの陽イオン交換基の数と定義される。また、陽イオン交換基導入量は、親水性ユニットにおいて主鎖または側鎖に導入された上記陽イオン交換基のモル数(mol)である。
 そして、このような陽イオン交換樹脂は、上記式(1)で表される2価の疎水ユニットと、単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素-炭素結合を介して互いに結合する複数の芳香環からなり、前記芳香環のうち少なくとも1つが陽イオン交換基を有する2価の親水性基が、炭素-炭素結合を介して繰り返される2価の親水ユニットとを有し、前記疎水ユニットと前記親水ユニットとが、炭素-炭素結合を介して結合している。つまり、この陽イオン交換樹脂は、優れた化学的・機械的性質を有する疎水ユニットと、ガス透過抑制効果に優れた芳香環を含む構造に陽イオン交換基を導入した親水ユニットを有するため、化学的特性(耐久性、溶解性、ガス透過抑制効果)および機械的特性(柔軟性)に優れる。
 特に、この陽イオン交換樹脂は高い柔軟性を有しているので、これを用いた膜-電極接合体(MEA)を作成する際のハンドリング性を向上させることができる。また、この陽イオン交換樹脂は有機溶媒に対する高い溶解性を示す(例えば、メタノールやエタノールのような低沸点の有機溶媒に溶解する)ので、電極触媒層形成用バインダーとして使用する際に、電極触媒等を劣化させる恐れのある、ジメチルスルホキシド等の高沸点溶媒を必要とせず、耐久性を向上させることが期待できる。
 特に、親水性基が炭素-炭素結合を介して繰り返される親水ユニットを有する(すなわちエーテル結合が含有されていない)ことから、耐ラジカル性などの耐久性に優れる。より詳しくは、親水ユニットにエーテル結合が含有されていると、例えば、下記のように、ヒドロキシルラジカル(・OH)による分解が起きる可能性があり、耐ラジカル性が十分でない場合があった。
Figure JPOXMLDOC01-appb-C000046
 それに対し、親水性基が炭素-炭素結合を介して繰り返される親水ユニットを有する陽イオン交換樹脂の親水ユニットには、エーテル結合が含有されていないため、上記の機構による分解は起こらず、その結果として耐ラジカル性などの耐久性に優れたものとなる。
 本発明は、このような陽イオン交換樹脂を用いて得られる陽イオン交換膜を含んでいる。より具体的には、陽イオン交換基を導入した陽イオン交換樹脂を含む陽イオン交換膜を含んでいる。また、本発明は、このような陽イオン交換樹脂を含む燃料電池用電解質膜をも含んでいる。
 陽イオン交換膜としては、例えば、多孔質基材などの公知の補強材により補強することができ、さらには、例えば、分子配向などを制御するための二軸延伸処理や、結晶化度や残存応力を制御するための熱処理などの各種処理することができる。また、陽イオン交換膜には、その機械強度を上げるために、公知のフィラーを添加することができ、陽イオン交換膜と、ガラス不織布などの補強剤とをプレスにより複合化させることもできる。
 また、陽イオン交換膜において、通常用いられる各種添加剤、例えば、相溶性を向上させるための相溶化剤、例えば、樹脂劣化を防止するための酸化防止剤、例えば、フィルムとしての成型加工における取扱性を向上するための帯電防止剤や滑剤などを、陽イオン交換膜としての加工や性能に影響を及ぼさない範囲で、適宜含有させることができる。
 陽イオン交換膜の厚さは、特に制限されず、目的および用途に応じて、適宜設定される。陽イオン交換膜の厚みは、例えば、1~350μm、好ましくは、5~200μmである。
 以上、本発明の実施形態について説明したが、本発明の実施形態は、これに限定されるものではなく、本発明の要旨を変更しない範囲で、適宜設計を変形することができる。
 本発明の燃料電池の用途としては、例えば、自動車、船舶、航空機などにおける駆動用モータの電源や、携帯電話機などの通信端末における電源などが挙げられる。
 次に、本発明を実施例および比較例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。
 [実施例]
 (SPAFの合成)
 <フルオロアルキルモノマーの合成>
 窒素インレット/アウトレットおよび冷却管を備えた100mLの丸底三口フラスコに、ドデカフルオロ-1,6-ジヨードヘキサン(9.87g、17.8mmol)、3-クロロヨードベンゼン(12.7g、53.4mmol)、ジメチルスルホキシド(72mL)を加えた。この混合物を撹拌することにより均一溶液とした後、銅粉末(11.3g、178mmol)を加え、120℃に昇温して48時間反応を行った。
 反応混合物を0.1M硝酸水溶液中に滴下することにより反応を停止し、析出した赤褐色固体を濾別回収した。得られた赤褐色固体をメタノールで洗浄し、濾液を回収した。さらに、メタノールで洗浄し、濾液を回収し、これらの濾液を合わせた。
 回収した濾液にメタノールと同量の純水を加えると白色の固体が析出した。これを濾別回収し、水:メタノール=1:1の混合溶液で数回洗浄後、60℃において一晩真空乾燥を行った。
 これにより、下記式で示される白色のフルオロアルキルモノマーを、収率80%で得た。
Figure JPOXMLDOC01-appb-C000047
 <陽イオン交換樹脂前駆体ポリマーの合成>
 窒素インレット/アウトレットおよび冷却管を備えた100mLの丸底三口フラスコに、フルオロアルキルモノマー(3.61g、6.92mmol)、1,4-ジクロロベンゼン(0.631g、4.29mmol)、1,3-ジクロロベンゼン(0.489g、3.32mmol)、2,2’-ビピリジン(5.68g、36.4mmol)、N,N-ジメチルアセトアミド(37mL)を加えた。この混合物を撹拌することにより、均一溶液とした後に、ビス(1,5-シクロオクタジエン)ニッケル(0)(10.0g、36.4mmol)を加え、80℃に昇温して3時間反応を行った。
 反応混合物をメタノール中に滴下することにより反応を停止し、析出した白色固体を濾別回収した。得られた黒色固体を濃塩酸、純水およびメタノールで数回洗浄後、60℃において一晩真空乾燥を行った。
 これにより、下記式で示される白色の陽イオン交換樹脂前駆体ポリマーPAF(l=1.0、m=0.48、n=2.62)を収率91%で得た。
Figure JPOXMLDOC01-appb-C000048
 <陽イオン交換基導入>
 50mLの丸底フラスコに陽イオン交換樹脂前駆体ポリマー(0.50g)と30%発煙硫酸水溶液(9mL)を加えて、室温において3日間反応させた。
 反応混合物を氷水中に滴下することにより反応を停止し、析出した褐色固体を濾別回収した。得られた褐色固体を純水で数回洗浄後、80℃において一晩真空乾燥を行った。
 これにより、褐色の陽イオン交換樹脂SPAFを得た。
 <製膜>
 陽イオン交換樹脂SPAFを、溶液キャスト法により製膜した。
 すなわち、陽イオン交換樹脂SPAF(0.37g)をジメチルスルホキシド(9mL)に溶解させた後、濾過により不溶部を除去した。濾液をシリコンゴムで9cm×9cmに縁取りされたガラス板上に流し込み、水平に調節された50℃のホットプレート上に一晩静置することにより乾燥し、厚さ約30μmの褐色透明な膜を得た。
 (SPAF膜のセル評価)
 ジルコニアポットにカーボン担持白金触媒、純水、エタノールを入れ、ボールミルにより撹拌を行った。その後、Nafion(登録商標)溶液を加え、遊星ボールミルにより撹拌することにより、触媒ペーストを調製した。調製後のペーストをPFAポットに移し、卓上型ポットミル回転台上で一晩保持した。一晩安定化させた触媒インクをパルススワールスプレー法によりSPAF膜(陽イオン交換容量:1.6mequiv/g)の両面に塗布した。白金担持量は両極とも0.50±0.03mg/cmであった。これを60℃の恒温槽にて乾燥させた後、140°Cで3分間ホットプレスすることによりアニーリング処理を施し、触媒塗布膜(CCM)を作製した。このCCMをガス拡散層(GDL)と共にセルに組み込み、セルの特性評価を行った。
 図1に示すのは、SPAF膜またはNafion(登録商標)NRE211をセルに用いたときのリニアスイープボルタンメトリーの結果である。セル温度80°C、ガス加湿度100%RH、80%RH、53%RH、および30%RH、電位掃引範囲0.15-0.60V、電位掃引速度0.5mV/sの各条件において、電位制御により測定を行った。測定時は、アノード側に水素100ml/min、カソード側に窒素100ml/minを供給した。このとき検出される電流値は、電解質膜中をアノードからカソードへと透過した水素ガスのカソードにおける酸化電流を示すものであり、膜の水素透過量の指標となるものである。
 図1に示すリニアスイープボルタモグラムによれば、SPAFセルの水素透過量は、同様のパーフルオロ主鎖を有するNafion(登録商標)NRE211セルの25%程度であり、SPAFは高いガスバリア性を示すことがわかった。
 図2は、SPAF膜またはNafion(登録商標)NRE211をセルに用いたときの電流密度-電圧特性である。この発電特性は、セル温度80°C、100%RHの条件において評価した。アノードガスとして水素(利用率70%)、カソードガスとして空気(利用率40%)を用いた。セル抵抗は1kHz周波数固定の抵抗測定器により測定した。
 図2に示す電流密度-電圧特性によれば、このときの条件において、SPAFセルは、Nafion(登録商標)NRE211セル以上の性能を示した。

Claims (5)

  1.  下記式(1)で表される2価の疎水ユニットと、
     単数の芳香環からなる、または、2価の炭化水素基、2価のケイ素含有基、2価の窒素含有基、2価のリン含有基、2価の酸素含有基、2価の硫黄含有基、もしくは炭素-炭素結合を介して互いに結合する複数の芳香環からなり、前記芳香環のうち少なくとも1つが陽イオン交換基を有する2価の親水性基が、炭素-炭素結合を介して繰り返される2価の親水ユニットと
    を有し、
     前記疎水ユニットと前記親水ユニットとが、炭素-炭素結合を介して結合していることを特徴とする、陽イオン交換樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Z~Zは、互いに同一または相異なって、炭素原子またはケイ素原子を示し、R~Rは、互いに同一または相異なって、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、または直接結合を示し、X~X18は、互いに同一または相異なって、ハロゲン原子、擬ハロゲン化物、または水素原子を示し、aは、1以上の整数を示し、b、c、d、e、f、g、hおよびiは、互いに同一または相異なって、0以上の整数を示す。)
  2.  前記親水性基が、下記式(2)で示される、前記陽イオン交換基を有する置換基で置換されているビスフェノール残基、または下記式(2’)で示される、前記陽イオン交換基を有する置換基で置換されているo-、m-またはp-フェニレン基であることを特徴とする、請求項1に記載の陽イオン交換樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、前記陽イオン交換基を有する置換基で置換されていてもよい、炭化水素基、ケイ素含有基、窒素含有基、リン含有基、酸素含有基、硫黄含有基、芳香族基、または直接結合を示し、Alkは、互いに同一または相異なって、アルキル基を示し、Ionは、互いに同一または相異なって、陽イオン交換基を有する置換基を示し、a’およびb’は、互いに同一または相異なって、0~4の整数を示し、s、tおよびuは、互いに同一または相異なって、0~4の整数を示すとともに、s、tおよびuの少なくとも一つが、1以上を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Alkは、アルキル基を示し、Ionは、陽イオン交換基を有する置換基を示し、a’は、0~4の整数を示し、sは、1~4の整数を示す。)
  3.  前記疎水ユニットが、2価のフッ素化飽和炭化水素基または2価の飽和炭化水素基であることを特徴とする、請求項1または2に記載の陽イオン交換樹脂。
  4.  請求項3に記載の陽イオン交換樹脂を含むことを特徴とする、陽イオン交換膜。
  5.  請求項3に記載の陽イオン交換樹脂を含むことを特徴とする、燃料電池用電解質膜。
PCT/JP2016/069364 2015-07-03 2016-06-29 陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜 WO2017006831A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/738,270 US10471420B2 (en) 2015-07-03 2016-06-29 Cation exchange resin, and cation exchange membrane and fuel cell electrolyte membrane using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015134000A JP6162179B2 (ja) 2015-07-03 2015-07-03 陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜
JP2015-134000 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017006831A1 true WO2017006831A1 (ja) 2017-01-12

Family

ID=57685201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069364 WO2017006831A1 (ja) 2015-07-03 2016-06-29 陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜

Country Status (3)

Country Link
US (1) US10471420B2 (ja)
JP (1) JP6162179B2 (ja)
WO (1) WO2017006831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014269A1 (ja) * 2022-07-15 2024-01-18 国立大学法人山梨大学 陽イオン交換樹脂、陽イオン交換膜、電解質膜、電極触媒層形成用バインダーおよび電池電極触媒層

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888778B2 (ja) * 2017-02-22 2021-06-16 国立大学法人山梨大学 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
KR102642656B1 (ko) * 2018-05-18 2024-02-29 에이지씨 가부시키가이샤 함불소 폴리머의 제조 방법 및 함불소 이온 교환 폴리머의 제조 방법
JP2022018683A (ja) * 2020-07-16 2022-01-27 国立大学法人山梨大学 陰イオン交換樹脂の製造方法および電解質膜の製造方法
JP2022024326A (ja) * 2020-07-16 2022-02-09 国立大学法人山梨大学 陰イオン交換樹脂の製造方法および電解質膜の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045512A (ja) * 2004-06-29 2006-02-16 Sumitomo Chemical Co Ltd 高分子電解質膜及びそれを用いた燃料電池
JP2013047309A (ja) * 2011-08-29 2013-03-07 Daihatsu Motor Co Ltd 陰イオン交換樹脂、燃料電池用電解質層、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
US20130108944A1 (en) * 2011-10-28 2013-05-02 Ford Motor Company Sulfonated poly(phenylene) copolymer electrolyte for fuel cells
JP2013209457A (ja) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd ポリアリーレン及びその製造方法
JP2013538797A (ja) * 2010-08-04 2013-10-17 コンパニー ゼネラール デ エタブリッスマン ミシュラン 芳香族パーフルオロアルカンモノマー

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029783A (en) 1973-08-03 1977-06-14 Boehringer Mannheim G.M.B.H. N-substituted 1-amino-3-phenoxy-propan-2-ol compounds and therapeutic compositions containing them
US4030988A (en) 1973-12-17 1977-06-21 E. I. Du Pont De Nemours And Company Process for producing halogen and metal hydroxides with cation exchange membranes of improved permselectivity
US3969285A (en) 1973-12-17 1976-07-13 E. I. Du Pont De Nemours And Company Heat-treated fluorocarbon sulfonylamine cation permselectivity
US4026785A (en) 1975-12-22 1977-05-31 Olin Corporation Adjustable electrode
KR20080047606A (ko) * 2005-09-16 2008-05-29 스미또모 가가꾸 가부시끼가이샤 고분자 전해질, 그리고, 이것을 사용한 고분자 전해질막,막-전극 접합체 및 연료 전지
US8492460B2 (en) * 2006-07-28 2013-07-23 GM Global Technology Operations LLC Fluorinated polymer blocks for PEM applications
US7973088B2 (en) * 2006-08-25 2011-07-05 Sumitomo Chemical Company, Limited Polymer electrolyte membrane, method for producing the same, and proton conductivity evaluation method for polymer electrolyte membrane
EP2490808A1 (en) * 2009-09-24 2012-08-29 Georgia Tech Research Corporation Anion exchange polyelectrolytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045512A (ja) * 2004-06-29 2006-02-16 Sumitomo Chemical Co Ltd 高分子電解質膜及びそれを用いた燃料電池
JP2013538797A (ja) * 2010-08-04 2013-10-17 コンパニー ゼネラール デ エタブリッスマン ミシュラン 芳香族パーフルオロアルカンモノマー
JP2013047309A (ja) * 2011-08-29 2013-03-07 Daihatsu Motor Co Ltd 陰イオン交換樹脂、燃料電池用電解質層、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
US20130108944A1 (en) * 2011-10-28 2013-05-02 Ford Motor Company Sulfonated poly(phenylene) copolymer electrolyte for fuel cells
JP2013209457A (ja) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd ポリアリーレン及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014269A1 (ja) * 2022-07-15 2024-01-18 国立大学法人山梨大学 陽イオン交換樹脂、陽イオン交換膜、電解質膜、電極触媒層形成用バインダーおよび電池電極触媒層

Also Published As

Publication number Publication date
JP2017014423A (ja) 2017-01-19
JP6162179B2 (ja) 2017-07-12
US10471420B2 (en) 2019-11-12
US20180178210A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2017006831A1 (ja) 陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜
JP4424129B2 (ja) ブロック共重合体及びその用途
JP5960763B2 (ja) 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP6156358B2 (ja) 高分子電解質組成物、およびそれを用いた高分子電解質膜、膜電極複合体および固体高分子型燃料電池
WO2013042746A1 (ja) 高分子電解質組成物成形体、およびそれを用いた固体高分子型燃料電池
JP5338990B2 (ja) 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
WO2017051786A1 (ja) 陰イオン交換樹脂、その製造方法、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP7087315B2 (ja) 高分子電解質組成物ならびにそれを用いた高分子電解質膜、触媒層付き電解質膜、膜電極複合体、固体高分子形燃料電池、電気化学式水素ポンプおよび水電解式水素発生装置
JP2016033199A (ja) 陰イオン交換樹脂、燃料電池用電解質層、燃料電池および陰イオン交換樹脂の製造方法
JP5827077B2 (ja) 陰イオン交換樹脂、燃料電池用電解質層、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
WO2015141450A1 (ja) 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP5182744B2 (ja) 高分子電解質及びこれを用いた燃料電池用電解質膜
WO2014157389A1 (ja) 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
WO2014050928A1 (ja) 陰イオン交換樹脂、燃料電池用電解質層、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP2015122308A (ja) 高分子電解質、膜電極接合体、および固体高分子形燃料電池
JP6166438B2 (ja) 陰イオン交換樹脂、燃料電池用電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP2007109472A (ja) 燃料電池用膜−電極接合体
JP2010015980A (ja) 高分子電解質、架橋高分子電解質、高分子電解質膜およびその用途
JP2010031231A (ja) 新規な芳香族化合物および含窒素芳香環を有するポリアリーレン系共重合体
JP2020033393A (ja) 陰イオン交換樹脂、電解質膜、電極触媒層形成用バインダー、電池電極触媒層および燃料電池
JP5549970B2 (ja) 超強酸基を有する芳香族高分子電解質及びその利用
EP1862489B1 (en) Block Copolymer and Use Thereof
KR20140142036A (ko) 아민기-함유 실세스퀴옥산을 이용한 폴리벤즈이미다졸 나노복합막, 이의 제조 방법, 및 이를 포함하는 연료전지
JP6819047B2 (ja) 高分子電解質用のジフェニルスルホン化合物、高分子電解質、高分子電解質の製造方法、膜電極接合体、及び、固体高分子形燃料電池
KR101304240B1 (ko) 솔젤 반응을 이용한 기능성 물질 포함 하이브리드 막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15738270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821300

Country of ref document: EP

Kind code of ref document: A1