WO2017003155A1 - 방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법 - Google Patents

방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법 Download PDF

Info

Publication number
WO2017003155A1
WO2017003155A1 PCT/KR2016/006901 KR2016006901W WO2017003155A1 WO 2017003155 A1 WO2017003155 A1 WO 2017003155A1 KR 2016006901 W KR2016006901 W KR 2016006901W WO 2017003155 A1 WO2017003155 A1 WO 2017003155A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
gypsum
copolymer
waterproof
silicone oil
Prior art date
Application number
PCT/KR2016/006901
Other languages
English (en)
French (fr)
Inventor
강경훈
박수환
고태호
박종현
허경복
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150092369A external-priority patent/KR20170002762A/ko
Priority claimed from KR1020150092370A external-priority patent/KR101732920B1/ko
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Priority to EP16818188.1A priority Critical patent/EP3315537B1/en
Priority to CN201680038663.XA priority patent/CN107709413A/zh
Priority to JP2017568176A priority patent/JP6722707B2/ja
Priority to EP20152481.6A priority patent/EP3656804A1/en
Publication of WO2017003155A1 publication Critical patent/WO2017003155A1/ko
Priority to US15/853,372 priority patent/US20180118940A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/30Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Other silicon-containing organic compounds; Boron-organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/54Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials

Definitions

  • the present invention relates to a waterproof silicone emulsion, a waterproof board exhibiting excellent crack resistance, and a method of manufacturing the same, and more particularly, to a waterproof silicone emulsion containing a silicone oil and an emulsifier, a hemihydrate gypsum, a silicone oil and a specific catalyst.
  • the present invention relates to a waterproof board comprising a cured product of an aqueous gypsum slurry and exhibiting excellent crack resistance and low total water absorption.
  • Gypsum board which is a non-flammable and soundproof material, is widely used as a building interior material due to its low price.
  • the raw material of general construction gypsum board is semi-hydrated gypsum, which is partially removed by calcination of natural or gypsum dehydrated gypsum.
  • Semi-hydrated gypsum is exothermic when reacted with water and converted into dihydrated gypsum with crystal structure.
  • the well-developed needle structure during this process increases the strength of the gypsum board itself, and forms a tightly interwoven with gypsum board envelope fiber to produce a gypsum board wrapped in the envelope paper.
  • the blowing agent is an essential additive that can form pores in the gypsum board to lighten the gypsum board.
  • a surfactant that mainly provides pores in the gypsum board is used.
  • Gypsum board is a weak material against moisture, but it can be used on the wall of a shower room by providing a waterproof function.
  • the waterproofing agent is generally used, such as silicon, asphalt or paraffin wax, the case of asphalt has the advantage that the price is low, but there is a disadvantage that only a single color of black can be manufactured.
  • Paraffin wax is made water-soluble using an emulsifier and added to the gypsum board manufacturing process. Since paraffin wax covers the surface of gypsum and develops a waterproofing effect, paraffin wax must be used in a large amount, and it is temporarily waterproof when it is buried in plaster. There is a problem of showing only.
  • paraffin wax dispersed in the aqueous solution it is mixed during the gypsum slurry manufacturing process to be dispersed in the slurry.
  • the dispersed paraffin wax is pushed to the gypsum surface as the hemihydrate gypsum slurry grows into dihydrate crystals.
  • the paraffin wax is evenly dispersed on the gypsum surface, the water-repellent effect increases, but the paraffin wax does not form a strong bond with the gypsum surface.
  • the paraffin wax is also surfaced. It is difficult to move them together or stick together and spread evenly on the gypsum surface.
  • the hydrogen functional group of the silicone oil is hydrolyzed and converted into a hydroxyl functional group in the manufacturing process of the gypsum slurry, and the functional group is hydrolyzed by reacting with the hydroxyl functional group, which is crystallized water in dihydrate gypsum. It is fixed to this gypsum solid.
  • the silicone oil forms a strong chemical bond with Isu Gypsum to surround the gypsum surface, and the methyl group, which shows water repellency, is positioned perpendicular to the gypsum surface to exhibit an effective water repellent function on the gypsum surface.
  • silicone oil has a strong anti-foaming problem, which removes bubbles generated in the gypsum core by using a blowing agent.
  • An object of the present invention is to provide a silicone emulsion which can provide excellent waterproofing performance even with a small amount of silicone oil, which can significantly reduce raw material costs, a waterproof board exhibiting excellent crack resistance and low total absorption, and a method of manufacturing the same. do.
  • the waterproof board of this invention contains the hardened
  • the manufacturing method of the waterproof board of the present invention includes forming an aqueous gypsum slurry containing a hemihydrate gypsum, a silicone oil, and a carbonate rock mineral as a catalyst and curing it.
  • the waterproof silicone emulsion of the present invention contains a silicone oil and an emulsifier.
  • the waterproof board provided according to one specific aspect of the present invention includes a cured product of an aqueous gypsum slurry containing hemihydrate gypsum, a silicone oil, an emulsifier and a catalyst.
  • the waterproof board manufacturing method provided according to another specific aspect of the present invention includes forming a water-based gypsum slurry comprising a hemihydrate gypsum, a silicone oil, an emulsifier and a catalyst, and curing it.
  • the present invention it is possible to obtain a waterproof board that exhibits excellent crack resistance and low total absorption while using a smaller amount of silicone oil than paraffin wax.
  • the use of the silicone emulsion according to the present invention while suppressing the anti-foaming of the silicone oil to ensure that the final product to maintain a low density while having a bubble size equivalent to that of using paraffin wax, with a small amount of silicone oil
  • low total water absorption for example, 6% or less
  • FIG. 1 is an optical micrograph of a gypsum board cross section prepared using methylhydrogenpolysiloxane (MHP), a silicone oil as waterproofing agent, and styrene-maleic acid (SMA) copolymer, as emulsifier, according to the present invention.
  • MHP methylhydrogenpolysiloxane
  • SMA styrene-maleic acid
  • FIG. 2 is an optical micrograph of a cross section of a gypsum board prepared using methylhydrogenpolysiloxane (MHP) as a waterproofing agent and without using an emulsifier.
  • MHP methylhydrogenpolysiloxane
  • Figure 3 is an optical micrograph of a gypsum board cross-section prepared using paraffin wax as a waterproofing agent, without using an emulsifier.
  • the waterproof board provided of the present invention comprises a cured product of an aqueous gypsum slurry containing hemihydrate gypsum, silicone oil, and light dolomite as a catalyst.
  • the cured product of the gypsum slurry can be used as the core of the board.
  • the hemihydrate gypsum is obtained by calcining natural dihydrate gypsum or desulfurized dihydrate gypsum to remove some of the crystal water.
  • the hemihydrate gypsum content in the gypsum slurry may be, for example, 40 to 80% by weight, more specifically 50 to 70% by weight, based on 100% by weight of the slurry.
  • the water content in the gypsum slurry of the present invention may be, for example, 20 to 60% by weight, more specifically 30 to 50% by weight based on 100% by weight of the slurry.
  • the silicone oil is used for imparting a waterproof function, and may include linear or cyclic, at least partially hydrogen-modified polysiloxane.
  • Such polysiloxanes can be polymerized in a basic environment to form highly crosslinked siloxane polymers, which polymers exhibit high water resistance. More specifically, the polysiloxane may include a structure represented by the following formula.
  • R 1 is independently hydrogen or a non-hydrogen substituent (eg, unsubstituted or substituted by alkyl, cycloalkyl, aryl or heteroaryl), wherein at least one of the plurality of R 1 is more specifically 10 At least% (eg, 10-100%) is hydrogen; R 2 is a non-hydrogen substituent as described above; n is an integer of 1 to 200.
  • a non-hydrogen substituent eg, unsubstituted or substituted by alkyl, cycloalkyl, aryl or heteroaryl
  • the alkyl may have 1 to 4 carbon atoms
  • the cycloalkyl may have 5 to 10 carbon atoms
  • the aryl may have 6 to 12 carbon atoms
  • the total heteroatoms of heteroaryl may have 5 to 12 carbon atoms. It may also have one or more heteroatoms selected from N, O and S.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the polysiloxane may include a structure represented by the following formula.
  • a silicone oil containing methylhydrogenpolysiloxane (MHP) is used as the silicone oil.
  • the silicone oil content in the gypsum slurry may be, for example, 0.04 to 4 parts by weight, more specifically 0.1 to 1.5 parts by weight based on 100 parts by weight of gypsum. If the silicone oil content in the gypsum slurry is too small than the above range, there may be a problem that the target waterproofness does not appear, on the contrary, if the silicone oil content in the gypsum slurry is too large, the amount of gypsum is increased and the viscosity of the slurry is increased due to the unique antifoaming properties of the silicone oil. There may be a problem that solidifies inside the mixer.
  • the silicone oil can be added to the board manufacturing process itself, otherwise the board is prepared by emulsion or aqueous dispersion emulsified in water using a surfactant and / or high shear rotary reactor or high pressure homogenizer. It can also be put into the process.
  • Silicone oils applied to gypsum boards as waterproofing agents are typically hydrolyzed under basic catalysts (oxides that exhibit basicity under aqueous solutions) in the form of oxides or hydroxides of alkali or alkaline earth metals, resulting in the conversion of linear polysiloxanes to branched polysiloxanes. As a result, waterproof performance is provided.
  • basic catalysts oxides that exhibit basicity under aqueous solutions
  • the pH rises which may slow the hydration process of the semi-hydrated gypsum
  • the silicone oil destroys the bubbles generated in the gypsum board slurry due to the low surface tension and the hydrogen gas generated as a byproduct during the hydrolysis reaction. It may be difficult to reduce the weight of gypsum board or cause cracks in the gypsum board core.
  • the present invention solves this problem by using a catalyst of a carbonate rock mineral component without using conventional cement, CaO, sinter / calcined dolomite, Ca (OH) 2 , NaOH, etc. in the manufacture of the waterproof board. It was.
  • the carbonate rock mineral used as the catalyst of the present invention is not limited to Aragonite, Calcite, Dolomite, and the like, and light dolomite may be preferably used.
  • Light dolomite has a higher catalytic activity than small catalyst (calcined at 1700 to 1800 ° C.) or small to medium (calcined at 1000 to 1500 ° C.) dolomite while suppressing rapid catalytic activity and thus reducing hydrogen from silicone oil. It prevents cracking of gypsum board due to the occurrence and does not slow down the hydration reaction time of the hemihydrate gypsum. In addition, there is an advantage that it is easy to apply to the gypsum production process because it does not cause side reactions with the additives input for the production of gypsum board.
  • the PNS (poly-naphthalene sulfonate) fluidizing agent used to reduce the amount of water used in gypsum molding causes problems of high density of gypsum and small bubble size when used simultaneously with siloxane. Lowering the content of can minimize the problem of vesicles caused by siloxane.
  • the light dolomite is calcined dolomite (dolomite), for example, at a temperature of 700 to 1000 ° C., and its composition is generally as follows.
  • the content of the carbonate rock mineral catalyst in the gypsum slurry may be, for example, 0.2 to 1.5 parts by weight and more specifically 0.3 to 1.0 parts by weight based on 100 parts by weight of gypsum. If the catalyst content in the gypsum slurry is too less than the above range may be a problem that the silicone oil is not polymerized to exhibit sufficient waterproofness, on the contrary, there may be a problem that the strength of the slurry is weakened by increasing the pH of the entire slurry.
  • the carbonate rock mineral catalyst used in the present invention may have an average particle size of 50 to 4000 ⁇ m, preferably 500 to 2500 ⁇ m. If the average particle size of the mineral catalyst is too small, it is difficult to transfer it to the process or difficult to accurately quantify. If the average particle size is larger than 4000 ⁇ m, the size of the semi-hydrated gypsum as raw material is too large to spread evenly in the gypsum product. There is a problem that the product is heterogeneous.
  • the gypsum slurry may further include a basic catalyst other than the carbonate rock mineral catalyst.
  • Further basic catalysts that can be used include limestone, slaked lime, cement, MgO, CaO, CaMgO and the like, and these may be further used alone or in combination.
  • the gypsum slurry may further comprise a surfactant.
  • the surfactant include, for example, anionic surfactants (eg, anionic surfactants including sulfate groups), nonionic surfactants, amphoteric surfactants (eg, betaines), alkyl polyglucosides, and alkyl alcohols. (Eg, C8 to C20 alkyl alcohol) and the like may be used alone or in combination, but is not limited thereto.
  • Poly-naphthalene sulfonate (PNS) -based glidants can also be used as surfactants.
  • the content thereof may be, for example, 2 to 60 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the silicone oil. If the surfactant content is too small, there may be a problem that the use effect is not sufficient, on the contrary, if the surfactant content is too high, the viscosity of the gypsum slurry may increase, resulting in poor fluidity and poor mixing in the mixer.
  • a method of manufacturing a waterproof board comprising forming and curing an aqueous gypsum slurry comprising a hemihydrate gypsum, a silicone oil, and a carbonate rock mineral as a catalyst.
  • the waterproof board the step of forming an aqueous gypsum slurry comprising a silicone oil or an aqueous emulsion or an aqueous dispersion, a carbonate rock mineral catalyst and a hemihydrate gypsum, And forming and curing the gypsum slurry.
  • pre-foam is prepared by injecting high-pressure air into an aqueous solution containing an anionic surfactant and mixing it with semi-hydrated gypsum and metered process water. It goes through the process of processing.
  • a suitable combination of large and small pores is required, which means that large pores are mainly located in the center of gypsum board, and small pores are mainly located on both sides of the gypsum board. This is because it is advantageous in hardness and drying conditions. Therefore, it is important to maintain adequately large bubbles.
  • Silicone oil shows excellent waterproofing performance in a small amount compared to paraffin wax, but on the other hand, it acts as an antifoaming agent to break bubbles in the gypsum slurry and increase the density of gypsum.
  • the light weighting agent is added in an excessive amount to compensate for the reduction of bubbles caused by the silicon, the size of the bubbles decreases and the viscosity of the slurry rises, which causes difficulties in molding the gypsum board.
  • the reaction rate is so fast that cracking (cracking) may occur in the gypsum product due to the rapid generation of hydrogen molecules as reaction by-products.
  • the waterproof board of the present invention can be prepared using a waterproof silicone emulsion.
  • the waterproof silicone emulsion of the present invention contains a silicone oil and an emulsifier.
  • the silicone oil is used for imparting a waterproof function, and may include linear or cyclic, at least partially hydrogen-modified polysiloxane.
  • Such polysiloxanes can be polymerized in a basic environment to form highly crosslinked siloxane polymers, which polymers exhibit high water resistance. More specifically, the polysiloxane may include a structure represented by the following formula.
  • R 1 is independently hydrogen or a non-hydrogen substituent (eg, unsubstituted or substituted by alkyl, cycloalkyl, aryl or heteroaryl), wherein at least one of the plurality of R 1 is more specifically 10 At least% (eg, 10-100%) is hydrogen; R 2 is a non-hydrogen substituent as described above; n is an integer of 1 to 200.
  • a non-hydrogen substituent eg, unsubstituted or substituted by alkyl, cycloalkyl, aryl or heteroaryl
  • the alkyl may have 1 to 4 carbon atoms
  • the cycloalkyl may have 5 to 10 carbon atoms
  • the aryl may have 6 to 12 carbon atoms
  • the total heteroatoms of heteroaryl may have 5 to 12 carbon atoms. It may also have one or more heteroatoms selected from N, O and S.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the polysiloxane may include a structure represented by the following formula.
  • a silicone oil containing methylhydrogenpolysiloxane is used as the silicone oil, and may be 0.1 to 60 parts by weight based on 100 parts by weight of the silicone emulsion.
  • the emulsifier is used to increase the dispersibility of the aqueous solution of the silicone oil to suppress the anti-foaming
  • a copolymer of a lipophilic monomer and a hydrophilic monomer may be used.
  • the lipophilic monomer may be an aromatic or aryl benzene or aryl naphthalene having 1 to 3 benzene rings, and typically benzene, toluene or naphthalene may be used, and more preferably. Styrene is used.
  • the hydrophilic monomer may be a polymerizable monomer (eg, alcohol, glycol, etc.), a halogenated styrene (halo-styrene), a maleic acid or an anhydride thereof, an acrylic monomer or a derivative thereof including one or more hydroxy groups (-OH), and It may be selected from methacryl monomers or derivatives thereof.
  • salt forms eg, Na salts, K salts, ammonium salts, etc.
  • hydrolyzed forms, sulfonated forms, and partially or totally esterified forms of copolymers of the lipophilic monomers with the hydrophilic monomers can also be used as emulsifiers. have.
  • the copolymer of the lipophilic monomer and the hydrophilic monomer is a copolymer of styrene and allyl alcohol, a copolymer of styrene and ethylene glycol, a copolymer of styrene and chlorostyrene, a copolymer of styrene and acrylonitrile, and a styrene Hydrolyzed forms of copolymers of maleic acid or its anhydrides (SMA copolymers), copolymers of styrene and maleic acid or its anhydrides finished with cumene, copolymers of styrene and maleic acid or their anhydrides Sulfonated form of the copolymer of styrene with maleic acid or its anhydride, esterified form of the copolymer of styrene with maleic acid or its anhydride, copolymer of styrene with acrylic acid, copoly
  • the molar ratio of the lipophilic monomer to the hydrophilic monomer may be, for example, 1: 1 to 8: 1, and more specifically, 1: 1 to 4: 1.
  • the copolymer in order to make the copolymer of the lipophilic monomer and the hydrophilic monomer in an aqueous solution state, the copolymer may be dissolved in a salt form using a basic solution such as NaOH, KOH, and ammonia water. In this case, if the pH of the aqueous solution is too high, it may affect the reactivity of the hydrogen atoms in the silicone oil, so it is preferable to maintain the pH of the aqueous copolymer solution between 9 and 12.
  • the copolymer of the lipophilic monomer and the hydrophilic monomer is physically combined with the silicone oil polymer to form a micelle, so that the lipophilic silicone oil can be evenly dispersed in water. For example, it is well dispersed on the surface of gypsum), so that it shows high waterproof performance even with a small amount of silicon. In addition, by suppressing the antifoaming of the silicone oil to form a bubble of an appropriately large size inside the product it is possible to produce a lightweight waterproof product.
  • the emulsifier content in the silicone emulsion of the present invention may be, for example, 0.002 to 10 parts by weight, more specifically 0.3 to 5 parts by weight, based on 100 parts by weight of the silicone oil. If the amount of the emulsifier in the silicone emulsion is less than the above-mentioned range, there may be a problem that the emulsion does not reach the critical micelle concentration (CMC), and if it is too large, the antifoaming property of the silicone oil is not improved, and the quality of the silicone oil is not improved. There may be a problem with this speeding up.
  • CMC critical micelle concentration
  • the silicone emulsion of the present invention may further comprise a foaming agent for the purpose of improving the density and bubbles of the article to which it is applied.
  • Foaming agents may be used as the foaming agent, and more specifically, anionic surfactants (eg, anionic surfactants including sulfate groups), amphoteric surfactants (eg, betaines), alkyl poly Glucosides, alkyl alcohols (eg, C8 to C20 alkyl alcohols) and the like can be used alone or in combination, but are not limited thereto.
  • the content thereof may be, for example, 2 to 60 parts by weight, and more specifically 5 to 40 parts by weight based on 100 parts by weight of the silicone oil. If the foaming agent content in the silicone emulsion is less than the above range, there may be a problem that the density disappears due to the bubbles disappear due to the anti-foaming of the silicone oil, on the contrary, if the amount is too high, the slurry viscosity of the product to which the silicone emulsion is applied is increased. There may be a problem that the mixer does not mix well.
  • the silicone emulsion of the present invention can provide excellent waterproofing performance even with a small amount of silicone oil and contribute to the weight reduction of the product to which it is applied, and thus can be applied to various waterproofing products, for example, it can be applied to waterproof boards, but is not limited thereto. It is not.
  • the cured product of the gypsum slurry can be used as the core of the board.
  • the hemihydrate gypsum is obtained by calcining natural dihydrate gypsum or desulfurized dihydrate gypsum to remove some of the crystal water.
  • the hemihydrate gypsum content in the gypsum slurry may be, for example, 40 to 80% by weight, more specifically 50 to 70% by weight, based on 100% by weight of the slurry.
  • the water content in the gypsum slurry of the present invention may be, for example, 20 to 60% by weight, more specifically 30 to 50% by weight based on 100% by weight of the slurry.
  • the silicone emulsion included in the waterproof board of the present invention is as described above, and the silicone emulsion includes a silicone oil and an emulsifier.
  • the gypsum slurry may further include a foaming agent.
  • the content of the silicone emulsion in the gypsum slurry may be 0.0002 to 4 parts by weight, more specifically 0.001 to 1.5 parts by weight based on 100 parts by weight of gypsum. If the silicone emulsion content in the gypsum slurry is too small than the above range, there may be a problem that the target waterproofness does not appear, on the contrary, if the silicone emulsion content is too large, the gypsum usage is increased due to the antifoaming properties of silicone oil. There may be a problem that the viscosity increases and hardens inside the mixer.
  • the catalyst reacts with the active hydrogen present in the silicone oil to form a siloxane polymer on the surface of the product, and a basic catalyst may be used.
  • the catalyst may be used alone or in combination with limestone, slaked lime, cement, MgO, CaO, CaMgO, dolomite (Dolomite), and more specifically, small MgO, small CaMgO, small dolomite, or the like. Can be used in combination, but is not limited thereto.
  • the catalyst content in the gypsum slurry may be, for example, 0.2 to 1.5 parts by weight, more specifically 0.3 to 1.0 parts by weight based on 100 parts by weight of gypsum. If the catalyst content in the gypsum slurry is too less than the above range there may be a problem that the silicone oil is not polymerized to exhibit sufficient waterproofness, on the contrary, if too large, the pH of the total sludge may rise to weaken the strength.
  • a method of manufacturing a waterproof board comprising forming and curing an aqueous gypsum slurry comprising hemihydrate gypsum, a silicone oil, an emulsifier and a catalyst.
  • the water-resistant board includes, but is not limited to, mixing an aqueous emulsion containing a silicone oil and an emulsifier with a mixture of a catalyst and a hemihydrate gypsum to form an aqueous gypsum slurry, and It can be prepared by a method comprising the step of molding and curing the gypsum slurry.
  • pre-foam is prepared by injecting high-pressure air into an aqueous solution containing an anionic surfactant and mixing it with semi-hydrated gypsum and metered process water. It goes through the process of processing.
  • a suitable combination of large and small pores is required, which means that large pores are mainly located in the center of gypsum board, and small pores are mainly located on both sides of the gypsum board. This is because it is advantageous in hardness and drying conditions. Therefore, it is important to maintain adequately large bubbles.
  • silicone shows excellent waterproofing performance in a small amount compared to paraffin wax
  • foaming agent acts as an antifoaming agent to break bubbles in the gypsum sludge and increase the density of gypsum.
  • the reaction rate is so fast that cracking (cracking) may occur in the gypsum product due to the rapid generation of hydrogen molecules which are reaction by-products.
  • silicone oil as a waterproofing agent to obtain excellent waterproofing performance even with a small amount of use
  • an emulsifier in combination to suppress the anti-foaming of silicone oil and to exhibit an appropriate reaction rate even when using a basic catalyst gypsum board It prevents cracking.
  • a gypsum slurry was prepared by mixing 150 g of hemihydrate gypsum, 0.6 g of methylhydrogenpolysiloxane (MHP), 0.6 g of the catalyst described in Table 1 below (Comparative Example 1-2 does not use a catalyst), and 97.5 g of distilled water. At this time, 0.5 parts by weight of PNS and 0.01 parts by weight of a retarder (Retarder L) were also contained in the gypsum slurry, relative to 100 parts by weight of gypsum plaster. The prepared slurry was cured to prepare a gypsum specimen. In Comparative Example 1-1, a gypsum specimen was prepared by using 3.5 parts by weight of paraffin wax instead of MHP as the waterproofing agent and 100 parts by weight of the gypsum as a waterproofing agent.
  • MHP methylhydrogenpolysiloxane
  • Example 2-1 The gypsum specimens of Example 2-1 were prepared in the same manner as in Example 1, but using 0.5 parts by weight of MHP and light dolomite catalyst per 100 parts by weight of semi-hydrated gypsum.
  • Example 2-1 instead of using MHP directly, a mixture of 300 g of distilled water and 200 g of MHP was passed through a high pressure homogenizer at 450 bar to prepare a gypsum specimen of Example 2-2 using an emulsion of 40 wt% MHP content prepared. At this time, the amount of MHP and light dolomite catalyst used per 100 parts by weight of hemihydrate gypsum was 0.5 parts by weight, respectively, as in Example 2-1.
  • a gypsum specimen was prepared by using 3.5 parts by weight of paraffin wax instead of MHP as a waterproofing agent and 100 parts by weight of gypsum as a waterproofing agent.
  • Example 2 For the prepared specimens, the total water absorption after drying was measured in the same manner as in Example 1, and the presence of cracks in the gypsum was confirmed and shown in Table 2.
  • Gypsum specimens were prepared using an emulsion of 40 wt% MHP content prepared in the same manner as in Example 2-2, but the surfactant shown in Table 3 was used at 3 parts by weight per 100 parts by weight of MHP'use. The prepared specimens were measured in the same manner as in Example 1, and the total absorption was measured.
  • a silicone emulsion was prepared.
  • the silicone emulsion was prepared by passing water, methylhydrogenpolysiloxane (MHP), and emulsifier through a high pressure homogenizer under the conditions of 450 bar.
  • MHP methylhydrogenpolysiloxane
  • the emulsion was prepared while changing the composition as shown in Table 4 in order to grasp the characteristics of the silicone emulsion.
  • SMA used in emulsions 2 to 7 is a copolymer of styrene and maleic acid, and a copolymer in which styrene was copolymerized in a molar ratio of 1 to 4 with respect to 1 mol of maleic acid was used.
  • the styrene acrylic acid and methacrylic acid polymers used in the emulsions 8 to 9 used polymers in which styrene and a hydrophilic group were copolymerized in a 1: 1 molar ratio, respectively.
  • a gypsum specimen is prepared from the emulsion prepared above, and the density is observed.
  • Method for preparing a gypsum specimen is 100 parts by weight of half gypsum, 0.5 parts by weight of poly-naphthalene sulfonate, the emulsion shown in Table 4, 0.6 parts by weight of small dolomite as a catalyst, 49 parts by weight of water, A pre-foam (pouring a foaming agent (GPA-01 from Stepane) and 21 parts by weight of water was poured into the foam and then pre-foamed at 2500 rpm for 1 minute in a high speed stirrer) to prepare a gypsum slurry. It was then cured to produce a gypsum specimen.
  • a gypsum specimen was prepared by the above method using an MHP emulsion containing no emulsifier. The density of the prepared gypsum specimens was measured and shown in Table 5.
  • Example 6 The same experiment as in Example 4 was conducted for the emulsion 3 and the emulsion 4 in which the amount of the emulsifier in the emulsion 2 was adjusted, and the results are shown in Table 6.
  • Total absorption was measured for the gypsum specimens of Examples 4-1 and 4-3.
  • the total water absorption was obtained by preparing gypsum specimens according to KS F 3504 standard, submerging the gypsum specimen in water at 20 ° C. for 2 hours, and then measuring the weight increase rate (%) relative to the original weight of 100%.
  • Comparative Example 6-1 gypsum specimens prepared without using an emulsifier and MHP were used.
  • Comparative Example 6-2 100 parts by weight of paraffin wax (Paraffin® Wax) was used instead of MHP as an emulsifier.
  • a gypsum specimen prepared using 2.5 parts by weight of sugar was used. The measurement results are shown in Table 7.
  • Example 4 The same experiment as in Example 4 was carried out on the emulsion 10 used in combination with the emulsifier, and the results are shown in Table 10.
  • MHP emulsions were prepared in the same manner as in Emulsion 2 of Example 4 by varying the hydrogen content of the silicone oil, and gypsum specimens were prepared in the same manner as in Example 4 by using each of the prepared emulsions. Measured.
  • Comparative Example 10-1 a gypsum specimen prepared by using paraffin wax as a waterproofing agent in an amount of 3.5 parts by weight per 100 parts by weight of gypsum was used. The measurement results are shown in Table 11.
  • Example 10-1 hydrogen in MHP: methyl content 100%: 0%
  • Gypsum specimens were prepared in the same manner as in Example 4-1, but the foaming agents shown in Table 12 were further used. The density of the prepared gypsum specimens was measured and shown in Table 12.
  • MHP emulsions were prepared in the same manner as in Emulsion 2, except for the following emulsifiers, and gypsum specimens were prepared in the same manner as in Example 4, using the prepared emulsions. It was.
  • Example 12-1 using SMA copolymer finished with cumene
  • Example 12-3 Use of sulfonated SMA copolymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Combustion & Propulsion (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Panels For Use In Building Construction (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법에 관한 것으로서, 보다 상세하게는, 실리콘 오일 및 유화제를 포함하는 방수용 실리콘 에멀젼과, 반수석고, 실리콘 오일 및 특정 촉매를 포함하는 수계 석고 슬러리의 경화물을 포함하며, 우수한 크랙저항성 및 낮은 전흡수율을 나타내는 방수 보드 및 그 제조방법에 관한 것이다.

Description

방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법
본 발명은 방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법에 관한 것으로서, 보다 상세하게는, 실리콘 오일 및 유화제를 포함하는 방수용 실리콘 에멀젼과, 반수석고, 실리콘 오일 및 특정 촉매를 포함하는 수계 석고 슬러리의 경화물을 포함하며, 우수한 크랙저항성 및 낮은 전흡수율을 나타내는 방수 보드 및 그 제조방법에 관한 것이다.
불연성이면서 차음성이 뛰어난 경량 소재인 석고보드는 저렴한 가격으로 인해 건물 내장재로 많이 사용되고 있다. 일반적인 건축용 석고보드의 원재료는 천연 이수석고 혹은 탈황 이수석고를 소성하여 결정수를 일부 제거한 반수석고이다. 반수석고는 물과 반응 시 발열하며 결정구조를 갖는 이수석고로 변환된다. 이 과정 중에 잘 발달된 침상의 결정구조는 석고보드 자체의 강도를 증가시키고, 석고보드 외피지 섬유(fiber)와 치밀한 맞물림을 이루어 외피지로 감싼(wrapped) 석고보드를 제조하게 된다.
생산성을 향상시키기 위해, 또한 다양한 기능성을 갖춘 석고보드를 제조하기 위해서 다양한 첨가제들이 투입된다. 예를 들어 발포제는 석고보드 내에 기공을 형성하여 석고보드를 경량화시킬 수 있는 필수적인 첨가제이다. 발포제로는 주로 석고보드 내 기공을 제공하는 계면활성제가 사용된다. 석고보드는 습기에 약한 소재이나, 방수기능을 부여함으로써 샤워실 벽면에도 사용할 수 있다. 또한, 방수제로는 일반적으로 실리콘, 아스팔트 또는 파라핀 왁스 등이 쓰이는데, 아스팔트의 경우 가격이 저렴하다는 장점이 있으나, 검은색의 단색만을 제조할 수 있다는 단점이 있다. 파라핀 왁스의 경우 유화제를 사용하여 수용성으로 만든 후 석고보드 제조 공정에 첨가하게 되는데, 파라핀 왁스는 석고의 표면을 덮어 방수 효과를 발현하기 때문에 파라핀 사용량이 많아야 하고, 석고에 묻어있는 상태에서 일시적인 방수기능만을 나타낸다는 문제가 있다.
수용액에 분산된 파라핀 왁스의 경우, 석고 슬러리 제조 과정 중에 혼합되어 슬러리에 분산되게 된다. 분산된 파라핀 왁스는 반수석고 슬러리가 이수석고결정으로 성장함에 따라 석고 표면으로 밀려나게 된다. 파라핀 왁스가 석고 표면에 고르게 분산되어 있을수록 발수 효과가 증가하나 파라핀 왁스는 석고 표면과 강한 결합을 이루지 못하기 때문에, 석고 보드의 건조 과정에서 보드 중심부의 공정수가 표면으로 이동함에 따라 파라핀 왁스도 표면으로 이동하거나 서로 뭉쳐져 석고 표면에 고르게 퍼지는 것이 어렵게 된다. 따라서 효과적인 방수기능을 부여하기 위해서는 비교적 많은 양의 파라핀 왁스가 필요하며, 추후에 석고 보드에 열적 변화가 있을 경우 파라핀 왁스가 이동하여 한쪽으로 쏠리거나 유기물에 의해 용출되기 때문에 안정적인 방수 물성을 기대하기 어렵다.
실리콘 화합물을 방수제로 사용할 경우 석고 슬러리 제조 과정에서 실리콘 오일의 하이드로겐 작용기가 가수분해되어 하이드록사이드 작용기로 변하며, 이 작용기가 이수석고 내 결정수인 하이드록사이드 작용기와 반응하여 가수분해 됨으로써 실리콘 오일이 이수석고 고형체에 고정되게 된다. 이 과정을 통해 실리콘 오일은 이수석고와 강한 화학 결합을 이루어 석고 표면을 감싸게 되고, 발수성을 나타내는 메틸기는 석고 표면과 수직이 되게 위치하여 석고 표면에서 효과적인 발수 기능을 나타내게 된다. 그러나, 실리콘 오일은 소포성이 강하여 발포제 사용으로 석고 코어 내에 생성된 기포를 제거하는 문제가 있다.
이에 계면활성제에 유무기 안정화제를 첨가하여 폼의 안정성을 높이려는 화학적 안정화 방안에 대해 개시한 특허(예컨대, 미국 공개특허공보 제2006/0162839호 A1)가 있었는데, 이는 고형 석고 입자에 의한 폼의 소포 작용을 피하거나 파라핀 왁스류의 하이드로 카본에 의한 소포성을 억제하려는 용도에 적합하나, 실리콘계 방수제를 사용할 때 큰 소포성으로 인해 이를 적용하기 어렵다. 최근에는 설비를 개선하는 등의 물리적 해결 방안(예컨대, 유럽특허 EP 1 637 302 A1)이 개시된 바 있으나, 상기 문제점들을 모두 해소할 수 없다는 단점이 있다.
본 발명은 적은 실리콘 오일 사용량으로도 우수한 방수성능을 제공할 수 있어 원재료비를 크게 절감할 수 있는 실리콘 에멀젼과, 우수한 크랙저항성 및 낮은 전흡수율을 나타내는 방수 보드 및 이를 제조하는 방법을 제공하는 것을 목적으로 한다.
본 발명의 방수 보드는, 반수석고, 실리콘 오일, 및 탄산염암 광물을 촉매로서 포함하는 수계 석고 슬러리의 경화물을 포함한다.
본 발명의 방수 보드 제조방법은, 반수석고, 실리콘 오일, 및 탄산염암 광물을 촉매로서 포함하는 수계 석고 슬러리를 형성하고, 이를 경화시키는 것을 포함한다.
본 발명의 방수용 실리콘 에멀젼은 실리콘 오일 및 유화제를 포함한다.
본 발명의 구체적인 일 측면에 따라 제공되는 방수 보드는, 반수석고, 실리콘 오일, 유화제 및 촉매를 포함하는 수계 석고 슬러리의 경화물을 포함한다.
본 발명의 구체적인 다른 측면에 따라 제공되는 방수 보드 제조방법은, 반수석고, 실리콘 오일, 유화제 및 촉매를 포함하는 수계 석고 슬러리를 형성하고, 이를 경화시키는 것을 포함한다.
본 발명에 따르면, 파라핀 왁스 대비 적은 양의 실리콘 오일을 사용하면서도 우수한 크랙 저항성 및 낮은 전흡수율을 나타내는 방수 보드를 얻을 수 있다. 또한, 본 발명에 따른 실리콘 에멀젼을 사용하면, 실리콘 오일의 소포성을 억제하여 최종 제품이 낮은 밀도를 유지하도록 하면서도 기포의 크기가 파라핀 왁스 사용시와 동등 수준의 크기를 갖도록 하며, 적은 실리콘 오일 사용량으로도 낮은 전흡수율(예컨대, 6% 이하)을 나타낼 수 있어 원재료비를 크게 절감할 수 있다.
도 1은 본 발명에 따라, 방수제로서 실리콘 오일인 메틸하이드로젠폴리실록산(MHP) 및 유화제로서 스티렌-말레익산(SMA) 공중합체를 사용하여 제조된 석고보드 단면의 광학현미경 사진이다.
도 2는 방수제로서 메틸하이드로젠폴리실록산(MHP)을 사용하고, 유화제는 사용하지 않고 제조된 석고보드 단면의 광학현미경 사진이다.
도 3은 방수제로서 파라핀 왁스를 사용하고, 유화제는 사용하지 않고 제조된 석고보드 단면의 광학현미경 사진이다.
이하에서 본 발명을 상세히 설명한다.
본 발명의 제공되는 방수 보드는 반수석고, 실리콘 오일, 및 경소 돌로마이트를 촉매로서 포함하는 수계 석고 슬러리의 경화물을 포함한다. 상기 석고 슬러리의 경화물은 보드의 코어로서 사용될 수 있다.
상기 반수석고는 천연 이수석고 혹은 탈황 이수석고를 소성하여 결정수를 일부 제거하여 얻어진다.
본 발명의 방수 보드에 있어서, 상기 석고 슬러리 내의 반수석고 함량은, 슬러리 100중량%를 기준으로, 예컨대, 40 내지 80 중량%일 수 있고, 보다 구체적으로는 50 내지 70 중량%일 수 있다. 또한, 본 발명의 석고 슬러리 내의 물 함량은, 슬러리 100중량%를 기준으로, 예컨대, 20 내지 60 중량%일 수 있고, 보다 구체적으로는 30 내지 50 중량%일 수 있다.
상기 실리콘 오일은 방수기능 부여를 위하여 사용되는 것으로서, 선형 또는 고리형의, 적어도 부분적으로 수소 개질된 폴리실록산을 포함할 수 있다. 이러한 폴리실록산은 염기성 환경에서 중합되어 고도로 가교된 실록산 중합체를 형성할 수 있으며, 그 중합체는 높은 방수성을 나타낸다. 보다 구체적으로, 상기 폴리실록산은 아래의 식으로 표시되는 구조를 포함할 수 있다.
Figure PCTKR2016006901-appb-I000001
상기 구조식에서, R1은 독립적으로 수소 또는 비수소 치환체(예컨대, 비치환되거나 할로겐으로 치환된 알킬, 사이클로알킬, 아릴 또는 헤테로아릴)이되, 복수의 R1 중 적어도 하나가, 보다 구체적으로는 10% 이상(예컨대, 10 내지 100%)이 수소이고; R2는 상기한 바와 같은 비수소 치환체이며; n 은 1 내지 200의 정수이다.
상기에서, 예컨대, 알킬의 탄소수는 1 내지 4일 수 있고, 사이클로알킬의 탄소수는 5 내지 10일 수 있으며, 아릴의 탄소수는 6 내지 12일 수 있고, 헤테로아릴의 총 고리원자수는 5 내지 12일 수 있으며, 또한 N, O 및 S로부터 선택되는 헤테로원자를 하나 이상 가질 수 있다. 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
보다 더 구체적으로, 상기 폴리실록산은 아래의 식으로 표시되는 구조를 포함할 수 있다.
Figure PCTKR2016006901-appb-I000002
상기 구조식에서, x 및 y는 이들이 각각 지시하는 구조 단위의 몰 분율로서 x + y = 1이고, x 는 0.1 내지 1이며, y는 0 내지 0.9이다.
본 발명의 바람직한 일 구체예에 따르면, 상기 실리콘 오일로서 메틸하이드로젠폴리실록산(methylhydrogenpolysiloxane, MHP)을 포함하는 실리콘 오일을 사용한다.
본 발명의 방수 보드에 있어서, 상기 석고 슬러리 내의 실리콘 오일 함량은, 반수석고 100중량부를 기준으로, 예컨대, 0.04 내지 4 중량부일 수 있고, 보다 구체적으로는 0.1 내지 1.5 중량부일 수 있다. 석고 슬러리 내의 실리콘 오일 함량이 상기한 범위보다 지나치게 적으면 목표로 하는 방수성이 나타나지 않는 문제점이 있을 수 있고, 반대로 지나치게 많으면 실리콘 오일의 특유의 소포성으로 인하여 석고 사용량이 많아지고 슬러리의 점성이 증가하여 믹서 내부에서 굳어지는 문제점이 있을 수 있다.
본 발명에 있어서, 상기 실리콘 오일은 그 자체로 보드 제조공정에 투입할 수 있으며, 다르게는 계면활성제 및/또는 고전단 회전 반응기나 고압 균질화기를 사용하여 물에 에멀젼화시킨 에멀젼 또는 수분산액으로 보드 제조공정에 투입할 수도 있다.
석고보드에 방수제로 적용되는 실리콘 오일은 통상적으로 알칼리 금속 또는 알칼리토 금속의 옥사이드 또는 하이드록사이드 형태의 염기성 촉매(수용액 하에서 염기성을 나타내는 촉매) 하에서 가수분해 반응이 일어나 선형 폴리실록산이 가지형 폴리실록산으로 변함으로써 방수 성능을 부여하게 된다.
그러나, 염기성 촉매를 사용시 pH가 상승하여 반수석고의 수화과정을 느리게 할 수 있으며, 실리콘 오일은 낮은 표면장력과 가수분해 반응시 부산물로 발생하는 수소 가스로 인해 석고보드 슬러리에 생성된 기포를 파괴하여 석고보드 경량화에 어려움이 있거나 석고보드 코어에 갈라짐(크랙)을 일으킬 수 있다.
따라서, 본 발명에서는 방수 보드 제조에 있어서 종래의 시멘트, CaO, 사소/하소 돌로마이트, Ca(OH)2, NaOH 등을 사용하지 않고, 특정적으로 탄산염암 광물 성분의 촉매를 사용함으로써 이러한 문제를 해결하였다.
본 발명의 촉매로 사용하는 탄산염암 광물은 아라고나이트(Aragonite), 방해석(Calcite), 돌로마이트(Dolomite) 등으로, 이에 한정되는 것은 아니며, 바람직 하기로는 경소 돌로마이트를 사용할 수 있다.
경소 돌로마이트는, 이러한 종래의 촉매, 예컨대, 사소(1700 내지 1800℃에서 하소) 또는 중소(1000 내지 1500℃에서 하소) 돌로마이트에 비하여 높은 촉매활성을 가지면서도 급격한 촉매 활성을 억제하여 실리콘 오일로부터의 수소 발생으로 인한 석고보드의 크랙 발생을 방지하며, 반수석고의 수화반응 시간을 느리게 하지 않는다. 또한 석고보드 생산을 위해 투입되는 첨가제들과의 부반응을 일으키지 않아 석고생산공정에 적용하기 용이하다는 장점이 있다. 특히 석고 성형시 물의 사용량을 낮추기 위해 사용하는 PNS(poly-naphthalene sulfonate) 계열의 유동화제는 실록산과 동시에 사용할 때 석고의 밀도를 높게 하고, 기포 크기를 작게 만드는 문제를 일으키는데, 경소 돌로마이트를 사용하여 실록산의 함량을 낮추면 실록산으로 인하여 소포가 일어나는 문제를 최소화할 수 있다.
상기 경소 돌로마이트는 백운석(돌로마이트)을, 예컨대, 700 내지 1000℃의 온도에서 하소한 것으로, 그 조성은 대체로 다음과 같다.
Figure PCTKR2016006901-appb-I000003
본 발명의 방수 보드에 있어서, 상기 석고 슬러리 내의 탄산염암 광물 촉매의 함량은, 반수석고 100중량부를 기준으로, 예컨대, 0.2 내지 1.5 중량부일 수 있고, 보다 구체적으로는 0.3 내지 1.0 중량부일 수 있다. 석고 슬러리 내의 촉매 함량이 상기한 범위보다 지나치게 적으면 실리콘 오일이 중합되지 못하여 충분한 방수성을 나타내지 못하는 문제점이 있을 수 있고, 반대로 전체 슬러리의 pH 가 상승하여 강도가 약해지는 문제점이 있을 수 있다.
특별히 한정하지 않으나, 본 발명에 사용되는 탄산염암 광물 촉매는 평균 입도가 50 내지 4000㎛, 바람직하게는 500 내지 2500㎛일 수 있다. 광물 촉매의 평균 입도가 지나치게 작을 경우 공정상으로 이송이 어렵거나 정확한 정량이 어렵게 되는 문제점이 있으며, 평균 입도가 4000㎛보다 크게 되면 원료인 반수석고의 입도에 비하여 지나치게 크기 때문에 석고 제품내 고르게 퍼지지 못하며 제품이 불균질해지는 문제점이 있다.
또한, 본 발명의 목적을 달성할 수 있는 범위 내에서, 상기 석고 슬러리는 탄산염암 광물 촉매 이외의 염기성 촉매를 추가로 포함할 수도 있다. 추가로 사용 가능한 염기성 촉매로는 석회석, 소석회, 시멘트, MgO, CaO, CaMgO 등을 들 수 있으며, 이들을 단독으로 또는 조합하여 추가로 사용할 수 있다.
상기 석고 슬러리는 계면활성제를 추가로 포함할 수도 있다. 상기 계면활성제로는, 예컨대, 음이온성 계면활성제(예컨대, 설페이트기를 포함하는 음이온성 계면활성제), 비이온성 계면활성제, 양쪽성 계면활성제(예컨대, 베타인(betaine)), 알킬 폴리글루코사이드, 알킬 알코올(예컨대, C8 내지 C20 알킬 알코올) 등이 단독으로 또는 조합되어 사용될 수 있으나, 이에 제한되지는 않는다. PNS(poly-naphthalene sulfonate) 계열의 유동화제도 계면활성제로서 사용될 수 있다.
상기 석고 슬러리에 계면활성제가 포함되는 경우, 그 함량은, 실리콘 오일 100중량부를 기준으로, 예컨대, 2 내지 60 중량부일 수 있고, 보다 구체적으로는 5 내지 40 중량부일 수 있다. 계면활성제 함량이 지나치게 적으면 그 사용효과가 충분치 않은 문제점이 있을 수 있고, 반대로 지나치게 많으면 석고 슬러리의 점성이 증가하여 유동성이 떨어져 믹서에서 믹싱이 잘 되지 않는 문제점이 있을 수 있다.
본 발명의 구체적인 다른 측면에 따르면, 반수석고, 실리콘 오일, 및 탄산염암 광물을 촉매로서 포함하는 수계 석고 슬러리를 형성하고, 이를 경화시키는 것을 포함하는 방수 보드의 제조방법이 제공된다.
이에 한정되는 것은 아니나, 본 발명의 일 구체예에 따르면, 본 발명의 방수 보드는, 실리콘 오일 또는 그 수계 에멀젼 또는 수분산액과 탄산염암 광물 촉매 및 반수석고를 포함하는 수계 석고 슬러리를 형성하는 단계, 및 상기 석고 슬러리를 성형하고 경화시키는 단계를 포함하는 방법에 의해 제조될 수 있다.
일반적으로 기공을 가진 경량의 석고보드 제조를 위해서는 음이온성 계면활성제를 포함한 수용액에 고압의 에어를 투입하여 프리-폼(pre-foam)을 제조하고, 이를 반수석고 및 계량된 공정수와 혼합하여 성형가공하는 과정을 거친다. 경량 석고보드의 경우, 큰 기공과 작은 기공의 적절한 조합이 필요한데, 이는 석고 보드 제조시 큰 기공이 주로 석고 보드 중앙부에, 그리고 작은 기공이 주로 석고 보드 상하 양면에 위치함으로써 석고보드의 이면지 접착성, 경도 그리고 건조 조건 등에서 유리하기 때문이다. 따라서, 적절히 큰 기포를 유지하는 것이 중요하다. 
실리콘 오일의 경우에는 파라핀 왁스에 비하여 적은 양으로도 우수한 방수성능을 나타내지만, 한편으로는 소포제의 작용을 하여 석고 슬러리 내의 기포들을 깨뜨리고 석고의 밀도를 높인다. 이러한 실리콘에 의한 기포의 감소를 보충하기 위해서 경량화제를 과량 투입할 경우, 기포의 크기가 작아지고 슬러리의 점도가 올라가기 때문에 석고보드 성형에 어려움을 겪게 된다. 또한, 기존의 염기성 촉매 사용시 반응속도가 너무 빨라 반응 부산물인 수소 분자의 급격한 발생으로 인하여 석고제품에 균열(크랙킹)이 발생할 수 있다.
본 발명에서는 방수제로서 실리콘 오일을 사용함으로써 파라핀 왁스 대비 소량의 방수제 사용으로도 우수한 방수성능을 얻는 동시에, 탄산염암 광물을 촉매로 사용함으로써 적절한 반응속도를 나타낼 수 있도록 하여 석고보드의 크랙킹을 방지하여 준다.
일 구체예에서, 본 발명의 방수보드는, 방수용 실리콘 에멀젼을 사용하여 제조할 수 있다.
본 발명의 방수용 실리콘 에멀젼은 실리콘 오일 및 유화제를 포함한다.
상기 실리콘 오일은 방수기능 부여를 위하여 사용되는 것으로서, 선형 또는 고리형의, 적어도 부분적으로 수소 개질된 폴리실록산을 포함할 수 있다. 이러한 폴리실록산은 염기성 환경에서 중합되어 고도로 가교된 실록산 중합체를 형성할 수 있으며, 그 중합체는 높은 방수성을 나타낸다. 보다 구체적으로, 상기 폴리실록산은 아래의 식으로 표시되는 구조를 포함할 수 있다.
Figure PCTKR2016006901-appb-I000004
상기 구조식에서, R1은 독립적으로 수소 또는 비수소 치환체(예컨대, 비치환되거나 할로겐으로 치환된 알킬, 사이클로알킬, 아릴 또는 헤테로아릴)이되, 복수의 R1 중 적어도 하나가, 보다 구체적으로는 10% 이상(예컨대, 10 내지 100%)이 수소이고; R2는 상기한 바와 같은 비수소 치환체이며; n 은 1 내지 200의 정수이다.
상기에서, 예컨대, 알킬의 탄소수는 1 내지 4일 수 있고, 사이클로알킬의 탄소수는 5 내지 10일 수 있으며, 아릴의 탄소수는 6 내지 12일 수 있고, 헤테로아릴의 총 고리원자수는 5 내지 12일 수 있으며, 또한 N, O 및 S로부터 선택되는 헤테로원자를 하나 이상 가질 수 있다. 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
보다 더 구체적으로, 상기 폴리실록산은 아래의 식으로 표시되는 구조를 포함할 수 있다.
Figure PCTKR2016006901-appb-I000005
상기 구조식에서, x 및 y는 이들이 각각 지시하는 구조 단위의 몰 분율로서 x + y = 1이고, x 는 0.1 내지 1이며, y는 0 내지 0.9이다.
본 발명의 바람직한 일 구체예에 따르면, 상기 실리콘 오일로서 메틸하이드로젠폴리실록산(methylhydrogenpolysiloxane, MHP)을 포함하는 실리콘 오일을 사용하며, 실리콘 에멀젼 100중량부를 기준으로 0.1 내지 60중량부일 수 있다.
상기 유화제는 실리콘 오일의 수용액 분산성을 높여주어 그 소포성을 억제하기 위하여 사용되는 것으로서, 친유성 단량체와 친수성 단량체의 공중합체가 사용될 수 있다. 예컨대, 상기 친유성 단량체는 벤젠고리를 1~3개 가지는 방향족 또는 아릴 벤젠(aryl benzene) 또는 아릴 나프탈렌(aryl naphthalene)일 수 있고, 대표적으로는 벤젠, 톨루엔 또는 나프탈렌이 사용될 수 있으며 보다 바람직하게는 스티렌(Styrene)이 사용된다. 상기 친수성 단량체는 히드록시기(-OH)를 하나 이상 포함하는 중합성 단량체(예컨대, 알코올, 글리콜 등), 할로겐화 스티렌(halo-styrene), 말레익산(maleic acid) 또는 그 무수물, 아크릴 단량체 또는 그 유도체 및 메타크릴 단량체 또는 그 유도체로부터 선택된 것일 수 있다. 또한, 상기 친유성 단량체와 친수성 단량체의 공중합체의 염 형태(예컨대, Na 염, K 염, 암모늄염 등), 가수분해 형태, 설폰화 형태, 및 부분 또는 전체가 에스테르화된 형태도 유화제로서 사용될 수 있다.
보다 구체적으로, 상기 친유성 단량체와 친수성 단량체의 공중합체는 스티렌과 알릴 알코올의 공중합체, 스티렌과 에틸렌글리콜의 공중합체, 스티렌과 클로로스티렌의 공중합체, 스티렌과 아크릴로니트릴의 공중합체, 스티렌과 말레익산 또는 그 무수물과의 공중합체(SMA 공중합체), 큐멘(cumene)으로 마감처리된 스티렌과 말레익산 또는 그 무수물과의 공중합체, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 가수분해 형태, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 설폰화 형태, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 에스테르화 형태, 스티렌과 아크릴산과의 공중합체, 스티렌과 메타크릴산과의 공중합체, 및 이들의 염 형태로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. 스티렌과 말레익산 또는 그 무수물과의 공중합체로서 상업적으로 입수 가능한 제품으로는 Clay Vally 사의 SMA1000, SMA2000, SMA3000, SMA4000, SMA17352 등을 들 수 있다.
상기 친유성 단량체와 친수성 단량체의 공중합체에 있어서, 친유성 단량체 : 친수성 단량체의 몰비는, 예컨대 1 : 1 내지 8 : 1일 수 있으며, 보다 구체적으로는 1 : 1 내지 4 : 1일 수 있다. 또한, 상기 친유성 단량체와 친수성 단량체의 공중합체를 수용액 상태로 만들기 위해서는 NaOH, KOH, 암모니아수 등의 염기성 용액을 사용하여 이 공중합체를 염 형태로 만들어 녹일 수 있다. 이때 너무 수용액의 pH가 너무 높으면 실리콘 오일 내의 수소 원자의 반응성에 영향을 줄 수 있기 때문에 상기 공중합체 수용액의 pH는 9 내지 12 사이로 유지하는 것이 바람직하다.
상기 친유성 단량체와 친수성 단량체의 공중합체는 실리콘 오일 고분자와 물리적으로 결합하여 마이셀을 형성함으로써 친유성인 실리콘 오일이 물에 골고루 분산될 수 있도록 해주며, 그 결과, 실리콘 오일이 중합시 방수 제품(예컨대, 석고) 표면에 잘 분산되어 적은 실리콘 사용량으로도 높은 방수성능을 나타내도록 한다. 또한 실리콘 오일의 소포성을 억제하여 제품 내부에 적절히 큰 크기의 기포가 형성되도록 함으로써 경량화된 방수제품의 생산이 가능하도록 한다.
본 발명의 실리콘 에멀젼 내의 유화제 함량은, 실리콘 오일 100중량부를 기준으로, 예컨대, 0.002 내지 10 중량부일 수 있고, 보다 구체적으로는 0.3 내지 5 중량부일 수 있다. 실리콘 에멀젼 내의 유화제 함량이 상기한 범위보다 지나치게 적으면 임계미셸농도(CMC)에 미치지 못하여 에멀젼으로 제조되지 못하는 문제점이 있을 수 있고, 반대로 지나치게 많으면 실리콘 오일의 소포성이 개선되지 않고, 실리콘 오일의 변질이 빨라지는 문제점이 있을 수 있다.
본 발명의 실리콘 에멀젼은, 그것이 적용된 제품의 밀도 및 기포를 개선하기 위한 목적으로, 기포제를 더 포함할 수 있다. 상기 기포제로는 발포용 계면활성제가 사용될 수 있으며, 보다 구체적으로는 음이온성 계면활성제(예컨대, 설페이트기를 포함하는 음이온성 계면활성제), 양쪽성 계면활성제(예컨대, 베타인(betaine)), 알킬 폴리글루코사이드, 알킬 알코올(예컨대, C8 내지 C20 알킬 알코올) 등이 단독으로 또는 조합되어 사용될 수 있으나, 이에 제한되지는 않는다.
본 발명의 실리콘 에멀젼에 기포제가 포함되는 경우, 그 함량은, 실리콘 오일 100중량부를 기준으로, 예컨대, 2 내지 60 중량부일 수 있고, 보다 구체적으로는 5 내지 40 중량부일 수 있다. 실리콘 에멀젼 내의 기포제 함량이 상기한 범위보다 지나치게 적으면 실리콘 오일의 소포성으로 인하여 기포가 사라져 밀도가 상승하는 문제점이 있을 수 있고, 반대로 지나치게 많으면 실리콘 에멀젼이 적용된 제품의 슬러리 점성이 증가하여 슬러리 유동성이 떨어져 믹서에서 믹싱이 잘 되지 않는 문제점이 있을 수 있다.
본 발명의 실리콘 에멀젼은, 적은 실리콘 오일 사용량으로도 우수한 방수성능을 제공할 수 있고 이를 적용한 제품의 경량화에도 기여할 수 있어 다양한 방수 제품에 적용될 수 있으며, 예컨대, 방수 보드 등에 적용될 수 있으나, 이에 한정되는 것은 아니다.
따라서, 본 발명의 구체적인 일 측면에 따라 제공되는 방수 보드는 반수석고, 실리콘 오일, 유화제 및 촉매를 포함하는 수계 석고 슬러리의 경화물을 포함한다. 상기 석고 슬러리의 경화물은 보드의 코어로서 사용될 수 있다.
상기 반수석고는 천연 이수석고 혹은 탈황 이수석고를 소성하여 결정수를 일부 제거하여 얻어진다.
본 발명의 방수 보드에 있어서, 상기 석고 슬러리 내의 반수석고 함량은, 슬러리 100중량%를 기준으로, 예컨대, 40 내지 80 중량%일 수 있고, 보다 구체적으로는 50 내지 70 중량%일 수 있다. 또한, 본 발명의 석고 슬러리 내의 물 함량은, 슬러리 100중량%를 기준으로, 예컨대, 20 내지 60 중량%일 수 있고, 보다 구체적으로는 30 내지 50 중량%일 수 있다.
본 발명의 방수 보드에 포함되는 상기 실리콘 에멀젼에 대해서는 앞서 설명한 바와 같으며, 상기 실리콘 에멀젼은 실리콘 오일과 유화제를 포함한다. 또한, 상기 석고 슬러리가 기포제를 더 포함할 수 있음에 대해서도 앞서 설명한 바와 같다.
본 발명의 방수 보드에 있어서, 상기 석고 슬러리 내의 실리콘 에멀젼의 함량은 반수석고 100 중량부를 기준으로 0.0002 내지 4 중량부일 수 있고, 보다 구체적으로 0.001 내지 1.5 중량부일 수 있다. 석고 슬러리 내의 실리콘 에멀젼 함량이 상기한 범위보다 지나치게 적으면 목표로 하는 방수성이 나타나지 않는 문제점이 있을 수 있고, 반대로 지나치게 많으면 실리콘 에멀젼임에도 불구하고 실리콘 오일 특유의 소포성으로 인하여 석고 사용량이 많아지고 슬러지의 점성이 증가하여 믹서 내부에서 굳어지는 문제점이 있을 수 있다.
상기 촉매는 실리콘 오일에 존재하는 활성 수소와 반응하여, 제품 표면에 실록산 중합체를 형성하는 역할을 하는 것으로, 염기성 촉매를 사용할 수 있다. 예컨대, 상기 촉매로는 석회석, 소석회, 시멘트, MgO, CaO, CaMgO, 백운석(돌로마이트) 등을 단독으로 또는 조합하여 사용할 수 있으며, 보다 구체적으로는 경소 MgO, 경소 CaMgO, 경소 백운석 등을 단독으로 또는 조합하여 사용할 수 있으나, 이에 제한되지는 않는다.
본 발명의 방수 보드에 있어서, 상기 석고 슬러리 내의 촉매 함량은, 반수석고 100중량부를 기준으로, 예컨대, 0.2 내지 1.5 중량부일 수 있고, 보다 구체적으로는 0.3 내지 1.0 중량부일 수 있다. 석고 슬러리 내의 촉매 함량이 상기한 범위보다 지나치게 적으면 실리콘 오일이 중합되지 못하여 충분한 방수성을 나타내지 못하는 문제점이 있을 수 있고, 반대로 지나치게 많으면 전체 슬러지의 pH가 상승하여 강도가 약해지는 문제점이 있을 수 있다.
본 발명의 구체적인 다른 측면에 따르면, 반수석고, 실리콘 오일, 유화제 및 촉매를 포함하는 수계 석고 슬러리를 형성하고, 이를 경화시키는 것을 포함하는 방수 보드의 제조방법이 제공된다.
이에 한정되는 것은 아니나, 본 발명의 일 구체예에 따르면, 본 발명의 방수 보드는, 실리콘 오일 및 유화제를 포함하는 수계 에멀젼과 촉매 및 반수석고의 혼합물을 혼합하여 수계 석고 슬러리를 형성하는 단계, 및 상기 석고 슬러리를 성형하고 경화시키는 단계를 포함하는 방법에 의해 제조될 수 있다.
일반적으로 기공을 가진 경량의 석고 보드 제조를 위해서는 음이온성 계면활성제를 포함한 수용액에 고압의 에어를 투입하여 프리-폼(pre-foam)을 제조하고, 이를 반수석고 및 계량된 공정수와 혼합하여 성형가공하는 과정을 거친다. 경량 석고보드의 경우, 큰 기공과 작은 기공의 적절한 조합이 필요한데, 이는 석고 보드 제조시 큰 기공이 주로 석고 보드 중앙부에, 그리고 작은 기공이 주로 석고 보드 상하 양면에 위치함으로써 석고보드의 이면지 접착성, 경도 그리고 건조 조건 등에서 유리하기 때문이다. 따라서, 적절히 큰 기포를 유지하는 것이 중요하다. 
실리콘의 경우에는 파라핀 왁스에 비하여 적은 양으로도 우수한 방수성능을 나타내지만, 한편으로는 소포제의 작용을 하여 석고 슬러지 내의 기포들을 깨뜨리고 석고의 밀도를 높인다. 이러한 실리콘에 의한 기포의 감소를 보충하기 위해서 발포제를 과량 투입할 경우, 기포의 크기가 작아지고 슬러지의 점도가 올라가기 때문에 석고보드 성형에 어려움을 겪게 된다. 또한, 염기성 촉매 사용시 반응속도가 너무 빨라 반응 부산물인 수소 분자의 급격한 발생으로 인하여 석고제품에 균열(크랙킹)이 발생할 수 있다.
본 발명에서는 방수제로서 실리콘 오일을 사용함으로써 소량의 사용으로도 우수한 방수성능을 얻는 동시에, 유화제를 조합 사용함으로써 실리콘 오일의 소포성을 억제하는 한편 염기성 촉매 사용시에도 적절한 반응속도를 나타낼 수 있도록 하여 석고보드의 크랙킹을 방지하여 준다.
이하에서 실시예 및 비교예에 의거하여 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이에 의하여 제한되는 것은 아니다.
[ 실시예 ]
I. 석고보드의 제조
실시예  1
반수석고 150g, 메틸하이드로젠폴리실록산(MHP) 0.6g, 하기 표 1에 기재된 촉매 0.6g(비교예 1-2는 촉매를 사용하지 않음) 및 증류수 97.5g을 혼합하여 석고 슬러리를 제조하였다. 이 때 반수석고 100중량부 대비 유동화제로서 PNS 0.5중량부 및 지연제(Retarder L) 0.01중량부가 석고 슬러리에 또한 함유되었다. 제조된 슬러리를 경화시켜, 석고 시편을 제조하였다. 비교예 1-1에서는 촉매를 사용하지 않고, 방수제로서 MHP 대신 파라핀 왁스를 반수석고 사용량 100 중량부 당 3.5 중량부로 사용하여 석고 시편을 제조하였다.
제조된 시편에 대하여 KS F 3504 규격에 따라 건조 후 전흡수율(원래 시편 무게 100% 대비 시험후 시편 무게증가율)을 측정하고, 석고의 크랙 발생 유무를 확인하여, 표 1에 나타내었다.
Figure PCTKR2016006901-appb-T000001
상기 표 1의 결과로부터, 촉매로서 경소 돌로마이트를 사용한 경우가, 촉매를 사용하지 않거나 다른 촉매를 사용한 경우에 비하여 우수한 전흡수율(즉, 우수한 촉매활성 및 그에 따른 방수성능)을 제공하는 동시에 크랙을 발생시키지 않는다는 것을 확인할 수 있다.
실시예  2
실시예 1과 동일한 방법으로 하되, 반수석고 사용량 100 중량부 당 MHP 및 경소 돌로마이트 촉매의 사용량을 각각 0.5 중량부로 하여, 실시예 2-1의 석고 시편을 제조하였다.
한편, MHP를 직접 사용하는 대신, 증류수 300g 및 MHP 200g의 혼합물을 450 bar에서 고압 균질화기에 통과시켜 제조된 MHP 함량 40중량%의 에멀젼을 사용하여 실시예 2-2의 석고 시편을 제조하였다. 이 때, 반수석고 사용량 100 중량부 당 MHP 및 경소 돌로마이트 촉매의 사용량은 실시예 2-1과 마찬가지로 각각 0.5 중량부였다.
비교예 2에서는 촉매는 사용하지 않고, 방수제로서 MHP 대신 파라핀 왁스를 반수석고 사용량 100 중량부 당 3.5 중량부로 사용하여 석고 시편을 제조하였다.
제조된 시편에 대하여 실시예 1과 동일한 방법으로 건조 후 전흡수율을 측정하고, 석고의 크랙 발생 유무를 확인하여, 표 2에 나타내었다.
Figure PCTKR2016006901-appb-T000002
상기 표 2의 결과로부터, MHP를 직접 투입한 경우 및 에멀젼화 하여 투입한 경우 모두 파라핀 왁스에 비하여 우수한 전흡수율을 제공하는 동시에 크랙을 발생시키지 않는다는 것을 확인할 수 있다.
실시예  3
실시예 2-2와 같은 방식으로 제조된 MHP 함량 40중량%의 에멀젼을 사용하여 석고 시편을 제조하되, 에멀젼 제조시 하기 표 3에 나타낸 계면활성제를 MHP 사용량 100중량부 당 3 중량부로 사용하였다. 제조된 시편에 대하여 실시예 1과 동일한 방법으로 건조 후 전흡수율을 측정하여 표 3에 나타내었다.
Figure PCTKR2016006901-appb-T000003
II. 방수용 실리콘 에멀젼 및 석고보드 제조
석고 시편을 제조하기 위하여 우선 실리콘 에멀젼을 제조하였다. 실리콘 에멀젼은 450 bar 의 조건에서 물, 메틸하이드로겐폴리실록산(MHP), 유화제를 고압 호모게나이저를 통과하여 제조하였다. 유화제를 사용하였을 때, 실리콘 에멀젼의 특성을 파악하기 위하여 표 4 과 같이 조성을 변화시키면서 에멀젼을 제조하였다. 에멀젼 2~7에 사용된 SMA는 스티렌과 말레익산의 공중합체이며, 스티렌이 말레익산 1몰에 대하여 1~4의 몰비로 공중합된 공중합체를 사용하였다. 에멀젼 8~9에서 사용된 스티렌 아크릴산 및 메타크릴산 중합체는 각각 스티렌과 친수기가 1 : 1 몰비로 공중합된 중합체를 사용하였다.
Figure PCTKR2016006901-appb-T000004
실시예 4
상기 제조된 에멀젼으로 석고 시편을 제조하여, 밀도를 관찰한다. 석고시편의 제조방법은 반수석고 100 중량부에 감수제(Poly-naphthalene sulfonate) 0.5 중량부, 표 4에 나타낸 함량의 상기 제조된 에멀젼, 촉매로서 경소 백운석 0.6 중량부, 및 물 49 중량부를 투입하고, 여기에 프리폼(pre-foam)[발포제(Stepane社의 GPA-01) 0.05 중량부와 물 21 중량부를 혼합한 후 고속교반기에서 2500rpm으로 1분간 미리 발포시킨 것]을 붓고 혼합하여, 석고 슬러리를 제조한 뒤 이를 경화시켜, 석고 시편을 제조하였다. 이때 비교예 4-1에서는 유화제를 포함하지 않는 MHP 에멀젼을 사용하여, 상기 방법으로 석고 시편을 제조하였다. 제조된 석고 시편의 밀도를 측정하여 표 5에 나타내었다.
Figure PCTKR2016006901-appb-T000005
실시예  5
에멀젼2에서 유화제의 양을 조절한 에멀젼 3과 에멀젼 4에 대하여 실시예 4와 동일한 실험을 진행하여, 결과를 표 6에 나타내었다.
Figure PCTKR2016006901-appb-T000006
실시예  6
실시예 4-1 및 4-3의 석고 시편에 대하여 전흡수율을 측정하였다. 전흡수율은 KS F 3504 규격에 따라 석고시편을 제조한 후, 20℃의 물에 석고 시편을 2시간 침잠한 뒤, 원래 무게 100% 대비 무게증가율(%)을 측정하여 얻었다. 비교예 6-1로는 유화제 및 MHP를 사용하지 않고 제조된 석고 시편을 사용하였으며, 비교예 6-2로는 유화제를 사용하지 않고, 방수제로서 MHP 대신 파라핀 왁스(Paraffin Wax)를 반수석고 사용량 100 중량부 당 2.5 중량부로 사용하여 제조된 석고 시편을 사용하였다. 측정 결과를 표 7에 나타내었다.
Figure PCTKR2016006901-appb-T000007
1) 촉매 사용량: 반수석고 사용량 100 중량부 당 중량부 (이하 동일)
2) MHP 대신 파라핀 왁스 2.5 중량부 사용
실시예  7
에멀젼2에서 유화제의 친수기와 소수기의 비율을 조절한 에멀젼 5~7에 대하여 실시예 4와 동일하게 실험을 진행하여 결과를 표 8에 나타내었다.
Figure PCTKR2016006901-appb-T000008
실시예  8
에멀젼2에서 친수기를 변경한 에멀젼8~9에 대하여, 실시예 4와 동일하게 실험을 진행하여 결과를 표 9에 나타내었다.
Figure PCTKR2016006901-appb-T000009
실시예  9
유화제를 혼합하여 사용한 에멀젼 10에 대하여 실시예 4와 동일한 실험을 진행아였으며, 결과를 표 10에 나타내었다.
Figure PCTKR2016006901-appb-T000010
실시예  10
실리콘 오일의 수소 함량을 달리하여 실시예 4의 에멀젼2와 동일하게 MHP 에멀젼을 제조하고, 제조된 각 에멀젼을 사용하여 실시예 4와 동일하게 석고 시편을 제조하였으며, 제조된 석고 시편의 전흡수율을 측정하였다. 비교예 10-1로는 방수제로서 파라핀 왁스를 반수석고 사용량 100 중량부 당 3.5 중량부로 사용하여 제조된 석고 시편을 사용하였다. 측정 결과를 표 11에 나타내었다.
- 실시예 10-1: MHP 내 수소 : 메틸 함량 = 100% : 0%
- 실시예 10-2: MHP 내 수소 : 메틸 함량 = 50% : 50%
- 실시예 10-3: MHP 내 수소 : 메틸 함량 = 10% : 90%
Figure PCTKR2016006901-appb-T000011
실시예  11
실시예 4-1과 동일하게 석고 시편을 제조하되, 표 12에 나타낸 기포제를 추가로 사용하였다. 제조된 석고 시편의 밀도를 측정하여 표 12에 나타내었다.
Figure PCTKR2016006901-appb-T000012
1) 기포제 사용량: 실리콘 오일 사용량 100 중량부 당 중량부
실시예  12
하기와 같이 유화제만 달리하여 에멀젼2와 동일하게 MHP 에멀젼을 제조하고, 제조된 각 에멀젼을 사용하여 실시예 4와 동일하게 석고 시편을 제조하였으며, 제조된 석고 시편의 밀도를 측정하여 표 13에 나타내었다.
- 실시예 12-1: 큐멘으로 마감처리된 SMA 공중합체 사용
- 실시예 12-2: 부분 에스테르화된 SMA 공중합체 사용
- 실시예 12-3: 설폰화된 SMA 공중합체 사용
Figure PCTKR2016006901-appb-T000013

Claims (27)

  1. 반수석고, 실리콘 오일, 및 탄산염암 광물을 촉매로서 포함하는 수계 석고 슬러리의 경화물을 포함하는 방수 보드. 
  2. 제1항에 있어서, 실리콘 오일이 하기 식으로 표시되는 구조를 포함하는 폴리실록산을 포함하는, 방수 보드: 
    Figure PCTKR2016006901-appb-I000006
    상기 구조식에서, R1은 독립적으로 수소 또는 비수소 치환체이되, 복수의 R1 중 적어도 하나는 수소이고; R2는 비수소 치환체이며; n 은 1 내지 200의 정수이다.
  3. 제2항에 있어서, 폴리실록산이 하기 식으로 표시되는 구조를 포함하는, 방수 보드:
    Figure PCTKR2016006901-appb-I000007
    상기 구조식에서, x 및 y는 이들이 각각 지시하는 구조 단위의 몰 분율로서 x + y = 1이고, x 는 0.1 내지 1이며, y는 0 내지 0.9이다.
  4. 제1항에 있어서, 탄산염암 광물 촉매는 아라고나이트(Aragonite), 방해석(Calcite) 또는 돌로마이트(Dolomite)를 포함하는 방수보드.
  5. 제4항에 있어서, 돌로마이트는 700 내지 1000℃의 온도에서 하소한 경소 돌로마이트인, 방수 보드.
  6. 제1항에 있어서, 석고 슬러리가 탄산염암 광물 이외의 염기성 촉매를 추가로 포함하는, 방수 보드.
  7. 반수석고, 실리콘 오일, 및 탄산염암 광물을 촉매로서 포함하는 수계 석고 슬러리를 형성하고, 이를 경화시키는 것을 포함하는 방수 보드의 제조방법.
  8. 제7항에 있어서, 실리콘 오일 또는 그 수계 에멀젼 또는 수분산액과 탄산염암 광물 및 반수석고를 포함하는 수계 석고 슬러리를 형성하는 단계, 및 상기 석고 슬러리를 성형하고 경화시키는 단계를 포함하는, 방수 보드의 제조방법.
  9. 실리콘 오일 및 유화제를 포함하는 방수용 실리콘 에멀젼.
  10. 제9항에 있어서, 실리콘 오일이 선형 또는 고리형의 적어도 부분적으로 수소 개질된 폴리실록산을 포함하는, 방수용 실리콘 에멀젼.
  11. 제10항에 있어서, 폴리실록산이 하기 식으로 표시되는 구조를 포함하는, 방수용 실리콘 에멀젼:
    Figure PCTKR2016006901-appb-I000008
    상기 구조식에서, R1은 독립적으로 수소 또는 비수소 치환체이되, 복수의 R1 중 적어도 하나는 수소이고; R2는 비수소 치환체이며; n 은 1 내지 200의 정수이다.
  12. 제9항에 있어서, 유화제가 친유성 단량체와 친수성 단량체의 공중합체, 또는 그의 염 형태, 가수분해 형태, 설폰화 형태, 또는 부분 또는 전체 에스테르화 형태인, 방수용 실리콘 에멀젼.
  13. 제12항에 있어서, 친유성 단량체가 스티렌이고, 친수성 단량체가 히드록시기(-OH)를 하나 이상 포함하는 중합성 단량체, 할로겐화 스티렌, 말레익산 또는 그 무수물, 아크릴 단량체 또는 그 유도체 및 메타크릴 단량체 또는 그 유도체로부터 선택되는, 방수용 실리콘 에멀젼.
  14. 제9항에 있어서, 유화제가 스티렌과 알릴 알코올의 공중합체, 스티렌과 에틸렌글리콜의 공중합체, 스티렌과 클로로스티렌의 공중합체, 스티렌과 아크릴로니트릴의 공중합체, 스티렌과 말레익산 또는 그 무수물과의 공중합체, 큐멘으로 마감처리된 스티렌과 말레익산 또는 그 무수물과의 공중합체, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 가수분해 형태, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 설폰화 형태, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 에스테르화 형태, 스티렌과 아크릴산과의 공중합체, 스티렌과 메타크릴산과의 공중합체, 및 이들의 염 형태로 이루어진 군으로부터 선택되는 하나 이상인, 방수용 실리콘 에멀젼.
  15. 제9항에 있어서, 기포제를 더 포함하는, 방수용 실리콘 에멀젼.
  16. 제15항에 있어서, 기포제가 음이온성 계면활성제, 양쪽성 계면활성제, 알킬 폴리글루코사이드, 알킬 알코올 및 이들의 조합으로부터 선택되는, 방수용 실리콘 에멀젼.
  17. 반수석고, 실리콘 오일, 유화제 및 촉매를 포함하는 수계 석고 슬러리의 경화물을 포함하는 방수 보드.
  18. 제17항에 있어서, 실리콘 오일이 선형 또는 고리형의 적어도 부분적으로 수소 개질된 폴리실록산을 포함하는, 방수 보드.
  19. 제18항에 있어서, 폴리실록산이 하기 식으로 표시되는 구조를 포함하는, 방수 보드:
    Figure PCTKR2016006901-appb-I000009
    상기 구조식에서, R1은 독립적으로 수소 또는 비수소 치환체이되, 복수의 R1 중 적어도 하나는 수소이고; R2는 비수소 치환체이며; n 은 1 내지 200의 정수이다.
  20. 제17항에 있어서, 유화제가 친유성 단량체와 친수성 단량체의 공중합체, 또는 그의 염 형태, 가수분해 형태, 설폰화 형태, 또는 부분 또는 전체 에스테르화 형태인, 방수 보드.
  21. 제20항에 있어서, 친유성 단량체가 스티렌이고, 친수성 단량체가 히드록시기(-OH)를 하나 이상 포함하는 중합성 단량체, 할로겐화 스티렌, 말레익산 또는 그 무수물, 아크릴 단량체 또는 그 유도체 및 메타크릴 단량체 또는 그 유도체로부터 선택되는, 방수 보드.
  22. 제17항에 있어서, 유화제가 스티렌과 알릴 알코올의 공중합체, 스티렌과 에틸렌글리콜의 공중합체, 스티렌과 클로로스티렌의 공중합체, 스티렌과 아크릴로니트릴의 공중합체, 스티렌과 말레익산 또는 그 무수물과의 공중합체, 큐멘으로 마감처리된 스티렌과 말레익산 또는 그 무수물과의 공중합체, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 가수분해 형태, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 설폰화 형태, 스티렌과 말레익산 또는 그 무수물과의 공중합체의 에스테르화 형태, 스티렌과 아크릴산과의 공중합체, 스티렌과 메타크릴산과의 공중합체, 및 이들의 염 형태로 이루어진 군으로부터 선택되는 하나 이상인, 방수 보드.
  23. 제17항에 있어서, 촉매가 염기성 촉매인, 방수 보드. 
  24. 제17항에 있어서, 수계 석고 슬러리가 기포제를 더 포함하는, 방수 보드.
  25. 제24항에 있어서, 기포제가 음이온성 계면활성제, 양쪽성 계면활성제, 알킬 폴리글루코사이드, 알킬 알코올 및 이들의 조합으로부터 선택되는, 방수 보드.
  26. 반수석고, 실리콘 오일, 유화제 및 촉매를 포함하는 수계 석고 슬러리를 형성하고, 이를 경화시키는 것을 포함하는 방수 보드의 제조방법.
  27. 제26항에 있어서, 실리콘 오일 및 유화제를 포함하는 수계 에멀젼과 촉매 및 반수석고의 혼합물을 혼합하여 수계 석고 슬러리를 형성하는 단계, 및 상기 석고 슬러리를 성형하고 경화시키는 단계를 포함하는, 방수 보드의 제조방법.
PCT/KR2016/006901 2015-06-29 2016-06-28 방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법 WO2017003155A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16818188.1A EP3315537B1 (en) 2015-06-29 2016-06-28 Waterproof board exhibiting excellent crack resistance
CN201680038663.XA CN107709413A (zh) 2015-06-29 2016-06-28 防水有机硅乳液、表现出优异抗裂性的防水板及其制造方法
JP2017568176A JP6722707B2 (ja) 2015-06-29 2016-06-28 防水用シリコーンエマルジョン、優れたクラック抵抗性を示す防水ボード及びその製造方法
EP20152481.6A EP3656804A1 (en) 2015-06-29 2016-06-28 Waterproof silicone emulsion, waterproof board exhibiting excellent crack resistance
US15/853,372 US20180118940A1 (en) 2015-06-29 2017-12-22 Waterproof silicone emulsion, waterproof board exhibiting excellent crack resistance, and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150092369A KR20170002762A (ko) 2015-06-29 2015-06-29 방수용 실리콘 에멀젼, 방수 보드 및 그 제조방법
KR10-2015-0092369 2015-06-29
KR1020150092370A KR101732920B1 (ko) 2015-06-29 2015-06-29 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법
KR10-2015-0092370 2015-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/853,372 Continuation US20180118940A1 (en) 2015-06-29 2017-12-22 Waterproof silicone emulsion, waterproof board exhibiting excellent crack resistance, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2017003155A1 true WO2017003155A1 (ko) 2017-01-05

Family

ID=57608949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006901 WO2017003155A1 (ko) 2015-06-29 2016-06-28 방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법

Country Status (5)

Country Link
US (1) US20180118940A1 (ko)
EP (2) EP3315537B1 (ko)
JP (1) JP6722707B2 (ko)
CN (1) CN107709413A (ko)
WO (1) WO2017003155A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627973B (zh) * 2019-08-15 2022-08-19 江苏博拓新型建筑材料有限公司 一种改性有机硅防水剂及其制备方法与应用
CN111087922A (zh) * 2019-12-31 2020-05-01 江苏瓦楷新材料科技有限公司 一种烟熏法制备憎水剂涂层的方法
US11945751B2 (en) 2020-12-21 2024-04-02 Knauf Gips Kg Calcium aluminate cement and calcium sulfoaluminate cement catalysts in gypsum panels and use thereof
MX2023006054A (es) 2020-12-21 2023-06-06 Knauf Gips Kg Catalizadores de cemento de aluminato de calcio y cemento de sulfoaluminato de calcio en paneles de yeso y uso de estos.
CN112608653A (zh) * 2021-01-14 2021-04-06 成都含蓬娄环保科技有限公司 一种有机硅聚丙烯酸酯基石膏复合防水剂的制备方法
CN115536332B (zh) * 2022-09-15 2023-08-08 湖南诚友绿色建材科技有限公司 一种用于被动房墙体隔热保温装饰材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500477A (ja) * 1995-02-14 1999-01-12 アライド フォーム テック コーポレイション 安定かつ耐水性の水性発泡体組成物
JPH11209160A (ja) * 1998-01-27 1999-08-03 Elf Atochem Japan Kk 耐水性石膏組成物、その製造方法、および耐水性石膏ボード
KR20020034987A (ko) * 1999-02-12 2002-05-09 패릭 배에르 내수성 플라스터 기재의 조립식 건축 부재
JP2006298661A (ja) * 2005-04-15 2006-11-02 Ube Ind Ltd 急硬性の水硬性組成物、及びこれらのモルタル並びに硬化物
KR101305546B1 (ko) * 2013-01-15 2013-09-09 한일시멘트 (주) 경소백운석의 수화특성을 활용한 이산화탄소 저감형 포틀랜드 시멘트의 제조방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301216B2 (ja) * 1994-06-03 2002-07-15 三菱化学株式会社 撥水性石膏組成物
DE19514639A1 (de) * 1995-04-20 1996-10-24 Wacker Chemie Gmbh Verfahren zur wasserabweisenden Imprägnierung von Gips
JPH09142915A (ja) * 1995-11-21 1997-06-03 Yoshino Sekko Kk 撥水性石膏ボード
GB9605706D0 (en) * 1996-03-19 1996-05-22 Dow Corning Method for hydrophobing gypsum
US5817262A (en) * 1996-12-20 1998-10-06 United States Gypsum Company Process of producing gypsum wood fiber product having improved water resistance
JPH10291872A (ja) * 1997-04-17 1998-11-04 Ngk Insulators Ltd フライアッシュを主成分とする発泡体の製造方法
JPH1171162A (ja) * 1997-06-26 1999-03-16 Elf Atochem Japan Kk 耐水性水硬化性無機質組成物、その製造方法、および耐水性石膏ボード
RU2305086C2 (ru) 2002-10-29 2007-08-27 Йосино Джипсум Ко., Лтд. Способ изготовления легкого гипсокартона
RU2357859C2 (ru) 2003-05-26 2009-06-10 Йосино Джипсум Ко., Лтд. Смеситель, способ смешивания и способ производства гипсовых плит
JP2005000948A (ja) * 2003-06-11 2005-01-06 Bridgestone Corp 無機物鋳型配合組成物およびこれを用いたタイヤ用モールドの製造方法
US7892472B2 (en) * 2004-08-12 2011-02-22 United States Gypsum Company Method of making water-resistant gypsum-based article
JP4574306B2 (ja) * 2004-09-24 2010-11-04 ロンシール工業株式会社 熱可塑性樹脂製建材
JP4677824B2 (ja) * 2004-10-07 2011-04-27 宇部興産株式会社 耐酸性グラウト組成物
US8142856B2 (en) * 2005-07-15 2012-03-27 Dow Corning Corporation Hydrophobing minerals and filler materials
US7803226B2 (en) * 2005-07-29 2010-09-28 United States Gypsum Company Siloxane polymerization in wallboard
ES2431139T3 (es) * 2007-12-10 2013-11-25 Siniat S.A. Procedimiento para realizar un panel insonorizante
GB0809526D0 (en) * 2008-05-27 2008-07-02 Dow Corning Gypsum materials
DE102009047582A1 (de) * 2009-12-07 2011-06-09 Wacker Chemie Ag Siliconharzemulsion und deren Einsatz bei der Hydrophobierung von Gips

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500477A (ja) * 1995-02-14 1999-01-12 アライド フォーム テック コーポレイション 安定かつ耐水性の水性発泡体組成物
JPH11209160A (ja) * 1998-01-27 1999-08-03 Elf Atochem Japan Kk 耐水性石膏組成物、その製造方法、および耐水性石膏ボード
KR20020034987A (ko) * 1999-02-12 2002-05-09 패릭 배에르 내수성 플라스터 기재의 조립식 건축 부재
JP2006298661A (ja) * 2005-04-15 2006-11-02 Ube Ind Ltd 急硬性の水硬性組成物、及びこれらのモルタル並びに硬化物
KR101305546B1 (ko) * 2013-01-15 2013-09-09 한일시멘트 (주) 경소백운석의 수화특성을 활용한 이산화탄소 저감형 포틀랜드 시멘트의 제조방법

Also Published As

Publication number Publication date
CN107709413A (zh) 2018-02-16
US20180118940A1 (en) 2018-05-03
EP3315537A1 (en) 2018-05-02
EP3315537A4 (en) 2018-11-07
EP3656804A1 (en) 2020-05-27
JP2018522808A (ja) 2018-08-16
EP3315537B1 (en) 2020-03-04
JP6722707B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2017003155A1 (ko) 방수용 실리콘 에멀젼, 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법
DK2807130T3 (en) Fire-protection-mortar
KR101037073B1 (ko) 순환골재를 이용한 고내화성 모르타르 조성물 및 그 시공방법
CN110054451B (zh) 一种陶粒泡沫混凝土及其制备工艺
WO2016072622A2 (ko) 무시멘트 촉진형 혼화제 및 이를 포함하는 무시멘트 조성물
EP1614670A2 (de) Verwendung einer Bindemittelmischung zur Formulierung von zementären Mörtelsystemen
WO2013172496A1 (ko) 무시멘트 콘크리트용 분말형 알칼리 활성화제, 이를 이용한 무시멘트 결합재 및 무시멘트 콘크리트
CN108585667B (zh) 高粘结性能瓷砖用胶粘剂及其制备方法
WO2019216518A1 (ko) 준불연 단열 마감재 조성물, 이의 제조방법 및 이를 이용한 시공방법
WO2016013823A1 (ko) 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법
WO2011087261A2 (ko) 타일시멘트 모르타르용 혼화제 조성물 및 이를 포함하는 타일시멘트 모르타르 조성물
CN103224363A (zh) 一种柔性抗裂防护砂浆及其制备方法
US4129447A (en) Process for the preparation of hydrophobic agents
KR100831591B1 (ko) 초속경 및 수경성의 세라믹계 바닥 도장재용 조성물
KR101877528B1 (ko) 활주로 보수용 초속경 특성을 갖는 모르타르 조성물 및 이를 이용한 활주로 보수방법
CN113292882A (zh) 一种缓释型硅烷粉末及其制备方法和应用
WO2015199291A1 (ko) 조기강도 발현형 고유동 저발열 고내구성 이산화탄소 저감형 콘크리트 조성물
JP2010150084A (ja) セメント用膨張材組成物
WO2020209504A1 (ko) 석고보드용 혼화제, 석고보드 형성용 조성물 및 이를 이용한 석고보드
CN110527387A (zh) 一种防水涂料及其制备方法
KR20070098288A (ko) 친환경 소재를 이용한 인조대리석
WO2016072646A1 (ko) 폴리카르본산계 공중합체, 산화 아연 입자, 및 글루콘산 염을 포함하는 시멘트 조성물 첨가제
KR101852296B1 (ko) 방수용 실리콘 에멀젼, 방수 보드 및 그 제조방법
WO2014196682A1 (ko) 내해수성 그라우트재 조성물 및 이를 이용한 해상풍력발전 구조물의 시공방법
KR101732920B1 (ko) 우수한 크랙저항성을 나타내는 방수 보드 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017568176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016818188

Country of ref document: EP