WO2016013823A1 - 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법 - Google Patents

수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법 Download PDF

Info

Publication number
WO2016013823A1
WO2016013823A1 PCT/KR2015/007494 KR2015007494W WO2016013823A1 WO 2016013823 A1 WO2016013823 A1 WO 2016013823A1 KR 2015007494 W KR2015007494 W KR 2015007494W WO 2016013823 A1 WO2016013823 A1 WO 2016013823A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
water
hydraulic cement
plastic composition
weight
Prior art date
Application number
PCT/KR2015/007494
Other languages
English (en)
French (fr)
Inventor
유지수
Original Assignee
유지수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유지수 filed Critical 유지수
Priority to EP15824493.9A priority Critical patent/EP3173391B1/en
Priority to JP2017523754A priority patent/JP6404471B2/ja
Priority to AU2015292997A priority patent/AU2015292997B2/en
Priority to CN201580040493.4A priority patent/CN106536446B/zh
Priority to CA2956134A priority patent/CA2956134C/en
Priority to US15/326,209 priority patent/US10118859B2/en
Publication of WO2016013823A1 publication Critical patent/WO2016013823A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/16Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • C04B28/082Steelmaking slags; Converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • C04B38/103Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam the foaming being obtained by the introduction of a gas other than untreated air, e.g. nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Definitions

  • the present invention relates to a low moisture content plastic composition including a hydraulic cement and a method for manufacturing the same, wherein water is removed from a fluid cement pool prepared by mixing hydraulic cement and water using a foaming force during formation of the foamed polyurethane. It is related with the low water content plastic composition obtained by the process and its manufacturing method.
  • Cement based on the Latin word for 'crushed stone', refers to a material that binds a substance together.
  • Hydraulic cement refers to a cement that forms a water-resistant product.
  • the clinker obtained by mixing limestone and clay in an appropriate mixing ratio and then heating to a temperature between 1,450 ° C. and 1,550 ° C. using a rotary chilon to control the hydraulic curing reaction Portland cement, which is pulverized to a size of 75 ⁇ m or less by using a ball mill with about 5 wt% gypsum (calcium sulphate), is typical.
  • Improved portland cement and cold concrete and refractory materials such as colored cement produced by adding pigments such as iron oxide, chromium oxide and cobalt blue to white cement and white cement produced by reducing the iron content of oil well cement and portland cement obtained by pro-crushing Calcium aluminate cements used in the manufacture of
  • Hydraulic cement mixes with water to cause chemical reactions to form hydrates, forming a hardened water-resistant hardened product. This process involves (1) a solidification step that loses fluidity from a physical point of view, and (2) solidification of the plastic cement pool. It can be divided into the coagulation step, and (3) the curing step caused.
  • hydraulic cement can be mixed with water simply to produce a fluid cement paste.
  • Sand is added to mortar, sand and aggregate is added to concrete, fine aggregate is added to grout and spraying shotcrete. After being applied to various products and cured according to the purpose, they are widely used in the form of composite materials, from construction to civil engineering and art production.
  • the cement paste cured product contains not only a large amount of (1) pores of various sizes and irregular shapes, but also crystal products produced by hydration of hydraulic cement (2) are also known to be very irregular.
  • the cured product manufactured using hydraulic cement has a tensile strength of only 7% to 11% of the compressive strength due to the presence of pores and structural irregularities.
  • the expansion and contraction of temperature and humidity caused by climate change causes frequent expansion and contraction due to temperature expansion and contraction.
  • the cured product of the cement paste is subjected to tensile force, so it has a fatal disadvantage of easily deteriorating due to cracking.
  • the low tensile strength of the hardened cement hardener is a major factor limiting the application range of cement.
  • Pore formation of hardened cement products is affected by factors such as air entrainment, curing period and conditions, and size of moldings, but it is known to be most closely related to the amount of water added to the cement paste manufacturing process. It is known that the cement paste cured product prepared by the method has a higher pore content and a lower strength than the cement paste cured product using a small amount of water.
  • This research and development is largely (1) the method of adding reinforcing material in the form of fiber, such as asbestos, glass fiber, metal fiber, ceramic fiber, natural fiber, synthetic fiber, and (2) producing cement paste with a small amount of water added , A method of compacting by applying mechanical compression or vibration before hardening, (3) developing and applying admixtures that perform functions such as surface activity and condensation control of cement particles, and (4) liquid or particulate plastics. It can be classified as a method of adding an additive.
  • the method of adding liquid or particulate plastic additives to cement paste not only reduces the use of mixed water by improving the fluidity of hydraulic cement, but also after the curing, the plastic additives are uniformly present in the cement cured product. Since it improves the adhesion between the cured cement / cement hardened or aggregate / cement cured, it is attracting attention as a method that can fundamentally compensate for the disadvantages of the hydraulic cement cured product.
  • U.S. Patent No. 3,951,674 points out that excess water is required for cement to improve workability, which leads to a decrease in strength of the hardened cement product.
  • water-soluble cellulose acetate sulfate can be replaced with portland cement weight.
  • U.S. Patent No. 4,880,467 claims that the cured cement should have a flexural strength of at least 15 MPa or more, preferably 40 MPa or more, in order to have sufficient durability to withstand changes in the external environment.
  • Uncured cementitious granular dough with added particles wherein the styrene-butadiene copolymer, acrylester polymer, vinyl acetate polymer, vinylidene chloride polymer, between 1 and 20 parts by weight relative to 100 parts by weight of one or more hydraulic cements
  • Synthetic resin selected from epoxy resin, phenol resin, urethane resin and acrylic resin is added, and this can be achieved by cementitious dough in which water is mixed between 8 and 20 parts by weight with respect to 100 parts by weight of hydraulic cement.
  • Plastics that can be applied to the method of adding liquid or particulate plastic additives to the cement paste are various, and until recently, techniques for applying numerous kinds of plastic materials to cement have been introduced.
  • the affinity between the plastic additives and the cement hardened materials should be considered first. .
  • Polyurethane is a plastic with a urethane bond in its molecule. It is a material produced by the reaction of an isocyanate compound with a polyol, and is abrasion resistance, oil resistance and rubber elasticity. Research is being extensively applied to cargo.
  • Korean Patent No. 0892247 discloses a coating film waterproofing material and a coating material by being coated on a substrate such as asphalt / concrete prepared by mixing 50 to 1,000 parts by weight of dry mortar to 100 parts by weight of a resin mixture containing a main agent and a curing agent 1: 1. , Polyurethane-cement compositions that can be applied to the use of the base adjustment material.
  • Korean Patent No. 1135593 discloses a cement mixture powder is prepared by mixing 50 to 70 parts by weight of cement powder and 10 to 30 parts by weight of powder additive, and then isocyanate, polyol, and foaming agent are mixed and mixed with the previously prepared mixed powder. It introduces composites with excellent sound insulation and heat insulation produced through the pressure foaming process.
  • Korean Patent No. 1075260 discloses 150 to 200 parts by weight of cement, 25 to 75 parts by weight of inorganic pigment, 25 to 75 parts by weight of anti-settling agent, and 25 to 75 weight of self-leveling agent based on 100 parts by weight of liquid acrylic urethane resin.
  • the urethane resin mortar composition for floor packaging manufactured by mixing with a negative composition ratio is introduced.
  • the present invention has been made to solve the problems of the above-mentioned conventional hydraulic cement and techniques for improving the same, by separating the water blended into the hydraulic cement, the hydraulic caused by the water added to obtain the hydration cured product of the hydraulic cement It is an object of the present invention to provide a low water content plastic composition containing a hydraulic cement which can effectively solve the problem of deterioration of physical properties of a cement cured product and obtain a cured product having excellent durability, and a method of manufacturing the same.
  • composition of the low water content plastic composition prepared using the hydraulic cement according to the present invention for achieving the above object
  • foaming during the formation of the foamed polyurethane removes part of the water used in the mixture, resulting in loss of fluidity and plasticity. Characterized in having a.
  • the homogeneous mixture is characterized in that 2.5 parts by weight to 150 parts by weight of water and 10 parts by weight to 100 parts by weight of the foamable polyurethane forming material are mixed with respect to 100 parts by weight of the hydraulic cement.
  • Polyurethane is polymerized and foamed in a fluid, homogeneous mixture obtained by mixing hydraulic cement, water, and a polyol and an isocyanate compound, which are raw materials for forming a foamable polyurethane, thereby discharging free water existing between cement particles by using a foaming force.
  • the present invention is characterized by removing the phase separated water by phase separation into a liquid composition and a plastic composition comprising a foamed polyurethane and a hydraulic cement that lost fluidity.
  • plastic composition composed of cement particles and polyurethane, which contain a very small amount of water and are uniformly wet.
  • cement blending water which lowers the adhesive strength of polyurethane, is effectively removed in the manufacturing process of the mixed composition and thus exhibits excellent overall adhesion. Therefore, it is easy to apply reinforcing materials such as metal mesh, glass surface, glass cotton mesh, synthetic fiber, synthetic fiber cloth, pulp, It can be mixed with particles such as wood powder, dry sand, etc. to form a rigid composite, and can be widely used as a coating with various materials requiring high adhesion, as an adhesive for laminating, and as a core material.
  • compositions containing a relatively small amount of urethane and exhibiting the surface characteristics of the urethane as a whole can be provided, which is more economical than general petrochemical adhesives, and can reduce the use of chemicals having a lot of controversy.
  • a cured product which exhibits high abrasion resistance and excellent rigidity due to the uniform hydration formation of the hydraulic cement uniformly added with moisture and the dense structural features between the polyurethane and the cement hardener.
  • the polyurethane stably traps the hydraulic cement particles, so that the cured product having excellent wear resistance and rigidity can be formed in the water or in the oil without loss of the hydraulic cement.
  • the low moisture content plastic composition including the hydraulic cement according to the present invention having such an effect can be used as a durable structural material and a structural material for a composite material, a surface material and a core material for laminating, a coating agent and an adhesive.
  • Example 1 is a photograph sequentially showing the state after adding and stirring the polymeric MDI in Example 1 of the present invention
  • Figure 2 is a photograph showing a state observed from the top of the beaker after the slow stirring for 60 seconds in Example 1 of the present invention
  • Figure 3 is a photograph showing the dense surface appearance of the cured product cured after molding the composition obtained in Example 1 of the present invention in the form of a film using a roller;
  • Figure 4 is a photograph showing the surface appearance of the cured product cured after molding the composition obtained in Example 2 of the present invention in the form of a film using a roller;
  • Example 5 is a photograph showing the surface of the cured product obtained by curing the composition obtained in Example 3 of the present invention in the form of a film using a roller;
  • Figure 6 is a photograph showing the surface appearance of the composite molding using the wood powder obtained in Example 40 of the present invention.
  • the low water content plastic composition prepared by using the polyurethane and cement according to the present invention is a fluid obtained by mixing together a hydraulic cement mainly composed of Portland cement with water and a liquid polyol and an isocyanate compound forming an expandable polyurethane. It is obtained through agitation for a certain time in a uniform mixture and separation of the discharged free water.
  • a fluidized cement paste is prepared by uniformly mixing four materials, that is, a liquid isocyanate compound forming water-based cement, water, and foamed urethane, and a polyol.
  • the excellent adhesion of the polyurethane present in the mixture is uniformly mixed with the cement paste, and the mixed cement paste is exhibited as a whole. It provides plasticity that can be deformed and has high hardness due to cement hardened material with ideal uniformity when mixed cement completes hydration reaction and high wear resistance due to dense structural characteristics between hydrated cement and urethane And a cured product exhibiting excellent rigidity.
  • a liquid polyester, polyether, and perm oil, in which two or more hydroxyl groups (-OH) are present in the molecular structure is useful, and when it is required to enhance flame retardancy, A halogenated polyol may be used, and an amine catalyst may be mixed in an amount of 0.5 wt% to 5 wt% based on the weight of the polyol in order to increase the reaction rate with the isocyanate compound.
  • the hydraulic cement used in the present invention is Portland cement and blast furnace slag cement, pozzolanic cement, expansion cement, portland cement and calcium aluminate cement mixed with the fastening / sharp cement, oil well cement, white cement and pigment added Any of cement, cement and calcium aluminate cement can be used.
  • the amount of water added relative to 100 parts by weight of hydraulic cement may be added between 2.5 parts by weight and 150 parts by weight. If the amount of water is too small, workability such as stirring and conveying becomes worse due to the high viscosity of the mixture. In too many cases, the loss of cement particles may occur during the agglomeration of the mixture, and the agglomeration of the polyurethane is weakened. Therefore, water may be added between 5 parts by weight and 65 parts by weight with respect to 100 parts by weight of hydraulic cement. Can be.
  • the isocyanate compound is added while the hydraulic cement, water, and polyol are uniformly mixed.
  • the polyol mixed with the isocyanate compound is a raw material for forming the expandable urethane, and forms a urethane bond in the mixture, grows into macromolecules, collects hydraulic cement particles, and expresses adhesion.
  • the amount of the polyol and the isocyanate compound may be added between 10 parts by weight and 100 parts by weight with respect to 100 parts by weight of the hardened cement to improve wear resistance and rigidity of the cement cured product.
  • the polyol and isocyanate are respectively controlled in a weight ratio of 2: 7 to 7: 5 by weight ratio. It is important.
  • the speed of the stirring impeller is reduced so that the resultant urethane aggregates into one mass inside the stirring vessel, and the mixture is stirred until the appropriate amount of water is separated from the mixture. Removal of water results in a low water content plastic composition prepared using the expandable polyurethane and cement of the present invention.
  • the amount of water separated and removed from the mixture may vary depending on the amount of water added or the mixing ratio of the other components, approximately 5 to 85% of the initial added water.
  • the obtained plastic composition is in a state of high adhesiveness and flexibility, but after the passage of time between 30 minutes and 60 minutes at room temperature, it loses the adhesiveness by the curing of the primary urethane and can be handled in durability, bending and cutting. This shows the degree of hardness, and after 4 hours or more, a hardened product having high hardness and strength is obtained due to the hydration process of the hydraulic cement particles.
  • Example 1 immediately after the injection of the polymeric MDI, the state after the high-speed stirring for 10 seconds, the state after the 30-second low-speed stirring and the state after the 60-second low-speed stirring, respectively, and photographed (a) of FIG. , (B), (c) and (d) are shown. It can be confirmed that water is rapidly separated from the plastic composition by stirring.
  • FIG. 2 is a photograph showing the appearance observed in the top of the beaker after the low speed stirring for 60 seconds in Example 1 of the present invention, the liquid mixture separated and discharged from the mixed composition of the polyurethane and cement paste and the mixed composition phase separated The free water is shown well
  • FIG. 3 is a photograph of a cured product obtained by molding the composition obtained in Example 1 of the present invention in the form of a film by using a roller, and shows a fine surface appearance.
  • Figure 4 is a photograph showing the surface appearance of the cured product obtained by curing the composition obtained in Example 2 of the present invention in the form of a film using a roller, the affinity with urethane in the case of gypsum rather than hydraulic cement Insufficient polyurethane is shown on the surface of the cured product.
  • FIG. 5 is a photograph showing the surface of a cured product obtained by molding the composition obtained in Example 3 in the form of a film using a roller, and has excellent affinity with urethane even in the case of a relatively large white cement. This demonstrates that polyurethane does not elute.
  • the portland cement was found to exhibit excellent properties in both the properties of the plastic composition and the cured product.
  • the blending ratio of the foamable polyurethane forming material showing the best result was found to be 20 to 35 parts by weight based on 100 parts by weight of hydraulic cement.
  • Figure 6 is a photograph showing the surface appearance of the composite molding using the wood powder obtained in Example 40 of the present invention.

Abstract

본 발명은 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법에 관한 것으로서, 본 발명에 따르면, 수경성 시멘트와 물 및 발포성 폴리우레탄 형성 원료인 폴리올과 이소시아네이트 화합물의 유동성인 균일 혼합물 상태에서, 발포성 폴리우레탄의 형성과정에서의 발포에 의해 혼합물 중에 사용된 물의 일부가 분리 제거되어, 유동성을 상실하고 가소성을 갖는 것을 특징으로 하는 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법이 제공된다.

Description

수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법
본 발명은 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법에 관한 것으로서, 발포성 폴리우레탄의 형성과정에서의 발포력을 이용하여 수경성 시멘트와 물을 혼합하여 제조되는 유동성의 시멘트풀로부터 물을 제거하여 얻어지는 낮은 함수량의 가소성 조성물과 그 제조방법에 관한 것이다.
'부순 돌'이라는 의미의 라틴어에 어원을 두고 있는 시멘트는 물질과 물질을 결합시키는 재료를 말하는 것이다.
수경성 시멘트는 내수성의 생성물을 형성하는 시멘트를 의미하는데, 석회암과 점토를 적정 배합비로 혼합한 후 로터리킬론을 이용하여 1,450℃ 내지 1,550℃ 사이의 온도로 가열하여 얻어지는 클링커를 수경화 반응의 조절을 위해 약 5wt% 내외의 석고(황산칼슘)와 함께 볼밀을 이용하여 75㎛ 이하의 크기로 분쇄시킨 포틀랜드 시멘트가 대표적이며, 포틀랜드 시멘트에 30wt% 내지 40wt% 사이의 고로슬래그가 혼합된 고로슬래그 시멘트, 포틀랜드 시멘트에 20~25wt%의 포졸란이 첨가된 포졸란 시멘트, 포틀랜드 시멘트에 팽창성 첨가제가 혼합된 팽창시멘트, 포틀랜드 시멘트와 칼슘 알루미네이트 시멘트의 혼합, 포틀랜드 시멘트와 석고플라스트의 혼합 또는 잔입자로 된 포틀랜드 시멘트 등의 급결/급경 시멘트, 포틀랜드 시멘트의 산화알루미늄 함량을 줄이고 거친 분쇄를 행하여 얻어지는 유정시멘트, 포틀랜드시멘트의 철 함유량을 줄여서 제조되는 백색시멘트 및 백색 시멘트에 산화철, 산화크롬, 코발트불루 등의 안료를 첨가하여 제조되는 착색 시멘트 등의 개량 포틀랜드 시멘트 및 한중 콘크리트와 내화물의 제조에 이용되는 칼슘알루미네이트 시멘트가 있다.
수경성 시멘트는 물과 혼합되어 수화물을 형성하는 화학반응을 일으키며 내수성의 단단한 경화물을 형성하는데, 이 과정은 (1) 물리적인 관점에서 유동성을 상실하는 굳음단계, (2) 가소성 시멘트풀의 고체화가 유발되는 응결단계, 및 (3) 경화단계로 구분될 수 있다.
포틀랜드 시멘트의 경우에는, 최초 1㎛ 내지 50㎛ 사이의 모난 입자로 이루어진 회색가루 형태의 물질에서 시작하여, 물에 분산되면 시멘트에 함유된 황산칼슘과 칼슘의 고온생성물은 쉽게 용해되어 여러 가지 이온을 형성한다. 이 이온들은 먼저 에트린가이트라는 침상 결정을 형성하고, 이후 수산화칼슘 프리즘상 결정과 칼슘실리케이트수화물의 가는 침상 결정이 물에 용해 중인 시멘트 입자가 차지하고 있던 공간을 채우므로 시멘트풀은 (1) 유동성을 잃고, (2)응결되며, 불안정한 에트린가이트가 분해되어 다시 안정한 육각판상 결정 형태의 칼슘알루미나실리케이트수화물을 형성하여, (3) 경화되는 것으로 알려져 있다.
이처럼 수경성 시멘트는 물을 부가하여 단순하게 혼합하는 것으로 유동성의 시멘트풀을 제조할 수 있으며, 여기에 모래가 부가된 모르타르, 모래와 골재가 부가된 콘크리트, 잔골재가 부가된 그라우트 및 뿜는 용도의 숏크리트 등 다양한 제품으로 용도에 맞게 적용되어 경화된 후, 복합재료의 형태로 건축, 토목 및 예술품의 제작에 이르기까지 광범위하게 이용되고 있다.
한편 시멘트풀 경화물은, (1) 다양한 크기와 불규칙적인 형태의 기공을 다량으로 함유하고 있을 뿐만 아니라, 수경성 시멘트의 (2) 수화로 인해 생성된 결정생성물 또한 매우 불규칙적인 것으로 알려져 있다. 일반적으로 수경성 시멘트를 이용하여 제조되는 경화물은 기공의 존재와 구조적인 불규칙성으로 인하여 인장강도는 압축강도의 7% 내지 11%에 지나지 않는다. 하지만, 자연환경에서는 기후변화에서 기인한 온도와 습도의 변동으로 온도에 의한 팽창과 수축 및 수분율 변화에 따른 팽창과 수축이 빈번하게 반복적으로 유발된다. 수축이 유발되는 상황에서 시멘트풀의 경화물은 인장력을 받으므로 균열이 발생하여 쉽게 열화하는 치명적인 단점이 있다. 이처럼 수경성 시멘트 경화물의 낮은 인장강도는 시멘트의 적용범위를 제한하는 주요 요인으로 작용하고 있다.
시멘트 경화물의 기공형성에는 공기연행, 양생기간과 조건 및 성형물의 크기 등의 인자가 영향을 미치지만, 시멘트풀의 제조과정에 부가되는 물의 양과 가장 밀접한 관계가 있는 것으로 알려져 있으며, 다량의 물을 사용하여 제조한 시멘트풀 경화물은 소량의 물을 사용한 시멘트풀 경화물의 경우보다 기공의 함량이 많고, 강도가 현저히 떨어지는 것으로 알려져 있다.
수경성 시멘트의 위와 같은 문제점을 개선하기 위한 연구개발은 과거부터 현재까지도 활발하게 진행 중이며, 또한 이와 관련된 여러 기술들이 공개되고 있다. 이러한 연구개발은, 크게 (1) 석면, 유리섬유, 금속섬유, 세라믹섬유, 천연섬유, 합성섬유 등의 섬유형태의 보강재를 부가하는 방법, (2) 소량의 물이 부가된 시멘트풀을 제조하고, 경화되기 이전에 기계적인 압축 또는 진동을 가하여 다지는 방법과, (3) 시멘트 입자의 표면활성, 응결제어 등의 기능을 수행하는 혼화제를 개발하고 적용시키는 방법, 및 (4) 액상 또는 입자상의 플라스틱 첨가물을 첨가하는 방법으로 분류될 수 있다.
최근에는 액상 또는 입자상의 플라스틱 첨가물을 시멘트풀에 첨가하는 방법이 수경성 시멘트의 유동성을 향상시켜 혼합수의 사용을 줄일 수 있을 뿐만 아니라, 경화된 이후에는 시멘트 경화물 내부에 플라스틱 첨가물이 균일하게 존재하며 시멘트 경화물/시멘트 경화물 또는 골재/시멘트 경화물 간의 접착성을 향상시키므로, 수경성 시멘트 경화물의 단점을 근본적으로 보완시킬 수 있는 방법으로 주목받고 있다.
예컨대 미합중국특허 제3,951,674호 공보에서는 작업성의 향상을 위해 시멘트에 과량의 물이 요구되며 이로 인해 시멘트 경화물의 강도저하가 유발된다고 지적하고, 이의 대안으로 수용성 셀룰로오스 아세테이트 설페이트(Cellulose Acetate Sulfate)를 포틀랜드시멘트 중량대비 0.3wt% 내지 2wt% 첨가함으로써 (1) 시멘트풀의 경화시간을 지연시키고, (2) 시멘트와 응집된 입자의 마찰을 줄여 적은 양의 물로 작업성을 향상시키고 강도가 우수한 경화물을 얻는 방법을 소개하고 있다.
또한, 미합중국특허 제4,880,467호 공보에서는 시멘트 경화물이 외부환경 변화에 견디는 충분한 내구성을 가지기 위해서는 적어도 경화물의 휨강도가 15MPa이상 되어야 하며, 바람직하게는 40MPa 이상의 강도를 가져야 한다고 주장하며, 크기 100㎛이내의 입자들이 부가된 경화되지 않은 시멘트성 입자 반죽으로, 하나 이상의 수경성 시멘트와 수경성 시멘트 100중량부 대비 1 내지 20중량부 사이로 스타이렌-부타디엔 공중합체, 아크릴에스테르 중합체, 비닐아세테이트 중합체, 염화비닐리덴 중합체, 에폭시수지, 페놀수지, 우레탄수지, 아크릴수지 중에서 선택된 합성수지가 부가되고, 수경성 시멘트 100중량부 대비 8 내지 20중량부 사이로 물이 혼합된 시멘트성 반죽으로 이를 달성할 수 있다고 소개하고 있다.
이처럼 액상 또는 입자상의 플라스틱 첨가물을 시멘트풀에 부가하는 방법에서 적용 가능한 플라스틱은 다양하며, 최근까지도 수많은 종류의 플라스틱 물질을 시멘트에 적용하는 기술들이 소개되고 있다. 그런데, 플라스틱 첨가물이 시멘트풀과 혼화되어 시멘트경화물의 공극을 감소시키고, 입자와 입자간 추가적인 접착력을 부여하여 경화물의 인장강도를 향상시키기 위해서는 우선적으로 플라스틱 첨가물과 시멘트경화물 사이의 친화력이 고려되어야 한다.
폴리우레탄은 분자 중에 우레탄결합을 가진 플라스틱으로 이소시아네이트화합물과 폴리올과의 반응에 의해서 제조되는 물질로 강인하고, 내마모성, 내유성 및 고무탄성이 있으며 특히 시멘트 경화물과는 강인한 접착력을 가지므로, 이를 시멘트경화물에 적용하기 위한 연구가 폭넓게 진행되고 있다.
예컨대, 대한민국특허 제0892247호 공보에서는 주제와 경화제를 1:1로 혼합한 수지혼합물 100중량부에 드라이모르타르 50 내지 1,000중량부가 혼합되어 제조되는 아스팔트/콘크리트 등의 기재 상에 도포되어 도막방수재, 도장재, 하지조정재의 용도로 적용될 수 있는 폴리우레탄계-시멘트 조성물을 소개하고 있다.
또한, 대한민국특허 제1135593호 공보에서는 시멘트분말 50 내지 70 중량부와 분말첨가제 10 내지 30 중량부를 혼합하여 시멘트혼합분말을 제조한 후 이소시아네이트와 폴리올 및 발포제를 혼합하고 앞서 제조된 혼합분말과 혼합한 후 가압발포과정을 통하여 제조되는 차음성과 단열성이 우수한 복합체를 소개하고 있다.
또 다른 예로, 대한민국특허 제1075260호 공보에서는 액상아크릴계 우레탄수지 100중량부에 대하여 시멘트 150~200 중량부, 무기안료 25~75 중량부, 침강방지제 25~75 중량부, 셀프레벨링제 25~75 중량부의 조성비로 혼합되어 제조되는 바닥포장용 우레탄수지 모르타르 조성물을 소개하고 있다.
하지만, 이들은 모두 시멘트와 우레탄, 시멘트와 우레탄 및 물 등의 물질구성을 조합하거나 새로운 적용법 및 시공방법에 대한 기술들로 균일한 액상의 형태로 얻어지는 혼합조성물의 제조방법이거나 균일한 액상의 상태로 얻어지는 액상조성물의 적용방법에 대한 내용뿐이며, 시멘트 입자를 균일 수화시키기에 충분한 배합수를 부가하더라도 시멘트풀 내부에서 폴리우레탄을 발포시키는 과정을 통하여 시멘트 입자 사이에 존재하는 자유수를 배출·분리시켜 결과적으로는 매우 소량의 수분을 함유하는 유동성의 폴리우레탄과 시멘트풀의 혼합 조성물을 제공하는 기술은 찾아볼 수 없다.
본 발명은 상술한 종래 수경성 시멘트와 이를 개선하기 위한 기술들의 문제점을 해소하기 위해 이루어진 것으로서, 수경성 시멘트에 배합된 물을 분리해 냄으로써 수경성 시멘트의 수화 경화물을 얻기 위해 부가되는 물에 의해 유발되는 수경성 시멘트 경화물의 물성저하 문제를 효과적으로 해결하여, 내구성이 우수한 경화물을 얻을 수 있는 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명에 따른 수경성 시멘트를 이용하여 제조되는 낮은 함수량의 가소성 조성물의 구성은,
수경성 시멘트와 물 및 발포성 폴리우레탄 형성 원료인 폴리올과 이소시아네이트 화합물의 유동성인 균일 혼합물 상태에서, 발포성 폴리우레탄의 형성과정에서의 발포에 의해 혼합물 중에 사용된 물의 일부가 분리 제거되어, 유동성을 상실하고 가소성을 갖는 것을 특징으로 한다.
바람직하게는, 상기 균일 혼합물은 상기 수경성 시멘트 100중량부에 대해서, 물 2.5중량부 내지 150중량부 및 발포성 폴리우레탄 형성원료 10중량부 내지 100중량부가 혼합된 것을 특징으로 한다.
또한, 본 발명에 따른 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물을 제조하는 방법은,
수경성 시멘트와 물 및 발포성 폴리우레탄 형성 원료인 폴리올과 이소시아네이트 화합물을 혼합하여 얻어지는 유동성인 균일한 혼합물 상태에서 폴리우레탄을 중합, 발포시킴으로써, 시멘트 입자 사이에 존재하는 자유수를 발포력을 이용하여 배출시켜, 유동성을 상실한 발포성 폴리우레탄과 수경성 시멘트를 포함하는 가소성 조성물과 액상의 물로 상분리하고, 상분리된 물을 제거하는 것을 특징으로 한다.
본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.
첫째, 매우 소량의 수분을 함유하고도 균일하게 젖어있는 시멘트입자와 폴리우레탄으로 조성된 가소성 조성물이 제공된다.
둘째, 폴리우레탄의 접착력을 저하시키는 시멘트 배합수가 혼합조성물의 제조과정에 효과적으로 제거되어 전체적인 우수한 접착력을 나타내므로 금속메쉬, 유리면, 유리면메쉬, 합성섬유, 합성섬유포 등의 보강재 적용이 용이하며, 펄프, 목분, 건사 등의 입자와 혼합되어 견고한 복합물을 형성할 수 있고, 높은 접착성이 요구되는 다양한 소재와의 코팅, 라미네이팅용 접착제 및 심재로 폭 넓게 사용될 수 있다.
셋째, 비교적 소량의 우레탄을 함유하면서도 전체적으로 우레탄의 표면특성을 보이는 조성물이 제공되어 일반적인 석유화학계 접착제보다 경제성이 뛰어나며 유해성 논란이 많은 화학물질의 사용을 저감할 수 있다.
넷째, 폴리우레탄의 빠른 경화특징으로 수경성 시멘트를 사용하는 산업현장에 적용되어 생산성을 향상시킬 수 있다.
다섯째, 균일하게 수분이 부가된 수경성 시멘트의 균일한 수화경화물 형성 및 폴리우레탄과 시멘트경화물 간의 치밀한 구조적 특징에서 기인한 높은 내마모성 및 뛰어난 강성을 나타내는 경화물이 제공된다.
여섯째, 폴리우레탄이 수경성 시멘트 입자를 안정적으로 포집하고 있어서 수중에서나 유중에서도 수경성 시멘트의 유실없이 내마모성 및 강성이 우수한 경화물을 형성할 수 있다.
이러한 효과를 가지는 본 발명에 따른 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물은, 내구성 구조재 및 복합재료용 구조재, 라미네이팅용 표면재와 심재, 코팅제 및 접착제로 사용될 수 있는 것이다.
도 1은 본 발명의 실시예 1에서 폴리머릭MDI를 투입하고 교반한 후의 모습을 순차적으로 보여주는 사진;
도 2는 본 발명의 실시예 1에서 60초 동안의 저속교반 후 비이커 상부에서 관찰한 모습을 보여주는 사진;
도 3은 본 발명의 실시예 1에서 얻어진 조성물을 롤러를 이용하여 필름의 형태로 성형한 후 경화시킨 경화물의 치밀한 표면모습을 보여주는 사진;
도 4는 본 발명의 실시예 2에서 얻어진 조성물을 롤러를 이용하여 필름의 형태로 성형한 후 경화시킨 경화물의 표면모습을 보여주는 사진;
도 5는 본 발명의 실시예 3에서 얻어진 조성물을 롤러를 이용하여 필름의 형태로 성형한 후 경화시킨 경화물의 표면 모습을 보여주는 사진;
도 6은 본 발명의 실시예 40에서 얻어진 목분을 이용한 복합성형물의 표면모습을 보여주는 사진.
본 발명에 따른 폴리우레탄과 시멘트를 이용하여 제조되는 낮은 함수량의 가소성 조성물은, 포틀랜드 시멘트를 주축으로 하는 수경성 시멘트와 물 및 발포성 폴리우레탄을 형성하는 액상의 폴리올과 이소시아네이트화합물을 함께 혼합하여 얻어지는 유동성인 균일한 혼합물 상태에서 일정 시간 동안의 교반과정과 배출된 자유수의 분리과정을 통하여 얻어진다.
상술하면, 본 발명에서는 네 가지 물질 즉, 수경성 시멘트, 물 및 발포성 우레탄을 형성하는 액상의 이소시아네이트 화합물과 폴리올을 균일하게 혼합하여 유동성의 시멘트풀을 제조함으로써,
(1)시멘트입자가 균일한 수화과정을 이루기에 충분한 환경을 제공하고,
(2)폴리우레탄의 형성과 발포가 진행되는 시간 동안에는 젖은 시멘트입자가 폴리우레탄에 포집되게 하며,
(3)이소시아네이트 화합물과 물의 반응으로 발생한 이산화탄소의 배출과 함께 시멘트입자 사이에 존재하는 자유수의 선택적인 분리가 이루어지게 하여,
폴리우레탄의 중합반응 종결 및 경화가 이루어지는 시간까지는 시멘트풀과 균일하게 혼합되어 존재하고 있는 폴리우레탄의 우수한 접착력이 혼합 시멘트풀 전체적으로 나타나며, 혼합된 시멘트가 수화반응을 진행하여 응결되는 시간까지는 원하는 형태로의 변형이 가능한 가소성을 제공하며, 혼합된 시멘트가 수화반응을 완결하여 경화된 상태에서는 이상적인 균일성을 가진 시멘트 경화물에서 기인한 높은 경도, 수화 시멘트와 우레탄 간의 치밀한 구조적인 특징에서 기인한 높은 내마모성 및 뛰어난 강성을 나타내는 경화물이 제공된다.
본 발명에서 사용되는 발포성 폴리우레탄을 형성하는 폴리올은 분자구조에 2개 이상의 하이드록실기(-OH)가 존재하는 액상의 폴리에스테르, 폴리에테르, 파마자유가 유용하며 난연성을 강화시키는 것이 요구될 때에는 할로겐화 된 폴리올을 사용할 수 있으며, 이소시아네이트 화합물과의 반응속도를 증진시키기 위해 폴리올의 무게 중량 대비 0.5wt% 내지 5wt% 사이로 아민계 촉매를 혼합하여 사용할 수 있다.
또한 본 발명에서 사용되는 이소시아네이트화합물로는 분자구조에 2개 이상의 이소시아네이트기(-N=C=O)를 가진 것이 유용하며 비교적 독성과 휘발성이 작으며 액상인 폴리머릭 MDI가 권장된다.
본 발명에서 사용되는 수경성 시멘트는 포틀랜드시멘트와 이를 기초로 하는 고로슬래그 시멘트, 포졸란 시멘트, 팽창시멘트, 포틀랜드시멘트와 칼슘 알루미네이트 시멘트가 혼합된 급결/급경시멘트, 유정시멘트, 백색시멘트 및 안료가 첨가된 착색시멘트, 한중시멘트 및 칼슘알루미네이트 시멘트 중에서 임의 선택되어 사용될 수 있다.
시멘트 입자사이에 존재하는 자유수의 선택적인 분리와 균일한 경화물을 얻기 위해서는 먼저 입자상태의 수경성 시멘트에 물과 폴리올을 균일하게 혼합하는 것이 요구된다. 이를 위해서 물을 수경성 시멘트에 단독으로 부가한 후 폴리올을 부가 혼합하거나 폴리올과 물을 혼합하여 부가 후 혼합하는 방법, 폴리올을 먼저 부가하고 혼합한 후 물을 부가하는 방법이 모두 유효하며, 미수화 시멘트 입자의 발생을 막기 위해서는 수경성 시멘트에 물을 부가한 후 최소 30초 이상의 교반시간이 요구된다.
한편 수경성 시멘트 100중량부 대비 물의 첨가량은 2.5중량부 내지 150중량부 사이로 부가될 수 있는데, 물의 첨가량이 너무 작은 경우에는 혼합물의 높은 점도로 인해 교반, 이송 등의 작업성이 나빠지며, 반대로 물의 양이 너무 많은 경우에는 혼합물의 응집과정에서 시멘트입자의 유실이 발생할 수 있을 뿐만 아니라 폴리우레탄의 응집작용이 약화되므로, 바람직하기로는 수경성 시멘트 100중량부 대비 물이 5중량부 내지 65중량부 사이로 부가될 수 있다.
본 발명에서는 수경성 시멘트, 물, 폴리올이 균일하게 혼합된 상태에서 이소시아네이트 화합물을 부가하게 된다. 이소시아네이트 화합물과 기혼합된 폴리올은 발포성 우레탄을 형성하는 원료물질로서 혼합물 내에서 우레탄결합을 형성하며 거대분자로 성장해, 수경성 시멘트입자를 포집하고, 접착성을 발현한다. 또한, 수경성 시멘트가 경화된 이후에는 시멘트 경화물의 내마모성과 강성을 향상시키는 것으로 수경성 시멘트 100중량부에 대해 폴리올과 이소시아네이트화합물의 첨가량은 10중량부 내지 100중량부 사이로 부가될 수 있다. 이때, 우레탄 형성 원료의 첨가량이 너무 적은 경우에는 응집력이 작아 시멘트입자의 포집과정이 원활하지 않으며, 우레탄 형성 원료의 첨가량이 시멘트 첨가량과 비교하여 과다할 경우에는 혼합물의 유연성과 기밀성이 높아져서 내부에 존재하는 자유수의 배출이 원활하지 못한 문제가 있다.
한편, 첨가된 이소시아네이트 화합물은 폴리올과의 반응 외에도 물과의 반응을 통하여 이산화탄소를 생성하는 역할을 수행하여야 하므로, 본 발명에서는 폴리올과 이소시아네이트 각각 중량비로 2 : 7 내지 7 : 5 사이의 범위에서 조절하는 것이 중요하다.
이소시아네이트 화합물까지 균일하게 혼합된 상태에서는, 생성된 우레탄이 교반용기 내부에서 하나의 덩어리로 응집되도록 교반 임펠러의 속도를 줄여주어 혼합물에서 적절한 양의 물이 분리되어 나오는 시점까지 교반한 후, 상 분리된 물을 제거하면 본 발명의 발포성 폴리우레탄과 시멘트를 이용하여 제조되는 낮은 함수량의 가소성 조성물이 얻어진다. 혼합물로부터 분리되어 제거되는 물의 양은 첨가되는 물의 양이나 다른 성분의 혼합비에 따라 달라질 수 있으며, 대략 최초 첨가된 물의 5 ~ 85% 수준이다.
이때 얻어진 가소성 조성물은 접착성이 높고 유연한 상태의 것이지만, 상온에서 30분 내지 60분 사이의 시간 경과 후 1차적인 우레탄의 경화로 접착성을 상실하고 취급이 가능한 상태의 내구성과 벤딩가공, 절단가공이 가능한 정도의 굳기를 나타내며, 4시간 이상의 시간 경과 후 수경성 시멘트입자의 수화과정으로 인하여 경도와 강도가 높은 경화물이 얻어진다.
이하, 본 발명을 실시예를 통해 좀 더 상세하게 설명한다. 이하의 실시예는 본 발명의 일부분을 보다 구체적으로 설명하고 있으나, 본 발명의 내용이 이에 국한된 것은 아니다.
실시예
실시예 1-5. 수경성 시멘트의 선택
200㎖용적의 비이커 5개에 하기 표 1과 같이 각각 포틀랜드시멘트, 석고, 백색시멘트, 고로슬래그 시멘트, 급결시멘트를 40g씩 넣은 다음, 물 16g을 넣어 30초간 교반한 후, 폴리에테르계 폴리올 8g을 추가하여 30초간 교반하고, 액상의 폴리머릭MDI 8g을 투입한 후 10초간 고속교반, 1분간 저속교반 한 후 배출된 물을 다른 용기에 덜어 무게를 측정하고, 가소성 조성물은 롤러를 이용 필름형태로 성형 후, 24시간 경화시킨 후 특징을 관찰하여, 하기 표 1에 나타내었다.
Figure PCTKR2015007494-appb-T000001
또한, 실시예 1에서 폴리머릭MDI를 투입한 직후의 모습과, 10초 동안의 고속교반 후의 모습, 30초 저속교반 후의 모습 및 60초 저속교반 후 모습을 각각 촬영하여, 도 1의 (가), (나), (다), (라)에 나타내었다. 교반에 의해 물이 가소성 조성물로부터 급속도로 분리되어 나오는 것을 확인할 수 있다.
한편, 도 2는 본 발명의 실시예 1에서 60초 동안의 저속교반 후에 비이커 상부에서 관찰한 모습을 보여주는 사진으로, 폴리우레탄과 시멘트풀의 혼합조성물과 이 혼합 조성물로부터 분리 배출되어 상분리된 액상의 자유수를 잘 보여주고 있으며, 도 3은 본 발명의 실시예 1에서 얻어진 조성물을 롤러를 이용하여 필름의 형태로 성형한 후 경화시킨 경화물을 촬영한 것으로, 치밀한 표면모습을 잘 보여준다.
또한, 도 4는 본 발명의 실시예 2에서 얻어진 조성물을 롤러를 이용하여 필름의 형태로 성형한 후 경화시킨 경화물의 표면모습을 보여주는 사진으로, 수경성 시멘트가 아닌 석고의 경우에는 우레탄과의 친화력이 부족하여 폴리우레탄이 경화물의 표면에 용출된 모습을 보여주고 있다.
도 5는 본 발명의 실시예 3에서 얻어진 조성물을 롤러를 이용하여 필름의 형태로 성형한 후 경화시킨 경화물의 표면 모습을 보여주는 사진으로서, 비교적 입자가 큰 백색시멘트의 경우에도 우레탄과의 친화력이 우수하여 폴리우레탄이 용출되지 않는다는 사실을 잘 보여주고 있다.
표 1과 도 1 내지 도 5에서 보는 것과 같이, 석고를 제외한 나머지는 모두 접착성과 가소성이 비교적 우수한 가소성 조성물이 얻어졌으며, 경화물도 강도와 경도의 어느 한 측면에서 우수하거나 보통 이상의 물성을 나타내어서, 좋은 성형 재료로 활용될 수 있음을 확인할 수 있었다.
그 중에서도, 포틀랜드시멘트는 가소성 조성물의 특성과 경화물의 특성에서 모두 우수한 특성을 나타내는 것으로 확인되었다.
실시예 6-11. 수경성 시멘트의 혼합 적용
실시예 1-5를 통하여 인지하게 된 경화물의 강도가 우수한 포틀랜드시멘트와 경화물의 강도가 떨어지는 석고 또는 백색시멘트를 표 2에 나타낸 것과 같은 비율로 각각 혼합하여 200㎖용적의 비이커에 각각 40g, 물 16g을 넣어 30초간 교반하였다. 여기에, 폴리에테르계 폴리올 8g을 추가하여 30초간 교반하고, 다시 액상의 폴리머릭MDI 8g을 투입한 후 10초간 고속교반, 1분간 저속교반 한 후 배출된 물을 다른 용기에 덜어 무게를 측정하였다. 물을 분리해 낸 후에 얻어진 가소성 조성물은 롤러를 이용하여 필름형태로 성형하고 24시간 경화시킨 후 특징을 관찰하였다.
Figure PCTKR2015007494-appb-T000002
결과를 나타낸 표 2에서 보는 것과 같이, 석고 또는 백색시멘트를 다량 혼합한 경우에는 가소성 조성물의 응집력이 다소 떨어지고 경화물의 강도나 경도도 보통 수준으로 나타났으나, 석고 또는 백색시멘트의 함량이 50% 이하에서는 비교적 우수한 물성의 경화물을 얻을 수 있는 것으로 나타났다.
실시예 12-29. 수경성 시멘트와 발포우레탄 형성원료의 적절한 혼합비 검증
200㎖용적의 비이커에 포틀랜드시멘트 40g, 물 16g씩을 각각 넣고 30초간 교반한 후, 폴리에테르계 폴리올과 액상의 폴리머릭MDI의 양을 표 3에 나타낸 것과 같이 변화시키면서 순차로 투입하여 혼합한 후, 배출된 물을 다른 용기에 덜어 무게를 측정하였다. 또한, 물이 분리된 후 얻어진 가소성 조성물은 롤러를 이용 필름형태로 성형하고, 24시간 경화시킨 후 특징을 관찰하였다.
Figure PCTKR2015007494-appb-T000003
상기 표 3에서 보는 것과 같이, 발포성 폴리우레탄 형성원료인 폴리올과 MDI의 사용량이 많을수록 가소성 조성물의 접착성은 향상되었으나, 일정 수준 이상으로 높아질 경우에는 오히려 경화물의 강도와 경도를 저하시키는 결과로 나타났다.
가장 우수한 결과를 나타내는 발포성 폴리우레탄 형성원료의 배합비는 수경성 시멘트 100중량부에 대해 20~35중량부 수준인 것으로 확인되었다.
실시예 30-34. 폴리에스테르계 폴리올을 발포우레탄 형성원료로 적용
200㎖용적의 비이커에 포틀랜드시멘트를 각각 40g, 물 16g을 넣어 30초간 교반한 후, 순차적으로 폴리에스테르계 폴리올과 폴리머릭MDI를 하기 표 4의 양으로 각각 투입, 혼합한 후 배출된 물을 다른 용기에 덜어 무게를 측정하고, 가소성 조성물은 롤러를 이용 필름형태로 성형 후 24시간 경화시킨 후 특징을 관찰하였다.
Figure PCTKR2015007494-appb-T000004
폴리에스테르계 폴리올을 사용하는 경우에도 폴리에테르계 폴리올을 사용한 것과 마찬가지로 접착성이 우수한 가소성 조성물과 물성이 우수한 경화물을 얻을 수 있는 것으로 확인되었다.
실시예 35-39. 적절한 물 첨가량의 검토
200㎖용적의 비이커에 포틀랜드시멘트를 각각 40g씩 투입한 후, 표 5에서와 같이 물의 양을 변화시키면서 물과 폴리에테르계 폴리올을 함께 넣어 30초간 교반하였다. 다시, 폴리머릭MDI를 7g씩을 투입, 혼합하며 혼합특성을 관찰하고 혼합한 후, 배출된 물은 다른 용기에 덜어 무게를 측정하였다. 그리고, 물을 분리해 내고 얻어진 가소성 조성물의 상태를 관찰하고, 롤러를 이용 필름형태로 성형 후 24시간 경화시킨 후 경화물의 특징을 관찰하였다.
Figure PCTKR2015007494-appb-T000005
표 5에서 보는 것과 같이, 물의 투입량이 많을수록 유동성이 증가하여 작업성은 용이하지만, 가소성 조성물의 접착성이나 경화물의 물성은 물의 첨가량이 너무 높아지면 오히려 떨어질 수 있으므로, 용도에 맞추어 발포성 폴리우레탄 형성원료의 투입량과 함께 물의 첨가량을 조절하여야 하는 것으로 나타났다.
실시예 40-45. 복합 성형물의 제조
200㎖용적의 비이커에 포틀랜드시멘트를 각각 40g, 물 16g을 넣어 30초간 교반한 후, 순차적으로 폴리에테르계 폴리올과 MDI의 투입량을 표 6에 기재된 것과 같이 변화시키면서 각각 투입, 혼합한 후 배출된 물을 다른 용기에 덜어 무게를 측정하였다. 물을 분리하고 얻어진 가소성 조성물에 목분, 펄프, 건사, 분쇄 폐지, 왕겨, 수산화알루미늄, 유리섬유 분말을 각각 첨가하여 혼합한 후, 틀에 넣어 성형물을 제조하고, 24시간 경화시킨 후 특징을 관찰하였다.
Figure PCTKR2015007494-appb-T000006
표 6에서 보는 것과 같이, 본 발명에 따른 가소성 조성물을 이용하여 다양한 종류의 충전재와 함께 다양한 특성을 가지는 복합 성형물을 제조할 수 있음을 확인할 수 있었다.
한편, 도 6은 본 발명의 실시예 40에서 얻어진 목분을 이용한 복합성형물의 표면모습을 보여주는 사진이다.

Claims (5)

  1. 수경성 시멘트와 물 및 발포성 폴리우레탄 형성 원료인 폴리올과 이소시아네이트 화합물의 유동성인 균일 혼합물 상태에서, 발포성 폴리우레탄의 형성과정에서의 발포에 의해 혼합물 중에 사용된 물의 일부가 분리 제거되어, 유동성을 상실하고 가소성을 갖는 것을 특징으로 하는 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물.
  2. 제 1항에 있어서, 상기 수경성 시멘트가 포틀랜드 시멘트, 고로슬래그 시멘트, 포졸란 시멘트, 팽창시멘트, 급결/급경 시멘트, 유정시멘트, 백색시멘트, 착색시멘트, 칼슘알루미네이트 시멘트 단독 또는 둘 이상 임의 선택되어진 것의 혼합물, 또는 이들 중 어느 하나와 석고와의 혼합물인 것을 특징으로 하는 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물.
  3. 제 1항에 있어서, 상기 균일 혼합물은 상기 수경성 시멘트 100중량부에 대해서, 물 2.5중량부 내지 150중량부 및 발포성 폴리우레탄 형성원료 10중량부 내지 100중량부가 혼합된 것을 특징으로 하는 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물.
  4. 수경성 시멘트와 물 및 발포성 폴리우레탄 형성 원료인 폴리올과 이소시아네이트 화합물을 혼합하여 얻어지는 유동성인 균일한 혼합물 상태에서 폴리우레탄을 중합, 발포시킴으로써, 시멘트 입자 사이에 존재하는 자유수를 발포력을 이용하여 배출시켜, 유동성을 상실한 발포성 폴리우레탄과 수경성 시멘트를 포함하는 가소성 조성물과 액상의 물로 상분리하고, 상분리된 물을 제거하는 것을 특징으로 하는 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물 제조방법.
  5. 제 4항에 있어서, 상기 수경성 시멘트에 물과 폴리올을 이소시아네이트 화합물보다 먼저 먼저 혼합하여 주는 것을 특징으로 하는 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물의 제조방법.
PCT/KR2015/007494 2014-07-25 2015-07-20 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법 WO2016013823A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15824493.9A EP3173391B1 (en) 2014-07-25 2015-07-20 Method for making a low water content plastic composition comprising hydraulic cement
JP2017523754A JP6404471B2 (ja) 2014-07-25 2015-07-20 水硬性セメントを含む低い含水量の可塑性組成物及びその製造方法
AU2015292997A AU2015292997B2 (en) 2014-07-25 2015-07-20 Low water content plastic composition comprising hydraulic cement and method for manufacturing same
CN201580040493.4A CN106536446B (zh) 2014-07-25 2015-07-20 含有水凝水泥的具有低水含量的塑料组合物及其制备方法
CA2956134A CA2956134C (en) 2014-07-25 2015-07-20 Low water content plastic composition comprising hydraulic cement and method for manufacturing same
US15/326,209 US10118859B2 (en) 2014-07-25 2015-07-20 Low water content plastic composition comprising hydraulic cement and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0094774 2014-07-25
KR20140094774A KR101498986B1 (ko) 2014-07-25 2014-07-25 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법

Publications (1)

Publication Number Publication Date
WO2016013823A1 true WO2016013823A1 (ko) 2016-01-28

Family

ID=53026349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007494 WO2016013823A1 (ko) 2014-07-25 2015-07-20 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법

Country Status (8)

Country Link
US (1) US10118859B2 (ko)
EP (1) EP3173391B1 (ko)
JP (1) JP6404471B2 (ko)
KR (1) KR101498986B1 (ko)
CN (1) CN106536446B (ko)
AU (1) AU2015292997B2 (ko)
CA (1) CA2956134C (ko)
WO (1) WO2016013823A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101594745B1 (ko) * 2015-11-25 2016-02-16 주정미 불연성 폴리우레탄 발포체 및 그 제조방법
KR101675862B1 (ko) * 2016-02-16 2016-11-14 (주)노루페인트 친수성 천연 섬유를 함유한 세라믹 침투성 하도 조성물과 제조 방법 및 이를 이용한 복합 방수 공법
WO2017155517A1 (en) 2016-03-08 2017-09-14 Halliburton Energy Services, Inc. Rapid setting in situ cement plugs
US20200102246A1 (en) * 2017-06-05 2020-04-02 Canfor Pulp Ltd. Cellulosic pulp internal curing agent for a hydraulic cement-based composite material
KR102205003B1 (ko) * 2020-03-25 2021-01-20 정쌍영 해양 구조물용 숏크리트 조성물
KR102299985B1 (ko) * 2020-12-08 2021-09-13 주식회사 서강산업 구조물용 숏크리트 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240919A (ja) * 2005-03-03 2006-09-14 Aica Kogyo Co Ltd 水性ウレタン系セメント組成物
KR100892247B1 (ko) * 2007-11-09 2009-04-09 진도화성주식회사 친환경성 폴리우레탄계-시멘트 조성물
JP2009203124A (ja) * 2008-02-28 2009-09-10 Aica Kogyo Co Ltd ポリウレタン系セメント組成物
JP2009274911A (ja) * 2008-05-15 2009-11-26 Aica Kogyo Co Ltd ポリウレタン系セメント組成物及び製造方法
JP2010058997A (ja) * 2008-09-02 2010-03-18 Aica Kogyo Co Ltd ポリウレタン系セメント組成物
KR101135593B1 (ko) * 2011-10-21 2012-04-24 주식회사 대동엔지니어링 폴리우레탄계 시멘트 복합체와 그 제조방법, 이를 이용한 성형품

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354099A (en) * 1964-03-10 1967-11-21 Frederick C Stegeman Polyurethane-hydraulic cement compositions and process for manufacturing the same
US4211680A (en) * 1968-05-13 1980-07-08 Imperial Chemical Industries Limited Quick-set compositions of hydraulic cement, silica, water, polyisocyanate and polyol
US3951674A (en) 1974-12-17 1976-04-20 The Procter & Gamble Company Concrete additive
GB8623745D0 (en) 1986-10-03 1986-11-05 Redland Technology Ltd Cementitious compositions
GB2353993B (en) 1999-09-09 2002-03-06 Sterling Technology Ltd Cement and castor oil mixtures for binding aggregates
JP2002012463A (ja) * 2000-06-23 2002-01-15 Asahi Glass Co Ltd ポリウレタン系セメント組成物
JP2009029682A (ja) * 2007-07-30 2009-02-12 Aica Kogyo Co Ltd 水性ウレタンモルタル組成物及び床
KR101075260B1 (ko) 2009-02-05 2011-10-19 (주)콘스타 바닥 포장용 우레탄수지 모르타르 조성물 및 이를 이용한 바닥 포장 시공방법
JP5833865B2 (ja) * 2010-08-26 2015-12-16 株式会社エフコンサルタント 硬化性組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240919A (ja) * 2005-03-03 2006-09-14 Aica Kogyo Co Ltd 水性ウレタン系セメント組成物
KR100892247B1 (ko) * 2007-11-09 2009-04-09 진도화성주식회사 친환경성 폴리우레탄계-시멘트 조성물
JP2009203124A (ja) * 2008-02-28 2009-09-10 Aica Kogyo Co Ltd ポリウレタン系セメント組成物
JP2009274911A (ja) * 2008-05-15 2009-11-26 Aica Kogyo Co Ltd ポリウレタン系セメント組成物及び製造方法
JP2010058997A (ja) * 2008-09-02 2010-03-18 Aica Kogyo Co Ltd ポリウレタン系セメント組成物
KR101135593B1 (ko) * 2011-10-21 2012-04-24 주식회사 대동엔지니어링 폴리우레탄계 시멘트 복합체와 그 제조방법, 이를 이용한 성형품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3173391A4 *

Also Published As

Publication number Publication date
US20170197880A1 (en) 2017-07-13
CA2956134A1 (en) 2016-01-28
AU2015292997B2 (en) 2019-01-31
JP6404471B2 (ja) 2018-10-10
CA2956134C (en) 2020-06-23
US10118859B2 (en) 2018-11-06
CN106536446B (zh) 2020-02-07
EP3173391A4 (en) 2018-03-07
EP3173391A1 (en) 2017-05-31
CN106536446A (zh) 2017-03-22
EP3173391B1 (en) 2020-08-26
AU2015292997A1 (en) 2017-02-16
KR101498986B1 (ko) 2015-03-05
JP2017525652A (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2016013823A1 (ko) 수경성 시멘트를 포함한 낮은 함수량의 가소성 조성물과 그 제조방법
CN107265966B (zh) 一种利用高细粉含量机制砂制备桥梁自密实抗裂清水混凝土
AU2008201088B2 (en) Additive for dewaterable slurry
US7419544B2 (en) Additive for dewaterable slurry and slurry incorporating same
CN105218024A (zh) 一种瓷砖粘结剂
CN108585667B (zh) 高粘结性能瓷砖用胶粘剂及其制备方法
JPH11209159A (ja) セメントコンクリート製品およびその製造方法
US20230150874A1 (en) Accelerator for mineral binder compositions
CN113929399B (zh) 一种界面砂浆及其应用
CN108585698B (zh) 一种轻质隔墙板专用填缝砂浆
EP0460744B1 (en) Cement based mortar compositions having elastomeric properties, and method of manufacture
JPH01244808A (ja) 高強度、緻密構造を有するセメント系成形物の製造方法
JPS60171260A (ja) 水硬性無機質組成物
KR20160072834A (ko) 흙 콘크리트 2차제품
JP5190187B2 (ja) コンクリート管の製造方法およびコンクリート管
JPS59466B2 (ja) 耐水性高強度石コウ組成物
JP2005281036A (ja) ポリマーセメント系タイル目地用モルタル及びその製造方法
KR20030064343A (ko) 고강도 시멘트 그라우트재를 이용한 박막형 시멘트 테라죠조성물
JP2503772B2 (ja) 速硬性セルフレベリング性床材用組成物
JP2008194881A (ja) コンクリート製品の製造方法およびコンクリート製品
JP2001261392A (ja) 人工骨材
WO2023138947A1 (en) Cementitious compositions having biomass ashes, especially bagasse ashes, and uses thereof
JP2006181895A (ja) ボックスカルバート及びその製造方法
JPH0215510B2 (ko)
JPH04209739A (ja) コンクリート製品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326209

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017523754

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2956134

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015824493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824493

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015292997

Country of ref document: AU

Date of ref document: 20150720

Kind code of ref document: A