WO2017002666A1 - 水分散型絶縁皮膜形成用電着液 - Google Patents

水分散型絶縁皮膜形成用電着液 Download PDF

Info

Publication number
WO2017002666A1
WO2017002666A1 PCT/JP2016/068367 JP2016068367W WO2017002666A1 WO 2017002666 A1 WO2017002666 A1 WO 2017002666A1 JP 2016068367 W JP2016068367 W JP 2016068367W WO 2017002666 A1 WO2017002666 A1 WO 2017002666A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodeposition
water
polyamic acid
insulating film
forming
Prior art date
Application number
PCT/JP2016/068367
Other languages
English (en)
French (fr)
Inventor
洵子 磯村
桜井 英章
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016115966A external-priority patent/JP6677872B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US15/739,917 priority Critical patent/US10465080B2/en
Priority to KR1020177037135A priority patent/KR20180025869A/ko
Priority to CN201680037591.7A priority patent/CN107709632B/zh
Publication of WO2017002666A1 publication Critical patent/WO2017002666A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers

Definitions

  • the present invention relates to an electrodeposition liquid for forming a water-dispersed insulating film used when an insulator such as an insulated wire is formed by an electrodeposition method.
  • an insulator such as an insulated wire whose surface is covered with an insulating film is used for a motor, a reactor, a transformer, and the like.
  • a method for forming an insulating film on the surface of an electric wire a dipping method, an electrodeposition method (electrodeposition coating), or the like is known.
  • the dipping method is a method of forming an insulating film having a desired film thickness by, for example, using a rectangular conductive wire or the like as the object to be coated, repeatedly dipping it in a paint, pulling it up and drying it. .
  • the electrodeposition method deposits charged paint particles on the object to be coated by applying a direct current to the object to be coated immersed in the electrodeposition paint (electrodeposition liquid) and the electrode inserted in the electrodeposition paint. This is a method of forming an insulating film.
  • the electrodeposition method is attracting attention because it is easier to apply with a uniform film thickness than other methods, and an insulating film having high rust prevention and adhesion can be formed after baking.
  • the electrodeposition liquid used in the electrodeposition method for example, a particulate polyamic acid (polyamic acid) dispersion layer which is a reaction product of an organic diamine and chloroformylphthalic anhydride (trimellitic anhydride chloride), and A polyamic acid base mixture composed of water and a solvent layer of a neutral organic solvent is known (see, for example, Patent Document 1).
  • the polyamic acid base mixture disclosed in Patent Document 1 storage stability of 6 months or more can be obtained if it is kept at a temperature of about 45 ° C. or less, and it can be electrodeposited well in a continuous manner. It can be converted into a polyamide-imide film.
  • the product mixture of organic diamine and chloroformylphthalic anhydride is injected into a poor solvent such as methanol to make a fine powder,
  • the polyamic acid particles are dispersed in a solvent containing water or the like to obtain an electrodeposition solution. Therefore, in this electrodeposition liquid, the average particle diameter of the polyamic acid particles as the polymer particles is very large, 20 to 100 ⁇ m, and the dispersibility of the polymer particles contained in the electrodeposition liquid is deteriorated.
  • an insulating film is formed using an electrodeposition solution having poor polymer particle dispersibility, there may be variations in the characteristics of the formed insulating film and the insulator provided with the film.
  • the dispersibility of the polymer particles in such an electrodeposition solution for example, if polymer particles made of a polymer other than polyamic acid are used, a basic compound is added in the state of a solution, and the polymer particles are further constituted. It is known that an improvement can be seen by a method of neutralizing an anionic group in the resin, stirring strongly and adding water.
  • polyamic acid particles in the electrodeposition liquid using polymer particles made of polyamic acid (hereinafter referred to as polyamic acid particles), dispersibility is not sufficiently stabilized even if the same method as described above is performed, and as a result, the synthesized resin becomes a gel or an electrodeposition liquid in which polymer particles having the same average particle diameter are dispersed cannot be obtained stably.
  • the dispersibility can be improved to some extent by adding a large amount of the basic compound, but a large amount of the basic compound remains in the electrodeposition solution, and a unit for forming an insulating film by the electrodeposition method. Since the electrodeposition resin mass per charge (Coulomb efficiency) is reduced, the productivity of the insulator is deteriorated.
  • the object of the present invention is to significantly improve the dispersibility of the polymer particles contained in the electrodeposition liquid without reducing the Coulomb efficiency during electrodeposition in the electrodeposition liquid using the polyamic acid particles as polymer particles.
  • An object of the present invention is to provide an electrodeposition liquid for forming a water dispersion type insulating film.
  • the polymer particles are represented by the following formula (1-1) or the following formula (1 -2), wherein the polymer particles have a volume-based median diameter (D 50 ) of 0.08 to 0.7 ⁇ m.
  • R represents an aromatic hydrocarbon
  • the second aspect of the present invention is the invention based on the first aspect, wherein the polymer particles further have a volume-based median diameter (D 50 ) of 0.1 to 0.55 ⁇ m.
  • the third aspect of the present invention is an invention based on the first or second aspect, wherein the polyamic acid further has a carboxyl group at its terminal.
  • a fourth aspect of the present invention is the invention based on the first to third aspects, wherein the basic compound is further contained in an amount of 1 to 3 parts by mass with respect to 100 parts by mass of the polyamic acid.
  • a fifth aspect of the present invention is an invention based on the first to fourth aspects, and is characterized in that the coulomb efficiency during electrodeposition is 20 mg / C or more.
  • the sixth aspect of the present invention includes a step of adding and reacting an aromatic diamine with trimellitic anhydride chloride together with an organic solvent to obtain a first reaction mixture, and a first reaction mixture containing trimellitic anhydride chloride.
  • the second reaction mixture is added to a mixed solution of water and alcohol to precipitate polyamic acid, and the precipitated polyamic acid and organic solvent
  • Is a method for producing a water-dispersed insulating film-forming electrodeposition solution comprising a step of mixing a basic compound with a basic compound to obtain a mixture, and a step of adding water to the mixture to obtain an electrodeposition solution.
  • a seventh aspect of the present invention is an insulator manufacturing method in which an insulating film is formed on a metal surface using the water-dispersed insulating film forming electrodeposition liquid of the first to fifth aspects.
  • the water-dispersed insulating film forming electrodeposition liquid according to the first and second aspects of the present invention (hereinafter referred to as “water-dispersed insulating film forming electrodeposition liquid of the present invention”) comprises polymer particles, an organic solvent,
  • the polymer particles comprise a basic compound and water, and the polymer particles are composed of a polyamic acid having the structural unit of the above formula (1-1) or the above formula (1-2), and the polymer particles have a volume-based median diameter (D 50 ) Is controlled to a very small predetermined range.
  • D 50 volume-based median diameter
  • This electrodeposition solution achieves good dispersibility by controlling the particle size of the polymer particles, not by the conventional method of adding an excess base, so when forming an insulating film by the electrodeposition method
  • the decrease in productivity can be suppressed without significantly reducing the coulomb efficiency.
  • the electrodeposition liquid for forming a water-dispersible insulating film according to the third aspect of the present invention is a terminal of the polyamic acid constituting the polymer particles.
  • the electrodeposition liquid for forming a water-dispersible insulating film of the present invention is a terminal of the polyamic acid constituting the polymer particles.
  • the electrodeposition liquid for forming a water-dispersible insulating film according to the fourth aspect of the present invention (hereinafter referred to as “the electrodeposition liquid for forming a water-dispersible insulating film of the present invention”) has a basic compound of 100 parts by mass of polyamic acid. It is contained at a ratio of 0.5 to 3 parts by mass with respect to. For this reason, in this electrodeposition liquid, as described above, by controlling the polymer particles to a very small particle size, good dispersibility is ensured, so that the basic compound is a low amount that satisfies the above predetermined range. If added at, the coulomb efficiency during electrodeposition will not be significantly reduced.
  • electrodeposition liquid for forming a water-dispersible insulating film according to the fifth aspect of the present invention electrodeposition liquid for forming a water-dispersible insulating film according to the fifth aspect of the present invention
  • electrodeposition liquid for forming a water-dispersible insulating film of the present invention electrodeposition using the electrodeposition liquid is performed.
  • a very high Coulomb efficiency of 20 mg / C or more can be achieved.
  • High coulomb efficiency during electrodeposition enables film formation with a small amount of electricity, thus maintaining high productivity.
  • the water-dispersed insulating film-forming electrodeposition liquid of the present invention an aromatic diamine is used. Adding a trimellitic anhydride chloride together with an organic solvent and reacting to obtain a first reaction mixture, and adding a trimellitic anhydride chloride to the first reaction mixture and reacting the mixture to a second reaction mixture A step of adding a second reaction mixture into a mixed solution of water and alcohol to precipitate polyamic acid, and mixing the precipitated polyamic acid, an organic solvent and a basic compound to obtain a mixed solution. And a step of adding water to the mixed solution to obtain an electrodeposition solution.
  • a water-dispersed insulating film forming electrodeposition liquid in which the dispersibility of the polymer particles contained in the electrodeposition liquid is greatly improved without reducing the Coulomb efficiency during electrodeposition.
  • the method for manufacturing the electrodeposition liquid for forming a water-dispersible insulating film of the present invention (hereinafter referred to as “the method for manufacturing the electrodeposition liquid for forming a water-dispersible insulating film of the present invention”), the water-dispersible insulating film-forming electrode of the present invention is used.
  • An insulating film is formed on the metal surface using the landing liquid. Therefore, an insulating film with little variation in characteristics can be formed with high productivity.
  • the water-dispersed insulating film-forming electrodeposition liquid of the present invention contains polymer particles, an organic solvent and water.
  • the polymer particles are composed of a polyamic acid that is a polymer. Polyamic acid is superior to other polymers in that it has a large number of carboxyl groups that contribute to the charging of the resin in the molecular structure.
  • the polymer particles are controlled to have a very small particle size satisfying a volume-based median diameter (D 50 ) of 0.08 to 0.7 ⁇ m, preferably 0.1 to 0.55 ⁇ m.
  • D 50 volume-based median diameter
  • the volume-based median diameter (D 50 ) of the polymer particles is limited to a predetermined range.
  • the volume-based median diameter (D 50 ) of the polymer particles is more preferably 0.15 to 0.5 ⁇ m.
  • the polymer particles made of polyamic acid include those in which one particle contains a solvent, water, etc. in addition to polyamic acid, and the particles are swollen by these.
  • the polyamic acid constituting the polymer particles is a reaction product (resin) obtained by polymerizing an aromatic diamine as a monomer and trimellitic anhydride chloride.
  • the aromatic diamine used for the polymerization reaction of the polyamic acid is represented by the following formula (2).
  • R represents an aromatic hydrocarbon. The same applies to other expressions other than expression (2) described later.
  • aromatic diamine represented by the above formula (2) examples include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, m-phenylenediamine, p-phenylenediamine, and 1,4-diamino. Naphthalene, diaminodiphenyl sulfone, etc. are mentioned.
  • trimellitic anhydride chloride used for the polymerization reaction of polyamic acid is a compound represented by the following formula (3).
  • a polyamic acid having a structural unit represented by the following formula (1-1) or formula (1-2) is obtained.
  • the polyamic acid having the structural unit of the formula (1-1) or the formula (1-2) first, only the repeating structure of the structural unit whose basic skeleton is represented by the following formula (1-1)
  • its basic skeleton is represented by the following formula (1- Examples thereof include polyamic acid having a structure in which the structural unit represented by 1) and the structural unit represented by the following formula (1-2) are mixed.
  • the polymerization reaction of the aromatic diamine and trimellitic anhydride chloride can be performed by mixing them preferably in equal amounts and stirring in an organic solvent.
  • organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphate triamide, ⁇ -butyrolactam, 1,3 -Dimethyl-2-imidazolidinone (DMI) and the like can be used.
  • the particle size of the polymer particles is controlled to the above-mentioned very small particle size, but in the present embodiment, the particle size is controlled by the above formula (1-1) via an intermediate product described later.
  • the method of introducing a carboxyl group-containing trimellitic anhydride chloride derivative into the end of the polyamic acid having the structural unit of the above formula (1-1) or formula (1-2) is first of all the formula (1-1).
  • trimellitic anhydride chloride is further added, and trimellitic anhydride chloride by additional addition is bonded to the end of the polyamic acid.
  • an intermediate product having the structure of the following formula (4-1 ′) to formula (7-1B ′) or formula (4-2 ′) to formula (7-2B ′) is obtained.
  • the carboxyl group-containing trimellitic anhydride chloride derivative is introduced into the end of the polyamic acid having the structural unit of the above formula (1-1) or formula (1-2). That is, the aromatic diamine component constituting the structural unit of formula (1-1) or formula (1-2) located at the terminal of the basic skeleton is represented by the following formula (A), formula (B), or formula (C).
  • the indicated carboxyl group-containing trimellitic anhydride chloride derivative is introduced.
  • “* 1 ” is bonded to the end of the polyamic acid having the structural unit of the above formula (1-1) or formula (1-2).
  • the polyamic acid obtained as the final product is terminated at its end as shown in the above formulas (4-1) to (7-1B) and (4-2) to (7-2B).
  • a polyamic acid having a carboxyl group (—COOH) is obtained. That is, a carboxyl group derived from the above derivative is newly introduced into the terminal of the polymer structure of the polyamic acid obtained as the final product. In part or all of the introduced terminal carboxyl group (—COOH), protons are eliminated by the addition of a basic compound, and easily converted into carboxylate ions (—COO ⁇ ).
  • the polyamic acid constituting the polymer particles in the electrodeposition liquid preferably has a sufficiently high molecular weight because it can form an insulating film excellent in film properties such as insulation and heat resistance.
  • the mass average molecular weight is preferably 30,000 to 300,000, more preferably 30,000 to 60,000. If the mass average molecular weight is less than the lower limit, the film properties (insulating properties, heat resistance, etc.) of the insulating film to be formed may be deteriorated. On the other hand, since the activity of the reaction decreases as the molecular weight increases in the polyamic acid production reaction, those exceeding the upper limit are difficult to produce at present.
  • the molecular weight can be appropriately adjusted within the controllable range by adjusting conditions such as reaction time.
  • such a polyamic acid can be obtained by the following method and procedure.
  • the flask is preferably a separable flask equipped with a stirrer, a three-way cock for introducing atmospheric gas, a thermocouple, and the like.
  • trimellitic anhydride chloride is added to the flask together with an organic solvent, an atmosphere gas such as argon gas is introduced into the flask, and the content in the flask is preferably 20 in the gas atmosphere.
  • the reaction is carried out by stirring at a temperature of -30 ° C for 4-24 hours to obtain a first reaction mixture.
  • the mixing ratio of the aromatic diamine and trimellitic anhydride chloride at this time is preferably 1: 0.9 to 1.1 in terms of molar ratio (aromatic diamine: trimellitic anhydride chloride). Is preferably in a ratio of 1.0: 1.0. This is because when these blending ratios are biased, it becomes difficult to form a polymer having a sufficiently high molecular weight.
  • the amount of the organic solvent used is preferably adjusted so that the resin obtained after the reaction is contained in the organic solvent in a proportion of 10 to 30% by mass.
  • the atmospheric gas introduced into the flask is not limited to argon gas, but may be an inert gas such as nitrogen gas.
  • trimellitic anhydride chloride is further added to the first reaction mixture in the flask, and the reaction is preferably carried out by further stirring at a temperature of 20 to 30 ° C. for 0.5 to 3 hours. Two reaction mixtures are obtained.
  • the proportion of trimellitic anhydride chloride added at this time is preferably adjusted to 0.05 to 1 mol with respect to 1 mol of trimellitic anhydride chloride initially added.
  • trimellitic anhydride chloride is added in two stages as described above is that the polymer particles are formed by adding a large amount of trimellitic anhydride chloride at the stage of preparing the first reaction mixture. This is because it becomes difficult to control the molecular weight of the polyamic acid to a desired size.
  • water and alcohol are put into a beaker at a ratio of 1 to 3 of water with respect to 1 of alcohol to prepare a mixed solution of water and alcohol.
  • the alcohol include methanol, ethanol, propanol, isopropyl alcohol, and the like, and it is preferable to use one or more of these.
  • the 2nd reaction liquid mixture prepared above is dripped in this mixed solution using a pipette etc. Thereby, a powdery polyamic acid is deposited in the mixed solution.
  • the precipitated powdery polyamic acid is recovered by suction filtration while washing with alcohol or the like, and then dried by natural drying or the like.
  • the above-mentioned polyamic acid can be obtained by the above steps.
  • an electrodeposition liquid for forming a water-dispersed insulating film using the above polyamic acid first, the polyamic acid obtained above is dissolved in an organic solvent, and then a poor solvent such as 1-methoxypropanol and a base are prepared. The compound is added and stirred well to obtain a mixture. Then, water is added dropwise at room temperature, preferably at a rotational speed of 8000 to 12000 rpm, with high-speed stirring. Thereby, polyamic acid precipitates in the solution, and a white electrodeposition liquid in which fine polymer particles made of polyamic acid are dispersed is obtained.
  • a poor solvent such as 1-methoxypropanol and a base
  • Organic solvents include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetramethylurea, hexaethylphosphoric triamide, ⁇ -butyrolactam, 1,3-dimethyl- 2-Imidazolidinone (DMI) or the like can be used.
  • DMI 1,3-dimethyl- 2-Imidazolidinone
  • the poor solvent aliphatic alcohols such as 1-propanol and isopropyl alcohol, ethylene glycols such as 2-methoxyethanol, propylene glycols such as 1-methoxy-2-propanol, and the like can be used.
  • amines such as 2-aminoethanol, 2-acetamidoethanol, triethylamine, tripropylamine, triethanolamine and ammonia, nitrogen-containing heterocyclic compounds such as pyrrole, pyridine and piperidine are used. be able to.
  • the ratio of the basic compound is preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the polyamic acid (polymer particles) in the electrodeposition liquid.
  • a water-dispersed insulating film-forming electrodeposition solution is obtained in which polymer particles made of polyamic acid and having a predetermined median diameter (D 50 ) are dispersed.
  • the electrodeposition coating apparatus 10 is used to electrodeposit the electrodeposition liquid 11 on the surface of the electric wire 12 by an electrodeposition coating method to form an insulating layer 21a.
  • a cylindrical electric wire 13 having a circular cross section that is wound in a cylindrical shape is electrically connected in advance to the positive electrode of the DC power source 14 via the anode 16. And this cylindrical electric wire 13 is pulled up in the direction of the solid line arrow of FIG. 1, and passes through each next process.
  • a cylindrical electric wire 13 is rolled flat by a pair of rolling rollers 17 and 17 to form a rectangular electric wire 12 having a rectangular cross section.
  • the electric wire include a copper wire, an aluminum wire, a steel wire, a copper alloy wire, and an aluminum alloy wire.
  • the electrodeposition liquid 11 is stored in the electrodeposition tank 18 and is preferably maintained at a temperature of 5 to 60 ° C. so that the electrodeposition liquid 11 in the electrodeposition tank 18 has a rectangular shape.
  • the electric wire 12 is passed.
  • a cathode 19 that is electrically connected to the negative electrode of the DC power supply 14 is inserted into the electrodeposition liquid 11 in the electrodeposition tank 18 with a space from the flat rectangular wire 12 passing therethrough.
  • a DC voltage is applied between the rectangular electric wire 12 and the cathode 19 by the DC power source 14.
  • the DC voltage of the DC power supply 14 is preferably 1 to 300 V, and the DC current application time is preferably 0.01 to 30 seconds.
  • negatively charged polymer particles (not shown) are electrodeposited on the surface of the flat wire 12 to form the insulating layer 21 a.
  • an insulating film 21b is formed on the surface of the electric wire 12 by subjecting the flat electric wire 12 having the insulating layer 21a electrodeposited on the surface thereof to a baking treatment.
  • the electric wire 12 having the insulating layer 21a formed on the surface is passed through the baking furnace 22.
  • the baking treatment is preferably performed by a near infrared heating furnace, a hot air heating furnace, an induction heating furnace, a far infrared heating furnace, or the like.
  • the temperature of the baking treatment is preferably in the range of 250 to 500 ° C., and the time of the baking treatment is preferably in the range of 1 to 10 minutes. Note that the temperature of the baking treatment is the temperature of the central portion in the baking furnace.
  • Example 1 First, 3.04 g (15 mmol) of 4,4′-diaminodiphenyl ether and 45 g of N, N-dimethylacetamide (DMAc) were placed in a separable flask equipped with a stirrer, a three-way cock for introducing argon, and a thermoelectric body. It was charged and dissolved by stirring. Next, 3.16 g (15 mmol) of trimellitic anhydride chloride and 15 g of DMAc were added to the flask, and the contents in the flask were stirred and reacted at room temperature (25 ° C.) for 6 hours under an argon gas atmosphere. One reaction mixture was prepared.
  • DMAc N, N-dimethylacetamide
  • trimellitic anhydride chloride was further added to the first reaction mixture in the flask, and the mixture was further reacted by stirring for 1 hour to prepare a second reaction mixture.
  • an insulator was produced using the electrodeposition solution prepared above. Specifically, first, the electrodeposition liquid was stored in the electrodeposition tank, and the temperature of the electrodeposition liquid in the electrodeposition tank was set to 25 ° C. Next, an 18 mm square, 0.3 mm thick copper plate (anode) and a 3 cm square stainless steel plate (cathode) are placed facing each other in the electrodeposition liquid in the electrodeposition bath. During this period, a DC voltage of 20 V was applied for 30 seconds. Thereby, an insulating layer was formed on the surface of the copper plate.
  • the copper plate having an insulating layer formed on the surface was baked. Specifically, the copper plate on which the insulating layer was formed was held for 3 minutes in a baking furnace maintained at a temperature of 250 ° C. Thereby, an insulator having an insulating film formed on the surface of the copper plate was obtained.
  • the temperature in a baking furnace is the temperature of the center part in a furnace measured with the thermocouple.
  • Example 2 An electrodeposition solution was obtained in the same manner as in Example 1 except that the amount of 2-aminoethanol added was 0.015 g. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 3 An electrodeposition solution was obtained in the same manner as in Example 1 except that the amount of 2-aminoethanol added was 0.005 g. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 4 An electrodeposition solution was obtained in the same manner as in Example 1 except that the amount of 2-aminoethanol added was 0.0075 g. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 5 An electrodeposition solution was obtained in the same manner as in Example 1 except that the amount of 2-aminoethanol added was 0.0125 g. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 6 An electrodeposition solution was obtained in the same manner as in Example 1 except that the initial reaction time of 4,4′-diaminodiphenyl ether and trimellitic anhydride chloride was 4 hours. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 7 An electrodeposition solution was obtained in the same manner as in Example 1 except that the initial reaction time of 4,4′-diaminodiphenyl ether and trimellitic anhydride chloride was 24 hours. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 8 An electrodeposition solution was obtained in the same manner as in Example 1 except that the amount of 2-aminoethanol added was 0.08 g. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 9 An electrodeposition solution was obtained in the same manner as in Example 1 except that the amount of 2-aminoethanol added was 0.35 g. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • Example 1 A reaction solution of polyamic acid obtained in the same manner as in Example 1 was dropped into alcohol to precipitate polyamic acid. Using this, an electrodeposition solution was obtained in the same manner as in Example 1. In addition, an insulator was produced using this electrodeposition solution under the same method and conditions as in Example 1.
  • (Ii) Coulomb efficiency a value obtained by dividing the mass of the insulating layer after baking treatment formed on the surface of the copper plate by the above method by the amount of electricity required during electrodeposition, and calculating the value as coulomb The efficiency.
  • the mass of the insulating layer after baking treatment was computed from the mass variation
  • (Iii) Liquid storage stability The electrodeposition liquid prepared in each Example and Comparative Example was allowed to stand at room temperature for a certain period of time, and then the presence or absence of precipitates or gel-like substances was visually confirmed.
  • Table 1 “A” indicates a case where no precipitation was visually confirmed even after one month, and “B” indicates that no precipitation was confirmed after one week, but precipitation was confirmed after one month.
  • “C” indicates that no precipitation was confirmed immediately after preparation of the electrodeposition solution, but precipitation was confirmed after one week, and "D” indicates that precipitation was confirmed immediately after preparation of the electrodeposition solution. Indicates the case.
  • Mass average molecular weight A differential refractometer using a high-speed GPC apparatus (manufactured by Tosoh Corporation: HLC-8320GPC) and a column having a exclusion limit molecular weight of 4 ⁇ 10 7 or more (manufactured by Tosoh Corporation: TSKgel Super AWM-H).
  • the molecular weight was measured by converting the numerical value detected by the standard polystyrene conversion.
  • the flow rate was 0.600 cc / min
  • the control temperature was 40 ° C.
  • the sampling rate was 5 ⁇ 10 ⁇ 3 cc / sec
  • the sample injection amount was 0.010 cc.
  • dimethylacetamide added with 1 mmol of lithium bromide and 100 mmol of phosphoric acid as an adsorption inhibitor was used.
  • the invention of the present application can be used for the production of insulated wires used for transformers, reactors, motors, etc. for in-vehicle inverters and other insulators, as well as power inductors for power supplies of personal computers, smartphones and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)

Abstract

ポリマー粒子、有機溶媒、塩基性化合物及び水を含有する水分散型絶縁皮膜形成用電着液において、ポリマー粒子が所定の構造単位を有するポリアミック酸からなり、ポリマー粒子は体積基準のメジアン径(D50)が0.08~0.7μmである。

Description

水分散型絶縁皮膜形成用電着液
 本願発明は、絶縁電線等の絶縁物を、電着法により形成する際に用いられる水分散型絶縁皮膜形成用電着液に関する。
 本願は、2015年7月2日に日本に出願された特願2015-133394号および2016年6月10日に日本に出願された特願2016-115966号に基づき優先権を主張し、その内容をここに援用する。
 従来から、モーター、リアクトル、トランス等には、電線の表面が絶縁皮膜により被覆された絶縁電線等の絶縁物が用いられている。電線の表面に絶縁皮膜を形成する方法としては、浸漬法や電着法(電着塗装)等が知られている。浸漬法は、例えば被塗装体として平角状の導線等を用い、これを塗料に浸漬して引上げた後、乾燥させる工程を繰り返し行って、所望の膜厚を有する絶縁皮膜を形成する方法である。一方、電着法は、電着塗料(電着液)に浸漬させた被塗装体と電着塗料に挿入した電極に直流電流を流すことで電気を帯びた塗料粒子を被塗装体側に析出させて絶縁皮膜を形成する方法である。
 電着法は、他の方法よりも、均一な膜厚で塗装するのが容易であり、また、焼き付け後に高い防錆力や密着性を持つ絶縁皮膜が形成できることから注目されている。電着法に用いられる電着液としては、例えば、有機ジアミンと無水クロロホルミルフタル酸(無水トリメリット酸クロライド)との反応生成物である粒子状のポリアミド酸(ポリアミック酸)の分散層と、水と中性有機溶媒の溶媒層とからなるポリアミド酸塩基混合物等が知られている(例えば、特許文献1参照。)。この特許文献1に開示されたポリアミド酸塩基混合物によれば、約45℃以下の温度で保持すれば、6ヶ月以上の貯蔵安定性が得られるとともに、連続的な態様で良好に電着させてポリアミドイミドフィルムに転化できるとされている。
日本国特開昭49-52252号公報(A)
 しかしながら、上記従来の特許文献1に示された電着液(ポリアミド酸塩基混合物)では、有機ジアミンと無水クロロホルミルフタル酸等との生成混合物をメタノール等の貧溶媒に注入して微粉末化し、そのポリアミック酸粒子を水等が含まれた溶媒に分散させて電着液を得ている。そのため、この電着液では、ポリマー粒子としてのポリアミック酸粒子の平均粒径が20~100μmと非常に大きく、電着液中に含まれる該ポリマー粒子の分散性が悪くなる。ポリマー粒子の分散性が悪い電着液を用いて絶縁皮膜を形成すると、形成される絶縁皮膜や該皮膜を備える絶縁物の特性にばらつきを与える場合がある。
 このような電着液中のポリマー粒子の分散性については、例えばポリアミック酸以外のポリマーからなるポリマー粒子を使用したものであれば、溶液の状態で塩基性化合物を加え、更にポリマー粒子を構成する樹脂中のアニオン性基を中和し、強撹拌させて水を添加する方法等によって、改善がみられることが知られている。しかし、ポリアミック酸からなるポリマー粒子(以下、ポリアミック酸粒子という。)を使用した電着液では、上記と同様の方法を行っても、分散性が十分に安定せず、結果として、合成した樹脂がゲル化したり、同じ平均粒径のポリマー粒子が分散する電着液が安定して得られなかったりする不具合が生じる。また、塩基性化合物を多量に加えることにより、分散性の改善がある程度みられるが、電着液中に塩基性化合物が多く残存することとなり、電着法で絶縁皮膜を成膜するときの単位電荷当たりの電着樹脂質量(クーロン効率)を低下させるため、絶縁物の生産性を悪化させる。
 本願発明の目的は、ポリアミック酸粒子をポリマー粒子として使用した電着液において、電着時のクーロン効率を低下させることなく、電着液中に含まれるポリマー粒子の分散性を大幅に改善させた水分散型絶縁皮膜形成用電着液を提供することにある。
 本願発明の第1の態様は、ポリマー粒子、有機溶媒、塩基性化合物及び水を含有する水分散型絶縁皮膜形成用電着液において、ポリマー粒子が下記式(1-1)又は下記式(1-2)の構造単位を有するポリアミック酸からなり、ポリマー粒子は体積基準のメジアン径(D50)が0.08~0.7μmであることを特徴とする。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
但し、式(1-1)、式(1-2)中、Rは芳香族炭化水素を示す。
 本願発明の第2の態様は、第1の態様に基づく発明であって、更にポリマー粒子は体積基準のメジアン径(D50)が0.1~0.55μmであることを特徴とする。
 本願発明の第3の態様は、第1又は2の態様に基づく発明であって、更にポリアミック酸がその末端にカルボキシル基を有することを特徴とする。
 本願発明の第4の態様は、前記第1から第3の態様に基づく発明であって、更に塩基性化合物がポリアミック酸100質量部に対して1~3質量部の割合で含まれることを特徴とする。
 本願発明の第5の態様は、前記第1から第4の態様に基づく発明であって、更に電着時のクーロン効率が20mg/C以上であることを特徴とする。
 本願発明の第6の態様は、芳香族ジアミンに無水トリメリット酸クロライドを有機溶媒とともに添加混合して反応させ第1反応混合液を得る工程と、第1反応混合液に、無水トリメリット酸クロライドを追添加して反応させ第2反応混合液を得る工程と、第2反応混合液を水とアルコールの混合溶液中に添加してポリアミック酸を析出させる工程と、析出させたポリアミック酸と有機溶媒と塩基性化合物とを混合して混合液を得る工程と、混合液に水を添加して電着液を得る工程とを含む水分散型絶縁皮膜形成用電着液の製造方法である。
 本願発明の第7の態様は、前記第1から第5の態様の水分散型絶縁皮膜形成用電着液を用いて金属表面に絶縁皮膜を形成する絶縁物の製造方法である。
 本願発明の第1、第2の態様の水分散型絶縁皮膜形成用電着液(以下、「本願発明の水分散型絶縁皮膜形成用電着液」と称する)は、ポリマー粒子、有機溶媒、塩基性化合物及び水を含有し、ポリマー粒子が上記式(1-1)又は上記式(1-2)の構造単位を有するポリアミック酸からなり、このポリマー粒子は、体積基準のメジアン径(D50)が非常に小さい所定の範囲に制御される。これにより、従来、ポリアミック酸粒子を使用した電着液では困難であった、非常に優れた分散性が得られる。そして、この電着液では、過剰の塩基を添加するという従来法によらず、ポリマー粒子の粒径制御によって良好な分散性を達成しているため、電着法で絶縁皮膜を成膜するときのクーロン効率を大幅に低下させることなく、生産性の低下を抑制できる。
 本願発明の第3の態様の水分散型絶縁皮膜形成用電着液(以下、「本願発明の水分散型絶縁皮膜形成用電着液」と称する)は、ポリマー粒子を構成するポリアミック酸の末端がカルボキシル基であるため、アニオン性であるCOO基の電気的な反発によって分散性がより高められる。
 本願発明の第4の態様の水分散型絶縁皮膜形成用電着液(以下、「本願発明の水分散型絶縁皮膜形成用電着液」と称する)は、塩基性化合物がポリアミック酸100質量部に対して0.5~3質量部の割合で含まれる。このため、この電着液では、上述のように、ポリマー粒子を非常に小さい粒径に制御することによって、良好な分散性が確保されるため、塩基性化合物を上記所定の範囲を満たす低量で添加すれば、電着時のクーロン効率を大幅に低下させることない。
 本願発明の第5の態様の水分散型絶縁皮膜形成用電着液(以下、「本願発明の水分散型絶縁皮膜形成用電着液」と称する)では、該電着液を用いて電着法により絶縁皮膜を成膜する際、20mg/C以上の非常に高いクーロン効率を達成できる。電着時のクーロン効率が高いと少ない電気量で成膜できるため、高い生産性を維持できる。
 本願発明の第6の態様の水分散型絶縁皮膜形成用電着液の製造方法(以下、「本願発明の水分散型絶縁皮膜形成用電着液の製造方法」と称する)では、芳香族ジアミンに無水トリメリット酸クロライドを有機溶媒とともに添加混合して反応させ第1反応混合液を得る工程と、第1反応混合液に、無水トリメリット酸クロライドを追添加して反応させ第2反応混合液を得る工程と、第2反応混合液を水とアルコールの混合溶液中に添加してポリアミック酸を析出させる工程と、析出させたポリアミック酸と有機溶媒と塩基性化合物とを混合して混合液を得る工程と、混合液に水を添加して電着液を得る工程とを含む。これにより、電着時のクーロン効率を低下させることなく、電着液中に含まれるポリマー粒子の分散性を大幅に改善させた水分散型絶縁皮膜形成用電着液を調製することができる。
 本願発明の第7の態様の絶縁物の製造方法(以下、「本願発明の水分散型絶縁皮膜形成用電着液の製造方法」と称する)では、本願発明の水分散型絶縁皮膜形成用電着液を用いて金属表面に絶縁皮膜を形成する。そのため、特性のばらつきが少ない絶縁皮膜を、高い生産性でもって成膜できる。
本願発明の実施形態の電着塗装装置を模式的に表した図である。
 次に本願発明を実施するための形態を図面に基づいて説明する。本願発明の水分散型絶縁皮膜形成用電着液は、ポリマー粒子、有機溶媒及び水を含有する。ポリマー粒子は、高分子であるポリアミック酸により構成される。ポリアミック酸は、他の高分子に比べ、分子構造中に樹脂の帯電に寄与するカルボキシル基を多数有している点で優れる。そして、このポリマー粒子は、体積基準のメジアン径(D50)が0.08~0.7μm、好ましくは0.1~0.55μmの範囲を満たす非常に小さい粒径に制御される。ここで、ポリマー粒子の体積基準のメジアン径(D50)を所定の範囲に限定したのは、上限値を超えると、電着液中において良好な分散性が得られず、また保存安定性も悪化して沈殿が生じたり、ゲル化等が起こったりするからである。一方、下限値未満のものは、塩基性化合物を多量に加えないと得られないため、エナメル線等の絶縁物の生産性を悪化させるからである。このうち、ポリマー粒子の体積基準のメジアン径(D50)は0.15~0.5μmであることが更に好ましい。なお、本明細書において、ポリアミック酸からなるポリマー粒子とは、一粒子中にポリアミック酸以外に溶媒や水等を含み、これらによって粒子が膨潤した状態のものも含まれる。
 本願発明において、ポリマー粒子を構成するポリアミック酸は、単量体としての芳香族ジアミンと無水トリメリット酸クロライドを重合反応させて得られた反応生成物(樹脂)である。ポリアミック酸の重合反応に用いられる芳香族ジアミンは下記式(2)で示される。
NH-R-NH                             (2)
 但し、式(2)中、Rは芳香族炭化水素を示す。後述する式(2)以外の他の式においても同じ。
 上記式(2)で示される芳香族ジアミンとしては、具体的には、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、m-フェニレンジアミン、p-フェニレンジアミン、1,4-ジアミノナフタレン又はジアミノジフェニルスルホン等が挙げられる。
 また、ポリアミック酸の重合反応に用いられる無水トリメリット酸クロライドは下記式(3)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
 上記芳香族ジアミンと無水トリメリット酸クロライドを重合反応させると、下記式(1-1)又は式(1-2)の構造単位を有するポリアミック酸が得られる。具体的に、式(1-1)又は式(1-2)の構造単位を有するポリアミック酸としては、第一に、その基本骨格が下記式(1-1)に示す構造単位の繰り返し構造のみで構成されるポリアミック酸、第二に、その基本骨格が下記式(1-2)に示す構造単位の繰り返し構造のみで構成されるポリアミック酸、第三に、その基本骨格が下記式(1-1)に示す構造単位と下記式(1-2)に示す構造単位が混在した構造にて構成されるポリアミック酸が例示される。芳香族ジアミンと無水トリメリット酸クロライドの重合反応は、後述するように、これらを、好ましくは等量ずつ混合し、有機溶媒中で撹拌することにより行うことができる。このときの有機溶媒には、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクタム、1,3-ジメチル-2-イミダゾリジノン(DMI)等を使用することができる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記式(1-1)又は式(1-2)の構造単位を有するポリアミック酸では、後述の電着液を調製する工程で高速撹拌を行っても、粒径が約1μm程度の非常に大きいポリマー粒子となるか、分散せずにゲル化して分離してしまい、電着液中において良好な分散性を確保することが困難となる。その理由は、上記ポリアミック酸中のカルボキシル基は構造上、酸性度が弱く、樹脂粒子同士の電荷反発に寄与しにくいからと推察される。本願発明では、ポリマー粒子の粒径が上述の非常に小さい粒径に制御されるが、本実施形態では、当該粒径の制御は、後述する中間生成物を経て、上記式(1-1)又は式(1-2)の構造単位を有するポリアミック酸の端部(基本骨格末端に位置する構造単位を構成する芳香族ジアミン成分)に、カルボキシル基含有無水トリメリット酸クロライド誘導体を結合させる方法により達成している。この方法によって、ポリアミック酸粒子の粒径を小さい粒径に制御できる明確な技術的理由は、現在のところ解明されていないが、ポリアミック酸の端部に上記誘導体を強制的に導入すると、最終的に得られる高分子はその分子構造の末端にカルボキシル基を有する構造となる。この末端のカルボキシル基同士が、特に、電着液を調製する工程において電荷反発を起こし、これによりポリマー粒子同士の凝集が防止されることがその技術的理由の一つであるものと推察される。
 上記式(1-1)又は式(1-2)の構造単位を有するポリアミック酸の端部に、カルボキシル基含有無水トリメリット酸クロライド誘導体を導入する方法は、先ず、上記式(1-1)又は式(1-2)の構造単位を有するポリアミック酸を合成した後、無水トリメリット酸クロライドを更に添加して、このポリアミック酸の端部に、追添加による無水トリメリット酸クロライドを結合させる。これにより、下記式(4-1')~式(7-1B')又は式(4-2')~式(7-2B')の構造を含む中間生成物が得られる。式(4-1')~式(7-1B')及び式(4-2')~式(7-2B')中、「*」は、上述した第一から第三の例に示されるポリアミック酸の基本骨格(各式中にそれぞれ示している基本骨格末端に位置する構造単位の部分を除いた、残りの部分)と結合する。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 そして、 上記式(4-1')~式(7-1B')及び式(4-2')~式(7-2B')の構造を含む中間生成物に水(HO)を反応させることにより、これらの中間生成物は、下記式(4-1)~式(7-1B)又は式(4-2)~式(7-2B)の構造を含むポリアミック酸となる。式(4-1)~式(7-1B)及び式(4-2)~式(7-2B)中、「*」は、上述した第一から第三の3つのポリアミック酸の基本骨格(各式中に示している基本骨格末端に位置する構造単位の部分を除いた、残りの部分)と結合する。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 このようにして、上記式(1-1)又は式(1-2)の構造単位を有するポリアミック酸の端部にカルボキシル基含有無水トリメリット酸クロライド誘導体が導入される。即ち、基本骨格末端に位置する上記式(1-1)又は式(1-2)の構造単位を構成する芳香族ジアミン成分に、下記式(A)、式(B)又は式(C)で示されるカルボキシル基含有無水トリメリット酸クロライド誘導体が導入される。式(A)~式(C)中、「*」は、上記式(1-1)又は式(1-2)の構造単位を有するポリアミック酸の端部と結合する。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 これにより、最終生成物として得られるポリアミック酸は、上記式(4-1)~式(7-1B)及び式(4-2)~式(7-2B)で示されるように、その末端にカルボキシル基(-COOH)を有するポリアミック酸となる。即ち、最終生成物として得られるポリアミック酸の高分子構造の末端には上記誘導体由来のカルボキシル基が新たに導入される。導入された末端のカルボキシル基(-COOH)はその一部又は全部において、塩基性化合物の添加によりプロトンが脱離し、容易にカルボン酸イオン(-COO)となる。
 電着液中のポリマー粒子を構成する上記ポリアミック酸は、絶縁性や耐熱性等の膜特性に非常に優れた絶縁皮膜を形成できることから十分な高分子量であることが好ましい。具体的には、質量平均分子量が30000~300000、更には30000~60000であることが好ましい。質量平均分子量が下限値未満では、成膜する絶縁皮膜の膜特性(絶縁性や耐熱性等)が悪くなる場合がある。一方、ポリアミック酸の生成反応において分子量が大きくなる程反応の活性は減少することから、上限値を超えるものは、現状では製造するのが困難である。なお、分子量は、例えば反応時間等の条件を調整することにより、現状制御可能な範囲内において適宜調整できる。
 このようなポリアミック酸は、具体的には、次の方法及び手順により得ることができる。モノマーとして、上述の芳香族ジアミンと無水トリメリット酸クロライドを用意し、先ず、フラスコ内に上記芳香族ジアミンとN,N'-ジメチルアセトアミド等の有機溶媒を投入し、これらを撹拌して溶解させる。なお、フラスコには、撹拌機、雰囲気ガスを導入するための三方コック及び熱電対等を備えたセパラブルフラスコを用いるのが好ましい。
 次に、上記フラスコ内に、無水トリメリット酸クロライドを有機溶媒とともに添加し、フラスコ内にアルゴンガス等の雰囲気ガスを導入して、当該ガス雰囲気下、上記フラスコ内の内容物を、好ましくは20~30℃の温度で4~24時間撹拌することにより反応させて第1反応混合液を得る。このときの芳香族ジアミンと無水トリメリット酸クロライドの配合比は、モル比(芳香族ジアミン:無水トリメリット酸クロライド)で1:0.9~1.1となる割合とするのが好ましく、更には、1.0:1.0となる割合とするのが好ましい。これらの配合比が偏ると、十分な高分子量を有するポリマーが形成されにくくなるためである。また、有機溶媒の使用量は、上記反応後に得られる樹脂が当該有機溶媒中に10~30質量%の割合で含まれるように調整するのが好ましい。フラスコ内に導入する雰囲気ガスは、アルゴンガスに限らず、窒素ガス等の不活性ガスであっても良い。
 その後、上記フラスコ内の第1反応混合液中に、無水トリメリット酸クロライドを追添加して、好ましくは20~30℃の温度で0.5~3時間、更に撹拌することにより反応させて第2反応混合液を得る。このとき追添加する無水トリメリット酸クロライドの割合は、最初に加えた無水トリメリット酸クロライド1モルに対して0.05~1モルとなる割合に調整するのが好ましい。なお、無水トリメリット酸クロライドを、上述のように2段階に分けて添加する理由は、第1反応混合液を調製する段階で、無水トリメリット酸クロライドを多めに添加すると、ポリマー粒子を構成するポリアミック酸の分子量を所望の大きさに制御するのが困難になるためである。
 次に、水とアルコールを、アルコールの質量1に対して水の質量1~3となる割合でビーカー内に投入し、水とアルコールの混合溶液を調製する。アルコールとしては、メタノール、エタノール、プロパノール又はイソプロピルアルコール等が挙げられ、これらの1種又は2種以上を使用するのが好ましい。そして、この混合溶液中に、上記調製した第2反応混合液を、ピペット等を使用して滴下する。これにより、上記混合溶液中に、粉末状のポリアミック酸を析出させる。次いで、析出させた粉末状のポリアミック酸を、アルコール等で洗浄しながら吸引ろ過により回収し、その後、自然乾燥等により乾燥させる。以上の工程により、上述のポリアミック酸を得ることができる。
 上述のポリアミック酸を用いて、水分散型絶縁皮膜形成用電着液を調製するには、先ず、上記得られたポリアミック酸を有機溶媒に溶解させ、次いで1-メトキシプロパノール等の貧溶媒と塩基性化合物を加えて十分に撹拌して混合液とする。そして、この混合液を室温で、好ましくは8000~12000rpmの回転速度で高速撹拌しながら水を滴下して加える。これにより、ポリアミック酸が溶液中で析出し、ポリアミック酸からなる微細なポリマー粒子が分散した白色の電着液が得られる。
 有機溶媒には、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサエチルリン酸トリアミド、γ-ブチロラクタム、1,3-ジメチル-2-イミダゾリジノン(DMI)等を使用することができる。また、貧溶媒には、1-プロパノール、イソプロピルアルコール等の脂肪族アルコール類、2-メトキシエタノール等のエチレングリコール類、1-メトキシ-2-プロパノール等のプロピレングリコール類等を使用することができる。また、塩基性化合物には、2-アミノエタノール、2-アセトアミドエタノール、トリエチルアミン、トリプロピルアミン、トリエタノールアミン、アンモニア等のアミン類、ピロール、ピリジン、ピペリジン等の含窒素複素環化合物等を使用することができる。電着液中の各成分の好ましい割合は、ポリアミック酸(ポリマー粒子)/有機溶媒/水/塩基性化合物/貧溶媒)=1~10質量%/30~70質量%/残部/0.005~0.3質量%/10~20質量%)である。なお、塩基性化合物の割合は、電着液中のポリアミック酸(ポリマー粒子)100質量部に対して0.5~3質量部の割合とするのが好ましい。ポリアミック酸に対する塩基性化合物の割合が少なすぎると、ポリマー粒子の粒径が粗大となるか、ポリマーがゲル化して十分に分散しない場合があり、一方、塩基性化合物の割合が多すぎると、クーロン効率の低下等の不具合が生じる場合がある。以上の工程により、ポリアミック酸からなり、所定のメジアン径(D50)を有するポリマー粒子が分散する水分散型絶縁皮膜形成用電着液が得られる。
 続いて、上記水分散型絶縁皮膜形成用電着液を用いて金属表面に絶縁皮膜を形成する絶縁物の製造方法について、電線の表面に絶縁皮膜が形成された絶縁電線の製造方法を例に図面に基づいて説明する。図1に示すように、電着塗装装置10を用いて上記電着液11を電着塗装法により電線12の表面に電着させて絶縁層21aを形成する。具体的には、予め、円筒状に巻き込んである横断面円形の円柱状の電線13を、直流電源14の正極に陽極16を介して電気的に接続しておく。そして、この円柱状の電線13を図1の実線矢印の方向に引上げて次の各工程を経る。
 先ず、第1の工程として、円柱状の電線13を一対の圧延ローラ17,17により扁平に圧延して、横断面長方形の平角状の電線12を形成する。電線としては、銅線、アルミ線、鋼線、銅合金線、アルミ合金線等が挙げられる。次いで、第2の工程として、電着液11を電着槽18に貯留し、好ましくは5~60℃の温度に維持して、この電着槽18内の電着液11中に平角状の電線12を通過させる。ここで、電着槽18内の電着液11中には、通過する平角状の電線12と間隔を設けて直流電源14の負極に電気的に接続された陰極19が挿入される。電着槽18内の電着液11中を平角状の電線12が通過する際に、直流電源14により直流電圧が平角状の電線12と陰極19との間に印加される。なお、このときの直流電源14の直流電圧は1~300Vとするのが好ましく、直流電流の通電時間は0.01~30秒とするのが好ましい。これにより、電着液11中で、マイナスに帯電したポリマー粒子(図示せず)が平角状の電線12の表面に電着されて絶縁層21aが形成される。
 次に、表面に絶縁層21aが電着された平角状の電線12に対し、焼付処理を施すことにより、電線12の表面に絶縁皮膜21bを形成する。この実施の形態では、表面に上記絶縁層21aが形成された電線12を、焼付炉22内を通過させることにより行う。上記焼付処理は、近赤外線加熱炉、熱風加熱炉、誘導加熱炉、遠赤外線加熱炉等により行われることが好ましい。また焼付処理の温度は250~500℃の範囲内であることが好ましく、焼付処理の時間は1~10分間の範囲内であることが好ましい。なお、焼付処理の温度は焼付炉内の中央部の温度である。焼付炉22を通過することにより、電線12の表面を絶縁皮膜21bで被覆した絶縁電線23が製造される。
 次に本願発明の実施例を比較例とともに詳しく説明する。
 <実施例1>
 先ず、撹拌機、アルゴン導入のための三方コック及び熱電体を備えたセパラブルフラスコ内に、4,4’-ジアミノジフェニルエーテル3.00g(15mmol)、N,N-ジメチルアセトアミド(DMAc)45gをそれぞれ投入し、撹拌して溶解させた。次に、無水トリメリット酸クロライド3.16g(15mmol)、DMAc15gを上記フラスコ内に加え、アルゴンガス雰囲気下、上記フラスコ内の内容物を室温(25℃)で6時間撹拌して反応させ、第1反応混合液を調製した。
 その後、無水トリメリット酸クロライド0.32g(1.5mmol)を上記フラスコ内の第1反応混合液に追添加し、更に1時間撹拌して反応させ、第2反応混合液を調製した。
 次に、ビーカー内に水とアルコールを質量比で3:1の割合で投入し、強撹拌することにより混合溶液を調製した。この混合溶液800ml中に、上記調製した第2反応混合液を滴下してポリアミック酸を析出させた。次いで、析出させたポリアミック酸をアルコールで洗浄しながら吸引ろ過により回収し、その後乾燥させた。このようにして合成し得られたポリアミック酸は、FT-IR(Fourier Transform Infrared Spectroscopy)にて同定した。
 次に、上記得られたポリアミック酸0.5gをN-メチル-2-ピロリドン(有機溶媒)5gに溶解させ、次いで1-メトキシプロパノール(貧溶媒)1.5g、2-アミノエタノール(塩基性化合物)0.01gを加えて、十分に撹拌した。この混合液を10000rpmで高速撹拌しながら水を滴下して加えることにより、微細なポリアミック酸粒子が分散する白色の電着液10.0gを得た。
 続いて、上記調製した電着液を用いて絶縁物を作製した。具体的には、先ず、電着液を電着槽内に貯留し、この電着槽内の電着液の温度を25℃とした。次いで、上記電着槽内の電着液中に、18mm角、厚さ0.3mmの銅板(陽極)と、3cm角のステンレス鋼板(陰極)を対向させて設置し、この銅板とステンレス鋼板との間に直流電圧20Vを印加した状態で30秒間保持した。これにより銅板の表面に絶縁層を形成した。
 次に、表面に絶縁層が形成された銅板について焼付処理を行った。具体的には、絶縁層が形成された銅板を、250℃の温度に保持された焼付炉に3分間保持することにより行った。これにより、銅板の表面に絶縁皮膜が形成された絶縁物を得た。なお、焼付炉内の温度は、熱電対で測定した炉内中央部の温度である。
 <実施例2>
 2-アミノエタノールの添加量を0.015gとしたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <実施例3>
 2-アミノエタノールの添加量を0.005gとしたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <実施例4>
 2-アミノエタノールの添加量を0.0075gとしたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <実施例5>
 2-アミノエタノールの添加量を0.0125gとしたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <実施例6>
 4,4’-ジアミノジフェニルエーテルと無水トリメリット酸クロライドの最初の反応時間を4時間としたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <実施例7>
 4,4’-ジアミノジフェニルエーテルと無水トリメリット酸クロライドの最初の反応時間を24時間としたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <実施例8>
 2-アミノエタノールの添加量を0.08gとしたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <実施例9>
 2-アミノエタノールの添加量を0.35gとしたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <比較例1>
  実施例1と同様にして得たポリアミック酸の反応液をアルコールに滴下してポリアミック酸を析出させた。これを用いて実施例1と同様にして、電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <比較例2>
 2-アミノエタノールの添加量を0.02gとしたこと以外は、実施例1と同様にして電着液を得た。また、この電着液を用いて、実施例1と同様の方法及び条件で絶縁物を作製した。
 <比較例3>
 ポリアミック酸の合成において、無水トリメリット酸の追添加をしなかったこと以外は、実施例1と同様にして電着液の調製を行った。なお、この比較例3では、電着液の調製段階でポリマー粒子が十分に分散せず、沈殿が生じたために電着液が得られなかった。
 <比較試験及び評価>
 実施例1~9及び比較例1~3で得られた電着液等について、以下の(i)~(iv)の評価を行った。これらの結果を以下の表1に示す。
 (i)メジアン径(D50):電着液中に分散するポリマー粒子(ポリアミック酸粒子)について、動的光散乱式粒度分布測定装置(堀場製作所社製、型式名:LB-550)により、その体積基準のメジアン径(D50)を測定した。
 (ii)クーロン効率:上述の方法により銅板の表面に成膜された、焼き付け処理後の絶縁層の質量を、電着時に必要となった電気量で除した値を算出し、その値をクーロン効率とした。なお、焼き付け処理後の絶縁層の質量は、表面に焼き付け処理後の絶縁層が形成された銅板と電着前の銅板との質量変化量から算出した。また、電着時に必要となった電気量は電着の際にクーロンメ-タにより確認した。
 (iii)液保存安定性:各実施例及び比較例で調製した電着液を、室温で一定時間放置した後、沈殿やゲル状物質の有無を目視により確認した。表1中、「A」は一ヶ月経過した後も目視では沈殿が全く確認されなかった場合を示し、「B」は一週間経過後は沈殿が確認されなかったが一ヶ月経過後沈殿が確認された場合を示し、「C」は電着液調製直後は沈澱が確認されなかったが一週間経過後に沈殿が確認された場合を示し、「D」は電着液調製直後に沈殿が確認された場合を示す。
 (iv)質量平均分子量:高速GPC装置(東ソー社製:HLC-8320GPC)を使用し、排除限界分子量4×10以上のカラム(東ソー社製:TSKgel Super AWM-H)を用い、示差屈折計にて検出した数値を標準ポリスチレン換算して分子量測定を行った。ここで、流量は0.600cc/分であり、制御温度は40℃であり、サンプリング速度は5×10-3cc/秒であり、サンプル注入量は0.010ccであった。なお、移動相には、ジメチルアセトアミドに吸着抑制剤として臭化リチウム1ミリモルとリン酸100ミリモルを添加したものを用いた。
Figure JPOXMLDOC01-appb-T000035
 表1から明らかなように、実施例1~9と比較例1~3と比較すると、ポリマー粒子の体積基準のメジアン径(D50)が所定値を超える比較例1では、分散性が十分に得られず、電着液調製直後に沈殿が生じて保存安定性が悪くなる結果となった。また、ポリマー粒子の体積基準のメジアン径(D50)が所定値に満たない比較例2では、塩基性化合物の添加量が多かったために、作製した絶縁物のクーロン効率が大幅に低下する結果となった。また、ポリアミック酸を合成する際に無水トリメリット酸の追添加を行わなかった比較例3では、上述のように、電着液が得られなかったために絶縁物が作製できず、クーロン効率の評価ができないという結果となった。
 これに対して、実施例1~9では、ポリマー粒子の粒子径が小さく、分散性が高くなり、また、クーロン効率も非常に高い値を示しており、効率良く電着することができた。
 本願発明は、パーソナルコンピュータ、スマートフォン等の電源用パワーインダクタのほか、車載用インバータのトランス、リアクトル、モーター等に使用される絶縁電線や、その他の絶縁物の製造に利用することができる。
 11 電着液

Claims (7)

  1.  ポリマー粒子、有機溶媒、塩基性化合物及び水を含有する水分散型絶縁皮膜形成用電着液において、
     前記ポリマー粒子が下記式(1-1)又は下記式(1-2)の構造単位を有するポリアミック酸からなり、
     前記ポリマー粒子は体積基準のメジアン径(D50)が0.08~0.7μmであることを特徴とする水分散型絶縁皮膜形成用電着液。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    但し、式(1-1)、式(1-2)中、Rは芳香族炭化水素を示す。
  2.  前記ポリマー粒子の体積基準のメジアン径(D50)が0.1~0.55μmである請求項1記載の水分散型絶縁皮膜形成用電着液。
  3.  前記ポリアミック酸がその末端にカルボキシル基を有する請求項1又は2記載の水分散型絶縁皮膜形成用電着液。
  4.  前記塩基性化合物が前記ポリアミック酸100質量部に対して0.5~3質量部の割合で含まれる請求項1から3いずれか1項に記載の水分散型絶縁皮膜形成用電着液。
  5.  電着時のクーロン効率が20mg/C以上である請求項1から4いずれか1項に記載の水分散型絶縁皮膜形成用電着液。
  6.  芳香族ジアミンに無水トリメリット酸クロライドを有機溶媒とともに添加混合して反応させ第1反応混合液を得る工程と、
     前記第1反応混合液に、無水トリメリット酸クロライドを追添加して反応させ第2反応混合液を得る工程と、
     前記第2反応混合液を水とアルコールの混合溶液中に添加してポリアミック酸を析出させる工程と、
     前記析出させたポリアミック酸と有機溶媒と塩基性化合物とを混合して混合液を得る工程と、
     前記混合液に水を添加して電着液を得る工程と
     を含む水分散型絶縁皮膜形成用電着液の製造方法。
  7.  請求項1から5いずれか1項に記載の水分散型絶縁皮膜形成用電着液を用いて金属表面に絶縁皮膜を形成する絶縁物の製造方法。
PCT/JP2016/068367 2015-07-02 2016-06-21 水分散型絶縁皮膜形成用電着液 WO2017002666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/739,917 US10465080B2 (en) 2015-07-02 2016-06-21 Water-dispersed electrodeposition solution for forming insulating film
KR1020177037135A KR20180025869A (ko) 2015-07-02 2016-06-21 수분산형 절연 피막 형성용 전착액
CN201680037591.7A CN107709632B (zh) 2015-07-02 2016-06-21 水分散型绝缘覆膜形成用电沉积液

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-133394 2015-07-02
JP2015133394 2015-07-02
JP2016115966A JP6677872B2 (ja) 2015-07-02 2016-06-10 水分散型絶縁皮膜形成用電着液
JP2016-115966 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017002666A1 true WO2017002666A1 (ja) 2017-01-05

Family

ID=57608029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068367 WO2017002666A1 (ja) 2015-07-02 2016-06-21 水分散型絶縁皮膜形成用電着液

Country Status (1)

Country Link
WO (1) WO2017002666A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816331B1 (ja) * 1966-12-07 1973-05-21
JPS4921426A (ja) * 1972-04-19 1974-02-25
JPS4952252A (ja) * 1972-06-23 1974-05-21
US4533448A (en) * 1982-02-19 1985-08-06 Westinghouse Electric Corp. Amine-free and surfactant-free electrodeposition of polyesters, polyamic acids, polyimides, and polyamide-imides
JPH11140181A (ja) * 1997-08-29 1999-05-25 Osaka Prefecture ポリアミド酸微粒子及びポリイミド微粒子ならびにそれらの製造方法
JP5513109B2 (ja) * 2007-05-07 2014-06-04 三菱電線工業株式会社 電着塗料組成物及び電着方法
CN103980528A (zh) * 2014-05-29 2014-08-13 哈尔滨工业大学 一种电沉积聚酰胺酸制备低介电聚酰亚胺薄膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816331B1 (ja) * 1966-12-07 1973-05-21
JPS4921426A (ja) * 1972-04-19 1974-02-25
JPS4952252A (ja) * 1972-06-23 1974-05-21
US4533448A (en) * 1982-02-19 1985-08-06 Westinghouse Electric Corp. Amine-free and surfactant-free electrodeposition of polyesters, polyamic acids, polyimides, and polyamide-imides
JPH11140181A (ja) * 1997-08-29 1999-05-25 Osaka Prefecture ポリアミド酸微粒子及びポリイミド微粒子ならびにそれらの製造方法
JP5513109B2 (ja) * 2007-05-07 2014-06-04 三菱電線工業株式会社 電着塗料組成物及び電着方法
CN103980528A (zh) * 2014-05-29 2014-08-13 哈尔滨工业大学 一种电沉积聚酰胺酸制备低介电聚酰亚胺薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUYA ASAO: "Development and Application of Polyimide Particles", JOURNAL OF THE ADHESION SOCIETY OF JAPAN, vol. 45, no. 12, 1 December 2009 (2009-12-01), pages 488 - 492 *

Similar Documents

Publication Publication Date Title
JP6794718B2 (ja) 水分散型絶縁皮膜形成用電着液
JP5994955B1 (ja) 水分散型絶縁皮膜形成用電着液
JP6787147B2 (ja) 電着液及び電着塗装体
JP2017057098A (ja) 薄膜形成用窒化ホウ素凝集粒子、絶縁皮膜、該凝集粒子の製造方法、絶縁電着塗料の製造方法、エナメル線及びコイル
US3507765A (en) Method for electrocoating a polyamide acid
JP6677872B2 (ja) 水分散型絶縁皮膜形成用電着液
WO2017002666A1 (ja) 水分散型絶縁皮膜形成用電着液
KR20120106076A (ko) 내 코로나 방전성 절연 도료 조성물 및 이를 도포하여 형성된 절연 피막을 포함하는 절연 전선
JP6907809B2 (ja) 高アスペクト比を有する絶縁平角導線、その製造方法及びコイル
WO2017141885A1 (ja) 電着液及び電着塗装体
JP2017066014A (ja) 樹脂コート窒化ホウ素粉末及びその分散液
JP2013234257A (ja) 電着塗料組成物および電着方法、ならびに絶縁部材
US3703493A (en) Preparation of polyamide-acid solution in aqueous tertiary amine
JP5551523B2 (ja) ポリイミド電着塗料の製造方法
CN103038291A (zh) 用于金属导体的涂料组合物
US3537970A (en) Process for electrodepositing a polyamide acid
WO2020240822A1 (ja) 電気絶縁樹脂組成物、及び電気絶縁体
CN117777723A (zh) 一种有机无机均相复合电介质储能薄膜材料及其制备方法
JP6769076B2 (ja) 電着塗料組成物及びそれを用いた絶縁電線の製造方法
JP2017137541A (ja) 電着液及びこれを用いた絶縁皮膜の形成方法
JPWO2020136827A1 (ja) 電気絶縁樹脂組成物、及び電気絶縁体
JP2007332215A (ja) 導電性ポリアニリン分散ポリイミド前駆体組成物及びそれを用いた導電性ポリイミドフィルム
JPS6357888B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177037135

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817774

Country of ref document: EP

Kind code of ref document: A1