WO2017000596A1 - 一种真空蒸镀装置及蒸镀方法 - Google Patents

一种真空蒸镀装置及蒸镀方法 Download PDF

Info

Publication number
WO2017000596A1
WO2017000596A1 PCT/CN2016/077331 CN2016077331W WO2017000596A1 WO 2017000596 A1 WO2017000596 A1 WO 2017000596A1 CN 2016077331 W CN2016077331 W CN 2016077331W WO 2017000596 A1 WO2017000596 A1 WO 2017000596A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
evaporation source
source
vacuum
vapor deposition
Prior art date
Application number
PCT/CN2016/077331
Other languages
English (en)
French (fr)
Inventor
姚固
曾苏伟
徐鹏
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/511,577 priority Critical patent/US10081860B2/en
Publication of WO2017000596A1 publication Critical patent/WO2017000596A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators

Definitions

  • Embodiments of the present invention relate to the field of display technologies, and in particular, to a vacuum evaporation apparatus and an evaporation method.
  • the evaporation process is widely used in the coating production process of electronic devices.
  • the principle is that the substrate to be evaporated is placed in a vacuum environment, and the evaporation material is heated to a certain temperature to evaporate or sublimate through the evaporation source, thereby The deposition of the vapor deposition material on the surface of the substrate to be evaporated is completed.
  • the structure of the existing vapor deposition apparatus can be as shown in FIG. 1.
  • An evaporation source 5 is disposed in the vacuum chamber 1, and a vapor deposition zone 2 is disposed above the evaporation source 5.
  • the exit position of the evaporation source 5 is correspondingly provided with a crystal oscillator plate 4.
  • the baffle 3, the vapor deposition rate is detected by the crystal oscillator 4; the substrate to be evaporated is placed in the vapor deposition zone 2, and the substrate can be formed into a film after the rate of the evaporation source 5 is stabilized.
  • the evaporation source 5 In order to ensure the stability of the evaporation, the evaporation source 5 needs to be maintained at a certain evaporation rate and is always in an evaporation state, so that the evaporation source 5 is still in the period between when the vapor deposition substrate is carried out and the new substrate is carried in. In the state of evaporation, this causes waste of evaporation material; further, the evaporation source 5 can only form a film in a specific direction, and cannot form a film in multiple directions at the same time, and the working efficiency is not high; During the period, if the evaporation source is unstable, the substrate must be stopped and transferred to the evaporation source. It is a waste of production time until it returns to normal.
  • the technical problem to be solved by the present invention is to provide a vacuum evaporation apparatus which can improve the utilization ratio of the evaporation material and the uniformity of film formation and improve the work efficiency in the vacuum evaporation process.
  • the present invention provides a vacuum evaporation apparatus comprising: a vacuum chamber and a rotating base, an evaporation source, and a plurality of vapor deposition regions disposed in this vacuum chamber from bottom to top;
  • the shape of the rotating abutment is a Lelo triangle, and the trajectory of the apex in the horizontal plane is a rounded square;
  • the evaporation zone is spaced along the trajectory of the vertices of the rotating abutment;
  • the evaporation source is on the rotating abutment Under the driving, it passes through the lower part of the vapor deposition zone.
  • the vacuum chamber is provided with a base rail, and the abutment rail has a rounded square shape and is located outside the rotating base; the apex of the rotating base respectively The abutment rails are slidingly connected.
  • an evaporation source guide is disposed on the rotating base and between a center and a vertex thereof, and the evaporation source slides in the direction of the evaporation source rail.
  • the evaporation source is a point source type.
  • the evaporation source is of a line source type; a turret is disposed under the evaporation source, and the turret is used to drive the evaporation source to be perpendicular to the evaporation process Abutment guide.
  • the vacuum evaporation apparatus further includes a crystal oscillation plate and a baffle plate, and the crystal oscillation plate is disposed obliquely along an opening direction of the evaporation source for detecting an evaporation rate of the evaporation source;
  • the baffle is located between the crystal plate and the evaporation source.
  • the vacuum evaporation apparatus further includes a vacuum pump connected to the vacuum chamber through an air suction duct.
  • the vacuum evaporation apparatus further includes a driving device for driving the rotating base to perform rotation.
  • the evaporation source is a plurality of evaporation sources.
  • the present invention also provides a method for performing vapor deposition according to the vacuum evaporation apparatus, comprising the following steps:
  • the evaporation method further includes:
  • the at least one evaporation source comprises a plurality of evaporation sources, and the method further comprises:
  • the evaporation method further comprises the following steps:
  • the embodiment of the present invention provides a vacuum evaporation device, and the shape of the rotating abutment is designed as a Lelo triangle, and the rotating abutment can drive the evaporation source in sequence.
  • the evaporation source can be vapor-deposited in multiple directions during the same vapor deposition operation, improving the uniformity of film formation and utilization of the evaporation material, and improving work efficiency.
  • FIG. 1 is a schematic structural view of a conventional evaporation device
  • FIG. 2 is a schematic structural view of a vacuum evaporation apparatus according to an embodiment of the present invention.
  • step S1 is performed
  • step S2 is performed
  • FIG. 5 is a view showing a state of a vacuum evaporation apparatus according to an embodiment of the present invention when step S3 is performed;
  • Fig. 6 is a view showing a state in which the vacuum evaporation apparatus according to the embodiment of the present invention performs step S4.
  • the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be, for example, a fixed connection or a Disassemble the connection, or connect it integrally; it can be a mechanical connection or an electrical connection; They are directly connected or indirectly connected through an intermediary.
  • installation means for example, a fixed connection or a Disassemble the connection, or connect it integrally; it can be a mechanical connection or an electrical connection; They are directly connected or indirectly connected through an intermediary.
  • the specific meaning of the above terms in the present invention can be understood as the case may be.
  • the vacuum evaporation apparatus includes: a vacuum chamber 1 and a rotary base 8 , an evaporation source 5 , and a plurality of steams arranged in the vacuum chamber 1 from bottom to top.
  • the enclosed curved triangle is the Lelo triangle.
  • the rotating abutment 8 of the Lelo triangle can rotate its apex in a horizontal plane into a rounded square, that is to say, its trajectory is a square with a circular transition of each corner, so that the evaporation source 5 can be
  • a linear trajectory is provided in a plurality of directions (positions of the straight sides of the rounded squares) to facilitate uniform film formation; the vapor deposition regions 2 are spaced apart along the rotational trajectory of the rotary pedestal 8 for accommodating the substrate 12 to be vapor-deposited.
  • the evaporation source 5 sequentially passes under the vapor deposition region 2 by the rotation base 8, thereby achieving uniform film formation on the substrate 12 to be vapor-deposited in a plurality of directions during the same vapor deposition operation.
  • the rotary base 8 can be rotated by means of a slide rail.
  • a base rail 9 is provided in the vacuum chamber 1, and the shape of the abutment rail 9 is rounded square to ensure a corresponding trajectory of the rotating base 8; moreover, the abutment rail 9 is located on the rotating abutment
  • the apex of the rotary base 8 (the portion where the adjacent two curved sides intersect) is slidably coupled to the base rail 9, respectively, to ensure that the rotary base 8 rotates inside the base rail 9.
  • the plurality of vapor deposition regions 2 are also located above the periphery of the abutment guide rails 9, for example, the number of the vapor deposition regions 2 is four, and each of the vapor deposition regions 2 has a rectangular shape and is correspondingly located on the abutment guide rails. Above the straight side of 9, the trajectory of the evaporation source 5 as it passes through the vapor deposition zone 2 is a straight line. Thereby ensuring the uniformity of film formation.
  • the number of evaporation sources 5 is plural, and preferably three, which are respectively movable along the radial direction (between the center and the apex) of the rotary base 8.
  • An evaporation source guide 11 is disposed on the rotary base 8 between its center and the apex, and the evaporation source 5 is slidably mounted on the evaporation source guide 11 for sliding in the direction of the evaporation source guide 11.
  • the vacuum vapor deposition apparatus can perform the vapor deposition operation in a plurality of directions, the substrate can be taken in and out in any of the directions, and the vapor deposition operation can be performed normally in other directions. It can be seen that the vacuum evaporation apparatus has an improvement.
  • the evaporation time of the evaporation source 5 reduces the waste of the evaporation material. Specifically, the rotary base 8 is rotated in the base rail 9, and since the base rail 9 is a rounded square, the evaporation source 5 is simultaneously steamed in three directions (the position where any three straight sides of the rounded square are located).
  • the substrate is taken in and taken out, thereby increasing the vapor deposition time of the evaporation source 5 and reducing the waste of the evaporation material.
  • the vaporization rate of the evaporation source 5 when the vaporization rate of the evaporation source 5 is unstable, it can be contracted to the center position of the rotary base 8; when the rate is stable, it is moved to the vertex position of the rotary base 8 to form a film, thereby improving The utilization and fault tolerance of the entire vacuum evaporation system.
  • the form of the evaporation source 5 is not limited, and may be a point source type (the evaporation outlet is circular) or a line source type (the evaporation outlet is linear).
  • a turret is arranged below the evaporation source 5, and the turret is used to drive the evaporation source 5 to be perpendicular to the abutment guide rail 9 during the evaporation process, that is, each evaporation source 5
  • the vacuum evaporation apparatus further includes a crystal plate 4 and a baffle 3, and the crystal plate 4 is along the opening of the evaporation source 5.
  • the direction is inclined to detect the evaporation rate of the evaporation source 5; the baffle 3 is located between the crystal plate 4 and the evaporation source 5 for preventing the evaporation material of the evaporation source 5 from damaging the crystal plate 4 and prolonging the service life.
  • the baffle 3 is also provided with a baffle opening.
  • the crystal piece 4 can be slidably attached to the base rail 9 by means of a bracket or the like, and can be moved together with the evaporation source 5.
  • the vacuum evaporation apparatus further includes a vacuum pump 7 connected to the vacuum chamber 1 through an air suction duct 6 for providing a vacuum environment for the evaporation process.
  • the vacuum evaporation apparatus further includes a driving device 10 for driving the rotating base 8 for rotation.
  • the form of the driving device 10 is not limited, for example, motor driving can be employed to improve the degree of automation.
  • the present invention also provides an evaporation method using the above vacuum evaporation apparatus, comprising the following steps:
  • the evaporation material is loaded into at least one evaporation source, and the evaporation material may be the same material or different materials.
  • the evaporation source is at the center of the rotating abutment, taking three evaporation sources as an example: as shown in FIG. 3, the first evaporation source, the second evaporation source, and the third evaporation source are both contracted to the rotating abutment. Central location. Of course, there can be only one evaporation source.
  • the evaporation source with the first stable evaporation rate moves to the vertex position of the rotating abutment, and placing a plurality of substrates to be evaporated in the respective evaporation deposition regions, wherein the evaporation evaporation corresponding to the first stable evaporation source There is no substrate placed in the area, or there is no corresponding evaporation area above the first stable evaporation source; that is, the first stable evaporation source is facing the upper evaporation layer without placing the substrate, and the rest of the evaporation
  • the plated area can be placed on the substrate.
  • the first stable evaporation source can be located Between the two evaporation zones, the substrate can be placed in all vapor deposition zones. Moreover, the remaining vapor deposition regions may be put into the substrate to be vapor-deposited when the first stable evaporation source is located in the gap between the evaporation region and the upper evaporation region.
  • the first evaporation source is the first stable evaporation source
  • the first evaporation source is moved to the vertex position of the rotating abutment, and the second evaporation source and the third evaporation source remain stationary; the first evaporation
  • the next evaporation zone to be passed by the source serves as the first pick-and-place window, and the substrate to be evaporated is placed, and the remaining vapor deposition zones can be put into the evaporation to be evaporated when the evaporation source is located in the gap between the evaporation zone and the upper evaporation zone.
  • the rotating base starts to rotate, and the first evaporation source is sequentially passed through the lower portions of the respective vapor deposition regions to realize vapor deposition of the plurality of substrates to be vapor-deposited in different directions during the same vapor deposition operation. .
  • each vapor deposition zone pick-and-place window can take out the vapor-deposited substrate.
  • the at least one evaporation source comprises a plurality of evaporation sources
  • the evaporation method further comprises the following steps:
  • the evaporation method further comprises the following steps:
  • the present invention provides a vacuum evaporation apparatus, wherein the shape of the rotating abutment is designed as a Lelo triangle, and the rotating abutment can drive the evaporation source to sequentially pass under the plurality of evaporation regions, so that the evaporation source can simultaneously
  • the evaporation operation in multiple directions improves the uniformity of film formation and the utilization of evaporation materials, which is beneficial to promotion and application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种真空蒸镀装置,包括真空腔室(1)及在真空腔室(1)内自下而上依次设置的旋转基台(8)、蒸发源(5)及多个蒸镀区域;旋转基台(8)的形状为勒洛三角形,且其顶点在水平面的运动轨迹为圆角正方形;蒸镀区域沿旋转基台(8)顶点的运动轨迹间隔设置;蒸发源在旋转基台(8)的带动下依次经过蒸镀区域的下方,使得蒸发源(5)可同时在多个方向进行蒸镀作业。还涉及一种采用该蒸镀装置蒸镀的方法。

Description

一种真空蒸镀装置及蒸镀方法 技术领域
本发明的实施例涉及显示技术领域,尤其涉及一种真空蒸镀装置及蒸镀方法。
背景技术
目前,蒸镀工艺被广泛地应用于电子器件的镀膜生产过程中,其原理是将待蒸镀的基板放置于真空环境中,通过蒸发源使蒸镀材料加热到一定温度发生蒸发或升华,从而使蒸镀材料凝结沉积在待蒸镀的基板表面而完成镀膜。
现有蒸镀装置的结构可如图1所示,在真空腔室1内设有蒸发源5,蒸发源5的上方设有蒸镀区域2,蒸发源5的出口位置对应设置有晶振片4和挡板3,通过晶振片4实现检测蒸镀速率;将待蒸镀的基板放置于蒸镀区域2内,待蒸发源5的速率稳定后可对基板进行成膜。为了保证蒸镀的稳定性,需要将该蒸发源5维持在一定的蒸发速率并一直处于蒸发状态,这样在已完成蒸镀基板搬出与新基板搬入之间的这段时间内,蒸发源5仍在保持蒸发状态,这就造成了蒸发材料的损失浪费;而且,该蒸发源5只能在特定方向上进行成膜,不能同时在多个方向成膜,工作效率不高;此外,在蒸镀期间,一旦蒸发源出现蒸镀速率不稳定等情况,就必须停止搬入基板,直到蒸发源 恢复正常为止,造成了生产时间的浪费。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是提供了一种真空蒸镀装置,使得在真空蒸镀过程中能够提高蒸发材料的利用率以及成膜的均一性,并提高工作效率。
(二)技术方案
为了解决上述技术问题,本发明提供一种真空蒸镀装置,包括:真空腔室及在所述真空腔室内自下而上依次设置的旋转基台、蒸发源及多个蒸镀区域;所述旋转基台的形状为勒洛三角形,且其顶点在水平面的运动轨迹为圆角正方形;所述蒸镀区域沿所述旋转基台的顶点的运动轨迹间隔设置;所述蒸发源在旋转基台的带动下依次经过所述蒸镀区域的下方。
根据本发明的一示例性实施例,所述真空腔室内设有基台导轨,所述基台导轨的形状为圆角正方形,且位于旋转基台的外侧;所述旋转基台的顶点分别与基台导轨滑动连接。
根据本发明的一示例性实施例,在所述旋转基台上且位于其中心与顶点之间设有蒸发源导轨,所述蒸发源沿所述蒸发源导轨方向滑动。
根据本发明的一示例性实施例,所述蒸发源为点源式。
根据本发明的一示例性实施例,所述蒸发源为线源式;在所述蒸发源的下方设有转动架,所述转动架用于带动所述蒸发源在蒸镀过程中始终垂直于 基台导轨。
根据本发明的一示例性实施例,该真空蒸镀装置还包括晶振片和挡板,所述晶振片沿所述蒸发源的开口方向倾斜设置,用于检测蒸发源的蒸镀速率;所述挡板位于晶振片与蒸发源之间。
根据本发明的一示例性实施例,该真空蒸镀装置还包括真空泵,所述真空泵通过抽气管道与所述真空腔室连接。
根据本发明的一示例性实施例,该真空蒸镀装置还包括驱动装置,所述驱动装置用于驱动所述旋转基台进行转动。
根据本发明的一示例性实施例,所述蒸发源为多个蒸发源。
此外,本发明还提供一种根据所述真空蒸镀装置进行蒸镀的方法,包括如下步骤:
S1、将蒸发材料装载于至少一个蒸发源中,并使所述蒸发源均处于旋转基台的中心位置;
S2、将蒸发速率最先稳定的蒸发源移动至旋转基台的顶点位置,将待蒸镀的多个基板分别放置在多个蒸镀区域内,其中该最先稳定蒸发源上方所对应的蒸镀区域内不放置基板,或者该最先稳定的蒸发源上方没有所对应的蒸镀区域;
S3、启动旋转基台,使该最先稳定蒸发源依次经过各个蒸镀区域的下方,实现在同一次蒸镀作业期间在不同方向上对多个待蒸镀的基板进行蒸镀作业;然后将已完成蒸镀的基板取出。
根据本发明的一示例性实施例,该蒸镀方法还包括:
当将已完成蒸镀的基板取出后,对应放入新的待蒸镀的基板;
根据本发明的一示例性实施例,所述至少一个蒸发源包括多个蒸发源,且该方法还包括:
S4、对于其他蒸发速率陆续稳定的蒸发源,当对应的旋转基台顶点位于两个蒸镀区域的间隙时,将这些蒸发源分别移动至旋转基台上对应的顶点处,直至所有蒸发源均参与蒸镀作业。
根据本发明的一示例性实施例,该蒸镀方法还包括如下步骤:
S5、在蒸镀作业过程中,若其中某一蒸发源出现速率不稳定时,则控制在该蒸发源旋转至两个蒸镀区域的间隙时将其移动至旋转基台的中心处进行维修;待该蒸发源的速率稳定并且旋转基台对应该蒸发源的顶点位于两个蒸镀区域的间隙时,再运动至旋转基台的顶点进行蒸镀作业。
(三)有益效果
本发明的实施例的上述技术方案具有以下有益效果:本发明的实施例提供一种真空蒸镀装置,将旋转基台的形状设计为勒洛三角形,该旋转基台可带动蒸发源依次经过多个蒸镀区域的下方,使得蒸发源可在同一次蒸镀作业期间在多个方向蒸镀作业,提高成膜的均一性以及对蒸发材料的利用率,并提高了工作效率。
附图说明
图1为现有蒸发装置的结构示意图;
图2为本发明实施例真空蒸镀装置的结构示意图;
图3为本发明实施例真空蒸镀装置在执行步骤S1时的状态图;
图4为本发明实施例真空蒸镀装置在执行步骤S2时的状态图;
图5为本发明实施例真空蒸镀装置在执行步骤S3时的状态图;
图6为本发明实施例真空蒸镀装置在执行步骤S4时的状态图。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
在本发明的描述中,需要说明的是,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以 是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本发明中的具体含义。
结合图2、图6所示,本实施例提供的真空蒸镀装置包括:真空腔室1及在真空腔室1内自下而上依次设置的旋转基台8、蒸发源5及多个蒸镀区域2;该旋转基台8的形状为勒洛三角形,勒洛三角形是指:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形。这种勒洛三角形的旋转基台8在旋转过程中,可使其顶点在水平面的运动轨迹为圆角正方形,也就是说其轨迹为各个拐角采用圆弧过渡的正方形,这样可使蒸发源5在多个方向(圆角正方形的各直边所在位置)上具有直线轨迹,利于均匀成膜;蒸镀区域2沿旋转基台8的转动轨迹间隔设置,用于容纳待蒸镀的基板12。同时,蒸发源5在旋转基台8的带动下依次经过蒸镀区域2的下方,从而实现在同一次蒸镀作业期间在多个方向对待蒸镀的基板12进行均匀成膜。
为了增加蒸镀的稳定性,旋转基台8可采用滑轨的方式进行旋转。具体地,在真空腔室1内设有基台导轨9,基台导轨9的形状为圆角正方形,以保证与旋转基台8的转动轨迹相对应;而且,基台导轨9位于旋转基台8的外侧,同时,旋转基台8的顶点(相邻两个曲边相交的部位)分别与基台导轨9滑动连接,保证了旋转基台8在基台导轨9的内侧进行旋转。
当然,多个蒸镀区域2也对应位于基台导轨9周围的上方,例如:蒸镀区域2的数量为四个,每个蒸镀区域2的形状为矩形,且分别对应位于该基台导轨9的直边上方,使蒸发源5在经过蒸镀区域2时的运动轨迹为直线, 从而保证成膜的均匀性。
对应地,根据本发明的一示例性实施例,蒸发源5的数量为多个,且优选为三个,可分别沿着旋转基台8的径向(中心至顶点之间)移动。在旋转基台8上且位于其中心与顶点之间设有蒸发源导轨11,蒸发源5滑动安装于蒸发源导轨11上,用于沿蒸发源导轨11方向滑动。
由于该真空蒸镀装置可实现在多个方向进行蒸镀作业,因此可以其中任意一方向进行基板的投入取出动作,而其他方向仍然可正常进行蒸镀作业,可见,该真空蒸镀装置具有提高蒸发源5的蒸镀时间,减少蒸发材料的浪费的功能。具体而言:旋转基台8在基台导轨9中旋转,由于基台导轨9为圆角正方形,使得蒸发源5同时在三个方向上(圆角正方形任意三个直边所在位置)进行蒸镀,同时第四方向(圆角正方形另一直边所在位置)进行基板的投入取出动作,从而提高蒸发源5的蒸镀时间,减少蒸发材料的浪费。
此外,在蒸发源5出现蒸镀速率不稳定时,可以将其收缩至旋转基台8的中心位置;待到其速率稳定时,再运动至旋转基台8的顶点位置进行成膜,从而提高了整个真空蒸镀系统的利用率和容错率。
其中,蒸发源5的形式并不局限,可以为点源式(蒸发出口为圆状),也可以为线源式(蒸发出口为直线状)。当蒸发源5为线源式时,在蒸发源5的下方设有转动架,转动架用于带动蒸发源5在蒸镀过程中始终垂直于基台导轨9,也就是说,蒸发源5每次经过蒸镀区域2时,都需要使直线状的蒸发出口与基台导轨9相互垂直,从而增大蒸镀范围,提高蒸镀效率。
该真空蒸镀装置还包括晶振片4和挡板3,晶振片4沿蒸发源5的开口 方向倾斜设置,用于检测蒸发源5的蒸镀速率;挡板3位于晶振片4与蒸发源5之间,用于阻止蒸发源5的蒸镀材料损伤晶振片4,延长使用寿命。当然,挡板3上也设有挡板开口,在晶振片4检测蒸镀速率时,该挡板开口允许蒸镀材料通过,从而提高测量精度。而且,该晶振片4也可通过支架等设备滑动安装于基台导轨9上,可与蒸发源5一起运动。
该真空蒸镀装置还包括真空泵7,真空泵7通过抽气管道6与真空腔室1连接,用于为蒸镀过程提供真空环境。
该真空蒸镀装置还包括驱动装置10,驱动装置10用于驱动旋转基台8进行转动,驱动装置10的形式并不局限,例如;可采用电机驱动,提高自动化程度。
此外,本发明还提供一种应用上述真空蒸镀装置的蒸镀方法,包括如下步骤:
S1、将蒸发材料装载于至少一个蒸发源中,该蒸发材料可为同一材料,也可为不同材料。初始状态时,蒸发源处于旋转基台的中心位置,以三个蒸发源为例说明:如图3所示,第一蒸发源、第二蒸发源和第三蒸发源均收缩于旋转基台的中心位置。当然,也可以只有一个蒸发源。
S2、将蒸发速率最先稳定的蒸发源移动至旋转基台的顶点位置,将待蒸镀的多个基板分别放置在各个蒸镀区域内,其中该最先稳定蒸发源上方所对应的蒸镀区域内不放置基板,或者该最先稳定的蒸发源上方没有所对应的蒸镀区域;也就是说,该最先稳定蒸发源正对上方的一个蒸镀区域是不放置基板的,其余的蒸镀区域可以放置基板。或者,该最先稳定的蒸发源可以位于 两个蒸镀区域之间,因而所有蒸镀区域都可以放置基板。而且,其余蒸镀区域均可以在该最先稳定蒸发源位于该蒸发区域与上一蒸发区域间隙时,投入待蒸镀的基板。
如图4所示,假设第一蒸发源为速率最先稳定的蒸发源,将第一蒸发源移动至旋转基台的顶点位置,第二蒸发源和第三蒸发源保持不动;第一蒸发源即将经过的下一蒸镀区域作为第一取放窗口,投放待蒸镀的基板,而其余蒸镀区域均可以在该蒸发源位于该蒸发区域与上一蒸发区域间隙时,投入待蒸镀的基板。
S3、启动旋转基台,使该最先稳定蒸发源依次经过各个蒸镀区域的下方,实现在同一次蒸镀作业期间在不同方向上对多个待蒸镀的基板进行蒸镀作业;蒸镀完毕后各蒸镀区域将已完成蒸镀的基板取出,然后可以放入新的待蒸镀的基板等待下一次蒸镀作业;
如图5所示,旋转基台开始旋转,带动第一蒸发源依次经过各个蒸镀区域的下方,实现在同一次蒸镀作业期间在不同方向上对多个待蒸镀的基板进行蒸镀作业。当然,蒸镀完毕后各蒸镀区域取放窗口可将已完成蒸镀的基板取出。
根据本发明的一示例性实施例,所述至少一个蒸发源包括多个蒸发源,该蒸镀方法还包括如下步骤:
S4、对于蒸发速率陆续稳定的其他蒸发源,在对应的旋转基台顶点位于两个蒸镀区域的间隙时,将其移动至旋转基台上对应的顶点处,直至所有蒸发源均参与蒸镀作业。
如图6所示,当第二蒸发源和第三蒸发源的蒸发速率也相继稳定时,在旋转基台的顶点位于两个蒸镀区域的间隙时,分别将其移动至旋转基台上对应的顶点处。具体说明为:当第二蒸发源对应的基台顶点位于两个蒸镀区域的间隙时,在这段空隙时间内迅速将其移动至旋转基台上对应的顶点处;同理,当第三蒸发源对应的基台顶点位于两个蒸镀区域的间隙时,在这段空隙时间内迅速将其移动至旋转基台上对应的顶点处,这样可以实现连续作业。
根据本发明的一示例性实施例,该蒸镀方法还包括如下步骤:
S5、在蒸镀作业过程中,若其中某一蒸发源出现速率不稳定或其他故障,则控制在该蒸发源在旋转至两个蒸镀区域的间隙时沿将其移动至旋转基台的中心处进行维修,而刚完成的基板可视情况判定为不良;待该蒸发源速率稳定并且旋转基台对应该蒸发源的顶点位于两个蒸镀区域的间隙时,再运动至旋转基台的顶点进行蒸镀作业。
综上所述,本发明提供一种真空蒸镀装置,将旋转基台的形状设计为勒洛三角形,该旋转基台可带动蒸发源依次经过多个蒸镀区域的下方,使得蒸发源可同时在多个方向蒸镀作业,提高成膜的均一性以及对蒸发材料的利用率,利于推广与应用。
本发明的实施例是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显而易见的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (13)

  1. 一种真空蒸镀装置,包括:真空腔室及在所述真空腔室内自下而上依次设置的旋转基台、蒸发源及多个蒸镀区域;所述旋转基台的形状为勒洛三角形,且其顶点在水平面的运动轨迹为圆角正方形;所述蒸镀区域沿所述旋转基台的顶点的运动轨迹间隔设置;所述蒸发源在旋转基台的带动下依次经过所述蒸镀区域的下方。
  2. 根据权利要求1所述的真空蒸镀装置,其中,所述真空腔室内设有基台导轨,所述基台导轨的形状为圆角正方形,且位于旋转基台的外侧;所述旋转基台的顶点分别与基台导轨滑动连接。
  3. 根据权利要求2所述的真空蒸镀装置,其中,在所述旋转基台上且位于其中心与顶点之间设有蒸发源导轨,所述蒸发源沿所述蒸发源导轨方向滑动。
  4. 根据权利要求3所述的真空蒸镀装置,其中,所述蒸发源为点源式。
  5. 根据权利要求3所述的真空蒸镀装置,其中,所述蒸发源为线源式;在所述蒸发源的下方设有转动架,所述转动架用于带动所述蒸发源在蒸镀过程中始终垂直于基台导轨。
  6. 根据权利要求1所述的真空蒸镀装置,还包括晶振片和挡板,所述晶振片沿所述蒸发源的开口方向倾斜设置,用于检测蒸发源的蒸镀速率;所述挡板位于晶振片与蒸发源之间。
  7. 根据权利要求1所述的真空蒸镀装置,还包括真空泵,所述真空泵 通过抽气管道与所述真空腔室连接。
  8. 根据权利要求1所述的真空蒸镀装置,还包括驱动装置,所述驱动装置用于驱动所述旋转基台进行转动。
  9. 根据权利要求1所述的真空蒸镀装置,其中,所述蒸发源为多个蒸发源。
  10. 一种根据权利要求1-9中任一项所述的真空蒸镀装置的蒸镀方法,包括如下步骤:
    S1、将蒸发材料装载于至少一个蒸发源中,并使所述蒸发源处于旋转基台的中心位置;
    S2、将蒸发速率最先稳定的蒸发源移动至旋转基台的顶点位置,将待蒸镀的多个基板分别放置在多个蒸镀区域内,其中该最先稳定的蒸发源上方所对应的蒸镀区域内不放置基板,或者该最先稳定的蒸发源上方没有所对应的蒸镀区域;
    S3、启动旋转基台,使该最先稳定蒸发源依次经过各个蒸镀区域的下方,实现在同一次蒸镀作业期间在不同方向上对多个待蒸镀的基板进行蒸镀作业;然后将已完成蒸镀的基板取出。
  11. 根据权利要求10所述的蒸镀方法,还包括:
    当将已完成蒸镀的基板取出后,对应放入新的待蒸镀的基板。
  12. 根据权利要求10所述的蒸镀方法,其中,所述至少一个蒸发源包括多个蒸发源,且该方法还包括:
    S4、对于其他蒸发速率陆续稳定的蒸发源,当对应的旋转基台顶点位于两个蒸镀区域的间隙时,将这些蒸发源分别移动至旋转基台上对应的顶点处,直至所有蒸发源均参与蒸镀作业。
  13. 根据权利要求10所述的蒸镀方法,还包括如下步骤:
    S5、在蒸镀作业过程中,若其中某一蒸发源出现速率不稳定,则控制在该蒸发源旋转至两个蒸镀区域的间隙时将其移动至旋转基台的中心处进行维修;待该蒸发源的速率稳定并且旋转基台对应该蒸发源的顶点位于两个蒸镀区域的间隙时,再运动至旋转基台的顶点进行蒸镀作业。
PCT/CN2016/077331 2015-06-30 2016-03-25 一种真空蒸镀装置及蒸镀方法 WO2017000596A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/511,577 US10081860B2 (en) 2015-06-30 2016-03-25 Vacuum deposition apparatus and vapor deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510388186.7 2015-06-30
CN201510388186.7A CN104911548B (zh) 2015-06-30 2015-06-30 一种真空蒸镀装置及蒸镀方法

Publications (1)

Publication Number Publication Date
WO2017000596A1 true WO2017000596A1 (zh) 2017-01-05

Family

ID=54080982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077331 WO2017000596A1 (zh) 2015-06-30 2016-03-25 一种真空蒸镀装置及蒸镀方法

Country Status (3)

Country Link
US (1) US10081860B2 (zh)
CN (1) CN104911548B (zh)
WO (1) WO2017000596A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911548B (zh) * 2015-06-30 2017-05-03 合肥鑫晟光电科技有限公司 一种真空蒸镀装置及蒸镀方法
EP3464674A4 (en) * 2016-05-24 2020-01-29 Emagin Corporation HIGH PRECISION PERFORATED MASK DEPOSITION SYSTEM AND ASSOCIATED METHOD
TWI633197B (zh) 2016-05-24 2018-08-21 美商伊麥傑公司 高精準度蔽蔭遮罩沉積系統及其方法
CN109402592B (zh) * 2017-08-18 2020-06-26 Tcl科技集团股份有限公司 器件侧面蒸镀装置及器件侧面蒸镀方法
CN111334754A (zh) * 2018-12-18 2020-06-26 合肥欣奕华智能机器有限公司 一种可监测速率的蒸镀装置及速率监测方法
CN110739285A (zh) * 2019-10-30 2020-01-31 北京工业大学 硅基金属中间层化合物半导体晶圆的结构及制备方法
CN115233161A (zh) * 2022-07-13 2022-10-25 昆山国显光电有限公司 蒸镀设备、蒸镀系统以及蒸镀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2475739Y (zh) * 2001-04-26 2002-02-06 电子科技大学 一种用于沉积制备薄膜的装置
TW200827980A (en) * 2006-12-29 2008-07-01 Doosan Mecatec Co Ltd Evaporation source scanning device and evaporation apparatus having the same
CN101294271A (zh) * 2007-04-26 2008-10-29 索尼株式会社 沉积设备
CN104911548A (zh) * 2015-06-30 2015-09-16 合肥鑫晟光电科技有限公司 一种真空蒸镀装置及蒸镀方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411715A (en) * 1942-12-14 1946-11-26 Rca Corp Apparatus for the production of reflection reducing coatings
US2435997A (en) * 1943-11-06 1948-02-17 American Optical Corp Apparatus for vapor coating of large surfaces
DE3316554C1 (de) * 1983-05-06 1984-07-12 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Verdampfervorrichtung mit Strahlheizung zum Aufdampfen mehrerer Materialien
KR20090041316A (ko) * 2007-10-23 2009-04-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 성막 방법 및 발광 장치의 제작 방법
CN100575539C (zh) * 2008-03-21 2009-12-30 南开大学 多元共蒸发制备铟镓锑类多晶薄膜的方法
CN101619446A (zh) * 2008-06-30 2010-01-06 鸿富锦精密工业(深圳)有限公司 镀膜蒸发载具及使用该镀膜蒸发载具的真空镀膜装置
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法
CN104451554B (zh) * 2015-01-06 2019-07-02 京东方科技集团股份有限公司 真空蒸镀设备及真空蒸镀方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2475739Y (zh) * 2001-04-26 2002-02-06 电子科技大学 一种用于沉积制备薄膜的装置
TW200827980A (en) * 2006-12-29 2008-07-01 Doosan Mecatec Co Ltd Evaporation source scanning device and evaporation apparatus having the same
CN101294271A (zh) * 2007-04-26 2008-10-29 索尼株式会社 沉积设备
CN104911548A (zh) * 2015-06-30 2015-09-16 合肥鑫晟光电科技有限公司 一种真空蒸镀装置及蒸镀方法

Also Published As

Publication number Publication date
US10081860B2 (en) 2018-09-25
CN104911548B (zh) 2017-05-03
US20170283938A1 (en) 2017-10-05
US20180135163A9 (en) 2018-05-17
CN104911548A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2017000596A1 (zh) 一种真空蒸镀装置及蒸镀方法
JP6411975B2 (ja) 成膜装置及び成膜基板製造方法
US10801103B2 (en) Evaporation device and evaporation method using the same
JP6209286B2 (ja) 成膜装置及び成膜ワーク製造方法
TWI486480B (zh) Pallet devices, reaction chambers and metal organic compounds Chemical vapor deposition (MOCVD) equipment
CN105483619B (zh) 移动靶镀膜装置及镀膜方法
JP2010086956A (ja) 有機elデバイス製造装置及び同製造方法並びに成膜装置及び成膜方法
TWI567216B (zh) 供濺鍍沉積的微型可旋轉式濺鍍裝置
CN203715721U (zh) 一种化学气相沉积装置及旋转轴
JP2017208374A (ja) 載置台システム、基板処理装置及び温度制御方法
CN105980594B (zh) 薄膜涂覆方法及实施该方法的生产线
EA034967B1 (ru) Технологическая линия для формирования тонкопленочных покрытий в вакууме (варианты)
US8137511B2 (en) Film forming apparatus and film forming method
US11422008B2 (en) Rotation angle detection apparatus and rotation angle detection method, and substrate processing apparatus and substrate processing method using same
CN2573508Y (zh) 镀膜设备
CN106222621B (zh) 一种磁控溅射装置及磁控溅射方法
CN102517553A (zh) 磁控溅射镀膜生产系统及其生产工艺
JP2009191310A (ja) マルチターゲットスパッタリング装置
KR20140123313A (ko) 박막증착장치
KR101591003B1 (ko) 증착 장치
JP2010034586A (ja) 基板処理装置
CN103215563A (zh) 沉积设备以及旋转装置
TWI480406B (zh) 鍍膜設備及輸送模組
CN115216735A (zh) 一种oled生产过程中石英晶振片沉积监测装置及方法
JP2006097072A (ja) スパッタ成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16816961

Country of ref document: EP

Kind code of ref document: A1