WO2017000361A1 - 立体电感线圈及采用印制电路法制备立体电感线圈的方法 - Google Patents

立体电感线圈及采用印制电路法制备立体电感线圈的方法 Download PDF

Info

Publication number
WO2017000361A1
WO2017000361A1 PCT/CN2015/086589 CN2015086589W WO2017000361A1 WO 2017000361 A1 WO2017000361 A1 WO 2017000361A1 CN 2015086589 W CN2015086589 W CN 2015086589W WO 2017000361 A1 WO2017000361 A1 WO 2017000361A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
column
pillars
holes
double
Prior art date
Application number
PCT/CN2015/086589
Other languages
English (en)
French (fr)
Inventor
王靖
朱思猛
王玲
杨航
Original Assignee
安捷利(番禺)电子实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安捷利(番禺)电子实业有限公司 filed Critical 安捷利(番禺)电子实业有限公司
Priority to US15/740,623 priority Critical patent/US20180211750A1/en
Publication of WO2017000361A1 publication Critical patent/WO2017000361A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/043Printed circuit coils by thick film techniques
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/002Details of via holes for interconnecting the layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/097Alternating conductors, e.g. alternating different shaped pads, twisted pairs; Alternating components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/422Plated through-holes or plated via connections characterised by electroless plating method; pretreatment therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates

Definitions

  • the invention belongs to the field of an inductor coil, and particularly relates to a three-dimensional inductor coil and a method for preparing a three-dimensional inductor coil by using a printed circuit board technology.
  • the inductor coil is an important component in the circuit, and as the degree of circuit integration increases, the volume of the coil needs to be further reduced.
  • the use of a copper wire having a diameter of several hundred micrometers or even several tens of micrometers is produced by winding, and the efficiency is extremely low. And the volume has not been reduced too much.
  • there are also planar involute inductors produced by the printed circuit method instead of the three-dimensional solenoid coils but there are many defects, the most prominent of which is that the inductance of the involute planar coils is generally low. Ultra-fine wires are used to prepare three-dimensional inductors, which are not suitable for winding, and are easy to break. Instead of using a planar inductor instead of a three-dimensional inductor, it is difficult to achieve higher inductance.
  • the coils prepared by the existing printed circuit board method adopt the equivalent inductance method, that is, the involute planar inductor coil is used instead of the three-dimensional solenoid inductor coil, and the planar involute inductor coil is difficult to prepare high inductance.
  • the product Usually a long solenoid coil, when the ratio of the length of the solenoid (l) to the radius of the solenoid is greater than 40, is usually calculated using the following formula:
  • L is the solenoid inductance
  • ⁇ 0 is the magnetic induction coefficient
  • N is the number of turns of the coil
  • ⁇ r 2 is the cross-sectional area of the solenoid
  • l is the length of the solenoid. Since the coil prepared by the method of using the printed circuit board is difficult to be round, the area of the solenoid can be replaced by a rectangle. Then there is
  • w is the width of the rectangular solenoid and h is the height of the rectangular solenoid.
  • the invention provides a method for preparing a three-dimensional inductor coil by using a printed circuit method, which has the characteristics of high efficiency, and the prepared three-dimensional inductor coil has high inductance.
  • the technical scheme adopted by the present invention is as follows: a method for preparing a three-dimensional inductor coil by using a printed circuit method The method includes the following steps:
  • the laser drilling in step 1) is a UV laser drilling.
  • step 2) the hole wall is cleaned by a wet degreasing process.
  • step 3 the metal copper layer is deposited on the pore walls of the via holes using a chemical copper sinking process.
  • the metal copper layer in the step 3) has a thickness of 2 to 3 ⁇ m.
  • step 4 the via holes are filled with copper by an electroplating copper process.
  • the two rows of through holes are parallel to each other.
  • the spacing between adjacent ones of the ones of the through holes is the same as the spacing between the adjacent ones of the other of the plurality of through holes.
  • a second aspect of the present invention provides a three-dimensional inductor coil obtained by the method as described above, the three-dimensional inductor coil comprising a first column of copper pillars, a second column of copper pillars, and by separately etching a double-sided copper clad laminate, a plurality of conductive upper connecting strips and a lower connecting strip formed on the lower surface, the top of the first +n copper pillars in the first column of copper pillars and the top of the nth copper pillars in the second column of copper pillars Connected by one of the upper connecting strips, the bottom of the nth copper pillar in the first column of copper pillars and the bottom of the nth copper pillar in the second column of copper pillars are connected by one of the lower connecting strips,
  • the n is an integer not less than 1.
  • first column of copper pillars and the second column of copper pillars are parallel to each other, and the spacing between adjacent copper pillars in the first column of copper pillars is consistent with the spacing between adjacent copper pillars in the second column of copper pillars.
  • the three-dimensional inductor coil is prepared by the method of the invention, and the efficiency is high, and the problem that the wire is broken easily when the inductor coil is prepared by the winding method is not easy, and the obtained three-dimensional inductor coil has high inductance.
  • planar coil requires a large wiring area, and a planar printed inductor or a rectangular involute planar inductor is used to design a planar inductive coil, which often results in a low board utilization and a coil. Big, The lower the utilization rate.
  • the three-dimensional inductor coil utilizes the Z-axis direction of the circuit board, which significantly saves the wiring area of the inductor unit.
  • the design and calculation of the planar coil is very complicated, involving a lot of simulation and simulation, the design requirements are very high; and the three-dimensional solenoid coil is derived from the ordinary wire-wound solenoid, the calculation is simpler and faster, and the design is more convenient.
  • the planar involute inductor produced by the printed circuit method since there is only one layer, the planar parasitic inductance cannot be eliminated, that is, the congenital structure is destined that this solution cannot solve the eddy current problem; while the stereo inductor does not exist. Therefore, in comparison, the three-dimensional inductor has a higher quality factor and is suitable for a wider range.
  • planar inductive coils are usually on the order of centimeters, that is, the outer diameter of the involute of the planar inductor is usually a few centimeters, and the coils produced by the printed circuit are usually micrometers or On the order of millimeters, in the case of the same scale, such as the diameter of the outermost circle of the plane involute, the three-dimensional solenoid coil is prepared by using the printed circuit board, and the planar involute inductor is obviously larger than the three-dimensional spiral.
  • the tube coil is many orders of magnitude smaller.
  • Figure 1 is a schematic view of the drilling data of the first step of the embodiment
  • FIG. 2 is a schematic view of a double-sided copper clad laminate after drilling
  • FIG. 3 is a schematic view of a double-sided copper clad laminate after copper plating
  • Figure 4 is a schematic diagram of the upper surface line data
  • Figure 5 is a schematic diagram of the lower surface line data
  • Figure 6 is a schematic view of a three-dimensional inductor coil.
  • a three-dimensional inductor coil is prepared as follows:
  • the upper and lower surfaces of the double-sided copper clad laminate 3 with the copper foil are drilled by UV laser drilling, so that two rows of through holes are formed on the double-sided copper clad laminate 3, which are called the first a row of through holes 11, a second row of through holes 21, the double-sided copper clad plate after drilling is shown in Figure 2;
  • Metallization treatment is performed on the hole wall of the through hole by chemical copper deposition process, activated for 30 seconds, microetched for 10 seconds, and copper is deposited for 50 minutes, so that the hole wall of the through hole is deposited with chemical copper having a thickness of about 1 ⁇ m;
  • the electroplating solution used for copper plating is mainly composed of copper sulfate pentahydrate (220 ⁇ 20g/L), sulfuric acid (50 ⁇ 10g/L), chloride ion (50 ⁇ 10ppm), accelerator (3620A, 1.0 ⁇ 0.2mL/ L), inhibitor (3620S, 15 ⁇ 3mL/L), leveling agent (3620L, 15 ⁇ 3mL/L), in which accelerators, inhibitors and leveling agents are produced by Shanghai Xinyang Semiconductor Materials Co., Ltd.;
  • the etching may be performed by an existing subtractive method or a semi-additive method, and a subtractive method is used to protect a line portion of the coil by using a photosensitive dry film, and the unprotected portion is removed by etching;
  • the semi-additive method is to protect the non-coil part with a dry film, and the circuit part of the coil is plated by electroplating, so that the copper thickness of the coil line part is much larger than the copper thickness of the non-coil part, and then through the differential etching process, The non-coil portion is thin and thin and is subtracted, and the coil wiring portion is thick, and even if a part of the thickness is subtracted, a sufficient thickness is retained, eventually leaving the coil.
  • the three-dimensional inductor coil obtained after the step 5) includes the first column of copper pillars 4 and the second column of copper pillars 5 which are left after etching the double-sided copper clad laminate, and the separated surfaces from the double-sided copper clad laminate surface a strip connecting strip 6 and 6 lower connecting strips 7 from the lower surface of the double-sided copper clad board, wherein the top of the first +n copper pillars of the first column of copper pillars and the nth of the second column of copper pillars The tops of the copper pillars are connected by an upper connecting strip, and the bottom of the nth copper pillar in the first column of copper pillars and the bottom of the nth copper pillar in the second column of copper pillars are connected by one of the lower joints Strip connection, n is an integer not less than 1, see FIG.
  • the solid line in FIG. 6 is a three-dimensional inductor
  • the top and the second column of the second copper pillar 42 in the first column of copper pillars The top of the first copper pillar 51 in the column is connected by an upper connecting strip 6, the bottom of the first copper pillar 41 of the first column of copper pillars and the first copper pillar 51 of the second column of copper pillars 51.
  • the bottom of the bottom is connected by a lower connecting strip 7, and so on.
  • the three-dimensional inductor coil prepared by the above method is a rectangular copper coil with a number of turns of 6 turns.
  • the method has high preparation efficiency, and the three-dimensional inductor coil prepared by the above method has higher inductance than the planar involute coil of the same size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

提供一种立体电感线圈及采用印制电路法制备立体电感线圈的方法,该方法包括如下步骤:1)对双面覆铜板(3)的相对的附有铜箔的两面钻孔,形成两列通孔(11,21);2)清洁通孔孔壁;3)在通孔孔壁沉积金属铜层;4)在通孔内填满铜,形成第一、第二列铜柱(4,5);5)在双面覆铜板(3)附有铜箔的两面贴感光干膜,曝光、显影,图形化感光干膜,然后进行刻蚀,刻蚀后的双面覆铜板(3)仅存留下第一、第二列铜柱(4,5)、及互相分离的多条上连接条(6)及多条下连接条(7),第一列铜柱(4)的第1+n个铜柱的顶部和第二列铜柱(5)的第n个铜柱的顶部之间由一条上连接条(6)连接,第一列铜柱(4)的第n个铜柱的底部和第二列铜柱(5)的第n个铜柱的底部之间由一条下连接条(7)连接。该方法具有效率高的特点。

Description

立体电感线圈及采用印制电路法制备立体电感线圈的方法 技术领域
本发明属于电感线圈领域,特别涉及一种立体电感线圈及采用印刷电路板技术制备立体电感线圈的方法。
背景技术
电感线圈是电路中的重要部件,而随着电路集成程度的提高,线圈的体积需要进一步缩小,采用直径几百微米甚至采用几十微米的铜线,通过卷绕方式制作,效率极低。而且体积并没有减小太多。另外也有采用印刷电路法生产的平面渐开线电感线圈来代替立体螺线管线圈,但其存在很多缺陷,其中最为突出的缺陷在于渐开线平面线圈的电感值通常都比较低。采用超细导线来制备立体的电感线圈,其不适合采用卷绕的方式,容易断裂,而采用平面电感代替立体的电感线圈,很难做到较高的电感。
现有的印制电路板方法制备的线圈,是采用等效电感的方法,即采用渐开线平面电感线圈来代替立体螺线管电感线圈,而平面渐开线电感线圈很难制备出高电感的产品。通常长的螺线管线圈,当螺线管长度(l)与螺线管半径的比值大于40的时候,通常用以下公式进行计算:
Figure PCTCN2015086589-appb-000001
其中L是螺线管电感,μ0是磁感应系数,N为线圈匝数,πr2为螺线管截面积,l为螺线管长度。由于采用印制电路板的方法制备的线圈很难做成圆形,通常螺线管面积可以采用矩形来代替。则有
Figure PCTCN2015086589-appb-000002
其中w是矩形螺线管的宽度,h是矩形螺线管的高度。
目前尚未见采用印制电路的方法制备立体电感线圈的相关报道。
发明内容
本发明为弥补现有技术的不足,提供一种采用印刷电路法制备立体电感线圈的方法,其具有效率高的特点,且制备的立体电感线圈具有高的电感。
本发明为达到其目的,采用的技术方案如下:一种采用印制电路法制备立体电感线圈的 方法,包括如下步骤:
1)准备双面覆铜板,对双面覆铜板的相对的附有铜箔的两面进行钻孔,从而在所述双面覆铜板上形成两列通孔;
2)对所述通孔的孔壁进行清洁,以去除钻孔时在孔壁留下的的残渣;
3)在所述通孔的孔壁沉积金属铜层;
4)在沉积了所述金属铜层的通孔内填满铜,从而形成第一列铜柱、第二列铜柱;
5)在双面覆铜板的相对的附有铜箔的两面贴感光干膜,对感光干膜进行曝光、显影,从而图形化感光干膜,然后对双面覆铜板进行刻蚀,刻蚀后的双面覆铜板仅存留下第一列铜柱、第二列铜柱、以及经刻蚀双面覆铜板形成的互相分离的多条上连接条及多条下连接条,且第一列铜柱中的第1+n个铜柱的顶部和第二列铜柱中的第n个铜柱的顶部之间由一条所述上连接条连接,第一列铜柱中的第n个铜柱的底部和第二列铜柱中的第n个铜柱的底部之间由一条所述下连接条连接,所述n为不小于1的整数。
步骤1)中所述激光钻孔为UV激光钻孔。
步骤2)中采用湿法除胶工艺对孔壁进行清洁。
步骤3)中采用化学沉铜工艺在通孔的孔壁沉积所述金属铜层。
步骤3)中所述金属铜层的厚度为2~3μm。
步骤4)中通过电镀铜工艺在通孔内填满铜。
优选的,两列通孔互相平行。
优选的,其中一列通孔中相邻通孔之间的间距和另一列通孔中相邻通孔之间的间距一致。
本发明第二方面提供一种采用如上文所述的方法制得的立体电感线圈,该立体电感线圈包括第一列铜柱、第二列铜柱,及通过分别刻蚀双面覆铜板上、下表面形成的多条导电的上连接条、下连接条,所述第一列铜柱中的第1+n个铜柱的顶部和第二列铜柱中的第n个铜柱的顶部之间由一条所述上连接条连接,第一列铜柱中的第n个铜柱的底部和第二列铜柱中的第n个铜柱的底部之间由一条所述下连接条连接,所述n为不小于1的整数。
进一步的,第一列铜柱和第二列铜柱互相平行,第一列铜柱中相邻铜柱之间的间距和第二列铜柱中相邻铜柱之间的间距一致。
本发明提供的技术方案具有如下有益效果:
采用本发明的方法制备立体电感线圈,效率高,不易出现通过卷绕方式制备电感线圈时容易造成导线断裂的问题,而且制得的立体电感线圈具有较高的电感。
本领域技术人员熟知的,平面线圈需要较大的布线面积,采用普通印制电路的方法制备平面电感线圈或者采用矩形渐开线平面电感的设计,常导致板面利用率很低,且线圈越大, 利用率则越低。而立体电感线圈利用了线路板的Z轴方向,显著节约了电感单元布线面积。其次,平面线圈的设计和计算非常复杂,涉及到大量仿真和模拟,设计要求非常高;而立体螺线管线圈是从普通线绕螺线管衍化而来,计算更为简单快捷,设计更为便利。再次,对于印制电路的方法制备的平面渐开线电感线圈,由于只有一层,平面寄生电感无法消除,即先天性结构注定了这种方案无法解决涡流问题;而立体电感则不存在这个困扰,所以相比而言,立体电感具有较高的品质因数,适合范围更广。最后,对于平面电感线圈的尺度通常都是厘米数量级,即平面电感线圈渐开线最外一圈的直径通常都是几个厘米,而采用印制电路的方法制备的线圈,通常都是微米或毫米的数量级,在尺度相同的情况下,如以平面渐开线最外圈直径为标准尺度,利用印制线路板制备立体螺线管线圈,则平面渐开线电感线圈显然要比立体螺线管线圈小多个数量级。
附图说明
图1是实施例步骤1的钻孔资料示意图;
图2是钻孔后双面覆铜板的示意图;
图3是填孔镀铜后双面覆铜板的示意图;
图4是上表面线路资料示意图;
图5是下表面线路资料示意图;
图6是立体电感线圈示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行进一步说明:
实施例1
一种立体电感线圈,按照如下步骤制备:
1)准备双面覆铜板,其上、下表面均有厚度为18μm的铜箔,中间介质层厚度为50μm;利用cad软件制作钻孔资料,共有两列互相平行的孔,分别为第一列孔1、第二列孔2,每列孔均有6个孔位,每个孔的孔径为50μm,同一列孔中相邻孔之间的中心间距D2为450μm,两列孔之间位置对应的孔之间的中心间距D1为4950μm,具体可参见图1。采用UV激光钻孔,对双面覆铜板3附有铜箔的上下表面进行钻孔,从而在所述双面覆铜板3上形成和钻孔资料一样的两列通孔,分别称之为第一列通孔11、第二列通孔21,钻孔后的双面覆铜板见图2所示;
2)采用湿法除胶工艺对双面覆铜板上的通孔的孔壁进行清洁,以去除孔壁残留的钻孔 胶渣,并使孔壁具备一定的粗糙度,粗糙度Ra控制在500~1000nm,便于后续化学铜的附着和沉积;
3)采用化学沉铜工艺对通孔的孔壁进行金属化处理,活化30秒,微蚀10秒,沉铜50分钟,使通孔的孔壁沉积厚度为1μm左右的化学铜;
4)采用填孔镀铜工艺,在沉积了化学铜的通孔内填孔镀铜,将通孔填满,从而形成第一列铜柱4、第二列铜柱5,参见图3;填孔镀铜采用的电镀药水其主要成分为五水硫酸铜(220±20g/L)、硫酸(50±10g/L)、氯离子(50±10ppm)、加速剂(3620A,1.0±0.2mL/L)、抑制剂(3620S,15±3mL/L)、整平剂(3620L,15±3mL/L),其中加速剂、抑制剂和整平剂都为上海新阳半导体材料股份有限公司生产;
5)在双面覆铜板的上、下表面贴感光干膜,利用cad软件制作线路资料,覆铜板上、下表面的线路资料分别如图4、5所示,将线路资料通过曝光机转移到感光干膜上,对已经曝光的感光干膜进行显影,从而图形化贴于覆铜板上下表面的感光干膜;显影完毕后对双面覆铜板上、下表面进行刻蚀,最终得到立体电感线圈。其中所述刻蚀可以采用现有的减成法或半加成法,采用减成法即使用感光干膜保护住线圈的线路部分,未被保护的部分,通过蚀刻,将其去除;而采用半加成法,即用干膜保护住非线圈的部分,线圈的线路部分采用电镀的办法镀起来,从而线圈线路部分的铜厚远大于非线圈部分的铜厚,然后通过差分蚀刻的工艺,非线圈部分铜厚很薄而被减去,而线圈线路部分由于很厚,即使被减去一部分厚度仍然保留足够的厚度,最终留下线圈。
经步骤5)后制得的立体电感线圈包括刻蚀双面覆铜板后仅存留下的第一列铜柱4、第二列铜柱5、互相分离的来自于双面覆铜板上表面的5条上连接条6及来自于双面覆铜板下表面的6条下连接条7,其中第一列铜柱中的第1+n个铜柱的顶部和第二列铜柱中的第n个铜柱的顶部之间由一条上连接条连接,第一列铜柱中的第n个铜柱的底部和第二列铜柱中的第n个铜柱的底部之间由一条所述下连接条连接,n为不小于1的整数,参见图6(图6中实线部分为立体电感线圈);具体例如,第一列铜柱中的第2个铜柱42的顶部和第二列铜柱中的第1个铜柱51的顶部之间由一条上连接条6连接,第一列铜柱中的第1个铜柱41的底部和第二列铜柱中的第1个铜柱51的底部之间由一条下连接条7连接,如此类推。
采用上述方法制备的立体电感线圈为匝数6匝的矩形铜质线圈,该方法制备效率高,与相同尺寸的平面渐开线线圈相比,上述方法制备的立体电感线圈具有较高的电感。
本发明的技术方案为在现有技术的基础上经过改进而获得的,文中未进行特别说明之处,均为本技术领域的常规技术手段或公知常识,因而在文中不再对此一一赘述。
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,故凡未 脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

  1. 一种采用印制电路法制备立体电感线圈的方法,其特征在于,包括如下步骤:
    1)在双面覆铜板相对的附有铜箔的两面钻孔,以在双面覆铜板上形成两列通孔;
    2)清洁所述通孔的孔壁以去除钻孔时在孔壁留下的残渣;
    3)在所述通孔的孔壁沉积金属铜层;
    4)在沉积了所述金属铜层的通孔内填满铜,从而形成第一列铜柱、第二列铜柱;
    5)在双面覆铜板的相对的附有铜箔的两面贴感光干膜,对感光干膜进行曝光、显影以图形化所述感光干膜,然后对双面覆铜板进行刻蚀,刻蚀后存留下所述第一列铜柱、所述第二列铜柱、以及经刻蚀双面覆铜板所形成的互相分离的多条上连接条及多条下连接条,且第一列铜柱中的第1+n个铜柱的顶部和第二列铜柱中的第n个铜柱的顶部之间由一条所述上连接条连接,第一列铜柱中的第n个铜柱的底部和第二列铜柱中的第n个铜柱的底部之间由一条所述下连接条连接,所述n为不小于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,步骤1)中所述钻孔为UV激光钻孔;步骤2)中采用湿法除胶工艺对孔壁进行清洁。
  3. 根据权利要求1所述的方法,其特征在于,步骤3)中采用化学沉铜工艺在通孔的孔壁沉积所述金属铜层。
  4. 根据权利要求1所述的方法,其特征在于,步骤3)中所述金属铜层的厚度为2~3μm。
  5. 根据权利要求1所述的方法,其特征在于,步骤4)中通过电镀铜工艺在通孔内填满铜。
  6. 根据权利要求1所述的方法,其特征在于,所述两列通孔互相平行,其中一列通孔中相邻通孔之间的间距和另一列通孔中相邻通孔之间的间距一致。
  7. 一种立体电感线圈,其特征在于,包括第一列铜柱、第二列铜柱,及多条导电的上连接条、下连接条,所述第一列铜柱中的第1+n个铜柱的顶部和第二列铜柱中的第n个铜柱的顶部之间由一条所述上连接条连接,第一列铜柱中的第n个铜柱的底部和第二列铜柱中的第n个铜柱的底部之间由一条所述下连接条连接,所述n为不小于1的整数。
  8. 根据权利要求7所述的立体电感线圈,其特征在于,第一列铜柱和第二列铜柱互相平行,第一列铜柱中相邻铜柱之间的间距和第二列铜柱中相邻铜柱之间的间距一致。
  9. 根据权利要求7~8任一项所述的立体电感线圈,其特征在于,所述立体电感线圈采用如权利要求1~6任一项所述的方法制得。
PCT/CN2015/086589 2015-06-30 2015-08-11 立体电感线圈及采用印制电路法制备立体电感线圈的方法 WO2017000361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/740,623 US20180211750A1 (en) 2015-06-30 2015-08-11 Three-dimensional inductance coil and a method for producing the same in printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510385782.X 2015-06-30
CN201510385782.XA CN105023732B (zh) 2015-06-30 2015-06-30 立体电感线圈及采用印制电路法制备立体电感线圈的方法

Publications (1)

Publication Number Publication Date
WO2017000361A1 true WO2017000361A1 (zh) 2017-01-05

Family

ID=54413625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086589 WO2017000361A1 (zh) 2015-06-30 2015-08-11 立体电感线圈及采用印制电路法制备立体电感线圈的方法

Country Status (3)

Country Link
US (1) US20180211750A1 (zh)
CN (1) CN105023732B (zh)
WO (1) WO2017000361A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003805A (zh) * 2018-08-27 2018-12-14 深圳通达电子有限公司 一种立体电磁线圈的制造方法
US10693432B2 (en) 2018-05-17 2020-06-23 Qualcommm Incorporated Solenoid structure with conductive pillar technology

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708302A (zh) * 2016-01-29 2018-02-16 鹏鼎控股(深圳)股份有限公司 电路板及电路板制作方法
WO2019098011A1 (ja) * 2017-11-16 2019-05-23 株式会社村田製作所 樹脂多層基板、電子部品およびその実装構造
JP6950747B2 (ja) * 2017-11-16 2021-10-13 株式会社村田製作所 樹脂多層基板、電子部品およびその実装構造
CN114898986A (zh) * 2022-05-05 2022-08-12 北京航空航天大学 Z型mems双层螺线管电感双层线圈及集成化制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030061591A1 (en) * 1999-12-28 2003-03-27 Intel Corporation Interconnected series of plated through hole vias and method of fabrication therefor
US20070085648A1 (en) * 2005-10-19 2007-04-19 Samsung Electronics Co., Ltd. High efficiency inductor, method for manufacturing the inductor, and packaging structure using the inductor
CN202841710U (zh) * 2012-08-10 2013-03-27 深南电路有限公司 印刷电路板
CN203072252U (zh) * 2012-09-29 2013-07-17 深南电路有限公司 印刷电路板
CN103582297A (zh) * 2012-08-10 2014-02-12 深南电路有限公司 印刷电路板加工方法和印刷电路板
CN103687293A (zh) * 2012-09-05 2014-03-26 安捷利(番禺)电子实业有限公司 一种叠加电路板及其制作工艺
CN103716999A (zh) * 2012-09-29 2014-04-09 深南电路有限公司 印刷电路板加工方法和印刷电路板
CN103717000A (zh) * 2012-09-29 2014-04-09 深南电路有限公司 印刷电路板加工方法和印刷电路板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180931A (ja) * 1995-12-27 1997-07-11 Sony Corp 空芯コイル
DE102008063312B4 (de) * 2008-12-30 2015-05-21 Siemens Aktiengesellschaft Vorabgleichbare SMD-Spulen für hohe Ströme
CN102065636A (zh) * 2009-11-12 2011-05-18 群康科技(深圳)有限公司 电路板及应用该电路板的电子装置及液晶显示器
CN102569252A (zh) * 2012-03-13 2012-07-11 复旦大学 适用于直流电压转换器和无线通讯收发机的混合集成电感
CN102917542B (zh) * 2012-10-17 2015-07-08 无锡江南计算技术研究所 铜pcb板线路制作方法
CN104616875B (zh) * 2015-02-06 2017-02-01 白静文 多变比的穿心式电流互感结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030061591A1 (en) * 1999-12-28 2003-03-27 Intel Corporation Interconnected series of plated through hole vias and method of fabrication therefor
US20070085648A1 (en) * 2005-10-19 2007-04-19 Samsung Electronics Co., Ltd. High efficiency inductor, method for manufacturing the inductor, and packaging structure using the inductor
CN202841710U (zh) * 2012-08-10 2013-03-27 深南电路有限公司 印刷电路板
CN103582297A (zh) * 2012-08-10 2014-02-12 深南电路有限公司 印刷电路板加工方法和印刷电路板
CN103687293A (zh) * 2012-09-05 2014-03-26 安捷利(番禺)电子实业有限公司 一种叠加电路板及其制作工艺
CN203072252U (zh) * 2012-09-29 2013-07-17 深南电路有限公司 印刷电路板
CN103716999A (zh) * 2012-09-29 2014-04-09 深南电路有限公司 印刷电路板加工方法和印刷电路板
CN103717000A (zh) * 2012-09-29 2014-04-09 深南电路有限公司 印刷电路板加工方法和印刷电路板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693432B2 (en) 2018-05-17 2020-06-23 Qualcommm Incorporated Solenoid structure with conductive pillar technology
CN109003805A (zh) * 2018-08-27 2018-12-14 深圳通达电子有限公司 一种立体电磁线圈的制造方法

Also Published As

Publication number Publication date
CN105023732A (zh) 2015-11-04
CN105023732B (zh) 2017-08-29
US20180211750A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017000361A1 (zh) 立体电感线圈及采用印制电路法制备立体电感线圈的方法
US7868464B2 (en) Multilayer substrate and manufacturing method thereof
US6902869B2 (en) Manufacturing methods for printed circuit boards
CN104349589B (zh) 印刷电路板以及印刷电路板及其盘中孔的制作方法
CN103404243B (zh) 印刷电路板及其制造方法
JP5932916B2 (ja) インダクター及びその製造方法
CN103416110B (zh) 印刷电路板及其制造方法
JP2007142403A (ja) プリント基板及びその製造方法
TWI542260B (zh) 印刷電路板及其製造方法
JP2017175120A (ja) 磁性コア内蔵印刷回路基板
TWI452955B (zh) 基板結構的製作方法
TW201519719A (zh) 配線基板及其製造方法
JP4079927B2 (ja) 多層基板及びその製造方法
KR101987378B1 (ko) 인쇄회로기판의 제조 방법
JP2010108537A (ja) サスペンション基板の製造方法
JP2002124415A (ja) 高周波用基板及びその製造方法
JP4034772B2 (ja) 多層基板及びその製造方法
CN102413639A (zh) 一种电路板的制造方法
O’Reilly et al. New integrated planar magnetic cores for inductors and transformers fabricated in MCM-L technology
JP2002171066A (ja) 多層配線基板の製造方法
CN113709979A (zh) 一种pcb外层线路的制作方法
TW202326768A (zh) 嵌埋電感結構及其製造方法
CN116666062A (zh) 叠层磁芯片上电感及其制造方法
CN115573007A (zh) 封装基板的制备方法
JPH06177503A (ja) プリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15740623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896891

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15896891

Country of ref document: EP

Kind code of ref document: A1