WO2016208699A1 - 光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法 - Google Patents

光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法 Download PDF

Info

Publication number
WO2016208699A1
WO2016208699A1 PCT/JP2016/068747 JP2016068747W WO2016208699A1 WO 2016208699 A1 WO2016208699 A1 WO 2016208699A1 JP 2016068747 W JP2016068747 W JP 2016068747W WO 2016208699 A1 WO2016208699 A1 WO 2016208699A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
formula
reaction
alcohol
group
Prior art date
Application number
PCT/JP2016/068747
Other languages
English (en)
French (fr)
Inventor
哲郎 西井
あゆみ 山口
大塚 隆史
直己 澤井
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201680037402.6A priority Critical patent/CN107709566B/zh
Priority to JP2017524986A priority patent/JP6823266B2/ja
Priority to US15/739,498 priority patent/US10336718B2/en
Publication of WO2016208699A1 publication Critical patent/WO2016208699A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/24Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
    • C07D301/26Y being hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/42Polyhydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01184Carbonyl reductase (NADPH) (1.1.1.184)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/72Candida
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to an industrial production method of optically active fluorine-containing alkylethylene oxide.
  • Non-Patent Document 1 discloses a method using asymmetric oxidation of 1,1,1-trifluoropropene using a microorganism
  • Non-Patent Document 2 describes a racemic 2 product.
  • a method based on kinetic optical resolution of trifluoromethylethylene oxide was obtained in Non-Patent Document 3 by asymmetric reduction of 3-bromo-1,1,1-trifluoro-2-propanone with an asymmetric reducing agent.
  • Non-Patent Document 4 discloses a method for ring closure by allowing a base to act on optically active 1-bromo-3,3,3-trifluoroisopropyl alcohol. In Non-Patent Document 4, an optically active 3,3,3-trifluorolactic acid is used.
  • Patent Literature a method of reacting the resulting sulfonic acid ester with a base through a multi-step process such as protection with a protective group for a substituent, deprotection, and esterification is disclosed in Patent Literature Then, optical purity is improved by recrystallizing optically active 3,3,3-trifluoro-1,2-propanediol, and then the base is acted after being induced to optically active 1-chloro-3,3,3-trifluoroisopropyl alcohol. And a method for closing the ring is disclosed.
  • Patent Document 2 optically active 3,3,3-trifluoro-1,2-propanediol was derived from optically active 3,3,3-trifluorolactic acid, and a cyclic sulfate ester was obtained. Then, a method for converting into a halohydrin form and deriving into optically active 2-trifluoromethylethylene oxide is disclosed.
  • Non-Patent Document 2 discloses a method based on kinetic optical resolution of racemic 2-monofluoromethylethylene oxide.
  • Non-Patent Document 1 discloses a method of asymmetric oxidation of 1,1,1-trifluoropropene by microorganisms, and biological asymmetric oxidation is not disclosed. Although it can be applied, only the S-enantiomer can be produced.
  • Non-Patent Document 2 discloses a method based on kinetic optical resolution of racemic 2-trifluoromethylethylene oxide using a chemical catalyst, and optically active 2-trifluoromethyl having an extremely high optical purity of 99% ee or higher. Although it has been disclosed that ethylene oxide can be obtained, it has been difficult to perform the optical resolution again using 2-trifluoromethylethylene oxide having undesired stereochemistry.
  • Non-Patent Document 3 discloses a method by asymmetric reduction of 3-bromo-1,1,1-trifluoro-2-propanone using an asymmetric reducing agent, and optical activity with a high optical purity of 96% ee.
  • Non-Patent Document 4 discloses a method for obtaining 2-trifluoromethylethylene oxide from optically active 3,3,3-trifluorolactic acid. However, the reaction is not only complicated in multiple stages, but also has a maximum theoretical yield. It was 50% and could not be said to be an industrial method.
  • Patent Document 1 an optically active 3,3,3-trifluoro-1,2-propanediol obtained by various methods is derived into 1-chloro-3,3,3-trifluoroisopropyl alcohol, and the base is used. Although a method for ring closure has been disclosed, there was a problem that the yield was low.
  • An object of the present invention is to provide a method for industrially producing an optically active fluorine-containing alkylethylene oxide.
  • the present inventors have made asymmetric reduction proceed efficiently by allowing a specific biocatalyst (microorganism or enzyme) to act on the fluorine-containing alkylchloromethyl ketone.
  • the present inventors have found a method for obtaining optically active fluorine-containing alkylchloromethyl alcohol with high stereoselectivity.
  • the present invention has been completed by obtaining knowledge that the alcohol is derived into fluorine-containing alkylethylene oxide with high yield while maintaining optical purity. That is, the present invention provides the inventions described in [Invention 1]-[Invention 17] below.
  • Rf represents a linear or branched fluoroalkyl group having 1 to 6 carbon atoms having at least one fluorine atom.
  • the microorganisms include Cryptococcus curvatus, Pichia farinosa, Torulaspora delbrueckii, Candida cacaoi, Rhodotorula mucibolis, Rhodotorula mucilaginosa
  • the manufacturing method according to the invention 1 or 2 which is at least one selected from the group consisting of johnsonii) and Trichosporon cutaneum.
  • invention 5 The production method according to claim 1, wherein the enzyme is alcohol dehydrogenase or carbonyl reductase.
  • the alcohol dehydrogenase or carbonyl reductase is a microorganism of the family Asteraceae, Saccharomyces, Rhodotorula, Sporidivorus, Trichosporonae, the treated product, the culture solution, and / or an enzyme obtained from the microorganism.
  • invention 7 The production method according to any one of inventions 1 to 6, wherein a temperature in the reaction (reaction temperature) is 5 to 60 ° C.
  • reaction temperature is 5 to 60 ° C.
  • inventions 1 to 7 wherein the pH in the reaction (pH during the reaction) is in the range of 4.0 to 8.0.
  • inventions 1 to 8 comprising a step of distilling a mixed solution containing the optically active fluorinated alcohol obtained after completion of the reaction and the impurities to separate impurities from the mixed solution and purifying the optically active fluorinated alcohol.
  • the manufacturing method in any one of.
  • invention 10 An optically active fluorine-containing alkylchloromethyl alcohol represented by the formula [2] is produced by any one of the methods of the inventions 1 to 9, and then a base is allowed to act on the alcohol, the formula [3]:
  • the base is an alkali metal hydride, alkaline earth metal hydride, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal bicarbonate, and alkaline earth
  • the step of deriving the fluorine-containing alkyl-1,2-ethanediol is carried out by hydrolysis as it is without isolating the optically active fluorine-containing alkylethylene oxide obtained by the above reaction.
  • [Invention 16] formula:
  • the present inventors diligently screened biocatalysts that can achieve the object of the present invention from biocatalysts such as microbial cells and enzymes, and are highly convenient as intermediates for optically active fluorinated alkylethylene oxides.
  • the inventors have found a biocatalyst that gives optically active fluorine-containing alkylchloromethyl alcohol, and have completed the present invention.
  • Fluorine-containing alkyl bromomethyl ketone represented by the formula (1) was also listed as a candidate, but in the method using a biocatalyst, it is necessary to use water as a solvent. It was confirmed that no fluorine alkyl bromoalcohol was obtained (see Comparative Examples described later). Thus, based on the knowledge that fluorine-containing alkyl bromomethyl ketone cannot be used in the method using a biocatalyst, the present invention uses the above-mentioned compound into which a chlorine atom has been introduced, which is stable even in the presence of water.
  • the concentration of the fluorine-containing alkyl chloromethyl ketone means the concentration (w / v) of the ketone in the reaction solution (the concentration of the reduced product is not considered (excluded)), and throughout the entire reaction. It does not define the total amount of ketone added.
  • optically active fluorinated alkyl chloromethyl alcohol produced in the reaction solution can be recovered by distillation or extraction, and converted to optically active fluorinated alkyl ethylene oxide while maintaining optical purity by allowing the base to act on the alcohol. can do. Further, the optically active fluorinated alkylethylene oxide can be converted to optically active fluorinated alkyl-1,2-ethanediol while maintaining optical purity by hydrolysis.
  • Optically active 2-difluoromethylethylene oxide in the case of optically active fluorine-containing alkylethylene oxide represented by the formula [3], when Rf is a difluoromethyl group
  • optically active 1-chloro-3 a precursor thereof, 3-difluoroisopropyl alcohol (in the case of optically active fluorine-containing alkylchloromethyl alcohol represented by the formula [2], when Rf is a difluoromethyl group) is a novel compound.
  • an optically active fluorine-containing alkylethylene oxide that is important as an intermediate for medical and agricultural chemicals can be efficiently produced.
  • a biocatalyst that gives optically active fluorine-containing alkylchloromethyl alcohol which is a precursor of ethylene oxide
  • P coenzyme NAD
  • the present invention is directed to reacting a fluorine-containing alkylchloromethyl ketone represented by the formula [1] with a microorganism having an activity for asymmetric reduction of the ketone or an enzyme having the activity, thereby producing an optical activity represented by the formula [2].
  • Fluorine-containing alkyl chloromethyl alcohol is obtained (referred to herein as “Step 1”), and an optically active fluorinated alkyl chloromethyl alcohol is produced by the method of Step 1 and the base is allowed to act on the alcohol.
  • an optically active fluorine-containing alkylethylene oxide represented by the formula [3] is obtained by a ring-closing reaction (referred to herein as “Step 2”).
  • an optically active fluorine-containing alkylethylene oxide is produced by the method of Step 2, the ethylene oxide is hydrolyzed, and an optically active fluorine-containing alkyl-1,2-ethanediol represented by the formula [4] is obtained by a ring-opening reaction. (Hereinafter referred to as “Step 3”.) Including the production method, the scheme is summarized below.
  • Step 1 Step 1 will be described.
  • the fluorine-containing alkyl chloromethyl ketone represented by the formula [1] is a known compound and may be appropriately prepared by those skilled in the art based on the prior art, or commercially available ones may be used.
  • Rf is a C 1-6 linear or branched fluoroalkyl group having at least one fluorine atom.
  • Specific structures include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group, difluoromethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, 1,1 -Difluoropropyl group, 2,2-difluoropropyl group, 3,3-difluoropropyl group, 1,1-difluorobutyl group, 2,2-difluorobutyl group, 3,3-difluorobutyl group, 4,4-difluoro Butyl group, monofluoromethyl group, 1-monofluoroethyl group, 2-monofluoroethyl group, 1-mono
  • Trifluoromethyl group among them pentafluoroethyl group, heptafluoropropyl group, a nonafluorobutyl group, difluoromethyl group are preferable, a trifluoromethyl group, difluoromethyl group is particularly preferable.
  • the main reaction in Step 1 is that an optically active fluorinated alkyl chloromethyl represented by the formula [2] is reacted with a fluorinated alkyl chloromethyl ketone by allowing a microorganism having an activity to asymmetrically reduce the ketone or an enzyme having the activity to act. This is a reaction to obtain alcohol.
  • highly convenient fluorine-containing alkylchloromethyl alcohol can be obtained as an intermediate of optically active fluorine-containing ethylene oxide.
  • the fluorine-containing alkyl chloromethyl ketone represented by the formula [1] is obtained by adding water or alcohol to the ketone, as shown in the examples below.
  • Rf is the same as Formula [1].
  • R represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • An alcohol adduct represented by can be used in the same manner. Accordingly, these hydrates and alcohol adducts are also treated as being included in claim 1 of the present application.
  • R in the formula [7] represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • An ethyl group, a propyl group, an isopropyl group, a 1-butyl group, an isobutyl group, a tert-butyl group, and a 1-cyclohexyl group are particularly preferable.
  • the microorganism used here is not particularly limited, and can be appropriately selected from bacteria, yeast, filamentous fungi, and the like.
  • Cryptococcus curvatus, Pichia farinosa, Torulaspora delbrueckii At least one selected from the group consisting of Candida cacaoi, Rhodotorula mucilaginosa, Sporidibolus johnsonii, Trichosporon cutaneum, Trichosporon cutaneum; ⁇
  • it can use equally about the
  • microorganisms have been deposited with the Independent Administrative Institution's Product Evaluation Technology Infrastructure (2-49-10 Nishihara, Shibuya-ku, Tokyo 151-0066) with the accession numbers shown in the table below. These microorganisms may have been deposited with other microorganism strain storage institutions and can be used in the same manner. These microorganisms are publicly available and can be easily obtained by those skilled in the art.
  • cultured cells can be used as they are, as well as cells crushed with ultrasonic waves or glass beads, cells immobilized with acrylamide, organic compounds such as acetone and glutaraldehyde.
  • the cells treated with the above, cells supported on inorganic carriers such as alumina, silica, zeolite and diatomaceous earth, and cell-free extracts prepared from the microorganisms can also be used.
  • the optical purity is moderate (40 to 70% ee) due to the influence of “reaction of reductase having opposite stereoselectivity” that exists in multiple numbers in the microbial cells. In some cases, it is possible to obtain an optical purity higher than the optical purity exhibited by the original cells by purifying and using the target enzyme.
  • an enzyme that catalyzes the reaction such as alcohol dehydrogenase (an enzyme that reversibly reduces a ketone) or a carbonyl reductase (an enzyme that irreversibly reduces a ketone) is purified from a microorganism that gives the above optically active substance
  • an enzyme that catalyzes the reaction such as alcohol dehydrogenase (an enzyme that reversibly reduces a ketone) or a carbonyl reductase (an enzyme that irreversibly reduces a ketone)
  • general protein purification methods such as ammonium sulfate fractionation, hydrophobic chromatography, ion exchange chromatography, and gel filtration chromatography can be applied.
  • a gene recombinant into which an enzyme gene cloned from the microorganism has been introduced can be used in the same manner.
  • the isolation source of the enzyme can be used for the microorganism obtained by the screening, and is used in the method of the present invention from the species to which the microorganism belongs, that is, from the microorganism of the family Asteraceae, Saccharomyces, Rhodotorula, Sporidivorus, Trichosporonae.
  • the resulting alcohol dehydrogenase or carbonyl reductase can be obtained.
  • a commercially available enzyme can be used, and the enzyme can be selected by screening using a fluorine-containing alkyl chloromethyl ketone as a substrate.
  • Commercially available enzymes include, for example, “alcohol dehydrogenase, yeast derived” from Oriental Yeast Co., Ltd., “alcohol dehydrogenase (ZM-ADH, derived from Zymomonas mobilis)” from Unitika Ltd., Chiralscreen from Daicel Corporation.
  • E001 (Registered Trademark) OH E001 (hereinafter the same), E004, E007, E008, E039, E048, E052, E073, E077, E085, E094 may be mentioned, preferably E001, E007, E039, E085, E001, E039, and E094 are more preferable than E094. Moreover, the gene recombinant which expresses the said enzyme can be used similarly.
  • a medium solid medium or liquid medium
  • nutrient components usually used for microorganism culture can be used.
  • a reduction reaction of a water-soluble fluorine-containing alkyl chloromethyl ketone is performed.
  • Liquid medium is preferred.
  • the medium is a carbon source such as glucose, sucrose, maltose, lactose, fructose, trehalose, mannose, mannitol, dextrose and other sugars, methanol, ethanol, propanol, butanol, pentanol, hexanol, glycerol and other alcohols, citric acid, glutamic acid Organic acids such as malic acid and ammonia, ammonium salts, amino acids, peptone, polypeptone, casamino acids, urea, yeast extract, malt extract, corn steep liquor and the like are used as nitrogen sources.
  • a carbon source such as glucose, sucrose, maltose, lactose, fructose, trehalose, mannose, mannitol, dextrose and other sugars, methanol, ethanol, propanol, butanol, pentanol, hexanol, glycerol and other alcohols, citric acid, glut
  • inorganic salts such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, vitamins such as inositol and nicotinic acid, and media such as trace metals such as iron, copper, magnesium, boron, manganese and molybdenum Compositions can be added as appropriate.
  • carbon source nitrogen source
  • inorganic salt it is preferable to add an amount sufficient for the microorganism to grow and an amount that does not inhibit the growth, and usually 5 to 80 g, preferably 10 to 1 L of the medium. Add ⁇ 40g. The same applies to the nitrogen source, and it is preferable to add an amount sufficient for the microorganisms to proliferate and not to inhibit the growth.
  • 5 to 60 g, preferably 10 to 50 g, and inorganic salt as a nutrient source for 1 L of the medium. It is necessary to add elements necessary for the growth of microorganisms. However, since growth is inhibited at a high concentration, usually 0.001 to 10 g is added to 1 L of the medium. In addition, these can be used combining several types according to microorganisms.
  • the pH in the medium needs to be adjusted within a range suitable for the growth of microorganisms, and is usually 4.0 to 10.0, preferably 6.0 to 9.0.
  • the temperature range in the culture needs to be adjusted in a range suitable for the growth of microorganisms, and is usually 10 to 50 ° C., preferably 20 to 40 ° C.
  • vvm means aeration to medium volume per minute.
  • V olume / v olume / m inute More preferably 0.5 to 2 vvm.
  • the medium volume should be set to 20% or less with respect to the volume of the instrument, and a vent plug such as a cotton plug or a silicone plug may be attached.
  • the medium is preferably stirred. In the case of a culture tank, the stirring ability of the apparatus is preferably 10 to 100%, more preferably 20 to 90%.
  • a shaker preferably 50 to 300 rpm, more preferably 100 to 280 rpm.
  • the culture time may be a time required for the growth of microorganisms to converge, and is 6 to 72 hours, preferably 12 to 48 hours.
  • a suspension in which the microorganism is cultured can be used for the reaction as it is. If the components produced during the cultivation adversely affect the reduction reaction, the suspension is again made using the microbial cells (stationary microbial cells) obtained by collecting the microbial cells once from the culture solution by an operation such as centrifugation. May be prepared and used in the reaction.
  • microbial cells stationary microbial cells
  • Various cell extracts such as those obtained by disrupting cells of cultured microbial cells and enzymes prepared from the cultured microbial cells can also be used in the reaction.
  • the enzyme purified enzyme
  • a buffer solution in which the enzyme is dissolved. Since this reaction is a reduction reaction, a weakly acidic buffer solution is preferable.
  • the concentration of the ketone in the addition of the fluorine-containing alkyl chloromethyl ketone to these suspensions or buffers, it is preferable to maintain the concentration of the ketone so that the reduction reaction proceeds smoothly and does not adversely affect the activity of microorganisms or enzymes. .
  • concentration of the ketone is higher than 20% (w / v)
  • microorganisms may be killed or the enzyme may be denatured. Therefore, a concentration below this value, that is, usually 0.01 to 15% ( w / v), preferably 0.05 to 10% (w / v).
  • the basis for the volume of the ketone concentration calculation is, for example, the amount of the culture solution dispensed in a test tube before steam sterilization in Example 1 described later, and the total amount of suspension of microorganisms after culture in Example 7 described later. Think of it as a guide.
  • the temperature at which the microorganism or enzyme is allowed to act on the fluorine-containing alkyl chloromethyl ketone as a substrate (that is, the reaction temperature) needs to be maintained in a range suitable for the microorganism or enzyme, and is usually 5 to 60 ° C., preferably It is 15 to 50 ° C, more preferably 15 to 38 ° C.
  • the pH at the time of the action (that is, the pH during the reaction) needs to be maintained in a suitable range, and is usually 4.0 to 8.0, preferably 5.5 to 8.0, more preferably 5 .5 to 7.0.
  • the reaction efficiency decreases, so the reaction solution is stirred while stirring.
  • the reaction can be carried out without aeration, but aeration may be carried out if necessary.
  • the air flow rate is preferably 0.3 vvm or less, More preferably, it is 0.1 vvm or less.
  • the reaction time may be determined depending on how the target product is produced, and is usually 6 to 312 hours.
  • the coenzyme NAD (P) H (hydrogen donor) used for the reduction reaction is a coenzyme regenerating enzyme (glucose dehydrogenase, formate dehydrogenase, glycerol dehydrogenase, alcohol dehydrogenase, The same can be regenerated from coenzyme NAD (P), and in microorganism reactions, the coenzyme regenerating enzyme inherent in the microorganism is used, and for recombinants, the coenzyme regenerating enzyme expressed by incorporating the desired gene is used. be able to.
  • Coenzyme NAD (P) H can be reduced by adding a commercially available one, but it is very expensive and is not economical.
  • the reaction end solution mixed solution containing impurities after the completion of the reaction
  • organic synthesis such as distillation, extraction with organic solvents, solid phase extraction, etc.
  • Isolation methods can be employed.
  • the present compound can be easily and efficiently recovered as an aqueous solution by subjecting it to distillation directly from the reaction-finished solution or the filtrate after removing the cells by filtration if necessary. Is very useful compared to the prior art.
  • the obtained aqueous solution of the crude product can be subjected to purification operations such as dehydration, activated carbon, fractional distillation, column chromatography, etc., if necessary.
  • ethylene oxide It can be used for the synthesis of ethylene oxide, which is one of desirable embodiments from an industrial viewpoint.
  • a method for purifying the crude product extraction with an organic solvent and subsequent fractional distillation are particularly preferred.
  • organic solvent ether solvents, ester solvents, halogen solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents and the like can be employed.
  • Step 2 diethyl ether, diisopropyl ether, methyl -tert- butyl ether, 2-methyltetrahydrofuran, ethyl acetate, methylene chloride, chloroform, n- hexane, toluene especially preferred.
  • solvents may be used alone or in combination.
  • the filtrate after removing the cells from the reaction-finished solution may be directly extracted by using the organic solvent shown above, and the optically active fluorinated alkylchloromethyl alcohol may be recovered by concentrating the filtrate. I can do it. [Step 2] Next, step 2 will be described.
  • step 2 the optically active fluorine-containing alkylchloromethyl alcohol represented by the formula [2] produced in the above step is used as a raw material, and a base is allowed to act on the alcohol, so that This is a step of obtaining fluorine alkyl ethylene oxide.
  • a base is allowed to act on the alcohol, so that
  • Examples of the base used in this step include inorganic bases and organic bases.
  • Examples of the inorganic base include alkali metal hydride, alkaline earth metal hydride, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkaline earth metal carbonate, alkali metal bicarbonate or alkali.
  • Examples include earth metal hydrogen carbonate, alkali metal amide, alkali metal and the like.
  • alkali metal hydrides, alkali metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydrogen carbonates or alkaline earth metal hydrogen carbonates are preferable, alkali metal hydrides, alkali metal carbonates.
  • Alkaline earth metal carbonates or alkali metal hydrogen carbonates are particularly preferred. Specifically, lithium hydride, sodium hydride, potassium hydride, rubidium hydride, cesium hydride, magnesium hydride, calcium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, hydroxide Cesium, magnesium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, rubidium bicarbonate, cesium bicarbonate , Magnesium hydrogen carbonate, calcium hydrogen carbonate, sodium amide, potassium amide, sodium, potassium, among others, lithium hydride, sodium hydride, potassium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide , Rubidium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, calcium carbonate, calcium
  • examples of the organic base include pyridines, trialkylamines, N, N-dialkylanilines and the like, and pyridines and trialkylamines are preferable.
  • the amount of the base used may be 0.1 mol or more, preferably 0.2 to 20 mol, particularly 0.3 to 10 mol, relative to the fluorine-containing alkylchloromethyl alcohol represented by the general formula [2]. preferable.
  • reaction solvent examples include water, aliphatic hydrocarbons such as n-hexane and n-heptane, aromatic hydrocarbons such as toluene and xylene, and halogenated hydrocarbons such as methylene chloride and 1,2-dichloroethane.
  • reaction solvents can be used alone or in combination. In the present invention, it can also be carried out without solvent.
  • the reaction solvent may be used in an amount of 0.01 L or more, preferably 0.03 to 10 L, particularly 0.05 to 7 L with respect to 1 mol of the fluorinated alkylchloromethyl alcohol represented by the general formula [2]. preferable.
  • the reaction time may be within 72 hours and varies depending on the raw material substrate and reaction conditions. Therefore, the progress of the reaction is traced by analysis means such as gas chromatography, liquid chromatography, nuclear magnetic resonance, etc.
  • the end point is preferably the point at which almost disappeared.
  • the reaction temperature is preferably in the range of ⁇ 30 to 120 ° C., usually ⁇ 20 to 100 ° C., more preferably ⁇ 10 to 80 ° C.
  • all reagents may be mixed at the same time to start the reaction.
  • a method of slowly adding a base to fluorine-containing alkylchloromethyl alcohol while cooling with ice for exothermic reaction, or vice versa Since a preferable temperature range can be maintained by adopting the method, it is one of the preferable embodiments.
  • the temperature is too high, the optically active fluorine-containing alkylethylene oxide generated in the system scatters out of the system. Therefore, the reaction may be performed while collecting it with a cooler.
  • the solvent for extraction those which do not react with the ethylene oxide are preferable, aliphatic hydrocarbons such as n-heptane and n-hexane, aromatic hydrocarbons such as benzene and toluene, and halogens such as methylene chloride and chloroform. And ether solvents such as fluorinated hydrocarbons, diethyl ether and t-butyl methyl ether, and ester solvents such as ethyl acetate, methyl acetate and butyl acetate.
  • aliphatic hydrocarbons such as n-heptane and n-hexane
  • aromatic hydrocarbons such as benzene and toluene
  • halogens such as methylene chloride and chloroform.
  • ether solvents such as fluorinated hydrocarbons, diethyl ether and t-butyl methyl ether
  • ester solvents such as ethyl acetate, methyl
  • step 3 Next, step 3 will be described.
  • the optically active fluorine-containing alkylethylene oxide which is the target compound can be obtained through the steps 1 to 2, but in this step, the ring is opened by hydrolysis of the ethylene oxide, and the optically active compound is obtained.
  • the ethylene oxide is opened by hydrolysis, but the reaction can be accelerated by adding an inorganic base, an organic base, an inorganic acid or an organic acid.
  • Inorganic bases include alkali metal hydrides, alkaline earth metal hydrides, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydrogen carbonates, alkalis An earth metal hydrogen carbonate, an alkali metal amide, an alkali metal, or the like can be given.
  • alkali metal hydrides, alkali metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydrogen carbonates or alkaline earth metal hydrogen carbonates are preferable, alkali metal hydrides, alkali metal hydroxides.
  • alkali metal carbonates, alkaline earth metal carbonates or alkali metal hydrogen carbonates are preferable, alkali metal hydrides, alkali metal hydroxides.
  • alkali metal carbonates, alkaline earth metal carbonates or alkali metal hydrogen carbonates are preferable, alkali metal hydrides, alkali metal hydroxides.
  • organic base examples include pyridines, trialkylamines, N, N-dialkylanilines, etc.
  • pyridines and trialkylamines are preferable. Specifically, pyridine, methylpyridine, ethylpyridine, dimethylpyridine (lutidine), methylethylpyridine, diethylpyridine, trimethylpyridine (collidine), dimethylaminopyridine, 2,2′-bipyridyl, 4-dimethylaminopyridine, trimethylamine , Triethylamine, tripropylamine, and tributylamine, diisopropylethylamine, N, N-dimethylaniline, N, N-diethylaniline, and the like.
  • pyridine, trimethylamine, triethylamine, and tributylamine are preferable. These can be used alone or in combination of two or more. Further, two or more of these organic bases and inorganic bases can be used in combination.
  • the inorganic acid include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and boric acid.
  • the organic acid include acetic acid, citric acid, formic acid, lactic acid, oxalic acid, tartaric acid, methanesulfonic acid and the like. Of these, hydrochloric acid and sulfuric acid are preferable from the viewpoint of easy availability, cost, and ease of handling, and these can be used alone or in combination of two or more.
  • the amount of the base or acid used may be 0.01 mol or more, preferably 0.02 to 20 mol, particularly 0.03 to 10 mol, relative to the fluorine-containing alkylethylene oxide represented by the general formula [3]. preferable.
  • Water may be used in an amount of 0.5 mol or more, preferably 0.7 mol or more, particularly preferably 0.9 mol or more based on the fluorine-containing alkylethylene oxide represented by the general formula [3].
  • reaction solvent in addition to water, aliphatic hydrocarbons such as n-hexane and n-heptane, aromatic hydrocarbons such as toluene and xylene, halogenated carbonization such as methylene chloride, chloroform and 1,2-dichloroethane Hydrogen type, diethyl ether, tetrahydrofuran, diisopropyl ether, tetrahydrofuran, ether type such as tert-butyl methyl ether, ester type such as methyl acetate, ethyl acetate, n-butyl acetate, N, N-dimethylformamide, 1,3-dimethyl Examples include amides such as -2-imidazolidinone, nitriles such as acetonitrile and propionitrile, and dimethyl sulfoxide.
  • aliphatic hydrocarbons such as n-hexane and n-heptane
  • aromatic hydrocarbons
  • reaction solvents can be used alone or in combination. In the present invention, it can also be carried out without solvent.
  • the amount of the reaction solvent used may be 0.01 L or more, preferably 0.03 to 10 L, particularly preferably 0.05 to 7 L with respect to 1 mol of the fluorinated alkylethylene oxide represented by the general formula [3].
  • the reaction time may be within 72 hours and varies depending on the raw material substrate and reaction conditions. Therefore, the progress of the reaction is traced by analysis means such as gas chromatography, liquid chromatography, nuclear magnetic resonance, etc.
  • the end point is preferably the point at which almost disappeared.
  • the reaction temperature is preferably in the range of ⁇ 30 to 150 ° C., usually 0 to 120 ° C., more preferably 10 to 100 ° C.
  • all the reagents may be mixed at the same time to initiate the reaction.
  • this reaction is also exothermic, so that the internal temperature is kept at an appropriate temperature and the fluorine-containing alkylethylene oxide is reacted.
  • a preferable temperature range can be maintained by adopting a method of slowly adding an acid or a base, or a reverse dropping method thereof.
  • solvents aliphatic hydrocarbons such as n-heptane and n-hexane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as methylene chloride and chloroform, tetrahydrofuran, -Ethers such as methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl methyl ether, esters such as ethyl acetate, methyl acetate, butyl acetate, water such as n-butanol, n-pentanol, n-hexanol Examples thereof include alcohol solvents that are immiscible, among which tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl methyl ether, n-butanol, and n-p
  • the method for obtaining a high-purity target product by dehydrating the obtained fraction with a Dean-Stark apparatus or the like is This is one of the preferred forms of this process.
  • the process 3 can be continuously performed without performing the post-process of the process 2. Specifically, after step 2 is completed, the reagent necessary for step 3 is added to the reaction-finished solution of step 2 without isolating the obtained fluorine-containing alkylethylene oxide, whereby optically active fluorine-containing alkyl-1, 2-ethanediol can be obtained.
  • an optically active fluorine-containing alkyl-1,2-ethanediol (a compound obtained by hydrolyzing the oxide) (The target product of this step) may be produced in the reaction system.
  • the objective is to produce the optically active fluorinated alkyl-1,2-ethanediol in this step
  • the optically active fluorinated alkylethylene oxide and the optically active fluorinated alkyl-1,2-ethane in Step 2 are used.
  • an optically active fluorine-containing alkyl-1,2-ethanediol which is the target compound of Step 3 (for example, Examples described later) 8).
  • optically active fluorine-containing alkyl ethylene oxide separated by this purification operation can be reused separately as a starting material in Step 3.
  • the most preferred form for obtaining optically active fluorine-containing alkyl-1,2-ethanediol directly from fluorine-containing alkylchloromethyl alcohol is a common organic base or inorganic base reagent in steps 2 and 3 in the presence of water. Can be efficiently derived into optically active fluorinated alkyl-1,2-ethanediol, particularly by using an inorganic base.
  • high-purity optically active fluorinated alkyl-1,2-ethanediol can be produced by carrying out the treatment described in Step 3 in the same manner.
  • a fluorine-containing alkylchloromethyl ketone is used as a starting material, and by applying suitable reaction conditions, an optically active fluorine-containing alkylchloromethyl alcohol that is highly convenient as a precursor of an optically active fluorine-containing alkylethylene oxide is obtained. It can be produced in large quantities, and subsequently can be easily derived into an optically active fluorine-containing alkylethylene oxide by allowing a base to act on the alcohol. Highly superior as an industrial manufacturing method.
  • optical purity that can be employed practically can be obtained at 40% ee or more, particularly preferably 80% ee or more.
  • This compound has high reactivity and is very useful as an intermediate for synthesizing optically active fluorine-containing organic compounds.
  • the optical purity of the compound can also be improved by optical resolution using column chromatography, a recrystallization method, or the like. [Example] EXAMPLES Next, examples will be shown, but the present invention is not limited to the following examples.
  • optically active 1-chloro-3,3-difluoroisopropyl alcohol could be obtained by an asymmetric reduction reaction using microorganisms.
  • the strain used in this screening was high and had an optical purity of 68.8% ee, but a strain that gives higher optical purity can be found by widening the screening range.
  • the enzyme which gives high optical purity can also be isolated by refine
  • the Pichia farinosa NBRC 0462 strain was precultured in a 5 ml liquid medium prepared in a test tube ( ⁇ 1.6 cm ⁇ 15 cm) composed of 1000 ml of distilled water, 10 g of polypeptone, 5 g of yeast extract, and 10 g of sodium chloride.
  • This culture solution was used in a 5 L culture tank (manufactured by Maruhishi Bioengineer Co., Ltd., MDN type 5L (S)), distilled water 2500 ml, glucose 25 g, peptone 12.5 g, yeast extract 7.5 g, malt
  • the solution was put into a liquid medium after high-pressure steam sterilization composed of 7.5 g of extract, 7.5 g of potassium dihydrogen phosphate, and 5.0 g of dipotassium hydrogen phosphate.
  • Culturing was performed at a temperature of 30 ° C., aeration of 1.25 L / min, and a stirring blade rotation speed of 400 rpm, and the pH during the cultivation was adjusted to pH 6.5 using 42.5% phosphoric acid and 14% aqueous ammonia.
  • the culture solution after the culture was collected, and the cells were collected by centrifugation using a 500 ml centrifuge tube.
  • 100 ml of 0.2 M pH 7.0 phosphate buffer was added to prepare a suspension.
  • Using a bead-type cell crusher BioSpec, bead beater
  • crush the cells in the suspension remove the glass beads, and centrifuge at 20,000 xg for 30 minutes for cell-free extraction.
  • a liquid was prepared.
  • Optical purity of 1-chloro-3,3,3-trifluoroisopropyl alcohol The mixture was extracted with ethyl acetate and measured by gas chromatography using a chiral column described below, and the conversion and optical purity after the reaction were measured, and are shown in Tables 5 and 6 below, respectively.
  • the optical purity of 3,3,3-trifluoroisopropyl alcohol was derived from optically active 2-trifluoromethylethylene oxide and analyzed under the analysis conditions described below.
  • BGB-174 (0.25 mm ⁇ 30 m ⁇ 0.25 ⁇ m) manufactured by BGB Analytic AG was used for the gas chromatography column, the carrier gas was nitrogen, the pressure was 163 kPa, and the column temperature was 60 to 90 ° C. (1 ° C. / Min) to 150 ° C. (10 ° C./min), and the vaporization chamber / detector (FID) temperature was calculated based on the peak area obtained under the analysis conditions of 230 ° C. The retention time of each enantiomer was 13.4 min for the R isomer and 13.7 min for the S isomer.
  • This liquid medium is aseptically inoculated with a genetically engineered Escherichia coli that expresses a large amount of the alcohol dehydrogenase of Chiralscreen (registered trademark) OH E039 of Daicel Corporation, and cultured overnight at 30 ° C. and 160 spm.
  • a preculture solution having an optical density (OD600) of 8.2 at a wavelength of 600 nm was obtained.
  • a liquid medium composed of yeast extract, sodium glutamate, glucose, lactose, inorganic salts, and antifoaming agent is prepared in 2500 ml of distilled water, and a culture tank with a capacity of 5 L (manufactured by Maruhishi Bioengineer, MDN) Mold 5L (S)) and steam sterilized at 121 ° C. for 30 minutes.
  • This culture tank was aseptically inoculated with 5 ml of the preculture, and cultured for 40 hours with stirring at 30 ° C., aeration 0.5 vvm, to prepare a suspension with optical density (OD600) 24.
  • the pH during the cultivation was adjusted to around 7.0 using a 20% aqueous sodium carbonate solution and a 42.5% aqueous phosphoric acid solution.
  • the aeration was changed to 0 vvm, and 80% wt / wt of 3-chloro-1,1-difluoro-2-propanone hydrate was added to the culture solution at 6.25% wt / v (156.25 g).
  • the content was 125.0 g, 853 mmol), and the reductive reaction was performed at 20 ° C. and pH 6.2 for 24 hours while regenerating the coenzyme with formate dehydrogenase.
  • the conversion after the reaction was 96%, and the optical purity was 83.0% ee (R).
  • the optical purity was calculated from the area of the peak obtained at a detection wavelength of 230 nm.
  • the retention time of each enantiomer was 24.2 min for the R isomer and 27.4 min for the S isomer.
  • a liquid culture medium having a composition of 2000 ml of ion-exchanged water, 60 g of glucose, 30 g of peptone, 50 g of yeast extract, 4.8 g of potassium dihydrogen phosphate, and 2.5 g of dipotassium hydrogen phosphate was prepared, and a fermenter having a capacity of 5 L (( The product was applied to Maruryo Bio-Engineering Co., Ltd., MDN type 5L (S)) and steam sterilized at 121 ° C. for 60 minutes.
  • Trichosporon cutaneum NBRC 1198 strain (individually evaluated for optical purity, 61.5% ee) precultured in a 300 ml baffled Erlenmeyer flask in which 50 ml of liquid medium having the same composition was placed in this liquid medium.
  • 50 ml of a suspension of ⁇ 10 9 cfu / ml was inoculated, cultured at 30 ° C., aeration 1 vvm, stirring blade rotation speed 500 rpm for 24 hours, and 5.2 ⁇ 10 9 cfu / ml (92 g / L as wet weight)
  • a suspension of was prepared.
  • the pH was adjusted at this time using a 20% wt / wt aqueous sodium carbonate solution and adjusted to 6.5. After completion of the culture, aeration was stopped, the rotation speed of the stirring blade was changed to 50 rpm, and 125 g (853 mmol) of 3-chloro-1,1,1-trifluoro-2-propanone was added to 300 ml of ion exchange water prepared in a separate container.
  • an online sugar concentration sensor online biosensor BF-410, manufactured by Biot Co., Ltd.
  • a computer program that automatically hydrates and dissolves 200 g of glucose is used to maintain the glucose concentration at 2%. Added to the suspension. The reduction of the substrate by the microorganism was monitored every 24 hours, and after 144 hours, it was confirmed that the conversion rate was 86.3%, and the reaction was completed.
  • the optical purity was calculated from the area of the peak obtained at a detection wavelength of 230 nm.
  • the retention time of each enantiomer was 16.1 min for the R isomer and 18.2 min for the S isomer.
  • This liquid medium is aseptically inoculated with a genetically engineered Escherichia coli that expresses a large amount of the alcohol dehydrogenase of Chiralscreen (registered trademark) OH E094 from Daicel Corporation, and cultured overnight at 30 ° C. and 160 spm.
  • a preculture solution having an optical density (OD600) of 6.4 at a wavelength of 600 nm was obtained.
  • a liquid medium composed of yeast extract, sodium glutamate, glucose, lactose, inorganic salts, and antifoaming agent is prepared in 2500 ml of distilled water, and a culture tank with a capacity of 5 L (manufactured by Maruhishi Bioengineer, MDN) Mold 5L (S)) and steam sterilized at 121 ° C. for 30 minutes.
  • This culture tank was aseptically inoculated with 5 ml of the preculture, and cultured for 40 hours with stirring at 30 ° C., aeration 0.5 vvm to prepare a suspension with an optical density (OD600) 22.
  • the pH during the cultivation was adjusted to around 7.0 using a 20% aqueous sodium carbonate solution and a 42.5% aqueous phosphoric acid solution.
  • the aeration was changed to 0 vvm, and 90% wt / wt of 3-chloro-1,1-difluoro-2-propanone hydrate was 6.25% wt / v (156.25 g) with respect to the culture solution.
  • the content was 140.6 g, 960 mmol), and the reductive reaction was performed at 30 ° C. and pH 6.0 for 24 hours while regenerating the coenzyme with glucose dehydrogenase.
  • the 99% conversion optical purity after the reaction was 89.2% ee (S).
  • This liquid medium is aseptically inoculated with a genetically engineered Escherichia coli that expresses a large amount of the alcohol dehydrogenase of Chiralscreen (registered trademark) OH E094 from Daicel Corporation, and cultured overnight at 30 ° C. and 160 spm.
  • a preculture solution having an optical density (OD600) of 7.2 at a wavelength of 600 nm was obtained.
  • a liquid medium composed of yeast extract, sodium glutamate, glucose, lactose, inorganic salts, and antifoaming agent is prepared in 2500 ml of distilled water, and a culture tank with a capacity of 5 L (manufactured by Maruhishi Bioengineer, MDN) Mold 5L (S)) and steam sterilized at 121 ° C. for 30 minutes.
  • This culture tank was aseptically inoculated with 5 ml of the preculture, and cultured for 40 hours with stirring at 30 ° C., aeration 0.5 vvm to prepare a suspension with an optical density (OD600) 23.
  • the pH during the cultivation was adjusted to around 7.0 using a 20% aqueous sodium carbonate solution and a 42.5% aqueous phosphoric acid solution.
  • the aeration was changed to 0 vvm, and 93% wt / wt of 3-chloro-1,1-difluoro-2-propanone hydrate was 6.25% wt / v (151.2 g) with respect to the culture solution.
  • the content was 140.6 g, 960 mmol), and the reductive reaction was performed at 30 ° C. and pH 6.0 for 24 hours while regenerating the coenzyme with glucose dehydrogenase.
  • the 99% conversion optical purity after the reaction was 90.7% ee (S).
  • the filtrate was extracted with 20 ml of THF, and the separated aqueous layer was further extracted with 20 ml of THF. Extraction was performed three times in total, and the combined organic layers were subjected to distillation under reduced pressure (internal pressure: 3.0 kPa, vapor temperature: 87 ° C.) to obtain 9.9 g of (R) -3,3-difluoro-1,2-propanediol, 0.8 088 mol, obtained in 88% yield.
  • the purity measured by gas chromatography was 99.3%. When the optical purity was analyzed under the above analysis conditions, it was 90.6% ee.
  • optically active fluorine-containing alkyl ethylene oxide that is the object of the production method of the present invention can be used as an intermediate for medical and agricultural chemicals.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法を提供する。 【解決手段】含フッ素アルキルクロロメチルケトンに、該ケトンを不斉還元する活性を有する微生物または該活性を有する酵素を作用させることにより、光学活性含フッ素アルキルクロロメチルアルコールを高い光学純度で収率良く製造することができる。続いて、該アルコールに塩基を作用させることで含フッ素アルキルエチレンオキシドを得ることができる。本発明の製造方法は、工業的な実施が容易である。

Description

光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法
 本発明は、光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法に関する。
 光学活性含フッ素アルキルエチレンオキシドは種々の医農薬中間体として重要な化合物である。光学活性2-トリフルオロメチルエチレンオキシドの製造方法として、非特許文献1では、微生物を用いた1,1,1-トリフルオロプロペンの不斉酸化による方法が、非特許文献2では、ラセミ体の2-トリフルオロメチルエチレンオキシドの速度論的光学分割による方法が、非特許文献3では3-ブロモ-1,1,1-トリフルオロ-2-プロパノンを不斉還元剤で不斉還元し、得られた光学活性1-ブロモ-3,3,3-トリフルオロイソプロピルアルコールに塩基を作用させて閉環する方法が、非特許文献4では、光学分割剤を用いて光学活性3,3,3-トリフルオロ乳酸を得、置換基に対する保護基による保護、脱保護、及びエステル化等、多段階工程を経て、得られたスルホン酸エステルを塩基と作用させる方法が、特許文献1では光学活性3,3,3-トリフルオロ-1,2-プロパンジオールを再結晶によって光学純度を高め、光学活性1-クロロ-3,3,3-トリフルオロイソプロピルアルコールへ誘導した後に塩基を作用させて閉環する方法が開示されている。
 一方、本発明者らも特許文献2において、光学活性3,3,3-トリフルオロ乳酸から光学活性3,3,3-トリフルオロ-1,2-プロパンジオールを誘導し、環状硫酸エステル体を経て、ハロヒドリン体に変換し、光学活性2-トリフルオロメチルエチレンオキシドに誘導する方法を開示している。
 また、光学活性2-モノフルオロメチルエチレンオキシドについては、非特許文献2にラセミ体の2-モノフルオロメチルエチレンオキシドの速度論的光学分割による方法が開示されている。
 他方、光学活性2-ジフルオロメチルエチレンオキシドについてはこれまでに合成例は知られていない。
特開平6-247953号公報 特開2006-328011号公報
Chirality in Industry, Wiley, New York, 1992 S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, . B. Hansen, A. E. Gould, M. E. Furrow, and E. N. Jacobsen, Journal of the American Chemical Society, 2002, 124, 1307-1315 P. V. Ramachandran, B. Gong, H. C. Brown, J. Org. Chem, 1995, 60, 41-46 C. von dem Bussche-Hunnefeld, C. Cescato, D. Seebach, Chem. Ber., 1992, 125, 2795-2802
 前述のとおり、2-トリフルオロメチルエチレンオキシドについては、非特許文献1では、微生物による1,1,1-トリフルオロプロペンの不斉酸化による方法が開示されており、生物学的な不斉酸化が適用できることを示しているが、S体のエナンチオマーしか製造できなかった。非特許文献2では化学触媒を用いたラセミ体の2-トリフルオロメチルエチレンオキシドの速度論的光学分割による方法が開示されており、99%ee以上と極めて高い光学純度の光学活性2-トリフルオロメチルエチレンオキシドが得られる旨、開示されているが、望まない立体化学を有する2-トリフルオロメチルエチレンオキシドを利用して再び光学分割を行うにあたり、その操作に難があった。すなわち、2-トリフルオロメチルエチレンオキシドを加水分解させて生じた3,3,3-トリフルオロ-1,2-プロパンジオールを、ラセミ体もしくは目的とする立体化学の2-トリフルオロメチルエチレンオキシドの前駆体に誘導することが極めて難しいことから、結果として、目的の立体化学を有する光学活性2-トリフルオロメチルエチレンオキシドについては、50%以上の収率を期待することができず、工業的に採用するには難があった。非特許文献3では不斉還元剤を用いた3-ブロモ-1,1,1-トリフルオロ-2-プロパノンの不斉還元による方法が開示されており、96%eeと高い光学純度の光学活性1-ブロモ-3,3,3-トリフルオロイソプロピルアルコールを経て、光学活性2-トリフルオロメチルエチレンオキシドを得ているが、高価な不斉還元剤を量論的に使用する必要があり、工業的な方法とは言えなかった。非特許文献4では光学活性3,3,3-トリフルオロ乳酸から2-トリフルオロメチルエチレンオキシドを得る方法が開示されているが、反応が多段階で煩雑であるだけでなく、理論収率も最大50%と工業的な方法とは言えなかった。
 特許文献1では種々の方法で得られた、光学活性3,3,3-トリフルオロ-1,2-プロパンジオールを1-クロロ-3,3,3-トリフルオロイソプロピルアルコールに誘導し、塩基により閉環する方法が開示されているが、収率が低いという問題があった。
 本発明の課題は、光学活性含フッ素アルキルエチレンオキシドを工業的に製造する方法を提供することにある。
 本発明者らは、上記の課題を解決すべく、鋭意検討した結果、含フッ素アルキルクロロメチルケトンに特定の生体触媒(微生物または酵素)を作用させることにより、不斉還元が効率的に進行し、高い立体選択性で光学活性含フッ素アルキルクロロメチルアルコールが得られる方法を見出した。また、該アルコールから光学純度を維持したまま、高い収率で含フッ素アルキルエチレンオキシドに誘導する知見を得、本発明を完成した。
すなわち本発明は、以下の[発明1]-[発明17]に記載する発明を提供する。
[発明1]
式[1]:
Figure JPOXMLDOC01-appb-C000008
[式中、Rfはフッ素原子を少なくとも1つ以上有する炭素数1~6の直鎖または分岐鎖のフルオロアルキル基を表す。]
で表される含フッ素アルキルクロロメチルケトンに、該ケトンを不斉還元する活性を有する微生物または該活性を有する酵素を作用させる工程を含む、式[2]:
Figure JPOXMLDOC01-appb-C000009
[式中、*は不斉原子を表す。Rfは式[1]に同じ。]
で表される光学活性含フッ素アルキルクロロメチルアルコールの製造方法。
[発明2]
 式[1]で表される含フッ素アルキルクロロメチルケトンにおけるRfが、トリフルオロメチル(CF3)基またはジフルオロメチル(CF2H)基である、発明1に記載の製造方法。
[発明3]
 前記微生物が、クリプトコッカス・カルバタス(Cryptococcus curvatus)、ピキア・ファリノーサ(Pichia farinosa)、トルラスポーラ・デルブルエキィ (Torulaspora delbrueckii)、キャンディダ・カカオイ (Candida cacaoi)、ロドトルラ・ムシラギノサ (Rhodotorula mucilaginosa)、スポリディボラス・ジョンソニイ (Sporidibolus johnsonii)、及びトリコスポロン・キュタネウム (Trichosporon cutaneum) からなる群より選ばれる少なくとも1種である、発明1または2に記載の製造方法。
[発明4]
 前記微生物が、下記に示す受託番号を有する微生物であることを特徴とする、発明3に記載の製造方法。
Figure JPOXMLDOC01-appb-T000010
[発明5]
 前記酵素がアルコール脱水素酵素またはカルボニル還元酵素であることを特徴とする、発明1に記載の製造方法。
[発明6]
 アルコール脱水素酵素またはカルボニル還元酵素がシロキクラゲ科、サッカロミケス科、ロドトルラ属、スポリディボラス属、トリコスポロン科の微生物、該処理物、該培養液、及び/または、該微生物から得られる酵素であることを特徴とする発明5に記載の製造方法。
[発明7]
 前記反応における温度(反応温度)が、5~60℃であることを特徴とする、発明1乃至6の何れかに記載の製造方法。
[発明8]
 前記反応におけるpH(反応時におけるpH)が、4.0~8.0の範囲であることを特徴とする、発明1乃至7の何れかに記載の製造方法。
[発明9]
 前記反応終了後に得られる光学活性含フッ素アルコールと、不純物とを含む混合液を蒸留することにより、該混合液から不純物を分離し、光学活性含フッ素アルコールを精製する工程を含む、発明1乃至8の何れかに記載の製造方法。
[発明10]
 発明1乃至9の何れかの方法で式[2]で表される光学活性含フッ素アルキルクロロメチルアルコールを製造し、次いで、該アルコールに塩基を作用させることを特徴とする、式[3]:
Figure JPOXMLDOC01-appb-C000011
[式中、*は不斉原子を表す。Rfは請求項1における式[1]に同じ。]
で表される光学活性含フッ素アルキルエチレンオキシドの製造方法。
[発明11]
 塩基が、アルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、及びアルカリ土類金属炭酸水素塩からなる群より選ばれる少なくとも一つである、発明10に記載の製造方法。
[発明12]
 前記光学活性含フッ素アルキルエチレンオキシドを加水分解することにより、式[4]:
Figure JPOXMLDOC01-appb-C000012
[式中、*は不斉原子を表す。Rfは請求項1における式[1]に同じ。]
で表される含フッ素アルキル-1,2-エタンジオールに誘導する工程を更に含む、発明10または発明11に記載の製造方法。
[発明13]
 加水分解が、酸または塩基を作用させることにより行う、発明12に記載の方法。
[発明14]
 塩基が、アルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、及びアルカリ土類金属炭酸水素塩からなる群より選ばれる少なくとも一つである、発明13に記載の製造方法。
[発明15]
 含フッ素アルキル-1,2-エタンジオールに誘導する工程を、前記反応で得られた光学活性含フッ素アルキルエチレンオキシドを単離することなく、そのまま加水分解することにより行う、発明12乃至14の何れかに記載の製造方法。
[発明16]
式:
Figure JPOXMLDOC01-appb-C000013
[式中、*は不斉原子を表す。]
で表される光学活性1-クロロ-3,3-ジフルオロイソプロピルアルコール。
[発明17]
式:
Figure JPOXMLDOC01-appb-C000014
[式中、*は不斉原子を表す。]
で表される光学活性2-ジフルオロメチルエチレンオキシド。
 本発明者らは、微生物菌体や酵素といった生体触媒の中から本発明の目的を達成することができる生体触媒のスクリーニングを鋭意実施し、光学活性含フッ素アルキルエチレンオキシドの中間体として利便性の高い光学活性含フッ素アルキルクロロメチルアルコールを与える生体触媒を見出し、本発明を完成するに至った。
 また、その過程において、本発明者らは、用いる生体触媒を変えることで光学活性含フッ素アルキルクロロメチルアルコールの両光学異性体を作り分けることができるという、大変有用な知見を得た。
 本発明では、生体触媒の基質として式[5]:
Figure JPOXMLDOC01-appb-C000015
で表される含フッ素アルキルブロモメチルケトンも候補に挙げたが、生体触媒を用いた方法では水を溶媒とする必要があり、化合物中の臭素原子が水中で脱離し、目的とする光学活性含フッ素アルキルブロモアルコールが得られないことを確認した(後述の比較例参照)。このように生体触媒を用いる方法では含フッ素アルキルブロモメチルケトンは使用できない知見を踏まえ、本発明では水の存在下であっても安定な、塩素原子が導入された前記化合物を用いることとした。
 含フッ素アルキルクロロメチルケトンの濃度は、反応液中の該ケトンの濃度(w/v)のことを意味し(還元された生成物の濃度は考慮されない(除外される))、反応全体を通しての該ケトンの添加総量を規定するものではない。
 反応液中に生成した光学活性含フッ素アルキルクロロメチルアルコールは、蒸留や抽出などにより回収することができ、該アルコールに塩基を作用させることで光学純度を維持したまま光学活性含フッ素アルキルエチレンオキシドに変換することができる。さらに、その光学活性含フッ素アルキルエチレンオキシドは加水分解することにより光学純度を維持したまま光学活性含フッ素アルキル-1,2-エタンジオールへの変換が可能である。
 本発明のように、高い光学純度で光学活性含フッ素アルキルクロロメチルアルコールを与える生体触媒を見出し、両光学異性の光学活性含フッ素アルキルクロロメチルアルコールを効率良く製造し、光学純度を維持したまま光学活性含フッ素アルキルエチレンオキシドに変換できる知見は従来知られていなかった。
 特に、本発明での対象の1つであるRfがジフルオロメチル基を有する基質については、通常の化学的手法による含フッ素アルキルクロロメチルケトンの不斉還元が極めて困難であり、従来の技術では高い光学純度の光学活性ジフルオロクロロメチルアルコールを得ることはできなかった(参考例1参照)。
 なお、光学活性2-ジフルオロメチルエチレンオキシド(式[3]で表される光学活性含フッ素アルキルエチレンオキシドの、Rfがジフルオロメチル基の場合)、及びそれの前駆体である光学活性1-クロロ-3,3-ジフルオロイソプロピルアルコール(式[2]で表される光学活性含フッ素アルキルクロロメチルアルコールの、Rfがジフルオロメチル基の場合)は新規化合物である。
 本発明によれば、医農薬中間体として重要な光学活性含フッ素アルキルエチレンオキシドを、効率良く製造することができる。
 また、当該エチレンオキシドの前駆体である光学活性含フッ素アルキルクロロメチルアルコールを与える生体触媒は、含フッ素アルキルクロロメチルケトン水和体を基質に用いたスクリーニングで得ることができ、さらに不斉還元反応(補酵素NAD(P)Hを外部から新たに加えることなく、脱水素酵素により再生させる方法など)を行うことにより、工業的に採用可能な生産性で光学活性含フッ素アルキルクロロメチルアルコールを得ることができる。
 以下に、本発明について詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
 本発明は、式[1]で表される含フッ素アルキルクロロメチルケトンに該ケトンを不斉還元する活性を有する微生物または該活性を有する酵素を作用させ、式[2]で表される光学活性含フッ素アルキルクロロメチルアルコールを得る(本明細書において「工程1」と言う。)製造方法、そして、工程1の方法で光学活性含フッ素アルキルクロロメチルアルコールを製造し、該アルコールに対し塩基を作用させ、閉環反応によって式[3]で表される光学活性含フッ素アルキルエチレンオキシドを得る(本明細書において「工程2」と言う。)製造方法である。
 さらに、工程2の方法で光学活性含フッ素アルキルエチレンオキシドを製造し、該エチレンオキシドを加水分解し、開環反応により式[4]で表される光学活性含フッ素アルキル-1,2-エタンジオールを得る(本明細書において「工程3」と言う。)製造方法も含め、以下にスキームとしてまとめる。
Figure JPOXMLDOC01-appb-C000016
[工程1]
 工程1について説明する。式[1]で表される含フッ素アルキルクロロメチルケトンは公知の化合物であり、従来技術を基に当業者が適宜調製してもよいし、市販されているものを用いてもよい。
 式[1]で表される含フッ素アルキルクロロメチルケトンのうち、Rfはフッ素原子を少なくとも1つ以上有する炭素数1~6の直鎖または分岐鎖のフルオロアルキル基である。具体的な構造としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ジフルオロメチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、1,1-ジフルオロプロピル基、2,2-ジフルオロプロピル基、3,3-ジフルオロプロピル基、1,1-ジフルオロブチル基、2,2-ジフルオロブチル基、3,3-ジフルオロブチル基、4,4-ジフルオロブチル基、モノフルオロメチル基、1-モノフルオロエチル基、2-モノフルオロエチル基、1-モノフルオロプロピル基、2-モノフルオロプロピル基、3-モノフルオロプロピル基、1-モノフルオロブチル基、2-モノフルオロブチル基、3-モノフルオロブチル基、4-モノフルオロブチル基が挙げられるが、その中でもトリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ジフルオロメチル基が好ましく、トリフルオロメチル基、ジフルオロメチル基が特に好ましい。
 工程1の主たる反応は、含フッ素アルキルクロロメチルケトンに該ケトンを不斉還元する活性を有する微生物または該活性を有する酵素を作用させ、式[2]で表される光学活性含フッ素アルキルクロロメチルアルコールを得る反応である。この反応により光学活性含フッ素エチレンオキシドの中間体として利便性の高い含フッ素アルキルクロロメチルアルコールを得ることができる。
 なお、式[1]で表される含フッ素アルキルクロロメチルケトンは、後述の実施例で示すように、当該ケトンに水もしくはアルコールが付加した、式[6]:
Figure JPOXMLDOC01-appb-C000017
で表される含フッ素アルキルクロロメチルケトン水和体、及び式[7]
Figure JPOXMLDOC01-appb-C000018
[式[6]または式[7]中、Rfは式[1]に同じ。Rは炭素数1~6の直鎖または分岐鎖のアルキル基を表す。]
で表されるアルコール付加体も同様に用いることができる。従って、これらの水和体及びアルコール付加体も本願請求項1に包合するものとして扱う。
 式[7]中のRは炭素数1~6の直鎖または分岐鎖のアルキル基を表す。具体的にはメチル基、エチル基、プロピル基、イソプロピル基、1-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、1-ペンチル基、2-ペンチル基、3-ペンチル基、2-メチル-1-ブチル基、2-メチル-2-ブチル基、3-メチル-1-ブチル基、3-メチル-2-ブチル基、ネオペンチル基、1-ヘキシル基、2-ヘキシル基、3-ヘキシル基、2-メチル-1-ペンチル基、3-メチル-1-ペンチル基、4-メチル-1-ペンチル基、2-メチル-2-ペンチル基、3-メチル-2-ペンチル基、4-メチル-2-ペンチル基、2-メチル-3-ペンチル基、3-メチル-3-ペンチル基、2,2-ジメチル-1-ブチル基、2,3-ジメチル-1-ブチル基、3,3-ジメチル-1-ブチル基、2,3-ジメチル-2-ブチル基、3,3-ジメチル-2-ブチル基、2-エチル-1-ブチル基、1-シクロプロピル基、1-シクロペンチル基、1-シクロヘキシル基が挙げられ、その中でもメチル基、エチル基、プロピル基、イソプロピル基、1-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、1-ペンチル基、1-ヘキシル基、1-シクロヘキシル基を表し、その中でもメチル基、エチル基、プロピル基、イソプロピル基、1-ブチル基、イソブチル基、tert-ブチル基、1-シクロヘキシル基が特に好ましい。
 ここで用いる微生物は特に限定はされないが、細菌、酵母、糸状菌などから適宜選ぶことができ、例えば、クリプトコッカス・カルバタス(Cryptococcus curvatus)、ピキア・ファリノーサ(Pichia farinosa)、トルラスポーラ・デルブルエキィ (Torulaspora delbrueckii)、キャンディダ・カカオイ (Candida cacaoi)、ロドトルラ・ムシラギノサ (Rhodotorula mucilaginosa)、スポリディボラス・ジョンソニイ (Sporidibolus johnsonii)、トリコスポロン・キュタネウム (Trichosporon cutaneum) からなる群より選ばれる少なくとも1種が挙げられ、好ましくは、クリプトコッカス・カルバタス(Cryptococcus curvatus)、ピキア・ファリノーサ(Pichia farinosa)、キャンディダ・カカオイ (Candida cacaoi)、トリコスポロン・キュタネウム (Trichosporon cutaneum) からなる群より選ばれる少なくとも1種が挙げられ、より好ましくは、クリプトコッカス・カルバタス(Cryptococcus curvatus)、ピキア・ファリノーサ(Pichia farinosa)、トリコスポロン・キュタネウム (Trichosporon cutaneum) からなる群より選ばれる少なくとも1種が挙げられる。また、これらと同じ生物の種に属する微生物についても同等に用いることができる。
 これらの微生物については、それぞれ下記表に示す受託番号を得て、独立行政法人製品評価技術基盤機構(〒151-0066 東京都渋谷区西原2-49-10)に寄託されている。これらの微生物は、他の微生物株保存機関にも相互に寄託されている場合があり、同様に利用することができる。なお、これらの微生物は一般に公開されているものであり、当業者が容易に入手できる。
Figure JPOXMLDOC01-appb-T000019
 本発明に用いる微生物としては、培養した菌体をそのまま用いることができるのは勿論、超音波やガラスビーズで破砕した菌体、アクリルアミド等で固定化した菌体、アセトンやグルタルアルデヒドなどの有機化合物で処理した菌体、アルミナ、シリカ、ゼオライト及び珪藻土等の無機担体に担持した菌体、該微生物より調製した無細胞抽出液も用いることができる。
 微生物の菌体をそのまま用いた場合、菌体内に複数存在している、「相反する立体選択性を保有する還元酵素の相互作用」の影響で光学純度が中程度(40~70%ee)となる場合もあるが、目的の酵素を精製して用いることで元の菌体が示す光学純度よりも高い光学純度を得ることも可能である。例えば、上記の光学活性体を与える微生物からアルコール脱水素酵素(可逆的にケトンを還元する酵素)、カルボニル還元酵素(不可逆的にケトンを還元する酵素)といった該反応を触媒する酵素を精製すればよく、該酵素の精製には、硫安分画、疎水クロマトグラフィー、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィーなどの一般的なタンパク質の精製方法が適用できる。また、該微生物よりクローニングした酵素の遺伝子を導入した遺伝子組換え体も同様に用いることができる。
 酵素の単離源はスクリーニングで得られた微生物を対象とすることができ、該微生物が属する種、すなわちシロキクラゲ科、サッカロミケス科、ロドトルラ属、スポリディボラス属、トリコスポロン科の微生物から本発明の方法に用い得るアルコール脱水素酵素またはカルボニル還元酵素を得ることができる。
 本発明の方法に用い得る酵素は、市販されているものも用いることができ、含フッ素アルキルクロロメチルケトンを基質に用いたスクリーニングを行うことで選抜することができる。市販されている酵素は、例えば、オリエンタル酵母工業株式会社の「アルコール脱水素酵素、酵母由来」、ユニチカ株式会社の「アルコール脱水素酵素(ZM-ADH、Zymomonas mobilis由来)」、株式会社ダイセルのChiralscreen(登録商標) OH E001(以下同じ)、E004、E007、E008、E039、E048、E052、E073、E077、E085、E094から選ばれる少なくとも1種が挙げられ、好ましくはE001、E007、E039、E085、E094より好ましくはE001、E039、E094である。また、当該酵素を発現する遺伝子組換え体も同様に用いることができる。
 前記微生物の培養には、通常、微生物の培養に用いられる栄養成分を含む培地(固体培地または液体培地)が使用できるが、水溶性である含フッ素アルキルクロロメチルケトンの還元反応を行う場合には、液体培地が好ましい。培地は、炭素源としてグルコース、スクロース、マルトース、ラクトース、フルクトース、トレハロース、マンノース、マンニトール、デキストロース等の糖類、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、グリセロール等のアルコール類、クエン酸、グルタミン酸、リンゴ酸等の有機酸類が、そして窒素源としてアンモニア、アンモニウム塩、アミノ酸、ペプトン、ポリペプトン、カザミノ酸、尿素、酵母エキス、麦芽エキス、コーンスティープリカー等が用いられる。さらに、リン酸二水素カリウム、リン酸水素二カリウム等の他の無機塩や、イノシトール、ニコチン酸等のビタミン類等、鉄、銅、マグネシウム、ホウ素、マンガン、モリブデン等の微量金属類等の培地組成が適宜添加できる。
 これらの炭素源、窒素源、無機塩のうち、炭素源については微生物が十分に増殖する量且つ増殖を阻害しない量を加えることが好ましく、通常、培地1Lに対して5~80g、好ましくは10~40g加える。窒素源についても同様で、微生物が十分に増殖する量且つ増殖を阻害しない量を加えることが好ましく、通常、培地1Lに対して5~60g、好ましくは10~50g、栄養源としての無機塩については微生物の増殖に必要な元素を加える必要があるが、高い濃度の場合には増殖が阻害されるため、通常、培地1Lに対して0.001~10g加える。なお、これらは微生物に応じて複数の種類を組み合わせて使用することができる。
 培地におけるpHは微生物の増殖に好適な範囲で調整する必要があり、通常4.0~10.0、好ましくは6.0~9.0で行う。培養における温度範囲は微生物の増殖に好適な範囲で調整する必要があり、通常10~50℃、好ましくは20~40℃で行う。培養中は培地に空気を通気する必要があり、好ましくは0.3~4vvm(「vvm」は1分間当たりの培地体積に対する通気量を意味する。「olume/olume/inute」の略である。)、より好ましくは0.5~2vvmで行う。酸素の要求量が多い微生物に対しては、酸素発生器等を用いて、酸素濃度を高めた空気を通気してもよい。また、試験管やフラスコ等の任意の通気量を設定し難い器具については、該器具の容積に対して培地量を20%以下に設定し、綿栓やシリコン栓等の通気栓を取り付ければよい。培養を円滑に進めるためには培地を攪拌することが好ましく、培養槽の場合には該装置の攪拌能力の好ましくは10~100%、より好ましくは20~90%で行う。一方、試験管やフラスコ等の小規模な器具の場合には振盪機を用いて行うのがよく、好ましくは50~300rpm、より好ましくは100~280rpmで行う。培養時間は微生物の増殖が収束する時間であればよく、6~72時間、好ましくは12~48時間で行う。
 基質である含フッ素アルキルクロロメチルケトンに前記微生物を作用させるには、通常、微生物を培養した懸濁液をそのまま反応に使用することができる。培養中に生じる成分が還元反応に悪影響を与える場合には、遠心分離等の操作で培養液から菌体を1度回収して得られた菌体(静止菌体)を用いて再び懸濁液を調製して反応に使用してもよい。また、培養した微生物菌体の細胞を破砕等して得られたものや、培養した微生物菌体から調製した酵素などの、各種細胞抽出物も反応に使用することもできる。他方、基質である含フッ素アルキルクロロメチルケトンに前記酵素(精製酵素)を作用させる場合には、該酵素を溶解させた緩衝液中で行うことができる。本反応は還元反応であることから、弱酸性の緩衝液が好ましく、リン酸ナトリウム緩衝液、リン酸カリウム緩衝液、クエン酸ナトリウム緩衝液、クエン酸カリウム緩衝液、酢酸ナトリウム緩衝液、酢酸カリウム緩衝液が挙げられる。
 前記微生物を用いた反応を効率的に進めるには、これらの懸濁液中の菌体の密度を高める必要があるが、密度が高過ぎると自己溶解酵素の産生や終末代謝産物の蓄積等により反応が阻害される場合があるため、通常106~1012cfu/ml(「cfu」は寒天培地上に形成されるコロニーの数を意味する、colony forming units)、好ましくは107~1011cfu/ml、より好ましくは108~1010cfu/mlで行う。他方、前記酵素を用いた反応を効率的に進めるためには、緩衝液中の酵素の濃度を高める必要があるが、酵素を使用しすぎると経済的ではないため、好ましくは0.01~20g/L、より好ましくは0.1~10gの範囲で使用する。
 これらの懸濁液または緩衝液への含フッ素アルキルクロロメチルケトンの添加において、該ケトンの濃度は、還元反応が円滑に進み且つ微生物または酵素の活性に悪影響を与えない濃度を維持することが好ましい。該ケトンの濃度は、20%(w/v)より高い場合、微生物が死滅したり、酵素が変性したりすることがあるため、この数値以下の濃度、すなわち、通常0.01~15%(w/v)、好ましくは0.05~10%(w/v)で行う。該ケトン濃度算出の容量の根拠は、例えば、後述する実施例1では蒸気滅菌前の試験管に分注した培養液量を、後述する実施例7では培養後の微生物の懸濁液総量を、目安として考えればよい。
 基質である含フッ素アルキルクロロメチルケトンに前記微生物または酵素を作用させる際の温度(すなわち反応温度)は、該微生物または酵素に好適な範囲を維持する必要があり、通常5~60℃、好ましくは15~50℃、より好ましくは15~38℃である。また、上記作用させる際のpH(すなわち反応時のpH)も、好適な範囲を維持する必要があり、通常4.0~8.0、好ましくは5.5~8.0、より好ましくは5.5~7.0である。
 微生物懸濁液または酵素緩衝液が静置状態にあると反応効率が低下するため、反応時は反応液を攪拌しながら行う。また、反応時は無通気で行うことができるが、必要に応じて通気を行ってもよい。その際、通気量が多過ぎる場合には含フッ素アルキルクロロメチルケトン及び光学活性含フッ素アルキルクロロメチルアルコールが系外に気体として飛散するおそれがあるため、通気量は、0.3vvm以下が好ましく、より好ましくは0.1vvm以下である。反応時間は、目的物の生成具合によって決定すればよく、通常6~312時間である。
 本発明では、還元反応に利用される補酵素NAD(P)H(水素供与体)は、補酵素再生酵素(グルコース脱水素酵素、ギ酸脱水素酵素、グリセロール脱水素酵素、アルコール脱水素酵素、以下同じ)により補酵素NAD(P)から再生することができ、微生物での反応では微生物が本来持つ補酵素再生酵素、組換え体については所望の遺伝子を組み込むことで発現する補酵素再生酵素を用いることができる。補酵素再生酵素の基質として、各酵素に対応する基質を添加する必要があり、グルコース、ギ酸、グリセロールまたはアルコールを添加しながら行う。補酵素NAD(P)Hは市販されているものを別途加えて還元反応を行うことも可能であるが、非常に高価なため経済的ではない。本発明のように補酵素NAD(P)Hを外部から新たに加えることなく、補酵素再生酵素により再生させることで、1菌体(1酵素)当たりの還元回数が増え、経済的に且つ高い生産性で目的物を製造することができる。
 生成した光学活性含フッ素アルキルクロロメチルアルコールを反応終了液(反応終了後の不純物などを含む混合液)から回収するには、蒸留や有機溶媒による抽出、固相抽出等の有機合成における一般的な単離方法が採用できる。特に、本化合物は反応終了液、または必要に応じてろ過により菌体を取り除いた後の濾液から直接、蒸留に付すことで粗生成物を水溶液として簡便に且つ収率良く回収することができる点は従来技術と比較しても非常に有用である。得られた粗生成物の水溶液は、必要に応じて、脱水、活性炭、分別蒸留、カラムクロマトグラフィー等の精製操作を行うことができるが、直接粗体のまま次の工程の光学活性含フッ素アルキルエチレンオキシドの合成に使用できる点も工業的な観点から望ましい態様の一つである。
 粗生成物を精製する方法としては、特に有機溶媒による抽出とそれに続く分別蒸留が好ましい。有機溶媒としては、エーテル系溶媒、エステル系溶媒、ハロゲン系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒などが採用できる。具体的にはジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、メチル-tert-ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸t-ブチル、塩化メチレン、クロロホルム、1,2-ジクロロエタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-ノナン、n-オクタン、トルエン、キシレン等が挙げられ、ジエチルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、塩化メチレン、クロロホルム、1,2-ジクロロエタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、トルエンが好ましく、ジエチルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテル、2-メチルテトラヒドロフラン、酢酸エチル、塩化メチレン、クロロホルム、n-ヘキサン、トルエンが特に好ましい。これらの溶媒を単独若しくは組み合わせて使用しても良い。
また、反応終了液から菌体を取り除いた後の濾液を直接、上記で示した有機溶媒を用いることにより抽出し、それに対し濃縮を行うことにより光学活性含フッ素アルキルクロロメチルアルコールを回収することも出来る。
[工程2]
 次に、工程2について説明する。工程2は、前記工程で製造した式[2]で表される光学活性含フッ素アルキルクロロメチルアルコールを原料とし、該アルコールに塩基を作用させることで、式[3]で表される光学活性含フッ素アルキルエチレンオキシドを得る工程である。ここで塩基を作用させ、閉環することにより、光学純度を低下させることなく、光学活性含フッ素アルキルエチレンオキシドに誘導することが可能である。
 本工程で使用する塩基は無機塩基または有機塩基が挙げられる。無機塩基としては、アルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩又はアルカリ土類金属炭酸水素塩、アルカリ金属アミド、アルカリ金属等が挙げられる。
中でも、アルカリ金属水素化物、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩又はアルカリ土類金属炭酸水素塩が好ましく、アルカリ金属水素化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩またはアルカリ金属炭酸水素塩が特に好ましい。
具体的には水素化リチウム、水素化ナトリウム、水素化カリウム、水素化ルビジウム、水素化セシウム、水素化マグネシウム、水素化カルシウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム、炭酸水素マグネシウム、炭酸水素カルシウム、ナトリウムアミド、カリウムアミド、ナトリウム、カリウムが挙げられ、中でも水素化リチウム、水素化ナトリウム、水素化カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸カルシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム、炭酸水素マグネシウム、炭酸水素カルシウムが好ましく、水素化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸セシウム、炭酸ナトリウム、炭酸カルシウム、炭酸水素カリウム、炭酸水素セシウムが特に好ましい。これらは、1種類を単独で、または2種類以上を組み合わせて使用することもできる。
 一方、有機塩基としては、ピリジン類、トリアルキルアミン類、N,N-ジアルキルアニリン類等が挙げられるが、ピリジン類、トリアルキルアミン類が好ましい。具体的には、ピリジン、メチルピリジン、エチルピリジン、ジメチルピリジン、メチルエチルピリジン、ジエチルピリジン、トリメチルピリジン、ジメチルアミノピリジン、2,2'-ビピリジル、4-ジメチルアミノピリジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリンが挙げられ、中でもピリジン、トリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミンが特に好ましい。これらは、1種類を単独で、または2種類以上を組み合わせて使用することもできる。また、これらの有機塩基と無機塩基の2種類以上を組み合わせて使用することもできる。
 塩基の使用量は、一般式[2]で示される含フッ素アルキルクロロメチルアルコールに対して0.1モル以上を用いればよく、0.2から20モルが好ましく、0.3から10モルが特に好ましい。
 反応溶媒としては、水の他に、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系、トルエン、キシレン等の芳香族炭化水素系、塩化メチレン、1,2-ジクロロエタン等のハロゲン化炭化水素系、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、1,2-ジメトキシエタン、ジグリム等のエーテル系、酢酸エチル、酢酸n-ブチル等のエステル系、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン等のアミド系、アセトニトリル、プロピオニトリル等のニトリル系、ジメチルスルホキシド等が挙げられる。その中でも、水、n-ヘプタン、トルエン、塩化メチレン、テトラヒドロフラン、1,2-ジメトキシエタン、ジグリム、酢酸エチル、N,N-ジメチルホルムアミド、アセトニトリル及びジメチルスルホキシドが好ましい。これらの反応溶媒は単独でまたは組み合わせて用いることができる。また、本発明においては無溶媒で行うこともできる。
 反応溶媒の使用量は、一般式[2]で示される含フッ素アルキルクロロメチルアルコール1モルに対して0.01L以上を用いればよく、0.03から10Lが好ましく、0.05から7Lが特に好ましい。
 反応時間は、72時間以内の範囲で行えばよく、原料基質及び反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、原料基質が殆ど消失した時点を終点とすることが好ましい。
 反応温度は好ましくは-30~120℃の範囲で行えばよく、通常は-20~100℃が好ましく、特に-10~80℃がより好ましい。本発明では、すべての試剤を同時に混合し反応を開始してもよいが、発熱反応のために氷冷しながら含フッ素アルキルクロロメチルアルコールに対して塩基をゆっくり添加する方法、またはその逆の滴下方法を採用することで、好ましい温度範囲を維持できることから、好ましい態様の一つである。温度が高すぎる場合、系内で発生した光学活性含フッ素アルキルエチレンオキシドが系外に飛散するため、それを冷却器で捕集しながら反応を行えば良い。
 得られた光学活性含フッ素アルキルエチレンオキシドを反応終了液(反応終了後の不純物などを含む混合液)から回収するには、ろ過や蒸留や有機溶媒による抽出等の有機合成における一般的な単離方法が採用できる。ここで工程1で蒸留操作により光学活性含フッ素アルキルクロロメチルアルコールを回収したものを本工程の出発原料として用いる方法は、不純物が少なく、副反応が抑制できるので好ましい態様の一つである。抽出する際の溶媒としては、該エチレンオキシドと反応しないものが好ましく、n-ヘプタン、n-ヘキサン等の脂肪族炭化水素系、ベンゼン、トルエン等の芳香族炭化水素系、塩化メチレン、クロロホルム等のハロゲン化炭化水素系、ジエチルエーテル、t-ブチルメチルエーテル等のエーテル系、酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒等が挙げられる。そのような単離方法の中でも、反応後に、必要に応じてろ過にて固形分を取り除いた後に反応液を直接蒸留することにより目的物を取り出す作業が簡便であり工業的に望ましい。
[工程3]
 次に、工程3について説明する。本発明では、工程1~工程2を経ることにより、目的化合物である光学活性含フッ素アルキルエチレンオキシドを得ることができるが、本工程では、該エチレンオキシドを加水分解することで開環し、光学活性化合物である下記式[4]:
Figure JPOXMLDOC01-appb-C000020
[式中、*は不斉原子を表す。Rfは式[1]に同じ。]
で表される光学活性含フッ素アルキル-1,2-エタンジオールに簡便に誘導できる。
 該エチレンオキシドは加水分解することで開環するが、無機塩基、有機塩基、無機酸や有機酸を加えることで反応を加速することもできる。無機塩基としては、アルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ土類金属炭酸水素塩、アルカリ金属アミドまたはアルカリ金属等が挙げられる。
中でも、アルカリ金属水素化物、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩またはアルカリ土類金属炭酸水素塩が好ましく、アルカリ金属水素化物、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩またはアルカリ金属炭酸水素塩が特に好ましい。
具体的には水素化リチウム、水素化ナトリウム、水素化カリウム、水素化ルビジウム、水素化セシウム、水素化マグネシウム、水素化カルシウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム、炭酸水素マグネシウム、炭酸水素カルシウム、ナトリウムアミド、カリウムアミド、ナトリウム、カリウムが挙げられ、中でも水素化リチウム、水素化ナトリウム、水素化カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム、炭酸カルシウム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム、炭酸水素マグネシウム、炭酸水素カルシウムが好ましく、水素化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸カリウム、炭酸セシウム、炭酸ナトリウム、炭酸カルシウム、炭酸水素カリウム、炭酸水素セシウムが特に好ましい。
これらは、1種類を単独で、または2種類以上を組み合わせて使用することもできる。
 有機塩基としては、ピリジン類、トリアルキルアミン類、N,N-ジアルキルアニリン類等が挙げられるが、中でもピリジン類、トリアルキルアミン類が好ましい。具体的には、ピリジン、メチルピリジン、エチルピリジン、ジメチルピリジン(ルチジン)、メチルエチルピリジン、ジエチルピリジン、トリメチルピリジン(コリジン)、ジメチルアミノピリジン、2,2'-ビピリジル、4-ジメチルアミノピリジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、及びトリブチルアミン、ジイソプロピルエチルアミン、N,N-ジメチルアニリン、またはN,N-ジエチルアニリン等が挙げられる。中でもピリジン、トリメチルアミン、トリエチルアミン、トリブチルアミンが好ましい。これらは、1種類を単独で、または2種類以上を組み合わせて使用することもできる。また、これらの有機塩基と無機塩基の2種類以上を組み合わせて使用することもできる。
 酸は、無機酸として、塩酸、硫酸、リン酸、硝酸、ホウ酸等が挙げられる。有機酸として、酢酸、クエン酸、ギ酸、乳酸、シュウ酸、酒石酸、メタンスルホン酸等が挙げられる。中でも入手の容易さやコストの面、取り扱いやすさの点で、塩酸、硫酸が好ましく、これらは、1種類を単独で、または2種類以上を組み合わせて使用することもできる。
 塩基や酸の使用量は、一般式[3]で示される含フッ素アルキルエチレンオキシドに対して0.01モル以上を用いればよく、0.02から20モルが好ましく、0.03から10モルが特に好ましい。
 水の使用量は、一般式[3]で示される含フッ素アルキルエチレンオキシドに対して0.5モル以上を用いればよく、0.7モル以上が好ましく、0.9モル以上が特に好ましい。
 反応溶媒としては、水の他にn-ヘキサン、n-ヘプタン等の脂肪族炭化水素系、トルエン、キシレン等の芳香族炭化水素系、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル等のエーテル系、酢酸メチル、酢酸エチル、酢酸n-ブチル等のエステル系、N,N-ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン等のアミド系、アセトニトリル、プロピオニトリル等のニトリル系、ジメチルスルホキシド等が挙げられる。その中でも、n-ヘプタン、トルエン、塩化メチレン、テトラヒドロフラン、酢酸エチル、水、N,N-ジメチルホルムアミド、アセトニトリル、テトラヒドロフラン、tert-ブチルメチルエーテル及びジメチルスルホキシドが好ましい。これらの反応溶媒は単独でまたは組み合わせて用いることができる。また、本発明においては無溶媒で行うこともできる。
 反応溶媒の使用量は、一般式[3]で示される含フッ素アルキルエチレンオキシド1モルに対して0.01L以上を用いればよく、0.03から10Lが好ましく、0.05から7Lが特に好ましい。
 反応時間は、72時間以内の範囲で行えばよく、原料基質及び反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況を追跡し、原料基質が殆ど消失した時点を終点とすることが好ましい。
 反応温度は好ましくは-30~150℃の範囲で行えばよく、通常は0~120℃が好ましく、特に10~100℃がより好ましい。本発明では、すべての試剤を同時に混合し反応を開始してもよいが、工程2と同様にこの反応も発熱反応のために、内温を適切な温度に保ちつつ、含フッ素アルキルエチレンオキシドに対して酸や塩基をゆっくり添加する方法、またはその逆の滴下方法を採用することで好ましい温度範囲を維持できることから、好ましい態様の一つである。
 得られた光学活性含フッ素アルキル-1,2-エタンジオールを反応終了液(反応終了後の不純物などを含む混合液)から回収するには、ろ過や蒸留や有機溶媒による抽出等の有機合成における一般的な単離方法が採用できる。抽出する際には、溶媒として、n-ヘプタン、n-ヘキサン等の脂肪族炭化水素系、ベンゼン、トルエン等の芳香族炭化水素系、塩化メチレン、クロロホルム等のハロゲン化炭化水素系、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテル等のエーテル系、酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系、n-ブタノール、n-ペンタノール、n-ヘキサノールなどの水と混和しないアルコール系溶媒等が挙げられ、その中でも、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、シクロペンチルメチルエーテル、n-ブタノール、n-ペンタノールが好ましい。目的物を抽出液や反応終了液から減圧蒸留により抜出を行う場合で、フラクションに水が混入する場合は、得たフラクションをディーンスターク装置などにより脱水して高純度の目的物を得る方法はこの工程の好ましい形態の1つである。
 ところで、本工程を行うにあたり、工程2の後処理を行わずに、連続的に工程3を実施することができる。具体的には、工程2が終了した後、得られた含フッ素アルキルエチレンオキシドを単離せずに工程2の反応終了液に工程3に必要な試剤を加えることにより、光学活性含フッ素アルキル-1,2-エタンジオールを得ることができる。
 また、工程2を実施するにあたり、工程2の目的物である光学活性含フッ素アルキルエチレンオキシドの他に、該オキシドが加水分解された化合物である、光学活性含フッ素アルキル-1,2-エタンジオール(本工程の目的物)が反応系内に生成することがある。
 この場合、本工程における光学活性含フッ素アルキル-1,2-エタンジオールを製造することを目的とする場合は、工程2で光学活性含フッ素アルキルエチレンオキシドと光学活性含フッ素アルキル-1,2-エタンジオールとの混合物を製造し、続いて精製操作を行うことで、工程3の目的化合物である光学活性含フッ素アルキル-1,2-エタンジオールを製造することが可能である(例えば後述の実施例8参照)。
 この精製操作で分離した光学活性含フッ素アルキルエチレンオキシドは、工程3における出発原料として別途再利用することもできる。このことは本発明における好ましい実施態様の一つである。
 含フッ素アルキルクロロメチルアルコールから直接、光学活性含フッ素アルキル-1,2-エタンジオールを得るための最も好ましい形態としては、水存在下で工程2と工程3で共通する有機塩基や無機塩基の試剤を一度に使用することであり、特に無機塩基を使用することにより効率的に光学活性含フッ素アルキル-1,2-エタンジオールに誘導することが出来る。 後処理についても、工程3で記載した処理を同様に行うことにより高純度の光学活性含フッ素アルキル-1,2-エタンジオールを製造することが出来る。
 本発明の方法は、含フッ素アルキルクロロメチルケトンを出発原料とし、好適な反応条件を適用することで、光学活性含フッ素アルキルエチレンオキシドの前駆体として利便性が高い光学活性含フッ素アルキルクロロメチルアルコールを大量に製造することが可能であり、続いて、該アルコールに塩基を作用させることで簡便に光学活性含フッ素アルキルエチレンオキシドへ誘導できる。工業的な製造方法として優位性が高い。
 なお、実用的にも採用できる光学純度として、40%ee以上、特に好ましくは80%ee以上で得ることができる。本化合物は反応性が高く、光学活性含フッ素有機化合物を合成する中間体として大変有用である。また、化合物の光学純度はカラムクロマトグラフィーを用いた光学分割や再結晶法などで向上することもできる。
[実施例]
 次に実施例を示すが、本発明は以下の実施例によって限定されるものではない。
[3-クロロ-1,1-ジフルオロ-2-プロパノン水和体に対する微生物の反応性調査(スクリーニング)結果]
 蒸留水1000ml、ポリペプトン10g、酵母エキス5g、塩化ナトリウム10gの組成からなる液体培地を調製し、試験管(φ1.6cm×15cm)に5mlずつ分注し、下記表3に示す各微生物を接種し、28℃、160spmで48~72時間の培養を行った。培養終了後、90wt%の3-クロロメ-1,1-ジフルオロ-2-プロパノン水和体を1.0%wt/v、グルコースを0.1mol/Lとなるように添加し、28℃、160rpmで還元反応を48時間行った。反応後の変換率の測定は、19F-NMRの内部標準法により行い(以下、すべての化合物で同じ)、1-クロロ-3,3-ジフルオロイソプロピルアルコールの光学純度の測定は、反応液に酢酸エチルを加えて混合し、該アルコールを有機層に抽出し、後述するキラルカラムを用いたガスクロマトグラフィー法により分析した(以下、同じ)。用いた微生物ごとの変換率及び光学純度の測定結果を下記表3に示した。
Figure JPOXMLDOC01-appb-T000021
 このように、微生物を用いた不斉還元反応で、光学活性1-クロロ-3,3-ジフルオロイソプロピルアルコールを得ることができた。本スクリーニングで使用した菌株については、高いもので68.8%eeの光学純度であったが、スクリーニングの幅を広げることでより高い光学純度を与える菌株を見出すことができる。また、高い立体選択性を示した菌株より酵素を精製することで、高い光学純度を与える酵素を単離することもできる。
[光学活性1-クロロ-3,3-ジフルオロイソプロピルアルコールの光学純度の分析条件]
 1-クロロ-3,3-ジフルオロイソプロピルアルコールに対して、無水酢酸1.2当量、ピリジン1.2当量を反応させ、アセトキシ体に誘導し、分析試料とした。ガスクロマトグラフィーのカラムにはアジレント・テクノロジー社製のCyclosil-B(0.25mm×30m×0.25μm)を用い、キャリアガスは窒素、圧力は163kPa、カラム温度は60~90℃(1℃/min)~150℃(10℃/min)、気化室・検出器(FID)温度は230℃の分析条件で得られるピークの面積により光学純度を算出した。それぞれのエナンチオマーの保持時間は、R体が15.7min、S体が16.4minであった。立体配置は、光学活性1-クロロ-3,3-ジフルオロイソプロピルアルコールに48%NaOHを作用させ光学活性2,2-ジフルオロエチレンオキシドに誘導した後に、20%H2SO4を作用させ、公知の化合物の光学活性3,3-ジフルオロ-1,2-プロパンジオールに誘導して決定した(後述するが、光学純度は維持される)。
[比較例1]
[3-ブロモ-1,1,1-トリフルオロ-2-プロパノン水和体に対する微生物の反応性調査(スクリーニング)]
 実施例1と同様の方法で、微生物による3-ブロモ-1,1,1-トリフルオロ-2-プロパノン水和体の還元反応を実施し、表4に結果を記した。目的とする光学活性1-ブロモ-3,3,3-トリフルオロイソプロピルアルコールは生成しておらず、反応後の化合物を同定したところ、1,1,1-トリフルオロ-3-ヒドロキシ-2-プロパノン及び3,3,3-トリフルオロ-1,2-プロパンジオールであった。本化合物の臭素原子が水中で脱離することから、生体触媒による基質としては採用できないことが分かった。
なお、化学的に調製した光学活性体を用いた光学純度の測定方法を後述する。
Figure JPOXMLDOC01-appb-T000022
[光学活性1-ブロモ-3,3,3-トリフルオロイソプロピルアルコールの光学純度の分析条件]
 1-ブロモ-3,3,3-トリフルオロイソプロピルアルコールに対して、無水トリフルオロ酢酸1.2当量、ピリジン1.2当量を反応させ、トリフルオロアセトキシ体に誘導し、分析試料とした。ガスクロマトグラフィーのカラムにはBGB Analytik AG社製のBGB-174(0.25mm×30m×0.25μm)を用い、キャリアガスは窒素、圧力は163kPa、カラム温度は60~90℃(1℃/min)~150℃(10℃/min)、気化室・検出器(FID)温度は230℃の分析条件で得られるピークの面積により光学純度を算出した。それぞれのエナンチオマーの保持時間は、R体が12.9min、S体が13.2minであった。
[Pichia farinosa NBRC 0462菌株からの酵素の粗精製]
 Pichia farinosa NBRC 0462菌株を、蒸留水1000ml、ポリペプトン10g、酵母エキス5g、塩化ナトリウム10gの組成からなる試験管(φ1.6cm×15cm)に調製された5mlの液体培地で前培養を行った。この培養液を、容量5Lの培養槽((株)丸菱バイオエンジ製、MDN型5L(S))に調製された蒸留水2500ml、グルコース25g、ペプトン12.5g、酵母エキス7.5g、麦芽エキス7.5g、リン酸二水素カリウム7.5g、リン酸水素二カリウム5.0gの組成からなる高圧蒸気滅菌後の液体培地に投入した。温度30℃、通気1.25L/min、攪拌翼回転数400 rpmで培養を行い、培養中のpHは42.5%リン酸と14%アンモニア水を用いてpH6.5に調整した。培養後の培養液を回収し、500ml容の遠沈管を用いて、遠心分離により菌体を回収した。回収した湿菌体に0.2MのpH7.0のリン酸緩衝液を100ml加え、懸濁液を調製した。ビーズ式細胞破砕装置(BioSpec社製、ビードビーター)を用いて、懸濁液中の細胞を破砕し、ガラスビースを除去後、20,000×g、30分間の遠心分離を行い、無細胞抽出液を調製した。この無細胞抽出液1mlに3-クロロ-1,1-ジフルオロ-2-プロパノン水和体を1%wt/v、2Mグルコースを250μL添加し、30℃で還元反応を24時間行った。反応後の変換率は100%、光学純度は62.0%ee(R)であった。
[3-クロロ-1,1,1-トリフルオロ-2-プロパノン水和体及び3-クロロ-1,1-ジフルオロ-2-プロパノン水和体に対する市販のアルコール脱水素酵素の反応性の調査(スクリーニング)結果]
 1mlの200mM リン酸カリウム緩衝液(pH6.5、206mM ギ酸ナトリウム、222mM グルコース、5mM NAD+、(NAD+:ニコチンアミドアデニンジヌクレオチド酸化型、以下同じ)5mM NADP+(NAD+:ニコチンアミドアデニンジヌクレオチドリン酸酸化型、以下同じ)に3-クロロ-1,1,1-トリフルオロ-2-プロパノン水和体または3-クロロ-1,1-ジフルオロ-2-プロパノン水和体を1重量%になるように添加し、下記表5と表6の「酵素名」に示す株式会社ダイセルのChiralscreen(登録商標) OH(アルコール脱水素酵素)を、それぞれ5mg加えてマグネチックスターラーで攪拌しながら25℃で2日間反応させた。1-クロロ-3,3,3-トリフルオロイソプロピルアルコールの光学純度は酢酸エチルで抽出し、後述するキラルカラムを用いたガスクロマトグラフィー法により測定した。それぞれ反応後の変換率と光学純度を測定し、下記表5と表6にそれぞれ示した。光学活性1-クロロ-3,3,3-トリフルオロイソプロピルアルコールの光学純度は、光学活性2-トリフルオロメチルエチレンオキシドに誘導し、後述の分析条件で分析した。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 このように、精製酵素を用いた場合でも目的の光学活性体を得ることができ、スクリーニングの幅を広げることでより高い光学純度を与える精製酵素を見出すこともできる。
[光学活性1-クロロ-3,3,3-トリフルオロイソプロピルアルコールの光学純度の分析条件]
 1-クロロ-3,3,3-トリフルオロイソプロピルアルコールに対して、無水トリフルオロ酢酸1.2当量、ピリジン1.2当量を反応させ、トリフルオロアセトキシ体に誘導し、分析試料とした。ガスクロマトグラフィーのカラムにはBGB Analytik AG社製のBGB-174(0.25mm×30m×0.25μm)を用い、キャリアガスは窒素、圧力は163kPa、カラム温度は60~90℃(1℃/min)~150℃(10℃/min)、気化室・検出器(FID)温度は230℃の分析条件で得られるピークの面積により光学純度を算出した。それぞれのエナンチオマーの保持時間は、R体が13.4min、S体が13.7minであった。
[比較例2]
 実施例3と同様の方法で、下記表7と表8の「酵素名」に示す株式会社ダイセルのChiralscreen(登録商標) OH(アルコール脱水素酵素)の、3-クロロ-1,1,1-トリフルオロ-2-プロパノン水和体または3-クロロ-1,1-ジフルオロ-2-プロパノン水和体に対する反応性を評価し、下記表7と表8にそれぞれの結果を示した。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
[アルコール脱水素酵素を発現する遺伝子組換え大腸菌による(R)-1-クロロ-3,3-ジフルオロイソプロピルアルコールの製造]
 前培養の培地として、蒸留水1000ml、ポリペプトン10g、酵母エキス5g、塩化ナトリウム10gの組成からなる液体培地を調製し、試験管(φ1.6cm×15cm)に5mlずつ分注し、121℃で15分間の蒸気滅菌を行った。この液体培地に、株式会社ダイセルのChiralscreen (登録商標) OH E039のアルコール脱水素酵素を大量発現する遺伝子組換え大腸菌を白金時で無菌的に接種し、30℃、160spmで一晩培養を行い、波長600nmでの光学濃度(OD600)8.2の前培養液を得た。
 本培養の培地として、蒸留水2500mlに酵母エキス、グルタミン酸ナトリウム、グルコース、ラクトース、無機塩類、消泡剤からなる液体培地を調製し、容量5Lの培養槽((株)丸菱バイオエンジ製、MDN型5L(S))に張り込み、121℃で30分間の蒸気滅菌を行った。この培養槽に前培養液を無菌的に5ml接種し、30℃、通気0.5vvm、攪拌しながら40時間培養し、光学濃度(OD600)24の懸濁液を調製した。培養時のpHは20%炭酸ナトリウム水溶液、42.5%リン酸水溶液を用いてpH7.0付近に調整した。培養終了後、通気を0vvmに変更し、培養液に対して80%wt/wtの3-クロロ-1,1-ジフルオロ-2-プロパノン水和体を6.25%wt/v(156.25g、含量として125.0g、853mmol)添加し、ギ酸脱水素酵素により補酵素の再生を行いながら20℃、pH6.2で還元反応を24時間行った。反応後の変換率は96%、光学純度は83.0%ee(R)であった。
 反応後の培養液から減圧蒸留(内圧19.2kPa、蒸気温度57~61℃)により80g(613mmol)の(R)-1-クロロ-3,3-ジフルオロイソプロピルアルコールを含む水溶液を443g回収した。収率は72%となった。
[(S)-2-ジフルオロメチルエチレンオキシドの製造]
 実施例4で回収した(R)-1-クロロ-3,3-ジフルオロイソプロピルアルコール水溶液から該アルコールの含量が30g(230mmol)となるように水溶液を一部取り出し(166g)、氷冷しながら、48%水酸化ナトリウム水溶液1.0当量を滴下した。滴下は内部の温度を確認しながら、0~3℃を維持するように行った。滴下後、1℃で120分間攪拌し、閉環反応を実施した。反応後、蒸留により蒸気温度50~70℃(大気圧)で抜き出しを行い、(S)-2-ジフルオロメチルエチレンオキシドを17g(182mmol)回収し、後述の分析条件で光学純度を分析したところ83.1%eeであった。収率は79%となった。
[光学活性2-ジフルオロメチルエチレンオキシドの光学純度の分析条件]
 2-ジフルオロメチルエチレンオキシドに対して、2-ナフタレンチオールを1.1当量、トリエチルアミンを1.1当量添加し、スルフィドに誘導し、分析試料とした。高速液体クロマトグラフィーのカラムにはダイセル社製のCHIRALCEL OD-H(4.6mm×25cm、粒子径5μm)を用い、移動相はヘキサン/IPA=95/5、流速0.7ml、カラム温度15℃、検出波長230nmで得られるピークの面積により光学純度を算出した。それぞれのエナンチオマーの保持時間は、R体が24.2min、S体が27.4minであった。
[(S)-3,3-ジフルオロ-1,2-プロパンジオールの製造]
 実施例5で得た(S)-2-ジフルオロメチルエチレンオキシド17g(182mmol)に20%硫酸水溶液を0.2当量添加し、50℃で8時間攪拌を行った。反応後は、水酸化ナトリウムで溶液のpHを5に調整を行い、ろ過により無機塩を取り除いた後に、減圧蒸留(内圧1.5kPa、蒸気温度80~81℃)で抜き出しを行い、得られたフラクションの水分を測定したところ、4.2%であった。ここにトルエン20mlを加えて、ディーンスターク装置を用いて還流脱水を5時間行った。釜残は生成物とトルエンが二層分離しているため、トルエンを分離させることにより、17g(152mmol)の(S)-3,3-ジフルオロ-1,2-プロパンジオールを得た。また、後述の分析条件で光学純度を分析したところ83.1%eeであった。水分値は0.3%であり、収率は84%となった。
[光学活性3,3-ジフルオロ-1,2-プロパンジオールの光学純度の分析条件]
 3,3-ジフルオロ-1,2-プロパンジオールに対して、無水酢酸2.5当量、ピリジン2.5当量を反応させ、ジアセトキシ体に誘導し、分析試料とした。ガスクロマトグラフィーのカラムにはアジレント・テクノロジー社製のCyclosil-B(0.25mm×30m×0.25μm)を用い、キャリアガスは窒素、圧力は163kPa、カラム温度は50℃(5min)、50~150℃(5℃/min)、150℃(15min)、気化室・検出器(FID)温度は230℃の分析条件で得られるピークの面積により光学純度を算出した。それぞれのエナンチオマーの保持時間は、R体が16.3min、S体が17.2minであった。立体配置は公知の情報を元に決定した。
[(S)-3,3-ジフルオロ-1,2-プロパンジオールの製造]
 実施例4で調製した(R)-1-クロロ-3,3-ジフルオロイソプロピルアルコールが含まれる水溶液から該アルコールの含量が25g(192mmol)となるように水溶液を一部取り出し(139g)、氷冷しながら、48%水酸化ナトリウム水溶液1.0当量を滴下した。滴下は内部の温度を確認しながら、0~3℃を維持するように行った。滴下後、1℃で120分間攪拌し、その後、30mLの2-メチルテトラヒドロフランで3回抽出を行うことで、(S)-2-ジフルオロメチルエチレンオキシドを14g含む2-メチルテトラヒドロフラン溶液を得た。この溶液に20%硫酸水溶液を0.2当量添加し、60℃で7時間攪拌を行った。
反応後は、水酸化ナトリウムで溶液のpHを5に調整を行い、ろ過により無機塩を取り除いた後に、減圧蒸留(内圧1.5kPa、蒸気温度80~81℃)を行うことにより、14g(125mmol)の(S)-3,3-ジフルオロ-1,2-プロパンジオールを得た。また、前述の分析条件で光学純度を分析したところ83.2%eeであった。収率は65%となった。
[(S)-3,3-ジフルオロ-1,2-プロパンジオールの製造]
 実施例4で調製した13g(100mmol)の(R)-1-クロロ-3,3-ジフルオロイソプロピルアルコールが含まれる水溶液(72g)を氷冷しながら、48%水酸化ナトリウム水溶液1.5当量を滴下した。滴下は内部の温度を確認しながら、0~3℃を維持するように行った。滴下後、1℃で12時間攪拌することにより、生成物の(S)-2-ジフルオロメチルエチレンオキシドと(S)-3,3-ジフルオロ-1,2-プロパンジオールの比率は21:79となった。反応後は、生成物をメチルtert-ブチルエーテルで抽出を行い、減圧蒸留することにより4g(36mmol)の(S)-3,3-ジフルオロ-1,2-プロパンジオールを得た。収率は36%となった。
また、前述の分析条件で光学純度を分析したところ83.0%eeであった。
[(S)-2-トリフルオロメチルエチレンオキシドの製造]
 前述のスクリーニング条件で3-クロロ-1,1,1-トリフルオロ-2-プロパノン水和体にTrichosporon cutaneum NBRC 1198菌株を作用させ、61.0%eeの(R)-1-クロロ-3,3,3-トリフルオロイソプロピルアルコールを与えることを確認した。
 イオン交換水2000 ml、グルコース60g、ペプトン30g、酵母エキス50g、リン酸二水素カリウム4.8g、リン酸水素二カリウム2.5gの組成からなる液体培地を調製し、容量5Lの発酵槽((株)丸菱バイオエンジ製、MDN型5L(S))に張り込み、121℃で60分間の蒸気滅菌を行った。この液体培地に同じ組成の液体培地50mlを張り込んだ300ml容のバッフル付き三角フラスコで前培養を行ったTrichosporon cutaneum NBRC 1198菌株(個別に光学純度を評価、61.5%ee)の2.0×109cfu/mlの懸濁液を50ml接種し、30℃、通気1vvm、攪拌翼回転数500rpmで24時間培養し、5.2×109cfu/ml(湿菌重として92g/L)の懸濁液を調製した。この時のpHの調整は20%wt/wt炭酸ナトリウム水溶液を用いて行い、6.5に調整した。培養終了後、通気を止め、攪拌翼回転数を50rpmに変更し、別容器に準備した300mlのイオン交換水に3-クロロ-1,1,1-トリフルオロ-2-プロパノン125g(853mmol)、グルコース200gを水和、溶解させたものをオンラインの糖濃度センサー(オンラインバイオセンサ BF-410、(株)バイオット製)を用いて、グルコース濃度を2%に維持する様にコンピュータプログラムで自動的に懸濁液に添加した。微生物による基質の還元は24時間おきにモニタリングし、144時間後に変換率が86.3%となっていることを確認して反応を終了した。
 反応終了後の反応液から生成した(R)-1-クロロ-3,3,3-トリフルオロイソプロピルアルコールを回収するため、減圧条件にて蒸留を行った。留出液を588ml回収し、水溶液中に19F-NMRの内部標準法により54.5g(367mmol)の(R)-1-クロロ-3,3,3-トリフルオロイソプロピルアルコールが含まれていることを確認した。前述の分析条件により光学純度を測定し、60.9%ee(R体)であった。収率は43%となった。
 この(R)-1-クロロ-3,3,3-トリフルオロイソプロピルアルコールが含まれる水溶液を氷冷しながら48%水酸化ナトリウム水溶液1.5当量を滴下した。滴下は内部の温度を確認しながら、0℃を維持するように行った。滴下後、0℃で120分間攪拌し、閉環反応を実施した。反応後、2-メチルテトラヒドロフランにより抽出を行い、有機層をロータリーエバポレーターで濃縮することにより、生成した(S)-2-トリフルオロメチルエチレンオキシドを39g回収し、後述の分析条件で光学純度を分析したところ60.8%ee(S)であった。含量として23g(206mmol)含まれており、収率は56%となった。
[キラルカラムを用いた高速液体クロマトグラフィー法による光学活性2-トリフルオロメチルエチレンオキシドの光学純度の分析条件]
 2-トリフルオロメチルエチレンオキシドに対して、2-ナフタレンチオールを1.1当量、トリエチルアミンを1.1当量添加し、スルフィドに誘導し、分析試料とした。高速液体クロマトグラフィーのカラムにはダイセル社製のCHIRALCEL OD-H(4.6mm×25cm、粒子径5μm)を用い、移動相はヘキサン/IPA = 95/5、流速0.7ml、カラム温度15℃、検出波長230nmで得られるピークの面積により光学純度を算出した。それぞれのエナンチオマーの保持時間は、R体が16.1min、S体が18.2minであった。
[(S)-3,3,3-トリフルオロ-1,2-プロパンジオールの製造]
 実施例9で調製した(S)-2-トリフルオロメチルエチレンオキシド溶液から該エチレンオキシドの含量が10g(89mmol)となるように溶液を一部取り出し、20%硫酸水溶液を0.2当量添加し、(S)-3,3,3-トリフルオロ-1,2-プロパンジオールに誘導した。生成した(S)-3,3,3-トリフルオロ-1,2-プロパンジオールを後述の分析条件で光学純度を分析したところ61.0%eeであった。
[光学活性3,3,3-トリフルオロ-1,2-プロパンジオールの光学純度の分析条件]
 3,3,3-トリフルオロ-1,2-プロパンジオールに対して、無水酢酸2.5当量、ピリジン2.5当量を反応させ、ジアセトキシ体に誘導し、分析試料とした。ガスクロマトグラフィーのカラムにはアジレント・テクノロジー社製のCyclosil-B(0.25mm×30m×0.25μm)を用い、キャリアガスは窒素、圧力は163kPa、カラム温度は50℃(5min)、50~150℃(5℃/min)、150℃(15min)、気化室・検出器(FID)温度は230℃の分析条件で得られるピークの面積により光学純度を算出した。それぞれのエナンチオマーの保持時間は、R体が11.3min、S体が12.2minであった。
[アルコール脱水素酵素を発現する遺伝子組換え大腸菌による(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコールの製造]
 前培養の培地として、蒸留水1000ml、ポリペプトン10g、酵母エキス5g、塩化ナトリウム10gの組成からなる液体培地を調製し、試験管(φ1.6cm×15cm)に5mlずつ分注し、121℃で15分間の蒸気滅菌を行った。この液体培地に、株式会社ダイセルのChiralscreen (登録商標) OH E094のアルコール脱水素酵素を大量発現する遺伝子組換え大腸菌を白金時で無菌的に接種し、30℃、160spmで一晩培養を行い、波長600nmでの光学濃度(OD600)6.4の前培養液を得た。
 本培養の培地として、蒸留水2500mlに酵母エキス、グルタミン酸ナトリウム、グルコース、ラクトース、無機塩類、消泡剤からなる液体培地を調製し、容量5Lの培養槽((株)丸菱バイオエンジ製、MDN型5L(S))に張り込み、121℃で30分間の蒸気滅菌を行った。この培養槽に前培養液を無菌的に5ml接種し、30℃、通気0.5vvm、攪拌しながら40時間培養し、光学濃度(OD600)22の懸濁液を調製した。培養時のpHは20%炭酸ナトリウム水溶液、42.5%リン酸水溶液を用いてpH7.0付近に調整した。培養終了後、通気を0vvmに変更し、培養液に対して90%wt/wtの3-クロロ-1,1-ジフルオロ-2-プロパノン水和体を6.25%wt/v(156.25g、含量として140.6g、960mmol)添加し、グルコース脱水素酵素により補酵素の再生を行いながら30℃、pH6.0で還元反応を24時間行った。反応後の変換率99%光学純度は89.2%ee(S)であった。
 反応後の培養液から減圧蒸留(内圧19.2kPa、蒸気温度57~61℃)により85g(651mmol)の(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコールを含む水溶液を526g回収した。収率は68%となった。
[(R)-2-ジフルオロメチルエチレンオキシドの製造]
 実施例11で回収した85gの(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコール水溶液(含量として14g、105mmol)を氷冷しながら、48%水酸化ナトリウム水溶液1.0当量を滴下した。滴下は内部の温度を確認しながら、0~3℃を維持するように行った。滴下後、1℃で120分間攪拌し、閉環反応を実施した。反応後、蒸留により蒸気温度50~70℃(大気圧)で、生成した(R)-2-ジフルオロメチルエチレンオキシドを49g回収した。19F-NMRの内部標準法により生成物の含量は8g(85mmol)であり、収率は81%となった。前述の分析条件で光学純度を分析したところ89.1%eeであった。
[(R)-3,3-ジフルオロ-1,2-プロパンジオールの製造]
 実施例12で調製した49gの(R)-2-ジフルオロメチルエチレンオキシド水溶液(含量として8g、85mmol)に20%硫酸水溶液を0.2当量添加し、60℃で7時間攪拌を行った。反応後は、水酸化ナトリウムで溶液のpHを5に調整を行い、ろ過により無機塩を取り除いた後に、減圧蒸留(内圧1.5kPa、蒸気温度80~81℃)を行うことにより、46gの(R)-3,3-ジフルオロ-1,2-プロパンジオール溶液を回収し、19F-NMRの内部標準法により生成物の含量は7g(66mmol)であり、収率は78%となった。また、前述の分析条件で光学純度を分析したところ89.2%eeであった。
[アルコール脱水素酵素を発現する遺伝子組換え大腸菌による(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコールの製造]
 前培養の培地として、蒸留水1000ml、ポリペプトン10g、酵母エキス5g、塩化ナトリウム10gの組成からなる液体培地を調製し、試験管(φ1.6cm×15cm)に5mlずつ分注し、121℃で15分間の蒸気滅菌を行った。この液体培地に、株式会社ダイセルのChiralscreen (登録商標) OH E094のアルコール脱水素酵素を大量発現する遺伝子組換え大腸菌を白金時で無菌的に接種し、30℃、160spmで一晩培養を行い、波長600nmでの光学濃度(OD600)7.2の前培養液を得た。
 本培養の培地として、蒸留水2500mlに酵母エキス、グルタミン酸ナトリウム、グルコース、ラクトース、無機塩類、消泡剤からなる液体培地を調製し、容量5Lの培養槽((株)丸菱バイオエンジ製、MDN型5L(S))に張り込み、121℃で30分間の蒸気滅菌を行った。この培養槽に前培養液を無菌的に5ml接種し、30℃、通気0.5vvm、攪拌しながら40時間培養し、光学濃度(OD600)23の懸濁液を調製した。培養時のpHは20%炭酸ナトリウム水溶液、42.5%リン酸水溶液を用いてpH7.0付近に調整した。培養終了後、通気を0vvmに変更し、培養液に対して93%wt/wtの3-クロロ-1,1-ジフルオロ-2-プロパノン水和体を6.25%wt/v(151.2g、含量として140.6g、960mmol)添加し、グルコース脱水素酵素により補酵素の再生を行いながら30℃、pH6.0で還元反応を24時間行った。反応後の変換率99%光学純度は90.7%ee(S)であった。
 反応後の培養液に対して塩化カルシウム二水和物(36g)を加えてから減圧蒸留(内圧19.2kPa、蒸気温度57~61℃)により(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコールを含む水溶液を467g回収した。回収した水溶液にメチルtert-ブチルエーテル450mlを加えて撹拌することにより抽出を行った。二層分離を行い、水層に再びメチルtert-ブチルエーテル450mlを加えて抽出し、合わせた有機層の濃縮を行いメチルtert-ブチルエーテルを留去した(内圧23kPa)。残渣は、(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコール(74g、563mmol、90.6%ee)を含む、73.5wt%メチルtert-ブチルエーテル溶液100gとなり、収率は59%であった。
[(R)-2-ジフルオロメチルエチレンオキシドの製造]
 実施例14で得た9.0gの(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコールの73.5wt%メチルtert-ブチルエーテル溶液(含量として6.6g、0.050mmol)を、炭酸カリウム(8.3g、0.060mmol)とジグリム(25ml)の溶液に室温で滴下した。滴下後、内温を40℃に保ち21時間攪拌した。反応後は吸引ろ過により無機塩の除去を行い、濾液を減圧蒸留(内圧43kPa、蒸気温度47℃)により(R)-2-ジフルオロメチルエチレンオキシドが7.1g(51.4wt%、0.039mol)、収率78%で得られた。前述の分析条件で光学純度を分析したところ90.6%eeであった。
[(R)-3,3-ジフルオロ-1,2-プロパンジオールの製造]
 実施例14で得た17.7gの(S)-1-クロロ-3,3-ジフルオロイソプロピルアルコールの73.5wt%メチルtert-ブチルエーテル溶液(含量として13.0g、0.10mmol)を、48wt%の炭酸カリウム水溶液(37.5g、0.13mmol)に室温で滴下した。そのまま60℃のバス中で5時間反応を行うことにより変換率は99%となった。反応後は氷冷下で冷却を行ったのちに吸引ろ過を行い、無機塩の除去を行った。濾液をTHF20mlで抽出を行い、分離した水層はさらにTHF20mlで抽出した。合計で3回抽出を行い、合わせた有機層を減圧蒸留(内圧3.0kPa、蒸気温度87℃)により(R)-3,3-ジフルオロ-1,2-プロパンジオールが9.9g、0.088mol、収率88%で得られた。純度をガスクロマトグラフィーで測定すると、99.3%であった。前述の分析条件で光学純度を分析したところ90.6%eeであった。
[参考例1]
[化学触媒を用いた3-クロロ-1,1-ジフルオロ-2-プロパノン水和体の還元反応]
 アルゴンガス雰囲気下、20mLのオートクレーブにルテニウム錯体(0.008mmol、基質/触媒比 700)、ギ酸カリウム(0.967g、11.5mmol)、臭化テトラブチルアンモニウム(TBAB)(0.181g、0.56mmol)、水(0.56mL)、ギ酸(0.63mL、16.7mmol、使用ケトンに対し0.3当量)及び3-クロロ-1,1-ジフルオロ-2-プロパノン水和体(5.6mmol)を仕込んだ。容器を密閉して30℃で21時間攪拌した。用いたルテニウム錯体ごとの変換率及び光学純度の測定結果を下記の表9に示した。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-C000028
(上記式中、左からRuCl[(S,S)-Tsdpen](mesitylene)、RuCl[(S,S)-Tsdpen](p-cymene)、RuCl[(S,S)-Fsdpen](p-cymene)、(S,S)-Ts-DENEBの構造を示す。なお、Phはフェニル基を、Tsはパラトルエンスルホニル基を表す。)
 このように、化学触媒を用いた不斉還元反応では、1-クロロ-3,3-ジフルオロイソプロピルアルコールの光学純度は低い結果となった。
 本発明の製造方法の対象である光学活性含フッ素アルキルエチレンオキシドは、医農薬中間体として利用できる。

Claims (17)

  1.  式[1]:
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rfはフッ素原子を少なくとも1つ以上有する炭素数1~6の直鎖または分岐鎖のフルオロアルキル基を表す。]
    で表される含フッ素アルキルクロロメチルケトンに、該ケトンを不斉還元する活性を有する微生物または該活性を有する酵素を作用させる工程を含む、式[2]:
    Figure JPOXMLDOC01-appb-C000002
    [式中、*は不斉原子を表す。Rfは式[1]に同じ。]
    で表される光学活性含フッ素アルキルクロロメチルアルコールの製造方法。
  2.  式[1]で表される含フッ素アルキルクロロメチルケトンにおけるRfが、トリフルオロメチル(CF3)基またはジフルオロメチル(CF2H)基である、請求項1に記載の製造方法。
  3.  前記微生物が、クリプトコッカス・カルバタス(Cryptococcus curvatus)、ピキア・ファリノーサ(Pichia farinosa)、トルラスポーラ・デルブルエキィ (Torulaspora delbrueckii)、キャンディダ・カカオイ (Candida cacaoi)、ロドトルラ・ムシラギノサ (Rhodotorula mucilaginosa)、スポリディボラス・ジョンソニイ (Sporidibolus johnsonii)、及びトリコスポロン・キュタネウム (Trichosporon cutaneum) からなる群より選ばれる少なくとも1種である、請求項1または2に記載の製造方法。
  4.  前記微生物が、下記に示す受託番号を有する微生物であることを特徴とする、請求項3に記載の製造方法。
    Figure JPOXMLDOC01-appb-T000003
  5.  前記酵素がアルコール脱水素酵素またはカルボニル還元酵素であることを特徴とする、請求項1または2に記載の製造方法。
  6.  アルコール脱水素酵素またはカルボニル還元酵素がシロキクラゲ科、サッカロミケス科、ロドトルラ属、スポリディボラス属、トリコスポロン科の微生物、該処理物、該培養液、及び/または、該微生物から得られる酵素であることを特徴とする、請求項5に記載の製造方法。
  7.  前記反応における温度(反応温度)が、5~60℃であることを特徴とする、請求項1乃至6の何れかに記載の製造方法。
  8.  前記反応におけるpH(反応時におけるpH)が、4.0~8.0の範囲であることを特徴とする、請求項1乃至7の何れかに記載の製造方法。
  9.  前記反応終了後に得られる光学活性含フッ素アルコールと、不純物とを含む混合液を蒸留することにより、該混合液から不純物を分離し、光学活性含フッ素アルコールを精製する工程を含む、請求項1乃至8の何れかに記載の製造方法。
  10.  請求項1乃至9の何れかの方法で式[2]で表される光学活性含フッ素アルキルクロロメチルアルコールを製造し、次いで、該アルコールに塩基を作用させることを特徴とする、式[3]:
    Figure JPOXMLDOC01-appb-C000004
    [式中、*は不斉原子を表す。Rfは請求項1における式[1]に同じ。]
    で表される光学活性含フッ素アルキルエチレンオキシドの製造方法。
  11.  塩基がアルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、及びアルカリ土類金属炭酸水素塩からなる群より選ばれる少なくとも一つである、請求項10に記載の製造方法。
  12.  前記光学活性含フッ素アルキルエチレンオキシドを加水分解することにより、式[4]:
    Figure JPOXMLDOC01-appb-C000005
    [式中、*は不斉原子を表す。Rfは請求項1における式[1]に同じ。]
    で表される含フッ素アルキル-1,2-エタンジオールに誘導する工程を更に含む、請求項10または請求項11に記載の製造方法。
  13.  加水分解が、酸または塩基を作用させることにより行う、請求項12に記載の方法。
  14.  含フッ素アルキル-1,2-エタンジオールに誘導する工程において、用いる塩基がアルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、及びアルカリ土類金属炭酸水素塩からなる群より選ばれる少なくとも一つの塩基性化合物の存在下で行う、請求項13に記載の製造方法。
  15.  含フッ素アルキル-1,2-エタンジオールに誘導する工程を、前記反応で得られた光学活性含フッ素アルキルエチレンオキシドを単離することなく、そのまま加水分解することにより行う、請求項12乃至14の何れかに記載の製造方法。
  16. 式:
    Figure JPOXMLDOC01-appb-C000006
    [式中、*は不斉原子を表す。]
    で表される光学活性1-クロロ-3,3-ジフルオロイソプロピルアルコール。
  17. 式:
    Figure JPOXMLDOC01-appb-C000007
    [式中、*は不斉原子を表す。]
    で表される光学活性2-ジフルオロメチルエチレンオキシド。
PCT/JP2016/068747 2015-06-25 2016-06-24 光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法 WO2016208699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680037402.6A CN107709566B (zh) 2015-06-25 2016-06-24 光学活性含氟烷基环氧乙烷的工业制造方法
JP2017524986A JP6823266B2 (ja) 2015-06-25 2016-06-24 光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法
US15/739,498 US10336718B2 (en) 2015-06-25 2016-06-24 Method for industrial production of optically active fluoroalkyl ethylene oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-127909 2015-06-25
JP2015127909 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208699A1 true WO2016208699A1 (ja) 2016-12-29

Family

ID=57585546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068747 WO2016208699A1 (ja) 2015-06-25 2016-06-24 光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法

Country Status (4)

Country Link
US (1) US10336718B2 (ja)
JP (1) JP6823266B2 (ja)
CN (1) CN107709566B (ja)
WO (1) WO2016208699A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517717A (ja) * 2017-04-27 2020-06-18 メキシケム フロー エセ・ア・デ・セ・ヴェ 方法
JP2021045108A (ja) * 2019-09-20 2021-03-25 公立大学法人 富山県立大学 光学活性フルオロアルコールおよび光学活性クロロフルオロアルコールの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108441433B (zh) * 2018-03-31 2021-08-20 湖南科技大学 胶红酵母nq1及在制备手性醇中的应用
CN111073919B (zh) * 2019-12-11 2024-06-07 尚科生物医药(上海)有限公司 一种制备(s)-2-(3,4-二氟苯基)环氧乙烷的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2700686A (en) * 1951-02-15 1955-01-25 Eastman Kodak Co Hydroxy substituted polyfluorinated compounds
US2746952A (en) * 1951-06-30 1956-05-22 Eastman Kodak Co 2, 4-bis (methylsulfonyl)-benzeneazotetrahydro-quinoline compounds
JPH10279571A (ja) * 1997-03-21 1998-10-20 Bayer Ag トリフルオロメチルオキシランの製造のための改良法
WO2006058457A1 (fr) * 2004-11-30 2006-06-08 Lianyungang Hengbang Pharmaceutical Co. Ltd. DÉRIVÉS DE 2-MÉTHYL-5-NITROIMIDAZOL-1-ÉTHANOL α-SUBSTITUÉS
WO2007142210A1 (ja) * 2006-06-05 2007-12-13 Daicel Chemical Industries, Ltd. 光学活性アルコールの製造方法
JP2009514542A (ja) * 2005-11-11 2009-04-09 エボニック デグサ ゲーエムベーハー 主に1種のエナンチオマーを含む1,1,1−トリフルオロイソプロパノールの製造方法
WO2011099595A1 (ja) * 2010-02-15 2011-08-18 富山県 (s)-1,1,1-トリフルオロ-2-プロパノールの工業的な製造方法
JP2012005396A (ja) * 2010-06-23 2012-01-12 Toyama Prefecture (r)−1,1,1−トリフルオロ−2−プロパノールの工業的な製造方法
WO2015005341A1 (ja) * 2013-07-10 2015-01-15 セントラル硝子株式会社 光学活性フルオロ乳酸誘導体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247953A (ja) 1993-02-22 1994-09-06 Japan Energy Corp 光学活性な3,3,3−トリフルオロプロペンオキシドの製造方法
JP4867201B2 (ja) 2005-05-27 2012-02-01 セントラル硝子株式会社 光学活性1,1,1−トリフルオロ−2,3−エポキシプロパンの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2700686A (en) * 1951-02-15 1955-01-25 Eastman Kodak Co Hydroxy substituted polyfluorinated compounds
US2746952A (en) * 1951-06-30 1956-05-22 Eastman Kodak Co 2, 4-bis (methylsulfonyl)-benzeneazotetrahydro-quinoline compounds
JPH10279571A (ja) * 1997-03-21 1998-10-20 Bayer Ag トリフルオロメチルオキシランの製造のための改良法
WO2006058457A1 (fr) * 2004-11-30 2006-06-08 Lianyungang Hengbang Pharmaceutical Co. Ltd. DÉRIVÉS DE 2-MÉTHYL-5-NITROIMIDAZOL-1-ÉTHANOL α-SUBSTITUÉS
JP2009514542A (ja) * 2005-11-11 2009-04-09 エボニック デグサ ゲーエムベーハー 主に1種のエナンチオマーを含む1,1,1−トリフルオロイソプロパノールの製造方法
WO2007142210A1 (ja) * 2006-06-05 2007-12-13 Daicel Chemical Industries, Ltd. 光学活性アルコールの製造方法
WO2011099595A1 (ja) * 2010-02-15 2011-08-18 富山県 (s)-1,1,1-トリフルオロ-2-プロパノールの工業的な製造方法
JP2012005396A (ja) * 2010-06-23 2012-01-12 Toyama Prefecture (r)−1,1,1−トリフルオロ−2−プロパノールの工業的な製造方法
WO2015005341A1 (ja) * 2013-07-10 2015-01-15 セントラル硝子株式会社 光学活性フルオロ乳酸誘導体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517717A (ja) * 2017-04-27 2020-06-18 メキシケム フロー エセ・ア・デ・セ・ヴェ 方法
JP2021045108A (ja) * 2019-09-20 2021-03-25 公立大学法人 富山県立大学 光学活性フルオロアルコールおよび光学活性クロロフルオロアルコールの製造方法
JP7344509B2 (ja) 2019-09-20 2023-09-14 公立大学法人 富山県立大学 光学活性フルオロアルコールおよび光学活性クロロフルオロアルコールの製造方法

Also Published As

Publication number Publication date
CN107709566A (zh) 2018-02-16
JPWO2016208699A1 (ja) 2018-04-12
US20180312483A1 (en) 2018-11-01
CN107709566B (zh) 2021-06-08
JP6823266B2 (ja) 2021-02-03
US10336718B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
US6399339B1 (en) Method for the enantioselective reduction of 3,5-dioxocarboxylic acids, their salts and their esters
KR100654115B1 (ko) 광학 활성 2-[6-(히드록시메틸)-1,3-디옥산-4-일]아세트산유도체의 제조 방법
JP6823266B2 (ja) 光学活性含フッ素アルキルエチレンオキシドの工業的な製造方法
Andreu et al. Potential of some yeast strains in the stereoselective synthesis of (R)-(−)-phenylacetylcarbinol and (S)-(+)-phenylacetylcarbinol and their reduced 1, 2-dialcohol derivatives
CN112941114B (zh) 一种酶法合成(s)-1,2,4-丁三醇的方法
WO2001094337A1 (fr) Procede de preparation de derives optiquement actifs d'acide 2-[6-(hydroxy-methyl)-1,3-dioxan-4-yl] acetique
Fantin et al. Stereochemical Control in Bakers' Yeast Redox Biotransformations of Aryl Methyl Ketones and Carbinols
JP4962016B2 (ja) 含硫ヒドロキシカルボン酸の製造法
CN108441433B (zh) 胶红酵母nq1及在制备手性醇中的应用
EP1811037B1 (en) Optically active cyclopentenones for use in the peparation of prostaglandins
US8546114B2 (en) Processes for the preparation of optically active cyclopentenones and cyclopentenones prepared therefrom
US7294492B2 (en) Process for the manufacture of spiroketals
JP6457841B2 (ja) キラル−1,1−ジフルオロ−2−プロパノールの工業的な製造方法
JP4744916B2 (ja) 光学活性アルキルアルコール誘導体の単離取得方法
JP7344509B2 (ja) 光学活性フルオロアルコールおよび光学活性クロロフルオロアルコールの製造方法
US20050014818A1 (en) Process for producing optically active chroman derivative and intermediate
CN111575258B (zh) 一种羰基还原酶EbSDR8突变体及其构建方法和应用
Fardelone et al. Bioreduction of alpha-haloacetophenones by Rhodotorula glutinis and Geotrichum candidum
JP4536484B2 (ja) 光学活性2−ヒドロキシ−5−(4−メトキシフェニル)−ペンタン酸エステルの製造方法
JP3659123B2 (ja) 4−ハロゲノ−3−アルカノイルオキシブチロニトリルの光学分割方法
CN115058458A (zh) 一种(s)-1,2-丙二醇的制备方法
JP2002233392A (ja) 光学活性4−ブロモ−3−ヒドロキシブタン酸エステルの製造法
EP2241629A1 (en) Process for production of optically active ortho-substituted mandelic acid compound
JP2004533269A (ja) 芳香環上に少なくとも1個のトリフルオロメチル基を含むプロキラル芳香族ケトンのエナンチオ選択的還元法
WO2007114199A1 (ja) 光学活性(s)-7-ヒドロキシ-6-メチルヘプタン-2-オンおよびその前駆体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15739498

Country of ref document: US