WO2016208612A1 - フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法 - Google Patents

フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法 Download PDF

Info

Publication number
WO2016208612A1
WO2016208612A1 PCT/JP2016/068487 JP2016068487W WO2016208612A1 WO 2016208612 A1 WO2016208612 A1 WO 2016208612A1 JP 2016068487 W JP2016068487 W JP 2016068487W WO 2016208612 A1 WO2016208612 A1 WO 2016208612A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse
wiring board
printed wiring
flexible printed
conductive pattern
Prior art date
Application number
PCT/JP2016/068487
Other languages
English (en)
French (fr)
Inventor
隆行 津曲
淑文 内田
慎一 高瀬
齊藤 裕久
Original Assignee
住友電工プリントサーキット株式会社
株式会社オートネットワーク技術研究所
住友電気工業株式会社
住友電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工プリントサーキット株式会社, 株式会社オートネットワーク技術研究所, 住友電気工業株式会社, 住友電装株式会社 filed Critical 住友電工プリントサーキット株式会社
Priority to CN201680036910.2A priority Critical patent/CN107710374B/zh
Priority to US15/737,851 priority patent/US20190006141A1/en
Publication of WO2016208612A1 publication Critical patent/WO2016208612A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0293Individual printed conductors which are adapted for modification, e.g. fusable or breakable conductors, printed switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H69/022Manufacture of fuses of printed circuit fuses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0268Marks, test patterns or identification means for electrical inspection or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10181Fuse

Definitions

  • the present invention relates to a flexible printed wiring board and a method for manufacturing a flexible printed wiring board.
  • Flexible printed wiring boards are widely used to construct electric circuits such as electronic devices.
  • an electronic device or the like in order to prevent damage to an electronic component due to overcurrent, it may be desired to provide a fuse that melts and cuts off the current when the overcurrent flows. For this reason, a fuse may be mounted on a flexible printed wiring board.
  • the flexible printed wiring board which concerns on 1 aspect of this invention is equipped with the base film which has insulation, and the conductive pattern laminated
  • a method of manufacturing a flexible printed wiring board includes a base film having an insulating property and a conductive pattern laminated on one surface side of the base film.
  • a method of manufacturing a flexible printed wiring board includes a base film having an insulating property and a conductive pattern laminated on one surface side of the base film, and the conductive pattern is a circuit.
  • a flexible printed wiring board manufacturing method comprising one or a plurality of fuse portions having a smaller cross-sectional area than other portions, the circuit including the fuse portions on one surface side of the base film.
  • FIG. 1 is a schematic plan view showing a flexible printed wiring board according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line AA of the flexible printed wiring board of FIG.
  • FIG. 3 is a schematic plan view showing a flexible printed wiring board according to an embodiment different from FIG. 1 of the present invention.
  • FIG. 4 is a schematic plan view showing a flexible printed wiring board according to an embodiment different from FIGS. 1 and 3 of the present invention.
  • FIG. 5 is a schematic plan view showing a flexible printed wiring board according to an embodiment different from FIGS. 1, 3 and 4 of the present invention.
  • FIG. 6 is a schematic plan view showing a flexible printed wiring board manufactured by a manufacturing method of an embodiment different from the manufacturing method of the flexible printed wiring board of FIG. 1 of the present invention.
  • FIG. 7 is a schematic plan view showing a flexible printed wiring board manufactured by a manufacturing method of an embodiment different from the manufacturing method of the flexible printed wiring board of FIGS. 1 and 6 of the present invention.
  • the present invention has been made based on the above-described circumstances, and provides a flexible printed wiring board capable of interrupting current relatively accurately at a desired current value, and a method for manufacturing such a flexible printed wiring board.
  • the issue is to provide.
  • the flexible printed wiring board according to one aspect of the present invention and the flexible printed wiring board obtained by the method for manufacturing a flexible printed wiring board according to another aspect of the present invention cut off current at a desired current value relatively accurately. Can do.
  • the flexible printed wiring board which concerns on 1 aspect of this invention is equipped with the base film which has insulation, and the conductive pattern laminated
  • the flexible printed wiring board has a pair of measurement pad portions in which the conductive pattern exists so that a potential difference between two points in the vicinity of both ends of the fuse portion can be measured.
  • the resistance of the fuse portion can be measured relatively accurately, and the current value at which the fuse portion is blown can be estimated relatively accurately. Therefore, it is possible to select and provide a flexible printed wiring board capable of interrupting current relatively accurately at a desired current value.
  • the “fuse portion” means a portion having a cross-sectional area of 10% or more smaller than that of the circuit before and after the current flow direction.
  • the “near both ends” means that the electrical resistance from one end of the fuse portion is It means a region in or around the fuse portion that is 30% or less of the electrical resistance between both ends of the fuse portion.
  • “measurable” means that it can be electrically connected to an external measuring device, and specifically means that it is exposed so that a measurement probe or pin of a voltmeter can be brought into contact with it. To do.
  • the measurement pad part is formed separately from the circuit including the fuse part, and the conductive pattern further includes a lead part extending from the fuse part or a circuit before and after the fuse part and connected to the measurement pad part. Good.
  • the conductive pattern extends from the fuse part or the circuit before and after the fuse part, and further has a lead part connected to the measurement pad part, thereby accurately determining the position of two points for measuring the potential difference. Since the resistance of the fuse portion can be measured more accurately, a flexible printed wiring board capable of interrupting current relatively accurately at a desired current value can be selected and provided with high accuracy.
  • the lead-out portion extends from the connection region on both sides of the fuse portion in the circuit.
  • the lead portion extends from the connection region on both sides of the fuse portion in the circuit, so that the resistance in a range including the entire fuse portion can be detected. Thereby, the resistance of the whole fuse part can be calculated more accurately, and a flexible printed wiring board capable of interrupting current relatively accurately at a desired current value can be selected and provided with higher accuracy.
  • the “connection region” means a region where the cross-sectional area of the circuit is substantially reduced, and specifically, a region where the cross-sectional area is reduced by 10% or more per 1 mm length.
  • the lead part may extend from both ends of the fuse part.
  • the lead-out portion extends from the region inside the fuse portion of the fuse portion, that is, the region in the vicinity of both ends of the fuse portion, thereby extracting and measuring the electrical resistance of the fused portion at the center of the fuse portion. can do.
  • block an electric current comparatively correctly with a desired electric current value can be selected and provided more accurately.
  • the “both ends of the fuse portion” means a region in the vicinity of both ends inside the fuse portion where the distance from both ends of the fuse portion is 30% or less of the total length of the fuse portion.
  • the measurement pad part may be formed on a circuit before and after the fuse part.
  • the measurement pad part is formed on the circuit before and after the fuse part, so that the conductive pattern is simple and the area occupied by the conductive pattern can be reduced.
  • a cover lay covered on the conductive pattern side in the laminate including the base film and the conductive pattern may be further provided, and the cover lay may not be present in at least a part of the measurement pad portion existing region.
  • the cover lay may not be present in at least a part of the measurement pad portion existing region.
  • a method of manufacturing a flexible printed wiring board includes a base film having an insulating property and a conductive pattern laminated on one surface side of the base film.
  • the manufacturing method of the flexible printed wiring board includes a step of forming a conductive pattern having a pair of measurement pad portions existing in the vicinity of both ends of the fuse portion, and a state in which a current is applied to the fuse portion between the measurement pad portions.
  • a flexible printed wiring board capable of estimating the current value at which the fuse portion is blown relatively accurately and cutting off the current relatively accurately at a desired current value. can be manufactured.
  • a method of manufacturing a flexible printed wiring board includes a base film having an insulating property and a conductive pattern laminated on one surface side of the base film, and the conductive pattern is a circuit.
  • a flexible printed wiring board manufacturing method comprising one or a plurality of fuse portions having a smaller cross-sectional area than other portions, the circuit including the fuse portions on one surface side of the base film.
  • the method of manufacturing the flexible printed wiring board includes a step of measuring a potential difference between two points near both ends of the fuse portion in a state where a current is applied to the fuse portion before the step of laminating the coverlay. Since it is possible to select a fuse portion that blows relatively accurately at a desired current value, it is possible to manufacture a flexible printed wiring board that can cut off current relatively accurately at a desired current value.
  • the flexible printed wiring board according to the first embodiment of the present invention shown in FIGS. 1 and 2 includes a base film 1 having insulating properties and a conductive pattern 2 laminated on one surface side of the base film 1.
  • the conductive pattern 2 constitutes a part of a circuit and has a fuse part 3 having a smaller cross-sectional area than other parts.
  • the fuse portion 3 is a portion formed so as to be melted by Joule heat when an overcurrent flows through the circuit. More specifically, the fuse portion 3 is a portion having a reduced cross-sectional area so that it is blown by a current flowing when at least a power source used for the circuit of the flexible printed wiring board is directly connected to both ends thereof.
  • Circuit means an electric circuit that is used in a state in which the flexible printed wiring board is in use and through which a current can flow.
  • the conductive pattern 2 is between two points in the vicinity of both ends of the fuse portion 3 (a region where the resistance from both ends of the fuse portion 3 is 30% or less of the resistance between both ends of the fuse portion 3).
  • the pair of measurement pads 4 exist so that the potential difference between them can be measured.
  • the pair of measurement pad portions 4 is formed separately from the circuit including the fuse portion 3 and is connected to a pair of lead portions 5 extending from circuits before and after the fuse portion 3.
  • “front and back” means front and rear in the direction of current flow in the circuit.
  • the flexible printed wiring board includes a coverlay 6 that is laminated so as to cover one surface side of the base film 1 and the conductive pattern 2.
  • the base film 1 is a member that supports the conductive pattern 2 and is a structural material that ensures the strength of the flexible printed wiring board.
  • this base film 1 for example, a soft material such as polyimide, liquid crystal polyester, polyethylene terephthalate, polyethylene naphthalate, fluororesin, hard material such as paper phenol, paper epoxy, glass composite, glass epoxy, glass substrate, A rigid-flexible material in which a soft material and a hard material are combined can be used. Among these, polyimide having excellent heat resistance is preferable.
  • the base film 1 may be made porous, and may contain a filler, an additive, and the like.
  • the thickness of the base film 1 is not particularly limited, for example, the lower limit of the average thickness of the base film 1 is preferably 5 ⁇ m, and more preferably 12 ⁇ m. Moreover, as an upper limit of the average thickness of the base film 1, 2 mm is preferable and 1.6 mm is more preferable. When the average thickness of the base film 1 is less than the above lower limit, the strength of the base film 1 may be insufficient. On the other hand, when the average thickness of the base film 1 exceeds the above upper limit, the heat capacity of the base film 1 is increased, and there is a possibility that the fusing of the fuse part 3 is delayed.
  • the conductive pattern 2 is formed by patterning a layered conductor so as to at least partially constitute a circuit.
  • the conductive pattern 2 includes a circuit including the fuse portion 3, a pair of lead portions 5 extending from the vicinity of both ends of the fuse portion 3 of the circuit, and an extension end of the pair of lead portions 5. It has a pair of measurement pad parts 4 connected.
  • the circuit formed by the conductive pattern 2 includes a wiring part 7 serving as an electric circuit, and a fuse part 3 having a smaller cross-sectional area than other parts by reducing the width of a part of the wiring part 7.
  • a circuit which the conductive pattern 2 comprises is not shown in figure, for example, you may have a land for mounting electronic components, a terminal part for wiring connection, etc.
  • the material for forming the conductive pattern 2 is not particularly limited as long as it is conductive and can be melted by Joule heat by energization. Examples thereof include metals such as copper, aluminum, and nickel. Inexpensive and highly conductive copper is used.
  • the conductive pattern 2 may be plated on the surface.
  • the lower limit of the average thickness of the conductive pattern 2 is preferably 2 ⁇ m and more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the conductive pattern 2 is preferably 500 ⁇ m, and more preferably 100 ⁇ m.
  • the conductivity may be insufficient.
  • the flexible printed wiring board may be insufficiently flexible, or the fuse 3 may be formed (the cross-sectional area is partially reduced so that the fuse part 3 can be blown). May not be easy).
  • the wiring portion 7 of the conductive pattern 2 is preferably formed in a strip shape having a substantially constant width.
  • substantially constant means that a deviation of an error level that may occur in manufacturing is allowed, and preferably means that the difference from the average width is less than 10%.
  • the lower limit of the average width of the wiring portion 7 is preferably 0.1 mm, and more preferably 0.2 mm.
  • the upper limit of the average width of the wiring part 7 is preferably 1 mm, and more preferably 0.8 mm.
  • the fuse part 3 has a smaller cross-sectional area than the other part of the wiring part 7 by reducing the width of a part of the wiring part 7, thereby increasing the electric resistance per unit length. It is formed so as to melt when heated. That is, the fuse portion 3 is formed to have a smaller line width than the front and rear wiring portions 7.
  • the cross-sectional area of the fuse part 3 is designed to be blown by a current that flows when the power source of the flexible printed wiring board is directly connected to at least both ends of the fuse part 3.
  • the sectional area of the fuse portion 3 is determined so that the fuse portion 3 is blown by a fusing current having a value smaller than a current flowing when the power source is directly connected.
  • the cross-sectional area of the fuse portion 3 is set, for example, by considering the dielectric strength of an element mounted on the circuit, and the fusing current is set so that the fuse portion 3 is blown by the fusing current.
  • the material is selected as appropriate in consideration of the physical properties of the material to be formed and the physical properties and shape of the material for forming the base film 1 and the coverlay 6 that affect the amount of heat dissipated from the fuse portion 3.
  • the lower limit of the minimum width of the fuse portion 3 is preferably 5 ⁇ m, and more preferably 10 ⁇ m.
  • the upper limit of the minimum width of the fuse portion 3 is preferably 300 ⁇ m, and more preferably 200 ⁇ m.
  • the minimum width of the fuse portion 3 is less than the lower limit, there is a possibility that the variation in the current value at which the fuse portion 3 is blown due to the manufacturing error of the width of the fuse portion 3 becomes large.
  • the minimum width of the fuse part 3 exceeds the above upper limit, there is a possibility that the variation in the current value at which the fuse part 3 is blown due to a manufacturing error in the thickness of the fuse part 3 becomes large.
  • the fuse part 3 has a minimum cross-sectional area at the center in the length direction. Moreover, it is preferable that the fuse part 3 is a strip
  • the lower limit of the length of the fuse portion 3 (the length of the region where the cross-sectional area is reduced by 10% or more than the wiring portions 7 on both sides) is preferably 0.5 mm, and more preferably 1 mm.
  • the upper limit of the length of the fuse part 3 is preferably 20 mm, and more preferably 15 mm.
  • the upper limit of the ratio of the minimum cross-sectional area of the fuse part 3 to the average cross-sectional area of the wiring part 7 in the vicinity of both ends of the fuse part 3 is 50%.
  • 30% is more preferable, and 20% is more preferable.
  • the lower limit of the cross-sectional area ratio is preferably 2%, more preferably 5%, and even more preferably 8%.
  • the lower limit of the length of the portion where the cross-sectional area of the fuse portion 3 is substantially minimum is preferably 0.3 mm, and more preferably 0.8 mm.
  • the upper limit of the length of the portion where the cross-sectional area of the fuse portion 3 is substantially minimum is preferably 15 mm, and more preferably 12 mm.
  • the pair of measurement pad portions 4 is used for measuring a potential difference between two points (a pair of measurement points) to which the pair of lead-out portions 5 in the circuit including the fuse portion 3 is connected. Therefore, the pair of measurement pad portions 4 are disposed so as to be exposed entirely from the opening 8 provided in the cover lay 6 so that a probe of a voltmeter for measuring a voltage can be brought into contact therewith. In other words, the cover lay 6 does not exist on the one surface side of the measurement pad unit 4, thereby enabling voltage measurement using the measurement pad unit 4.
  • the electrical resistance between a pair of measurement points near both ends of the fuse part 3 can be measured using the pair of measurement pad parts 4. And from this measured electrical resistance, the fusing current at which the fuse part 3 is fused can be estimated.
  • the pair of measurement pad portions 4 are arranged in line symmetry with respect to the central axis perpendicular to the length direction of the fuse portion 3.
  • the planar shape of the exposed portion of the measurement pad unit 4 is not particularly limited, and can be, for example, a square, a circle, an ellipse, or the like.
  • the lower limit of the area of the measuring pad portion 4 is preferably 0.1 mm 2, 0.2 mm 2 is more preferable.
  • an upper limit of the area of the measurement pad part 4 30 mm ⁇ 2 > is preferable and 20 mm ⁇ 2 > is more preferable.
  • the area of the measurement pad portion 4 is less than the lower limit, it may not be easy to make the measurement probe contact. Conversely, when the area of the measurement pad portion 4 exceeds the upper limit, the flexible printed wiring board may be unnecessarily enlarged.
  • the lower limit of the minimum distance between the measurement pad portion 4 and the fuse portion 3 (the shortest distance between the periphery of the measurement pad portion 4 and the periphery of the fuse portion 3) is not particularly limited.
  • the upper limit of the minimum distance between the measurement pad portion 4 and the fuse portion 3 is preferably 50 mm, and more preferably 30 mm. If the minimum distance between the measurement pad section 4 and the fuse section 3 exceeds the above upper limit, the flexible printed wiring board may become unnecessarily large, or when the plurality of fuse sections 3 are provided, The correspondence with the measurement pad unit 4 may be difficult to understand.
  • the pair of lead-out portions 5 respectively extend from positions in the vicinity of both ends of the fuse portion 3 that are slightly apart from the fuse portion 3 of the wiring portion 7.
  • the lead-out portion 5 serves to determine the longitudinal position of two measurement points where the potential difference is measured via the measurement pad portion 4. As a result, the electric resistance in a certain region including the fuse portion 3 can be measured regardless of the position where the probe of the voltmeter in the measurement pad portion 4 contacts.
  • the lower limit of the average width of each drawing portion 5 is preferably 5 ⁇ m and more preferably 10 ⁇ m.
  • drawing-out part 5 1 mm is preferable and 0.8 mm is more preferable.
  • the average width of each drawer part 5 is less than the said minimum, there exists a possibility that the electrical connection between a pair of measurement pad part 4 and a pair of measurement points may become uncertain.
  • the average width of each drawer part 5 exceeds the said upper limit, there exists a possibility of impairing the flexibility of the said printed wiring board.
  • the coverlay 6 is covered on one surface side of the laminate including the base film 1 and the conductive pattern 2. This coverlay 6 mainly prevents the conductive pattern 2 from being damaged due to contact with other members or the like or short-circuiting.
  • coverlay 6 for example, a two-layer film having an insulating layer and an adhesive layer can be used.
  • the material of the insulating layer is not particularly limited, but the same resin film as that constituting the base film 1 should be used. Can do.
  • the lower limit of the average thickness of the insulating layer of the coverlay 6 is preferably 5 ⁇ m, and more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the insulating layer of the coverlay 6 is preferably 60 ⁇ m, and more preferably 40 ⁇ m.
  • the average thickness of the insulating layer of the cover lay 6 is less than the above lower limit, the insulating property of the cover lay 6 may be insufficient.
  • the average thickness of the insulating layer of the coverlay 6 exceeds the above upper limit, the flexibility of the flexible printed wiring board may be insufficient.
  • the adhesive constituting the adhesive layer is not particularly limited, but has excellent flexibility and heat resistance.
  • the adhesive include various resin adhesives such as nylon resin, epoxy resin, butyral resin, and acrylic resin.
  • it does not specifically limit as average thickness of the adhesive bond layer of coverlay 6, 10 micrometers or more and 50 micrometers or less are preferable.
  • the adhesiveness may be insufficient, whereas when the average thickness of the adhesive layer of the cover lay 6 exceeds the above upper limit, There exists a possibility that the flexibility of the said flexible printed wiring board may become inadequate.
  • the pair of measurement pad portions 4 are used to measure the electrical resistance between a pair of measurement points near both ends of the fuse portion 3 in the circuit including the fuse portion 3, and the fuse portion 3
  • the fusing current for fusing can be estimated relatively accurately.
  • the electrical resistance of the fuse portion 3 is measured by a four-terminal measurement method using the pair of measurement pad portions 4 as voltage measurement terminals. Specifically, a measurement current is applied between the wiring parts 7 on both sides of the fuse part 3 by a method capable of confirming a current value, and a potential difference between the pair of measurement pad parts 4 is measured in the application state of the measurement current. Thus, the electrical resistance between a pair of measurement points near both ends of the fuse portion 3 is calculated.
  • the electrical resistance between the pair of measurement points to which the lead part 5 is connected includes the electrical resistance of the wiring part 7 on both sides of the fuse part 3.
  • the electrical resistance of the wiring part 7 is smaller than the electrical resistance of the fuse part 3.
  • the electrical resistance error tends to be in the same direction in the fuse portion 3 and the wiring portions 7 at both ends, and is smaller in width than the wiring portion 7. An error becomes remarkable in the fuse portion 3. Therefore, by measuring the electric resistance between the pair of measurement points, the electric resistance of the fuse portion 3 can be calculated almost accurately.
  • the measurement current is applied to the fuse portion 3 by connecting a power source capable of confirming the current value to the series circuit portion including the fuse portion 3 in the circuit formed by the conductive pattern 2. That is, the measurement current only needs to be applied so that the current value in the fuse part 3 can be confirmed, and may be applied to the fuse part 3 via another component.
  • Application of the measurement current to the fuse portion 3 may be possible by arranging a dedicated pad or terminal on the conductive pattern 2, but it is mounted on the electronic component mounting land provided on the conductive pattern 2 or on this land. This may be done by connecting a power source to the lead or solder of the electronic component.
  • the fusing current may be derived from the electrical resistance of the fuse part 3, but the fusing current of a small number of sample fuse parts 3 is measured.
  • the electrical resistance of the fuse part 3 may be converted into a fusing current by obtaining the relationship between the electrical resistance of the fuse part 3 and the fusing current.
  • the said flexible printed wiring board can be manufactured with the manufacturing method of the flexible printed wiring board which concerns on one Embodiment of this invention.
  • the manufacturing method of the flexible printed wiring board includes a step of forming a conductive pattern 2 having a fuse part 3, a measurement pad part 4, and a lead part 5 by patterning a conductor layer laminated on one surface side of a base film 1, and a base The step of laminating the coverlay 6 on the conductive pattern 2 side in the laminate of the film 1 and the conductive pattern 2, the step of measuring the potential difference between the measurement pad portions 4 with current applied to the fuse portion 3, and measurement And a step of eliminating defective products based on the potential difference between the measurement pad portions 4.
  • ⁇ Conductive pattern formation process> for example, a known method of forming a resist pattern by photolithography and etching the conductor layer can be used.
  • stacking with the conductor layer which forms the base film 1 and the conductive pattern 2 uses the method of using an adhesive agent, the method of thermocompression bonding, the method of laminating
  • cover lay lamination step for example, a cover lay 6 having an adhesive layer on the back surface of the insulating layer is laminated on the conductive pattern 2 side in the laminate of the base film 1 and the conductive pattern 2.
  • a vacuum thermocompression bonding apparatus or the like.
  • ⁇ Potential difference measurement process> the voltage drop between the pair of measurement points is measured using the pair of measurement pad portions 4 while applying the current while measuring the current value to the fuse portion 3.
  • the application of current to the fuse part 3 and the measurement of the current value can be performed using a DC power source and an ammeter, and the potential difference between the measurement pad parts 4 can be measured using a voltmeter.
  • An integrated commercial four-terminal measuring device may be used.
  • the fusing current of the fuse portion 3 is estimated on the basis of the potential difference measured in the potential difference measurement step, and the fuse portion 3 is excluded by eliminating a fusing current that is not within the allowable range in design. Only those that melt at a desired current value and can cut off the current relatively accurately are used as products of the flexible printed wiring board.
  • the cover lay lamination step may be performed after the potential difference measurement step or the defective product elimination step.
  • the flexible printed wiring board according to the second embodiment of the present invention shown in FIG. 3 includes a base film having insulating properties, a conductive pattern 2 laminated on one surface side of the base film, and a coverlay 6.
  • the conductive pattern 2 constitutes a part of the circuit, the fuse part 3 having a smaller cross-sectional area than the other part, and the connection on both sides of the fuse part 3 in the circuit constituted by the conductive pattern 2
  • a pair of lead-out portions 5 extending from the region, and an opening 8 formed in the coverlay 6 so as to be able to measure a potential difference between two points of the connection region on both sides of the fuse portion 3 connected to the extension end of the lead-out portion 5
  • a pair of measurement pad portions 4 exposed at least partially.
  • the base film, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. 3 are the same as the base film 1, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. .
  • the description which overlaps with the flexible printed wiring board of FIG. 1 is abbreviate
  • the lead-out portion 5 of the flexible printed wiring board extends from the connection region on both sides of the fuse portion 3, that is, is disposed at a position where the circuit width of the conductive pattern 2 decreases.
  • the flexible printed wiring board according to the third embodiment of the present invention shown in FIG. 4 includes a base film 1 having insulating properties, a conductive pattern 2 laminated on one surface side of the base film 1, and a coverlay 6. Prepare.
  • the conductive pattern 2 constitutes a part of the circuit, and has a fuse part 3 having a smaller cross-sectional area than the other parts, and a pair of lead parts 5 extending from both ends of the fuse part 3. And a pair of measurements that are connected to the extension end of the lead-out portion 5 and are exposed entirely from the opening 8 formed in the cover lay 6 so that the potential difference between the two points to which the lead-out portion 5 of the fuse portion 3 is connected can be measured. And a pad portion 4.
  • the base film 1, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. 4 are the same as the base film 1, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. is there. For this reason, the description which overlaps with the flexible printed wiring board of FIG. 1 is abbreviate
  • the pair of measurement pad portions 4 and the pair of lead portions 5 are arranged point-symmetrically with respect to the center of the fuse portion 3.
  • the pair of measurement pad parts 4 are arranged along the fuse part 3 so as to fit between the both ends of the fuse part 3 in the longitudinal direction.
  • the flexible printed wiring board measures the electrical resistance of the central area of the fuse portion 3 that is blown by overcurrent. For this reason, the fusing current of the fuse part 3 can be calculated more accurately, particularly when the sectional area of the fuse part 3 continuously changes so as to be minimized in the central region.
  • the flexible printed wiring board according to the fourth embodiment of the present invention shown in FIG. 5 includes a base film 1 having insulating properties, a conductive pattern 2 laminated on one surface side of the base film 1, and a coverlay 6. Prepare.
  • the conductive pattern 2 constitutes a part of the circuit, the fuse part 3 having a smaller cross-sectional area than the other part, and the vicinity of the fuse part 3 on the circuit before and after the fuse part 3 And a pair of measurement pad portions 4 exposed from an opening 8 provided in the cover lay 6 and capable of measuring a potential difference between two points in the exposed region.
  • the base film 1, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. 5 are the same as the base film 1, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. is there. For this reason, the description which overlaps with the flexible printed wiring board of FIG. 1 is abbreviate
  • the pair of measurement pad portions 4 is defined by partially exposing the wiring portions 7 before and after the fuse portion 3 in the circuit formed by the conductive pattern 2 from the opening 8 formed in the cover lay 6. Has been.
  • the width of the wiring part 7 before and after the fuse part 3 is larger than the wiring width in other parts in order to ensure the width of the measurement pad part 4.
  • the upper limit of the distance between the measurement pad portion 4 and the fuse portion 3 in the flexible printed wiring board is preferably 1 mm, and more preferably 0.5 mm.
  • the actual measurement point may be far from both ends of the fuse portion 3.
  • the opening 8 that defines the measurement pad portion 4 does not overlap the fuse portion 3, that is, the measurement pad portion 4 does not include the fuse portion 3. If the measurement pad part 4 includes the fuse part 3, there is a possibility that an error in measurement values between the case where the measurement point is on the fuse part 3 and the front and rear wiring parts 7 is large.
  • the flexible printed wiring board is simple because the conductive pattern 2 does not have a lead-out portion, and the area occupied by the conductive pattern 2 and thus the overall dimensions of the flexible printed wiring board can be reduced.
  • the probe of the voltmeter is preferably brought into contact with the fuse part 3 side rather than the position where the current of the measurement pad part 4 is applied.
  • the fuse portion 3 is formed by patterning a conductor layer laminated on one surface side of the base film.
  • the flexible printed wiring board shown in FIG. 6 includes an insulating base film, a conductive pattern 2 laminated on one side of the base film, and a coverlay 6.
  • the conductive pattern 2 constitutes a part of the circuit, has a smaller cross-sectional area than the other part, and is formed so as to be melted by Joule heat when an overcurrent flows through the circuit.
  • a fuse part 3 is provided.
  • the base film, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. 6 are the same as the base film 1, the conductive pattern 2, and the coverlay 6 in the flexible printed wiring board of FIG. .
  • the description which overlaps with the flexible printed wiring board of FIG. 1 is abbreviate
  • the flexible printed wiring board of FIG. 6 does not have the measurement pad portion exposed from the coverlay 6 unlike the flexible printed wiring boards of FIGS. 1 to 5, but the flexible printed wiring board according to this embodiment is manufactured.
  • the potential difference between two points in the vicinity of both ends of the fuse portion 3 is measured, and only the one that the fuse portion 3 blows at a desired fusing current degree is selected and manufactured.
  • the conductive pattern forming step in the present embodiment can be the same as the conductive pattern forming step in the method for manufacturing a printed wiring board in FIG.
  • the voltmeter probe is brought into contact with two points near both ends of the fuse part 3 in the conductive pattern 2 while applying a current while measuring the current value to the fuse part 3. Measure the potential difference between two points near both ends.
  • the measuring device used in this potential difference measuring step can be the same as that used in the potential difference measuring step in the method for manufacturing a printed wiring board in FIG.
  • the cover lay 6 is stacked only in the range where the potential difference measured in the potential difference measuring step is in a preset range.
  • the potential difference setting range is determined in advance so that the fuse portion 3 predicted from the potential difference has a fusing current within a fusing current range that is set to protect an electronic component or the like mounted on the flexible printed wiring board. .
  • FIG. 7 A method of manufacturing a flexible printed wiring board according to still another embodiment of the present invention will be described with reference to the flexible printed wiring board of FIG. 7.
  • the fuse portion is formed by patterning a conductor layer laminated on one surface side of the base film. 3 and the step of forming the conductive pattern 2 having the pair of measurement pad portions 4, and between the two points near both ends of the fuse portion 3 through the pair of measurement pad portions 4 in a state where a current is applied to the fuse portion 3.
  • the step of measuring the potential difference and the coverlay 6 is laminated on the conductive pattern 2 side in the laminate including the base film and the conductive pattern 2 in which the potential difference between two points in the vicinity of both ends of the fuse portion 3 is set in advance. And a step of performing.
  • the flexible printed wiring board of FIG. 7 uses a pair of measurement pad portions 4 that exist in the vicinity of both ends of the fuse portion 3 before the coverlay 6 is laminated in the method for manufacturing a flexible printed wiring board according to the present embodiment.
  • the potential difference between two points in the vicinity of both ends of the fuse part 3 is measured, and only those in which the fuse part 3 blows at a desired fusing current degree are selected and manufactured.
  • ⁇ Potential difference measurement process> a current of the fuse unit 3 is measured while a current value is applied, and a probe of a voltmeter is brought into contact with the pair of measurement pad units 4, thereby allowing the measurement pad unit 4 and the lead unit 5 to pass through.
  • the potential difference between two points near both ends of the fuse part 3 is measured.
  • the measuring device used in this potential difference measuring step can be the same as that used in the potential difference measuring step in the method for manufacturing a printed wiring board in FIG.
  • the voltage drop in the fuse part 3 is measured using the measurement pad part 4 connected to the wiring part 7 near both ends of the fuse part 3 via the lead part 5. It is possible to accurately determine the two points to be measured, and to fuse the fuse portion 3 with a desired current relatively accurately.
  • the flexible printed wiring board has a conductive pattern connected to the fuse part and both sides of the fuse part, and has a terminal part for connecting to an external circuit as a main element, that is, used as one electrical component. May be.
  • the flexible printed wiring board may not have a coverlay.
  • the fuse portion may be a portion having a reduced cross-sectional area due to a smaller thickness than other portions of the conductive pattern.
  • the arrangement of the pair of measurement pad portions may be asymmetric.
  • the flexible printed wiring board may have a plurality of fuse portions.
  • the flexible printed wiring board may be a double-sided board or a multilayer board.
  • the relationship between the size and shape of the measurement pad portion and the size and shape of the cover lay opening that exposes the measurement pad portion is not limited to the combination of the above embodiments.
  • a circular opening may be provided in the cover lay in order to expose the square measurement pad portion.
  • the opening of the cover lay may be displaced or deformed with respect to the measurement pad part so as to partially expose the peripheral edge of the measurement pad part.
  • the flexible printed wiring board manufactured by the method for manufacturing a flexible printed wiring board may have a measurement pad portion where a conductive pattern is covered with a coverlay.
  • the measurement pad portion is formed in the conductive pattern formation step, and the potential difference between two points near both ends of the fuse portion is measured using the measurement pad portion in the potential difference measurement step. May be measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Fuses (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

本発明の一態様に係るフレキシブルプリント配線板は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターンとを備え、この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板であって、上記導電パターンが、上記ヒューズ部の両端近傍の二点間の電位差を測定可能に存在する一対の測定パッド部を有する。

Description

フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法
 本発明は、フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法に関する。
 電子機器等の電気回路を構成するために、フレキシブルプリント配線板が広く用いられている。また、電子機器等では、過電流による電子部品の損傷を防止するために、過電流が流れると溶断して電流を遮断するヒューズを設けることが望まれる場合がある。このため、フレキシブルプリント配線板にヒューズが実装されることがある。
 フレキシブルプリント配線板にヒューズを実装することは、部品点数や実装工程の増加によりフレキシブルプリント配線板のコストを増大させる。そこで、フレキシブルプリント配線板の導電パターンによって構成される回路の一部の断面積を部分的に小さくし、過電流により溶断するヒューズの機能を付与することが提案されている(特開2007-317990号公報参照)。
特開2007-317990号公報
 本発明の一態様に係るフレキシブルプリント配線板は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターンとを備え、この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板であって、上記導電パターンが、上記ヒューズ部の両端近傍の二点間の電位差を測定可能に存在する一対の測定パッド部を有する。
 本発明の別の態様に係るフレキシブルプリント配線板の製造方法は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターンとを備え、この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板の製造方法であって、上記ベースフィルムの一方の面側に、上記ヒューズ部を含む回路、及び上記ヒューズ部の両端近傍に存在する一対の測定パッド部を有する導電パターンを形成する工程と、上記ヒューズ部に電流を印加した状態で、上記測定パッド部間の電位差を測定する工程とを備える。
 本発明のまた別の態様に係るフレキシブルプリント配線板の製造方法は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターンとを備え、この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板の製造方法であって、上記ベースフィルムの一方の面側に、上記ヒューズ部を含む回路を有する導電パターンを形成する工程と、上記ヒューズ部に電流を印加した状態で、ヒューズ部の両端近傍の二点間の電位差を測定する工程と、上記ヒューズ部の両端近傍の二点間の電位差が予め設定される範囲内であるベースフィルム及び導電パターンを含む積層体における導電パターン側にカバーレイを積層する工程とを備える。
図1は、本発明の一実施形態のフレキシブルプリント配線板を示す模式的平面図である。 図2は、図1のフレキシブルプリント配線板のA-A線断面図である。 図3は、本発明の図1とは異なる実施形態のフレキシブルプリント配線板を示す模式的平面図である。 図4は、本発明の図1及び図3とは異なる実施形態のフレキシブルプリント配線板を示す模式的平面図である。 図5は、本発明の図1、図3及び図4とは異なる実施形態のフレキシブルプリント配線板を示す模式的平面図である。 図6は、本発明の図1のフレキシブルプリント配線板の製造方法とは異なる実施形態の製造方法で製造されるフレキシブルプリント配線板を示す模式的平面図である。 図7は、本発明の図1及び図6のフレキシブルプリント配線板の製造方法とは異なる実施形態の製造方法で製造されるフレキシブルプリント配線板を示す模式的平面図である。
[発明が解決しようとする課題]
 上記公報に記載のフレキシブルプリント配線板の構成では、レジストパターンを用いたエッチング等によりヒューズ部を含む導電パターンを形成することになる。しかしながら、断面積が小さいヒューズ部の抵抗値は、エッチング条件の僅かな違いにより変化するため、上記公報に記載のフレキシブルプリント配線板においてヒューズ部が溶断する電流値を正確に所望の値にすることは難しい。
 本発明は、上述のような事情に基づいてなされたものであり、所望の電流値で比較的正確に電流を遮断することができるフレキシブルプリント配線板及びそのようなフレキシブルプリント配線板の製造方法を提供することを課題とする。
[発明の効果]
 本発明の一態様に係るフレキシブルプリント配線板及び本発明の別の態様に係るフレキシブルプリント配線板の製造方法によって得られるフレキシブルプリント配線板は、所望の電流値で比較的正確に電流を遮断することができる。
[本発明の実施形態の説明]
 本発明の一態様に係るフレキシブルプリント配線板は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターンとを備え、この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板であって、上記導電パターンが、上記ヒューズ部の両端近傍の二点間の電位差を測定可能に存在する一対の測定パッド部を有する。
 当該フレキシブルプリント配線板は、上記導電パターンが、上記ヒューズ部の両端近傍の二点間の電位差を測定可能に存在する一対の測定パッド部を有するので、上記ヒューズ部に電流を印加した状態で上記測定パッド部間の電位差を測定する四端子測定法により、比較的正確にヒューズ部の抵抗を測定することができ、ヒューズ部が溶断する電流値を比較的正確に推測することができる。従って、所望の電流値で比較的正確に電流を遮断することができるフレキシブルプリント配線板を選択して提供することができる。なお、「ヒューズ部」とは、その電流の流れ方向前後の回路よりも断面積が10%以上小さい部分を意味するものとし、その「両端近傍」とは、ヒューズ部の一端からの電気抵抗がヒューズ部両端間の電気抵抗の30%以下であるヒューズ部内又はヒューズ部前後の領域を意味する。また、「測定可能」とは、外部の測定装置に電気的に接続可能であることを意味し、具体的には電圧計の測定用プローブ又はピンを接触させられるよう露出していることを意味する。
 上記測定パッド部が、上記ヒューズ部を含む回路とは別に形成されており、上記導電パターンが、上記ヒューズ部又はこの前後の回路から延出し、上記測定パッド部に接続される引出部をさらに有するとよい。このように、上記導電パターンが、上記ヒューズ部又はこの前後の回路から延出し、上記測定パッド部に接続される引出部をさらに有することによって、電位差を測定する二点の位置を精度よく定めることができ、ヒューズ部の抵抗をより正確に測定できるので、所望の電流値で比較的正確に電流を遮断することができるフレキシブルプリント配線板を精度よく選択して提供することができる。
 上記引出部が、上記回路におけるヒューズ部の両側の接続領域から延出するとよい。このように、上記引出部が、上記回路におけるヒューズ部の両側の接続領域から延出することによって、ヒューズ部全体を含む範囲の抵抗を検出することができる。これにより、ヒューズ部全体の抵抗をより正確に算定し、所望の電流値で比較的正確に電流を遮断できるフレキシブルプリント配線板をより精度よく選択して提供することができる。なお、「接続領域」とは、回路の断面積が実質的に減少する領域であって、具体的には断面積が長さ1mm当たり10%以上減少する領域を意味する。
 上記引出部が、上記ヒューズ部の両端側から延出してもよい。このように、上記引出部が、上記ヒューズ部の両端側、つまりヒューズ部両端の近傍領域のうちヒューズ部内の領域から延出することによって、ヒューズ部中央の溶断する部分の電気抵抗を抜き出して測定することができる。これにより、所望の電流値で比較的正確に電流を遮断できるフレキシブルプリント配線板をより精度よく選択して提供することができる。なお、「ヒューズ部の両端側」とは、ヒューズ部の内部の両端近傍領域のうち、ヒューズ部の両端からの距離がヒューズ部の全長の30%以下である領域を意味する。
 上記測定パッド部が、上記ヒューズ部の前後の回路上に形成されていてもよい。このように、上記測定パッド部が、上記ヒューズ部の前後の回路上に形成されていることによって、導電パターンが簡素であり、かつ導電パターンの専有面積を小さくすることが可能となる。
 上記ベースフィルム及び導電パターンを含む積層体における導電パターン側に被覆されるカバーレイをさらに備え、上記測定パッド部存在領域の少なくとも一部に上記カバーレイが存在しないとよい。このように、上記ベースフィルム及び導電パターンを含む積層体における導電パターン側に被覆されるカバーレイをさらに備えることによって、溶断後のヒューズ部の両端間に例えば水等が進入して短絡させることを防止し、電流の遮断をさらに確実にすることができる。
 本発明の別の態様に係るフレキシブルプリント配線板の製造方法は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターンとを備え、この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板の製造方法であって、上記ベースフィルムの一方の面側に、上記ヒューズ部を含む回路、及び上記ヒューズ部の両端近傍に存在する一対の測定パッド部を有する導電パターンを形成する工程と、上記ヒューズ部に電流を印加した状態で、上記測定パッド部間の電位差を測定する工程とを備える。
 当該フレキシブルプリント配線板の製造方法は、上記ヒューズ部の両端近傍に存在する一対の測定パッド部を有する導電パターンを形成する工程と、上記ヒューズ部に電流を印加した状態で、上記測定パッド部間の電位差を測定する工程とを備えることによって、ヒューズ部が溶断する電流値を比較的正確に推測することができ、所望の電流値で比較的正確に電流を遮断することができるフレキシブルプリント配線板を製造することができる。
 本発明のまた別の態様に係るフレキシブルプリント配線板の製造方法は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターンとを備え、この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板の製造方法であって、上記ベースフィルムの一方の面側に、上記ヒューズ部を含む回路を有する導電パターンを形成する工程と、上記ヒューズ部に電流を印加した状態で、ヒューズ部の両端近傍の二点間の電位差を測定する工程と、上記ヒューズ部の両端近傍の二点間の電位差が予め設定される範囲内であるベースフィルム及び導電パターンを含む積層体における導電パターン側に、カバーレイを積層する工程とを備える。
 当該フレキシブルプリント配線板の製造方法は、カバーレイを積層する工程の前に、上記ヒューズ部に電流を印加した状態で、ヒューズ部の両端近傍の二点間の電位差を測定する工程を備えることによって、ヒューズ部が所望の電流値で比較的正確に溶断するものを選別できるので、所望の電流値で比較的正確に電流を遮断することができるフレキシブルプリント配線板を製造することができる。
[本発明の実施形態の詳細]
 以下、本発明に係るフレキシブルプリント配線板の実施形態について図面を参照しつつ詳説する。
[第一実施形態]
 図1及び2に示す本発明の第一実施形態のフレキシブルプリント配線板は、絶縁性を有するベースフィルム1と、このベースフィルム1の一方の面側に積層される導電パターン2とを備える。
 当該フレキシブルプリント配線板は、導電パターン2が、回路の一部を構成し、他の部分より断面積が小さい1のヒューズ部3を有する。このヒューズ部3は、この回路に過電流が流れた際にジュール熱により溶断するよう形成される部分である。より具体的には、ヒューズ部3は、少なくとも当該フレキシブルプリント配線板の回路に用いられる電源をその両端に直接接続した場合に流れる電流によって溶断するよう断面積が減じられた部分である。なお、「回路」とは、当該フレキシブルプリント配線板の使用状態において使用され、電流が流され得る電気回路を意味する。
 また、当該フレキシブルプリント配線板において、導電パターン2は、ヒューズ部3の両端近傍(ヒューズ部3の両端からの抵抗がヒューズ部3の両端間の抵抗の30%以下である領域)の二点間の電位差を測定可能に存在する一対の測定パッド部4を有する。この一対の測定パッド部4は、ヒューズ部3を含む回路とは別に形成されており、ヒューズ部3の前後の回路から延出する一対の引出部5にそれぞれ接続されている。なお、本明細書において「前後」とは、回路における電流の流れ方向の前後を意味する。
 また、当該フレキシブルプリント配線板は、ベースフィルム1及び導電パターン2の一方の面側を覆うよう積層されるカバーレイ6を備える。
<ベースフィルム>
 ベースフィルム1は、導電パターン2を支持する部材であって、当該フレキシブルプリント配線板の強度を担保する構造材である。
 このベースフィルム1の主成分としては、例えばポリイミド、液晶ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、フッ素樹脂等の軟質材、紙フェノール、紙エポキシ、ガラスコンポジット、ガラスエポキシ、ガラス基材等の硬質材、軟質材と硬質材とを複合したリジッドフレキシブル材などを用いることができる。これらの中でも耐熱性に優れるポリイミドが好ましい。なお、ベースフィルム1は、多孔化されたものでも良く、また、充填材、添加剤等を含んでもよい。
 上記ベースフィルム1の厚さは、特に限定されないが、例えばベースフィルム1の平均厚さの下限としては、5μmが好ましく、12μmがより好ましい。また、ベースフィルム1の平均厚さの上限としては、2mmが好ましく、1.6mmがより好ましい。ベースフィルム1の平均厚さが上記下限に満たない場合、ベースフィルム1の強度が不十分となるおそれがある。一方、ベースフィルム1の平均厚さが上記上限を超える場合、ベースフィルム1の熱容量が大きくなり、ヒューズ部3の溶断を遅延させるおそれがある。
<導電パターン>
 導電パターン2は、層状の導体を少なくとも部分的に回路を構成するようパターニングして形成される。この導電パターン2は、上述のように、ヒューズ部3を含む回路と、この回路のヒューズ部3の両端近傍から延出する一対の引出部5と、この一対の引出部5の延出端に接続される一対の測定パッド部4とを有する。
 この導電パターン2が構成する回路は、電路となる配線部7と、この配線部7の一部分の幅を減じることにより他の部分よりも断面積を小さくしたヒューズ部3とを有する。また、導電パターン2が構成する回路は、図示しないが、例えば電子部品の実装のためのランド、配線接続のため端子部等を有してもよい。
 導電パターン2を形成する材料としては、導電性を有し、通電によるジュール熱により溶断可能な材料であれば特に限定されないが、例えば銅、アルミニウム、ニッケル等の金属が挙げられ、一般的には安価で導電率が大きい銅が用いられる。また、導電パターン2は、表面にめっき処理が施されてもよい。
 導電パターン2の平均厚さの下限としては、2μmが好ましく、5μmがより好ましい。一方、導電パターン2の平均厚さの上限としては、500μmが好ましく、100μmがより好ましい。導電パターン2の平均厚さが上記下限に満たない場合、導電性が不十分となるおそれがある。一方、導電パターン2の平均厚さが上記上限を超える場合、当該フレキシブルプリント配線板の可撓性が不足するおそれや、ヒューズ部3の形成(溶断可能となるよう断面積を部分的に低減すること)が容易でなくなるおそれがある。
 導電パターン2の配線部7は、略一定の幅を有する帯状に形成されることが好ましい。なお、略一定とは、製造上発生し得る誤差程度の偏差を許容することを意味し、好ましくは平均幅との差が10%未満であることを意味する。
 この配線部7の平均幅の下限としては、0.1mmが好ましく、0.2mmがより好ましい。一方、配線部7の平均幅の上限としては、1mmが好ましく、0.8mmがより好ましい。配線部7の平均幅が上記下限に満たない場合、導電性が不十分となるおそれがある。逆に、配線部7の平均幅が上記上限を超える場合、当該フレキシブルプリント配線板が不必要に大きくなるおそれがある。
<ヒューズ部>
 ヒューズ部3は、配線部7の一部分の幅を減じることにより、配線部7の他の部分よりも断面積が小さいことで単位長さあたりの電気抵抗が大きく、過電流が流れるとジュール熱により加熱して溶断するよう形成されている。つまり、ヒューズ部3は、前後の配線部7より線幅が小さく形成されている。
 なお、ヒューズ部3の断面積は、少なくともヒューズ部3の両端に当該フレキシブルプリント配線板の電源を直接接続したときに流れる電流で溶断するよう設計される。好ましくは、ヒューズ部3の断面積は、上記電源を直接接続したときに流れる電流よりも小さい値の溶断電流によってヒューズ部3が溶断されるよう定められる。より詳しくは、ヒューズ部3の断面積は、例えば回路に実装される素子の絶縁耐力等を考慮して上記溶断電流を設定し、この溶断電流でヒューズ部3が溶断するよう、導電パターン2を形成する材料の物性、並びにヒューズ部3からの熱の放散量に影響を及ぼすベースフィルム1及びカバーレイ6を形成する材料の物性や形状等を考慮して適宜選択される。
 導電パターン2が銅で形成される場合のヒューズ部3の最小幅の下限としては、5μmが好ましく、10μmがより好ましい。一方、ヒューズ部3の最小幅の上限としては、300μmが好ましく、200μmがより好ましい。ヒューズ部3の最小幅が上記下限に満たない場合、ヒューズ部3の幅の製造誤差によりヒューズ部3が溶断される電流値のばらつきが大きくなるおそれがある。逆に、ヒューズ部3の最小幅が上記上限を超える場合、ヒューズ部3の厚さの製造誤差によりヒューズ部3が溶断される電流値のばらつきが大きくなるおそれがある。
 ヒューズ部3は、長さ方向中央部において断面積が最小となることが好ましい。また、ヒューズ部3は、幅(断面積)が最小となる部分が長さ方向に延在する帯状であることが好ましい。これにより、ヒューズ部3の長さ方向中央部で発生したジュール熱が前後方向に熱伝導して両側の配線部7に逃げることを抑制でき、ヒューズ部3の過電流による迅速な溶断を促進することができる。
 ヒューズ部3の長さ(両側の配線部7よりも断面積が10%以上減じられている領域の長さ)の下限としては、0.5mmが好ましく、1mmがより好ましい。一方、ヒューズ部3の長さの上限としては、20mmが好ましく、15mmがより好ましい。ヒューズ部3の長さが上記下限に満たない場合、長さ方向前後への熱の逃げを十分に抑制できないおそれがある。逆に、ヒューズ部3の長さが上記上限を超える場合、当該フレキシブルプリント配線板が不必要に大きくなるおそれがある。
 ヒューズ部3の断面積の最小値のこのヒューズ部3の両端近傍(抵抗値がヒューズ部3の30%以内である範囲)における配線部7の平均断面積に対する比の上限としては、50%が好ましく、30%がより好ましく、20%がさらに好ましい。一方、上記断面積の比の下限としては、2%が好ましく、5%がより好ましく、8%がさらに好ましい。上記断面積の比が上記上限を超える場合、過電流が流れてもヒューズ部3が迅速に溶断されないおそれがある。逆に、上記断面積の比が上記下限に満たない場合、溶断電流の製造誤差が大きくなるおそれがある。
 ヒューズ部3の断面積が略最小となる部分(断面積の最小値との差が5%以内である部分)の長さの下限としては、0.3mmが好ましく、0.8mmがより好ましい。一方、ヒューズ部3の断面積が略最小となる部分の長さの上限としては、15mmが好ましく、12mmがより好ましい。ヒューズ部3の断面積が略最小となる部分の長さが上記下限に満たない場合、長さ方向前後への熱の逃げを十分に抑制できないおそれがある。逆に、ヒューズ部3の断面積が略最小となる部分の長さが上記上限を超える場合、当該フレキシブルプリント配線板が不必要に大きくなるおそれがある。
<測定パッド部>
 一対の測定パッド部4は、ヒューズ部3を含む回路における一対の引出部5が接続された二点(一対の測定点)の電位差を測定するために用いられる。従って、この一対の測定パッド部4は、電圧を測定するための電圧計のプローブを当接させられるよう、カバーレイ6に設けられる開口8から全体が露出するよう配設される。換言すると、測定パッド部4の一方の面側にはカバーレイ6が存在せず、これにより測定パッド部4を用いた電圧の測定が可能となる。
 当該フレキシブルプリント配線板では、この一対の測定パッド部4を用いて、ヒューズ部3の両端近傍の一対の測定点間の電気抵抗を測定することができる。そして、この測定した電気抵抗から、ヒューズ部3が溶断する溶断電流を推測することができる。
 一対の測定パッド部4は、ヒューズ部3の長さ方向に垂直な中心軸について線対称に配置されている。
 測定パッド部4の露出部分の平面形状としては、特に限定されず、例えば方形、円形、楕円形等とすることができる。
 測定パッド部4の面積の下限としては、0.1mmが好ましく、0.2mmがより好ましい。一方、測定パッド部4の面積の上限としては、30mmが好ましく、20mmがより好ましい。測定パッド部4の面積が上記下限に満たない場合、測定用プローブを当接させることが容易でなくなるおそれがある。逆に、測定パッド部4の面積が上記上限を超える場合、当該フレキシブルプリント配線板が不必要に大型化するおそれがある。
 測定パッド部4とヒューズ部3との最小間隔(測定パッド部4の周縁とヒューズ部3の周縁との最短距離)の下限としては、特に限定されない。一方、測定パッド部4とヒューズ部3との最小間隔の上限としては、50mmが好ましく、30mmがより好ましい。測定パッド部4とヒューズ部3との最小間隔が上記上限を超える場合、当該フレキシブルプリント配線板が不必要に大きくなるおそれや、複数のヒューズ部3を設ける場合に測定対象であるヒューズ部3と測定パッド部4との対応が分かり難くなるおそれがある。
<引出部>
 一対の引出部5は、ヒューズ部3の両端近傍領域のうち、配線部7のヒューズ部3から少し離れた位置からそれぞれ延出している。この引出部5は、測定パッド部4を介して電位差が測定される二つの測定点の長手方向位置を定める役目を果たす。これよって、測定パッド部4内での電圧計のプローブを当接する位置に拘わらず、ヒューズ部3を含む一定の領域の電気抵抗を測定できる。
 各引出部5の平均幅の下限としては、5μmが好ましく、10μmがより好ましい。一方、各引出部5の平均幅の上限としては、1mmが好ましく、0.8mmがより好ましい。各引出部5の平均幅が上記下限に満たない場合、一対の測定パッド部4と一対の測定点との間の電気的接続が不確実となるおそれがある。逆に、各引出部5の平均幅が上記上限を超える場合、当該プリント配線板の可撓性を損なうおそれがある。
<カバーレイ>
 カバーレイ6は、ベースフィルム1及び導電パターン2を含む積層体の一方の面側に被覆されている。このカバーレイ6は、主に導電パターン2が他の部材等と接触して損傷することや短絡することを防止する。
 カバーレイ6としては、例えば絶縁層と接着剤層とを有する2層フィルムを用いることができる。カバーレイ6を絶縁層と接着剤層との2層構造とする場合、絶縁層の材質としては特に限定されるものではないが、ベースフィルム1を構成する樹脂フィルムと同様のものを使用することができる。
 カバーレイ6の絶縁層の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。一方、カバーレイ6の絶縁層の平均厚さの上限としては、60μmが好ましく、40μmがより好ましい。カバーレイ6の絶縁層の平均厚さが上記下限に満たない場合、カバーレイ6の絶縁性が不十分となるおそれがある。一方、カバーレイ6の絶縁層の平均厚さが上記上限を超える場合、当該フレキシブルプリント配線板の可撓性が不十分となるおそれがある。
 また、カバーレイ6を絶縁層と接着剤層との2層構造とする場合、接着剤層を構成する接着剤としては、特に限定されるものではないが、柔軟性や耐熱性に優れたものが好ましく、かかる接着剤としては、例えばナイロン樹脂系、エポキシ樹脂系、ブチラール樹脂系、アクリル樹脂系などの各種樹脂系の接着剤が挙げられる。カバーレイ6の接着剤層の平均厚さとしては、特に限定されるものではないが、10μm以上50μm以下が好ましい。カバーレイ6の接着剤層の平均厚さが上記下限に満たない場合、接着性が不十分となるおそれがあり、一方、カバーレイ6の接着剤層の平均厚さが上記上限を超える場合、当該フレキシブルプリント配線板の可撓性が不十分となるおそれがある。
[ヒューズ部の溶断電流確認方法]
 ここで、当該フレキシブルプリント配線板におけるヒューズ部3の溶断電流の確認方法について説明する。
 当該フレキシブルプリント配線板では、一対の測定パッド部4を用いて、ヒューズ部3を含む回路におけるヒューズ部3の両端近傍の一対の測定点間の電気抵抗を測定し、この電気抵抗からヒューズ部3が溶断する溶断電流を比較的正確に推測することができる。
 より詳しくは、ヒューズ部3の電気抵抗は、一対の測定パッド部4を電圧測定端子とする四端子測定法によって行う。具体的には、ヒューズ部3の両側の配線部7間に電流値を確認可能な方法で測定電流を印加し、この測定電流の印加状態で一対の測定パッド部4間の電位差を測定することで、ヒューズ部3の両端近傍の一対の測定点間の電気抵抗を算出する。
 この四端子測定法において、ヒューズ部3の両側の配線部7間に測定電流を印加すると、ヒューズ部3の電気抵抗により電圧降下が生じ、ヒューズ部3の両端間、ひいてはヒューズ部3の両端近傍の一対の測定点の間に電位差が生じる。また、一対の測定パッド部4は、引出部5を介して接続された一対の測定点とそれぞれ等しい電位となる。この状態で、一対の測定パッド部4に電圧計のプローブを当接させて、一対の測定パッド部4間の電位差を測定することにより、上記一対の測定点間における測定電流の印加による電圧降下を測定できる。
 なお、引出部5が接続された一対の測定点間の電気抵抗は、ヒューズ部3の両側の配線部7の電気抵抗を含んでいる。しかしながら、配線部7の電気抵抗はヒューズ部3の電気抵抗に比して小さい。また、特に導電パターン2をレジストマスクを用いたエッチングにより形成する場合、電気抵抗の誤差は、ヒューズ部3と両端の配線部7とで正負が同じ方向となり易く、配線部7よりも幅の小さいヒューズ部3において誤差が顕著となる。従って、一対の測定点間の電気抵抗を測定することで、ヒューズ部3の電気抵抗を概ね正確に算出することができる。
 上記電気抵抗の測定において、ヒューズ部3への測定電流の印加は、導電パターン2が構成する回路内のヒューズ部3を含む直列回路部分に電流値を確認可能な電源を接続して行う。つまり、測定電流は、ヒューズ部3における電流値が確認できるよう印加されればよく、他の構成要素を介してヒューズ部3に印加されてもよい。
 このヒューズ部3への測定電流の印加は、導電パターン2に専用のパッドや端子を配設することによって可能としてもよいが、導電パターン2に設けられる電子部品実装用ランド又はこのランドに実装されている電子部品のリードや半田等に電源を接続することにより行ってもよい。
 測定に使用する電圧計は、内部抵抗が十分に大きいものを使用する。これにより、配線部7間に印加される電流のうち、電圧計に分留される電流を十分に小さくし、電圧計接続前後のヒューズ部3における電圧降下の変動を無視できるレベルに抑制する。
 ヒューズ部3の溶断電流を算出するためには、ヒューズ部3において生じるジュール熱だけでなく、ヒューズ部3から隣接するベースフィルム1やカバーレイ6への放熱も考慮しなければならない。当該プリント配線板をコンピューター上にモデリングして、熱伝導をシミュレーションすることで、ヒューズ部3の電気抵抗から溶断電流を導出してもよいが、少数のサンプルのヒューズ部3の溶断電流を実測し、ヒューズ部3の電気抵抗と溶断電流との関係を求めることにより、ヒューズ部3の電気抵抗を溶断電流に換算するようにしてもよい。
[フレキシブルプリント配線板の製造方法]
 当該フレキシブルプリント配線板は、本発明の一実施形態に係るフレキシブルプリント配線板の製造方法によって製造することができる。当該フレキシブルプリント配線板の製造方法は、ベースフィルム1の一方の面側に積層した導体層のパターニングによりヒューズ部3、測定パッド部4及び引出部5を有する導電パターン2を形成する工程と、ベースフィルム1及び導電パターン2の積層体における導電パターン2の側にカバーレイ6を積層する工程と、ヒューズ部3に電流を印加した状態で測定パッド部4間の電位差を測定する工程と、測定した測定パッド部4間の電位差に基づいて不良品を排除する工程とを備える。
<導電パターン形成工程>
 上記導電パターン形成工程では、例えばフォトリソグラフィによりレジストパターンを形成して導体層をエッチングする公知の方法を用いることができる。なお、ベースフィルム1と導電パターン2を形成する導体層との積層は、接着剤を用いる方法、熱圧着する方法、ベースフィルム1上に例えば蒸着、メッキ等によって導体層を積層する方法などを用いることができる。
<カバーレイ積層工程>
 上記カバーレイ積層工程では、例えば絶縁層の裏面に接着剤層を有するカバーレイ6をベースフィルム1及び導電パターン2の積層体における導電パターン2の側に積層する。ヒューズ部3の両側においてベースフィルム1とカバーレイ6とを確実に接着するために、真空熱圧着装置等を用いることが好ましい。
<電位差測定工程>
 上記電位差測定工程では、上述のように、ヒューズ部3に電流値を測定しながら電流を印加しつつ、一対の測定パッド部4を用いて一対の測定点間における電圧降下を測定する。このヒューズ部3への電流の印加及び電流値の測定を直流電源と電流計とを用いて行い、測定パッド部4間の電位差測定を電圧計を用いて行うことができるが、これらの機能を一体化した市販の四端子測定装置を使用してもよい。
<不良品排除工程>
 上記不良品排除工程では、上記電位差測定工程で測定した電位差に基づいて、ヒューズ部3の溶断電流を推測し、溶断電流が設計上許容される範囲にないものを排除することにより、ヒューズ部3が所望の電流値で溶断し、比較的正確に電流を遮断できるもののみを当該フレキシブルプリント配線板の製品とする。
 当該フレキシブルプリント配線板の製造方法において、カバーレイ積層工程は、電位差測定工程又は不良品排除工程の後に行ってもよい。
<利点>
 以上のように、当該フレキシブルプリント配線板は、ヒューズ部3の電気抵抗を測定することにより、ヒューズ部3が所望の電流値で溶断するものとされるので、所望の電流値で比較的正確に電流を遮断することができる。
[第二実施形態]
 図3に示す本発明の第二実施形態のフレキシブルプリント配線板は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターン2と、カバーレイ6とを備える。
 当該フレキシブルプリント配線板において、導電パターン2は、回路の一部を構成し、他の部分より断面積が小さい1のヒューズ部3と、導電パターン2が構成する回路におけるヒューズ部3の両側の接続領域から延出する一対の引出部5と、この引出部5の延出端に接続され、ヒューズ部3の両側の接続領域の二点間の電位差を測定可能にカバーレイ6に形成した開口8から少なくとも部分的に露出する一対の測定パッド部4とを有する。
 図3のフレキシブルプリント配線板におけるベースフィルム、導電パターン2及びカバーレイ6は、その平面形状を除いて、図1のフレキシブルプリント配線板におけるベースフィルム1、導電パターン2及びカバーレイ6と同様である。このため、図3のフレキシブルプリント配線板について、図1のフレキシブルプリント配線板と重複する説明は省略する。
 当該フレキシブルプリント配線板の引出部5は、ヒューズ部3の両側の接続領域から延出、つまり導電パターン2の回路幅が減少する位置に配設されている。これにより、ヒューズ部3に電流を印加したときの一対の測定パッド部4の電位差を測定することにより、ヒューズ部3に接続される回路の配線部7の電気抵抗を実質的に含まないヒューズ部3全体のみの電気抵抗を算出できる。
[第三実施形態]
 図4に示す本発明の第三実施形態のフレキシブルプリント配線板は、絶縁性を有するベースフィルム1と、このベースフィルム1の一方の面側に積層される導電パターン2と、カバーレイ6とを備える。
 当該フレキシブルプリント配線板において、導電パターン2は、回路の一部を構成し、他の部分より断面積が小さい1のヒューズ部3と、ヒューズ部3の両端側から延出する一対の引出部5と、この引出部5の延出端に接続され、ヒューズ部3の引出部5が接続された二点間の電位差を測定可能にカバーレイ6に形成した開口8から全体が露出する一対の測定パッド部4とを有する。
 図4のフレキシブルプリント配線板におけるベースフィルム1、導電パターン2及びカバーレイ6は、その平面形状を除いて、図1のフレキシブルプリント配線板におけるベースフィルム1、導電パターン2及びカバーレイ6と同様である。このため、図4のフレキシブルプリント配線板について、図1のフレキシブルプリント配線板と重複する説明は省略する。
 当該フレキシブルプリント配線板において、一対の測定パッド部4及び一対の引出部5は、ヒューズ部3の中心について点対称に配置されている。また、一対の測定パッド部4は、ヒューズ部3に沿って、長手方向にヒューズ部3の両端間に収まるよう配設されている。これにより、当該フレキシブルプリント配線板は、測定パッド部4の回路からの離間距離を確保し、平面寸法の増大を抑制している。
 当該フレキシブルプリント配線板は、ヒューズ部3のうち、過電流により溶断される中央領域の電気抵抗を測定する。このため、特にヒューズ部3の断面積が中央領域で最小となるよう連続的に変化する場合に、ヒューズ部3の溶断電流をより正確に算出することができる。
[第四実施形態]
 図5に示す本発明の第四実施形態のフレキシブルプリント配線板は、絶縁性を有するベースフィルム1と、このベースフィルム1の一方の面側に積層される導電パターン2と、カバーレイ6とを備える。
 当該フレキシブルプリント配線板において、導電パターン2は、回路の一部を構成し、他の部分より断面積が小さい1のヒューズ部3と、ヒューズ部3の前後の回路上のヒューズ部3の近傍領域に形成され、カバーレイ6に設けた開口8から露出し、露出領域内の二点間の電位差を測定可能な一対の測定パッド部4とを有する。
 図5のフレキシブルプリント配線板におけるベースフィルム1、導電パターン2及びカバーレイ6は、その平面形状を除いて、図1のフレキシブルプリント配線板におけるベースフィルム1、導電パターン2及びカバーレイ6と同様である。このため、図5のフレキシブルプリント配線板について、図1のフレキシブルプリント配線板と重複する説明は省略する。
 当該フレキシブルプリント配線板において、一対の測定パッド部4は、導電パターン2が構成する回路におけるヒューズ部3の前後の配線部7をカバーレイ6に形成した開口8から部分的に露出させることによって画定されている。導電パターン2は、測定パッド部4の幅を確保するために、ヒューズ部3の前後の配線部7の幅が、他の部分における配線幅よりも大きくなっている。
 当該フレキシブルプリント配線板における測定パッド部4とヒューズ部3との間隔の上限としては、1mmが好ましく、0.5mmがより好ましい。測定パッド部4とヒューズ部3との間隔が上記上限を超える場合、実際の測定点がヒューズ部3の両端から遠くなるおそれがある。また、測定パッド部4を画定する開口8は、ヒューズ部3に重複しないこと、つまり測定パッド部4がヒューズ部3を含まないことが好ましい。測定パッド部4がヒューズ部3を含むと、測定点がヒューズ部3上である場合と前後の配線部7上である場合との測定値の誤差が大きくなるおそれがある。
 当該フレキシブルプリント配線板は、導電パターン2が引出部を有さず簡素であり、導電パターン2の専有面積、ひいては当該フレキシブルプリント配線板全体寸法を小さくすることができる。
 当該フレキシブルプリント配線板においてヒューズ部3の電気抵抗を測定する場合の電流の印加は、測定パッド部4を用いて行ってもよい。この場合、電圧計のプローブは、測定パッド部4の電流を印加する位置よりもヒューズ部3側に当接させることが好ましい。
[第五実施形態]
 本発明の別の実施形態に係るフレキシブルプリント配線板の製造方法は、図6のフレキシブルプリント配線板を参照して説明すると、ベースフィルムの一方の面側に積層した導体層のパターニングによりヒューズ部3を有する導電パターン2を形成する工程と、ヒューズ部3に電流を印加した状態で、ヒューズ部3の両端近傍の二点間の電位差を測定する工程と、ヒューズ部3の両端近傍の二点間の電位差が予め設定される範囲内であるベースフィルム及び導電パターン2を含む積層体における導電パターン2の側にカバーレイ6を積層する工程とを備える。
 図6に示すフレキシブルプリント配線板は、絶縁性を有するベースフィルムと、このベースフィルムの一方の面側に積層される導電パターン2と、カバーレイ6とを備える。このフレキシブルプリント配線板において、導電パターン2は、回路の一部を構成し、他の部分より断面積が小さく、この回路に過電流が流れた際にジュール熱により溶断するよう形成される1のヒューズ部3を有する。
 図6のフレキシブルプリント配線板におけるベースフィルム、導電パターン2及びカバーレイ6は、その平面形状を除いて、図1のフレキシブルプリント配線板におけるベースフィルム1、導電パターン2及びカバーレイ6と同様である。このため、図6のフレキシブルプリント配線板について、図1のフレキシブルプリント配線板と重複する説明は省略する。
 図6のフレキシブルプリント配線板は、図1乃至図5のフレキシブルプリント配線板とは異なり、カバーレイ6から露出する測定パッド部を有していないが、本実施形態に係るフレキシブルプリント配線板の製造方法において、カバーレイ6を積層する前に、ヒューズ部3の両端近傍の二点間の電位差を測定し、ヒューズ部3が所望の溶断電流度で溶断するものだけを選別して製造される。
<導電パターン形成工程>
 本実施形態における導電パターン形成工程は、図1のプリント配線板の製造方法における導電パターン形成工程と同様とすることができる。
<電位差測定工程>
 上記電位差測定工程では、ヒューズ部3に電流値を測定しながら電流を印加しつつ、導電パターン2におけるヒューズ部3の両端近傍の二点に電圧計のプローブを接触させることにより、ヒューズ部3の両端近傍の二点間の電位差を測定する。この電位差測定工程で用いる測定装置は、図1のプリント配線板の製造方法における電位差測定工程に用いるものと同様とすることができる。
<カバーレイ積層工程>
 上記カバーレイ積層工程では、上記電位差測定工程で測定した電位差が予め設定される範囲であるものだけにカバーレイ6を積層する。上記電位差の設定範囲は、電位差から予測されるヒューズ部3が溶断電流が当該フレキシブルプリント配線板に実装される電子部品等を保護するために設定される溶断電流の範囲内となるよう予め定められる。
[第六実施形態]
 本発明のさらに別の実施形態に係るフレキシブルプリント配線板の製造方法は、図7のフレキシブルプリント配線板を参照して説明すると、ベースフィルムの一方の面側に積層した導体層のパターニングによりヒューズ部3及び一対の測定パッド部4を有する導電パターン2を形成する工程と、ヒューズ部3に電流を印加した状態で、一対の測定パッド部4を介してヒューズ部3の両端近傍の二点間の電位差を測定する工程と、ヒューズ部3の両端近傍の二点間の電位差が予め設定される範囲内であるベースフィルム及び導電パターン2を含む積層体における導電パターン2の側にカバーレイ6を積層する工程とを備える。
 図7のフレキシブルプリント配線板は、図1のフレキシブルプリント配線板からカバーレイ6の一対の測定パッド部4を露出させる一対の開口8を省略したものである。
 図7のフレキシブルプリント配線板は、本実施形態に係るフレキシブルプリント配線板の製造方法において、カバーレイ6を積層する前に、ヒューズ部3の両端近傍に存在する一対の測定パッド部4を用いて、ヒューズ部3の両端近傍の二点間の電位差を測定し、ヒューズ部3が所望の溶断電流度で溶断するものだけを選別して製造される。
 図7のフレキシブルプリント配線板の製造方法における導電パターン形成工程及びカバーレイ積層工程は、図6のフレキシブルプリント配線板の製造方法における導電パターン形成工程及びカバーレイ積層工程と同様とすることができる。
<電位差測定工程>
 上記電位差測定工程では、ヒューズ部3に電流値を測定しながら電流を印加しつつ、一対の測定パッド部4に電圧計のプローブを接触させることにより、測定パッド部4及び引出部5を介してヒューズ部3の両端近傍の二点間の電位差を測定する。この電位差測定工程で用いる測定装置は、図1のプリント配線板の製造方法における電位差測定工程に用いるものと同様とすることができる。
 図7のフレキシブルプリント配線板は、ヒューズ部3の両端近傍の配線部7に引出部5を介して接続された測定パッド部4を用いてヒューズ部3における電圧降下が測定されるので、電位差を測定する二点間を正確に定めることができ、ヒューズ部3が比較的正確に所望の電流で溶断するようにできる。
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 当該フレキシブルプリント配線板は、導電パターンがヒューズ部とこのヒューズ部両側に接続され、外部回路に接続するための端子部とを主たる要素とするヒューズ、つまり一つの電気部品として使用されるものであってもよい。
 当該フレキシブルプリント配線板は、カバーレイを有しないものであってもよい。
 当該フレキシブルプリント配線板において、ヒューズ部は、導電パターンの他の部分より厚さが小さいことによって断面積が減じられた部分であってもよい。
 また、当該フレキシブルプリント配線板において、一対の測定パッド部の配置は、非対称であってもよい。
 当該フレキシブルプリント配線板において、測定パッド部をヒューズ部の前後の回路上に形成する場合、必ずしも回路幅を大きくする必要はない。
 当該フレキシブルプリント配線板は、複数のヒューズ部を有してもよい。
 当該フレキシブルプリント配線板は、両面基板又は多層基板であってもよい。この場合、ヒューズ部の近傍領域の熱容量を大きくしないために、平面視でヒューズ部と重複する領域及びその近傍領域には他の層の導体が配設されないよう導電パターンを形成するとよい。
 当該フレキシブルプリント配線板において測定パッド部の大きさ及び形状と、測定パッド部を露出させるカバーレイの開口の大きさ及び形状との関係は、上記実施形態の組合せに限らない。具体例として、方形の測定パッド部を露出させるためにカバーレイに円形の開口を設けてもよい。また、カバーレイの開口は、測定パッド部の周縁を部分的に露出させるよう、測定パッド部に対して位置ずれ又は変形してしてもよい。
 当該フレキシブルプリント配線板の製造方法により製造されるフレキシブルプリント配線板は、導電パターンがカバーレイに被覆される測定パッド部を有するものであってもよい。つまり、カバーレイ積層工程の前に電位差測定工程を行う場合に、導電パターン形成工程において測定パッド部を形成し、電位差測定工程で測定パッド部を用いてヒューズ部の両端近傍の二点間の電位差を測定してもよい。
1 ベースフィルム
2 導電パターン
3 ヒューズ部
4 測定パッド部
5 引出部
6 カバーレイ
7 配線部
8 開口

Claims (8)

  1.  絶縁性を有するベースフィルムと、
     このベースフィルムの一方の面側に積層される導電パターンと
     を備え、
     この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板であって、
     上記導電パターンが、上記ヒューズ部の両端近傍の二点間の電位差を測定可能に存在する一対の測定パッド部を有するフレキシブルプリント配線板。
  2.  上記測定パッド部が、上記ヒューズ部を含む回路とは別に形成されており、
     上記導電パターンが、上記ヒューズ部又はこの前後の回路から延出し、上記測定パッド部に接続される引出部をさらに有する請求項1に記載のフレキシブルプリント配線板。
  3.  上記引出部が、上記回路におけるヒューズ部の両側の接続領域から延出する請求項2に記載のフレキシブルプリント配線板。
  4.  上記引出部が、上記ヒューズ部の両端側から延出する請求項2に記載のフレキシブルプリント配線板。
  5.  上記測定パッド部が、上記ヒューズ部の前後の回路上に形成されている請求項1に記載のフレキシブルプリント配線板。
  6.  上記ベースフィルム及び導電パターンを含む積層体における導電パターン側に被覆されるカバーレイをさらに備え、
     上記測定パッド部存在領域の少なくとも一部に上記カバーレイが存在しない請求項1から請求項5のいずれか1項に記載のフレキシブルプリント配線板。
  7.  絶縁性を有するベースフィルムと、
     このベースフィルムの一方の面側に積層される導電パターンと
     を備え、
     この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板の製造方法であって、
     上記ベースフィルムの一方の面側に、上記ヒューズ部を含む回路、及び上記ヒューズ部の両端近傍に存在する一対の測定パッド部を有する導電パターンを形成する工程と、
     上記ヒューズ部に電流を印加した状態で、上記測定パッド部間の電位差を測定する工程と
     を備えるフレキシブルプリント配線板の製造方法。
  8.  絶縁性を有するベースフィルムと、
     このベースフィルムの一方の面側に積層される導電パターンと
     を備え、
     この導電パターンが、回路の一部を構成し、他の部分より断面積が小さい1又は複数のヒューズ部を有するフレキシブルプリント配線板の製造方法であって、
     上記ベースフィルムの一方の面側に、上記ヒューズ部を含む回路を有する導電パターンを形成する工程と、
     上記ヒューズ部に電流を印加した状態で、ヒューズ部の両端近傍の二点間の電位差を測定する工程と、
     上記ヒューズ部の両端近傍の二点間の電位差が予め設定される範囲内であるベースフィルム及び導電パターンを含む積層体における導電パターン側にカバーレイを積層する工程と
     を備えるフレキシブルプリント配線板の製造方法。
PCT/JP2016/068487 2015-06-24 2016-06-22 フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法 WO2016208612A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680036910.2A CN107710374B (zh) 2015-06-24 2016-06-22 柔性印刷电路板以及制造柔性印刷电路板的方法
US15/737,851 US20190006141A1 (en) 2015-06-24 2016-06-22 Flexible printed circuit board and method of manufacturing flexible printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-127098 2015-06-24
JP2015127098A JP6659253B2 (ja) 2015-06-24 2015-06-24 フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法

Publications (1)

Publication Number Publication Date
WO2016208612A1 true WO2016208612A1 (ja) 2016-12-29

Family

ID=57584948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068487 WO2016208612A1 (ja) 2015-06-24 2016-06-22 フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法

Country Status (4)

Country Link
US (1) US20190006141A1 (ja)
JP (1) JP6659253B2 (ja)
CN (1) CN107710374B (ja)
WO (1) WO2016208612A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671792A1 (de) * 2018-12-19 2020-06-24 Jean Müller GmbH Elektrotechnische Fabrik Elektrischer abgriff mit einer überstromschutzeinrichtung sowie anordnung einer stromverteilungskomponente und eines elektrischen abgriffs

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469361B1 (ko) * 2017-12-28 2022-11-23 에이치엘만도 주식회사 온도퓨즈의 체결구조
CN114557140B (zh) * 2019-10-31 2024-03-12 株式会社自动网络技术研究所 配线模块、带端子的柔性印刷基板及蓄电模块
KR20210064474A (ko) * 2019-11-25 2021-06-03 삼성디스플레이 주식회사 연성 인쇄회로기판 및 이를 포함하는 표시 장치
KR20220014222A (ko) * 2020-07-28 2022-02-04 주식회사 엘지에너지솔루션 Fpcb 및 그의 제조 방법
CN112040642A (zh) * 2020-08-07 2020-12-04 上海德朗能电子科技有限公司 一种可起到保险丝功能的pcb连接板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109058U (ja) * 1977-02-08 1978-09-01
JPS55108776U (ja) * 1979-01-24 1980-07-30
JP2001520436A (ja) * 1997-10-10 2001-10-30 ダイムラークライスラー アクチエンゲゼルシャフト ヒューズ素子を作動する回路装置および方法
JP2003298195A (ja) * 2002-04-03 2003-10-17 Ngk Spark Plug Co Ltd 配線基板
JP2006237299A (ja) * 2005-02-25 2006-09-07 Kyocera Corp 配線基板
JP2007317990A (ja) * 2006-05-29 2007-12-06 Fujikura Ltd フレキシブルプリント配線板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2382614A1 (fr) * 1977-03-04 1978-09-29 Glaenzer Spicer Sa Joint homocinetique tripode a grand angle de travail
US4296398A (en) * 1978-12-18 1981-10-20 Mcgalliard James D Printed circuit fuse assembly
DE3530354A1 (de) * 1985-08-24 1987-03-05 Opel Adam Ag Elektrische sicherungsanordnung
JP2816394B2 (ja) * 1989-10-24 1998-10-27 セイコークロック株式会社 半導体装置
US5877033A (en) * 1997-03-10 1999-03-02 The Foxboro Company System for detection of unsoldered components
JP2000040867A (ja) * 1998-07-24 2000-02-08 Shinko Electric Ind Co Ltd 半導体チップ実装用回路基板
CN1191747C (zh) * 2001-09-06 2005-03-02 株式会社理光 电子元件组装检查方法
US7307222B2 (en) * 2003-09-24 2007-12-11 Agilent Technologies, Inc. Printed circuit board test access point structures and method for making the same
US7663204B2 (en) * 2007-04-27 2010-02-16 Powertech Technology Inc. Substrate for multi-chip stacking, multi-chip stack package utilizing the substrate and its applications
CN204214930U (zh) * 2014-09-22 2015-03-18 中芯国际集成电路制造(北京)有限公司 可编程电子熔丝的测试结构
CN104375044A (zh) * 2014-11-27 2015-02-25 国家电网公司 高压交流熔断器as特性测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109058U (ja) * 1977-02-08 1978-09-01
JPS55108776U (ja) * 1979-01-24 1980-07-30
JP2001520436A (ja) * 1997-10-10 2001-10-30 ダイムラークライスラー アクチエンゲゼルシャフト ヒューズ素子を作動する回路装置および方法
JP2003298195A (ja) * 2002-04-03 2003-10-17 Ngk Spark Plug Co Ltd 配線基板
JP2006237299A (ja) * 2005-02-25 2006-09-07 Kyocera Corp 配線基板
JP2007317990A (ja) * 2006-05-29 2007-12-06 Fujikura Ltd フレキシブルプリント配線板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671792A1 (de) * 2018-12-19 2020-06-24 Jean Müller GmbH Elektrotechnische Fabrik Elektrischer abgriff mit einer überstromschutzeinrichtung sowie anordnung einer stromverteilungskomponente und eines elektrischen abgriffs

Also Published As

Publication number Publication date
JP6659253B2 (ja) 2020-03-04
US20190006141A1 (en) 2019-01-03
CN107710374A (zh) 2018-02-16
JP2017010859A (ja) 2017-01-12
CN107710374B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2016208612A1 (ja) フレキシブルプリント配線板及びフレキシブルプリント配線板の製造方法
JP6754833B2 (ja) 表面実装抵抗器および製造方法
JP6839238B2 (ja) フレキシブルプリント配線板
JP2013201339A (ja) 抵抗器およびその実装構造
WO2021235229A1 (ja) シャント抵抗器およびその製造方法
JP2017204525A (ja) フレキシブルプリント配線板及び電子部品
US9142949B2 (en) PTC device
CN103167724B (zh) 用四条导线制作的led双面线路板
JP2004311939A (ja) 対称構造を持つサーミスタ
JP2009218317A (ja) 面実装形抵抗器およびその製造方法
JP6474640B2 (ja) 電流検出用抵抗器
US9470741B2 (en) Printed board, electronic control apparatus and inspection method of printed board
JP2002184601A (ja) 抵抗器
JP2017175085A (ja) 両面配線フレキシブル基板
JP2015002033A (ja) フラットケーブルおよびその製造方法
KR102071137B1 (ko) 전류 검출용 저항기 및 그 제조방법
CN209845454U (zh) 一种多重熔断保护的电路板
JP3670593B2 (ja) 抵抗器を用いる電子部品及びその使用方法
JP2005164469A (ja) 電流検出用抵抗装置およびその製造方法
US10424536B2 (en) Electronic component having a lead frame consisting of an electrically conductive material
CN210986574U (zh) 一种便于定位的多层印制电路板
JP2022178360A (ja) プリント基板
WO2021181835A1 (ja) 電流検出装置
WO2016208613A1 (ja) フレキシブルプリント配線板
JP2018010972A (ja) 回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814382

Country of ref document: EP

Kind code of ref document: A1