WO2016208567A1 - 天井設置形空気調和機および熱交換器 - Google Patents

天井設置形空気調和機および熱交換器 Download PDF

Info

Publication number
WO2016208567A1
WO2016208567A1 PCT/JP2016/068358 JP2016068358W WO2016208567A1 WO 2016208567 A1 WO2016208567 A1 WO 2016208567A1 JP 2016068358 W JP2016068358 W JP 2016068358W WO 2016208567 A1 WO2016208567 A1 WO 2016208567A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat
ceiling
exchange unit
air conditioner
Prior art date
Application number
PCT/JP2016/068358
Other languages
English (en)
French (fr)
Inventor
伸哲 吉武
聡 中山
義信 浜田
我科 賢二
清実 望月
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2017524913A priority Critical patent/JP6420478B2/ja
Priority to EP16814337.8A priority patent/EP3315869B1/en
Priority to AU2016281336A priority patent/AU2016281336B2/en
Priority to CN201680037260.3A priority patent/CN107850320B/zh
Publication of WO2016208567A1 publication Critical patent/WO2016208567A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/32Supports for air-conditioning, air-humidification or ventilation units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Definitions

  • Embodiments of the present invention relate to a ceiling-mounted air conditioner and a heat exchanger.
  • the indoor unit of the ceiling-mounted air conditioner is installed in the ceiling space by being hung from a beam on the back of the ceiling or buried in the back of the ceiling.
  • the interior of the indoor unit is partitioned into a heat exchange chamber and a blower chamber by a partition plate.
  • a heat exchanger is disposed in the heat exchange chamber, and a blower that sends air to the heat exchanger is disposed in the blower chamber.
  • the heat exchanger includes a plurality of heat transfer tubes through which refrigerant flows and a plurality of fins thermally connected to the heat transfer tubes.
  • the heat exchanger has a straight flat plate shape as a whole. Further, the heat exchanger is accommodated in the heat exchange chamber in a posture that is largely inclined with respect to the air blower in order to reduce the thickness of the indoor unit as much as possible while efficiently receiving the air sent from the air blower. .
  • the conventional air conditioner has a flat plate-like straight heat exchanger that is inclined and disposed in the heat exchange chamber, so that the distance from the blower is small at the front end and the rear end of the heat exchanger. to differ greatly. For this reason, the air volume of the air passing through the heat exchanger tends to vary depending on the location of the heat exchanger. Variation in the air volume of the air passing through the heat exchanger reduces the performance of the heat exchanger. Therefore, the conventional air conditioner leaves room for improvement in fully exhibiting the performance of the heat exchanger.
  • the problem to be solved by the present invention is to provide a ceiling-mounted air conditioner that is compact and has good heat exchange efficiency.
  • a ceiling-mounted air conditioner includes a blower chamber having an air inlet, a heat exchanger chamber having an air outlet, the blower chamber, and the heat exchanger chamber. And a heat exchanger accommodated in the heat exchanger chamber, the fan chamber and the heat exchanger chamber comprising the blower device.
  • the heat exchanger includes a first heat exchange unit, a second heat exchange unit, and a third heat exchange unit, and the first heat exchange unit, the second heat exchange unit, and
  • Each of the third heat exchange units has a plurality of plate-like fins and a plurality of heat transfer tubes, and the third heat exchange unit protrudes from the first heat exchange unit toward the outlet. Arranged in shape.
  • the plate-like fins of the ceiling-mounted air conditioner of the present embodiment may each have a substantially parallelogram shape.
  • the ceiling-mounted air conditioner according to the present embodiment is provided on one short side of the plate-like fin of the first heat exchange unit and on the outlet side of the plate-like fin of the second heat exchange unit.
  • the short side is in contact with no gap, the other short side of the plate-like fin of the first heat exchange part, or the long side of the blower chamber side, and the plate-like fin of the third heat exchange part
  • the short side on the outlet side may be in contact with no gap.
  • the first heat exchanging part among the first heat exchanging part, the second heat exchanging part, and the third heat exchanging part is closest to the outlet.
  • the number of heat exchanger tubes may be arranged more than the 2nd heat exchange part and the 3rd heat exchange part.
  • the first heat exchange part of the first heat exchange part, the second heat exchange part, and the third heat exchange part is closest to the outlet
  • the second heat exchange unit and the third heat exchange unit have the same shape
  • the first heat exchange unit, the second heat exchange unit, and the third heat exchange unit have a line-symmetric shape. Also good.
  • the intervals at which the plurality of plate-like fins of the first heat exchange unit are arranged are the plurality of the second heat exchange unit and the third heat exchange unit. It may be narrower than the interval at which the plate-like fins are arranged.
  • a slit may be provided in the plate-like fin only in the first heat exchange unit.
  • the tube diameter of the heat transfer tube of the first heat exchange unit is greater than the tube diameter of the heat transfer tube of the second heat exchange unit and the third heat exchange unit. May be large.
  • the first heat exchange unit, the second heat exchange unit, and the third heat exchange unit may be integrally formed.
  • the second heat exchange unit is disposed in the upper part of the heat exchanger chamber, and the third heat exchange unit is disposed in the lower part of the heat exchanger chamber.
  • an angle difference may be provided so that an inclination angle of the second heat exchange part is smaller than an inclination angle of the third heat exchange part.
  • the upper end portion of the first heat exchange unit may be inclined so as to be located on the windward side of the lower end portion of the first heat exchange unit.
  • the third heat exchange is performed more than the end on the outlet side of the short side located at the lower part of the plate-like fin of the first heat exchange unit.
  • An end of the short side of the plate-like fin on the outlet side of the outlet may protrude from the outlet side.
  • the shortest distance between the outlet on the short side located at the lower part of the plate-like fin of the first heat exchange part and the outlet is the shortest distance. Further, it may be longer than the shortest distance between the end on the outlet side of the short side located at the lower part of the plate-like fin of the third heat exchange part and the outlet.
  • FIG. 1 is a perspective view of a ceiling-mounted air conditioner according to a first embodiment. It is an exploded bottom view showing the inside of the ceiling-mounted air conditioner according to the first embodiment. It is the schematic which shows the side surface cross section of the ceiling installation type air conditioner by 1st Embodiment. It is an expanded sectional view showing a part of fin and heat exchanger tube which constitute a heat exchanger of a ceiling installation type air harmony machine by a 1st embodiment. It is a figure showing the shape of the fin which comprises the heat exchanger of the ceiling installation type air conditioner by 1st Embodiment. It is the schematic which shows the side surface cross section of the ceiling installation type air conditioner by 2nd Embodiment.
  • FIG. 1 shows a ceiling-mounted air conditioner 1 according to this embodiment.
  • the indoor unit 2 of the ceiling-mounted air conditioner 1 is installed, for example, behind the ceiling of a building.
  • the back of the ceiling refers to a ceiling space defined between the beam of the building and the ceiling board.
  • the indoor unit 2 is a square flat box shape having a depth dimension D, a width dimension W, and a thickness dimension H.
  • the indoor unit 2 has a metal casing 20.
  • the housing 20 is an outline of the indoor unit 2.
  • the housing 20 includes a top plate 21, a first side plate 22a, a second side plate 22b, a first bottom plate 23a, a second bottom plate 23b, a front frame 24, a rear frame 25, and a partition plate 26.
  • the partition plate 26 of the ceiling-mounted air conditioner 1 divides the inside of the housing 20 into two chambers, a blower chamber 3 and a heat exchanger chamber 4. is doing.
  • the blower chamber 3 has a suction port 27 formed in the back frame 25.
  • a blower device 5 is accommodated in the blower chamber 3.
  • the blower 5 includes a fan motor 51, fan cases 52a and 52b, and multiblade fans 53a and 53b accommodated in the fan cases 52a and 52b.
  • Each fan case 52a, 52b is provided with suction ports 54a, 54b on both sides.
  • the partition plate 26 is provided with air blowing ports 55a and 55b.
  • the fan motor 51 has two rotating shafts 51a and 51b that are coaxially projected from both side surfaces thereof. Multi-blade fans 53a and 53b are attached to the respective rotating shafts 51a and 51b.
  • the heat exchanger chamber 4 has an outlet 28 formed in the front frame 24 and a machine chamber 6.
  • the machine room 6 is partitioned from the heat exchanger room 4 by a machine room partition plate 61 and accommodates a drain pump and a refrigerant distributor.
  • the blower chamber 3 and the heat exchanger chamber 4 are connected via the blower 5. Specifically, the air in the blower chamber 3 communicates with the heat exchanger chamber 4 through the blower 5.
  • a heat exchanger 7 and a drain pan 8 are arranged in the heat exchanger chamber 4.
  • the heat exchanger 7 and the drain pan 8 are accommodated in the heat exchanger chamber 4 of the housing 20.
  • the heat exchanger 7 extends in the width direction of the indoor unit 2, in other words, in the width direction of the housing 20, and is interposed between the machine room partition plate 61 and the side plate 22a.
  • the drain pan 8 is disposed below the heat exchanger 7.
  • the drain pan 8 is a heat insulating material such as polystyrene foam.
  • the drain pan 8 supports the heat exchanger 7 from below and receives drain water dripped from the heat exchanger 7.
  • the lower surface of the drain pan 8 is covered with a first bottom plate 23a.
  • the drain pan 8 surrounds the heat exchanger 7 in cooperation with the heat insulating material 9.
  • the heat insulating material 9 is disposed above the heat exchanger 7 and provided in the inner surface of the top plate 21 and in the heat exchanger chamber 4.
  • the heat exchanger 7 of the present embodiment includes a first heat exchange unit 7A, a second heat exchange unit 7B, and a third heat exchange unit 7C.
  • the first heat exchange unit 7A, the second heat exchange unit 7B, and the third heat exchange unit 7C are arranged in a convex shape toward the outlet port 28.
  • the first heat exchanging part 7 ⁇ / b> A stands in the heat exchanger chamber 4 so as to face the air blowing ports 55 a and 55 b and the partition plate 26 of the air blowing device 5 substantially in parallel.
  • the first heat exchange unit 7A is closest to the outlet 28.
  • the heat exchanging part 7B is located in the upper part of the heat exchanger chamber 4, and extends in the depth direction of the indoor unit 2 so as to be away from the blower 5 in a cross-sectional view.
  • the second heat exchanging unit 7B is slightly inclined downward as it moves away from the blower 5.
  • the second heat exchanging unit 7B is slightly inclined downward as it approaches the outlet 28.
  • the front end of the second heat exchange unit 7B (that is, the outlet 28 side) and the upper end of the first heat exchange unit 7A are continuous.
  • the third heat exchanging part 7C is located in the lower part of the heat exchanger chamber 4, and extends in the depth direction of the indoor unit 2 so as to be away from the blower 5 in a sectional view.
  • the third heat exchanging unit 7C is slightly inclined upward as it moves away from the blower 5.
  • the third heat exchanging portion 7C is slightly inclined upward as it approaches the outlet 28.
  • the front end (that is, the outlet 28 side) of the third heat exchange unit 7C and the lower end of the first heat exchange unit 7A are continuous.
  • the heat exchanger 7 is inclined from the upper end of the first heat exchanging part 7A toward the air blower 5 from the first heat exchanging part 7A standing so as to face the air blowing ports 55a and 55b and the partition plate 26.
  • a second heat exchanging part 7B extending upward and a third heat exchanging part 7C extending obliquely downward from the lower end of the first heat exchanging part 7A toward the blower 5 are provided.
  • the first to third heat exchanging portions 7A, 7B, and 7C of the present embodiment are combined so as to have a substantially U-shape or a gate shape when the indoor unit 2 is viewed from the side. That is, the heat exchanger 7 is arranged so as to have a convex shape protruding toward the leeward side with respect to the wind sent from the blower chamber 3, and is arranged so as to have a substantially concave shape recessed toward the windward side.
  • the first to third heat exchanging portions 7A, 7B, and 7C can be said to be arranged in a substantially trapezoidal shape including an upper base and a pair of leg portions when the indoor unit 2 is viewed from the side.
  • 7A of 1st heat exchange parts are arrange
  • the three heat exchanging portions 7C are arranged, respectively, and have a substantially trapezoidal shape with an open bottom portion.
  • the heat exchanger 7 of the ceiling-mounted air conditioner 1 is, for example, a finned tube heat exchanger that is a combination of plate-like fins and heat transfer tubes.
  • each of the first to third heat exchange units 7A, 7B, and 7C includes a plurality of elongated fins 71 and a plurality of heat transfer tubes 72 through which the refrigerant flows.
  • the fins 71 of the ceiling-mounted air conditioner 1 are, for example, aluminum square plates, and have a pair of long sides 71L and 71L and a pair of short sides 71S and 71S. is doing.
  • the long sides 71L and 71L are parallel to each other.
  • the short sides 71S and 71S are parallel to each other and extend in an oblique direction so as to intersect the long sides 71L and 71L.
  • the fin 71 has a parallelogram shape in which two sets of opposite sides are parallel to each other.
  • the fin 71 is provided with a plurality of fitting holes 73.
  • the fitting hole 73 has a cylindrical flange portion that is formed by, for example, burring the fin 71 and rises from the fin 71.
  • the fitting holes 73 are arranged in eight rows along the direction along the long side 71L of the fin 71, and are arranged in three rows along the direction along the short side 71S.
  • the fins 71 are arranged in a line at intervals in the width direction W of the indoor unit 2.
  • the fins 71 are arranged at intervals in the width direction of the housing 20.
  • the front end of the flange portion rising from each fin 71 is abutted so as to coincide with the fitting hole 73 of the adjacent fin 71 in a coaxial manner. For this reason, the ventilation path 74 through which air flows is provided between the adjacent fins 71.
  • the heat transfer tube 72 is, for example, a copper tube excellent in thermal conductivity.
  • Each heat transfer tube 72 has a straight tube portion that extends straight in the width direction of the indoor unit 2 and a bent tube portion that is bent in a substantially U shape.
  • the straight pipe portion of the heat transfer rod 72 passes through the fitting hole 73 of the fin 71 continuously. Thereby, the heat transfer tube 72 is thermally connected to the fin 71.
  • the heat transfer tubes 72 are integrated with the fins 71 by continuously passing between the adjacent fins 71.
  • one short side 71S of the fin 71 of the first heat exchange unit 7A and the short side of the fin 71 of the second heat exchange unit 7B on the side of the outlet port 28 are added. It arrange
  • the long side 71L of the fin 71 of the first heat exchanging part 7A on the blower chamber 3 side and the short side 71S of the third heat exchanging part 7C on the outlet 28 side are in contact with each other without a gap.
  • the other short side 71S of the fins 71 of the first heat exchanging part 7A and the long side 71L of the third heat exchanging part 7C on the blower chamber 3 side are arranged so as to contact each other without a gap.
  • the multiblade fans 53a and 53b when the multiblade fans 53a and 53b are rotated by the fan motor 51, the multiblade fans 53a and 53b suck the air in the blower chamber 3 from the suction ports 54a and 54b of the fan cases 52a and 52b. The sucked air is discharged from the air blowing ports 55a and 55b of the fan cases 52a and 52b.
  • the air in the building room is sucked into the blower chamber 3 from the suction port 27 of the housing 20 via the suction grille of the ceiling plate or the duct (not shown).
  • the air sucked into the blower chamber 3 is blown out from the blower ports 55a and 55b toward the heat exchanger 7 through the fans 52a and 52b.
  • the first heat exchanging portion 7A of the heat exchanger 7 stands up in the heat exchanger chamber 4 so as to face the air blowing ports 55a and 55b, the air blown out from the air blowing ports 55a and 55b to the heat exchanger chamber 4 Most of the air passes between the fins 71 (ventilation path 74) of the first heat exchange unit 7A.
  • the remaining air blown out to the heat exchanger chamber 4 is between the fins 71 (ventilation path 74) of the second heat exchange section 7B extending obliquely upward from the upper end of the first heat exchange section 7A toward the blower 5. And it passes between the fins 71 (ventilation path 74) of the 3rd heat exchange part 7C extended diagonally downward toward the air blower 5 from the lower end of 7 A of 1st heat exchange parts.
  • the heat exchanger 7 changes the air into cold or warm heat exchange air by heat exchange between the air blown out from the air blowing ports 55a and 55b and the refrigerant flowing through the heat transfer pipe 72.
  • the heat exchange air is sent into the room from the outlet 28 through the outlet duct.
  • the first to third heat exchange parts 7A, 7B, and 7C are combined in a substantially trapezoidal shape and bent into a three-dimensional solid shape. For this reason, the dimension of the heat exchanger 7 along the depth direction of the heat exchanger chamber 4 can be shortened compared with the case where the conventional straight heat exchanger is inclined and arranged in the heat exchange chamber.
  • the present embodiment is such that the first heat exchange portion 7A stands in the heat exchanger chamber 4.
  • the difference between the distance from the opening end of the air blowing ports 55a and 55b to the front end of the first heat exchanging portion 7A and the distance from the opening end of the air blowing ports 55a and 55b to the rear end of the second heat exchanging portion 7B The dimension of the heat exchanger 7 along the depth direction of the heat exchanger chamber 4 can be shortened. As a result, the depth dimension of the heat exchanger chamber 4 can be kept small, and the housing 20 of the indoor unit 2 can be made compact.
  • the present embodiment can sufficiently ensure the heat capacity of the heat exchanger 7. Therefore, this embodiment can arrange
  • the housing 20 can be reduced in weight as the housing 20 is made compact. For this reason, the workability
  • the distance from the opening end of the air blowing port 54 to the front end of the first heat exchanging portion 7A is smaller than that in the case where a conventional straight heat exchanger is disposed inclined in the heat exchange chamber. Therefore, air can be blown substantially uniformly onto the heat exchanger 7, and good heat exchange performance can be obtained.
  • the second heat exchanging part 7B is inclined upward from the upper end of the first heat exchanging part 7A toward the blower chamber side
  • the third heat exchanging part 7C is the first heat exchanging part. It is inclined downward from the lower end of 7A toward the blower chamber side. For this reason, air easily hits the second heat exchange unit 7B and the third heat exchange unit 7C, and the air volume of the air passing through the upper and lower portions of the heat exchanger 7 can be secured. Therefore, the heat exchanger 7 having excellent heat exchange performance can be obtained.
  • the boundary between the first heat exchange unit 7A and the second heat exchange unit 7B (the joint between the first and second heat exchange units) and the first heat exchange unit 7A and the third A gap that causes air leakage is eliminated from the boundary (the joint between the first and third heat exchange units) with the heat exchange unit 7C. For this reason, it is possible to reduce air leaking without heat exchange from the boundary between the first to third heat exchange portions 7A, 7B, 7C, which is advantageous in improving the heat exchange performance of the heat exchanger 7.
  • the present embodiment can reduce the number of members that prevent air from leaking without heat exchange from the joint.
  • FIG. 6 is a side cross-sectional view showing a heat exchanger of a ceiling-mounted air conditioner according to the second embodiment, where the number of heat transfer tubes 72 of the first heat exchange section 7A is the second and third. This indicates that the number of heat exchanger tubes 7B and 7C is greater than the number of heat transfer tubes 72.
  • the first heat exchanging portion 7A is erected so as to face the air blowing ports 55a, 55b and the partition plate 26 of the air blowing device 5 in the heat exchanger chamber 4, and is thus sent out from the air blowing device 5. Many winds hit.
  • the fitting holes 73 provided in the fins 712 of the second heat exchanger part 7B and the third heat exchanger part 7C are 10 rows along the long side direction of the fins 712 and 2 along the short side direction of the fins 712.
  • the number of heat transfer tubes in the first heat exchange section 7A is greater than that in the second and third heat exchanger sections 7B and 7C, and the heat exchange capacity of the portion where a large amount of wind sent from the blower 5 is hit. Can be bigger.
  • this embodiment can exchange heat more in the first heat exchange part 7A in which the distribution of the air volume to the heat exchanger 7 is larger than the other heat exchange parts, and can exchange heat in a balanced manner.
  • the heat exchange performance can be improved.
  • FIGS. 1-6 A ceiling-mounted air conditioner according to a third embodiment will be described with reference to FIGS. About each part of this embodiment, the same part as each part of FIGS. 1-6 is shown with the same code
  • FIG. 7 is a diagram showing the shape of the fins 71 of the heat exchanger of the ceiling-mounted air conditioner according to the third embodiment
  • FIG. 8 is the heat exchange of the ceiling-mounted air conditioner according to the third embodiment. It is side surface sectional drawing showing the vessel.
  • the fins 711 of the first heat exchange unit 7A and the fins 712 of the second and third heat exchange units 7B and 7C of the ceiling-mounted air conditioner 1 of the present embodiment Is a line-symmetric shape.
  • the ceiling-mounted air conditioner 1 of the present embodiment since the fins 711 and the fins 712 are line symmetrical, the fins in the heat exchanger 7 can be shared. Therefore, the ceiling-mounted air conditioner 1 of the present embodiment can improve manufacturability and reduce costs.
  • interval which arrange
  • the fin pitch of the fins 711 is narrower than the fin pitch of the fins 712.
  • the fin pitch is the ventilation path 74, and as the fin pitch of the fins 711 and 712 is narrower, the ventilation resistance increases and the air volume decreases.
  • the fin pitch of the first heat exchanging portion 7A (fin pitch of the fin 711) is arranged so that a large amount of the wind sent from the blower 5 hits, and the air volume to the heat exchanger 7 has a large distribution. Is made narrower than the fin pitch of the second and third heat exchange portions 7B and 7C (fin pitch of the fin 712), so that the second and third A large amount of wind can be applied to the third heat exchange units 7B and 7C, and the air volume can be adjusted.
  • this embodiment can improve the heat exchange performance by adjusting the air volume distributed to the first heat exchange unit 7A, the second heat exchange unit 7B, and the third heat exchange unit 7C. it can.
  • a ceiling-mounted air conditioner with good heat exchange efficiency can be provided.
  • slits 81 are provided in the fins 711 of the first heat exchange unit 7A.
  • a slit 81 that is a cut or narrow gap in an aluminum fin, heat transfer performance is increased and air resistance is also increased.
  • the first air amount to be distributed is large.
  • the heat transfer performance of the fins 711 of the heat exchange part 7A can be enhanced.
  • a ceiling-mounted air conditioner with good heat exchange efficiency can be provided.
  • FIG. 10 is a side sectional view showing a heat exchanger of a ceiling-mounted air conditioner according to the sixth embodiment.
  • the tube diameter of the heat transfer tube 731 of the first heat exchange unit 7A of the present embodiment is larger than the tube diameter of the heat transfer tube 732 of the second and third heat exchange units 7B and 7C.
  • the larger the diameter the greater the amount of refrigerant flowing, so the heat transfer performance is enhanced.
  • the heat transfer performance of the first heat exchange section 7A having a large amount of air to be distributed can be increased so that heat can be exchanged in a well-balanced manner, and the heat exchange performance can be improved.
  • a ceiling-mounted air conditioner with good heat exchange efficiency can be provided.
  • FIGS. 11 and 12 A ceiling-mounted air conditioner according to a seventh embodiment will be described with reference to FIGS. 11 and 12. About each part of this embodiment, the same part as each part of FIGS. 1-10 is shown with the same code
  • FIG. 11 is a side sectional view showing a heat exchanger of a ceiling-mounted air conditioner according to the seventh embodiment.
  • the heat exchanger 7 of the present embodiment is an integrally molded product, and the first to third heat exchange portions 7A, 7B, and 7C are integrally formed. It is not formed by combining separate heat exchange parts, but has a substantially trapezoidal shape as one piece.
  • first to third heat exchange parts 7A, 7B, 7C are not combined with separate parts, and the heat exchanger 7 is integrated, a member for fixing each heat exchange part becomes unnecessary. This leads to a reduction in the number of parts and can improve manufacturability.
  • the fins 71 before the bending of the heat exchanger 7 of the present embodiment are linear, and the first to third heat exchanging portions are formed by bending at two places. 7A, 7B, and 7C may be formed.
  • the fins 71 of the heat exchanger 7 are formed in a shape having a total length of the first to third heat exchange portions 7A, 7B, and 7C.
  • the third heat exchanging portion 7C are cut at a portion corresponding to the boundary (the joint between the first and third heat exchanging portions) according to the bending allowance.
  • portions corresponding to the first and third heat exchanging portions 7A and 7C have a trapezoidal shape
  • portions corresponding to the second heat exchanger portion 7B each have a parallelogram.
  • a ceiling-mounted air conditioner according to an eighth embodiment will be described with reference to FIG. About each part of this embodiment, the same part as each part of FIGS. 1-12 is shown with the same code
  • FIG. 13 is a side sectional view showing a heat exchanger of a ceiling-mounted air conditioner according to the eighth embodiment.
  • the inclination angle ⁇ ⁇ b> 1 of the second heat exchange unit 7 ⁇ / b> B arranged at the upper part of the heat exchanger chamber 4 of the present embodiment is the third heat arranged at the lower part of the heat exchanger chamber 4.
  • An angle difference is provided so as to be smaller than the inclination angle ⁇ 2 of the exchange part 7C.
  • the second heat exchanging part 7B is slightly inclined downward as it is away from the blower 5, and the third heat exchanging part 7C is inclined slightly upward as it is away from the blower 5.
  • FIG. 14 is a side sectional view showing a heat exchanger of a ceiling-mounted air conditioner according to the ninth embodiment.
  • the first heat exchange unit 7A located at the center of the heat exchanger chamber 4 of the present embodiment is such that the upper end of the first heat exchange unit 7A is the first heat exchange unit 7A. It inclines so that it may be located in a windward side rather than the lower end part.
  • the second heat exchange part 7B is located in the upper part of the heat exchanger chamber 4.
  • the second heat exchange unit 7B is arranged so that the front end of the second heat exchange unit 7B and the upper end of the first heat exchange unit 7A are continuous.
  • the third heat exchanging part 7C is located in the lower part of the heat exchanger chamber 4.
  • the third heat exchanging part 7C is arranged so that the front end part of the third heat exchanging part 7C and the lower end part of the first heat exchanging part 7A are continuous.
  • the first heat exchange unit 7A and the second heat exchange unit 7B include the long side 71L of the fin 71 of the first heat exchange unit 7A on the blower chamber 3 side and the fin 71 of the second heat exchange unit 7B. Is arranged so as to be in contact with the short side 71S on the side of the outlet 28 without any gap.
  • first heat exchanging part 7A and the third heat exchanging part 7C are blown out of the short side 71S below the fin 71 of the first heat exchanging part 7A and the fin 71 of the third heat exchanging part 7C. It arrange
  • the shape of the fin 71 of the 1st heat exchange part 7A and the fin 71 of the 3rd heat exchange part 7C is axisymmetric.
  • the 2nd heat exchange part 7B has the length dimension of the long side 71L of the fin 71 shorter than another heat exchange part.
  • the second heat exchanging part 7B which is less likely to pass through the wind than the first heat exchanging part 7A, has fewer heat transfer tubes than the other heat exchanging parts. For example, if the number of rows (rows) of the heat transfer tubes of the first heat exchange unit 7A and the third heat exchange unit 7C is 10 (10 rows), the second heat exchange unit 7B is 8 (8 rows). It is.
  • the first heat exchanging part 7A located in the center part is inclined so as to be easily subjected to wind with respect to the air blowing ports 55a and 55b and the partition plate 26.
  • the first heat exchanging part 7 ⁇ / b> A it becomes easy for air to hit the heat exchanger 7, and the air volume and the air speed of the air passing through the heat exchanger 7 can be secured.
  • the wind speed distribution is improved and the air blowing performance is improved.
  • this embodiment can provide a ceiling-mounted air conditioner with better performance because the flow of wind can be made smooth and efficiently divided into each heat exchange section.
  • casing 20 which accommodated the air blower 5 and the heat exchanger 7 is suspended from the beam of the building via the four suspension bolts HB, for example.
  • four hanging brackets 29 are fixed to the top plate 21 of the housing 20.
  • the suspension fittings 29 project horizontally from the four corners of the top plate 21 toward the four sides of the housing 20, and the lower ends of the suspension bolts HB are connected to the suspension fittings 29.
  • positioned the 1st heat exchange part 7A inclining and protruded to the blower outlet 28, for example It is good.
  • the short side 71S below the fins 71 of the first heat exchange unit 7A among the first heat exchange unit 7A, the second heat exchange unit 7B, and the third heat exchange unit 7C, and the third The short side 71 ⁇ / b> S on the outlet 28 side of the fin 71 of the heat exchanging portion 7 ⁇ / b> C is closest to the outlet 28.
  • FIG. 15 is a schematic view showing a side cross section of a ceiling-mounted air conditioner according to the tenth embodiment.
  • the heat exchanger 7 and the drain pan 8 of the present embodiment are accommodated in the heat exchanger chamber 4 of the housing 20.
  • the heat exchanger 7 extends in the width direction of the housing 20.
  • the drain pan 8 is a heat insulating material such as polystyrene foam.
  • the drain pan 8 supports the heat exchanger 7 from below so as to receive the drain water dripped from the heat exchanger 7 and surrounds the heat exchanger 7 in cooperation with the heat insulating material 9. Furthermore, the lower surface of the drain pan 8 is covered with a first bottom plate 23a.
  • the heat exchanger 7 of the present embodiment includes a first heat exchange unit 7A, a second heat exchange unit 7B, and a third heat exchange unit 7C.
  • the first to third heat exchange units 7A, 7B, and 7C are elements independent from each other, and are combined in a predetermined three-dimensional solid shape.
  • the first to third heat exchange units 7A, 7B, and 7C each include a plurality of elongated plate-like fins 71 and a plurality of heat transfer tubes 72 through which the refrigerant flows.
  • the fins 71 are arranged at intervals in the width direction of the housing 20.
  • the heat transfer tubes 72 are integrated with the fins 71 by continuously passing between the adjacent fins 71.
  • the second heat exchange part 7B is located in the upper part of the heat exchanger chamber 4.
  • the second heat exchange unit 7B extends in the depth direction of the housing 20 from the partition plate 26 toward the outlet 28 of the housing 20. Further, the second heat exchanging portion 7B is slightly inclined downward as it approaches the outlet port 28.
  • the third heat exchange unit 7C is located at the bottom of the heat exchanger chamber 4, and is separated from the second heat exchange unit 7B in the thickness direction of the housing 20.
  • the third heat exchanging part 7 ⁇ / b> C extends in the depth direction of the housing 20 from the partition plate 26 toward the outlet 28 of the housing 20. Further, the third heat exchanging portion 7C is slightly inclined upward as it approaches the outlet port 28. For this reason, each of the second heat exchange unit 7B and the third heat exchange unit 7C has one end positioned closer to the outlet 28 than the partition plate 26.
  • the first heat exchange unit 7A is interposed between one end of the second heat exchange unit 7B and one end of the third heat exchange unit 7C.
  • the first heat exchange unit 7A is erected so as to face the partition plate 26, and is inclined so as to approach the partition plate 26 as it proceeds toward one end of the second heat exchange unit 7B.
  • the first heat exchanging part 7A approaches the outlet 28 from the end nearer to the second heat exchanging part 7B toward the end closer to the third heat exchanging part 7C. Yes.
  • the first to third heat exchange units 7A, 7B, and 7C are combined in a shape that expands toward the partition plate 26 when the housing 20 is viewed from the side. Yes.
  • the first heat exchanging part 7A, the second heat exchanging part 7B, and the third heat exchanging part 7C on the outlet 28 side of the fin 71 of the third heat exchanging part 7C.
  • the short side 71S is closest to the outlet 28.
  • the end part PC which is the corner part of the long side 71L and the short side 71S on the outlet side 28, has the long side 71L and the short side on the outlet side 28 of the first heat exchanging part 7A. It is arranged offset from the end PA, which is the corner of 71S, so as to protrude further toward the outlet 28 side.
  • the short side 71S on the outlet 28 side of the third heat exchange unit 7C is closer to the outlet 28 than the long side 71L on the outlet 28 side of the first heat exchange unit 7A by a predetermined length l.
  • a protruding portion ⁇ (step) is protruding.
  • the shortest distance LA in the first heat exchange part 7A is the end. This is the distance between the PA and the outlet 28.
  • the end portion PC which is the corner portion of the long side 71L and the short side 71S on the outlet port 28 side, is the point closest to the outlet port 28, the shortest distance LC in the third heat exchanging portion 7C is This is the distance between the part PC and the outlet 28.
  • condensed air Y is generated when the wind X sent from the blower 5 passes between the fins 71 (the ventilation path 74) of the heat exchanger 7.
  • the condensed water Y is generated in each of the first to third heat exchange units 7A, 7B, and 7C.
  • the condensed water Y generated in the first heat exchange part 7A flows down through the fins 71 toward the third heat exchange part 7C located at the lower part.
  • the condensed water Y tends to stay.
  • the accumulated condensed water Y may be pushed out in the direction of ventilation, and may be blown out of the machine from the outlet 28.
  • the end portion 7C of the third heat exchanging portion 7C is offset from the PA at the end portion of the first heat exchanging portion 7A so as to protrude toward the outlet 28, and the protruding portion ⁇ Is provided.
  • the condensed water Y staying on the combined surface of the first heat exchanging part 7A and the third heat exchanging part 7C stays in the protruding part ⁇ once in the process of being sent to the outlet 28 side by the wind X. Then, it flows down to the third heat exchanger section 7C. For this reason, the condensed water Y is guided to the drain pan 8 without being scattered by the wind X.
  • the condensed water Y is In the heat exchanger 7, the air X is easily scattered by the wind X from the end portion PA and the end portion PC, which are the tip portions that protrude most toward the outlet port 28.
  • the protruding portion ⁇ which is a step portion, the most protruding tip portion in the heat exchanger 7 is not the end portion PA.
  • the condensed water Y flowing down from the first heat exchange part 7A does not flow directly to the tip part PC of the third heat exchange part 7C, but before reaching the tip part PC of the third heat exchange part 7C, Once it stays at the protrusion ⁇ due to surface tension, it tends to flow down to the third heat exchanging portion 7C, and the condensed water Y is less likely to scatter.
  • the condensed water Y stagnated in the combination surface of the first heat exchange unit 7A and the third heat exchange unit 7C can be recovered by the third heat exchange unit 7C, and the wind X The scattering of the condensed water Y can be suppressed.
  • a gap may occur on the combined surface of the first heat exchanging part 7A and the third heat exchanging part 7C due to an error in manufacturing or aging deformation. If a gap is generated on the combined surface of the first heat exchange part 7A and the third heat exchange part 7C, it is conceivable that a large amount of condensed water Y stays in the gap due to surface tension. If this is the case, scattering of the condensed water Y can be suppressed.
  • the ceiling-mounted air conditioner of at least one embodiment described above it is possible to provide a ceiling-mounted air conditioner that is compact and has good heat exchange efficiency.
  • fan 52a, 52b ... fan case, 53a, 53b: Multi-blade fan, 54a, 54b ... Suction port, 55, 55a, 55b ... Blower port, 6 ... Machine room, 61 ... Machine room partition plate, 71 ... Fin, 72 ... Heat transfer tube, 73 ... Fitting hole, 74 ... ventilation path, 81 ... slit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】コンパクトで、熱交換効率の良い、天井設置形空気調和機を提供する。 【解決手段】天井設置形空気調和機(1)は、吸込み口(27)を有する送風機室(3)と、吹出し口(28)を有する熱交換器室(4)と、送風機室(3)と熱交換器室(4)を区画する仕切板(26)と、送風機室(3)に収容される送風装置(5)と、熱交換器室(4)に収容される熱交換器(7)と、を備え、送風機室(3)と熱交換室(4)とが送風装置(5)を介して繋がり、熱交換器(7)は、第1熱交換部(7A)と、第2熱交換部(7B)と、第3熱交換部(7C)と、を有し、第1熱交換部(7A)、第2熱交換部(7B)、および第3熱交換部(7C)のそれぞれは、複数の板状のフィン(71)と、複数の伝熱管(72)と、を有し、第1熱交換部(7A)から第3熱交換部(7C)は、吹出し口(28)に対して略凸形状に配置されている。

Description

天井設置形空気調和機および熱交換器
 本発明の実施形態は、天井設置形空気調和機および熱交換器に関する。
 天井設置形空気調和機の室内ユニットは、天井裏の梁等から吊り下げられたり、天井裏に埋設されたりして、天井空間に設置されている。この室内ユニットの内部は、仕切板により熱交換室と送風室とに仕切られている。この熱交換室には熱交換器が配置され、送風室には熱交換器に空気を送る送風装置が配置されている。
 熱交換器は、冷媒が流れる複数の伝熱管と、伝熱管に熱的に接続された複数のフィンと、を備えている。熱交換器は、全体としてストレートな平板状の形状を有している。さらに、熱交換器は、送風装置から送られる空気を効率よく受けつつ室内ユニットの厚さ寸法を可能な限り小さくするため、送風装置に対して大きく傾斜した姿勢で熱交換室に収容されている。
特開2006-343043号公報
 従来の空気調和機は、平板状のストレートな熱交換器を熱交換室内に傾けて配置しているため、熱交換室の内部に多くの無駄な空間が生じるのを避けられず、室内ユニットの奥行きの寸法の増加を招いていた。一方、熱交換室は、能力に比例して外形寸法が大きくなるため、熱交換器の能力が増大するに従い熱交換室の内部に広いスペースを必要とする。これらのことが室内ユニットのコンパクト化を妨げてしまう。
 加えて、従来の空気調和機は、平板状のストレートな熱交換器を熱交換室内に傾けて配置しているため、熱交換器の前端部と後端部とでは、送風装置からの距離が大きく異なる。このため、熱交換器の場所に応じて熱交換器を通過する空気の風量には、ばらつきが生じ易い。熱交換器を通過する空気の風量のばらつきは、熱交換器の性能を低下させてしまう。したがって、従来の空気調和機は、熱交換器の性能を充分に発揮させる上で改善の余地を残している。
 本発明が解決しようとする課題は、コンパクトで、熱交換効率の良い、天井設置形空気調和機を提供することである。
 上記課題を達成するために、本実施形態の天井設置形空気調和機は、空気吸込み口を有する送風機室と、空気吹出し口を有する熱交換器室と、前記送風機室と前記熱交換器室とを区画する仕切板と、前記送風機室に収容される送風装置と、前記熱交換器室に収容される熱交換器と、を備え、前記送風機室と前記熱交換器室とが前記送風装置を介して繋がり、前記熱交換器は、第1熱交換部と、第2熱交換部と、第3熱交換部と、を有し、前記第1熱交換部、前記第2熱交換部、および前記第3熱交換部のそれぞれは、複数の板状のフィンと、複数の伝熱管と、を有し、前記第1熱交換部から前記第3熱交換部は、前記吹出し口に向かって凸形状に配置されている。
 また、本実施形態の天井設置形空気調和機の前記板状のフィンは、それぞれ略平行四辺形の形状であっても良い。
 さらに、本実施形態の天井設置形空気調和機は、前記第1熱交換部の前記板状のフィンの一方の短辺と、前記第2熱交換部の前記板状のフィンの吹出し口側の短辺と、が隙間なく接し、前記第1熱交換部の前記板状のフィンの他方の短辺、または前記送風機室側の長辺と、前記第3熱交換部の前記板状のフィンの吹出し口側の短辺と、が隙間なく接していても良い。
 さらにまた、本実施形態の天井設置形空気調和機は、前記第1熱交換部、第2熱交換部、および前記第3熱交換部のうち前記第1熱交換部が前記吹出し口にもっとも近く、かつ前記第2熱交換部および前記第3熱交換部よりも伝熱管の本数が多く配置されていても良い。
 また、本実施形態の天井設置形空気調和機は、前記第1熱交換部、第2熱交換部、および前記第3熱交換部のうち前記第1熱交換部が前記吹出し口にもっとも近く、前記第2熱交換部と前記第3熱交換部とは同一形状であり、前記第1熱交換部と、前記第2熱交換部および前記第3熱交換部とは、線対称形状であっても良い。
 さらに、本実施形態の天井設置形空気調和機は、前記第1熱交換部の前記複数の板状のフィンを配置する間隔が、前記第2熱交換部および前記第3熱交換部の前記複数の板状のフィンを配置する間隔よりも狭くても良い。
 さらにまた、本実施形態の天井設置形空気調和機は、前記第1熱交換部にのみ、前記板状のフィンにスリットが設けられていても良い。
 また、本実施形態の天井設置形空気調和機は、前記第1熱交換部の前記伝熱管の管径が、前記第2熱交換部および前記第3熱交換部の前記伝熱管の管径よりも大きくても良い。
 さらに、本実施形態の天井設置形空気調和機は、前記第1熱交換部、前記第2熱交換部、および前記第3熱交換部が一体成形されていても良い。
 また、本実施形態の天井設置形空気調和機は、前記第2熱交換部は、前記熱交換器室の上部に配置され、前記第3熱交換部は、前記熱交換器室の下部に配置され、前記第2熱交換部の傾斜角度が、前記第3熱交換部の傾斜角度よりも小さくなるように角度差を設けられていても良い。
 さらに、本実施形態の天井設置形空気調和機は、前記第1熱交換部の上端部が、前記第1熱交換部の下端部よりも風上側に位置するように傾斜していても良い。
 さらにまた、本実施形態の天井設置形空気調和機は、前記第1熱交換部の前記板状のフィンの下部に位置する短辺の前記吹出し口側の端部よりも、前記第3熱交換部の前記板状のフィンの前記吹出し口側の短辺の前記吹出し口側の端部が、前記吹出し口側に対して突出していても良い。
 また、本実施形態の天井設置形空気調和機は、前記第1熱交換部の前記板状のフィンの下部に位置する短辺の前記吹出し口側の端部と前記吹出し口との最短距離が、前記第3熱交換部の前記板状のフィンの下部に位置する短辺の前記吹出し口側の端部と前記吹出し口との最短距離よりも長くても良い。
第1の実施形態による天井設置形空気調和機の斜視図である。 第1の実施形態による天井設置形空気調和機の内部を表す分解底面図である。 第1の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第1の実施形態による天井設置形空気調和機の熱交換器を構成するフィン及び伝熱管の一部を表す拡大断面図である。 第1の実施形態による天井設置形空気調和機の熱交換器を構成するフィンの形状を表した図である。 第2の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第3の実施形態による天井設置形空気調和機の熱交換器を構成するフィンの形状を表した図である。 第3の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第5の実施形態による天井設置形空気調和機の熱交換器を構成するフィンの形状を表した図である。 第6の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第7の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第7の実施形態による天井設置形空気調和機の熱交換器を構成するフィンの形状を表した図である。 第8の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第9の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第10の実施形態による天井設置形空気調和機の側面断面を示す概略図である。 第10の実施形態による天井設置形空気調和機の熱交換器の構成を示す概略図である。 第10の実施形態による天井設置形空気調和機の熱交換器の構成を示す拡大概略図である。
 以下、発明を実施するための実施形態について説明する。
 (第1の実施形態)
 第1の実施形態の天井設置形空気調和機について、図1から図5を参照して説明する。
 図1は、本実施形態の天井設置形空気調和機1を示している。この天井設置形空気調和機1の室内ユニット2は、例えば建屋の天井裏に据え付けられている。なお、本実施形態において、天井裏とは建屋の梁と天井板との間に規定される天井空間のことを指している。
 室内ユニット2は、奥行き寸法D、幅寸法Wおよび厚さ寸法Hを有する四角い扁平な箱型である。また、室内ユニット2は、金属製の筐体20を有している。筐体20は、室内ユニット2の外郭である。筐体20は、天板21、第1の側板22a、第2の側板22b、第1の底板23a、第2の底板23b、前面枠24、背面枠25、および仕切板26を備えている。
 図2および図3に示すように、本実施形態に係る天井設置形空気調和機1の仕切板26は、筐体20の内部を、送風機室3と熱交換器室4との二室に区画している。
 送風機室3は、背面枠25に形成される吸込口27を有している。送風機室3には送風装置5が収容されている。図2および図3に示すように、送風装置5は、ファンモータ51と、ファンケース52a、52bと、ファンケース52a、52bの内部に収容される多翼ファン53a、53bと、を備えている。それぞれのファンケース52a、52bには、両側面に吸引口54a、54bが設けられている。仕切板26には、送風口55a、55bが設けられている。
 ファンモータ51は、その両側面から同軸状に突出された二本の回転軸51a、51bを有している。各回転軸51a、51bには、多翼ファン53a、53bが取り付けられている。
 熱交換器室4は、前面枠24に形成される吹出し口28および機械室6を有している。機械室6は、機械室仕切板61により熱交換器室4と区画され、ドレンポンプや冷媒分配器を収容する。
 そして、送風機室3と熱交換器室4とは、送風装置5を介して繋がる。具体的には、送風機室3内の空気が、送風装置5を通して、熱交換器室4へ流れることが出来るように、連通している。
 また、図3に示すように、熱交換器室4には、熱交換器7およびドレンパン8が配置されている。言い換えると、熱交換器7およびドレンパン8は、筐体20の熱交換器室4に収容されている。熱交換器7は、室内ユニット2の幅方向、言い換えると筐体20の幅方向に延びているとともに、機械室仕切板61と側板22aとの間に介在されている。
 図3に示すように、ドレンパン8は、熱交換器7の下方に配置されている。ドレンパン8は、例えば発泡スチロールのような断熱材である。ドレンパン8は、熱交換器7を下方から支えているとともに、熱交換器7から滴下するドレン水を受け止める。ドレンパン8の下面は、第1の底板23aによって覆われている。また、ドレンパン8は、断熱材9と協働して熱交換器7を取り囲んでいる。断熱材9は、熱交換器7の上方に配置され、天板21の内面、かつ熱交換器室4内に設けられている。
 本実施形態の熱交換器7は、第1の熱交換部7A、第2の熱交換部7B、および第3の熱交換部7Cを備えている。第1の熱交換部7A、第2の熱交換部7B、および第3の熱交換部7Cは、吹出し口28に向かって凸形状に配置されている。
 第1の熱交換部7Aは、熱交換器室4内で送風装置5の送風口55a、55bおよび仕切板26と略平行に向かい合うように起立している。なお、本実施形態では、第1の熱交換部7A、第2の熱交換部7B、および第3の熱交換部7Cのうち第1の熱交換部7Aが吹出し口28にもっとも近い
 第2の熱交換部7Bは、熱交換器室4の上部に位置されるとともに、断面視において、送風装置5から遠ざかるように室内ユニット2の奥行き方向に延びている。また、第2の熱交換部7Bは、送風装置5から遠ざかるに従いやや下向きに傾いている。言い換えると、第2の熱交換部7Bは、吹出し口28に近づくに従いやや下向きに傾斜している。第2の熱交換部7Bの前端(つまり吹出し口28側)と、第1の熱交換部7Aの上端とが、連続している。
 第3の熱交換部7Cは、熱交換器室4の下部に位置されるとともに、断面視において、送風装置5から遠ざかるように室内ユニット2の奥行き方向に延びている。また、第3の熱交換部7Cは、送風装置5から遠ざかるに従いやや上向きに傾いている。言い換えると、また、第3の熱交換部7Cは、吹出し口28に近づくに従いやや上向きに傾斜している。第3の熱交換部7Cの前端(つまり吹出し口28側)と、第1の熱交換部7Aの下端とが、連続いている。
 言い換えると、熱交換器7は、送風口55a、55bおよび仕切板26と向かい合うように起立する第1の熱交換部7Aと、第1の熱交換部7Aの上端から送風装置5に向かって斜め上向きに延びる第2の熱交換部7Bと、第1の熱交換部7Aの下端から送風装置5に向かって斜め下向きに延びる第3の熱交換部7Cと、を備えている。
 したがって、本実施形態の第1から第3の熱交換部7A、7B、7Cは、室内ユニット2を側方から見ると、略コの字型、あるいは門形となるように組み合わされている。つまり、熱交換器7は、送風機室3から送られる風に対して、風下側に突出した凸形状となるよう配置され、風上側に窪んだ略凹形状となるように配置されている。
 また、第1から第3の熱交換部7A、7B、7Cは、室内ユニット2を側方から見ると、上底および一組の脚部からなる略台形形状に配置されているともいえる。略台形形状の上底となる部分(辺)には第1の熱交換部7Aが配置され、略台形形状の一組の脚部にあたる部分(辺)には第2の熱交換部7Bおよび第3の熱交換部7Cがそれぞれ配置されて、下底部分が開口した略台形形状を呈している。
 図4に示すように、本実施形態に係る天井設置形空気調和機1の熱交換器7は、例えば、板状のフィンと、伝熱管と、を組み合わせてなるフィンチューブ型熱交換器である。本実施形態では、第1から第3の熱交換部7A、7B、7Cは、それぞれ複数の細長いフィン71と、冷媒が流れる複数の伝熱管72と、を備えている。
 図5に示すように、本実施形態に係る天井設置形空気調和機1のフィン71は、例えばアルミニウム製の四角い板であり、一対の長辺71L、71Lおよび一対の短辺71S、71Sを有している。長辺71L、71Lは、互いに平行である。短辺71S、71Sは、互いに平行であるとともに、長辺71L、71Lに対し交差するよう斜め方向に延びている。言い換えると、フィン71は、二組の対辺がそれぞれ平行な、平行四辺形の形状である。
 また、フィン71には、複数の嵌合孔73が複数設けられている。嵌合孔73は、フィン71に例えばバーリング加工を施すことにより穿たれ、フィン71から立ち上がる円筒状のフランジ部を有している。嵌合孔73は、例えばフィン71の長辺71Lに沿う方向に沿って八列に並んでいるとともに、短辺71Sに沿う方向に沿って三列に並んでいる。
 図4に示すように、フィン71は、室内ユニット2の幅方向Wに互いに間隔をあけて一列に配列されている。言い換えると、フィン71は、筐体20の幅方向に互いに間隔をあけて配列されている。各フィン71から立ち上がるフランジ部の先端は、隣り合うフィン71の嵌合孔73に同軸状に合致するように突き当てられている。このため、隣り合うフィン71の間は、空気が流れる通風路74が設けられる。
 伝熱管72は、例えば熱伝導性に優れた銅管である。各伝熱管72は、室内ユニット2の幅方向に真っ直ぐに伸びた直管部と、略U字状に折り曲げられた曲管部と、を有している。伝熱菅72の直管部がフィン71の嵌合孔73を連続して貫通している。これにより、伝熱管72は、フィン71に熱的に接続されている。伝熱管72は、隣り合うフィン71の間を連続して貫通することで、フィン71と一体化されている。
 加えて、図3に示すように、本実施形態では、第1の熱交換部7Aのフィン71の一方の短辺71Sと、第2の熱交換部7Bのフィン71の吹出し口28側の短辺71Sとが隙間なく接するように配置されている。
 また本実施形態では、第1の熱交換部7Aのフィン71の送風機室3側の長辺71Lと、第3の熱交換部7Cの吹出し口28側の短辺71Sとが隙間なく接するように配置されている。または、第1の熱交換部7Aのフィン71の他方の短辺71Sと、第3の熱交換部7Cの送風機室3側の長辺71Lとが隙間なく接するように配置されている。
 本実施形態において、ファンモータ51により多翼ファン53a、53bが回転されると、多翼ファン53a、53bは、送風機室3内の空気をファンケース52a、52bの吸引口54a、54bから吸い込むとともに、吸い込んだ空気をファンケース52a、52bの送風口55a、55bから吐き出す。
 このため、建屋室内の空気が天井板の吸込みグリルまたは図示しないダクトを介して、筐体20の吸込み口27から送風機室3に吸い込まれる。送風機室3に吸い込まれた空気は、ファン52a、52bを介し、送風口55a、55bから熱交換器7に向かって吹き出す。
 熱交換器7の第1の熱交換部7Aは、熱交換器室4内で送風口55a、55bと向かい合うように起立しているので、送風口55a、55bから熱交換器室4に吹き出す空気の多くが第1の熱交換部7Aのフィン71の間(通風路74)を通過する。
 熱交換器室4に吹き出す残りの空気は、第1の熱交換部7Aの上端から送風装置5に向けて斜め上向きに延びる第2の熱交換部7Bのフィン71の間(通風路74)と、第1の熱交換部7Aの下端から送風装置5に向けて斜め下向きに延びる第3の熱交換部7Cのフィン71の間(通風路74)と、を通過する。
 この結果、熱交換器7は、送風口55a、55bから吹き出す空気と伝熱管72を流れる冷媒との熱交換により、当該空気を冷気もしくは暖気の熱交換空気に変える。熱交換空気は、吹出し口28から吹出しダクトを通じて室内に送出される。
 本実施形態の熱交換器7は、第1から第3の熱交換部7A、7B、7Cを略台形形状に組み合わせ、三次元的な立体形状に屈曲させている。このため、従来のストレートな熱交換器を熱交換室内に傾けて配置する場合との比較において、熱交換器室4の奥行き方向に沿う熱交換器7の寸法を短縮することができる。
 加えて、従来のストレートな熱交換器を熱交換室内に傾けて配置する場合との比較において、本実施形態は、第1の熱交換部7Aが熱交換器室4内で起立しているため、送風口55a、55bの開口端から第1の熱交換部7Aの前端までの距離と送風口55a、55bの開口端から第2の熱交換部7Bの後端までの距離との差の分、熱交換器室4の奥行き方向に沿う熱交換器7の寸法を短縮することができる。この結果、熱交換器室4の奥行き寸法を小さく抑えることが可能となり、室内ユニット2の筐体20をコンパクトにできる。
 しかも、熱交換器7を屈曲させたことで、本実施形態は、熱交換器7の熱容量を十分に確保することができる。したがって、本実施形態は、コンパクトな熱交換器室4に能力の大きな熱交換器7を配置することができ、熱交換性能に優れた室内ユニット2を提供できる。
 また、本実施形態は、筐体20のコンパクト化に伴って、筐体20を軽量化することができる。このため、室内ユニット2を天井空間に据え付ける際の作業性が向上する。さらに、筐体20が小さくなるので、筐体20の製造コストを低減して安価な室内ユニット2を得ることができる。
 加えて、本実施形態は、第1の熱交換部7Aが熱交換器室4内で起立しているため、送風口54の開口端から第1の熱交換部7Aの前端までの距離と、送風口54の開口端から第2の熱交換部7Bの後端までの距離との差が、従来のストレートな熱交換器を熱交換室内に傾けて配置する場合と比較して小さくなる。よって、熱交換器7に略均等に空気を吹き付けることができ、良好な熱交換性能を得ることができる。
 本実施形態では、第2の熱交換部7Bが、第1の熱交換部7Aの上端から送風機室側に向けて上向きに傾斜され、第3の熱交換部7Cが、第1の熱交換部7Aの下端から送風機室側に向けて下向きに傾斜されている。このため第2の熱交換部7Bおよび第3の熱交換部7Cに空気が当たり易くなり、熱交換器7の上部および下部を通過する空気の風量を確保できる。よって、優れた熱交換性能を有する熱交換器7を得ることができる。
 さらに、本実施形態は、第1の熱交換部7Aと第2の熱交換部7Bとの境界(第1および第2の熱交換部の繋ぎ目)および第1の熱交換部7Aと第3の熱交換部7Cとの境界(第1および第3の熱交換部の繋ぎ目)から空気漏れの原因となる隙間が排除されている。 このため、第1から第3の熱交換部7A、7B、7Cの境界から熱交換されずに漏れる空気を少なくでき、熱交換器7の熱交換性能を高める上で有利となる。
 また、本実施形態は、合わせ目から熱交換されずに空気が漏れることを防ぐ部材を削減することができる。
 したがって、本実施形態によれば、コンパクトで、熱交換効率の良い、天井設置形空気調和機を提供することができる。
 (第2の実施形態)
 第2の実施形態の天井設置形空気調和機について、図6を参照して説明する。本実施形態の各部について、図1から図5の各部と同一部分は同一符号で示す。
 図6は、第2の実施形態に係る天井設置形空気調和機の熱交換器を表した側面断面図であり、第1の熱交換部7Aの伝熱管72の本数が、第2および第3の熱交換部7B、7Cの伝熱管72の本数よりも多く配置されていることを表している。
 本実施形態において、第1の熱交換部7Aは、熱交換器室4内で送風装置5の送風口55a、55bおよび仕切板26と向かい合うように起立しているため、送風装置5から送り出された風が多く当る。
 第1熱交換器部7Aのフィン711に設けられる嵌合孔73は、フィン711の長辺方向に沿う8列とフィン711の短辺方向に沿う3列との計24個ある。一方で、第2熱交換器部7Bおよび第3熱交換器部7Cのフィン712に設けられる嵌合孔73は、フィン712の長辺方向に沿う10列とフィン712の短辺方向に沿う2列との計20個である。つまり、第1の熱交換部7Aの伝熱管の本数が第2、第3の熱交換器部7B、7Cよりも多くなり、送風装置5から送り出された風が多く当たる部分の熱交換容量を大きくすることができる。
 このため、本実施形態は、熱交換器7への風量のうち分配が多くなる第1の熱交換部7Aで他の熱交換部よりも多く熱交換を行い、バランスよく熱交換することができ、熱交換性能を向上させることができる。
 本実施形態によれば、熱交換効率の良い、天井設置形空気調和機を提供することができる。
 (第3の実施形態)
 第3の実施形態の天井設置形空気調和機について、図7および図8を参照して説明する。本実施形態の各部について、図1から図6の各部と同一部分は同一符号で示す。
 図7は、第3の実施形態による天井設置形空気調和機の熱交換器のフィン71の形状を表した図であり、図8は第3の実施形態による天井設置形空気調和機の熱交換器を表した側面断面図である。
 図7および図8に示すように、本実施形態の天井設置形空気調和機1の第1の熱交換部7Aのフィン711と、第2および第3の熱交換部7B、7Cのフィン712とは、線対称形状である。
 本実施形態の天井設置形空気調和機1は、フィン711と、フィン712とが線対称形状であるため、熱交換器7におけるフィンを共通化することができる。したがって、本実施形態の天井設置形空気調和機1は、製造性を向上させ、コストダウンを図ることができる。
 本実施形態によれば、製造性を向上した、コンパクトで、熱交換効率の良い天井設置形空気調和機を提供することができる。
 (第4の実施形態)
 第4の実施形態の天井設置形空気調和機について説明する。本実施形態の各部について、図1から図8の各部と同一部分は同一符号で示す。
 本実施形態の第1の熱交換部7Aの複数のフィン711と、第2および第3の熱交換部7B、7Cの複数のフィン712とを筐体20の幅方向Wに配置する間隔(以下、フィンピッチという)は、フィン712のフィンピッチよりもフィン711のフィンピッチの方が狭い。
 言い換えると、フィンピッチは通風路74であり、フィン711、712のフィンピッチが狭いほど、通風抵抗が大きくなり、風量が減る。
 本実施形態は、送風装置5から送り出された風が多く当るように配置され、熱交換器7への風量のうち分配が多い第1の熱交換部7Aのフィンピッチ(フィン711のフィンピッチ)を、第2および第3の熱交換部7B、7Cのフィンピッチ(フィン712のフィンピッチ)よりも狭くすることで、相対的に第1の熱交換部7Aよりも風の当たりにくい第2および第3の熱交換部7B、7Cに風を多くあてることができ、風量の調整をすることができる。
 したがって、本実施形態は、第1の熱交換部7A、第2の熱交換部7B、および第3の熱交換部7Cに分配される風量を調整することにより、熱交換性能を向上させることができる。
 本実施形態によれば、熱交換効率の良い天井設置形空気調和機を提供することができる。
 (第5の実施形態)
 第5の実施形態の天井設置形空気調和機について、図9を参照して説明する。本実施形態の各部について、図1から図8の各部と同一部分は同一符号で示す。
 図9に示すように、本実施形態において、第1の熱交換部7Aのフィン711には、スリット81が設けられている。一般的に、アルミフィンに切り込みや幅狭い隙間となるスリット81を設けることで、伝熱性能は高まり、空気抵抗も高まる。
 第1の熱交換部7Aのフィン711にスリット81を設け、第2、第3の熱交換部7B、7Cのフィン712にはスリット81を設けないことで、分配される風量が多い第1の熱交換部7Aのフィン711の伝熱性能を高めることができる。
 また同時に、第1の熱交換部7Aのフィン711における空気抵抗の高まりから、相対的に風が当たりにくい第2、第3の熱交換部7B、7Cに風を多くあてることができ、風量の調整をすることができる。
 本実施形態によれば、熱交換効率の良い天井設置形空気調和機を提供することができる。
 (第6の実施形態)
 第6の実施形態の天井設置形空気調和機について、図10を参照して説明する。本実施形態の各部について、図1から図9の各部と同一部分は同一符号で示す。
 図10は、第6の実施形態による天井設置形空気調和機の熱交換器を表した側面断面図である。
 図10に示すように、本実施形態の第1の熱交換部7Aの伝熱管731の管径は、第2および第3の熱交換部7B、7Cの伝熱管732の管径よりも大きい。径が大きいほど、流れる冷媒の量も増加するため、伝熱性能が高まる。
 本実施形態は、分配される風量が多い第1の熱交換部7Aの伝熱性能を高めることで、バランスよく熱交換することができ、熱交換性能を高めることができる。
 本実施形態によれば、熱交換効率の良い天井設置形空気調和機を提供することができる。
 (第7の実施形態)
 第7の実施形態の天井設置形空気調和機について、図11および図12を参照して説明する。本実施形態の各部について、図1から図10の各部と同一部分は同一符号で示す。
 図11は、第7の実施形態による天井設置形空気調和機の熱交換器を表した側面断面図である。
 図11に示すように、本実施形態の熱交換器7は、一体成形品であり、第1から第3の熱交換部7A、7B、7Cが一体形成されている。別々の熱交換部を組み合わせて形成するのではなく、一つのピースとして、略台形形状を呈している。
 第1から第3の熱交換部7A、7B、7Cを別部品で組み合わせたものでなく、熱交換器7を一体形にすることで、各熱交換部を固定する部材が不要となるため、部品点数削減につながり、製造性を向上させることができる。
 また、図12に示すように、本実施形態の熱交換器7の曲げ加工前のフィン71は直線状であり、2か所の曲げ加工を施すことで、第1から第3の熱交換部7A、7B、7Cが形成される構造としても良い。
 例えば製造工程として、まず、熱交換器7のフィン71が、第1から第3の熱交換部7A、7B、7Cを合わせた全長の長さを有する形状に形成される。次に、曲げ加工をするために、第1の熱交換部7Aと第2の熱交換部7Bとの境界(第1及び第2の熱交換部の繋ぎ目)および第1の熱交換部7Aと第3の熱交換部7Cとの境界(第1及び第3の熱交換部の繋ぎ目)にあたる部分を、曲げ代に合わせて切り取る。この場合、第1および第3の熱交換部7A、7Cに相当する部分は、台形形状となり、第2の熱交換器部7Bに相当する部分は、それぞれ平行四辺形となる。そして、この一連のフィン71に曲げ加工を施すと、熱交換器7は、略台形形状に形成される。
 このように形成することで、製造性を向上させることができる。具体的には、フィンの材料取り改善と直線状の熱交換器の拡管設備共用が可能となり、設備投資の抑制と、材料削減によるコストダウンが可能となる。
 本実施形態によれば、製造性を向上した、天井設置形空気調和機を提供することができる。
 (第8の実施形態)
 第8の実施形態の天井設置形空気調和機について、図13を参照して説明する。本実施形態の各部について、図1から図12の各部と同一部分は同一符号で示す。
 図13は、第8の実施形態による天井設置形空気調和機の熱交換器を表した側面断面図である。
 図13に示すように、本実施形態の熱交換器室4の上部に配置される第2の熱交換部7Bの傾斜角度θ1は、熱交換器室4の下部に配置される第3の熱交換部7Cの傾斜角度θ2よりも小さくなるように角度差を設けてある。
 第2の熱交換部7Bは、送風装置5から遠ざかるに従いやや下向きに傾いており、第3の熱交換部7Cは、送風装置5から遠ざかるに従いやや上向きに傾いている。θ1およびθ2の傾きに角度差を設けることで、比較的風が当たりにくい下側に位置する第3の熱交換部7Cの通風抵抗を小さくし、風量を確保することができる。
 本実施形態によれば、熱交換効率の良い、天井設置形空気調和機を提供することができる。
(第9の実施形態)
 第9の実施形態の天井設置形空気調和機について、図14を参照して説明する。本実施形態の各部について、図1から図13の各部と同一部分は同一符号で示す。
 図14は、第9の実施形態による天井設置形空気調和機の熱交換器を表した側面断面図である。
 図14に示すように、本実施形態の熱交換器室4の中央部に位置する第1の熱交換部7Aは、第1の熱交換部7Aの上端部が、第1の熱交換部7Aの下端部よりも風上側に位置するように傾斜している。
 第2の熱交換部7Bは、熱交換器室4の上部に位置している。第2の熱交換部7Bは、第2の熱交換部7Bの前端部と、第1の熱交換部7Aの上端部とが連続するように配置されている。
 第3の熱交換部7Cは、熱交換器室4の下部に位置している。第3の熱交換部7Cは、第3の熱交換部7Cの前端部と、第1の熱交換部7Aの下端部とが連続するように配置されている。
 例えば、第1の熱交換部7Aおよび第2の熱交換部7Bは、第1の熱交換部7Aのフィン71の送風機室3側の長辺71Lと、第2の熱交換部7Bのフィン71の吹出し口28側の短辺71Sとが隙間なく接するように配置されている。
 また、第1の熱交換部7Aおよび第3の熱交換部7Cは、第1の熱交換部7Aのフィン71の下側の短辺71Sと、第3の熱交換部7Cのフィン71の吹出し口28側の短辺71Sとが隙間なく接するように配置されている。
 そして、本実施形態において、第1の熱交換部7Aのフィン71および第3の熱交換部7Cのフィン71の形状は、線対称である。第2の熱交換部7Bは、フィン71の長辺71Lの長さ寸法が他の熱交換部よりも短い。
 第1の熱交換部7Aと比較して風が通り抜けにくい第2の熱交換部7Bは、他の熱交換部よりも伝熱管の本数が少ない。例えば、第1の熱交換部7Aおよび第3の熱交換部7Cの伝熱管の段数(列)が10段(10列)であれば、第2の熱交換部7Bは8段(8列)である。
 本実施形態によれば、中央部に位置する第1の熱交換部7Aは、送風口55a、55bおよび仕切板26に対して風を受けやすいように傾斜する。第1の熱交換部7Aを傾斜させることで、熱交換器7に空気が当たり易くなり、熱交換器7を通過する空気の風量および風速を確保できる。また、風量および風速の確保により、風速分布が改善され、送風性能があがる。
 したがって、本実施形態は、風の流れをスムーズにし、効率よく各熱交換部に分流することができるため、より性能が良い天井設置形空気調和機を提供することができる。
 なお、各実施形態では、図1に示すように、送風装置5および熱交換器7を収容した筐体20は、例えば四本の吊ボルトHBを介して建屋の梁から吊り下げられている。具体的には、筐体20の天板21に四つの吊金具29が固定されている。吊金具29は、天板21の四つの角部から筐体20の四方に向けて水平に張り出しており、各吊金具29に各吊ボルトHBの下端部が連結されている。
 また、各実施形態では、第1の熱交換部7Aを熱交換器室4で起立させたが、例えば、第1の熱交換部7Aを傾斜させて配置し、吹出し口28に突出した凸形状としてもよい。その場合、第1の熱交換部7A、第2の熱交換部7B、および第3の熱交換部7Cのうち第1の熱交換部7Aのフィン71の下側の短辺71Sと、第3の熱交換部7Cのフィン71の吹出し口28側の短辺71Sとが吹出し口28にもっとも近い。
(第10の実施形態)
 第10の実施形態の天井設置形空気調和機について、図15から図17を参照して説明する。本実施形態の各部について、図1から図14の各部と同一部分は同一符号で示す。
 図15は、第10の実施形態による天井設置形空気調和機の側面断面を示す概略図である。
 図15に示すように、本実施形態の熱交換器7およびドレンパン8は、筐体20の熱交換器室4に収容されている。
 熱交換器7は、筐体20の幅方向に延びている。ドレンパン8は、例えば発泡スチロールのような断熱材である。ドレンパン8は、熱交換器7から滴下するドレン水を受け止めるように熱交換器7を下方から支えているとともに、断熱材9と協働して熱交換器7を取り囲んでいる。さらに、ドレンパン8の下面は、第1の底板23aによって覆われている。
 本実施形態の熱交換器7は、第1の熱交換部7A、第2の熱交換部7Bおよび第3の熱交換部7Cを備えている。第1から第3の熱交換部7A、7B、7Cは、互いに独立した要素であって、予め決められた三次元的な立体形状に組み合わされている。
 第1から第3の熱交換部7A、7B、7Cは、それぞれ複数の細長い板状のフィン71と、冷媒が流れる複数の伝熱管72と、を備えている。フィン71は、筐体20の幅方向に互いに間隔をあけて配列されている。伝熱管72は、隣り合うフィン71の間を連続して貫通することで、フィン71と一体化されている。
 第2の熱交換部7Bは、熱交換器室4の上部に位置されている。第2の熱交換部7Bは、仕切板26から筐体20の吹出し口28に向けて筐体20の奥行き方向に延びている。また、第2の熱交換部7Bは、吹出し口28に近づくに従いやや下向きに傾斜している。
 第3の熱交換部7Cは、熱交換器室4の底部に位置され、第2の熱交換部7Bに対し筐体20の厚さ方向に離れている。第3の熱交換部7Cは、仕切板26から筐体20の吹出し口28に向けて筐体20の奥行き方向に延びている。また、第3の熱交換部7Cは、吹出し口28に近づくに従いやや上向きに傾斜している。このため、第2の熱交換ユニット7Bおよび第3の熱交換ユニット7Cは、それぞれ仕切板26よりも吹出し口28の側に位置された一端を有している。
 第1の熱交換部7Aは、第2の熱交換部7Bの一端と第3の熱交換部7Cの一端との間に介在されている。第1の熱交換部7Aは、仕切板26と向かい合うように起立されているとともに、第2の熱交換部7Bの一端の方向に進むに従い仕切板26に近づくように傾いている。言い換えると、第1の熱交換部7Aは、第2の熱交換部7Bに近い側の端部から第3の熱交換部7Cに近い側の端部の方へ向かって吹出し口28に近づいている。
 したがって、本実施形態では、第1から第3の熱交換部7A、7B、7Cは、筐体20を側方から見た時に、仕切板26に向けて拡開するような形状に組み合わされている。言い換えると、本実施形態では、第1の熱交換部7A、第2の熱交換部7B、および第3の熱交換部7Cのうち第3の熱交換部7Cのフィン71の吹出し口28側の短辺71Sが吹出し口28にもっとも近い。
 第3の熱交換部7Cは、吹出し口28側の長辺71Lと短辺71Sの角部である端部PCが、第1の熱交換部7Aの吹出し口28側の長辺71Lと短辺71Sの角部である端部PAよりも、より吹出し口28側に、突出するようにオフセットして配置されている。
 つまり、第3の熱交換部7Cの吹出し口28側の短辺71Sには、第1の熱交換部7Aの吹出し口28側の長辺71Lよりも所定の長さlだけ吹出し口28側に突出する突出部α(段差)が生じている。
 言い換えると、図17に示すように、第1の熱交換部7Aと吹出し口28との最短距離をLA、第3の熱交換部7Cと吹出し口28との最短距離をLC、とすると、第1の熱交換部7Aおよび第3の熱交換部7Cは、距離LAが距離LCよりも長くなるように配置される。
 なお、吹出し口28側の長辺71Lと短辺71Sの角部である端部PAが吹出し口28に最も近い点であることから、第1の熱交換部7Aにおいて最短距離LAは、端部PAと吹出し口28との距離となる。同様に、吹出し口28側の長辺71Lと短辺71Sの角部である端部PCが最も吹出し口28に近い点であることから、第3の熱交換部7Cにおいて最短距離LCは、端部PCと吹出し口28との距離となる。
 本実施形態の熱交換器7は、冷房運転時、送風装置5から送られる風Xが熱交換器7のフィン71間(通風路74)を通過するときに、凝縮水Yが発生する。この凝縮水Yは、第1から第3の熱交換部7A、7B、7Cのそれぞれに発生する。特に第1の熱交換部7Aに発生した凝縮水Yは、フィン71を伝って、下部に位置する第3の熱交換部7Cの方へと流下する。
 第1の熱交換部7Aと第3の熱交換部7Cとの組み合わせ面βでは、各熱交換部のフィン71の端部同士が密集するため、凝縮水Yが滞留しやすくなる。ここに、送風装置5からの風Xがあたると、溜まっている凝縮水Yが通風方向に押し出され、吹出し口28から機外へ飛ばされてしまうことがある。
 そこで、本実施形態は、第1の熱交換部7A端部のPAよりも第3の熱交換部7Cの端部7Cを吹出し口28側に突出するようにオフセットして配置し、突出部αを設けている。これにより、第1の熱交換部7Aと第3の熱交換部7Cとの組み合わせ面に滞留する凝縮水Yは、風Xにより吹出し口28側へ送られる過程において、一度、突出部αに留まり、第3の熱交換器部7Cに流下する。このため、凝縮水Yは、風Xにより飛び散ることなくドレンパン8に案内される。
 ここで仮に、突出部αを設けず(オフセットさせず)に第1の熱交換部7Aの端部PAと第3の熱交換部7Cの端部PCを突き合わせた場合には、凝縮水Yは、熱交換器7において吹出し口28側に最も突出した先端部分である端部PAおよび端部PCから風Xにより飛び散り易くなる。それに対して、本実施形態は、段差部分である突出部αを設けることによって、熱交換器7における最も突出した先端部分が端部PAではなくなる。そして、第1の熱交換部7Aから流下した凝縮水Yは、第3の熱交換部7Cの先端部PCに直接流れず、第3の熱交換部7Cの先端部PCに到達する前に、一度、突出部αに表面張力によって留まるために、第3の熱交換部7Cへと流下しやすくなり、凝縮水Yは飛び散りにくくなる。
 本実施形態によれば、第1の熱交換部7Aと第3の熱交換部7Cとの組み合わせ面に滞った凝縮水Yを第3の熱交換部7Cに回収させることができ、風Xによる凝縮水Yの飛び散りを抑えることが出来る。
 また、第1の熱交換部7Aと第3の熱交換部7Cとの組み合わせ面は、製造時の誤差や経年変形等で隙間が発生することもある。第1の熱交換部7Aと第3の熱交換部7Cとの組み合わせ面に隙間が発生すると、表面張力によってこの隙間により多くの凝縮水Yが滞留することが考えられるが、本実施形態であれば、凝縮水Yの飛び散りを抑えることができる。
 以上説明した少なくとも一つの実施形態の天井設置形空気調和機によれば、コンパクトで、熱交換効率の良い、天井設置形空気調和機を提供することが可能となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…天井設置形空気調和機、2…室内ユニット、3…送風機室、4…熱交換器室、5…送風装置、6…機械室、7…熱交換器、7A…第1の熱交換部、7B…第2の熱交換部、7C…第3の熱交換部、8…ドレンパン、9…断熱材、20…筐体、21…天板、22…側板、23a、23b…底板、24…フロント枠、25…背板、26…仕切板、27…吸込み口、28…吹出し口、51…ファンモータ、51a、51b…回転軸、52a、52b…ファン、52a、52b…ファンケース、53a、53b…多翼ファン、54a、54b…吸引口、55、55a、55b…送風口、6…機械室、61…機械室仕切板、71…フィン、72…伝熱管、73…嵌合孔、74…通風路、81…スリット。

Claims (13)

  1. 空気吸込み口を有する送風機室と、
     空気吹出し口を有する熱交換器室と、
     前記送風機室と前記熱交換器室とを区画する仕切板と、
     前記送風機室に収容される送風装置と、
     前記熱交換器室に収容される熱交換器と、を備え、
     前記送風機室と前記熱交換器室とが前記送風装置を介して繋がり、
     前記熱交換器は、第1熱交換部と、第2熱交換部と、第3熱交換部と、を有し、
     前記第1熱交換部、前記第2熱交換部、および前記第3熱交換部のそれぞれは、複数の板状のフィンと、複数の伝熱管と、を有し、
     前記第1熱交換部から前記第3熱交換部は、前記吹出し口に向かって凸形状に配置されている天井設置形空気調和機。
  2. 前記板状のフィンは、それぞれ略平行四辺形の形状である請求項1記載の天井設置形空気調和機。
  3. 前記第1熱交換部の前記板状のフィンの一方の短辺と、前記第2熱交換部の前記板状のフィンの吹出し口側の短辺と、が隙間なく接し、
     前記第1熱交換部の前記板状のフィンの他方の短辺、または前記送風機室側の長辺と、前記第3熱交換部の前記板状のフィンの吹出し口側の短辺と、が隙間なく接する請求項1または2に記載の天井設置形空気調和機。
  4. 前記第1熱交換部、第2熱交換部、および前記第3熱交換部のうち前記第1熱交換部が前記吹出し口にもっとも近く、かつ前記第2熱交換部および前記第3熱交換部よりも伝熱管の本数が多く配置されている請求項1から3のいずれか1項に記載の天井設置形空気調和機。
  5. 前記第1熱交換部、第2熱交換部、および前記第3熱交換部のうち前記第1熱交換部が前記吹出し口にもっとも近く、
     前記第2熱交換部と前記第3熱交換部とは同一形状であり、
     前記第1熱交換部と、前記第2熱交換部および前記第3熱交換部とは、線対称形状である請求項1から3のいずれか1項に記載の天井設置形空気調和機。
  6. 前記第1熱交換部の前記複数の板状のフィンを配置する間隔が、前記第2熱交換部および前記第3熱交換部の前記複数の板状のフィンを配置する間隔よりも狭い請求項1から5のいずれか1項に記載の天井設置形空気調和機。
  7. 前記第1熱交換部にのみ、前記板状のフィンにスリットが設けられている請求項1から4、および6のいずれか1項に記載の天井設置形空気調和機。
  8. 前記第1熱交換部の前記伝熱管の管径が、前記第2熱交換部および前記第3熱交換部の前記伝熱管の管径よりも大きい請求項1から4、6、および7のいずれか1項に記載の天井設置形空気調和機。
  9. 前記第1熱交換部、前記第2熱交換部、および前記第3熱交換部が一体成形されている請求項1から8のいずれか1項に記載の天井設置形空気調和機。
  10. 前記第2熱交換部は、前記熱交換器室の上部に配置され、
     前記第3熱交換部は、前記熱交換器室の下部に配置され、
     前記第2熱交換部の傾斜角度が、前記第3熱交換部の傾斜角度よりも小さくなるように角度差を設けた請求項1から9のいずれか1項に記載の天井設置形空気調和機。
  11. 前記第1熱交換部の上端部が、前記第1熱交換部の下端部よりも風上側に位置するように傾斜している請求項1から10のいずれか1項に記載の天井設置形空気調和機。
  12. 前記第1熱交換部の前記板状のフィンの下部に位置する短辺の前記吹出し口側の端部よりも、前記第3熱交換部の前記板状のフィンの前記吹出し口側の短辺の前記吹出し口側の端部が、前記吹出し口側に対して突出している請求項1から11のいずれか1項に記載の天井設置形空気調和機。
  13. 前記第1熱交換部の前記板状のフィンの下部に位置する短辺の前記吹出し口側の端部と前記吹出し口との最短距離が、前記第3熱交換部の前記板状のフィンの下部に位置する短辺の前記吹出し口側の端部と前記吹出し口との最短距離よりも長い請求項1から12のいずれか1項に記載の天井設置形空気調和機。
PCT/JP2016/068358 2015-06-25 2016-06-21 天井設置形空気調和機および熱交換器 WO2016208567A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017524913A JP6420478B2 (ja) 2015-06-25 2016-06-21 天井設置形空気調和機および熱交換器
EP16814337.8A EP3315869B1 (en) 2015-06-25 2016-06-21 Ceiling installation type air conditioner
AU2016281336A AU2016281336B2 (en) 2015-06-25 2016-06-21 Ceiling installation type air conditioner and heat exchanger
CN201680037260.3A CN107850320B (zh) 2015-06-25 2016-06-21 顶部设置型空气调和机及热交换器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015127138 2015-06-25
JP2015-127138 2015-06-25
JP2016059457 2016-03-24
JP2016-059457 2016-03-24

Publications (1)

Publication Number Publication Date
WO2016208567A1 true WO2016208567A1 (ja) 2016-12-29

Family

ID=57585739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068358 WO2016208567A1 (ja) 2015-06-25 2016-06-21 天井設置形空気調和機および熱交換器

Country Status (5)

Country Link
EP (1) EP3315869B1 (ja)
JP (1) JP6420478B2 (ja)
CN (1) CN107850320B (ja)
AU (1) AU2016281336B2 (ja)
WO (1) WO2016208567A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237627A (zh) * 2018-10-31 2019-01-18 宁波奥克斯电气股份有限公司 一种风管机
US20200340687A1 (en) * 2018-12-19 2020-10-29 Qingdao Haier Air-Conditioning Electronic Co., Ltd Air duct machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405068A (zh) * 2018-10-31 2019-03-01 广东美的制冷设备有限公司 空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060922A1 (ja) * 2005-11-25 2007-05-31 Daikin Industries, Ltd. 空気調和装置
JP2012013295A (ja) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd ビルトイン型空気調和装置
JP2012037085A (ja) * 2010-08-04 2012-02-23 Mitsubishi Electric Corp 空気調和機の室内機、及び空気調和機
WO2012176805A1 (ja) * 2011-06-20 2012-12-27 三洋電機株式会社 ビルトイン型空気調和装置
WO2015097821A1 (ja) * 2013-12-26 2015-07-02 東芝キヤリア株式会社 空気調和機および熱交換器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000779A (en) * 1975-11-28 1977-01-04 General Electric Company Blowoff baffle
JP3731113B2 (ja) * 2001-10-26 2006-01-05 ダイキン工業株式会社 空気調和機
JP2005016933A (ja) * 2003-06-06 2005-01-20 Sanyo Electric Co Ltd 空気調和装置の室内機
ES2366583T3 (es) * 2004-03-12 2011-10-21 Mitsubishi Denki Kabushiki Kaisha Unidad interior de un acondicionador de aire.
US7464700B2 (en) * 2006-03-03 2008-12-16 Proliance International Inc. Method for cooling an internal combustion engine having exhaust gas recirculation and charge air cooling
KR101520484B1 (ko) * 2008-07-04 2015-05-14 엘지전자 주식회사 열교환기
WO2011005986A2 (en) * 2009-07-10 2011-01-13 Johnson Controls Technology Company Multichannel heat exchanger with differing fin spacing
JP4715971B2 (ja) * 2009-11-04 2011-07-06 ダイキン工業株式会社 熱交換器及びそれを備えた室内機
CN201751773U (zh) * 2010-07-21 2011-02-23 海尔集团公司 空调器及其管径换热器
EP2702345A1 (en) * 2011-04-29 2014-03-05 Carrier Corporation Shell and tube heat exchanger
US20140196874A1 (en) * 2011-12-26 2014-07-17 Mitsubishi Electric Corporation Outdoor unit, air-conditioning apparatus, and method for manufacturing outdoor units
CN202734357U (zh) * 2012-06-18 2013-02-13 Tcl空调器(中山)有限公司 空调蒸发器
JP5538503B2 (ja) * 2012-10-05 2014-07-02 三菱電機株式会社 室外機及び冷凍サイクル装置
CN203837095U (zh) * 2014-02-21 2014-09-17 大金工业株式会社 空调机室内机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060922A1 (ja) * 2005-11-25 2007-05-31 Daikin Industries, Ltd. 空気調和装置
JP2012013295A (ja) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd ビルトイン型空気調和装置
JP2012037085A (ja) * 2010-08-04 2012-02-23 Mitsubishi Electric Corp 空気調和機の室内機、及び空気調和機
WO2012176805A1 (ja) * 2011-06-20 2012-12-27 三洋電機株式会社 ビルトイン型空気調和装置
WO2015097821A1 (ja) * 2013-12-26 2015-07-02 東芝キヤリア株式会社 空気調和機および熱交換器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237627A (zh) * 2018-10-31 2019-01-18 宁波奥克斯电气股份有限公司 一种风管机
US20200340687A1 (en) * 2018-12-19 2020-10-29 Qingdao Haier Air-Conditioning Electronic Co., Ltd Air duct machine

Also Published As

Publication number Publication date
EP3315869B1 (en) 2020-04-15
EP3315869A4 (en) 2019-03-27
AU2016281336A1 (en) 2017-11-30
EP3315869A1 (en) 2018-05-02
JP6420478B2 (ja) 2018-11-07
CN107850320A (zh) 2018-03-27
AU2016281336B2 (en) 2019-01-31
CN107850320B (zh) 2020-07-14
JPWO2016208567A1 (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
AU2008321997B2 (en) Indoor unit for air conditioner
JP4818935B2 (ja) 空気調和装置の室外機
WO2015097821A1 (ja) 空気調和機および熱交換器
JP5959735B2 (ja) 空気調和機の室内機、及び空気調和機
JP6561497B2 (ja) 空気調和機
JP6420478B2 (ja) 天井設置形空気調和機および熱交換器
JP5837235B2 (ja) 空気調和機の室外ユニット
US20200378628A1 (en) Fan unit, and outdoor unit of air conditioner comprising fan unit
JP5496697B2 (ja) 空気調和装置の室外ユニット
JP6079354B2 (ja) 空気調和機
JP6370399B2 (ja) 空気調和装置の室内機
JP3757680B2 (ja) 空気調和機
JP2001263703A (ja) 天井埋込型空気調和機
JP6471345B2 (ja) 熱交換器
JP2016161159A (ja) 空気調和機
JP5891408B2 (ja) 空気調和装置の室外ユニット
JP6614876B2 (ja) 空気調和機の室内機
JP2000146218A (ja) 空気調和機の室内ユニット
JP5382153B2 (ja) 空気調和装置の室内機
JP6455225B2 (ja) 空気調和機
JP5932966B2 (ja) 空気調和機の室外ユニット
JP2006105416A (ja) 空気調和機の壁掛け型室内ユニット
JP7025682B2 (ja) ダクト型空気調和機
JP2006071112A (ja) 空気調和機
JP2014059077A (ja) 空気調和装置の室外ユニット及びそれを備えた空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524913

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016281336

Country of ref document: AU

Date of ref document: 20160621

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016814337

Country of ref document: EP