WO2016208413A1 - 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 - Google Patents

遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 Download PDF

Info

Publication number
WO2016208413A1
WO2016208413A1 PCT/JP2016/067255 JP2016067255W WO2016208413A1 WO 2016208413 A1 WO2016208413 A1 WO 2016208413A1 JP 2016067255 W JP2016067255 W JP 2016067255W WO 2016208413 A1 WO2016208413 A1 WO 2016208413A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
composite hydroxide
aqueous solution
Prior art date
Application number
PCT/JP2016/067255
Other languages
English (en)
French (fr)
Inventor
崇洋 東間
相田 平
小向 哲史
康孝 鎌田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201680032934.0A priority Critical patent/CN107615531B/zh
Priority to KR1020177033294A priority patent/KR102481160B1/ko
Priority to US15/739,216 priority patent/US10547052B2/en
Publication of WO2016208413A1 publication Critical patent/WO2016208413A1/ja
Priority to US16/709,010 priority patent/US11404690B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a transition metal-containing composite hydroxide and a production method thereof, a positive electrode active material for a non-aqueous electrolyte secondary battery using the transition metal-containing composite hydroxide as a precursor, a production method thereof, and the non-aqueous electrolyte.
  • the present invention relates to a non-aqueous electrolyte secondary battery using a positive electrode active material for a secondary battery as a positive electrode material.
  • lithium ion secondary battery that is a kind of non-aqueous electrolyte secondary battery.
  • This lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and inserting lithium is used as an active material used as a material for the negative electrode and the positive electrode.
  • a lithium ion secondary battery using a positive electrode active material made of a layered or spinel type lithium transition metal composite oxide as a positive electrode material has a high energy density because a voltage of 4V class can be obtained.
  • lithium cobalt composite oxide LiCoO 2
  • lithium nickel composite oxide LiNiO
  • lithium nickel cobalt manganese composite oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • lithium manganese composite oxide LiMn 2 O 4
  • lithium nickel manganese composite oxide Lithium transition metal-containing composite oxides such as LiNi 0.5 Mn 0.5 O 2
  • the positive electrode active material used for the positive electrode material is preferably composed of particles having a small particle size and a narrow particle size distribution.
  • the small particle size has a large specific surface area and can sufficiently secure a reaction area with the electrolytic solution.
  • the positive electrode can be made thin by applying particles having a small particle diameter, the moving distance between the positive electrode and the negative electrode of lithium ions is shortened, and the positive electrode resistance is reduced.
  • the voltage applied to the particles in the electrode is made uniform, and the decrease in battery capacity due to the selective deterioration of the fine particles is suppressed.
  • the positive electrode active material having such a hollow structure has a larger reaction area with the electrolyte than a solid positive electrode active material having the same particle size, the positive electrode resistance can be greatly reduced. it can.
  • a positive electrode active material will inherit the particle property of the transition metal containing composite hydroxide used as the precursor. That is, in order to obtain a positive electrode active material having such excellent characteristics, the particle size, particle size distribution, particle structure, etc. of the particles constituting the transition metal-containing composite hydroxide that is the precursor are appropriately controlled. Is required.
  • JP2012-246199A, JP2013-147416A, and WO2012 / 1318181 there are two distinct stages: a nucleation process that mainly performs nucleation and a particle growth process that mainly performs particle growth.
  • a method of producing a transition metal-containing composite hydroxide that becomes a precursor of a positive electrode active material by a crystallization reaction separated into two is disclosed.
  • WO2014 / 181891 discloses that the pH value of an aqueous solution for nucleation containing at least a metal compound containing a transition metal and an ammonium ion supplier is controlled to be 12.0 to 14.0. And controlling the pH value of the aqueous solution for particle growth containing the generated nuclei to be lower than the pH value of the nucleation step and 10.5 to 12.0, A nucleation process and an initial stage of the particle growth process in a non-oxidizing atmosphere, and after switching to an oxidizing atmosphere at a predetermined timing in the particle growing process, again a non-oxidizing atmosphere
  • the manufacturing method of the transition metal containing composite hydroxide characterized by performing atmosphere control switched to at least once is disclosed.
  • the particle size distribution is narrow with a small particle size, and the central part is formed by aggregation of plate-like or needle-like primary particles, and the fine primary particles are formed by agglomeration outside the central part.
  • a transition metal-containing composite hydroxide comprising secondary particles having a structure in which at least one layered structure in which the low-density layer and the high-density layer formed by aggregation of the plate-like primary particles are alternately stacked is obtained. .
  • the positive electrode active material having these transition metal-containing composite hydroxides as precursors is composed of particles having a small particle size, a narrow particle size distribution, and a hollow structure or a multilayer structure having a space portion. Therefore, it is considered that secondary batteries using these positive electrode active materials can simultaneously improve battery capacity, output characteristics, and cycle characteristics.
  • the production methods described in these documents require time for switching the reaction atmosphere in the particle growth step, it is necessary to temporarily stop the supply of the raw material aqueous solution during that time, and there is room for improvement in terms of productivity. There is. Further, a positive electrode active material used for a secondary battery that uses a power source such as an electric vehicle is required to further improve its output characteristics without impairing the battery capacity and cycle characteristics of the secondary battery. .
  • the present invention includes a positive electrode active material capable of simultaneously improving battery capacity, output characteristics, and cycle characteristics in a nonaqueous electrolyte secondary battery, and a transition metal containing a precursor thereof
  • An object of the present invention is to provide a composite hydroxide, and to efficiently manufacture these positive electrode active material and transition metal-containing composite hydroxide in industrial scale production.
  • the present invention relates to a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, which contains any one of nickel (Ni), manganese (Mn), and cobalt (Co) as a main transition metal Containing complex hydroxide.
  • the transition metal-containing composite hydroxide of the present invention is preferably a composite hydroxide mainly composed of nickel, nickel and manganese, or nickel, manganese and cobalt, and further contains an additive element as necessary. be able to.
  • the transition metal-containing composite oxide of the present invention is It consists of plate-like primary particles and secondary particles formed by agglomerating fine primary particles smaller than the plate-like primary particles,
  • the secondary particles have a central portion formed by aggregation of the plate-like primary particles, and the low-density formed by aggregation of the plate-like primary particles and the fine primary particles outside the central portion.
  • the high-density layer is connected to the central portion and / or another high-density layer by a high-density portion formed by aggregation of the plate-like primary particles in the low-density layer,
  • the average particle size of the secondary particles is in the range of 1 ⁇ m to 15 ⁇ m, and the index indicating the spread of the particle size distribution of the secondary particles [(d90 ⁇ d10) / average particle size] is 0.65 or less. is there, It is characterized by that.
  • the additive element (M) is uniformly distributed inside the secondary particles and / or uniformly covers the surface of the secondary particles.
  • a reaction aqueous solution is formed by supplying a raw material aqueous solution containing at least a transition metal and an aqueous solution containing an ammonium ion supplier into a reaction vessel.
  • the present invention relates to a method for producing a transition metal-containing composite hydroxide that is a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery by a deposition reaction.
  • the method for producing the transition metal-containing composite hydroxide of the present invention includes: A nucleation step of adjusting the pH value of the reaction aqueous solution at a reference temperature of 25 ° C. to a range of 12.0 to 14.0 and generating nuclei; The pH value of the reaction aqueous solution containing the nuclei obtained in the nucleation step on the basis of a liquid temperature of 25 ° C. is lower than the pH value in the nucleation step and falls within the range of 10.5 to 12.0.
  • a grain growth step for controlling the growth of the nucleus, Adjusting the reaction atmosphere in the initial stage of the nucleation step and the particle growth step to a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less; After the initial stage of the particle growth process, an oxidizing gas is directly introduced into the reaction aqueous solution while continuing the supply of the raw material aqueous solution, thereby changing the reaction atmosphere from the non-oxidizing atmosphere to an oxygen concentration of 5%.
  • the total time for introducing the oxidizing gas is within a range of 1% to 25% with respect to the total time of the particle growth step.
  • the crystallization reaction time in the initial stage of the grain growth process is in the range of 0.5% to 30% with respect to the whole grain growth process time. That is, in the particle growth step, the introduction of the oxidizing gas is preferably started in the range of 0.5% to 30% with respect to the total time of the particle growth step from the start of the particle growth step. .
  • the method further includes a coating step of coating the transition metal-containing composite hydroxide with a compound containing at least a part of the additive element (M) after the particle growth step.
  • the positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention is a positive electrode active material for a nonaqueous electrolyte secondary battery comprising a lithium transition metal-containing composite oxide, Consists of secondary particles formed by agglomeration of primary particles,
  • the secondary particles include at least one outer shell formed by agglomeration of primary particles, at least one of the outer shell that is present inside the outer shell and is electrically and structurally connected to the outer shell.
  • An agglomerated part in which primary particles are agglomerated, and a space part that is present inside the outer shell part and in which at least one primary particle does not exist
  • the average particle size of the secondary particles is in the range of 1 ⁇ m to 15 ⁇ m, and ((d90 ⁇ d10) / average particle size), which is an index indicating the spread of the particle size distribution of the secondary particles, is 0.7 or less,
  • the surface area per unit volume is 1.7 m 2 / cm 3 or more, It is characterized by that.
  • BET specific surface area of the positive active material is preferably in the range of 0.7m 2 /g ⁇ 5.0m 2 / g.
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is as follows. Mixing the transition metal-containing composite hydroxide and a lithium compound to form a lithium mixture; A firing step of firing the lithium mixture formed in the mixing step in an oxidizing atmosphere at a temperature ranging from 650 ° C. to 980 ° C .; It is characterized by providing.
  • the lithium mixture is adjusted such that the ratio of the sum of the number of atoms of metals other than lithium contained in the lithium mixture to the number of lithium atoms is in the range of 1: 0.95 to 1.5. It is preferable to adjust to.
  • M is Mg, Ca, Al, Ti , V, Cr, Zr, Nb, Mo, Hf, Ta, W) and a positive electrode active comprising a hexagonal lithium transition metal-containing composite oxide having a layered structure It can be suitably applied to the production of a substance.
  • an additive element (M) can also be added and mixed with the said transition metal containing composite hydroxide and a lithium compound in the said mixing process.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is used as the positive electrode material of the positive electrode. It is characterized by.
  • the present invention it is possible to provide a positive electrode active material that can simultaneously improve battery capacity, output characteristics, and cycle characteristics of a nonaqueous electrolyte secondary battery, and a transition metal-containing composite hydroxide that is a precursor thereof.
  • these positive electrode active materials and transition metal-containing composite hydroxides can be efficiently produced in industrial scale production. Therefore, according to the present invention, a nonaqueous electrolyte secondary battery having excellent battery characteristics is provided at a low cost. Therefore, the industrial significance of the present invention is very great.
  • FIG. 1 is an FE-SEM photograph (observation magnification: 5,000 times) showing a cross section of secondary particles constituting the transition metal-containing composite hydroxide obtained in Example 1.
  • FIG. 2 is an FE-SEM photograph (observation magnification: 5,000 times) showing a cross section of secondary particles constituting the positive electrode active material obtained in Example 1.
  • FIG. 3 is an FE-SEM photograph (observation magnification: 5,000 times) showing a cross section of the secondary particles constituting the positive electrode active material obtained in Example 11.
  • 4 is an FE-SEM photograph (observation magnification: 5,000 times) showing a cross section of secondary particles constituting the transition metal-containing composite hydroxide obtained in Comparative Example 1.
  • FIG. 5 is an FE-SEM photograph (observation magnification: 5,000 times) showing a cross section of secondary particles constituting the positive electrode active material obtained in Comparative Example 1.
  • 6 is an FE-SEM photograph (observation magnification: 5,000 times) showing a cross section of secondary particles constituting the transition metal-containing composite hydroxide obtained in Comparative Example 2.
  • FIG. 7 is an FE-SEM photograph (observation magnification: 5,000 times) showing a cross section of secondary particles constituting the positive electrode active material obtained in Comparative Example 2.
  • FIG. 8 is a schematic cross-sectional view of a 2032 type coin battery used for battery evaluation.
  • FIG. 9 is a schematic explanatory diagram of an impedance evaluation measurement example and an equivalent circuit used for analysis.
  • positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter referred to as “positive electrode active material”) based on conventional techniques such as WO2014 / 181891 Researched earnestly.
  • positive electrode active material a positive electrode active material for a non-aqueous electrolyte secondary battery
  • the reaction atmosphere can be switched in a short time by supplying the atmospheric gas directly into the reaction aqueous solution while continuing the supply of the raw material aqueous solution.
  • the high-density layer of secondary particles constituting the transition metal-containing composite hydroxide has a high-density portion formed by agglomeration of plate-like primary particles in the low-density layer, so that the central portion and / or other It will be connected to the high density layer.
  • the outer shell portion and the aggregated portion of primary particles inside the outer shell portion are electrically connected, And the knowledge that the internal resistance of a positive electrode active material could be reduced significantly was also acquired, since the path
  • the present invention has been completed based on these findings.
  • Transition metal-containing composite hydroxide and method for producing the same 1-1.
  • Transition metal-containing composite hydroxide (1) Particle structure a) Structure of secondary particles
  • the transition metal-containing composite hydroxide of the present invention (hereinafter referred to as “composite hydroxide”) is composed of plate-like primary particles and the plate-like particles. It consists of secondary particles formed by agglomerating fine primary particles smaller than the primary particles.
  • the secondary particles have a center portion formed by aggregation of plate-like primary particles, and a low-density layer formed by aggregation of plate-like primary particles and fine primary particles outside the center portion, and a plate At least one laminated structure in which a high-density layer formed by agglomeration of primary particles is laminated.
  • the high-density layer is connected to the central portion and / or another high-density layer by a high-density portion formed by aggregation of plate-like primary particles in the low-density layer.
  • the obtained positive electrode active material is composed of secondary particles formed by agglomerating primary particles, and at least the outer shell part where the primary particles are aggregated and the central part and / or other high-density layers are sintered.
  • agglomerated part where at least one primary particle is aggregated It becomes a structure provided with the space part in which at least 1 primary particle does not exist.
  • the low density portion existing in the low density layer undergoes sintering shrinkage, a space portion where no primary particles exist is formed on the inner diameter side of the outer shell portion.
  • the high-density part in the low-density layer functions as a connecting part that electrically and structurally connects the outer shell part and the aggregated part by agglomerating primary particles due to the sintering shrinkage.
  • the secondary particles constituting the positive electrode active material of the present invention not only can the surface area of the secondary particles be sufficiently secured due to the presence of the space portions and the connecting portions, but also the outer shell portion and the inside thereof. Since it has a structure in which the agglomerates are connected, particle density and particle strength can be improved. For this reason, in the secondary battery using the positive electrode active material having such a structure as the positive electrode material, the output characteristics, battery capacity, and cycle characteristics can be simultaneously improved.
  • the outer shell portion and the inner shell portion are constituted by a shell-like structure that is electrically and structurally connected to each other and to the center portion by a connecting portion.
  • the structure in which these primary particles are aggregated including the central part may be composed of a plurality of aggregates due to the degree of sintering shrinkage as described later.
  • the present invention includes a structure in which the low density layer is partially formed outside the central portion.
  • the positive electrode active material has a structure in which a large number of spaces are dispersed outside the center, and an outer shell is formed on the outside, or an inner shell and an outer shell are formed. It becomes a structure.
  • the central part of the secondary particles constituting the composite hydroxide may be in a state where a plurality of aggregated particles formed by aggregating plate-like primary particles are connected.
  • a structure in which a low density layer and a high density layer having a high density portion are formed outside a central portion made of agglomerated portions connected to each other is obtained.
  • the fine primary particles constituting the low-density layer excluding the high-density portion have an average particle size in the range of 0.01 ⁇ m to 0.3 ⁇ m. It is preferable that the thickness is in the range of 0.1 ⁇ m to 0.3 ⁇ m. If the average particle size of the fine primary particles is less than 0.01 ⁇ m, a sufficiently large low density layer may not be formed. On the other hand, when the average particle size of the fine primary particles exceeds 0.3 ⁇ m, the shrinkage during firing does not proceed in the low temperature region, and the difference in shrinkage between the low density layer and the central portion and the high density layer becomes small. There is a case where a sufficiently large space is not formed inside the outer shell of the substance.
  • the shape of such fine primary particles is preferably a plate shape and / or a needle shape. Thereby, the density difference between the low-density layer and the central portion and the high-density layer can be made sufficiently large.
  • the fine primary particles may include particles having a shape such as a rectangular parallelepiped shape, an elliptical shape, and a ridged surface shape.
  • the average particle diameter of the fine primary particles and the plate-like primary particles described below is obtained by embedding the composite hydroxide in a resin or the like and making the cross-section observable by a cross-section polisher process. It can be observed as follows using a scanning electron microscope (SEM). First, the maximum diameter of 10 or more fine primary particles or plate-like primary particles present in the cross section of the secondary particles is measured, the average value is obtained, and this value is obtained as the fine primary particles or plate-like particles in the secondary particles. The primary particle size. Next, the particle size of fine primary particles or plate-like primary particles is obtained in the same manner for 10 or more secondary particles. Finally, the average particle size of the fine primary particles or plate-like primary particles can be determined by averaging the particle sizes of the fine primary particles or plate-like primary particles in these secondary particles.
  • SEM scanning electron microscope
  • the plate-like primary particles forming the central portion, the high-density layer, and the high-density portion of the secondary particles constituting the composite hydroxide have an average particle size in the range of 0.3 ⁇ m to 3 ⁇ m. Preferably, it is in the range of 0.4 ⁇ m to 1.5 ⁇ m, more preferably in the range of 0.4 ⁇ m to 1.0 ⁇ m. If the average particle size of one plate-like particle is less than 0.3 ⁇ m, the shrinkage during firing starts from the low temperature range, and the difference in shrinkage between these layers and the low density layer becomes small, so the inside of the outer shell of the positive electrode active material In addition, a sufficiently large space may not be formed.
  • the average particle size of the plate-like primary particles exceeds 3 ⁇ m, in order to make the positive electrode active material have sufficient crystallinity, it must be fired at a high temperature. It progresses and it becomes difficult to control the average particle diameter and particle size distribution of the positive electrode active material within a predetermined range.
  • the plate-like primary particles may include particles having a rectangular parallelepiped shape, an elliptical shape, a ridged surface shape, or the like depending on the composition of the composite hydroxide. However, the primary particles of these shapes are also included in the plate-like primary particles as long as they have an average particle size in the above range.
  • the structure of the central part of the secondary particles and the high density layer itself changes in the positive electrode active material
  • the ratio of the outer diameter of the central portion and the thickness of the high-density layer to the particle diameter is generally maintained in the positive electrode active material using this as a precursor. Therefore, in the composite hydroxide stage, the basic particle structure of the positive electrode active material can be easily controlled by appropriately controlling the ratio of the thickness of the central portion and the high density layer to the particle size of the secondary particles. be able to.
  • the average value of the ratio of the outer diameter of the central portion to the particle size of the secondary particles (hereinafter referred to as “the central particle size”).
  • the ratio is preferably in the range of 30% to 80%, more preferably in the range of 40% to 75%.
  • the average value of the ratio of the thickness of the high density layer to the particle size of the secondary particles is preferably in the range of 5% to 25%. A range of 20% is more preferable. Thereby, not only can the size of the low-density layer be ensured, but also excessive shrinkage of the high-density layer during firing can be suppressed.
  • the center part particle size ratio and the high-density layer particle size ratio can be obtained as follows using a cross-sectional SEM photograph of the secondary particles.
  • the thickness of the high-density layer is measured at three or more arbitrary positions per particle, and the average value is obtained.
  • the thickness of the high-density layer is a distance between two points at which the distance from the outer periphery of the secondary particles to the boundary between the high-density layer and the low-density layer is the shortest.
  • the maximum distance between two points on the outer periphery of the central part and between the two points on the outer periphery of the secondary particles is measured, and these values are taken as the outer diameter of the central part and the particle diameter of the secondary particles, respectively.
  • the ratio of the outer diameter of the central portion to the particle size of the secondary particles and the high-density layer is obtained.
  • the same measurement is performed on ten or more secondary particles, and the average value is calculated, whereby the central particle size ratio and the high-density layer particle size ratio with respect to the particle size of the secondary particles can be obtained.
  • the central particle size ratio of the secondary particles is preferably in the range of 15% to 70%, 20% It is more preferably in the range of -70%, and further preferably in the range of 25% -65%.
  • the average value of the ratio of the total thickness of the plurality of high-density layers to the particle diameter of the secondary particles is 10% to 40%.
  • the range is preferably in the range of 15% to 35%.
  • the ratio of the thickness per layer of the high-density layer to the particle size of the secondary particles is preferably in the range of 5% to 25%. More preferably, the content is in the range of% to 20%.
  • the ratio of the center particle size to the particle size of the secondary particles is the same except that the thickness is measured for each of the plurality of high-density layers.
  • the layer particle size ratio and the high density layer 1 layer particle size ratio can be determined.
  • the average particle size of the secondary particles is adjusted in the range of 1 ⁇ m to 15 ⁇ m, preferably in the range of 3 ⁇ m to 12 ⁇ m, more preferably in the range of 3 ⁇ m to 10 ⁇ m. .
  • the average particle size of the secondary particles correlates with the average particle size of the positive electrode active material having the composite hydroxide as a precursor. For this reason, by controlling the average particle size of the secondary particles of the composite hydroxide within such a range, the average particle size of the positive electrode active material having the composite hydroxide as a precursor is controlled within a predetermined range. It becomes possible.
  • the average particle diameter of a secondary particle means a volume reference
  • MV standard average particle diameter
  • the particle size distribution of the positive electrode active material is strongly influenced by the powder characteristics of the composite hydroxide that is the precursor. For this reason, when a composite hydroxide containing a large amount of fine particles and coarse particles is used as a precursor, the positive electrode active material also contains a large amount of fine particles and coarse particles. Therefore, it is impossible to sufficiently improve the characteristics, cycle characteristics, and output characteristics. On the other hand, if the [(d90-d10) / average particle size] is adjusted to 0.65 or less at the stage of the composite hydroxide, the particle size of the positive electrode active material using this as a precursor is adjusted. The distribution can be narrowed, and the above-described problems can be avoided.
  • the lower limit value of [(d90 ⁇ d10) / average particle diameter] in the composite hydroxide is preferably about 0.25.
  • d10 is the number of particles in each particle size accumulated from the smaller particle size side
  • the accumulated volume is 10% of the total volume of all particles
  • d90 is the number of particles similarly accumulated.
  • d10 and d90 can be obtained from the volume integrated value measured with a laser light diffraction / scattering particle size analyzer.
  • composition of the composite hydroxide of the present invention is not limited as long as the secondary particles have the above-described particle structure, average particle size, and particle size distribution. That is, in the present invention, the composite hydroxide is characterized by the particle structure, the average particle size, and the particle size distribution.
  • the present invention has at least a transition metal, specifically, nickel (Ni) as a main transition metal,
  • Ni nickel
  • the present invention can be widely applied to composite hydroxides containing any one of manganese (Mn) and cobalt (Co).
  • the composite hydroxide of the present invention can contain other transition metals and other metals as additive elements in addition to the main transition metal.
  • the composite hydroxide of the present invention is preferably a composite hydroxide mainly composed of nickel, nickel and manganese, or nickel, manganese and cobalt.
  • the general formula (A): Ni x Mn y Co z M t (OH) 2 + a (x + y + z + t 1, 0.3 ⁇ x ⁇ 0.95, 0.05 ⁇ y ⁇ 0.55, 0 ⁇ z ⁇ 0.4, 0 ⁇ t ⁇ 0.1, 0 ⁇ a ⁇ 0.5, where M is a composition represented by Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. It is preferable to have.
  • a positive electrode active material represented by the general formula (B) described later can be easily obtained, and higher battery performance can be realized.
  • the additive element (M) is crystallized together with main transition metals (nickel, manganese, and cobalt) in the crystallization step as described later, although it can be uniformly dispersed in the secondary particles of the composite hydroxide, the surface of the secondary particles of the composite hydroxide may be coated with the additive element (M) after the crystallization step.
  • the compound of the additive element (M) can be mixed with the lithium compound together with the composite hydroxide.
  • the addition of the additional element (M) in the crystallization step, the coating of the additional element (M) in the coating step, and the addition of the additional element (M) in the mixing step may be arbitrarily used together. Regardless of which method is used, it is necessary to adjust the contents of the main transition metal and the additive element (M) so that the composition of the general formula (A) is obtained.
  • the composition range and critical significance of nickel, manganese, cobalt, and the additive element (M) constituting the composite hydroxide are represented by the general formula (B). This is the same as the positive electrode active material. For this reason, description of these matters is omitted here.
  • the crystallization reaction is clearly separated into two stages: a nucleation process that mainly performs nucleation, and a particle growth process that mainly performs nucleation, that is, particle growth.
  • the reaction atmosphere that is, the atmosphere in contact with the reaction aqueous solution is appropriately switched between a non-oxidizing atmosphere and an oxidizing atmosphere
  • the atmosphere structure that is, the oxidizing gas or the inert gas is directly fed into the reaction aqueous solution to switch the reaction atmosphere, thereby providing the above-described particle structure, average particle size, and particle size distribution. It is possible to efficiently obtain a composite hydroxide composed of secondary particles.
  • the present invention it is possible to control the amount of dissolved oxygen in the reaction aqueous solution, which is the reaction field atmosphere, in a short time, and to switch the reaction field atmosphere while continuing the supply of the raw material aqueous solution. It is possible to obtain a composite hydroxide having a secondary particle structure.
  • nucleation process In the nucleation step, first, a transition metal compound as a raw material in this step is dissolved in water to prepare a raw material aqueous solution. At the same time, an alkaline aqueous solution and an aqueous solution containing an ammonium ion supplier are supplied and mixed in the reaction vessel, and the pH value measured on the basis of the liquid temperature of 25 ° C. is in the range of 12.0 to 14.0, and A pre-reaction aqueous solution having an ammonium ion concentration in the range of 3 g / L to 25 g / L is prepared. The pH value of the aqueous solution before reaction can be measured with a pH meter, and the ammonium ion concentration can be measured with an ion meter.
  • the raw material aqueous solution is supplied while stirring the pre-reaction aqueous solution.
  • a nucleation aqueous solution that is a reaction aqueous solution in the nucleation step is formed in the reaction vessel. Since the pH value of this aqueous solution for nucleation is in the above-mentioned range, in the nucleation step, nucleation occurs preferentially with almost no growth of nuclei.
  • the pH value of the aqueous solution for nucleation and the concentration of ammonium ions change with the generation of nuclei. Control is performed so that the concentration of ammonium ions is maintained in the range of 3 g / L to 25 g / L in the range of pH 12.0 to 14.0 on the basis of 25 ° C.
  • an inert gas is circulated in the reaction tank to adjust the reaction atmosphere to a non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less.
  • the pH value of the liquid in the reaction vessel is controlled to be pH 12.5 or less on the basis of the liquid temperature of 25 ° C., and the reaction atmosphere is adjusted, It is preferable to carry out before starting the supply.
  • the center part of the positive electrode active material having this composite hydroxide as a precursor has a solid structure, and it is possible to suppress a decrease in particle density due to the formation of the space part.
  • the adjustment of the reaction atmosphere to the non-oxidizing atmosphere is preferably completed within a range of 10% to 25% with respect to the entire nucleation process time from the start of the nucleation process.
  • the pH value in the nucleation step within a high pH range exceeding 12.5, it is possible to form a low density part in which fine primary particles are aggregated inside the central part. That is, on the high pH side, primary particles that form nuclei tend to be finer, and by controlling the pH value to be in the range of more than 12.5 and not more than 14.0, the growth of nuclei is suppressed, By forming a nucleus in which fine primary particles are aggregated, and further growing the nucleus in a particle growth step, a central portion having a low density portion can be formed therein.
  • the inert gas can be supplied into the reaction tank by either supplying the space in the reaction tank or directly supplying it into the aqueous solution before the reaction.
  • the reaction field atmosphere can be switched from an oxidizing atmosphere to a non-oxidizing atmosphere in the initial stage of the nucleation step, and the switching time can be shortened at this time. Regardless of this, it is possible to form a low density portion in the interior.
  • nucleation step new nuclei are continuously generated by supplying an aqueous solution containing a raw material aqueous solution, an alkaline aqueous solution, and an ammonium ion supplier to the nucleation aqueous solution. Then, when a predetermined amount of nuclei is generated in the aqueous solution for nucleation, the nucleation step is finished.
  • the amount of nucleation can be determined from the amount of the metal compound contained in the raw material aqueous solution supplied to the nucleation aqueous solution.
  • the amount of nuclei generated in the nucleation step is not particularly limited, but in order to obtain composite hydroxide secondary particles having a narrow particle size distribution, the raw material aqueous solution supplied through the nucleation step and the particle growth step is used. It is preferably in the range of 0.1 atomic% to 2 atomic%, more preferably in the range of 0.1 atomic% to 1.5 atomic%, with respect to the metal element in the metal compound contained.
  • the pH value of the aqueous solution for nucleation in the reaction vessel is adjusted to the range of 10.5 to 12.0 based on the liquid temperature of 25 ° C., and the aqueous solution for particle growth, which is the reaction aqueous solution in the particle growth step.
  • the pH value can be adjusted by stopping the supply of the alkaline aqueous solution, but in order to obtain secondary particles of the composite hydroxide having a narrow particle size distribution, the supply of all the aqueous solutions is once stopped to reduce the pH value. Is preferably adjusted. Specifically, after the supply of all aqueous solutions is stopped, it is preferable to adjust the pH value by supplying the nucleation aqueous solution with the same kind of inorganic acid as the acid constituting the raw metal compound.
  • the supply of the raw material aqueous solution is resumed while stirring the aqueous solution for particle growth.
  • the pH value of the aqueous solution for particle growth is in the above-described range, almost no new nuclei are generated, particle growth proceeds, and secondary particles of composite hydroxide having a predetermined particle size are formed.
  • the pH value and ammonium ion concentration of the aqueous solution for particle growth change as the particle grows. Therefore, an alkaline aqueous solution and an aqueous ammonia solution are supplied as needed, and the pH value and the ammonium ion concentration are maintained within the above ranges. It is necessary to do.
  • the central part of the secondary particles of the composite hydroxide is formed in the initial stage of the particle growth process while maintaining the non-oxidizing atmosphere in the nucleation process.
  • the supply of the raw material aqueous solution is continued and the oxidizing gas is directly supplied into the reaction aqueous solution, thereby changing the reaction atmosphere from the non-oxidizing atmosphere to an oxygen concentration of 5. Switch to an oxidizing atmosphere that exceeds volume%. Thereby, a low density layer is formed around the center of the secondary particles of the composite hydroxide.
  • the oxidizing atmosphere is switched again to the non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less.
  • a high density layer is formed around the center of the secondary particles of the composite hydroxide and the low density layer.
  • such atmosphere control is performed at least once.
  • the control of the reaction atmosphere in which switching from the non-oxidizing atmosphere to the oxidizing atmosphere and switching from the oxidizing atmosphere to the non-oxidizing atmosphere can be repeated.
  • the supply and stirring of the raw material aqueous solution, the aqueous alkali solution, and the aqueous solution containing the ammonium ion supplier are temporarily stopped, and the nuclei and secondary particles in the aqueous solution for particle growth are allowed to settle, and the supernatant of the aqueous solution for particle growth is obtained. It is preferable to discharge the liquid.
  • the relative concentration of the mixed aqueous solution in the aqueous solution for particle growth can be increased, so that stagnation of particle growth is prevented and the particle size distribution of the resulting composite hydroxide secondary particles is in a suitable range.
  • the density of the secondary particles as a whole can be improved.
  • the particle size of the secondary particles of the composite hydroxide obtained as described above depends on the time of the particle growth step and the nucleation step, the pH value of the aqueous solution for nucleation and aqueous solution for particle growth, and the supply amount of the raw material aqueous solution. Can be controlled. For example, by performing the nucleation step at a high pH value or by increasing the time of the particle generation step, the amount of the metal compound contained in the supplied raw material aqueous solution is increased, and the amount of nucleation generated is increased. The particle diameter of the secondary particles of the composite hydroxide to be produced can be reduced. On the other hand, by suppressing the amount of nuclei generated in the nucleation step, it is possible to increase the particle size of the resulting composite hydroxide secondary particles.
  • a component adjustment aqueous solution adjusted to a pH value and ammonium ion concentration suitable for the particle growth step is prepared separately from the nucleation aqueous solution, A nucleation aqueous solution after the nucleation step, preferably a solution obtained by removing a part of the liquid component from the nucleation aqueous solution after the nucleation step, is added and mixed to form an aqueous solution for particle growth. You may go.
  • the reaction aqueous solution in each step can be controlled to an optimum state.
  • the pH value of the aqueous solution for particle growth can be controlled within the optimum range from the start of the particle growth step, the particle size distribution of the resulting composite hydroxide secondary particles can be made narrower.
  • an inert gas is supplied into the reaction vessel before the start of the particle growth process so that the non-oxidizing atmosphere has an oxygen concentration of 5% by volume or less from the beginning of the initial stage of the particle growth process. It is preferable.
  • the transition metal compound for preparing the raw material aqueous solution is not particularly limited, but from the viewpoint of ease of handling, it is preferable to use water-soluble nitrate, sulfate, hydrochloride, etc. From the viewpoint of preventing contamination, it is particularly preferable to use sulfate.
  • the composite hydroxide contains at least one additive element (M) selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W.
  • the compound for supplying the additive element (M) is preferably a water-soluble compound, for example, magnesium sulfate, calcium sulfate, aluminum sulfate, titanium sulfate, ammonium peroxotitanate, potassium potassium oxalate.
  • Vanadium sulfate, ammonium vanadate, chromium sulfate, potassium chromate, zirconium sulfate, niobium oxalate, ammonium molybdate, hafnium sulfate, sodium tantalate, sodium tungstate, ammonium tungstate and the like can be suitably used.
  • the concentration of the raw material aqueous solution is the total of the metal compounds, preferably in the range of 1 mol / L to 2.6 mol / L, more preferably in the range of 1.5 mol / L to 2.2 mol / L.
  • concentration of the raw material aqueous solution is less than 1 mol / L, the amount of crystallized material per reaction tank decreases, and thus the productivity is lowered.
  • concentration of the mixed aqueous solution exceeds 2.6 mol / L, it exceeds the saturation concentration at room temperature, and thus the crystals of the respective metal compounds may reprecipitate and clog piping and the like.
  • the above-mentioned metal compound does not necessarily have to be supplied to the reaction vessel as a raw material aqueous solution.
  • a crystallization reaction is performed using a metal compound that reacts when mixed to produce a compound other than the target compound, the total concentration of all the metal compound aqueous solutions is in the above range.
  • an aqueous metal compound solution may be prepared and supplied into the reaction vessel at a predetermined rate as an aqueous solution of individual metal compounds.
  • the supply amount of the raw material aqueous solution is such that the concentration of the product in the particle growth aqueous solution is preferably in the range of 30 g / L to 200 g / L, more preferably 80 g / L to 150 g / L at the end of the particle growth step. To be in the range.
  • the concentration of the product is less than 30 g / L, the primary particles may be insufficiently aggregated.
  • the metal salt aqueous solution for nucleation or the metal salt aqueous solution for particle growth does not sufficiently diffuse in the reaction vessel, and the particle growth may be biased.
  • the aqueous alkali solution for adjusting the pH value in the aqueous reaction solution is not particularly limited, and a general aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used.
  • the alkali metal hydroxide can be directly added to the reaction aqueous solution, but it is preferably added as an aqueous solution in view of easy pH control.
  • the concentration of the aqueous alkali metal hydroxide solution is preferably in the range of 20% by mass to 50% by mass, more preferably in the range of 20% by mass to 30% by mass.
  • the supply method of the aqueous alkali solution is not particularly limited as long as the pH value of the aqueous reaction solution does not increase locally and is maintained within a predetermined range.
  • the reaction aqueous solution may be supplied by a pump capable of controlling the flow rate such as a metering pump while sufficiently stirring.
  • Aqueous solution containing ammonium donor is not particularly limited.
  • aqueous ammonia or an aqueous solution of ammonium sulfate, ammonium chloride, ammonium carbonate, or ammonium fluoride is used. Can do.
  • the concentration is preferably in the range of 20% by mass to 30% by mass, more preferably in the range of 22% by mass to 28% by mass.
  • the supply method of the aqueous solution containing an ammonium ion supplier can also be supplied by a pump capable of controlling the flow rate, similarly to the alkaline aqueous solution.
  • the pH value of the aqueous solution for nucleation which is a reaction aqueous solution, is in the range of 12.0 to 14.0, preferably 12. It is necessary to control in the range of 3 to 13.5, more preferably in the range of more than 12.5 and 13.3. Thereby, it is possible to suppress the growth of nuclei and prioritize the nucleation, and the nuclei generated in this step can be homogeneous and have a narrow particle size distribution. Further, as described above, by setting the pH value to exceed 12.5, it is possible to form a low density portion inside the central portion of the secondary particle of the composite hydroxide.
  • the pH value is less than 12.0, particle growth proceeds with nucleation, so that the particle size of secondary particles of the resulting composite hydroxide becomes non-uniform and particle size distribution deteriorates.
  • the pH value exceeds 14.0, the nuclei to be produced become too fine, which causes a problem that the aqueous solution for nucleation gels.
  • the pH value of the aqueous solution for particle growth which is the reaction aqueous solution, is in the range of 10.5 to 12.0, preferably 11.0 to 12.0, based on the liquid temperature of 25 ° C. It is necessary to control within the range, more preferably within the range of 11.5 to 12.0. Thereby, generation of new nuclei is suppressed, it is possible to prioritize particle growth, and the resulting secondary particles of the composite hydroxide can be made homogeneous and have a narrow particle size distribution.
  • the fluctuation range of the pH value during the crystallization reaction is preferably controlled within ⁇ 0.2.
  • the fluctuation range of the pH value is large, the amount of nucleation or the rate of particle growth is not constant, and it becomes difficult to obtain a composite hydroxide composed of secondary particles having a narrow particle size distribution.
  • the pH value when the pH value is 12.0, it is a boundary condition between nucleation and nucleation, so it should be either nucleation process or particle growth process depending on the presence or absence of nuclei present in the reaction aqueous solution. Can do. That is, if the pH value of the nucleation step is higher than 12.0 and a large amount of nuclei are produced, and then the pH value of the particle growth step is 12.0, a large amount of nuclei exist in the reaction aqueous solution. Growth occurs preferentially, and secondary particles of composite hydroxide having a narrow particle size distribution can be obtained.
  • the pH value of the nucleation step is 12.0, there is no nucleus that grows in the reaction aqueous solution, so nucleation occurs preferentially, and the pH value of the particle growth step is made smaller than 12.0.
  • the produced nuclei grow and secondary particles of composite hydroxide having good particle properties can be obtained.
  • the pH value of the particle growth process may be controlled to a value lower than the pH value of the nucleation process.
  • the pH value of the particle growth process is It is preferably 0.5 or more lower than the pH value of the production step, more preferably 1.0 or more.
  • the control of the reaction atmosphere is important in addition to the control of the pH value in each step. That is, by controlling the pH value in each step and adjusting the reaction atmosphere in the initial stage of the nucleation step and the particle growth step to a non-oxidizing atmosphere, nuclei are generated, and then each nuclei is granulated. By growing, a central portion in which the plate-like primary particles are aggregated is formed. In the middle of the particle growth process, supply the oxidizing gas directly into the reaction aqueous solution while continuing the supply of the raw material aqueous solution to quickly switch the reaction atmosphere in the reaction field from the non-oxidizing atmosphere to the oxidizing atmosphere.
  • a low-density layer in which plate-like primary particles and fine primary particles are aggregated is formed outside the central portion, and further, by supplying the inert gas directly into the reaction aqueous solution while continuing the supply of the raw material aqueous solution.
  • the reaction atmosphere in the stage of forming at least the outermost and high-density layer of the central part of the secondary particles of the composite hydroxide is controlled to a non-oxidizing atmosphere.
  • the mixed atmosphere of oxygen and inert gas may be controlled so that the oxygen concentration in the reaction atmosphere is 5% by volume or less, preferably 2% by volume or less, more preferably 1% by volume or less. Necessary.
  • the central part of the particles and the high-density layer can have a structure in which plate-like primary particles having an average particle diameter in the range of 0.3 ⁇ m to 3 ⁇ m and a narrow particle size distribution are aggregated.
  • the reaction atmosphere is controlled to be an oxidizing atmosphere.
  • the oxygen concentration in the reaction atmosphere is controlled so as to exceed 5% by volume, preferably 10% by volume or more, more preferably the atmospheric air (oxygen concentration: 21% by volume).
  • the average particle diameter of the primary particles is 0.01 ⁇ m to 0 ⁇ m. It is possible to form a low-density layer having a sufficient density difference from the above-described central portion and high-density layer so as to be in a range of .3 ⁇ m.
  • the upper limit of the oxygen concentration in the reaction atmosphere at this stage is not particularly limited, but if the oxygen concentration is excessively high, the average particle size of the primary particles becomes less than 0.01 ⁇ m, and the low-density layer is sufficient. It may not be the size. For this reason, the oxygen concentration is preferably 30% by volume or less. In order to clarify the low-density layer, the center portion, and the high-density layer, it is preferable to set the difference in oxygen concentration before and after switching the atmosphere to 3% by volume or more.
  • the total time for introducing the oxidizing gas is preferably in the range of 1% to 25%, more preferably in the range of 1% to 20% with respect to the total time of the particle growth process. preferable.
  • the total crystallization reaction time in the oxidizing atmosphere is less than 1% with respect to the entire particle growth process time, a low-density layer is not sufficiently formed on the secondary particles of the composite hydroxide, and this composite water In the positive electrode active material using an oxide as a precursor, the size of the space may not be sufficient.
  • the crystallization reaction time in the initial stage of the particle growth process is The total particle growth process time is preferably in the range of 0.5% to 30%, more preferably in the range of 1% to 20%. That is, the introduction of the oxidizing gas is preferably performed in the range of 0.5% to 30%, more preferably in the range of 1% to 20% with respect to the entire particle growth process time from the start of the particle growth process. Start and switch from non-oxidizing atmosphere to oxidizing atmosphere.
  • the switching time from the non-oxidizing atmosphere to the oxidizing atmosphere is about 0.5% to 2% with respect to the entire particle growth process time. .
  • the atmosphere in the reaction field that is, the amount of dissolved oxygen in the reaction aqueous solution changes following the oxygen concentration in the reaction vessel almost without any time difference. Therefore, the atmosphere switching time can be confirmed by measuring the oxygen concentration in the reaction vessel.
  • the atmospheric gas is supplied to the space in the reaction tank, there is a time difference between the amount of dissolved oxygen in the reaction aqueous solution and the change in the oxygen concentration in the reaction tank. Therefore, the reaction is continued until the oxygen concentration in the reaction tank is stabilized. The amount of dissolved oxygen in the aqueous solution cannot be confirmed.
  • the switching time of the atmosphere confirmed by the oxygen concentration in the reaction tank may be regarded as the switching time of the dissolved oxygen amount of the reaction aqueous solution as the reaction field atmosphere. it can.
  • the crystallization reaction time in the oxidizing atmosphere after switching is preferably in the range of 1% to 25%, more preferably in the range of 1% to 20% with respect to the entire particle growth process time. That is, the inert gas in the reaction aqueous solution is preferably in the range of 1% to 25%, more preferably in the range of 1% to 20% with respect to the entire particle growth process time from the start of the introduction of the oxidizing gas. Is started to switch from an oxidizing atmosphere to a non-oxidizing atmosphere.
  • the switching time of the reaction atmosphere from the oxidizing atmosphere to the non-oxidizing atmosphere is about 1% to 5% with respect to the whole grain growth process.
  • the crystallization reaction time until the end of the particle growth process in the non-oxidizing atmosphere after the final switching (the end of the crystallization reaction) is preferably 50% to 98.5 with respect to the entire particle growth process time. %, Preferably in the range of 50% to 80%.
  • the initial stage crystallization reaction time is preferably in the range of 0.5% to 30%, more preferably in the range of 1% to 20%, with respect to the entire grain growth process time. That is, the direct introduction of the oxidizing gas from the beginning of the particle growth process, preferably in the range of 0.5% to 30%, more preferably in the range of 1% to 20% with respect to the entire time of the particle growth process.
  • the direct introduction of the inert gas is started to switch from the oxidizing atmosphere to the non-oxidizing atmosphere, and from the start of the direct introduction of the inert gas,
  • the direct introduction of the oxidizing gas is resumed in the range of 5% to 40%, more preferably in the range of 5% to 35%, and the oxidation from the non-oxidizing atmosphere with respect to the whole grain growth process time.
  • the direct introduction of the inert gas preferably in the range of 0.5% to 20%, more preferably in the range of 0.5% to 15%, with respect to the entire particle growth process time.
  • the end of the grain growth process in the non-oxidizing atmosphere after the final switching, that is, the crystallization reaction time until the end of the crystallization reaction is preferably in the range of 40% to 80% with respect to the entire grain growth process time. More preferably, it is in the range of 50% to 70%.
  • the total crystallization reaction time in the oxidizing atmosphere in the grain growth step is preferably in the range of 1% to 25%, more preferably in the range of 1% to 20% with respect to the whole grain growth step time. And By switching the reaction atmosphere at such timing, it is possible to control the size of the central portion and the thickness of the high-density layer within a suitable range.
  • switching of the reaction atmosphere during the crystallization step is performed by circulating an atmospheric gas in the reaction vessel, more specifically, in the gas phase portion of the reaction vessel, or in the reaction aqueous solution with an inner diameter of 1 mm to In general, it is performed by inserting a conduit of about 50 mm and bubbling with an atmospheric gas.
  • the raw material in the particle growth step, is used for switching from the non-oxidizing atmosphere to the oxidizing atmosphere and from the oxidizing atmosphere to the non-oxidizing atmosphere. While the supply of the aqueous solution is continued, the atmospheric gas is directly supplied into the reaction aqueous solution to switch the atmosphere.
  • the reaction field atmosphere in the reaction aqueous solution is a state where a non-oxidizing atmosphere region and an oxidizing atmosphere region are mixed, or a boundary between non-oxidizing and oxidizing properties. It becomes an atmosphere, and it will be in the state which goes back and forth between a non-oxidizing atmosphere and an oxidizing atmosphere.
  • the time required for switching the reaction atmosphere (switching time) by directly introducing an oxidizing gas or an inert gas into the reaction aqueous solution is as long as secondary particles of the composite hydroxide having the above structure can be obtained.
  • the switching time from the non-oxidizing atmosphere to the oxidizing atmosphere by direct introduction of the oxidizing gas is usually 0.5% with respect to the entire particle growth process time.
  • the switching time from the oxidizing atmosphere to the non-oxidizing atmosphere by the direct introduction of the inert gas is about 1% to 5% with respect to the whole particle growth process time.
  • the means for supplying the atmospheric gas into the aqueous reaction solution needs to be means capable of directly supplying the atmospheric gas into the aqueous reaction solution.
  • an air diffuser As such means, for example, it is preferable to use an air diffuser.
  • the diffuser tube is constituted by a conduit having a large number of fine pores (mesh) on the surface, and can release a large number of fine gases (bubbles) in the liquid. Therefore, the contact area between the reaction aqueous solution and the bubbles is large, and the atmosphere gas The switching time can be easily controlled according to the supply amount.
  • an air diffuser it is preferable to use a ceramic tube excellent in resistance under a high pH environment.
  • the smaller the hole diameter of the air diffusing tube the more fine bubbles can be released, so that the reaction atmosphere can be switched with high efficiency.
  • the atmosphere can be similarly switched with high efficiency.
  • ammonium ion concentration in the reaction aqueous solution is preferably maintained at a constant value in the range of 3 g / L to 25 g / L, more preferably in the range of 5 g / L to 20 g / L. Since ammonium ions function as a complexing agent in the reaction aqueous solution, if the ammonium ion concentration is less than 3 g / L, the solubility of the metal ions cannot be kept constant, and the reaction aqueous solution is easily gelled. In addition, it becomes difficult to obtain secondary particles of composite hydroxide having a uniform particle size. On the other hand, when the ammonium ion concentration exceeds 25 g / L, the solubility of metal ions becomes too high, so that the amount of metal ions remaining in the reaction aqueous solution increases, resulting in a composition shift.
  • the solubility of metal ions fluctuates, and secondary particles of composite hydroxide having a uniform composition are not formed. For this reason, it is preferable to control the fluctuation range of the ammonium ion concentration within a certain range through the nucleation step and the particle growth step, and specifically, it is preferable to control the fluctuation range of ⁇ 5 g / L.
  • reaction temperature The temperature of the aqueous reaction solution (reaction temperature) is preferably controlled to 20 ° C. or more, more preferably 20 ° C. to 60 ° C. throughout the nucleation step and the particle growth step. If the reaction temperature is less than 20 ° C, nucleation is likely to occur due to the low solubility of the aqueous reaction solution, and it is difficult to control the average particle size and particle size distribution of the secondary particles of the resulting composite hydroxide. Become.
  • the upper limit of the reaction temperature is not particularly limited, but when it exceeds 60 ° C., the volatilization of ammonia is promoted, and an ammonium ion supplier that is supplied to control ammonium ions in the aqueous reaction solution within a certain range. As a result, the amount of the aqueous solution containing water increases and the production cost increases.
  • the additive element (M) is uniformly dispersed inside the secondary particles by adding a compound containing the additive element (M) to the raw material aqueous solution.
  • a compound containing the additive element (M) to the raw material aqueous solution.
  • the surface of the secondary particle of the composite hydroxide contains the additive element (M) after the particle growth step. It is preferable to perform a coating step of coating with a compound.
  • the coating method is not particularly limited as long as the secondary particles of the composite hydroxide can be uniformly coated with the compound containing the additive element (M).
  • an aqueous solution (a coating aqueous solution) in which a compound containing an additive element (M) is dissolved is added to the slurry of the composite hydroxide.
  • the composite hydroxide secondary particles uniformly coated with the compound containing the additive element (M) can be obtained.
  • an alkoxide solution of the additive element (M) may be added to the composite hydroxide slurry instead of the coating aqueous solution.
  • the secondary particles may be coated by spraying the composite hydroxide with an aqueous solution or slurry in which the compound containing the additive element (M) is dissolved without drying the composite hydroxide.
  • the slurry in which the compound hydroxide and the compound containing the additive element (M) are suspended is spray-dried, or the compound containing the compound hydroxide and the additive element (M) is mixed by a solid phase method. It is also possible to coat by this method.
  • the composition of the composite hydroxide after the coating process is made to match the composition of the target composite hydroxide.
  • the crystallizing apparatus (reaction vessel) for manufacturing the composite hydroxide of the present invention is particularly limited as long as the reaction atmosphere can be switched by the above-described diffusion tube. There is nothing. However, it is preferable to use a batch crystallizer that does not collect the precipitated product until the crystallization reaction is completed. Unlike the continuous crystallizer that recovers the product by the overflow method, such a crystallizer does not collect the growing particles at the same time as the overflow liquid. A composite hydroxide comprising can be easily obtained. Further, in the method for producing a composite hydroxide of the present invention, it is necessary to appropriately control the reaction atmosphere during the crystallization reaction, and therefore it is preferable to use a sealed crystallization apparatus.
  • the positive electrode active material of the present invention is composed of secondary particles formed by aggregating a plurality of primary particles.
  • the secondary particles are composed of an outer shell portion in which primary particles are aggregated, and at least one primary particle that exists inside the outer shell portion and is electrically and structurally connected to the outer shell portion. And an agglomerated part and a space part that is present inside the outer shell part and in which at least one primary particle does not exist.
  • electrically and structurally connected means that the outer shell, the aggregated portion of the primary particles, and the aggregated portions of the primary particles are structurally formed by a structure such as a connecting portion formed between them. It means that it is in a state where it can be connected to and electrically conductive.
  • the “aggregation part of the primary particles” means a part where the high-density layer other than those forming the central part and the outer shell part of the composite hydroxide secondary particle as a precursor is sintered and contracted
  • the “connecting portion” means a portion of the low density layer where the high density portion is sintered and contracted.
  • the positive electrode active material having such a particle structure since the electrolyte enters the secondary particles through the grain boundaries or spaces between the primary particles, not only the surface of the secondary particles but also the secondary particles. The lithium can be desorbed and inserted even in the interior of the substrate.
  • the positive electrode active material since the positive electrode active material has an outer shell portion and an agglomerated portion that are electrically and structurally connected and has a sufficiently large surface area inside the secondary particles, the positive electrode active material described in WO2014 / 181891 and the like is used. Compared with a substance, it becomes possible to significantly reduce the resistance inside the particle (internal resistance). Further, the presence of the connecting portion can increase the particle density while increasing the particle strength. Therefore, in the secondary battery using this positive electrode active material, output characteristics, battery capacity, and cycle characteristics can be improved at the same time.
  • the center part of the positive electrode active material of the present invention does not necessarily coincide with the center part of the composite hydroxide secondary particles.
  • the reason for this is not clear, but there are contacts (connecting parts) between the high-density layers, and high-density parts that connect the high-density layers randomly in the secondary particles of the composite hydroxide. By doing so, it is presumed that the shrinkage of the secondary particles becomes uneven during firing.
  • the central part is connected to the high-density layer and the high-density part, so it is assumed that the central part is easily affected by the deformation of the secondary particles during firing. Is done.
  • There are various structures such as a structure including a connecting portion that connects the portion, the inner shell portion, and the aggregated portion of the primary particles.
  • any of the central portion, the inner shell portion, and the outer shell portion can be constituted by a plurality of aggregated portions that are electrically and structurally connected to each other.
  • the connecting part is integrated with the outer shell part and the agglomerated part (including the center part and the inner shell part), and the outer shell part and the agglomerated part are substantially directly connected and electrically connected.
  • the positive electrode active material is also within the scope of the present invention.
  • the connection portion between the outer shell portion and the aggregation portion is interpreted as a connection portion.
  • the ratio of the thickness of the outer shell portion to the particle size (hereinafter referred to as “outer shell particle size ratio”) is in the range of 5% to 25%. Is preferably in the range of 5% to 20%, more preferably in the range of 5% to 15%.
  • the outer shell particle size ratio is less than 5%, it is difficult to ensure the particle strength and durability of the positive electrode active material, which may reduce the cycle characteristics of the secondary battery.
  • the outer shell part particle size ratio exceeds 25%, the ratio of the space part is lowered, which may make it difficult to improve the output characteristics of the secondary battery.
  • the outer shell particle size ratio can be obtained as follows using a cross-sectional SEM photograph of the positive electrode active material.
  • the thickness of the outer shell is measured at arbitrary positions of three or more per particle, and the average value is obtained.
  • the thickness of the outer shell portion is a distance between two points at which the distance from the outer periphery of the positive electrode active material to the boundary between the outer shell portion and the space portion is the shortest.
  • the maximum distance between two points on the outer periphery of the positive electrode active material is measured, and this value is taken as the particle size of the positive electrode active material.
  • the ratio of the thickness of the outer shell portion to the particle size of the positive electrode active material is determined by dividing the thickness of the outer shell portion by the particle size of the positive electrode active material. By calculating the average value of 10 or more positive electrode active materials in the same manner, the outer shell particle size ratio can be obtained.
  • a part of the outer shell part may be released due to shrinkage during firing, and the internal space part may be exposed to the outside.
  • the outer shell portion may be determined by assuming that the released portions are connected, and the thickness of the outer shell portion may be measured at a measurable portion.
  • the positive electrode active material of the present invention is characterized in that the space part is dispersed inside the outer shell part, and in any cross section of the positive electrode active material, the outer shell part and the aggregated part of the primary particles
  • the ratio of the area of the space part to the area (hereinafter referred to as “space part ratio”) is preferably in the range of 20% to 60%, and more preferably in the range of 30% to 50%.
  • the space ratio is the ratio of the outer shell portion and the aggregated portion of the primary particles (white portion in FIG. 2) with respect to the space portion (black portion in FIG. 2) for any 10 or more positive electrode active materials in SEM observation of the cross section. Or an area ratio of the light gray portion) and an average value of these can be obtained.
  • the positive electrode active material of the present invention is adjusted so that the average particle size is in the range of 1 ⁇ m to 15 ⁇ m, preferably in the range of 3 ⁇ m to 12 ⁇ m, more preferably in the range of 3 ⁇ m to 10 ⁇ m. If the average particle diameter of the positive electrode active material is in such a range, not only can the battery capacity per unit volume of the secondary battery using this positive electrode active material be increased, but also the safety and output characteristics are improved. can do. On the other hand, when the average particle size is less than 1 ⁇ m, the filling property of the positive electrode active material is lowered, and the battery capacity per unit volume cannot be increased. On the other hand, when the average particle size exceeds 15 ⁇ m, the reaction area of the positive electrode active material is reduced and the interface with the electrolytic solution is reduced, so that it is difficult to improve the output characteristics.
  • the average particle diameter of the positive electrode active material means the volume-based average particle diameter (MV), as in the case of the composite hydroxide secondary particles described above, and is measured by, for example, a laser light diffraction / scattering particle size analyzer. It can be determined from the integrated volume value.
  • MV volume-based average particle diameter
  • Particle size distribution [(d90-d10) / average particle size] which is an index indicating the spread of the particle size distribution of the positive electrode active material of the present invention is 0.7 or less, preferably 0.6 or less, more preferably Is 0.55 or less, and the positive electrode active material of the present invention has a very narrow particle size distribution.
  • Such a positive electrode active material has a small proportion of fine particles and coarse particles, and a secondary battery using the positive electrode material has excellent safety, cycle characteristics, and output characteristics.
  • the lower limit of [(d90 ⁇ d10) / average particle size] is preferably about 0.25.
  • the positive electrode active material of the present invention is required to have a surface area per unit volume of 1.7 m 2 / cm 3 or more, preferably 2.1 m 2 / cm 3 or more. Thereby, the contact area with the electrolytic solution can be increased while ensuring the filling property of the positive electrode active material, so that the output characteristics and the battery capacity can be improved at the same time.
  • the surface area per unit volume can be calculated
  • the positive electrode active material of the present invention can increase the BET specific surface area without decreasing the tap density by providing the particle structure as described above.
  • composition of the positive electrode active material of the present invention is not limited as long as it has the particle structure described above. That is, the present invention is characterized by the particle structure, average particle size, and particle size distribution of the positive electrode active material.
  • the present invention is characterized by at least a transition metal, specifically, nickel (Ni), manganese as the main transition metal.
  • the present invention can be widely applied to positive electrode active materials made of composite oxides containing any one of (Mn) and cobalt (Co).
  • the positive electrode active material of the present invention can contain other transition metals and other metals as additive elements in addition to the main transition metal.
  • the positive electrode active material of the present invention is preferably composed of nickel, nickel and manganese, or a composite oxide mainly composed of nickel, manganese, and cobalt.
  • M is one or more additive elements selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) It can apply suitably with respect to the positive electrode active material represented.
  • the value of u indicating an excess amount of lithium (Li) is preferably ⁇ 0.05 or more and 0.50 or less, more preferably 0 or more and 0.50 or less, and further preferably 0 or more and 0.35 or less.
  • the output characteristics and battery capacity of a secondary battery using this positive electrode active material as the positive electrode material can be improved.
  • the value of u is less than ⁇ 0.05, the positive electrode resistance of the secondary battery increases, and the output characteristics cannot be improved.
  • it exceeds 0.50 not only the initial discharge capacity is reduced, but also the positive electrode resistance is increased.
  • Nickel (Ni) is an element that contributes to increasing the potential and capacity of the secondary battery, and the value x indicating the content thereof is preferably 0.3 or more and 0.95 or less, more preferably 0.8. 3 to 0.9. If the value of x is less than 0.3, the battery capacity of a secondary battery using this positive electrode active material cannot be improved. On the other hand, if the value of x exceeds 0.95, the content of other elements decreases, and the effect cannot be obtained.
  • Manganese (Mn) is an element contributing to the improvement of thermal stability, and the value of y indicating the content thereof is preferably 0.05 or more and 0.55 or less, more preferably 0.10 or more and 0.40 or less. And If the value of y is less than 0.05, the thermal stability of a secondary battery using this positive electrode active material cannot be improved. On the other hand, if the value of y exceeds 0.55, Mn elutes from the positive electrode active material during high temperature operation, and the charge / discharge cycle characteristics deteriorate.
  • Co Co is an element contributing to the improvement of charge / discharge cycle characteristics, and the value of z indicating the content thereof is preferably 0 or more and 0.4 or less, more preferably 0.10 or more and 0.35 or less. To do. When the value of z exceeds 0.4, the initial discharge capacity of the secondary battery using this positive electrode active material is significantly reduced.
  • the positive electrode active material of the present invention may contain an additive element (M) in addition to the metal element described above.
  • additive elements (M) include magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), and niobium (Nb).
  • Mg magnesium
  • Ca calcium
  • Al aluminum
  • Ti titanium
  • V vanadium
  • Cr chromium
  • Zr zirconium
  • Nb niobium
  • Mo molybdenum
  • hafnium hafnium
  • Ta tantalum
  • W tungsten
  • the value of t indicating the content of the additive element (M) is preferably 0 or more and 0.1 or less, more preferably 0.001 or more and 0.05 or less. If the value of t exceeds 0.1, the metal element contributing to the Redox reaction decreases, and the battery capacity decreases.
  • Such an additive element (M) may be uniformly dispersed inside the positive electrode active material particles, or the particle surface of the positive electrode active material may be coated. Furthermore, the surface may be coated after being uniformly dispersed inside the particles. In any case, it is necessary to control the content of the additive element (M) to be in the above range.
  • the value of x in the general formula (B1) is more preferably 0.7 ⁇ x ⁇ 0.9, and 0.7 ⁇ x ⁇ 0.85. More preferably.
  • the BET specific surface area is preferably in the range of 0.7m 2 /g ⁇ 5.0m 2 / g, 1.8m 2 / g ⁇ 5. More preferably, it is in the range of 0 m 2 / g.
  • the positive electrode active material having a BET specific surface area in such a range has a large contact area with the electrolytic solution, and can greatly improve the output characteristics of a secondary battery using the positive electrode active material.
  • the BET specific surface area of the positive electrode active material is less than 0.7 m 2 / g, when a secondary battery is configured, a reaction area with the electrolytic solution cannot be secured, and output characteristics are sufficiently obtained. It becomes difficult to improve.
  • the BET specific surface area of the positive electrode active material exceeds 5.0 m 2 / g, the reactivity with the electrolytic solution becomes too high, and the thermal stability may be lowered.
  • the BET specific surface area of the positive electrode active material can be measured by, for example, the BET method using nitrogen gas adsorption.
  • the tap density which is an index of filling property, is preferably 1.0 g / cm 3 or more, and more preferably 1.3 g / cm 3 or more. .
  • the tap density is less than 1.0 g / cm 3 , the filling property is low, and the battery capacity of the entire secondary battery may not be sufficiently improved.
  • the upper limit of the tap density is not particularly limited, but the upper limit under normal manufacturing conditions is about 3.0 g / cm 3 .
  • the tap density represents the bulk density after tapping the sample powder collected in a container 100 times based on JIS Z-2504, and can be measured using a shaking specific gravity measuring instrument.
  • the method for producing a positive electrode active material of the present invention comprises the above-described composite hydroxide as a precursor, and has a predetermined particle structure, average particle size, and particle size distribution.
  • the positive electrode active material can be synthesized.
  • the above-described composite hydroxide is mixed with a lithium compound to obtain a lithium mixture, and the obtained lithium mixture is 650 ° C. to 650 ° C. in an oxidizing atmosphere. It is preferable to synthesize the positive electrode active material by a manufacturing method including a baking step of baking at a temperature in the range of 980 ° C.
  • the above-described positive electrode active material in particular, the positive electrode active material represented by the general formula (B) can be easily obtained.
  • a heat treatment step may optionally be provided before the mixing step, and the composite hydroxide may be mixed with the lithium compound after forming the heat treated particles.
  • the heat-treated particles include not only the composite hydroxide from which excess water has been removed in the heat treatment step, but also a transition metal composite-containing oxide (hereinafter referred to as “composite”) that has been converted from hydroxide to oxide by the heat treatment step. Oxides), or mixtures thereof.
  • the heat treatment step is a step of removing excess moisture contained in the composite hydroxide by heating the composite hydroxide to a temperature in the range of 105 ° C. to 750 ° C. and performing a heat treatment.
  • moisture content which remains after a baking process can be reduced to a fixed amount, and the dispersion
  • the heating temperature in the heat treatment step is in the range of 105 to 750 ° C. If the heating temperature is less than 105 ° C., excess moisture in the composite hydroxide cannot be removed, and variation may not be sufficiently suppressed. On the other hand, even if the heating temperature exceeds 750 ° C., not only a further effect cannot be expected, but the production cost increases.
  • the atmosphere in which the heat treatment is performed is not particularly limited and may be any non-reducing atmosphere, but is preferably performed in an air stream that can be easily performed.
  • the heat treatment time is not particularly limited, but is preferably at least 1 hour, more preferably in the range of 5 hours to 15 hours, from the viewpoint of sufficiently removing excess moisture in the composite hydroxide.
  • the mixing step is a step of obtaining a lithium mixture by mixing the above-described composite hydroxide or heat-treated particles with a lithium compound.
  • the metal atom other than lithium in the lithium mixture specifically, the sum of the number of atoms (Me) of nickel, cobalt, manganese and the additive element (M) and the number of atoms of Li (Li)
  • the ratio (Li / Me) is in the range of 0.95 to 1.5, preferably in the range of 1.0 to 1.5, more preferably in the range of 1.0 to 1.35, and still more preferably in the range of 1.0 to 1.5. It is necessary to mix the composite hydroxide or heat-treated particles and the lithium compound so as to be in the range of 1.2. That is, since Li / Me does not change before and after the firing step, the composite hydroxide or heat-treated particles and the lithium compound are mixed so that Li / Me in the mixing step becomes Li / Me of the target positive electrode active material. It is necessary to do.
  • the lithium compound used in the mixing step is not particularly limited, but it is preferable to use lithium hydroxide, lithium nitrate, lithium carbonate or a mixture thereof from the viewpoint of availability.
  • lithium hydroxide or lithium carbonate is preferably used in consideration of ease of handling and quality stability.
  • the composite hydroxide or heat-treated particles and the lithium compound are sufficiently mixed so that no fine powder is generated. Insufficient mixing may cause variation in Li / Me among individual particles, and may not provide sufficient battery characteristics.
  • a general mixer can be used for mixing. For example, a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, or the like can be used.
  • the holding time at the above temperature is preferably in the range of 1 hour to 10 hours, and preferably in the range of 3 hours to 6 hours.
  • the atmosphere in the calcination step is preferably an oxidizing atmosphere as in the baking step described later, and more preferably in an oxygen concentration range of 18% by volume to 100% by volume.
  • the lithium mixture obtained in the mixing step is fired under predetermined conditions, and lithium is diffused in the secondary particles of the composite hydroxide or in the heat-treated particles, so that the lithium composite oxide
  • a step of obtaining a positive electrode active material comprising:
  • the composite hydroxide secondary particles and the center portion of the heat-treated particles and the high-density layer are sintered and contracted to form an outer shell portion and an aggregated portion of primary particles in the positive electrode active material.
  • the low-density layer is composed of fine primary particles, the low-density layer starts to be sintered at a lower temperature than the center portion or the high-density layer composed of plate-like single particles larger than the fine primary particles.
  • the low-density layer has a larger shrinkage than the central portion and the high-density layer.
  • the fine primary particles constituting the low-density layer shrink to the center part where the progress of the sintering is slow or to the high-density layer side, and a space part of an appropriate size is formed.
  • the high-density part in the low-density layer shrinks and shrinks while maintaining the connection with the center part and the high-density layer. Therefore, in the obtained positive electrode active material, the outer shell part and the aggregated part of the primary particles Are electrically conductive, and a sufficient cross-sectional area can be secured. As a result, the internal resistance of the positive electrode active material is greatly reduced, and when a secondary battery is configured, the output characteristics can be improved without deteriorating the battery capacity and cycle characteristics.
  • the particle structure of such a positive electrode active material is basically determined according to the particle structure of the secondary particles of the composite hydroxide that is the precursor, but is affected by its composition and firing conditions. Therefore, it is preferable to appropriately adjust the firing conditions according to the composition so that a desired structure is obtained after conducting a preliminary test.
  • the furnace used for the firing step is not particularly limited as long as the lithium mixture can be heated in the atmosphere or in an oxygen stream.
  • an electric furnace that does not generate gas is preferable, and either a batch type or a continuous type electric furnace can be suitably used. The same applies to the furnace used in the heat treatment step and the calcining step.
  • the calcining temperature of the lithium mixture needs to be in the range of 650 ° C to 980 ° C.
  • the firing temperature is less than 650 ° C.
  • lithium is not sufficiently diffused in the composite hydroxide or heat-treated particles, and surplus lithium, unreacted composite hydroxide or heat-treated particles remain, or the obtained lithium composite oxide Insufficient crystallinity.
  • the firing temperature exceeds 980 ° C., the lithium composite oxide particles are vigorously sintered, abnormal grain growth is caused, and the ratio of irregular coarse particles is increased.
  • the firing temperature is preferably in the range of 650 ° C. to 900 ° C.
  • the firing temperature is preferably in the range of 800 ° C. to 980 ° C.
  • the rate of temperature increase in the firing step is preferably in the range of 2 ° C./min to 10 ° C./min, and more preferably in the range of 5 ° C./min to 10 ° C./min. Further, during the firing step, it is preferably maintained at a temperature near the melting point of the lithium compound for 1 hour to 5 hours, more preferably 2 hours to 5 hours. Thereby, the composite hydroxide or the heat-treated particles and the lithium compound can be reacted more uniformly.
  • the holding time at the above-mentioned firing temperature is preferably at least 2 hours, more preferably 4 to 24 hours.
  • the holding time at the calcination temperature is less than 2 hours, lithium does not sufficiently diffuse into the composite hydroxide or heat-treated particles, and excess lithium, unreacted composite hydroxide or heat-treated particles remain, or lithium obtained There is a possibility that the crystallinity of the composite oxide may be insufficient.
  • the cooling rate from the firing temperature to at least 200 ° C. is preferably in the range of 2 ° C./min to 10 ° C./min, preferably in the range of 3 ° C./min to 7 ° C./min. Is more preferable.
  • the firing atmosphere is preferably an oxidizing atmosphere, more preferably an atmosphere having an oxygen concentration in the range of 18% by volume to 100% by volume, and oxygen having the above oxygen concentration and an inert gas. It is particularly preferable to use a mixed atmosphere. That is, firing is preferably performed in the air or in an oxygen stream. When the oxygen concentration is less than 18% by volume, the crystallinity of the lithium composite oxide may be insufficient.
  • Crushing step In the lithium composite oxide obtained by the firing step, aggregation or mild sintering may occur between the particles. In such a case, it is preferable to crush the aggregate or sintered body of the lithium composite oxide. Thereby, the average particle diameter and particle size distribution of the positive electrode active material obtained can be adjusted to a suitable range.
  • Crushing means an operation of loosening the agglomerates by putting mechanical energy into the agglomerates produced by sintering necking between particles during firing, etc., so that the particles themselves are separated almost without destruction. To do.
  • known means can be used, for example, a pin mill or a hammer mill can be used. At this time, it is preferable to adjust the crushing force to an appropriate range so as not to destroy the particles themselves.
  • Nonaqueous electrolyte secondary battery of the present invention includes the same constituent members as those of a general nonaqueous electrolyte secondary battery, such as a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution.
  • a general nonaqueous electrolyte secondary battery such as a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution.
  • the embodiments described below are merely examples, and the present invention is applied to non-aqueous electrolyte secondary batteries in various modifications and improvements based on the embodiments described in the present specification. It is also possible to do.
  • a conductive material and a binder are mixed with the positive electrode active material of the present invention, and activated carbon and a solvent such as viscosity adjustment are added as necessary, and these are kneaded to prepare a positive electrode mixture paste.
  • the mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the nonaqueous electrolyte secondary battery.
  • the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass
  • the content of the positive electrode active material is 60 parts by mass to 95 parts by mass as in the case of the positive electrode of a general nonaqueous electrolyte secondary battery.
  • the conductive material content can be in the range of 1 to 20 parts by mass
  • the binder content can be in the range of 1 to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressure may be applied by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production. Note that the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.
  • the conductive material for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), and carbon black materials such as acetylene black and ketjen black can be used.
  • the binder plays a role of anchoring the active material particles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluoro rubber ethylene propylene diene rubber
  • styrene butadiene cellulose resin
  • poly Acrylic acid can be used.
  • a positive electrode active material, a conductive material and activated carbon can be dispersed and a solvent for dissolving the binder can be added to the positive electrode mixture.
  • a solvent for dissolving the binder can be added to the positive electrode mixture.
  • an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
  • activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
  • Negative electrode metallic lithium, lithium alloy, or the like can be used.
  • a negative electrode active material capable of occluding and desorbing lithium ions is mixed with a binder, and an appropriate solvent is added to form a paste of the negative electrode mixture on the surface of a metal foil current collector such as copper. It is possible to use one that is dried and compressed to increase the electrode density as necessary.
  • the negative electrode active material examples include lithium-containing materials such as metallic lithium and lithium alloys, natural graphite capable of inserting and extracting lithium ions, organic compound fired bodies such as artificial graphite and phenol resin, and carbon materials such as coke.
  • the powdery body can be used.
  • a fluorine-containing resin such as PVDF can be used as the negative electrode binder as in the positive electrode
  • an organic material such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active materials and the binder.
  • a solvent can be used.
  • the separator is disposed between the positive electrode and the negative electrode, and has a function of separating the positive electrode and the negative electrode and holding the electrolyte.
  • a separator for example, a thin film such as polyethylene or polypropylene and a film having many fine pores can be used.
  • the separator is not particularly limited as long as it has the above function.
  • Non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • organic solvent examples include a) cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, b) chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate, c) tetrahydrofuran, 1 type selected from ether compounds such as 2-methyltetrahydrofuran and dimethoxyethane, d) sulfur compounds such as ethylmethylsulfone and butanesultone, e) phosphorus compounds such as triethyl phosphate and trioctyl phosphate.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate
  • chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate
  • LiPF 6 LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used.
  • non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • Nonaqueous electrolyte secondary battery composed of the above positive electrode, negative electrode, separator, and nonaqueous electrolyte solution has various shapes such as a cylindrical shape and a laminated shape. Can do.
  • the positive electrode and the negative electrode are laminated through a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside.
  • the positive electrode terminal and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like, and sealed in a battery case to complete a nonaqueous electrolyte secondary battery. .
  • the nonaqueous electrolyte secondary battery of the present invention uses the positive electrode active material of the present invention as a positive electrode material as described above, battery capacity, output characteristics, and cycle Excellent characteristics. Moreover, it can be said that it is excellent in thermal stability and safety in comparison with a secondary battery using a positive electrode active material made of a conventional lithium transition metal-containing composite oxide.
  • an initial discharge capacity of 150 mAh / g or more, preferably 158 mAh / g or more, and 1.10 ⁇ or less an initial discharge capacity of 150 mAh / g or more, preferably 158 mAh / g or more, and 1.10 ⁇ or less
  • a positive electrode resistance of preferably 1.05 ⁇ or less and a 500 cycle capacity maintenance ratio of 75% or more, preferably 80% or more can be achieved at the same time.
  • the nonaqueous electrolyte secondary battery of the present invention is excellent in all of battery capacity, output characteristics, and cycle characteristics as described above, and is a small portable electronic device that requires these characteristics at a high level. It can be suitably used as a power source for devices (such as notebook personal computers and mobile phones). In addition, the nonaqueous electrolyte secondary battery of the present invention is excellent in safety, and not only can be reduced in size and output, but also an expensive protection circuit can be simplified. It can also be suitably used as a power source for transportation equipment subject to restrictions.
  • Example 1 Production of composite hydroxide [Nucleation process] First, the temperature in the tank was set to 40 ° C. while stirring by putting 14 L of water in the 60 L reaction tank. At this time, nitrogen gas was allowed to flow through the reaction tank for 30 minutes, and the reaction atmosphere was a non-oxidizing atmosphere having an oxygen concentration of 2% by volume or less. Subsequently, an appropriate amount of 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water is supplied into the reaction vessel so that the pH value is 12.8 based on the liquid temperature of 25 ° C. and the ammonium ion concentration is 10 g / L. Was adjusted to form an aqueous solution before reaction.
  • Ni: Mn: Co: Zr 33.1: 33.1: 33.1: 0.2. It melt
  • this raw material aqueous solution was supplied to the pre-reaction aqueous solution at 100 ml / min to form an aqueous solution for a nucleation step, and nucleation was performed for 1 minute.
  • a 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water were supplied in a timely manner, and the pH value and ammonium ion concentration of the nucleation aqueous solution were maintained within the above-described ranges.
  • the pore size of the mesh is 20 ⁇ m to 30 ⁇ m while the supply of the raw material aqueous solution is continued.
  • Air was directly introduced into the reaction aqueous solution using a ceramic diffuser tube (manufactured by Kinoshita Rika Kogyo Co., Ltd.) in the range of 2 to adjust the reaction atmosphere to an oxidizing atmosphere with an oxygen concentration of 21% by volume (switching operation) 1).
  • the switching time to the oxidizing atmosphere in which the oxygen concentration exceeds 5% by volume is 0.3% (about 0.7 minutes) with respect to the entire particle growth process time. It was confirmed that the switching time to the oxidizing atmosphere with an oxygen concentration of 21% by volume was 2% (about 4.8 minutes) with respect to the entire particle growth process time.
  • switching operation 2 After 10 minutes from switching operation 1 (4.2% with respect to the total particle growth process time), similarly, nitrogen gas was directly introduced into the reaction aqueous solution while continuing the supply of the raw material aqueous solution, and the reaction atmosphere was changed.
  • the oxygen concentration was adjusted to 2% by volume or less (switching operation 2).
  • switching operation 2 the atmosphere switching time to the non-oxidizing atmosphere having an oxygen concentration of 5% by volume or less is 1% with respect to the entire particle growth process time, and the oxygen concentration is 2% by volume or less. It was confirmed that the atmosphere switching time to the atmosphere was 2% with respect to the entire particle growth process time.
  • a 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water were supplied in a timely manner through this step, and the pH value and ammonium ion concentration of the particle growth aqueous solution were maintained within the above-described ranges. .
  • [Particle structure] A part of the composite hydroxide was embedded in the resin, and the cross section was polished so that the cross section could be observed, and then observed with an SEM (JSM-6360LA, manufactured by JEOL Ltd.) (see FIG. 1).
  • the secondary particles constituting the composite hydroxide have a central portion formed by aggregation of the plate-like primary particles, and the plate-like primary particles and fine primary particles are aggregated outside the central portion. 1 and a high-density layer formed by agglomerating plate-like primary particles, and the high-density layer is a plate-like primary particle in the low-density layer. It was confirmed that the high density part formed by agglomeration was connected to the central part.
  • the central part of the secondary particle of the composite hydroxide had a low density part composed of fine primary particles inside. It was. Further, it was confirmed that the fine primary particles had an average particle size of 0.2 ⁇ m, and the plate-like primary particles had an average particle size of 0.5 ⁇ m. Furthermore, it was confirmed that the center part particle size ratio was 62% and the high density layer particle size ratio was 13%.
  • This lithium mixture was calcined by raising the temperature to 950 ° C. in an air stream (oxygen concentration: 21% by volume) at a rate of temperature rise of 2.5 ° C./min and holding at this temperature for 4 hours, and the cooling rate was It cooled to room temperature as about 4 degreeC / min (baking process).
  • oxygen concentration 21% by volume
  • the cooling rate was It cooled to room temperature as about 4 degreeC / min (baking process).
  • this positive electrode active material thus obtained, aggregation between particles or mild sintering occurred. For this reason, this positive electrode active material was crushed and the average particle diameter and particle size distribution were adjusted (pulverization process).
  • This positive electrode active material is represented by the general formula: Li 1.14 Ni 0.331 Mn 0.331 Co 0.331 Zr 0.002 W 0.005 O 2 by analysis using an ICP emission spectroscopic analyzer. It was confirmed to be a thing.
  • this positive electrode active material is composed of secondary particles formed by agglomerating a plurality of primary particles, and these secondary particles are dispersed inside the outer shell and the outer shell, The outer shell, the aggregated portion of the primary particles, and the aggregated portions of the primary particles are structurally connected to each other by the connecting portion, and there are aggregated portions of the primary particles that are electrically connected to the outer shell, and the primary particles exist. It was confirmed that it has a space part that does not. It was also confirmed that the outer shell part particle size ratio was 16% and the space part ratio was 35%.
  • [Average particle size and particle size distribution] It is an index showing the spread of the particle size distribution by measuring the average particle size of the positive electrode active material and measuring d10 and d90 using a laser light diffraction / scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac HRA). [(D90-d10) / average particle diameter] was calculated. As a result, it was confirmed that the average particle diameter was 4.6 ⁇ m and [(d90 ⁇ d10) / average particle diameter] was 0.41.
  • the specific surface area was measured by a flow method gas adsorption method specific surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Multisorb), and the tap density was measured by a tapping machine (Kurachi Scientific Instruments Co., Ltd., KRS-406). As a result, it was confirmed that the BET specific surface area was 1.92 m 2 / g and the tap density was 1.42 g / cm 3 . From these results, the surface area per unit volume was 2.73 m 2 / cm 3 .
  • a 2032 type coin battery (B) was produced in a glove box in an Ar atmosphere in which the dew point was controlled at ⁇ 80 ° C.
  • the negative electrode (2) of the 2032 type coin battery uses lithium metal having a diameter of 17 mm and a thickness of 1 mm, and the electrolytic solution is ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte.
  • the equivalent liquid mixture (made by Toyama Pharmaceutical Co., Ltd.) was used.
  • the separator (3) was a polyethylene porous film having a thickness of 25 ⁇ m.
  • the 2032 type coin battery (B) has a gasket (4) and is assembled into a coin-shaped battery by a positive electrode can (5) and a negative electrode can (6).
  • Example 2 In the particle growth process, the switching operation 1 is performed after 60 minutes (25% of the total particle growth process time) from the start of the particle growth process, and the switching operation 2 is performed for 5 minutes from the switching operation 1 (particle growth).
  • Example 2 The same as Example 1 except that the crystallization reaction was continued after lapse of 175 minutes (72.9% with respect to the whole particle growth process time) after the elapse of 2.1% with respect to the whole process time.
  • a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 3 In the particle growth process, the switching operation 1 is performed 60 minutes after the start of the particle growth process (25% of the total particle growth process time), and the switching operation 2 is performed for 15 minutes from the switching operation 1 (particle growth). The same as in Example 1 except that the crystallization reaction was continued after 165 minutes (68.8% with respect to the whole particle growth process time) after lapse of 6.3%) with respect to the whole process time. Thus, a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 4 First, the temperature in the tank was set to 40 ° C. while stirring by putting 14 L of water in the 60 L reaction tank. Subsequently, an appropriate amount of 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water is supplied into the reaction vessel so that the pH value is 12.8 based on the liquid temperature of 25 ° C. and the ammonium ion concentration is 10 g / L. Was adjusted to form an aqueous solution before reaction. At this time, nitrogen gas was circulated in the reaction vessel for 5 minutes, and the reaction atmosphere was an oxidizing atmosphere having an oxygen concentration of 13% by volume.
  • Ni: Mn: Co: Zr 33.1: 33.1: 33.1: 0.2. 2 mol / L of raw material aqueous solution was prepared.
  • Example 2 nitrogen gas was introduced into the pre-reaction aqueous solution using an air diffuser in the same manner as in Example 1 to adjust the reaction atmosphere to a non-oxidizing atmosphere of 2% by volume or less, and the aqueous raw material solution was changed to the pre-reaction aqueous solution.
  • an aqueous solution for a nucleation process was formed, and nucleation was performed for 1 minute.
  • a 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water were supplied in a timely manner, and the pH value and ammonium ion concentration of the nucleation aqueous solution were maintained within the above-described ranges.
  • the reaction atmosphere was adjusted to a non-oxidizing atmosphere having an oxygen concentration of 2% by volume or less at the end of the nucleation step.
  • Example 2 Thereafter, a particle growth step was performed under the same conditions as in Example 1 to obtain a composite hydroxide, which was evaluated. Moreover, except having used this composite hydroxide as a precursor, it carried out similarly to Example 1, and obtained the positive electrode active material and the secondary battery, and performed the evaluation. The results are shown in Tables 2-4.
  • the positive electrode active material of Example 4 had a particle structure in which a space portion was further formed inside the agglomerated portion of primary particles.
  • Example 5 In the particle growth process, switching operation 1 is performed 48 minutes after the start of the particle growth process (20% of the total particle growth process time), and switching operation 2 is performed 5 minutes from the switching operation 1 (particle growth). Example 1 except that the crystallization reaction was continued for 187 minutes (77.9% with respect to the total grain growth process time), followed by a subsequent crystallization reaction. Similarly, a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 6 In the particle growth process, the switching operation 1 is performed 48 minutes after the start of the particle growth process (20% of the total particle growth process time), and the switching operation 2 is performed for 10 minutes from the switching operation 1 (particle growth). The same as Example 1 except that the crystallization reaction was continued after lapse of 182 minutes (75.8% with respect to the whole particle growth process time). Thus, a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 7 In the particle growth process, the switching operation 1 is performed after 1.2 minutes (0.5% with respect to the total particle growth process time) from the start of the particle growth process, and the switching operation 2 is performed from the switching operations 1 to 10. Min. (4.2% of the total particle growth process time) followed by 228 minutes (95.3% of the total particle growth process time) followed by subsequent crystallization reactions, In the same manner as in Example 1, a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 8 In the particle growth process, the switching operation 1 is performed after 72 minutes (30% of the total particle growth process time) from the start of the particle growth process, and the switching operation 2 is performed for 10 minutes from the switching operation 1 (particle growth).
  • Example 1 with the exception that the crystallization reaction was followed for 158 minutes (65.8% of the total grain growth process time) followed by a subsequent crystallization reaction.
  • a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 9 In the particle growth process, the switching operation 1 is performed 60 minutes after the start of the particle growth process (25% of the total particle growth process time), and the switching operation 2 is performed for 3 minutes from the switching operation 1 (particle growth). Example 1 except that the crystallization reaction was continued for 177 minutes (73.8% with respect to the entire grain growth process time), followed by a subsequent crystallization reaction. Similarly, a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 10 In the particle growth process, the switching operation 1 is performed after 60 minutes (25% of the total particle growth process time) from the start of the particle growth process, and the switching operation 2 is performed for 50 minutes from the switching operation 1 (particle growth). Example 1 except that the crystallization reaction was continued for 130 minutes (54.2% with respect to the total particle growth process time) and then continued for a period of 130 minutes (20.8% with respect to the total process time). Similarly, a composite hydroxide, a positive electrode active material, and a secondary battery were obtained and evaluated. The results are shown in Tables 2-4.
  • Example 11 In the particle growth step, a composite hydroxide was obtained in the same manner as in Example 1 except that the switching operations 1 and 2 were performed twice at a predetermined timing. Specifically, the switching operation 1 is performed 30 minutes after the start of the particle growth process (12.5% with respect to the entire particle growth process time), and the crystallization reaction in an oxidizing atmosphere is performed for 15 minutes. After continuing (6.3% with respect to the whole particle growth process time), switching operation 2 is performed, and the crystallization reaction in a non-oxidizing atmosphere is performed for 40 minutes (16.7 with respect to the whole particle growth process time). %)Continued.
  • Example 1 In the particle growth step, a composite hydroxide was obtained and evaluated in the same manner as in Example 1 except that the supply of the raw material aqueous solution was temporarily stopped when the reaction atmosphere switching operations 1 and 2 were performed. It was. The results are shown in Table 2 and FIG. In addition, a positive electrode active material and a secondary battery were obtained and evaluated in the same manner as in Example 1 except that this composite hydroxide was used as a precursor. The results are shown in Table 3, Table 4, and FIG.
  • Ni: Mn: Co: Zr 33.1: 33.1: 33.1: 0.2. 2 mol / L of raw material aqueous solution was prepared.
  • the state of the oxidizing atmosphere was maintained, and the aqueous raw material solution was supplied to the pre-reaction aqueous solution at 100 ml / min to form an aqueous solution for a nucleation step, and nucleation was performed for 1 minute.
  • a 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water were supplied in a timely manner, and the pH value and ammonium ion concentration of the nucleation aqueous solution were maintained within the above-described ranges.
  • the obtained secondary particles of the composite hydroxide had a particle structure having a central portion made of fine primary particles and a high-density layer made of plate-like primary particles on the outside thereof. Moreover, except having used this composite hydroxide as a precursor, it carried out similarly to Example 1, and obtained the positive electrode active material and the secondary battery, and performed the evaluation. The results are shown in 3, Table 4 and FIG.
  • the positive electrode active material obtained in Comparative Example 3 was composed of secondary particles having an agglomerated structure formed by aggregating a plurality of primary particles, and no outer shell portion was confirmed in the particle structure. Further, the agglomerated parts of the primary particles were simply in contact with each other to form secondary particles, and no connection part as in Example 1 was confirmed.
  • Negative electrode can B 2032 type coin battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

二次電池の電池容量、出力特性、およびサイクル特性を同時に改善可能な正極活物質を提供する。正極活物質の前駆体である遷移金属含有複合水酸化物を、反応水溶液のpH値を12.0~14.0の範囲に調整して核の生成を行った後(核生成)、反応水溶液のpH値を10.5~12.0の範囲に調整して核を成長(粒子成長)させて得る際に、反応雰囲気を、核生成および粒子成長の初期段階において、非酸化性雰囲気に調整し、粒子成長の途中で、原料水溶液の供給を継続しながら、反応水溶液中に酸化性ガスを直接導入して、酸素濃度が5容量%を超える酸化性雰囲気に切り替え、さらに、原料水溶液の供給を継続しながら、反応水溶液中に不活性ガスを直接導入することにより、非酸化性雰囲気に切り替える、雰囲気制御を少なくとも1回行う。

Description

遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
 本発明は、遷移金属含有複合水酸化物とその製造方法、この遷移金属含有複合水酸化物を前駆体とする非水電解質二次電池用正極活物質とその製造方法、および、この非水電解質二次電池用正極活物質を正極材料として用いた非水電解質二次電池に関する。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギ密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット電気自動車、プラグインハイブリッド電気自動車、電池式電気自動車などの電気自動車用の電源として高出力の二次電池の開発が強く望まれている。
 このような要求を満たす二次電池として、非水電解質二次電池の一種であるリチウムイオン二次電池がある。このリチウムイオン二次電池は、負極、正極、電解液などで構成され、その負極および正極の材料として用いられる活物質には、リチウムを脱離および挿入することが可能な材料が使用される。
 このリチウムイオン二次電池のうち、層状またはスピネル型のリチウム遷移金属複合酸化物からなる正極活物質を正極材料に用いたリチウムイオン二次電池は、4V級の電圧が得られるため、高エネルギ密度を有する電池として、現在、研究開発が盛んに行われており、一部ではその実用化も進んでいる。
 このようなリチウムイオン二次電池の正極材料に用いる正極活物質として、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)、リチウムニッケルマンガン複合酸化物(LiNi0.5Mn0.5)などのリチウム遷移金属含有複合酸化物が提案されている。
 ところで、サイクル特性や出力特性に優れたリチウムイオン二次電池を得るためには、その正極材料に用いられる正極活物質が、小粒径で粒度分布の狭い粒子によって構成されていることが好ましい。小粒径の粒子は、比表面積が大きく、電解液との反応面積を十分に確保することができる。また、小粒径の粒子を適用することにより、正極を薄く構成できるため、リチウムイオンの正極と負極の間の移動距離が短くなり、正極抵抗の低減が図られる。一方、粒度分布の狭い粒子を適用することにより、電極内で粒子に印加される電圧が均一化され、微粒子の選択的な劣化に起因する電池容量の低下が抑制される。
 出力特性のさらなる改善には、正極活物質の内部に、電解液が侵入可能な空間部を形成することが有効である。このような中空構造を有する正極活物質は、粒径が同程度である中実構造の正極活物質と比べて、電解液との反応面積が大きくなるため、正極抵抗を大幅に低減させることができる。なお、正極活物物質は、その前駆体となる遷移金属含有複合水酸化物の粒子性状を引き継ぐことが知られている。すなわち、このような優れた特性の正極活物質を得るためには、その前駆体である遷移金属含有複合水酸化物を構成する粒子の粒径、粒度分布、粒子構造などを適切に制御することが必要となる。
 たとえば、特開2012-246199号公報、特開2013-147416号公報、およびWO2012/131881号公報には、主として核生成を行う核生成工程と、主として粒子成長を行う粒子成長工程の2段階に明確に分離された晶析反応によって、正極活物質の前駆体となる遷移金属含有複合水酸化物を製造する方法が開示されている。これらの方法では、核生成工程および粒子成長工程におけるpH値や反応雰囲気を適宜調整することにより、小粒径で粒度分布が狭く、かつ、微細一次粒子からなる低密度の中心部と、板状または針状一次粒子からなる高密度の外殻部とから構成される構造の二次粒子からなる遷移金属含有複合水酸化物を得ている。
 また、WO2014/181891号公報には、少なくとも遷移金属を含有する金属化合物とアンモニウムイオン供給体とを含む核生成用水溶液のpH値を12.0~14.0となるように制御し、核生成を行う核生成工程と、生成した核を含有する粒子成長用水溶液のpH値を、核生成工程のpH値よりも低く、かつ、10.5~12.0となるように制御して、核を成長させる粒子成長工程を備え、核生成工程および粒子成長工程の初期を非酸化性雰囲気とするとともに、粒子成長工程における所定のタイミングで、酸化性雰囲気に切り替えた後、再度、非酸化性雰囲気に切り替える雰囲気制御を少なくとも1回行うことを特徴とする遷移金属含有複合水酸化物の製造方法が開示されている。この方法によれば、小粒径で粒度分布が狭く、かつ、板状または針状一次粒子が凝集して形成された中心部を有し、中心部の外側に微細一次粒子が凝集して形成された低密度層と、板状一次粒子が凝集して形成された高密度層が交互に積層した積層構造を少なくとも一つ備える構造の二次粒子からなる遷移金属含有複合水酸化物が得られる。
 これらの遷移金属含有複合水酸化物を前駆体とする正極活物質は、小粒径で粒度分布が狭く、中空構造または空間部を有する多層構造を備えた粒子により構成される。したがって、これらの正極活物質を用いた二次電池では、電池容量、出力特性、およびサイクル特性を同時に改善できると考えられる。しかしながら、これらの文献に記載の製造方法は、粒子成長工程における反応雰囲気の切り替えに時間を要するため、その間、原料水溶液などの供給を一旦停止する必要があり、生産性の面からは改善の余地がある。また、電気自動車などの電源を用途とする二次電池に用いられる正極活物質には、二次電池の電池容量やサイクル特性を損なうことなく、その出力特性をさらに向上させることが要求されている。
特開2012-246199号公報 特開2013-147416号公報 WO2012/131881号公報 WO2014/181891号公報
 本発明は、上述の問題に鑑みて、非水電解質二次電池における電池容量、出力特性、およびサイクル特性を同時に改善することを可能とする正極活物質、および、その前駆体である遷移金属含有複合水酸化物を提供すること、および、これらの正極活物質および遷移金属含有複合水酸化物を、工業規模の生産において、効率よく製造可能とすることを目的とする。
 本発明は、非水電解質二次電池用正極活物質の前駆体であって、ニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)のいずれか一種を主たる遷移金属として含有する、遷移金属含有複合水酸化物に関する。本発明の遷移金属含有複合水酸化物は、好ましくは、ニッケル、ニッケルとマンガン、ないしは、ニッケルとマンガンとコバルトを主体とする複合水酸化物であり、さらに必要に応じて、添加元素を含有することができる。
 特に、本発明の遷移金属含有複合酸化物は、
 板状一次粒子および該板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなり、
 前記二次粒子は、前記板状一次粒子が凝集して形成された中心部を有し、該中心部の外側に、前記板状一次粒子および前記微細一次粒子が凝集して形成された低密度層と、前記板状一次粒子が凝集して形成された高密度層とが積層した積層構造を少なくとも1つ備えており、
 前記高密度層は、前記低密度層内で前記板状一次粒子が凝集して形成された高密度部によって、前記中心部および/または他の高密度層と連結しており、
 前記二次粒子の平均粒径は1μm~15μmの範囲にあり、かつ、該二次粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕は0.65以下である、
ことを特徴とする。
 前記遷移金属含有複合水酸化物は、一般式(A):NiMnCo(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有することが好ましい。
 前記添加元素(M)は、前記二次粒子の内部に均一に分布および/または該二次粒子の表面を均一に被覆していることが好ましい。
 本発明の遷移金属含有複合水酸化物の製造方法は、反応槽内に、少なくとも遷移金属を含有する原料水溶液と、アンモニウムイオン供給体を含む水溶液とを供給することで反応水溶液を形成し、晶析反応によって、非水電解質二次電池用正極活物質の前駆体となる遷移金属含有複合水酸化物を製造する方法に関する。
 特に、本発明の遷移金属含有複合水酸化物の製造方法は、
 前記反応水溶液の液温25℃基準におけるpH値を12.0~14.0の範囲に調整し、核の生成を行う核生成工程と、
 前記核生成工程で得られた前記核を含む反応水溶液の液温25℃基準におけるpH値を、前記核生成工程のpH値よりも低く、かつ、10.5~12.0の範囲となるように制御して、該核を成長させる、粒子成長工程とを備え、
 前記核生成工程および前記粒子成長工程の初期段階における反応雰囲気を酸素濃度が5容量%以下の非酸化性雰囲気に調整し、
 前記粒子成長工程の初期段階の後に、前記原料水溶液の供給を継続しながら、反応水溶液中に酸化性ガスを直接導入することにより、前記反応雰囲気を、前記非酸化性雰囲気から酸素の濃度が5容量%を超える酸化性雰囲気に切り替え、さらに、前記原料水溶液の供給を継続しながら、反応水溶液中に不活性ガスを直接導入することにより、前記酸化性雰囲気から前記非酸化性雰囲気に切り替える、雰囲気制御を少なくとも1回行う、
ことを特徴とする。
 前記酸化性ガスおよび不活性ガスを散気管により導入することが好ましい。
 前記粒子成長工程において、前記酸化性ガスを導入する時間を合計で、該粒子成長工程時間の全体に対して1%~25%の範囲とすることが好ましい。
 また、前記粒子成長工程の初期段階の晶析反応時間を、該粒子成長工程時間の全体に対して0.5%~30%の範囲とすることが好ましい。すなわち、前記粒子成長工程において、該粒子成長工程の開始時から、該粒子成長工程時間の全体に対して0.5%~30%の範囲で、前記酸化性ガスの導入を開始することが好ましい。
 なお、本発明の遷移金属含有複合水酸化物の製造方法は、一般式(A):NiMnCo(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される遷移金属含有複合水酸化物の製造に好適に適用可能である。
 この場合、前記粒子成長工程後に、前記遷移金属含有複合水酸化物を、前記添加元素(M)の少なくとも一部を含む化合物で被覆する、被覆工程をさらに備えることが好ましい。
 本発明の非水電解質二次電池用正極活物質は、リチウム遷移金属含有複合酸化物からなる非水電解質二次電池用正極活物質であって、
 一次粒子が凝集することにより形成された二次粒子からなり、
 該二次粒子は、一次粒子が凝集して形成された外殻部と、前記外殻部の内側に存在し、かつ、前記外殻部と電気的かつ構造的に接続された、少なくとも1つの一次粒子が凝集した凝集部と、前記外殻部の内側に存在し、少なくとも1つの一次粒子が存在しない空間部とを備えており、
 前記二次粒子の平均粒径は1μm~15μmの範囲にあり、該二次粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕は0.7以下であり、かつ、単位体積あたりの表面積が1.7m/cm以上である、
ことを特徴とする。
 前記正極活物質のBET比表面積は、0.7m/g~5.0m/gの範囲にあることが好ましい。
 前記正極活物質は、一般式(B):Li1+uNiMnCo(-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有し、かつ、層状構造を有する六方晶系の結晶構造を有するリチウム遷移金属含有複合酸化物からなることが好ましい。
 本発明の非水電解質二次電池用正極活物質の製造方法は、
 前記遷移金属含有複合水酸化物とリチウム化合物とを混合して、リチウム混合物を形成する混合工程と、
 前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、650℃~980℃の範囲の温度で焼成する焼成工程と、
を備えることを特徴とする。
 前記混合工程において、前記リチウム混合物を、該リチウム混合物に含まれるリチウム以外の金属の原子数の和と、リチウムの原子数との比が、1:0.95~1.5の範囲となるように調整することが好ましい。
 前記混合工程前に、前記遷移金属含有複合水酸化物を105℃~750℃の範囲の温度で熱処理する、熱処理工程をさらに備えることが好ましい。
 なお、本発明の非水電解質二次電池用正極活物質の製造方法は、一般式(B):Li1+uNiMnCo(-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、層状構造を有する六方晶系のリチウム遷移金属含有複合酸化物からなる正極活物質の製造に好適に適用可能である。なお、添加元素(M)を、前記混合工程において、前記遷移金属含有複合水酸化物とリチウム化合物とともに添加混合することもできる。
 本発明の非水電解質二次電池は、正極と、負極と、セパレータと、非水電解質とを備え、該正極の正極材料として、本発明の非水電解質二次電池用正極活物質が用いられていることを特徴とする。
 本発明により、非水電解質二次電池の電池容量、出力特性、およびサイクル特性を同時に改善可能な正極活物質、および、その前駆体である遷移金属含有複合水酸化物を提供することができる。また、本発明により、これらの正極活物質および遷移金属含有複合水酸化物を、工業規模の生産において効率よく製造することが可能となる。このため、本発明により、優れた電池特性を備えた非水電解質二次電池が低コストで提供される。よって、本発明の工業的意義はきわめて大きい。
図1は、実施例1で得られた遷移金属含有複合水酸化物を構成する二次粒子の断面を示すFE-SEM写真(観察倍率5,000倍)である。 図2は、実施例1で得られた正極活物質を構成する二次粒子の断面を示すFE-SEM写真(観察倍率5,000倍)である。 図3は、実施例11で得られた正極活物質を構成する二次粒子の断面を示すFE-SEM写真(観察倍率5,000倍)である。 図4は、比較例1で得られた遷移金属含有複合水酸化物を構成する二次粒子の断面を示すFE-SEM写真(観察倍率5,000倍)である。 図5は、比較例1で得られた正極活物質を構成する二次粒子の断面を示すFE-SEM写真(観察倍率5,000倍)である。 図6は、比較例2で得られた遷移金属含有複合水酸化物を構成する二次粒子の断面を示すFE-SEM写真(観察倍率5,000倍)である。 図7は、比較例2で得られた正極活物質を構成する二次粒子の断面を示すFE-SEM写真(観察倍率5,000倍)である。 図8は、電池評価に使用した2032型コイン電池の概略断面図である。 図9は、インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。
 本発明者らは、WO2014/181891号公報などの従来技術に基づいて非水電解質二次電池用正極活物質(以下、「正極活物質」という)の生産性および出力特性をさらに改善するために鋭意研究を重ねた。この結果、粒子成長工程における反応雰囲気の切り替えに際して、原料水溶液の供給を継続しながら、反応水溶液中に雰囲気ガスを直接供給することによって、短時間で反応雰囲気を切り替えることができ、これによって、板状一次粒子が凝集して形成された中心部を有し、かつ、中心部の外側に、板状一次粒子および微細一次粒子がそれぞれ凝集して形成された低密度層、および板状一次粒子が凝集して形成された高密度層が積層した積層構造を少なくとも1つ備えた二次粒子によって構成される遷移金属含有複合水酸化物が得られるとの知見が得られた。
 しかも、この遷移金属含有複合水酸化物を構成する二次粒子の高密度層は、低密度層内で板状一次粒子が凝集して形成された高密度部によって、中心部および/または他の高密度層と連結することとなる。このため、この遷移金属含有複合水酸化物を前駆体として正極活物質を合成した場合には、外殻部と、外殻部の内側にある一次粒子の凝集部とが電気的に導通し、かつ、その経路を十分に発達させることができるため、正極活物質の内部抵抗を大幅に低減することができるとの知見も得られた。本発明は、これらの知見に基づき完成されたものである。
 1.遷移金属含有複合水酸化物およびその製造方法
 1-1.遷移金属含有複合水酸化物
 (1)粒子構造
 a)二次粒子の構造
 本発明の遷移金属含有複合水酸化物(以下、「複合水酸化物」という)は、板状一次粒子および該板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなる。この二次粒子は、板状一次粒子が凝集して形成された中心部を有し、中心部の外側に、板状一次粒子および微細一次粒子が凝集して形成された低密度層と、板状一次粒子が凝集して形成された高密度層とが積層した積層構造を少なくとも1つ備えている。そして、高密度層が、低密度層内で板状一次粒子が凝集して形成された高密度部によって、中心部および/または他の高密度層と連結している。
 このような粒子構造を備えた複合水酸化物を焼成した場合、その二次粒子内において、低密度層内にある高密度部による高密度層と中心部および/または他の高密度層との連結が維持されたまま、低密度層が焼結収縮に伴って中心部、高密度層、あるいは高密度部に向かって収縮することとなる。このため、得られる正極活物質は、一次粒子が凝集して形成された二次粒子からなり、少なくとも、一次粒子が凝集した外殻部と、中心部および/または他の高密度層とが焼結収縮することにより形成され、外殻部の内側に存在し、かつ、外殻部と電気的に導通する、少なくとも1つの一次粒子が凝集した凝集部と、外殻部の内側に存在し、少なくとも1つの一次粒子が存在しない空間部とを備えた構造となる。基本的には、低密度層内に存在した低密度部が焼結収縮することに伴って、外殻部の内径側に一次粒子が存在しない空間部が形成される。一方、低密度層内の高密度部は、その焼結収縮により一次粒子が凝集して、外殻部と凝集部とを電気的かつ構造的に接続する連結部として機能する。この結果、本発明の正極活物質を構成する二次粒子において、空間部と連結部の存在により、二次粒子内部の表面積を十分に確保できるばかりでなく、外殻部とその内側に存在する凝集部が連結された構造を備えるため、粒子密度および粒子強度を向上させることができる。このため、このような構造の正極活物質を正極材料に用いた二次電池において、その出力特性、電池容量、およびサイクル特性を同時に改善することが可能となる。
 この複合水酸化物において、低密度層が、中心部の外側全体にわたって形成された場合、正極活物質において、中心部の外側に空間部が形成され、この空間部の外側に存在し、十分な表面積を有する連結部によって中心部と電気的かつ構造的に接続した外殻部が形成される。低密度層が複層形成された場合には、正極活物質において、中心部と外殻部との間で、かつ、複層の空間部の間に、これらの空間部に存在する連結部によって中心部および外殻部と電気的かつ構造的に接続した内殻部が形成される。すなわち、基本的には、外殻部と内殻部は、連結部によって相互かつ中心部と電気的かつ構造的に接続した殻状構造により構成される。ただし、正極活物質においては、後述するように焼結収縮の具合により、中心部も含めて、これらの一次粒子の凝集した構造体は、複数の凝集体により構成される場合がある。
 また、本発明には、低密度層が中心部の外側に部分的に形成された構造も含められる。この場合、正極活物質は、中心部の外側に多数の空間部が分散して形成され、さらにその外側に外殻部が形成された構造、または内殻部と外殻部とが形成された構造となる。
 さらに、複合水酸化物を構成する二次粒子の中心部は、板状一次粒子が凝集して形成された凝集粒子が、複数連結した状態であってもよい。この場合、相互に連結した凝集部からなる中心部の外側に、高密度部を有する低密度層および高密度層が形成された構造となる。
 b)微細一次粒子
 複合水酸化物を構成する二次粒子のうち、高密度部を除いた低密度層を構成する微細一次粒子は、平均粒径が、0.01μm~0.3μmの範囲にあることが好ましく、0.1μm~0.3μmの範囲にあることがより好ましい。微細一次粒子の平均粒径が0.01μm未満では、十分な大きさの低密度層が形成されない場合ある。一方、微細一次粒子の平均粒径が0.3μmを超えると、焼成時における収縮が低温域では進行せず、低密度層と中心部および高密度層との収縮差が小さくなるため、正極活物質の外殻部の内側に、十分な大きさの空間部が形成されない場合がある。
 このような微細一次粒子の形状は、板状および/または針状であることが好ましい。これにより、低密度層と、中心部および高密度層との密度差を十分に大きなものとすることができる。ただし、複合水酸化物の組成によっては、微細一次粒子には、直方体状、楕円状、稜面体状などの形状の粒子が含まれる場合がある。
 なお、微細一次粒子および次述する板状一次粒子の平均粒径は、複合水酸化物を樹脂などに埋め込み、クロスセクションポリッシャ加工などにより断面観察が可能な状態とした上で、この断面を、走査型電子顕微鏡(SEM)を用いて観察し、次のようにして求めることができる。はじめに、二次粒子の断面に存在する10個以上の微細一次粒子または板状一次粒子の最大径を測定し、その平均値を求め、この値を、その二次粒子における微細一次粒子または板状一次粒子の粒径とする。次に、10個以上の二次粒子について、同様にして、微細一次粒子または板状一次粒子の粒径を求める。最後に、これらの二次粒子における微細一次粒子または板状一次粒子の粒径を平均することで、微細一次粒子または板状一次粒子の平均粒径を求めることができる。
 c)板状一次粒子
 複合水酸化物を構成する二次粒子の中心部、高密度層、および高密度部を形成する板状一次粒子は、平均粒径が0.3μm~3μmの範囲にあることが好ましく、0.4μm~1.5μmの範囲にあることがより好ましく、0.4μm~1.0μmの範囲にあることがさらに好ましい。板状一粒子の平均粒径が0.3μm未満では、焼成時における収縮が低温域からはじまり、これらの層と低密度層との収縮差が小さくなるため、正極活物質の外殻部の内側に、十分な大きさの空間部が形成されない場合がある。一方、板状一次粒子の平均粒径が3μmを超えると、正極活物質の結晶性を十分なものとするためには、高温で焼成しなければならなくなるため、二次粒子間の焼結が進行し、正極活物質の平均粒径や粒度分布を所定の範囲に制御することが困難となる。なお、板状一次粒子についても、複合水酸化物の組成によっては、直方体状、楕円状、稜面体状などの形状の粒子が含まれる場合がある。ただしこれらの形状の一次粒子も、上記の範囲の平均粒径を備える限り、板状一次粒子に含められるものとする。
 d)中心部、低密度層および高密度層の厚さ
 本発明の複合水酸化物において、二次粒子の中心部や高密度層それ自体の構造は、正極活物質において変化するものの、二次粒子の粒径に対する、中心部の外径および高密度層の厚さの比率は、これを前駆体とする正極活物質において、概ね維持される。したがって、複合水酸化物の段階において、二次粒子の粒径に対する中心部および高密度層の厚さの比率を適切に制御することにより、正極活物質の基本的な粒子構造を容易に制御することができる。
 [積層構造を1つのみ備える場合]
 複合水酸化物を構成する二次粒子が、上述した積層構造を1つのみ備える場合には、二次粒子の粒径に対する中心部の外径の比率の平均値(以下、「中心部粒径比」という)を30%~80%の範囲とすることが好ましく、40%~75%の範囲とすることがより好ましい。これにより、二次粒子の内部の表面積を十分に確保しつつ、低密度層および高密度層を適切な大きさとすることができる。
 また、二次粒子の粒径に対する高密度層の厚さの比率の平均値(以下、「高密度層粒径比」という)を5%~25%の範囲とすることが好ましく、5%~20%の範囲とすることがより好ましい。これにより、低密度層の大きさを確保することができるばかりでなく、焼成時における高密度層の過剰な収縮を抑制することができる。
 なお、二次粒子が積層構造を1つのみ備える場合、中心部粒径比および高密度層粒径比は、二次粒子の断面SEM写真を用いて、次のようにして求めることができる。はじめに、断面SEM写真上で、1粒子あたり3か所以上の任意の位置で高密度層の厚さを測定し、その平均値を求める。ここで、高密度層の厚さは、二次粒子の外周から高密度層と低密度層の境界までの距離が最短となる2点間の距離とする。同時に、中心部の外周上の2点間および二次粒子の外周上の2点間の最大距離を測定し、それらの値を、それぞれ中心部の外径および二次粒子の粒径とする。そして、中心部の外径および高密度層の径方向の厚さを二次粒子の粒径で除することにより、その二次粒子の粒径に対する、中心部の外径の比率および高密度層の厚さの比率をそれぞれ求める。同様の測定を10個以上の二次粒子に対して行い、その平均値を算出することで、二次粒子の粒径に対する中心部粒径比および高密度層粒径比を求めることができる。
 [積層構造を2つ以上備える場合]
 複合水酸化物を構成する二次粒子が、上述した積層構造を2つ以上備える場合には、二次粒子の中心部粒径比を15%~70%の範囲とすることが好ましく、20%~70%の範囲とすることがより好ましく、25%~65%の範囲とすることがさらに好ましい。また、二次粒子の高密度層粒径比、この態様においてより具体的には、二次粒子の粒径に対する複数の高密度層の厚さの合計の比率の平均値を10%~40%の範囲とすることが好ましく、15%~35%の範囲とすることがより好ましい。さらに、二次粒子の粒径に対する高密度層1層あたりの厚さの比率(以下、「高密度層1層粒径比」という)を5%~25%の範囲とすることが好ましく、5%~20%の範囲とすることがより好ましい。
 なお、二次粒子が積層構造を2つ以上備える場合、複数の高密度層のそれぞれについて厚さを測定すること以外は同様にして、二次粒子の粒径に対する中心部粒径比、高密度層粒径比、および高密度層1層粒径比を求めることができる。
 (2)平均粒径
 本発明の複合水酸化物において、二次粒子の平均粒径は、1μm~15μmの範囲、好ましくは3μm~12μmの範囲、より好ましくは3μm~10μmの範囲に調整される。二次粒子の平均粒径は、この複合水酸化物を前駆体とする正極活物質の平均粒径と相関する。このため、複合水酸化物の二次粒子の平均粒径をこのような範囲に制御することで、この複合水酸化物を前駆体とする正極活物質の平均粒径を所定の範囲に制御することが可能となる。
 なお、本発明において、二次粒子の平均粒径とは、体積基準平均粒径(MV)を意味し、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 (3)粒度分布
 本発明の複合水酸化物において、二次粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕は、0.65以下、好ましくは0.55以下、より好ましくは0.50以下となるように調整される。
 正極活物質の粒度分布は、その前駆体である複合水酸化物の粉体特性の影響を強く受ける。このため、微細粒子や粗大粒子を多く含む複合水酸化物を前駆体とした場合には、正極活物質にも微細粒子や粗大粒子が多く含まれることとなり、これを用いた二次電池の安全性、サイクル特性、および出力特性を十分に改善することができなくなる。これに対して、複合水酸化物の段階で、〔(d90-d10)/平均粒径〕が0.65以下となるように調整しておけば、これを前駆体とする正極活物質の粒度分布を狭くすることができ、上述した問題を回避することが可能となる。ただし、工業規模の生産を前提とした場合には、複合水酸化物として、〔(d90-d10)/平均粒径〕が過度に小さいものを使用することは現実的ではない。したがって、コストや生産性を考慮すると、複合水酸化物における〔(d90-d10)/平均粒径〕の下限値は、0.25程度とすることが好ましい。
 なお、d10は、それぞれの粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を、d90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味する。d10およびd90は、平均粒径と同様に、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 (4)組成
 本発明の複合水酸化物は、その二次粒子が上述した粒子構造、平均粒径、および粒度分布を有する限り、その組成が制限されることはない。すなわち、本発明においては、複合水酸化物の粒子構造、平均粒径、および粒度分布に特徴があり、本発明は、少なくとも遷移金属、具体的には、主たる遷移金属として、ニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)のいずれか一種を含有する複合水酸化物に広く適用が可能である。また、本発明の複合水酸化物は、上記の主たる遷移金属のほか、これ以外の遷移金属やその他の金属を添加元素として含有することができる。
 ただし、本発明の複合水酸化物は、ニッケル、ニッケルとマンガン、ないしは、ニッケルとマンガンとコバルトを主体とする複合水酸化物であることが好ましく、特に、一般式(A):NiMnCo(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有することが好ましい。この組成の複合水酸化物を前駆体とすることで、後述する一般式(B)で表される正極活物質を容易に得ることができ、より高い電池性能を実現することができる。
 この一般式(A)で表される組成の複合水酸化物において、添加元素(M)は、後述するように晶析工程において、主たる遷移金属(ニッケル、マンガン、およびコバルト)とともに晶析させ、複合水酸化物の二次粒子中に均一に分散させることもできるが、晶析工程後に、複合水酸化物の二次粒子の表面に添加元素(M)を被覆させてもよい。また、混合工程において、添加元素(M)の化合物を、複合水酸化物とともに、リチウム化合物と混合することも可能である。また、晶析工程での添加元素(M)の添加、被覆工程での添加元素(M)の被覆、および、混合工程での添加元素(M)の添加を任意に併用してもよい。いずれの方法による場合であっても、一般式(A)の組成となるように、主たる遷移金属および添加元素(M)の含有量を調整することが必要となる。
 なお、一般式(A)で表される複合水酸化物において、これを構成するニッケル、マンガン、コバルト、および添加元素(M)の組成範囲およびその臨界的意義は、一般式(B)で表される正極活物質と同様となる。このため、これらの事項について、ここでの説明は省略する。
 1-2.複合水酸化物の製造方法
 (1)晶析反応
 本発明の複合水酸化物の製造方法では、反応槽内に、少なくとも遷移金属、好ましくはニッケル、ニッケルとマンガン、ないしは、ニッケルとマンガンとコバルトを主体とする遷移金属を含有する原料水溶液と、アンモニウムイオン供給体を含む水溶液を供給することで反応水溶液を形成し、晶析反応によって、複合水酸化物を得る。
 特に、本発明の複合水酸化物の製造方法では、晶析反応を、主として核生成を行う核生成工程と、主として核の成長、すなわち粒子成長を行う粒子成長工程の2段階に明確に分離し、それぞれの工程における晶析条件を調整するとともに、粒子成長工程において、原料水溶液の供給を継続しながら、反応雰囲気、すなわち反応水溶液と接する雰囲気を非酸化性雰囲気と酸化性雰囲気とを適宜切り替え、かつ、雰囲気の切り替え時において、反応水溶液中に雰囲気ガス、すなわち酸化性ガスもしくは不活性ガスを直接送り込んで、反応雰囲気を切り替えることにより、上述した粒子構造、平均粒径、および粒度分布を備えた二次粒子からなる複合水酸化物を効率よく得ることを可能としている。すなわち、本発明では、反応場の雰囲気である反応水溶液中の溶存酸素量を短時間で制御すること、および原料水溶液の供給を継続しながら反応場の雰囲気を切り替えることを可能とし、もって、上述した二次粒子の粒子構造を備える複合水酸化物を得ることを可能としている。
 [核生成工程]
 核生成工程では、はじめに、この工程における原料となる遷移金属の化合物を水に溶解し、原料水溶液を調製する。同時に、反応槽内に、アルカリ水溶液と、アンモニウムイオン供給体を含む水溶液を供給および混合して、液温25℃基準で測定するpH値が12.0~14.0の範囲にあり、かつ、アンモニウムイオン濃度が3g/L~25g/Lの範囲にある反応前水溶液を調製する。なお、反応前水溶液のpH値はpH計により、アンモニウムイオン濃度はイオンメータにより測定することができる。
 次に、この反応前水溶液を撹拌しながら、原料水溶液を供給する。これにより、反応槽内には、核生成工程における反応水溶液である核生用成水溶液が形成される。この核生成用水溶液のpH値は上述した範囲にあるので、核生成工程では、核はほとんど成長することなく、核生成が優先的に起こる。なお、核生成工程では、核の生成に伴い、核生成用水溶液のpH値およびアンモニウムイオンの濃度は変化するので、アルカリ水溶液およびアンモニア水溶液を適時供給し、反応槽内液のpH値が液温25℃基準でpH12.0~14.0の範囲に、アンモニウムイオンの濃度が3g/L~25g/Lの範囲に維持されるように制御する。
 なお、核生成工程においては、反応槽内に不活性ガスを流通させて、反応雰囲気を酸素濃度が5容量%以下の非酸化性雰囲気に調整する。
 ここで、二次電池の高容量化を重視する場合、反応槽内液のpH値を液温25℃基準でpH12.5以下となるように制御するとともに、反応雰囲気の調整を、原料水溶液の供給を開始する前に行うことが好ましい。これにより、この複合水酸化物を前駆体とする正極活物質の中心部が中実構造となり、空間部を形成することによる粒子密度の低下を抑制することが可能となる。
 これに対して、二次電池のさらなる高出力化を重視する場合には、非酸化性雰囲気への調整が終了する前に、原料水溶液の供給を開始し、核生成工程を開始させることが好ましい。これにより、複合水酸化物の二次粒子の中心部内に、微細一次粒子が凝集した低密度部を形成でき、得られた正極活物質において、中心部の内部にも空間部を形成することができるため、電解液との反応面積を一層大きくすることが可能となる。この場合、反応雰囲気の非酸化性雰囲気への調整は、核生成工程の開始時から核生成工程時間の全体に対して、10%~25%の範囲で完了させることが好ましい。
 また、核生成性工程におけるpH値を、12.5を超える高pHの範囲に制御することでも、中心部の内部に微細一次粒子が凝集した低密度部を形成することができる。すなわち、高pH側において、核を形成する一次粒子はより微細化する傾向にあり、pH値が12.5を超え14.0以下の範囲に制御することで、核の成長を抑制するとともに、微細一次粒子が凝集した核を形成し、さらに、粒子成長工程で核を成長させることで、その内部に低密度部を有する中心部を形成することができる。
 なお、核生成工程では、不活性ガスの反応槽内への供給は、反応槽内の空間部への供給、および、反応前水溶液中への直接供給のいずれの方法も採りうる。前者では、核生成前から反応雰囲気を非酸化性雰囲気に調整することにより、高密度の中心部を形成することが可能である。後者の場合、核生成工程の初期段階において、反応場の雰囲気を酸化性雰囲気から非酸化性雰囲気へ切り替えることができ、この際に、その切り替え時間を短縮することができるため、中心部の大きさにかかわらず、その内部に低密度部を形成することが可能となる。
 核生成工程では、核生成用水溶液に、原料水溶液、アルカリ水溶液、およびアンモニウムイオン供給体を含む水溶液を供給することにより、連続して新しい核の生成が継続される。そして、核生成用水溶液中に、所定量の核が生成した時点で、核生成工程を終了する。
 この際、核の生成量は、核生成用水溶液に供給した原料水溶液に含まれる金属化合物の量から判断することができる。核生成工程における核の生成量は、特に制限されるものではないが、粒度分布の狭い複合水酸化物の二次粒子を得るためには、核生成工程および粒子成長工程を通じて供給する原料水溶液に含まれる金属化合物中の金属元素に対して、0.1原子%~2原子%の範囲とすることが好ましく、0.1原子%~1.5原子%の範囲とすることがより好ましい。
 [粒子成長工程]
 核生成工程終了後、反応槽内の核生成用水溶液のpH値を、液温25℃基準で10.5~12.0の範囲に調整し、粒子成長工程における反応水溶液である粒子成長用水溶液を形成する。pH値は、アルカリ水溶液の供給を停止することでも調整可能であるが、粒度分布の狭い複合水酸化物の二次粒子を得るためには、一旦、すべての水溶液の供給を停止してpH値を調整することが好ましい。具体的には、すべての水溶液の供給を停止した後、核生成用水溶液に、原料となる金属化合物を構成する酸と同種の無機酸を供給することにより、pH値を調整することが好ましい。
 次に、この粒子成長用水溶液を撹拌しながら、原料水溶液の供給を再開する。この際、粒子成長用水溶液のpH値は上述した範囲にあるため、新たな核はほとんど生成せず、粒子成長が進行し、所定の粒径を有する複合水酸化物の二次粒子が形成される。なお、粒子成長工程においても、粒子成長に伴い、粒子成長用水溶液のpH値およびアンモニウムイオン濃度は変化するので、アルカリ水溶液およびアンモニア水溶液を適時供給し、pH値およびアンモニウムイオン濃度を上記範囲に維持することが必要となる。
 特に、本発明の複合水酸化物の製造方法においては、核生成工程における非酸化性雰囲気を維持したまま、粒子成長工程の初期段階において、複合水酸化物の二次粒子の中心部を形成する。次に、粒子成長工程の初期段階の終了後に、原料水溶液の供給を継続しながら、反応水溶液中に酸化性ガスを直接供給することにより、反応雰囲気を、非酸化性雰囲気から酸素の濃度が5容量%を超える酸化性雰囲気に切り替える。これにより、複合水酸化物の二次粒子の中心部の周囲に低密度層を形成する。さらに、原料水溶液の供給を継続しながら、反応水溶液中に不活性ガスを直接供給することにより、酸化性雰囲気から酸素濃度が5容量%以下の非酸化性雰囲気に再度切り替える。これにより、複合水酸化物の二次粒子の中心部および低密度層の周囲に高密度層を形成する。本発明では、このような雰囲気制御を少なくとも1回行う。その後に、同様にして、非酸化性雰囲気から酸化性雰囲気への切り替え、および、酸化性雰囲気から非酸化性雰囲気への切り替えを行う、反応雰囲気の制御を繰り返すこともできる。このような制御によって、上述した粒子構造を有する二次粒子からなる複合水酸化物を得ることが可能となる。
 なお、このような複合水酸化物の製造方法では、核生成工程および粒子成長工程において、金属イオンは、核または一次粒子となって析出する。このため、核生成用水溶液および粒子成長用水溶液中の金属成分に対する液体成分の割合が増加する。この結果、見かけ上、原料水溶液の濃度が低下し、特に、粒子成長工程においては、複合水酸化物の二次粒子の成長が停滞する可能性がある。したがって、液体成分の増加を抑制するため、核生成工程終了後から粒子成長工程の途中で、粒子成長用水溶液の液体成分の一部を反応槽外に排出することが好ましい。具体的には、原料水溶液、アルカリ水溶液、およびアンモニウムイオン供給体を含む水溶液の供給および攪拌を一旦停止し、粒子成長用水溶液中の核や二次粒子を沈降させて、粒子成長用水溶液の上澄み液を排出することが好ましい。このような操作により、粒子成長用水溶液における混合水溶液の相対的な濃度を高めることができるため、粒子成長の停滞を防止し、得られる複合水酸物の二次粒子の粒度分布を好適な範囲に制御することができるばかりでなく、二次粒子全体としての密度も向上させることができる。
 [複合水酸化物の二次粒子の粒径制御]
 上述のようにして得られる複合水酸化物の二次粒子の粒径は、粒子成長工程や核生成工程の時間、核生成用水溶液や粒子成長用水溶液のpH値や、原料水溶液の供給量により制御することができる。たとえば、核生成工程を高pH値で行うことにより、または、粒子生成工程の時間を長くすることにより、供給する原料水溶液に含まれる金属化合物の量を増やし、核の生成量を増加させ、得られる複合水酸化物の二次粒子の粒径を小さくすることができる。反対に、核生成工程における核の生成量を抑制することで、得られる複合水酸化物の二次粒子の粒径を大きくすることができる。
 [晶析反応の別実施態様]
 本発明の複合水酸化物の製造方法では、核生成用水溶液とは別に、粒子成長工程に適したpH値およびアンモニウムイオン濃度に調整された成分調整水溶液を用意し、この成分調整用水溶液に、核生成工程後の核生成用水溶液、好ましくは核生成工程後の核生成用水溶液から液体成分の一部を除去したものを添加および混合して、これを粒子成長用水溶液として、粒子成長工程を行ってもよい。
 この場合、核生成工程と粒子成長工程の分離をより確実に行うことができるため、それぞれの工程における反応水溶液を、最適な状態に制御することができる。特に、粒子成長工程の開始時から粒子成長用水溶液のpH値を最適な範囲に制御することができるため、得られる複合水酸化物の二次粒子の粒度分布をより狭いものとすることができる。なお、この場合、粒子成長工程開始前に反応槽内に不活性ガスを供給し、粒子成長工程の初期段階の開始時から、酸素濃度が5容量%以下の非酸化性雰囲気となるようにすることが好ましい。
 (2)供給水溶液
 a)原料水溶液
 本発明においては、原料水溶液中の金属元素の比率が、概ね、得られる複合水酸化物の組成となる。このため、原料水溶液は、目的とする複合水酸化物の組成に応じて、それぞれの金属元素の含有量を適宜調整する。たとえば、一般式(A)で表される複合水酸化物を得ようとする場合には、原料水溶液中の金属元素の比率を、Ni:Mn:Co:M=x:y:z:t(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1)となるように調整する。
 原料水溶液を調製するための、遷移金属の化合物は、特に制限されることはないが、取扱いの容易性から、水溶性の硝酸塩、硫酸塩、塩酸塩などを用いることが好ましく、コストやハロゲンの混入を防止する観点から、硫酸塩を好適に用いることが特に好ましい。
 また、複合水酸化物中に、添加元素(M)、すなわち、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上を含有させる場合には、添加元素(M)を供給するための化合物としては、同様に水溶性の化合物が好ましく、たとえば、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム、硫酸チタン、ペルオキソチタン酸アンモニウム、シュウ酸チタンカリウム、硫酸バナジウム、バナジン酸アンモニウム、硫酸クロム、クロム酸カリウム、硫酸ジルコニウム、シュウ酸ニオブ、モリブデン酸アンモニウム、硫酸ハフニウム、タンタル酸ナトリウム、タングステン酸ナトリウム、タングステン酸アンモニウムなどを好適に用いることができる。
 原料水溶液の濃度は、金属化合物の合計で、好ましくは1mol/L~2.6mol/Lの範囲、より好ましくは1.5mol/L~2.2mol/Lの範囲とする。原料水溶液の濃度が1mol/L未満では、反応槽あたりの晶析物量が少なくなるため、生産性が低下する。一方、混合水溶液の濃度が2.6mol/Lを超えると、常温での飽和濃度を超えるため、それぞれの金属化合物の結晶が再析出して、配管などを詰まらせるおそれがある。
 上述した金属化合物は、必ずしも原料水溶液として反応槽に供給しなくてもよい。たとえば、混合すると反応して目的とする化合物以外の化合物が生成されてしまう金属化合物を用いて晶析反応を行う場合には、全金属化合物水溶液の合計の濃度が上記範囲となるように、個別に金属化合物水溶液を調製して、個々の金属化合物の水溶液として、所定の割合で反応槽内に供給してもよい。
 また、原料水溶液の供給量は、粒子成長工程の終了時点において、粒子成長水溶液中の生成物の濃度が、好ましくは30g/L~200g/Lの範囲、より好ましくは80g/L~150g/Lの範囲となるようにする。生成物の濃度が30g/L未満では、一次粒子の凝集が不十分になる場合がある。一方、200g/Lを超えると、反応槽内に、核生成用金属塩水溶液または粒子成長用金属塩水溶液が十分に拡散せず、粒子成長に偏りが生じる場合がある。
 b)アルカリ水溶液
 反応水溶液中のpH値を調整するアルカリ水溶液は、特に制限されることはなく、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。なお、アルカリ金属水酸化物を、直接、反応水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。この場合、アルカリ金属水酸化物水溶液の濃度を、好ましくは20質量%~50質量%の範囲、より好ましくは20質量%~30質量%の範囲とする。アルカリ金属水溶液の濃度をこのような範囲に規制することにより、反応系に供給する溶媒量(水量)を抑制しつつ、添加位置で局所的にpH値が高くなることを防止することができるため、粒度分布の狭い二次粒子からなる複合水酸化物を効率的に得ることが可能となる。
 なお、アルカリ水溶液の供給方法は、反応水溶液のpH値が局所的に高くならず、かつ、所定の範囲に維持される限り、特に制限されることはない。たとえば、反応水溶液を十分に撹拌しながら、定量ポンプなどの流量制御が可能なポンプにより供給すればよい。
 c)アンモニウム供給体を含む水溶液
 アンモニウムイオン供給体を含む水溶液も、特に制限されることはなく、たとえば、アンモニア水、または、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウムもしくはフッ化アンモニウムなどの水溶液を使用することができる。
 アンモニウムイオン供給体として、アンモニア水を使用する場合には、その濃度は、好ましくは20質量%~30質量%の範囲、より好ましくは22質量%~28質量%の範囲とする。アンモニア水の濃度をこのような範囲に規制することにより、揮発などによるアンモニアの損失を最小限に抑制することができるため、生産効率の向上を図ることが可能となる。
 なお、アンモニウムイオン供給体を含む水溶液の供給方法も、アルカリ水溶液と同様に、流量制御が可能なポンプにより供給することができる。
 (3)pH値
 a)核生成工程
 核生成工程においては、反応水溶液である核生成用水溶液のpH値を、液温25℃基準で、12.0~14.0の範囲、好ましくは12.3~13.5の範囲、より好ましくは12.5を超えて13.3以下の範囲に制御することが必要となる。これにより、核の成長を抑制し、核生成を優先させることが可能となり、この工程で生成する核を均質かつ粒度分布の狭いものとすることができる。また、上述の通り、pH値が12.5を超えるようにすることで、複合水酸化物の二次粒子の中心部の内部に低密度部を形成することが可能となる。pH値が12.0未満では、核生成とともに粒子成長が進行するため、得られる複合水酸化物の二次粒子の粒径が不均一となり、粒度分布が悪化する。また、pH値が14.0を超えると、生成する核が微細になりすぎるため、核生成用水溶液がゲル化する問題が生じる。
 b)粒子成長工程
 粒子成長工程においては、反応水溶液である粒子成長水溶液のpH値を、液温25℃基準で、10.5~12.0の範囲、好ましくは11.0~12.0の範囲、より好ましくは11.5~12.0の範囲に制御することが必要となる。これにより、新たな核の生成が抑制され、粒子成長を優先させることが可能となり、得られる複合水酸化物の二次粒子を均質かつ粒度分布の狭いものとすることができる。一方、pH値が10.5未満では、アンモニウムイオン濃度が上昇し、金属イオンの溶解度が高くなるため、晶析反応の速度が遅くなるばかりでなく、反応水溶液中に残存する金属イオン量が増加し、生産性が悪化する。また、pH値が12.0を超えると、粒子成長工程中の核生成量が増加し、得られる複合水酸化物の二次粒子の粒径が不均一となり、二次粒子の粒度分布が悪化する。
 なお、いずれの工程においても、晶析反応中のpH値の変動幅は、±0.2以内に制御することが好ましい。pH値の変動幅が大きい場合には、核生成量あるいは粒子成長の割合が一定とならず、粒度分布の狭い二次粒子からなる複合水酸化物を得ることが困難となる。
 また、pH値が12.0の場合は、核生成と核成長の境界条件であるため、反応水溶液中に存在する核の有無により、核生成工程または粒子成長工程のいずれかの条件とすることができる。すなわち、核生成工程のpH値を12.0より高くして多量に核生成させた後、粒子成長工程のpH値を12.0とすると、反応水溶液中に多量の核が存在するため、粒子成長が優先して起こり、粒径分布が狭い複合水酸化物の二次粒子を得ることができる。一方、核生成工程のpH値を12.0とすると、反応水溶液中に成長する核が存在しないため、核生成が優先して起こり、粒子成長工程のpH値を12.0より小さくすることで、生成した核が成長して良好な粒子性状を有する複合水酸化物の二次粒子を得ることができる。いずれの場合においても、粒子成長工程のpH値を核生成工程のpH値より低い値で制御すればよく、核生成と粒子成長を明確に分離するためには、粒子成長工程のpH値を核生成工程のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。
 (4)反応雰囲気
 本発明の複合水酸化物の製造方法においては、それぞれの工程におけるpH値の制御とともに、反応雰囲気の制御が重要な意義を有する。すなわち、それぞれの工程におけるpH値を制御した上で、核生成工程と粒子成長工程の初期段階の反応雰囲気を非酸化性雰囲気に調整することで、核が生成され、その後、それぞれの核が粒成長することにより、板状一次粒子が凝集した中心部が形成される。また、粒子成長工程の途中で、原料水溶液の供給を継続しながら、反応水溶液中に酸化性ガスを直接供給して、急速に反応場の反応雰囲気を非酸化性雰囲気から酸化性雰囲気に切り替えることで、中心部の外側に、板状一次粒子および微細一次粒子が凝集した低密度層が形成され、さらに、原料水溶液の供給を継続しながら、反応水溶液中に不活性ガスを直接供給することで、急速に反応場の反応雰囲気を酸化性雰囲気から非酸化性雰囲気に切り替えることにより、中心部と低密度層の外側に、板状一次粒子が凝集した高密度層を形成することができる。
 a)非酸化性雰囲気
 本発明の製造方法においては、複合水酸化物の二次粒子の中心部のうちの少なくとも最外部および高密度層を形成する段階における反応雰囲気を、非酸化性雰囲気に制御する。具体的には、反応雰囲気中における酸素濃度が、5容量%以下、好ましくは2容量%以下、より好ましくは1容量%以下となるように、酸素と不活性ガスの混合雰囲気に制御することが必要となる。これにより、反応場の雰囲気における酸素濃度を十分に低減して不要な酸化を抑制しつつ、核生成工程で生成した核を一定の範囲まで成長させることができるため、複合水酸化物の二次粒子の中心部および高密度層を、平均粒径が0.3μm~3μmの範囲にあり、粒度分布が狭い板状一次粒子が凝集した構造とすることができる。
 b)酸化性雰囲気
 一方、複合水酸化物の二次粒子を構成する低密度層を形成する段階では、反応雰囲気を、酸化性雰囲に制御する。具体的には、反応雰囲気中における酸素濃度が、5容量%を超えるように、好ましくは10容量%以上、より好ましくは大気雰囲気(酸素濃度:21容量%)となるように制御する。反応雰囲気中の酸素濃度をこのような範囲に制御し、反応場の雰囲気における酸素濃度を十分に高くして一次粒子の成長を抑制することにより、一次粒子の平均粒径が0.01μm~0.3μmの範囲となるようにして、上述した中心部および高密度層と十分な密度差を有する低密度層を形成することを可能としている。
 なお、この段階における反応雰囲気中の酸素濃度の上限は特に制限されることはないが、酸素濃度が過度に高いと、一次粒子の平均粒径が0.01μm未満となり、低密度層が十分な大きさとならない場合がある。このため、酸素濃度は30容量%以下とすることが好ましい。また、低密度層と中心部および高密度層を明確なものとするため、雰囲気切り替え前後での酸素濃度の差を3容量%以上とすることが好ましい。
 粒子成長工程において、酸化性ガスを導入する時間を合計で、粒子成長工程時間の全体に対して1%~25%の範囲とすることが好ましく、1%~20%の範囲とすることがより好ましい。酸化性雰囲気での晶析反応時間が合計で、粒子成長工程時間の全体に対して1%未満となると、複合水酸化物の二次粒子に低密度層が十分に形成されず、この複合水酸化物を前駆体とする正極活物質において、空間部の大きさが十分とならない場合がある。一方、25%を超えると、複合水酸化物の二次粒子に高密度層が十分に形成されず、正極活物質の内殻部または外殻部の厚さが過度に薄くなって、正極活物質に強度上の問題が生じる。
 c)雰囲気制御のタイミング
 粒子成長工程において、上述した雰囲気制御は、目的とする粒子構造を有する複合水酸化物の二次粒子が形成されるように、適切なタイミングで行うことが必要となる。
 [雰囲気制御を1回のみ行う場合]
 雰囲気制御を1回のみ行い、中心部、低密度層、および高密度層から構成される複合水酸化物の二次粒子を得ようとする場合、粒子成長工程の初期段階の晶析反応時間は、粒子成長工程時間の全体に対して、好ましくは0.5%~30%の範囲とし、より好ましくは1%~20%の範囲とする。すなわち、粒子成長工程の開始時から、粒子成長工程時間の全体に対して、好ましくは0.5%~30%の範囲、より好ましくは1%~20%の範囲で、酸化性ガスの導入を開始して、非酸化性雰囲気から酸化性雰囲気に切り替える。
 酸化性ガスの導入は、反応水溶液中に直接行われることから、非酸化性雰囲気から酸化性雰囲気への切り替え時間は、粒子成長工程時間の全体に対して0.5%~2%程度となる。
 本発明の製造方法においては、反応水溶液中に雰囲気ガスを直接供給するため、反応場の雰囲気、すなわち反応水溶液の酸素溶存量は、反応槽内の酸素濃度にほぼ時間差なく追随して変化する。したがって、雰囲気の切り替え時間は、反応槽内の酸素濃度測定により確認することができる。一方、反応槽内の空間部へ雰囲気ガスを供給した場合には、反応水溶液の酸素溶存量と反応槽内の酸素濃度の変化に時間差が生じるため、反応槽内の酸素濃度が安定するまで反応水溶液の酸素溶存量を確認することができない。反応水溶液中に雰囲気ガスを直接供給する本発明においては、反応槽内の酸素濃度によって確認された雰囲気の切り替え時間を、反応場の雰囲気としての反応水溶液の酸素溶存量の切り替え時間とみなすことができる。
 また、切り替え後の酸化性雰囲気での晶析反応時間は、粒子成長工程時間の全体に対して、好ましくは1%~25%の範囲、より好ましくは1%~20%の範囲とする。すなわち、酸化性ガスの導入開始時から、粒子成長工程時間の全体に対して、好ましくは1%~25%の範囲、より好ましくは1%~20%の範囲で、反応水溶液中に不活性ガスの直接導入を開始して、酸化性雰囲気から非酸化性雰囲気に切り替える。
 酸化性雰囲気から非酸化性雰囲気への反応雰囲気の切り替え時間は、粒子成長工程の全体に対して1%~5%程度である。また、最終切り替え後の非酸化性雰囲気での粒子成長工程の終了(晶折反応の終了)までの晶析反応時間は、粒子成長工程時間の全体に対して、好ましくは50%~98.5%の範囲であり、好ましくは50%~80%の範囲である。このようなタイミングで反応雰囲気を順次切り替えることにより、中心部の大きさや高密度層の厚さを好適な範囲に制御することが可能となる。
 [雰囲気制御を2回以上行う場合]
 雰囲気制御を2回以上行い、中心部と、複数の低密度層および高密度層の組み合わせとから構成される構造を有する複合水酸化物の二次粒子を得ようとする場合、粒子成長工程の初期段階の晶析反応時間は、粒子成長工程時間の全体に対して、好ましくは0.5%~30%の範囲とし、より好ましくは1%~20%の範囲とする。すなわち、粒子成長工程の開始時から、粒子成長工程時間の全体に対して、好ましくは0.5%~30%の範囲、より好ましくは1%~20%の範囲で、酸化性ガスの直接導入を開始して、非酸化性雰囲気から酸化性雰囲気に切り替え、その後、酸化性ガスの直接導入の開始時から、粒子成長工程時間の全体に対して、好ましくは、0.5%~20%の範囲、より好ましくは0.5%~15%の範囲で、不活性ガスの直接導入を開始して、酸化性雰囲気から非酸化性雰囲気に切り替え、さらに、不活性ガスの直接導入の開始から、粒子成長工程時間の全体に対して、好ましくは、5%~40%の範囲、より好ましくは5%~35%の範囲で、酸化性ガスの直接導入を再開して、非酸化性雰囲気から酸化性雰囲気に切り替え、その後、酸化性ガスの直接導入の再開時から、粒子成長工程時間の全体に対して、好ましくは、0.5%~20%の範囲、より好ましくは0.5%~15%の範囲で、不活性ガスの直接導入を再開して、酸化性雰囲気から非酸化性雰囲気に切り替える。最終切り替え後の非酸化性雰囲気での粒子成長工程の終了、すなわち晶折反応の終了までの晶析反応時間は、粒子成長工程時間の全体に対して、好ましくは40%~80%の範囲であり、より好ましくは50%~70%の範囲である。
 この場合も、粒子成長工程における酸化性雰囲気での全晶析反応時間を、粒子成長工程時間の全体に対して、好ましくは1%~25%の範囲、より好ましくは1%~20%の範囲とする。このようなタイミングで反応雰囲気を切り替えることにより、中心部の大きさや高密度層の厚さを好適な範囲に制御することが可能となる。
 d)切り替え方法
 従来、晶析工程中における反応雰囲気の切り替えは、反応槽内、より具体的には、反応槽内の気相部分に雰囲気ガスを流通させるか、反応水溶液に、内径が1mm~50mm程度の導管を挿入し、雰囲気ガスによってバブリングすることで行うことが一般的である。このような従来技術では、反応水溶液の酸素溶存量を本発明の製造方法のような短時間で切り替えることが困難であるため、粒子成長工程における非酸化性雰囲気から酸化性雰囲気への切り替え中においては、原料水溶液の供給を停止することが必要である。これは、原料水溶液の供給を停止しないと、複合水酸化物の二次粒子内部に緩やかな密度勾配が形成され、低密度層を十分な大きさとすることができないと考えられていたためである。
 これに対して、本発明の複合水酸化物の製造方法では、粒子成長工程における、非酸化性雰囲気から酸化性雰囲気への切り替え、および、酸化性雰囲気から非酸化性雰囲気への切り替えに際して、原料水溶液の供給を継続しながら、反応水溶液中に雰囲気ガスを直接供給して雰囲気を切り替えることを特徴とする。このような方法では、反応雰囲気の切り替え時に、反応水溶液中の反応場の雰囲気が、非酸化性雰囲気の領域と酸化性雰囲気の領域とが混在した状態、または、非酸化性と酸化性の境界雰囲気となり、非酸化性雰囲気と酸化性雰囲気を行き来する状態になる。この結果、中心部の外側で高密度層の内側あるいは高密度層間に低密度層を十分な大きさで形成できるとともに、特に低密度層の形成段階において、板状一次粒子と微細一次粒子の両方が生成し、その内部に高密度部が存在する低密度層を備えた粒子構造を有する複合水酸化物の二次粒子を得ることが可能となる。また、反応雰囲気の切り替え時に、原料水溶液の供給を停止する必要がないため、生産効率の改善を図ることもできる。
 なお、酸化性ガスもしくは不活性ガスの反応水溶液内への直接導入による、反応雰囲気の切り替えに要する時間(切り替え時間)は、上記構造を備える複合水酸化物の二次粒子を得ることができる限り制限されることはないが、上述したように、通常、酸化性ガスの直接導入による、非酸化性雰囲気から酸化性雰囲気への切り替え時間は、粒子成長工程時間の全体に対して0.5%~2%程度であり、不活性ガスの直接導入による、酸化性雰囲気から非酸化性雰囲気への切り替え時間は、粒子成長工程時間の全体に対して1%~5%程度である。
 ここで、反応水溶液中への雰囲気ガスの供給手段は、反応水溶液中に雰囲気ガスを直接供給可能な手段であることが必要となる。このような手段としては、たとえば、散気管を用いることが好ましい。散気管は、表面に微細な孔(メッシュ)を多数有する導管によって構成され、液体中に微細なガス(気泡)を多数放出することができるため、反応水溶液と気泡の接触面積が大きく、雰囲気ガスの供給量に応じて、切り替え時間の制御を容易に行うことができる。
 このような散気管としては、高pH環境下における耐性に優れるセラミック製のものを用いることが好ましい。また、散気管は、その孔径が小さいほど、微細な気泡を放出することができるため、高い効率で反応雰囲気を切り替えることが可能となる。本発明においては、メッシュの孔径が100μm以下の散気管を用いることが好ましく、メッシュの孔径が50μm以下の散気管を用いることがより好ましい。
 なお、雰囲気ガスの供給は、上述のように微細な気泡を発生させ、反応水溶液と気泡の接触面積を大きくすればよいことから、上述した散気管以外のものであっても、導管の孔から気泡を発生させ、撹拌翼などによって気泡を微細に粉砕し分散させることができるものであれば、同様に、高い効率で雰囲気を切り替えることが可能となる。
 (5)アンモニウムイオン濃度
 反応水溶液中のアンモニウムイオン濃度は、好ましくは3g/L~25g/Lの範囲、より好ましくは5g/L~20g/Lの範囲において一定値に保持する。反応水溶液中においてアンモニウムイオンは錯化剤として機能するため、アンモニウムイオン濃度が3g/L未満では、金属イオンの溶解度を一定に保持することができず、また、反応水溶液がゲル化しやすくなり、形状や粒径の整った複合水酸化物の二次粒子を得ることが困難となる。一方、アンモニウムイオン濃度が25g/Lを超えると、金属イオンの溶解度が大きくなりすぎるため、反応水溶液中に残存する金属イオン量が増加し、組成ずれなどの原因となる。
 なお、晶析反応中にアンモニウムイオン濃度が変動すると、金属イオンの溶解度が変動し、均一な組成を有する複合水酸化物の二次粒子が形成されなくなる。このため、核生成工程と粒子成長工程を通じて、アンモニウムイオン濃度の変動幅を一定の範囲に制御することが好ましく、具体的には、±5g/Lの変動幅に制御することが好ましい。
 (6)反応温度
 反応水溶液の温度(反応温度)は、核生成工程と粒子成長工程を通じて、好ましくは20℃以上、より好ましくは20℃~60℃の範囲に制御することが必要となる。反応温度が20℃未満では、反応水溶液の溶解度が低くなることに起因して、核生成が起こりやすくなり、得られる複合水酸化物の二次粒子の平均粒径や粒度分布の制御が困難となる。なお、反応温度の上限は、特に制限されることはないが、60℃を超えると、アンモニアの揮発が促進され、反応水溶液中のアンモニウムイオンを一定範囲に制御するために供給するアンモニウムイオン供給体を含む水溶液の量が増加し、生産コストが増加してしまう。
 (7)被覆工程
 本発明の複合水酸化物の製造方法では、原料水溶液中に添加元素(M)を含有する化合物を添加することで、二次粒子内部に添加元素(M)が均一に分散した複合水酸化物を得ることができる。しかしながら、より少ない添加量で、添加元素(M)の添加による効果を得ようとする場合には、粒子成長工程後に、複合水酸化物の二次粒子の表面を、添加元素(M)を含む化合物で被覆する被覆工程を行うことが好ましい。
 被覆方法は、複合水酸化物の二次粒子を、添加元素(M)を含む化合物によって均一に被覆することができる限り、特に制限されることはない。たとえば、複合水酸化物をスラリー化し、そのpH値を所定の範囲に制御した後、複合水酸化物のスラリーに、添加元素(M)を含む化合物を溶解した水溶液(被覆用水溶液)を添加し、二次粒子の表面に添加元素(M)を含む化合物を析出させることで、添加元素(M)を含む化合物によって均一に被覆された複合水酸化物の二次粒子を得ることができる。この場合、被覆用水溶液に代えて、添加元素(M)のアルコキシド溶液を、複合水酸化物のスラリーに添加してもよい。また、複合水酸化物をスラリー化せずに、添加元素(M)を含む化合物を溶解した水溶液またはスラリーを複合水酸化物に吹き付けて乾燥させることにより、その二次粒子を被覆してもよい。さらに、複合水酸化物と添加元素(M)を含む化合物が懸濁したスラリーを噴霧乾燥させる方法により、または、複合水酸化物と添加元素(M)を含む化合物を固相法で混合するなどの方法によって被覆することもできる。
 なお、複合水酸化物の二次粒子の表面を添加元素(M)で被覆する場合には、被覆工程後の複合水酸化物の組成が、目的とする複合水酸化物の組成と一致するように、原料水溶液および被覆用水溶液の組成を適宜調整することが必要となる。また、被覆工程は、複合水酸化物を熱処理した後の熱処理粒子に対して行ってもよい。
 (8)製造装置
 本発明の複合水酸化物を製造するための晶析装置(反応槽)としては、上述した散気管によって反応雰囲気の切り替えを行うことができるものである限り、特に制限されることはない。しかしながら、晶析反応が終了するまで、析出した生成物を回収しないバッチ式晶析装置を用いることが好ましい。このような晶析装置であれば、オーバーフロー方式によって生成物を回収する連続晶析装置とは異なり、成長中の粒子がオーバーフロー液と同時に回収されることがないため、粒度分布の狭い二次粒子からなる複合水酸化物を容易に得ることができる。また、本発明の複合水酸化物の製造方法では、晶析反応中の反応雰囲気を適切に制御することが必要となるため、密閉式の晶析装置を用いることが好ましい。
 2.非水電解質二次電池用正極活物質
 2-1.非水電解質二次電池用正極活物質
 (1)粒子構造
 a)二次粒子の構造
 本発明の正極活物質は、複数の一次粒子が凝集して形成された二次粒子から構成される。この二次粒子は、一次粒子が凝集した外殻部と、前記外殻部の内側に存在し、かつ、前記外殻部と電気的かつ構造的に接続された、少なくとも1つの一次粒子が凝集した凝集部と、前記外殻部の内側に存在し、少なくとも1つの一次粒子が存在しない空間部とを備えていることを特徴とする。ここで、「電気的かつ構造的に接続する」とは、外殻部と一次粒子の凝集部および一次粒子の凝集部同士が、これらの間に形成された連結部などの構造体によって構造的に接続し、電気的に導通可能な状態であることを意味する。また、「一次粒子の凝集部」とは、前駆体である複合水酸化物の二次粒子の中心部および外殻部を形成するもの以外の高密度層が焼結収縮した部分を意味し、「連結部」とは、低密度層のうち、高密度部が焼結収縮した部分を意味する。
 このような粒子構造を有する正極活物質では、一次粒子間の粒界または空間部を介して、二次粒子の内部に電解液が浸入するため、二次粒子の表面ばかりでなく、二次粒子の内部においても、リチウムの脱離および挿入が可能となる。しかも、この正極活物質は、外殻部と凝集部とが電気的かつ構造的に接続しており、二次粒子内部の表面積が十分に大きいため、WO2014/181891号公報などに記載の正極活物質と比べて、粒子内部の抵抗(内部抵抗)を大幅に低減することが可能となる。また、連結部の存在によって、粒子強度を高めつつ、粒子密度を大きくすることができる。したがって、この正極活物質を用いた二次電池では、出力特性、電池容量、およびサイクル特性を同時に改善することができる。
 なお、本発明の正極活物質の中心部は、複合水酸化物の二次粒子における中心部とは必ずしも一致しない。この理由は明らかではないが、高密度層同士の間に接点(連結部)が存在することや、高密度層同士を接続する高密度部が複合水酸化物の二次粒子中にランダムに存在することにより、焼成時に二次粒子の収縮が不均一になるためと推測される。また、複合水酸化物の二次粒子において、その中心部は高密度層および高密度部と接続しているため、中心部が、焼成時における二次粒子の変形の影響を受けやすいためと推測される。したがって、本発明の正極活物質では、a)外殻部と、少なくとも1つの一次粒子の凝集部と、少なくとも1つの空間部と、外殻部と凝集部とを接続する連結部を備えた構造、b)一次粒子の凝集部から構成される中心部と、外殻部と、中心部と外殻部とを接続する連結部とを備えた構造、c)外殻部と、その内側にある内殻部と、内殻部の内側にある少なくとも1つの一次粒子の凝集部と、外殻部と内殻部との間の空間部と、内殻部の内側にある空間部と、外殻部と内殻部と一次粒子の凝集部とを接続する連結部とを備えた構造などの種々な構造が存在する。また、この場合、中心部、内殻部、外殻部のいずれも、相互に電気的かつ構造的に接続された複数の凝集部により構成されることもできる。さらには、連結部が外殻部や凝集部(中心部や内殻部を含む)と一体化して、外殻部と凝集部が実質的に直接連結されて電気的に接続するような構造を有する正極活物質も本発明の範囲内にある。この場合、外殻部と凝集部との接続部が連結部であると解釈される。
 なお、以下の説明においては、正極活物質の粒子性状について、二次粒子である旨の言及については省略する。
 b)外殻部
 本発明の正極活物質において、その粒径に対する外殻部の厚さの比率(以下、「外殻部粒径比」という)は、5%~25%の範囲であることが好ましく、5%~20%の範囲であることがより好ましく、5%~15%の範囲であることがさらに好ましい。これにより、この正極活物質を用いた二次電池において、電池容量やサイクル特性を損ねることなく、出力特性を改善することが可能となる。これに対して、外殻部粒径比が5%未満では、正極活物質の粒子強度や耐久性を確保することが困難となり、二次電池のサイクル特性が低下するおそれがある。一方、外殻部粒径比が25%を超えると、空間部の比率が低下するため、二次電池の出力特性を改善することが困難となるおそれがある。
 ここで、外殻部粒径比は、正極活物質の断面SEM写真を用いて、次のようにして求めることができる。はじめに、断面SEM写真上で、1粒子あたり3か所以上の任意の位置で外殻部の厚さを測定し、その平均値を求める。ここで、外殻部の厚さは、正極活物質の外周から外殻部と空間部の境界までの距離が最短となる2点間の距離とする。同時に、正極活物質の外周上の2点間の最大距離を測定し、この値をその正極活物質の粒径とする。そして、外殻部の厚さを正極活物質の粒径で除することにより、その正極活物質の粒径に対する外殻部の厚さの比率を求める。同様の測定を10個以上の正極活物質に対して、その平均値を算出することで、外殻部粒径比を求めることができる。なお、本発明の正極活物質では、焼成時の収縮により外殻部の一部が解放し、内部の空間部が外部に露出した状態となる場合がある。このような場合には、解放している部分が繋がっているものと推定して外殻部を判断し、測定可能な部分で外殻部の厚さを測定すればよい。
 c)空間部
 本発明の正極活物質は、外殻部の内側に空間部が分散していることを特徴とするが、正極活物質の任意の断面において、外殻部および一次粒子の凝集部の面積に対する空間部の面積の比率(以下、「空間部比」という)は、20%~60%の範囲であることが好ましく、30%~50%の範囲であることがより好ましい。これにより、この正極活物質を用いた二次電池において、出力特性、電池容量およびサイクル特性を同時に改善することが可能となる。これに対して、空間部比が20%未満では、二次電池の出力特性を改善することができないおそれがある。一方、空間部比が60%を超えると、粒子密度や粒子強度が低下するため、二次電池の電池容量やサイクル特性を確保することができないおそれがある。
 なお、空間部比は、断面のSEM観察において、任意の10個以上の正極活物質について、空間部(図2における黒色部)に対する、外殻部および一次粒子の凝集部(図2における白色部ないしは薄灰色部)の面積比を求め、これらの平均値を算出することにより求めることができる。
 (2)平均粒径
 本発明の正極活物質は、平均粒径が、1μm~15μmの範囲、好ましくは3μm~12μmの範囲、より好ましくは3μm~10μmの範囲となるように調整される。正極活物質の平均粒径がこのような範囲にあれば、この正極活物質を用いた二次電池の単位体積あたりの電池容量を増加させることができるばかりでなく、安全性や出力特性も改善することができる。これに対して、平均粒径が1μm未満では、正極活物質の充填性が低下し、単位体積あたりの電池容量を増加させることができない。一方、平均粒径が15μmを超えると、正極活物質の反応面積が低下し、電解液との界面が減少するため、出力特性を改善することが困難となる。
 なお、正極活物質の平均粒径とは、上述した複合水酸化物の二次粒子と同様に、体積基準平均粒径(MV)を意味し、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
 (3)粒度分布
 本発明の正極活物質についての、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕は、0.7以下、好ましくは0.6以下、より好ましくは0.55以下であり、本発明の正極活物質はきわめて粒度分布が狭い。このような正極活物質は、微細粒子や粗大粒子の割合が少なく、これを用いた二次電池は、安全性、サイクル特性および出力特性が優れたものとなる。
 これに対して、〔(d90-d10)/平均粒径〕が0.7を超えると、正極活物質中の微細粒子や粗大粒子の割合が増加する。たとえば、微細粒子の割合が多い正極活物質を用いた二次電池では、微細粒子の局所的な反応に起因して、二次電池が発熱しやすくなり、安全性が低下するばかりでなく、微細粒子の選択的な劣化により、サイクル特性が劣ったものとなる。また、粗大粒子の割合が多い正極活物質を用いた二次電池では、電解液と正極活物質の反応面積を十分に確保することができず、出力特性が劣ったものとなる。なお、工業規模の生産を前提とした場合には、正極活物質として、〔(d90-d10)/平均粒径〕が過度に小さいものを用いることは現実的でではない。したがって、コストや生産性を考慮すると、〔(d90-d10)/平均粒径〕の下限値は、0.25程度とすることが好ましい。
 粒度分布の広がりを示す指標〔(d90-d10)/平均粒径〕におけるd10およびd90の意味、並びに、これらの求め方は、上述した複合水酸化物の二次粒子と同様であるため、ここでの説明は省略する。
 (4)単位体積あたりの表面積
 本発明の正極活物質は、単位体積あたりの表面積が1.7m/cm以上、好ましくは2.1m/cm以上であることが必要とされる。これにより、正極活物質の充填性を確保しつつ、電解液との接触面積を増大させることができるため、出力特性と電池容量を同時に改善することができる。なお、単位体積あたりの表面積は、後述するBET比表面積とタップ密度の積によって求めることができる。
 一般的に、タップ密度が大きくなるとBET比表面積は小さくなり、タップ密度が小さくなるとBET比表面積は大きくなる。このため、タップ密度を低下させずにBET比表面積を大きくすることは困難である。これに対して、本発明の正極活物質は、上述のような粒子構造を備えることにより、タップ密度を低下させることなく、BET比表面積を大きくすることを可能としている。
 (5)組成
 本発明の正極活物質は、上述した粒子構造を有する限り、その組成が制限されることはない。すなわち、本発明においては、正極活物質の粒子構造、平均粒径、および粒度分布に特徴があり、本発明は、少なくとも遷移金属、具体的には、主たる遷移金属として、ニッケル(Ni)、マンガン(Mn)、およびコバルト(Co)のいずれか一種を含有する複合酸化物からなる正極活物質に広く適用が可能である。また、本発明の正極活物質は、上記の主たる遷移金属のほか、これ以外の遷移金属やその他の金属を添加元素として含有することができる。
 ただし、本発明の正極活物質は、ニッケル、ニッケルとマンガン、ないしは、ニッケルとマンガンとコバルトを主体とする複合酸化物からなることが好ましく、特に、本発明は、一般式(B):Li1+uNiMnCo(-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される正極活物質に対して好適に適用することができる。
 この正極活物質において、リチウム(Li)の過剰量を示すuの値は、好ましくは-0.05以上0.50以下、より好ましく0以上0.50以下、さらに好ましくは0以上0.35以下とする。uの値を上記範囲に規制することにより、この正極活物質を正極材料として用いた二次電池の出力特性および電池容量を向上させることができる。これに対して、uの値が-0.05未満では、二次電池の正極抵抗が大きくなるため、出力特性を向上させることができない。一方、0.50を超えると、初期放電容量が低下するばかりでなく、正極抵抗も大きくなってしまう。
 ニッケル(Ni)は、二次電池の高電位化および高容量化に寄与する元素であり、その含有量を示すxの値は、好ましくは0.3以上0.95以下、より好ましくは0.3以上0.9以下とする。xの値が0.3未満では、この正極活物質を用いた二次電池の電池容量を向上させることができない。一方、xの値が0.95を超えると、他の元素の含有量が減少し、その効果を得ることができない。
 マンガン(Mn)は、熱安定性の向上に寄与する元素であり、その含有量を示すyの値は、好ましくは0.05以上0.55以下、より好ましくは0.10以上0.40以下とする。yの値が0.05未満では、この正極活物質を用いた二次電池の熱安定性を向上させることができない。一方、yの値が0.55を超えると、高温作動時に正極活物質からMnが溶出し、充放電サイクル特性が劣化してしまう。
 コバルト(Co)は、充放電サイクル特性の向上に寄与する元素であり、その含有量を示すzの値は、好ましくは0以上0.4以下、より好ましくは0.10以上0.35以下とする。zの値が0.4を超えると、この正極活物質を用いた二次電池の初期放電容量が大幅に低下してしまう。
 本発明の正極活物質では、二次電池の耐久性や出力特性をさらに改善するため、上述した金属元素に加えて、添加元素(M)を含有してもよい。このような添加元素(M)としては、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)から選択される1種以上を用いることができる。
 添加元素(M)の含有量を示すtの値は、好ましくは0以上0.1以下、より好ましくは0.001以上0.05以下とする。tの値が0.1を超えると、Redox反応に寄与する金属元素が減少するため、電池容量が低下する。
 このような添加元素(M)は、正極活物質の粒子内部に均一に分散させてもよく、正極活物質の粒子表面を被覆させてもよい。さらには、粒子内部に均一に分散させた上で、その表面を被覆させてもよい。いずれにしても、添加元素(M)の含有量が上記範囲となるように制御することが必要となる。
 なお、上記正極活物質において、これを用いた二次電池の電池容量のさらなる改善を図る場合には、その組成を、一般式(B1):Li1+uNiMnCo(-0.05≦u≦0.20、x+y+z+t=1、0.7<x≦0.95、0.05≦y≦0.1、0≦z≦0.2、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Wから選択される1種以上の添加元素)で表されるように調整することが好ましい。特に、熱安定性との両立を図る場合には、一般式(B1)におけるxの値を、0.7<x≦0.9とすることがより好ましく、0.7<x≦0.85とすることがさらに好ましい。
 一方、熱安定性のさらなる改善を図る場合には、その組成を、一般式(B2):Li1+uNiMnCo(-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.7、0.1≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表されるように調整することが好ましい。
 (6)BET比表面積
 本発明の正極活物質においては、BET比表面積が、0.7m/g~5.0m/gの範囲にあることが好ましく、1.8m/g~5.0m/gの範囲にあることがより好ましい。BET比表面積がこのような範囲にある正極活物質は、電解液との接触面積が大きく、これを用いた二次電池の出力特性を大幅に改善することができる。これに対して、正極活物質のBET比表面積が0.7m/g未満では、二次電池を構成した場合に、電解液との反応面積を確保することができず、出力特性を十分に向上させることが困難となる。一方、正極活物質のBET比表面積が5.0m/gを超えると、電解液との反応性が高くなりすぎるため、熱安定性が低下する場合がある。
 なお、正極活物質のBET比表面積は、たとえば、窒素ガス吸着によるBET法により測定することができる。
 (7)タップ密度
 携帯電子機器の使用時間や電気自動車の走行距離を伸ばすために、二次電池の高容量化は重要な課題となっている。一方、二次電池の電極の厚さは、電池全体のパッキングや電子伝導性の問題から数ミクロン程度とすることが要求される。このため、正極活物質として高容量のものを使用するばかりでなく、正極活物質の充填性を高め、二次電池全体としての高容量化を図ることが必要となる。このような観点から、本発明の正極活物質では、充填性の指標であるタップ密度を、1.0g/cm以上とすることが好ましく、1.3g/cm以上とすることがより好ましい。タップ密度が1.0g/cm未満では、充填性が低く、二次電池全体の電池容量を十分に改善することができない場合がある。一方、タップ密度の上限値は、特に制限されるものではないが、通常の製造条件での上限は、3.0g/cm程度となる。
 なお、タップ密度とは、JIS Z-2504に基づき、容器に採取した試料粉末を、100回タッピングした後の嵩密度を表し、振とう比重測定器を用いて測定することができる。
 2-2.非水電解質二次電池用正極活物質の製造方法
 本発明の正極活物質の製造方法は、上述した複合水酸化物を前駆体として用い、所定の粒子構造、平均粒径、および粒度分布を備える正極活物質を合成することができる限り、特に制限されることはない。しかしながら、工業規模の生産を前提とした場合には、上述した複合水酸化物をリチウム化合物と混合し、リチウム混合物を得る混合工程と、得られたリチウム混合物を、酸化性雰囲気中、650℃~980℃の範囲の温度で焼成する焼成工程とを備える製造方法によって正極活物質を合成することが好ましい。なお、必要に応じて、上述した工程に、熱処理工程や仮焼工程などの工程を追加してもよい。このような製造方法によれば、上述した正極活物質、特に、一般式(B)で表される正極活物質を容易に得ることができる。
 (1)熱処理工程
 本発明の正極活物質の製造方法においては、任意的に、混合工程の前に熱処理工程を設けて、複合水酸化物を熱処理粒子としてからリチウム化合物と混合してもよい。ここで、熱処理粒子には、熱処理工程において余剰水分を除去された複合水酸化物のみならず、熱処理工程により、水酸化物から酸化物に転換された遷移金属複合含有酸化物(以下、「複合酸化物」という)、または、これらの混合物も含まれる。
 熱処理工程は、複合水酸化物を105℃~750℃の範囲の温度に加熱して熱処理することにより、複合水酸化物に含有される余剰水分を除去する工程である。これにより、焼成工程後まで残留する水分を一定量まで減少させることができ、得られる正極活物質の組成のばらつきを抑制することができる。
 熱処理工程における加熱温度は105℃~750℃の範囲とする。加熱温度が105℃未満では、複合水酸化物中の余剰水分が除去できず、ばらつきを十分に抑制することができない場合がある。一方、加熱温度が750℃を超えても、それ以上の効果は期待できないばかりか、生産コストが増加してしまう。
 なお、熱処理工程では、正極活物質中のそれぞれの金属成分の原子数や、Liの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物を複合酸化物に転換する必要はない。しかしながら、それぞれの金属成分の原子数やLiの原子数の割合のばらつきをより少ないものとするためには、400℃以上に加熱して、すべての複合水酸化物を、複合酸化物に転換することが好ましい。なお、熱処理条件による複合水酸化物に含有される金属成分を分析によって予め求めておき、リチウム化合物との混合比を決めておくことで、上述したばらつきをより抑制することができる。
 熱処理を行う雰囲気は特に制限されるものではなく、非還元性雰囲気であればよいが、簡易的に行える空気気流中で行うことが好ましい。
 また、熱処理時間は、特に制限されないが、複合水酸化物中の余剰水分を十分に除去する観点から、少なくとも1時間とすることが好ましく、5時間~15時間の範囲とすることがより好ましい。
 (2)混合工程
 混合工程は、上述した複合水酸化物または熱処理粒子に、リチウム化合物を混合して、リチウム混合物を得る工程である。
 混合工程では、リチウム混合物中のリチウム以外の金属原子、具体的には、ニッケル、コバルト、マンガンおよび添加元素(M)との原子数の和(Me)と、リチウムの原子数(Li)との比(Li/Me)が、0.95~1.5の範囲、好ましくは1.0~1.5の範囲、より好ましくは1.0~1.35の範囲、さらに好ましくは1.0~1.2の範囲となるように、複合水酸化物または熱処理粒子とリチウム化合物を混合することが必要となる。すなわち、焼成工程の前後ではLi/Meは変化しないので、混合工程におけるLi/Meが、目的とする正極活物質のLi/Meとなるように、複合水酸化物または熱処理粒子とリチウム化合物を混合することが必要となる。
 混合工程で使用するリチウム化合物は、特に制限されることはないが、入手の容易性から、水酸化リチウム、硝酸リチウム、炭酸リチウムまたはこれらの混合物を用いることが好ましい。特に、取り扱いの容易さや品質の安定性を考慮すると、水酸化リチウムまたは炭酸リチウムを用いることが好ましい。
 複合水酸化物または熱処理粒子とリチウム化合物は、微粉が生じない程度に十分に混合することが好ましい。混合が不十分であると、個々の粒子間でLi/Meにばらつきが生じ、十分な電池特性を得ることができない場合がある。なお、混合には、一般的な混合機を使用することができる。たとえば、シェーカーミキサ、レーディゲミキサ、ジュリアミキサ、Vブレンダなどを用いることができる。
 (3)仮焼工程
 リチウム化合物として、水酸化リチウムや炭酸リチウムを使用する場合には、混合工程後、焼成工程の前に、リチウム混合物を、後述する焼成温度よりも低温、かつ、350℃~800℃の範囲の温度、好ましくは450℃~780℃の範囲の温度で仮焼する仮焼工程を行ってもよい。これにより、複合水酸化物の二次粒子または熱処理粒子中に、リチウムを十分に拡散させることができ、より均一な組成を有するリチウム複合酸化物を得ることができる。
 なお、上記温度での保持時間は、1時間~10時間の範囲とすることが好ましく、3時間~6時間の範囲とすることが好ましい。また、仮焼工程における雰囲気は、後述する焼成工程と同様に、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%~100容量%の範囲の雰囲気とすることがより好ましい。
 (4)焼成工程
 焼成工程は、混合工程で得られたリチウム混合物を所定条件の下で焼成し、複合水酸化物の二次粒子中または熱処理粒子中にリチウムを拡散させて、リチウム複合酸化物からなる正極活物質を得る工程である。
 この焼成工程において、複合水酸化物の二次粒子および熱処理粒子の中心部および高密度層は、焼結収縮し、正極活物質における外殻部および一次粒子の凝集部を形成する。一方、低密度層は、微細一次粒子によって構成されているため、この微細一次粒子よりも大きな板状一粒子によって構成される中心部や高密度層よりも低温域から焼結し始める。しかも、低密度層は、中心部や高密度層と比べて収縮量が大きなものとなる。このため、低密度層を構成する微細一次粒子は、焼結の進行が遅い中心部や高密度層側に収縮し、適度な大きさの空間部が形成されることとなる。この際、低密度層内の高密度部は、中心部や高密度層との連結を維持したまま、焼結収縮するため、得られる正極活物質においては、外殻部と一次粒子の凝集部とが電気的に導通し、かつ、その経路の断面積を十分に確保することができる。この結果、正極活物質の内部抵抗が大幅に減少し、二次電池を構成した場合に、電池容量やサイクル特性を損ねることなく、出力特性を改善することが可能となる。
 このような正極活物質の粒子構造は、基本的に、前駆体である複合水酸化物の二次粒子の粒子構造に応じて定まるものであるが、その組成や焼成条件などの影響を受けることがあるため、予備試験を行った上で、所望の構造となるように、その組成に応じて焼成条件を適宜調整することが好ましい。
 なお、焼成工程に用いられる炉は、特に制限されることはなく、大気ないしは酸素気流中でリチウム混合物を加熱できるものであればよい。ただし、炉内の雰囲気を均一に保つ観点から、ガス発生がない電気炉が好ましく、バッチ式あるいは連続式の電気炉のいずれも好適に用いることができる。この点については、熱処理工程および仮焼工程に用いる炉についても同様である。
 a)焼成温度
 リチウム混合物の焼成温度は、650℃~980℃の範囲とすることが必要となる。焼成温度が650℃未満では、複合水酸化物または熱処理粒子中にリチウムが十分に拡散せず、余剰のリチウムや未反応の複合水酸化物または熱処理粒子が残存したり、得られるリチウム複合酸化物の結晶性が不十分なものとなったりする。一方、焼成温度が980℃を超えると、リチウム複合酸化物の粒子間が激しく焼結し、異常粒成長が引き起こされ、不定形な粗大粒子の割合が増加することとなる。
 なお、上述した一般式(B1)で表される正極活物質を得ようとする場合には、焼成温度を650℃~900℃の範囲とすることが好ましい。一方、一般式(B2)で表される正極活物質を得ようとする場合には、焼成温度を800℃~980℃の範囲とすることが好ましい。
 また、焼成工程における昇温速度は、2℃/分~10℃/分の範囲とすることが好ましく、5℃/分~10℃/分の範囲とすることがより好ましい。さらに、焼成工程中、リチウム化合物の融点付近の温度で、好ましくは1時間~5時間、より好ましくは2時間~5時間保持することが好ましい。これにより、複合水酸化物または熱処理粒子とリチウム化合物とを、より均一に反応させることができる。
 b)焼成時間
 焼成時間のうち、上述した焼成温度での保持時間は、少なくとも2時間とすることが好ましく、4時間~24時間とすることがより好ましい。焼成温度における保持時間が2時間未満では、複合水酸化物または熱処理粒子中にリチウムが十分に拡散せず、余剰のリチウムや未反応の複合水酸化物または熱処理粒子が残存したり、得られるリチウム複合酸化物の結晶性が不十分なものとなったりするおそれがある。
 なお、保持時間終了後、焼成温度から少なくとも200℃までの冷却速度は、2℃/分~10℃/分の範囲とすることが好ましく、3℃/分~7℃/分の範囲とすることがより好ましい。冷却速度をこのような範囲に制御することにより、生産性を確保しつつ、匣鉢などの設備が、急冷により破損してしまうことを防止できる。
 c)焼成雰囲気
 焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%~100容量%の範囲にある雰囲気とすることがより好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることが特に好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。酸素濃度が18容量%未満では、リチウム複合酸化物の結晶性が不十分なものとなるおそれがある。
 (5)解砕工程
 焼成工程によって得られたリチウム複合酸化物では、その粒子間に凝集または軽度の焼結が生じている場合がある。このような場合には、リチウム複合酸化物の凝集体または焼結体を解砕することが好ましい。これによって、得られる正極活物質の平均粒径や粒度分布を好適な範囲に調整することができる。なお、解砕とは、焼成時に粒子間の焼結ネッキングなどにより生じた凝集体に、機械的エネルギを投入して、粒子自体をほとんど破壊することなく分離させて、凝集体をほぐす操作を意味する。
 解砕の方法としては、公知の手段を用いることができ、たとえば、ピンミルやハンマーミルなどを使用することができる。なお、この際、粒子自体を破壊しないように解砕力を適切な範囲に調整することが好ましい。
 3.非水電解質二次電池
 本発明の非水電解質二次電池は、正極、負極、セパレータ、非水電解液などの、一般の非水電解質二次電池と同様の構成部材を備える。なお、以下に説明する実施形態は例示にすぎず、本発明を、本明細書に記載されている実施形態を基づいて、種々の変更、改良を施した形態の非水電解質二次電池に適用することも可能である。
 (1)構成部材
 a)正極
 上述した正極活物質を用いて、たとえば、以下のようにして非水電解質二次電池の正極を作製する。
 まず、本発明の正極活物質に、導電材および結着剤を混合し、さらに必要に応じて活性炭や、粘度調整などの溶剤を添加し、これらを混練して正極合材ペーストを作製する。その際、正極合材ペースト中のそれぞれの混合比も、非水電解質二次電池の性能を決定する重要な要素となる。たとえば、溶剤を除いた正極合材の固形分を100質量部とした場合には、一般の非水電解質二次電池の正極と同様に、正極活物質の含有量を60質量部~95質量部の範囲、導電材の含有量を1質量部~20質量部の範囲、および結着剤の含有量を1質量部~20質量部の範囲とすることができる。
 得られた正極合材ペーストを、たとえば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じて、電極密度を高めるべく、ロールプレスなどにより加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断などをして、電池の作製に供することができる。なお、正極の作製方法は、前記例示のものに限られることはなく、他の方法によってもよい。
 導電材としては、たとえば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、またはポリアクリル酸を用いることができる。
 このほか、必要に応じて、正極活物質、導電材および活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加することができる。溶剤としては、具体的に、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することもできる。
 b)負極
 負極には、金属リチウムやリチウム合金などを使用することができる。また、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用することができる。
 負極活物質としては、たとえば、金属リチウムやリチウム合金などのリチウムを含有する物質、リチウムイオンを吸蔵および脱離できる天然黒鉛、人造黒鉛およびフェノール樹脂などの有機化合物焼成体、並びにコークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDFなどの含フッ素樹脂を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 c)セパレータ
 セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、電解質を保持する機能を有する。このようなセパレータとしては、たとえば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができるが、上記機能を有するものであれば、特に限定されることはない。
 d)非水電解液
 非水電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 有機溶媒としては、a)エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、b)ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、c)テトラヒドロフラン、2-メチルテトラヒドロフランやジメトキシエタンなどのエーテル化合物、d)エチルメチルスルホンやブタンスルトンなどの硫黄化合物、e)リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO、およびそれらの複合塩などを用いることができる。
 なお、非水電解液は、ラジカル捕捉剤、界面活性剤、難燃剤などを含んでいてもよい。
 (2)非水電解質二次電池
 以上の正極、負極、セパレータ、および非水電解液で構成される本発明の非水電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。
 いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水電解液を含浸させ、正極集電体と外部に通じる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、非水電解質二次電池を完成させる。
 (3)非水電解質二次電池の特性
 本発明の非水電解質二次電池は、上述したように、本発明の正極活物質を正極材料として用いているため、電池容量、出力特性、およびサイクル特性に優れる。しかも、従来のリチウム遷移金属含有複合酸化物からなる正極活物質を用いた二次電池との比較においても、熱安定性や安全性において優れているといえる。
 たとえば、本発明の正極活物質を用いて、図7に示すような2032型コイン電池を構成した場合に、150mAh/g以上、好ましくは158mAh/g以上の初期放電容量と、1.10Ω以下、好ましくは1.05Ω以下の正極抵抗と、75%以上、好ましくは80%以上の500サイクル容量維持率を同時に達成することができる。
 (4)用途
 本発明の非水電解質二次電池は、上述のように、電池容量、出力特性、およびサイクル特性のいずれにも優れており、これらの特性が高いレベルで要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話など)の電源に好適に利用することができる。また、本発明の非水電解質二次電池は、安全性にも優れており、小型化および高出力化が可能であるばかりでなく、高価な保護回路を簡略することができるため、搭載スペースに制約を受ける輸送用機器の電源としても好適に利用することができる。
 以下、実施例および比較例を用いて、本発明を詳細に説明する。なお、以下の実施例および比較例では、特に断りがない限り、複合水酸化物および正極活物質の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。また、核生成工程および粒子成長工程を通じて、反応水溶液のpH値は、pHコントローラ(日伸理化製、NPH-690D)により測定し、この測定値に基づき、水酸化ナトリウム水溶液の供給量を調整することで、それぞれの工程における反応水溶液のpH値の変動幅を±0.2の範囲に制御した。
 (実施例1)
 a)複合水酸化物の製造
 [核生成工程]
 はじめに、60L反応槽内に、水を14L入れて撹拌しながら、槽内温度を40℃に設定した。この際、反応槽内に窒素ガスを30分間流通させ、反応雰囲気を、酸素濃度が2容量%以下の非酸化性雰囲気とした。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.8、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。
 同時に、硫酸ニッケル、硫酸コバルト、硫酸マンガン、硫酸ジルコニウムを、それぞれの金属元素のモル比がNi:Mn:Co:Zr=33.1:33.1:33.1:0.2となるように水に溶解し、2mol/Lの原料水溶液を調製した。
 次に、この原料水応液を、反応前水溶液に100ml/分で供給することで、核生成工程用水溶液を形成し、1分間の核生成を行った。この際、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、核生成用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。
 [粒子成長工程]
 核生成終了後、一旦、すべての水溶液の供給を一旦停止するとともに、硫酸を加えて、pH値が、液温25℃基準で11.6となるように調整することで、粒子成長用水溶液を形成した。pH値が所定の値になったことを確認した後、原料水溶液とタングステン酸ナトリウム水溶液を供給し、核生成工程で生成した核を成長させた。
 粒子成長工程の初期段階、すなわち、粒子成長工程の開始時から60分(粒子成長工程時間の全体に対して25%)経過後、原料水溶液の供給を継続したまま、メッシュの孔径が20μm~30μmの範囲にあるセラミック製の散気管(木下理化工業株式会社製)を用いて反応水溶液中に空気を直接導入し、反応雰囲気を、酸素濃度が21容量%の酸化性雰囲気に調整した(切り替え操作1)。反応槽内の酸素濃度測定により、切り替え操作1において、酸素濃度が5容量%を超える酸化性雰囲気までの切り替え時間は、粒子成長工程時間の全体に対して0.3%(約0.7分)であり、酸素濃度が21容量%の酸化性雰囲気までの切り替え時間は、粒子成長工程時間の全体に対して2%(約4.8分)であったことが確認された。
 切り替え操作1から10分(粒子成長工程時間の全体に対して4.2%)経過後、同様に、原料水溶液の供給を継続したまま、反応水溶液中に窒素ガスを直接導入し、反応雰囲気を、酸素濃度が2容量%以下の非酸化性雰囲気に調整した(切り替え操作2)。切り替え操作2において、酸素濃度が5容量%以下の非酸化性雰囲気までの雰囲気の切り替え時間は、粒子成長工程時間の全体に対して1%であり、酸素濃度が2容量%以下の非酸化性雰囲気までの雰囲気の切り替え時間は、粒子成長工程時間の全体に対して2%であったことが確認された。
 切り替え操作2から170分(粒子成長工程時間の全体に対して70.8%)経過後、すべての水溶液の供給を停止することで、粒子成長工程を終了した。この際、粒子成長水溶液中の生成物の濃度は、86g/Lであった。その後、得られた生成物を、水洗、ろ過および乾燥させることにより、粉末状の複合水酸化物を得た。
 なお、粒子成長工程においては、この工程を通じて、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、粒子成長用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。
 b)複合水酸化物の評価
 [組成]
 ICP発光分光分析装置(株式会社島津製作所製、ICPE-9000)を用いた分析により、この複合水酸化物は、一般式:Ni0.331Mn0.331Co0.331Zr0.0020.005(OH)で表されるものであることが確認された。
 [粒子構造]
 複合水酸化物の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEM(日本電子株式会社製、JSM-6360LA)により観察した(図1参照)。この結果、この複合水酸化物を構成する二次粒子は、板状一次粒子が凝集して形成された中心部を有し、中心部の外側に、板状一次粒子および微細一次粒子が凝集して形成された低密度層と、板状一次粒子が凝集して形成された高密度層とが積層した積層構造を1つ備えており、高密度層は、低密度層内で板状一次粒子が凝集して形成された高密度部によって、中心部と連結していることが確認された。なお、本実施例では、核生成工程のpH値を12.8としたため、複合水酸化物の二次粒子の中心部は、内部に、微細一次粒子からなる低密度部を有したものとなっていた。また、微細一次粒子の平均粒径は0.2μmであり、板状一次粒子の平均粒径は0.5μmであることが確認された。さらに、中心部粒径比は62%であり、高密度層粒径比は13%であることが確認された。
 [平均粒径および粒度分布]
 レーザ光回折散乱式粒度分析計(日機装株式会社製、マイクロトラックHRA)を用いて、複合水酸化物の二次粒子の平均粒径を測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕を算出した。この結果、二次粒子の平均粒径は、5.1μmであり、〔(d90-d10)/平均粒径〕は0.42であることが確認された。
 c)正極活物質の作製
 上述のようにして得られた複合水酸化物を、空気(酸素濃度:21容量%)気流中、120で12時間熱処理した後(熱処理工程)、Li/Meが1.14となるように、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて炭酸リチウムと十分に混合し、リチウム混合物を得た(混合工程)。
 このリチウム混合物を、空気(酸素濃度:21容量%)気流中、昇温速度を2.5℃/分として950℃まで昇温し、この温度で4時間保持することにより焼成し、冷却速度を約4℃/分として室温まで冷却した(焼成工程)。このようにして得られた正極活物質では、粒子間の凝集または軽度の焼結が生じていた。このため、この正極活物質を解砕し、平均粒径および粒度分布を調整した(解砕工程)。
 d)正極活物質の評価
 [組成]
 ICP発光分光分析装置を用いた分析により、この正極活物質は、一般式:Li1.14Ni0.331Mn0.331Co0.331Zr0.0020.005で表されるものであることが確認された。
 [粒子構造]
 正極活物質の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEMにより観察した(図2参照)。この結果、この正極活物質は、複数の一次粒子が凝集して形成された二次粒子から構成され、この二次粒子は、外殻部と、外殻部の内側に分散して存在し、外殻部と一次粒子の凝集部および一次粒子の凝集部同士が、連結部により構造的に接続され、外殻部と電気的に導通する複数の一次粒子の凝集部と、および一次粒子が存在しない空間部とを備えていることが確認された。また、外殻部粒径比は16%であり、空間部比は35%であることが確認された。
 [平均粒径および粒度分布]
 レーザ光回折散乱式粒度分析計(日機装株式会社製、マイクロトラックHRA)を用いて、正極活物質の平均粒径を測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕を算出した。この結果、平均粒径は、4.6μmであり、〔(d90-d10)/平均粒径〕は0.41であることが確認された。
 [比表面積、タップ密度、および単位体積あたりの表面積]
 流動方式ガス吸着法比表面積測定装置(ユアサアイオニクス株式会社製、マルチソーブ)により比表面積を、タッピングマシン(株式会社蔵持科学器械製作所、KRS-406)によりタップ密度を、それぞれ測定した。この結果、BET比表面積は1.92m/gであり、タップ密度は1.42g/cmであることが確認された。これらの結果より、単位体積あたりの表面積は2.73m/cmであった。
 e)二次電池の作製
 上述のようにして得られた正極活物質:52.5mgと、アセチレンブラック:15mgと、PTEE:7.5mgを混合し、100MPaの圧力で、直径11mm、厚さ100μmにプレス成形した後、真空乾燥機中、120℃で12時間乾燥することにより、正極(1)を作製した。
 次に、この正極(1)を用いて2032型コイン電池(B)を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。この2032型コイン電池の負極(2)には、直径17mm、厚さ1mmのリチウム金属を用い、電解液には、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。また、セパレータ(3)には、膜厚25μmのポリエチレン多孔膜を用いた。なお、2032型コイン電池(B)は、ガスケット(4)を有し、正極缶(5)と負極缶(6)とでコイン状の電池に組み立てられたものである。
 f)電池評価
 [初期放電容量]
 2032型コイン電池を作製してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cmとして、カットオフ電圧が4.3Vとなるまで充電し、1時間の休止後、カットオフ電圧が3.0Vになるまで放電したときの放電容量を測定する充放電試験を行ない、初期放電容量を求めた。この結果、初期放電容量は、159.6mAh/gであることが確認された。なお、初期放電容量の測定には、マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いた。
 [正極抵抗]
 充電電位4.1Vで充電した2032型コイン電池を用いて、交流インピーダンス法により抵抗値を測定した。測定には、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン製)を使用し、図5に示すナイキストプロットを得た。プロットは、溶液抵抗、負極抵抗と容量、および、正極抵抗と容量を示す特性曲線の和として表れているため、等価回路を用いてフィッティング計算し、正極抵抗の値を算出した。この結果、正極抵抗は、0.932Ωであることが確認された。
 [サイクル特性]
 上述した充放電試験を繰り返し、初期放電容量に対する、500回目の放電容量を測定することで、500サイクル容量維持率を算出した。この結果、500サイクル容量維持率は、82.0%であることが確認された。
 (実施例2)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から60分(粒子成長工程時間の全体に対して25%)経過後に行い、切り替え操作2を、切り替え操作1から5分(粒子成長工程時間の全体に対して2.1%)経過後に行い、その後、175分間(粒子成長工程時間の全体に対して72.9%)晶析反応を継続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例3)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から60分(粒子成長工程時間の全体に対して25%)経過後に行い、切り替え操作2を、切り替え操作1から15分(粒子成長工程時間の全体に対して6.3%)経過後に行い、その後、165分間(粒子成長工程時間の全体に対して68.8%)晶析反応を継続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例4)
 はじめに、60L反応槽内に、水を14L入れて撹拌しながら、槽内温度を40℃に設定した。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.8、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。この際、反応槽内に窒素ガスを5分間流通させ、反応雰囲気を、酸素濃度が13容量%の酸化性雰囲気とした。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.8、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。
 同時に、硫酸ニッケル、硫酸コバルト、硫酸マンガン、硫酸ジルコニウムを、各金属元素のモル比がNi:Mn:Co:Zr=33.1:33.1:33.1:0.2となるように水に溶解し、2mol/Lの原料水溶液を調製した。
 次に、反応前水溶液中に実施例1と同様に散気管を用いて窒素ガスを導入し、反応雰囲気を2容量%以下の非酸化性雰囲気に調整しつつ、原料水溶液を、反応前水溶液に100ml/分で供給することで、核生成工程用水溶液を形成し、1分間の核生成を行った。この際、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、核生成用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。また、核生成工程終了時において、反応雰囲気が、酸素濃度が2容量%以下である非酸化性雰囲気に調整されていることを確認した。
 その後、実施例1と同様の条件で粒子成長工程を行い、複合水酸化物を得て、その評価を行った。また、この複合水酸化物を前駆体として用いたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 なお、実施例4の正極活物質は、一次粒子の凝集部の内側にさらに空間部が形成された粒子構造を備えていた。
 (実施例5)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から48分(粒子成長工程時間の全体に対して20%)経過後に行い、切り替え操作2を、切り替え操作1から5分(粒子成長工程時間の全体に対して2.1%)に行い、その後、187分間(粒子成長工程時間の全体に対して77.9%)晶析反応を継経過後続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例6)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から48分(粒子成長工程時間の全体に対して20%)経過後に行い、切り替え操作2を、切り替え操作1から10分(粒子成長工程時間の全体に対して4.2%)経過後に行い、その後、182分間(粒子成長工程時間の全体に対して75.8%)晶析反応を継続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例7)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から1.2分(粒子成長工程時間の全体に対して0.5%)経過後に行い、切り替え操作2を、切り替え操作1から10分(粒子成長工程時間の全体に対して4.2%)に行い、その後、228分間(粒子成長工程時間の全体に対して95.3%)晶析反応を継経過後続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例8)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から72分(粒子成長工程時間の全体に対して30%)経過後に行い、切り替え操作2を、切り替え操作1から10分(粒子成長工程時間の全体に対して4.2%)に行い、その後、158分間(粒子成長工程時間の全体に対して65.8%)晶析反応を継経過後続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例9)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から60分(粒子成長工程時間の全体に対して25%)経過後に行い、切り替え操作2を、切り替え操作1から3分(粒子成長工程時間の全体に対して1.25%)に行い、その後、177分間(粒子成長工程時間の全体に対して73.8%)晶析反応を継経過後続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例10)
 粒子成長工程において、切り替え操作1を、粒子成長工程の開始時から60分(粒子成長工程時間の全体に対して25%)経過後に行い、切り替え操作2を、切り替え操作1から50分(粒子成長工程時間の全体に対して20.8%)に行い、その後、130分間(粒子成長工程時間の全体に対して54.2%)晶析反応を継経過後続したこと以外は、実施例1と同様にして、複合水酸化物、正極活物質、および二次電池を得て、その評価を行った。この結果を表2~表4に示す。
 (実施例11)
 粒子成長工程において、所定のタイミングで、切り替え操作1および2を2回ずつ行ったこと以外は、実施例1と同様にして、複合水酸化物を得た。具体的には、切り替え操作1を、粒子成長工程の開始時から30分経過後(粒子成長工程時間の全体に対して12.5%)に行い、酸化性雰囲気での晶析反応を15分間(粒子成長工程時間の全体に対して6.3%)継続した後、切り替え操作2を行い、非酸化性雰囲気での晶析反応を40分間(粒子成長工程時間の全体に対して16.7%)継続した。続いて、再度、切り替え操作1を行い、酸化性雰囲気での晶析反応を15分間(粒子成長工程時間の全体に対して6.3%)継続した後、切り替え操作2を行い、非酸化性雰囲気での晶析反応を140分間(粒子成長工程時間の全体に対して58.3%)継続した。このようにして得られた複合水酸化物に対して、実施例1と同様にして評価を行った。この結果を表2に示す。また、この複合水酸化物を前駆体として用いたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表2~表4および図3に示す。
 (比較例1)
 粒子成長工程において、反応雰囲気の切り替え操作1および2を行う際に、原料水溶液の供給を一旦停止したこと以外は、実施例1と同様にして、複合水酸化物を得て、その評価を行った。この結果を表2および図4に示す。また、この複合水酸化物を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3、表4および図5に示す。
 (比較例2)
 はじめに、60L反応槽内に、水を14L入れて撹拌しながら、槽内温度を40℃に設定した。この際、反応槽内に窒素ガスを5分間流通させ、反応雰囲気を、酸素濃度が13容量%の酸化性雰囲気とした。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.8、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。
 同時に、硫酸ニッケル、硫酸コバルト、硫酸マンガン、硫酸ジルコニウムを、各金属元素のモル比がNi:Mn:Co:Zr=33.1:33.1:33.1:0.2となるように水に溶解し、2mol/Lの原料水溶液を調製した。
 次に、酸化性雰囲気の状態を維持し、原料水溶液を、反応前水溶液に100ml/分で供給することで、核生成工程用水溶液を形成し、1分間の核生成を行った。この際、25質量%の水酸化ナトリウム水溶液と25質量%のアンモニア水を適時供給し、核生成用水溶液のpH値およびアンモニウムイオン濃度を上述した範囲に維持した。
 その後、粒子成長工程において、粒子成長工程の開始時から60分(粒子成長工程時間の全体に対して25%)経過後に、原料水溶液の供給を一旦停止して反応雰囲気を酸素濃度が2容量%以下の非酸化性雰囲気に調整した。雰囲気の調整後、原料水溶液の供給を再開し、180分間(粒子成長工程時間の全体に対して75%)晶析反応を継続した。雰囲気の調整以外は実施例1と同様の条件で複合水酸化物を得て、その評価を行った。この結果を表2および図6に示す。得られた複合水酸化物の二次粒子は、微細一次粒子からなる中心部と、その外側に板状一次粒子からなる高密度層を有する粒子構造となっていた。また、この複合水酸化物を前駆体として用いたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を3、表4および図7に示す。
 (比較例3)
 水酸化ニッケル、水酸化コバルト、四三酸化マンガン、硫酸ジルコニウム、酸化タングステン、炭酸リチウムを、各金属元素のモル比がNi:Mn:Co:Zr:W=33.1:33.1:33.1:0.2:0.005、かつ、Li/Meが1.14となるように混合した後、これに純水を加えてスラリー化した。続いて、ボールミルを用いて、スラリー中の固形分の平均粒径が0.2μmとなるように湿式粉砕した。このスラリーをスプレードライヤにより噴霧乾燥し、複合水酸化物を得て、実施例1と同様にして、その評価を行った。この結果を表2に示す。また、この複合水酸化物を前駆体としたこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。この結果を表3および表4に示す。
 なお、比較例3で得られた正極活物質は、複数の一次粒子が凝集して形成された凝集構造を有する二次粒子からなり、その粒子構造では外殻部は確認されなかった。また、一次粒子の凝集部同士が単に接して二次粒子を形成しており、実施例1のような連結部は確認されなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1 正極(評価用電極)
 2 負極
 3 セパレータ
 4 ガスケット
 5 正極缶
 6 負極缶
 B 2032型コイン電池

Claims (17)

  1.  非水電解質二次電池用正極活物質の前駆体となる遷移金属含有複合水酸化物であって、
     板状一次粒子および該板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなり、
     前記二次粒子は、前記板状一次粒子が凝集して形成された中心部を有し、該中心部の外側に、前記板状一次粒子および前記微細一次粒子が凝集して形成された低密度層と、前記板状一次粒子が凝集して形成された高密度層とが積層した積層構造を少なくとも1つ備えており、
     前記高密度層は、前記低密度層内で前記板状一次粒子が凝集して形成された高密度部によって、前記中心部および/または他の高密度層と連結しており、
     前記二次粒子は、平均粒径が1μm~15μmの範囲にあり、かつ、該二次粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕が0.65以下である、
    遷移金属含有複合水酸化物。
  2.  前記遷移金属含有複合水酸化物は、一般式(A):NiMnCo(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有する、請求項1に記載の遷移金属含有複合水酸化物。
  3.  前記添加元素(M)は、前記二次粒子の内部に均一に分布および/または該二次粒子の表面を均一に被覆している、請求項2に記載の遷移金属含有複合水酸化物。
  4.  反応槽内に、少なくとも遷移金属を含有する原料水溶液と、アンモニウムイオン供給体を含む水溶液とを供給することで反応水溶液を形成し、晶析反応によって、非水電解質二次電池用正極活物質の前駆体となる遷移金属含有複合水酸化物を製造する方法であって、
     前記反応水溶液の液温25℃基準におけるpH値を12.0~14.0の範囲に調整し、核の生成を行う核生成工程と、
     前記核生成工程で得られた前記核を含む反応水溶液の液温25℃基準におけるpH値を、前記核生成工程のpH値よりも低く、かつ、10.5~12.0の範囲となるように制御して、該核を成長させる、粒子成長工程とを備え、
     前記核生成工程および前記粒子成長工程の初期段階における反応雰囲気を酸素濃度が5容量%以下の非酸化性雰囲気に調整し、
     前記粒子成長工程の初期段階の後に、前記原料水溶液の供給を継続しながら、反応水溶液中に酸化性ガスを直接導入することにより、前記反応雰囲気を、前記非酸化性雰囲気から酸素の濃度が5容量%を超える酸化性雰囲気に切り替え、さらに、前記原料水溶液の供給を継続しながら、反応水溶液中に不活性ガスを直接導入することにより、前記酸化性雰囲気から酸素濃度が5容量%以下の非酸化性雰囲気に切り替える、雰囲気制御を少なくとも1回行う、
    遷移金属含有複合水酸化物の製造方法。
  5.  前記酸化性ガスおよび不活性ガスを散気管により導入する、請求項4に記載の遷移金属含有複合水酸化物の製造方法。
  6.  前記粒子成長工程において、前記酸化性ガスを導入する時間を合計で、該粒子成長工程時間の全体に対して1%~25%の範囲とする、請求項4または5に記載の遷移金属含有複合水酸化物の製造方法。
  7.  前記粒子成長工程の初期段階の晶析反応時間を、該粒子成長工程時間の全体に対して0.5%~30%の範囲とする、請求項4~6のいずれかに記載の遷移金属含有複合水酸化物の製造方法。
  8.  前記遷移金属含有複合水酸化物は、一般式(A):NixMnyCozt(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有する、請求項4~7のいずれかに記載の遷移金属含有複合水酸化物の製造方法。
  9.  前記粒子成長工程後に、前記遷移金属含有複合水酸化物を、前記添加元素(M)の少なくとも一部を含む化合物で被覆する、被覆工程をさらに備える、請求項8に記載の遷移金属複合水酸化物の製造方法。
  10.  リチウム遷移金属含有複合酸化物からなる非水電解質二次電池用正極活物質であって、
     一次粒子が凝集して形成された二次粒子からなり、
     該二次粒子は、一次粒子が凝集した外殻部と、前記外殻部の内側に存在し、かつ、前記外殻部と電気的かつ構造的に接続された、少なくとも1つの一次粒子が凝集した凝集部と、前記外殻部の内側に存在し、少なくとも1つの一次粒子が存在しない空間部とを備えており、
     前記二次粒子の平均粒径は1μm~15μmの範囲にあり、該二次粒子の粒度分布の広がりを示す指標である〔(d90-d10)/平均粒径〕は0.7以下であり、かつ、単位体積あたりの表面積が1.7m/cm以上である、非水電解質二次電池用正極活物質。
  11.  BET比表面積は、0.7m/g~5.0m/gの範囲にある、請求項10に記載の非水電解質二次電池用正極活物質。
  12.  前記正極活物質は、一般式(B):Li1+uNiMnCo(-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有し、かつ、層状構造を有する六方晶系の結晶構造を有するリチウム遷移金属含有複合酸化物からなる、請求項10または11に記載の非水電解質二次電池用正極活物質。
  13.  請求項1~3のいずれかに記載の遷移金属含有複合水酸化物とリチウム化合物を混合して、リチウム混合物を形成する混合工程と、
     前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、650℃~980℃の範囲の温度で焼成する焼成工程と、
    を備える、非水電解質二次電池用正極活物質の製造方法。
  14.  前記混合工程において、前記リチウム混合物を、該リチウム混合物に含まれるリチウム以外の金属の原子数の和と、リチウムの原子数との比が、1:0.95~1.5の範囲となるように調整する、請求項13に記載の非水電解質二次電池用正極活物質の製造方法。
  15.  前記混合工程前に、前記遷移金属含有複合水酸化物を105℃~750℃で熱処理する、熱処理工程をさらに備える、請求項13または14に記載の非水電解質二次電池用正極活物質の製造方法。
  16.  前記非水電解質二次電池用正極活物質は、一般式(B):Li1+uNiMnCo(-0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、層状構造を有する六方晶系のリチウム遷移金属含有複合酸化物からなる、請求項13~15のいずれかに記載の非水電解質二次電池用正極活物質の製造方法。
  17.  正極と、負極と、セパレータと、非水電解質とを備え、前記正極の正極材料として、請求項10~12のいずれかに記載の非水電解質二次電池用正極活物質が用いられている、非水電解質二次電池。
PCT/JP2016/067255 2015-06-26 2016-06-09 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 WO2016208413A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680032934.0A CN107615531B (zh) 2015-06-26 2016-06-09 含过渡金属的复合氢氧化物及制造方法、非水电解质二次电池及其正极活性物质及制造方法
KR1020177033294A KR102481160B1 (ko) 2015-06-26 2016-06-09 전이 금속 함유 복합 수산화물과 그의 제조 방법, 비수전해질 이차 전지용 정극 활물질과 그의 제조 방법 및 비수전해질 이차 전지
US15/739,216 US10547052B2 (en) 2015-06-26 2016-06-09 Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
US16/709,010 US11404690B2 (en) 2015-06-26 2019-12-10 Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-129270 2015-06-26
JP2015129270A JP6596978B2 (ja) 2015-06-26 2015-06-26 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/739,216 A-371-Of-International US10547052B2 (en) 2015-06-26 2016-06-09 Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
US16/709,010 Division US11404690B2 (en) 2015-06-26 2019-12-10 Transition metal-containing composite hydroxide and manufacturing method thereof, positive electrode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2016208413A1 true WO2016208413A1 (ja) 2016-12-29

Family

ID=57585651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067255 WO2016208413A1 (ja) 2015-06-26 2016-06-09 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池

Country Status (5)

Country Link
US (2) US10547052B2 (ja)
JP (1) JP6596978B2 (ja)
KR (1) KR102481160B1 (ja)
CN (1) CN107615531B (ja)
WO (1) WO2016208413A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107324405A (zh) * 2017-07-07 2017-11-07 金驰能源材料有限公司 一种镍钴锰酸锂材料前驱体及其制备方法、以及由该前驱体制备的锂离子电池
JP2018092931A (ja) * 2016-11-30 2018-06-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含んだ正極を含んだリチウム二次電池
JP2018104276A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
CN109485104A (zh) * 2017-09-11 2019-03-19 株式会社田中化学研究所 用于电池用正极活性物质的过渡金属复合氢氧化物粒子的制造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116514184A (zh) 2016-07-29 2023-08-01 住友金属矿山株式会社 镍锰复合氢氧化物及其制造方法、正极活性物质及其制造方法、以及非水系电解质二次电池
JP7087379B2 (ja) * 2016-12-27 2022-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087380B2 (ja) * 2016-12-27 2022-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7119302B2 (ja) * 2017-07-12 2022-08-17 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7220851B2 (ja) * 2017-10-31 2023-02-13 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、及び正極活物質を用いた非水系電解質二次電池
KR102464804B1 (ko) * 2017-11-21 2022-11-09 히타치 긴조쿠 가부시키가이샤 리튬 이온 이차 전지용 정극 활물질의 제조 방법 및 열처리 장치
JP7035540B2 (ja) * 2018-01-11 2022-03-15 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP7255087B2 (ja) * 2018-04-26 2023-04-11 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
US20220045317A1 (en) * 2018-09-12 2022-02-10 Posco Cathode active material, method for preparing same, and lithium secondary battery comprising same
JP7488021B2 (ja) * 2018-09-28 2024-05-21 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
JP7310117B2 (ja) * 2018-10-26 2023-07-19 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
WO2020094482A1 (en) * 2018-11-09 2020-05-14 Basf Se Process for making a nickel composite hydroxide
CN111370679A (zh) * 2018-12-25 2020-07-03 宁德时代新能源科技股份有限公司 正极活性物质前驱体、其制备方法及正极活性物质
JP7183813B2 (ja) * 2019-01-24 2022-12-06 住友金属鉱山株式会社 ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7183812B2 (ja) * 2019-01-24 2022-12-06 住友金属鉱山株式会社 ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2020218592A1 (ja) * 2019-04-26 2020-10-29 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP7367335B2 (ja) * 2019-04-26 2023-10-24 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP7367336B2 (ja) * 2019-04-26 2023-10-24 住友金属鉱山株式会社 ニッケル複合水酸化物、ニッケル複合水酸化物の製造方法、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
JP7144371B2 (ja) 2019-07-18 2022-09-29 トヨタ自動車株式会社 非水電解質二次電池
WO2021054466A1 (ja) * 2019-09-19 2021-03-25 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
US20220367859A1 (en) * 2019-09-19 2022-11-17 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP7235131B2 (ja) * 2019-09-19 2023-03-08 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
CN113903901B (zh) * 2021-12-09 2023-05-26 湖南长远锂科股份有限公司 一种特定核壳结构的高功率正极材料及其制备方法
CN115043438B (zh) * 2022-05-24 2023-09-26 华友新能源科技(衢州)有限公司 三元前驱体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312519A (ja) * 1998-02-25 1999-11-09 Mitsui Mining & Smelting Co Ltd Mn含有複合水酸化ニッケル活物質およびその製造方法
JP2001354418A (ja) * 2000-06-09 2001-12-25 Nikko Metal Plating Kk 金属酸化物の製造方法
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2013144625A (ja) * 2012-01-16 2013-07-25 Tanaka Chemical Corp ニッケルコバルトマンガン複合水酸化物及びその製造方法、非水電解質二次電池用の正極活物質、並びに非水電解質二次電池
WO2014181891A1 (ja) * 2013-05-10 2014-11-13 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915488B1 (ja) 2011-03-28 2012-04-11 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5590337B2 (ja) 2011-05-30 2014-09-17 住友金属鉱山株式会社 マンガン複合水酸化物粒子、非水系電解質二次電池用正極活物質、および非水系電解質二次電池と、それらの製造方法
JP5971109B2 (ja) 2011-12-20 2016-08-17 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312519A (ja) * 1998-02-25 1999-11-09 Mitsui Mining & Smelting Co Ltd Mn含有複合水酸化ニッケル活物質およびその製造方法
JP2001354418A (ja) * 2000-06-09 2001-12-25 Nikko Metal Plating Kk 金属酸化物の製造方法
WO2012169274A1 (ja) * 2011-06-07 2012-12-13 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
JP2013144625A (ja) * 2012-01-16 2013-07-25 Tanaka Chemical Corp ニッケルコバルトマンガン複合水酸化物及びその製造方法、非水電解質二次電池用の正極活物質、並びに非水電解質二次電池
WO2014181891A1 (ja) * 2013-05-10 2014-11-13 住友金属鉱山株式会社 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092931A (ja) * 2016-11-30 2018-06-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含んだ正極を含んだリチウム二次電池
JP2018104276A (ja) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087381B2 (ja) 2016-12-27 2022-06-21 住友金属鉱山株式会社 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
CN107324405A (zh) * 2017-07-07 2017-11-07 金驰能源材料有限公司 一种镍钴锰酸锂材料前驱体及其制备方法、以及由该前驱体制备的锂离子电池
CN107324405B (zh) * 2017-07-07 2019-08-09 金驰能源材料有限公司 一种镍钴锰酸锂材料前驱体及其制备方法、以及由该前驱体制备的锂离子电池
CN109485104A (zh) * 2017-09-11 2019-03-19 株式会社田中化学研究所 用于电池用正极活性物质的过渡金属复合氢氧化物粒子的制造方法

Also Published As

Publication number Publication date
JP6596978B2 (ja) 2019-10-30
US20180190978A1 (en) 2018-07-05
US10547052B2 (en) 2020-01-28
JP2017016753A (ja) 2017-01-19
US11404690B2 (en) 2022-08-02
CN107615531A (zh) 2018-01-19
KR102481160B1 (ko) 2022-12-26
CN107615531B (zh) 2021-04-30
US20200161644A1 (en) 2020-05-21
KR20180021681A (ko) 2018-03-05

Similar Documents

Publication Publication Date Title
JP6596978B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP6159395B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池
JP6331983B2 (ja) 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法
JP7188081B2 (ja) 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2012131881A1 (ja) ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP6443084B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池
JP7087381B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087380B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7260249B2 (ja) 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP2018095505A (ja) 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質とその製造方法
JP6346448B2 (ja) 非水系電解質二次電池用正極活物質、および、非水系電解質二次電池
JP6380711B1 (ja) 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
JP7006255B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7087379B2 (ja) 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法
JP7183813B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7183815B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7114876B2 (ja) 遷移金属複合水酸化物粒子およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2018097191A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP7183814B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7273260B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2019212396A (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
JP7484283B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP6862786B2 (ja) 遷移金属含有複合水酸化物の製造方法および非水電解質二次電池用正極活物質の製造方法
JP2024001041A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池
JP2024086748A (ja) 遷移金属複合水酸化物の粒子、リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033294

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814184

Country of ref document: EP

Kind code of ref document: A1