WO2016208360A1 - 車載制御装置 - Google Patents

車載制御装置 Download PDF

Info

Publication number
WO2016208360A1
WO2016208360A1 PCT/JP2016/066529 JP2016066529W WO2016208360A1 WO 2016208360 A1 WO2016208360 A1 WO 2016208360A1 JP 2016066529 W JP2016066529 W JP 2016066529W WO 2016208360 A1 WO2016208360 A1 WO 2016208360A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
satisfied
control device
vehicle
charging efficiency
Prior art date
Application number
PCT/JP2016/066529
Other languages
English (en)
French (fr)
Inventor
康平 鈴木
堀 俊雄
義秋 長澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017524815A priority Critical patent/JPWO2016208360A1/ja
Priority to US15/573,909 priority patent/US10989120B2/en
Priority to EP16814131.5A priority patent/EP3315748B1/en
Priority to CN201680035533.0A priority patent/CN107683367B/zh
Publication of WO2016208360A1 publication Critical patent/WO2016208360A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0844Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop with means for restarting the engine directly after an engine stop request, e.g. caused by change of driver mind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/04Reverse rotation of the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a vehicle-mounted control device, and more particularly to a vehicle control device that performs automatic stop and automatic start of an engine.
  • Patent Document 2 when returning from the normal inertia running to the normal running, the cylinder resting inertia running in which at least some of the cylinders of the engine are stopped while the power transmission path is connected is returned to the normal running. Compared to the case, there has been proposed a vehicle travel control device aiming at improving the reacceleration performance by increasing the amount of intake air into the cylinder.
  • inertial driving where the engine is automatically stopped and the power transmission path between the engine and wheels is cut off, the driver's accelerator operation, automatic acceleration request during automatic driving, and air conditioner operation are performed before the engine is completely stopped.
  • a request to return to normal driving may occur due to an engine restart request based on the engine output request.
  • the piston is pushed back without overcoming the compression stroke (reverse rotation with respect to the normal rotation direction of the engine) just before the complete stop when the engine is inertially rotated and the rotation speed is reduced.
  • cranking is started.
  • the starter is started and cranking is started when the starter reaches an engine speed at which the starter can be engaged with the engine.
  • the object of the present invention has been made in view of such problems, and at the time of a restart request occurring between the establishment of an automatic engine stop condition and a complete stop, the engine charging efficiency is reduced to reverse engine rotation. It is to provide an in-vehicle control device that ensures durability of an engine starter and prevents deterioration of responsiveness when a restart request is generated based on an engine output request by preventing an increase in amount and fluctuations in engine rotation. .
  • the vehicle-mounted control device of the present invention is a vehicle-mounted control device that controls the charging efficiency of an engine that automatically stops when a predetermined automatic stop condition is satisfied.
  • the charging efficiency with respect to the engine output request amount when the engine is restarted based on the engine output request generated during the previous predetermined period is smaller than the charging efficiency with respect to the engine output request amount other than the predetermined period.
  • the charging efficiency of the engine is reduced to prevent an increase in the reverse rotation speed of the engine or a fluctuation in the rotation speed, It is possible to provide an in-vehicle control device that ensures the durability of an engine starter and prevents deterioration of an accelerator response when a restart request based on an accelerator operation occurs. Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • An example of an overall configuration diagram of a vehicle equipped with an in-vehicle control device according to the present invention An example of the internal configuration of an in-vehicle control device according to the present invention
  • Example of control block configuration of in-vehicle control device according to the present invention An example of the behavior of the engine speed when the engine is restarted by reducing the charging efficiency of the engine when a restart request is generated between the establishment of the automatic engine stop condition and the complete stop of the in-vehicle control device according to the present invention.
  • An example of a flowchart of block 301 of the in-vehicle control device according to the present invention An example of the flowchart of block 303 of the in-vehicle control device according to the present invention.
  • An example of a flowchart of step 604 of the in-vehicle control device according to the present invention An example of the flowchart of block 305 of the in-vehicle control device according to the present invention.
  • An example of a flowchart of step 806 of the in-vehicle control device according to the present invention An example of a flowchart of step 901 of the in-vehicle control device according to the present invention.
  • An example of a flowchart of step 808 of the in-vehicle control device according to the present invention An example of the flowchart of step 808 of the in-vehicle control device according to the present invention.
  • FIG. 1 is an example of an overall configuration diagram of a vehicle equipped with an in-vehicle control device of the present invention, and is an example in which a starter capable of pushing out a pinion gear and driving a motor is mounted as a starting device.
  • the vehicle includes a multi-cylinder engine (internal combustion engine main body) 101, an engine automatic stop / start system 102, and an ECU (control unit, control device) 103.
  • the engine 101 has a crankshaft 104, and an ignition coil 105, a spark plug 106, a fuel injection valve 107, and the like are attached.
  • the engine 101 functions as a power source that generates a driving force for running the vehicle.
  • the engine automatic stop / start system 102 includes a pinion gear push-out starter (starter) main body 108, a first semiconductor switching element 109, and a second semiconductor switching element 110, and is controlled by the ECU 103.
  • the first semiconductor switching element 109 and the second semiconductor switching element 110 may be replaced with a mechanical magnet switch that operates with an ON / OFF signal.
  • a signal plate 111 having a predetermined pattern for detecting a crank angle signal is attached to one of the crankshafts 104, and a ring gear 113 integrated with a drive plate for transmitting driving force to the transmission 112 is attached to the other. It has been.
  • a crank angle sensor 114 that detects the unevenness of the pattern and outputs a pulse signal is attached in the vicinity of the signal plate 111. Based on the pulse signal output from the crank angle sensor 114, the ECU 103 Calculate the engine speed (engine speed).
  • the engine automatic stop / start system 102 includes a starter solenoid 115, a pinion transfer lever 116, a pinion gear 117, a one-way clutch 118, and a starter motor 119.
  • the pinion gear 117 is a gear that can be engaged with the ring gear 113, and is set so as to be movable in the direction of the pinion shaft 120 of the starter motor 119 via the one-way clutch 118.
  • the starter solenoid 115 is an electric actuator for moving the pinion gear 117 in the direction of the pinion shaft 120 via the pinion transfer lever 116.
  • the starter motor 119 is a motor for cranking the engine 101 as will be described later.
  • the pinion transfer command and the motor drive command are a signal of an accelerator opening sensor 123 that detects the depression amount (opening) of the accelerator pedal 122, a signal of a brake switch 125 that detects whether or not the brake pedal 124 can be depressed, and a rotation of the engine 101. Calculated based on number.
  • the transmission 112 transmits the rotational driving force generated by the engine 101 to the road surface via the drive shaft 126 and the tire 127. Further, a vehicle speed sensor 128 for detecting a rotation pulse of the output shaft is attached to the transmission 112, and the ECU 103 calculates a vehicle speed based on an output signal from the vehicle speed sensor 128.
  • FIG. 2 is an example of the internal configuration of the in-vehicle control device that is the subject of the present invention.
  • the CPU Central Processing Unit
  • the electrical signals of each sensor installed in the engine are converted into digital arithmetic processing signals, and the digital arithmetic control signals are converted into actual actuator drive signals.
  • An I / O (Input / Output) unit 202 is set, and the I / O unit 202 includes a crank angle sensor 114, an intake air amount sensor 204, an intake pipe pressure sensor 205, a vehicle speed sensor 128, an accelerator opening sensor. 123, an ignition switch 208, a brake switch 125, a throttle opening sensor 210, an intake valve phase sensor 211, and an exhaust valve phase sensor 212 are input.
  • An output signal from the CPU 201 is input to the driver circuit 213, and the driver circuit 213 is started via the fuel injection valves 214 to 217, the ignition coils 218 to 221, the throttle valve drive motor 222, the intake valve hydraulic actuator 223, and the battery relay switch 224.
  • the device drive solenoid 225 and the starter drive motor 226 are driven by current.
  • FIG. 3 is an example of a control block configuration of the in-vehicle control device that is the subject of the present invention.
  • the engine automatic is determined from the ignition switch, brake switch, vehicle speed, accelerator opening, engine restart request determination value determined in block 303 described later, and power transmission path cutoff request determination value determined in block 304 described later. Determine stop.
  • a system restart request is determined.
  • performance degradation or abnormality detection occurs for parts or functions of the vehicle system
  • air conditioner activation request occurs
  • power generation request occurs
  • external recognition information is displayed. Based on this, when a vehicle deceleration increase request is generated in order to avoid a collision with an object in front of the vehicle, it is determined whether or not it is necessary to start the engine other than the driver's accelerator operation, including at least one of them. .
  • an engine restart request is determined from the accelerator opening, the engine speed, the engine automatic stop determination value, and the system restart request determination value.
  • a power transmission path cutoff request is determined from the engine automatic stop determination value and the engine restart request determination value. In this block, it is determined whether or not there is a request for coasting the vehicle by interrupting the power transmission path between the engine and the wheel, and the result is transmitted to the control device (unit) on the transmission side.
  • the transmission-side unit performs optimum gear ratio control based on information on the engine side (engine speed, vehicle speed, throttle opening) including the determination result and information on the transmission side.
  • the charging efficiency of the engine is controlled based on the intake air amount, intake pipe pressure, intake valve phase, exhaust valve phase, engine restart request determination value, accelerator opening, and engine speed.
  • the charging efficiency is, for example, a value obtained by dividing the mass of fresh air sucked into the cylinder of the engine by the air mass in a standard state corresponding to the stroke volume.
  • the amount of operation of the throttle valve drive motor and intake valve hydraulic actuator required for control is determined.
  • the charging efficiency is controlled by operating the throttle valve drive motor, a wide control range is obtained, and when the charging efficiency is controlled by operating the intake valve hydraulic actuator, quick response control is possible. It is good to operate by appropriately using such features. This is because when the charging efficiency is controlled using a throttle valve, the intake air has a response delay due to the collector volume of the intake pipe, so that it is more advantageous to control the intake valve from the viewpoint of responsiveness.
  • the reverse rotation phenomenon of the engine that may control the charging efficiency does not occur only with fresh intake air, Since the gas is generated from a general gas, the same effect can be obtained even if the demand for increasing EGR gas and purge gas is increased.
  • the charging efficiency may be controlled by either the valve opening degree or the operation timing.
  • FIG. 4 is an example of restarting the engine by reducing the charging efficiency of the engine when a restart request occurs between the engine automatic stop condition establishment and the complete stop of the in-vehicle control device that is the subject of the present invention.
  • Line 401 is the accelerator opening as an engine restart request
  • line 402 is the throttle opening in the conventional example
  • line 403 is the throttle opening in the present invention
  • line 404 is the starter start signal
  • line 405 is the engine in the conventional example.
  • Rotation speed line 406 is the engine rotation speed according to the present invention
  • line 407 is the engine rotation speed
  • line 408 is the starter start permission rotation speed based on the engine rotation speed at which the starter and the engine can be engaged
  • line 409 is the engine speed This is the complete explosion speed for determining the complete explosion state after restart.
  • the engine opening speed 401 is decreased in the conventional example. Based on the throttle opening 402, the charging efficiency of the engine is increased.
  • the throttle opening 403 smaller than the throttle opening 402 reduces the charging efficiency of the engine.
  • the starter activation signal 404 is established at time 411.
  • the start timing is determined based on the engine speed 405 in the conventional example and the engine speed 406 in the present invention. A predicted value of the engine speed after the time may be obtained, and may be established when the predicted value reaches the starter activation permission speed 408.
  • the charging efficiency of the engine is increased due to the throttle opening 402, so that the rotational behavior of the engine changes and the rotational speed decreases rapidly, and the timing for establishing the starter start condition is delayed.
  • the charging efficiency increases due to the throttle opening 402, so that the rebound force increases without overcoming the compression stroke, and the starter By exceeding the driving force to the forward rotation side, cranking becomes impossible after biting.
  • the starter start condition is delayed, the engagement of the pinion gear and the ring gear Delay can be prevented.
  • the repulsive force does not increase because the charging efficiency is reduced. Restart can be secured.
  • the starter activation signal 404 is canceled, and the engine opening efficiency is determined by the throttle opening 403 based on the accelerator opening 401.
  • the starter start condition is delayed, the meshing between the pinion gear and the ring gear is prevented, and the meshing is established.
  • the engine speed can be increased immediately afterwards.
  • the operation amount of the throttle opening may be appropriately selected according to the balance between the required accelerator response and the degree of combustion explosive force.
  • FIG. 5 is an example of a flowchart of the block 301 in FIG. 3 of the in-vehicle control device that is the subject of the present invention.
  • step 501 the ignition switch, vehicle speed, accelerator opening, and brake switch are read.
  • step 502 it is determined whether or not the ignition switch is ON. If the determination is satisfied, the process proceeds to step 503, which will be described later. Otherwise, the process proceeds to step 510, which will be described later.
  • step 503 it is determined whether or not the vehicle speed is equal to or higher than a predetermined value A. If the determination is satisfied, the process proceeds to step 504 described later, and otherwise, the process proceeds to step 510 described later.
  • the predetermined value A is set, for example, as a value for determining that the inertial running of the vehicle is to be performed by automatically stopping the engine and blocking the power transmission path between the engine and the wheels.
  • step 504 it is determined whether or not the brake switch is OFF. If the determination is satisfied, the process proceeds to step 505 described later, and otherwise, the process proceeds to step 510 described later.
  • step 505 the accelerator OFF elapsed time is calculated from the accelerator opening. This elapsed time is reset to 0 when the accelerator is ON.
  • step 506 it is determined whether or not the accelerator OFF elapsed time calculated in step 505 has passed the predetermined time B or more. If the determination is satisfied, the process proceeds to step 507, which will be described later. Otherwise, the process proceeds to step 510, which will be described later. .
  • the predetermined time B is set to a value that determines that the accelerator-off state of the driver is not due to the shift to the brake-on state, for example.
  • step 507 it is determined whether or not the power transmission path between the engine and the wheel is being cut off. If the determination is satisfied, the process proceeds to step 508 described later, and otherwise, the process proceeds to step 510 described later.
  • step 508 it is determined whether or not there is an engine restart request. If the determination is satisfied, the process proceeds to step 510 which will be described later. Otherwise, the process proceeds to step 509 which will be described later.
  • step 509 it is determined that the engine automatic stop condition is satisfied, and fuel injection is stopped based on this determination.
  • step 510 it is determined that the engine automatic stop condition is not satisfied, and based on this determination, the fuel injection is restarted when the fuel injection is stopped.
  • FIG. 6 is an example of a flowchart of the block 303 in FIG. 3 of the in-vehicle control apparatus that is the subject of the present invention.
  • step 601 the engine speed and the accelerator opening are read.
  • step 602 it is determined whether or not the engine is automatically stopped. If the determination is satisfied, the process proceeds to step 603 to be described later. Otherwise, the process proceeds to step 607 to be described later.
  • step 603 it is determined whether or not the engine is completely stopped based on the engine speed. If the determination is satisfied, the process proceeds to step 607 to be described later. Otherwise, the process proceeds to step 604 to be described later. In step 604, an engine output request is determined.
  • step 605 it is determined whether there is an engine output request. If the determination is satisfied, the process proceeds to step 606, which will be described later. Otherwise, the process proceeds to step 607, which will be described later. In step 606, it is determined that the engine restart request condition is satisfied. In step 607, it is determined that the engine restart request condition is not satisfied.
  • FIG. 7 is an example of a flowchart of step 604 of the flowchart of FIG. 6 of the in-vehicle control apparatus that is the subject of the present invention.
  • step 701 it is determined whether or not the accelerator is turned from OFF to ON. If the determination is satisfied, the process proceeds to step 703 described later, and otherwise, the process proceeds to step 704 described later.
  • step 702 it is determined whether or not there is a system restart request. If the determination is satisfied, the process proceeds to step 703, which will be described later. Otherwise, the process proceeds to step 704, which will be described later.
  • step 703 it is determined that the engine output request condition is satisfied.
  • step 704 it is determined that the engine output request condition is not satisfied.
  • FIG. 8 is an example of a flowchart of the block 305 in FIG. 3 of the in-vehicle control apparatus that is the subject of the present invention.
  • step 801 the engine speed, accelerator opening, intake air amount, intake pipe pressure, intake valve phase, and exhaust valve phase are read.
  • step 802 it is determined whether or not there is an engine restart request. If the determination is satisfied, the process proceeds to step 803 described later. Otherwise, the process proceeds to step 805 described later.
  • step 803 the engine speed is latched when the engine restart request condition is not satisfied and is satisfied.
  • step 804 it is determined whether or not the engine speed latched in step 803 is equal to or greater than a predetermined value C. If the determination is satisfied, the specific processing is not performed and the processing of this flowchart is terminated. The process proceeds to step 806.
  • the predetermined value C is set to a value that determines that the engine can be restarted only by the combustion recovery, for example, without a starter.
  • a restart request is generated, fuel injection is resumed from a cylinder capable of fuel injection to cancel the engine stop state.
  • the engine inertia time is short and the engine speed is high, the engine can be restarted only by combustion.
  • the possibility of engine restart increases as the amount of intake air in the cylinder increases. Therefore, in this case, it is not necessary to limit the charging efficiency.
  • the engine inertia rotation time is long and the engine speed is low, even if fuel injection is resumed, the engine cannot be restarted only by combustion. Therefore, it is necessary to limit the filling efficiency at the timing when starter start is required.
  • step 805 it is determined whether or not the previous determination value of the charging efficiency control permission condition is satisfied. If the determination is satisfied, the process proceeds to step 806, which will be described later. Otherwise, the specific process is not performed and the process of this flowchart is performed. Exit.
  • the engine When the power transmission path between the engine and wheels is connected, and the engine can be started by pushing the inertial energy of the vehicle, the engine is forcibly rotated in the forward direction by the kinetic energy of the vehicle. Therefore, it is not necessary to limit the occurrence of reverse rotation. Therefore, the filling efficiency may not be limited.
  • step 806 the charging efficiency control permission is determined.
  • step 807 it is determined whether or not the charging efficiency control is permitted. If the determination is satisfied, the process proceeds to step 808 described later. Otherwise, the specific process is not performed and the process of this flowchart is terminated. In step 808, the charging efficiency is controlled.
  • FIG. 9 is an example of a flowchart of step 806 of the flowchart of FIG. 8 of the in-vehicle control apparatus that is the subject of the present invention.
  • a starter activation request is determined.
  • completion of starter biting is determined.
  • the starter activation request in order to determine whether the pinion gear 117 in FIG. 1 has been engaged with the ring gear 113, for example, when the engine rotation behavior changes from a decrease side to an increase side, or when the motor 119 in FIG. You may determine based on these at the time of the temporary voltage fall of the battery 121 at the time of starting.
  • Step 904 it is determined whether or not the starter biting is completed. If the determination is satisfied, the process proceeds to Step 906 described later, and otherwise, the process proceeds to Step 905 described later. In step 905, it is determined that the charging efficiency control permission condition is satisfied. In step 906, it is determined that the charging efficiency control permission condition is not satisfied.
  • FIG. 10 is an example of a flowchart of step 901 in the flowchart of FIG. 9 of the in-vehicle control apparatus that is the subject of the present invention.
  • step 1001 it is determined whether or not there is an engine restart request. If the determination is satisfied, the process proceeds to step 1002 described later, and otherwise, the process proceeds to step 1006 described later.
  • step 1002 it is determined whether or not the previous determination value of the starter activation request condition is satisfied. If the determination is satisfied, the process proceeds to step 1003 which will be described later. Otherwise, the process proceeds to step 1004 which will be described later.
  • step 1003 it is determined whether or not the engine speed is equal to or greater than a predetermined value D. If the determination is satisfied, the process proceeds to step 1006 described later, and otherwise, the process proceeds to step 1005 described later.
  • a predetermined value D for example, a value for determining that the engine is in a complete explosion state is set.
  • step 1004 it is determined whether or not the engine speed is equal to or greater than a predetermined value E. If the determination is satisfied, the process proceeds to step 1006 described later, and otherwise, the process proceeds to step 1005 described later.
  • the predetermined value E can be cranked by a starter, and further, the influence on the durability of the pinion gear 117 and the ring gear 113 in FIG. A value to be determined is set.
  • step 1005 it is determined that the starter activation request condition is satisfied.
  • step 1006 it is determined that the starter activation request condition is not satisfied.
  • FIG. 11 is an example of a flowchart of step 806 in the flowchart of FIG. 8 of the in-vehicle control apparatus that is the subject of the present invention.
  • step 1101 it is determined whether or not the engine speed is greater than or equal to a predetermined value F. If the determination is satisfied, the process proceeds to step 1103 described later, and otherwise the process proceeds to step 1102 described later.
  • the predetermined value F for example, a value for determining that the engine is in a complete explosion state is set.
  • step 1102 it is determined that the charging efficiency control permission condition is satisfied.
  • step 903 it is determined that the charging efficiency control permission condition is not satisfied.
  • FIG. 12 is an example of a flowchart of step 808 of the flowchart of FIG. 8 of the in-vehicle control apparatus that is the subject of the present invention.
  • step 1201 the engine speed is latched when the engine restart request condition is satisfied from not satisfied.
  • step 1202 the target throttle opening is calculated from the engine speed and the accelerator opening latched in step 1201.
  • a map obtained by setting the engine speed and the accelerator opening as axes may be set in advance, and a searched value may be used.
  • the throttle opening increase value based on the accelerator opening is limited to a predetermined ratio or a predetermined amount or less, or limited to an idling rotation maintenance equivalent or less. It may be set to limit within a range less than the amount.
  • the operation amount of the throttle valve drive motor is calculated from the target throttle opening, and the charging efficiency of the engine is controlled based on this operation amount.
  • FIG. 13 is an example of a flowchart of step 808 of the flowchart of FIG. 8 of the in-vehicle control device that is the subject of the present invention.
  • the target intake valve basic phase is calculated from the engine speed and the engine load.
  • a map obtained by setting an engine speed and an engine load as axes may be set in advance, and a searched value may be used. Moreover, in this setting, you may set based on the intake valve phase for idle maintenance equivalency, for example.
  • the engine load is the intake air pressure measured by an intake air pressure sensor such as a thermal air flow meter or the like converted from the output of the intake pipe pressure sensor installed in the intake pipe into a predetermined process. Represent by quantity.
  • an intake valve phase correction value is calculated from the intake valve phase and the exhaust valve phase.
  • the intake valve phase correction value a value obtained by setting a map around the intake valve phase and the exhaust valve phase in advance may be used.
  • the target intake valve basic phase is corrected by the intake valve phase correction value and output as the target intake valve phase.
  • the operation amount of the intake valve hydraulic actuator is calculated from the target intake valve phase, and the charging efficiency of the engine is controlled based on this operation amount.
  • An in-vehicle control device is an in-vehicle control device that controls engine charging efficiency based on an engine output request amount, and automatically stops the engine when a predetermined automatic stop condition is satisfied, and the automatic stop condition is satisfied.
  • the charging efficiency when the engine restart condition is satisfied based on the engine output request during the complete stop of the engine is smaller than the charging efficiency with respect to the engine output request amount.
  • the filling efficiency of the engine when the engine restart condition is satisfied smaller than the filling efficiency with respect to the required engine output, the increase in the reverse engine speed before the engine is completely stopped and the change in the rotational behavior of the engine are suppressed. By doing so, the biting property between the starter and the engine can be improved and the durability can be secured.
  • the engine is automatically stopped in a state where the power transmission path between the engine and the wheel is interrupted when the automatic stop condition is satisfied.
  • the vehicle's inertial driving with the engine automatically stopped and the power transmission path between the engine and wheels cut off during vehicle traveling can extend the distance traveled, reducing the number of acceleration requests from the driver and reducing fuel consumption. It can be improved.
  • the charging efficiency of the engine when the start condition is satisfied is controlled by at least one of a throttle valve opening, a throttle valve opening / closing timing, an intake valve opening, or an intake valve opening / closing timing. .
  • the charging efficiency of the engine when the restart condition is satisfied is made smaller than the charging efficiency with respect to the driver's required accelerator amount.
  • the accelerator response after the completion of connection is reduced by setting the period of time shorter than the filling efficiency with respect to the driver's accelerator request amount until the connection between the engine starter and the engine is completed. It can be improved.
  • the charging efficiency of the engine when the restart condition is satisfied is made smaller than the charging efficiency with respect to the driver's required accelerator amount during the period until the engine is completely exploded.
  • the complete explosion referred to here is a state in which a spontaneous operation (combustion state) can be maintained without stopping even when the engine has no starter.
  • the charging efficiency of the engine when the restart condition is satisfied is limited to be smaller than the charging efficiency with respect to the driver's accelerator request amount, and the starter motor is not used.
  • the charging efficiency of the engine when the restart condition is satisfied is not limited.
  • the charging efficiency of the engine when the restart condition is satisfied is controlled according to the engine speed when the restart condition is satisfied.
  • the engine is mounted on a vehicle having a starter motor that is connected to the engine and drives the engine when the engine is started.
  • the engine is automatically stopped when a predetermined automatic stop condition is satisfied, and the engine between the automatic stop condition is satisfied and the engine is completely stopped Control to reduce the throttle valve opening when the engine restart condition is satisfied based on the output request to be smaller than the throttle valve opening relative to the engine output request amount, engine output request between the automatic stop condition satisfaction and the engine complete stop
  • the throttle valve opening start timing when the engine restart condition is satisfied is delayed from the throttle valve opening start timing with respect to the engine output request timing, between the satisfaction of the automatic stop condition and the complete engine stop Suction when the engine restart condition is met based on the engine output request Control to make the opening smaller than the intake valve opening when the restart condition is not satisfied, engine restart condition is satisfied based on the engine output request between the automatic stop condition satisfaction and the complete engine stop
  • At least one of the control to make the intake valve opening start timing at that time later than the intake valve opening start timing when the restart condition is not satisfied is executed.
  • the intake air amount and the throttle valve opening corresponding to the idle rotation speed maintenance are maintained, and the engine is operated to the opening corresponding to the accelerator operation amount at a predetermined speed after the engine is started. Good. As a result, the amount of air sucked in the compression stroke immediately before the engine speed 0 does not increase, and the reverse rotation phenomenon does not increase.
  • the throttle increase due to the accelerator opening is limited to a predetermined ratio or a predetermined amount or less.
  • the limit is further limited from the opening limit value until it is controlled to less than the accelerator operation amount. The width of can be considered.
  • the throttle opening is effective in reducing the reverse rotation phenomenon when operated in the closing direction, and effective in increasing the explosive power of engine combustion when operated in the opening direction. Therefore, it is preferable to select appropriately according to the balance between the response of accelerator operation and the degree of combustion explosive force.
  • the pinion when the starter is started during the period that limits the charging efficiency of the engine, the pinion is first pushed out in the direction of the ring gear by a magnetic force, and when the pinion has a stroke enough to engage the ring gear, the magnet switch that drives the motor to rotate Energizes and starts motor rotation. Therefore, it takes a response time from when the starter activation signal is generated until the pinion bites into the ring gear. Therefore, when starting the starter, it is preferable to predict and estimate the engine speed after the response time, and to determine whether or not the starter can be caught based on the estimated speed.
  • the present invention can be similarly applied to starting using a high output starting motor used in a hybrid vehicle or the like. This is because, even in the starter motor, if the engine is driven in the forward rotation direction during the reverse rotation phenomenon, problems such as current circuit burnout occur, which must be avoided.
  • an example in which the engine charging efficiency is directly controlled by an engine control apparatus that directly controls the engine as shown in FIG. 2 is shown, but the present invention is not limited to this example.
  • an automatic travel control device that controls automatic traveling of the vehicle
  • a starter control device that controls only the starter body 108 alone
  • engine control via a communication network between the control devices You may make it transmit the instruction

Abstract

エンジン自動停止条件成立から完全停止の間の再始動要求発生時において、スロットル弁または吸気弁の少なくとも一つにより、エンジンの充填効率を小さくさせてエンジンの逆回転数の増加を防ぐことで、エンジンの始動装置の耐久性を確保するとともに、アクセル操作に基づく再始動要求発生時のアクセルレスポンスの悪化を防ぐ車載制御装置を提供する。エンジン出力要求量に基づいてエンジンの充填効率を制御する車載制御装置において、所定の自動停止条件が成立したときにエンジンを自動停止させ、自動停止条件成立からエンジンの完全停止の間のエンジン出力要求に基づいてエンジンの再始動条件が成立したときの充填効率を、エンジン出力要求量に対する充填効率よりも小さくする。

Description

車載制御装置
 本発明は、車載制御装置に関し、特に、エンジンの自動停止と自動始動とを行う車両の制御装置に関する。
 近年、燃費低減を向上させるため、車両停止時にエンジンを自動停止させ、車両発進時に始動装置(スタータ)で再始動させるエンジン自動停止始動システムが普及している。さらに、特許文献1では、車両走行中に所定のエンジン自動停止条件成立(例えば、アクセルが踏み込まれていない状態が所定時間以上経過)時に、エンジンを自動停止させ、かつ、エンジンと車輪との間の動力伝達経路を遮断させて、できるだけ速度を落とさずに車両を惰性走行させることにより、さらなる燃費低減につなげる技術が提案されている。
 このような惰性走行から通常走行に復帰する場合、エンジン回転数を引き上げて、車輪の回転数に同期させてから、変速機により動力伝達経路を連結させる必要がある。よって、本動作時間の影響により、アクセルを踏み込んで通常走行への復帰を要求する際、アクセルレスポンスが悪化する。特許文献2では、ニュー卜ラル惰性走行から通常走行に復帰する場合、動力伝達経路を連結させた状態でエンジンの少なくとも一部の気筒を休止して走行する気筒休止惰性走行から通常走行に復帰する場合に比べて、気筒内への吸入空気量を多くすることで再加速性を向上させる、ことを目的とした車両の走行制御装置が提案されている。
特開2006-200370号公報 国際公開2014/068718号公報
 エンジンを自動停止させ、かつ、エンジンと車輪との間の動力伝達経路を遮断させて走行する惰性走行では、エンジンの完全停止前に、ドライバーのアクセル操作や自動走行時の自動加速要求、エアコン作動等のエンジン出力要求に基づくエンジン再始動要求により、通常走行への復帰要求が発生する場合がある。一方、エンジンが惰性回転して回転数が低下した完全停止直前では、ピストンが圧縮行程を乗り越えられずに押し戻される、揺り戻し(エンジンの正回転方向に対する逆回転)が発生する場合がある。よって、本タイミングでエンジン出力要求に基づく再始動要求が発生する場合、特許文献2で示されるように、気筒内への吸入空気量を多くすると、圧縮行程を迎えた気筒の上死点手前では、吸入空気量の増加が無い場合に比べ、圧縮空気による反発エネルギーが大きくなる。このため
、圧縮行程を乗り越えられなかった時の反発力が大きくなり、エンジンの逆回転数が増加する。
 また、エンジンを完全停止前に再始動させる際、エンジン回転数が低い場合、燃料噴射の再開(燃焼リカバ)だけでは再始動が不可能になるため、スタータをはじめとする始動装置により再始動(クランキング)を開始させる。スタータを用いる場合、スタータがエンジンと噛み込み可能なエンジン回転数となった時点で、スタータを起動させてクランキングを開始させる。
 しかし、上記のように、エンジンの完全停止前にエンジン出力要求に基づく再始動要求が発生する場合、スタータの耐久性の観点から、エンジンの逆回転期間を避けてからスタータを噛み込ませる必要がある。つまり、エンジンの逆回転が静定してからスタータを起動せざるを得ないため、再始動要求発生時点に対するスタータの起動開始が遅れ、再始動、加速のレスポンスが悪化する、という課題があった。さらに、スタータとエンジンの噛み込み後にエンジンの逆回転数が増加する場合、スタータの正回転側への駆動力に対し、エンジンの反発力による逆回転側の駆動力が大きくなると、クランキング不可となってエンジンが停止する、という課題があった。ここでは、スタータを用いて始動する例で説明したが、始動用モータを用いた場合においても、クランキング時にエンジンの逆回転数が増加すると、始動用モータに過大な負荷がかかるため、許容値以上の電流が流れて電流回路焼損につながる、という課題があった。
 さらにまた、エンジンの完全停止前にエンジン出力要求に基づく再始動要求が発生する場合、吸入空気量の増加により、吸入空気量が増加しない場合に比べてエンジンの回転挙動が変化する。これに伴い、吸入空気量が増加しない場合と比べ、スタータ起動開始時のエンジン回転数が低くなり、エンジンの逆回転中でのクランキングが発生する、という課題があった。
 本発明の目的は、このような課題に鑑みてなされたものであって、エンジン自動停止条件成立から完全停止の間の再始動要求発生時において、エンジンの充填効率を小さくさせてエンジンの逆回転量の増加、エンジン回転の変動を防ぐことで、エンジンの始動装置の耐久性を確保するとともに、エンジン出力要求に基づく再始動要求発生時の応答性悪化を防ぐ車載制御装置を提供することである。
 上記目的を達成するため本発明の車載制御装置は、所定の自動停止条件が成立したときに自動停止するエンジンの充填効率を制御する車載制御装置において、前記自動停止条件成立から前記エンジンの完全停止前の所定期間中に発生したエンジン出力要求に基づいて前記エンジンの再始動を行うときのエンジン出力要求量に対する充填効率が、前記所定期間以外のエンジン出力要求量に対する充填効率よりも小さい。
 本発明によれば、エンジン自動停止条件成立から完全停止の間の再始動要求発生時において、エンジンの充填効率を小さくさせてエンジンの逆回転数の増加、または回転数の変動を防ぐことで、エンジンの始動装置の耐久性を確保するとともに、アクセル操作に基づく再始動要求発生時のアクセルレスポンスの悪化を防ぐ車載制御装置を提供することができる。 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明による車載制御装置を搭載した車両の全体構成図の一例 本発明による車載制御装置の内部構成の一例 本発明による車載制御装置の、制御ブロック構成の一例 本発明による車載制御装置の、エンジン自動停止条件成立から完全停止の間の再始動要求発生時に、エンジンの充填効率を小さくすることによりエンジンを再始動させた場合のエンジン回転数の、挙動の一例 本発明による車載制御装置の、ブロック301の、フローチャートの一例 本発明による車載制御装置の、ブロック303の、フローチャートの一例 本発明による車載制御装置の、ステップ604の、フローチャートの一例 本発明による車載制御装置の、ブロック305の、フローチャートの一例 本発明による車載制御装置の、ステップ806の、フローチャートの一例 本発明による車載制御装置の、ステップ901のフローチャートの一例 本発明による車載制御装置の、ステップ806のフローチャートの一例 本発明による車載制御装置の、ステップ808の、フローチャートの一例 本発明による車載制御装置の、ステップ808のフローチャートの一例
  本発明の車載制御装置の実施形態を図面を参照して詳細に説明する。
 図1は、本発明の車載制御装置を搭載した車両の全体構成図の一例であり、始動装置として、ピニオンギヤの押し出しおよびモータの駆動を行うことができるスタータを装着している例である。本車両では、多気筒のエンジン(内燃機関本体)101とエンジン自動停止始動システム102と、ECU(コントロールユニット、制御装置)103を備えている。
 エンジン101はクランク軸104を有し、点火コイル105、点火プラグ106、燃料噴射弁107等が取り付けられている。エンジン101は車両を走行させるための駆動力を発生する動力源として機能する。エンジン自動停止始動システム102は、ピニオンギヤ押し出し式のスタータ(始動装置)本体108と、第一の半導体スイッチング素子109と第二の半導体スイッチング素子110とを備えており、ECU103によって制御される。
 なお、第一の半導体スイッチング素子109と第二の半導体スイッチング素子110は、ON、OFF信号で動作する機械式マグネットスイッチに置き換えてもよい。クランク軸104の一方には、クランク角度信号を検出するために既定のパターンを刻んだ信号プレート111が、もう一方には、トランスミッション112へ駆動力を伝達するドライブプレートと一体のリングギヤ113がそれぞれ取り付けられている。信号プレート111の近傍には、そのパターンの凸凹を検出してパルス信号を出力するクランク角度センサ114が取り付けられており、クランク角度センサ114から出力されるパルス信号に基づいて、ECU103はエンジン101の回転数(エンジン回転数)を演算する。
 エンジン自動停止始動システム102は、スタータソレノイド115、ピニオン移送レバー116、ピニオンギヤ117、ワンウェイクラッチ118、スタータモータ119を備えている。ピニオンギヤ117は、リングギヤ113と噛み込み可能なギヤであり、ワンウェイクラッチ118を介してスタータモータ119のピニオン軸120方向に移動可能になるように設定されている。スタータソレノイド115は、ピニオン移送レバー116を介してピニオンギヤ117をピニオン軸120の方向に移動させるための電動アクチュエータである。スタータモータ119は、後述するようにエンジン101をクランキングするためのモータである。
 ECU103から、ピニオン移送指令が第二の半導体スイッチング素子110のゲート端子に入力されると、電池121の電力がスタータソレノイド115へ供給される。これによりスタータソレノイド115がピニオン移送レバー116を介してピニオンギヤ117を図示右方向へ移動させるので、ピニオンギヤ117はリングギヤ113と噛み込む。また、ECU103からのモータ駆動指令が第一の半導体スイッチング素子109のゲート端子に入力されると、電池121の電力がスタータモータ119へ供給される。これにより、スタータモータ119がピニオンギヤ117およびリングギヤ113を介してクランク軸104を回転させてエンジン101をクランキングする。前記ピニオン移送指令およびモータ駆動指令は、アクセルペダル122の踏み込み量(開度)を検知するアクセル開度センサ123の信号、ブレーキペダル124の踏み込み可否を検知するブレーキスイッチ125の信号、エンジン101の回転数に基づき求められる。
 また、トランスミッション112は、ドライブシャフト126およびタイヤ127を介して、エンジン101で発生する回転駆動力を路面に伝える。さらに、トランスミッション112には、その出力軸の回転パルスを検知する車速センサ128が取り付けられており、ECU103は、車速センサ128からの出力信号に基づき、車速を演算する。
 図2は、本発明の対象となる車載制御装置の内部構成の一例である。CPU(中央演算処理装置)201の内部にはエンジンに設置された各センサの電気的信号をデジタル演算処理用の信号に変換、および、デジタル演算用の制御信号を実際のアクチュエータの駆動信号に変換するI/O(Input/Output)部202が設定されており、I/O部202には、クランク角度センサ114、吸入空気量センサ204、吸気管圧力センサ205、車速センサ128、アクセル開度センサ123、イグニッションスイッチ208、ブレーキスイッチ125、スロットル開度センサ210、吸気弁位相センサ211、排気弁位相センサ212が入力されている。CPU201からの出力信号はドライバ回路213に入力され、ドライバ回路213は燃料噴射弁214~217、点火コイル218~221、スロットル弁駆動モータ222、吸気弁油圧アクチュエータ223、電池リレースイッチ224を介して始動装置駆動ソレノイド225および始動装置駆動モータ226を電流により駆動する。
 図3は、本発明の対象となる車載制御装置の、制御ブロック構成の一例である。ブロック301では、イグニッションスイッチ、ブレーキスイッチ、車速、アクセル開度、後述のブロック303で判定されるエンジン再始動要求判定値、後述のブロック304で判定される動力伝達経路遮断要求判定値より、エンジン自動停止を判定する。
 ブロック302では、システム再始動要求を判定する。本ブロックでは、エンジン自動停止中において、車両システムの部品や機能に対して性能低下や異常検知が発生した場合、エアコン作動の要求が発生した場合、発電の要求が発生した場合、外界認識情報に基づいて車両前方物体との衝突回避のために車両の減速度増加要求が発生した場合、のうち少なくとも一つを含む、ドライバーのアクセル操作以外でのエンジン始動が必要であるか否かを判定する。
 ブロック303では、アクセル開度、エンジン回転数、エンジン自動停止判定値、システム再始動要求判定値より、エンジン再始動要求を判定する。ブロック304では、エンジン自動停止判定値、エンジン再始動要求判定値より、動力伝達経路遮断要求を判定する。本ブロックでは、エンジンと車輪との間の動力伝達経路を遮断させて車両を惰性走行させる要求があるか否か、を判定し、その結果を変速機側の制御装置(ユニット)に送信する。変速機側のユニットでは、本判定結果を含めたエンジン側の情報(エンジン回転数、車速、スロットル開度)や変速機側の情報に基づいて、最適な変速比制御を実施する。ブロック305では、吸入空気量、吸気管圧力、吸気弁位相、排気弁位相、エンジン再始動要求判定値、アクセル開度、エンジン回転数より、エンジンの充填効率を制御する。ここでいう充填効率とは、例えばエンジンのシリンダへ吸入された新気の質量を、行程容積相当の標準状態での空気質量にて除した値である。
 このため、制御に必要なスロットル弁駆動モータ、吸気弁油圧アクチュエータの操作量を決定する。本ブロックでは、スロットル弁駆動モータの操作で充填効率を制御する場合、広範な制御範囲が得られ、吸気弁油圧アクチュエータの操作で充填効率を制御する場合、応答性の速い制御が可能になるため、かかる特徴を適宜使い分けて操作するのが良い。スロットル弁を用いて充填効率を制御する場合、吸入空気が吸気管のコレクタ容積により応答遅れがあるため、応答性の観点では吸気弁を制御する方が有利だからである。
 さらに、EGRガス、パージガス、過給圧、これらのうち少なくとも一つを制御することにより、充填効率を制御してもよいエンジンの逆回転現象は新気の吸入空気のみで発生するものでなく、一般気体で発生するものであるから、EGRガス、パージガスの増大要求に大しても同様の効果を得ることができる。
 また、スロットル弁駆動モータ、吸排気弁油圧アクチュエータを制御する際には、それぞれの弁開度、動作タイミングのいずれで充填効率を制御してもよい。
 図4は、本発明の対象となる車載制御装置の、エンジン自動停止条件成立から完全停止の間の再始動要求発生時に、エンジンの充填効率を小さくすることによりエンジンを再始動させる一例である。ライン401はエンジン再始動要求としてのアクセル開度、ライン402は従来例でのスロットル開度、ライン403は本発明でのスロットル開度、ライン404はスタータ起動信号、ライン405は従来例でのエンジン回転数、ライン406は本発明でのエンジン回転数、ライン407はエンジン回転数が0、ライン408はスタータとエンジンとの噛み込み可能なエンジン回転数に基づくスタータ起動許可回転数、ライン409はエンジン再始動後の完爆状態を判定するための完爆回転数である。時間410で、エンジンの自動停止条件成立中にアクセル開度に基づき再始動要求401が成立した時、完全停止に向かって低下中のエンジン回転数を上昇させるため、従来例では、アクセル開度401に基づくスロットル開度402により、エンジンの充填効率を大きくする。
 これに対し、本発明では、スロットル開度402よりも小さいスロットル開度403により、エンジンの充填効率を小さくする。つぎに、時間411でスタータ起動信号404を成立させる。なお、本起動タイミングは、図1のスタータのピニオンギヤ117がリングギヤ113に噛み込むまでの応答時間を考慮して、従来例ではエンジン回転数405、本発明ではエンジン回転数406、これらに基づき、応答時間相当後のエンジン回転数の予測値を求め、本予測値がスタータ起動許可回転数408に到達した時に成立させてもよい。
 時間411において、従来例では、スロットル開度402によりエンジンの充填効率が大きくなるため、エンジンの回転挙動が変化して回転低下が速くなり、スタータ起動条件成立のタイミングが遅れる。また、起動成立して噛み込み後、エンジン回転数405がライン407の0に達した時、スロットル開度402により充填効率が大きくなるため、圧縮行程を乗り越えられずに反発力が大きくなり、スタータの正転側への駆動力よりも上回ることで、噛み込み後にクランキング不可となる。
 これに対し、本発明では、スロットル開度403によりエンジンの充填効率を小さくさせることで、回転挙動の変化を押さえることができるため、スタータ起動条件成立の遅れ、ピニオンギアとリングギアとの噛み合いの遅れを防ぐことができる。また、起動成立して噛み込み後にエンジン回転数が0に達し、圧縮行程を乗り越えられなかった場合が発生したとしても、充填効率が小さくなっていることから反発力が大きくならないため、クランキングによる再始動が確保できる。
 その後、本発明では、時間412で、エンジン回転数406が完爆回転数409に達した時、スタータ起動信号404の成立を解除させ、アクセル開度401に基づくスロットル開度403によってエンジンの充填効率を大きくさせることにより、アクセルレスポンスの悪化を防ぐことができる。
 なお、エンジンの充填効率の増加は、ピニオンギアとリングギアとが噛み合ったことを条件に実施しても、スタータ起動条件成立の遅れ、ピニオンギアとリングギアとの噛み合いの遅れを防ぎ、噛み合い成立後速やかにエンジン回転数を上昇させることができる。
 以上、本発明でのスロットル開度403のように、アクセル開度401に対して閉方向へ操作することは、逆回転現象の発生頻度および逆回転数の低下に有効である。よって、要求されるアクセルレスポンスと燃焼爆発力の度合いとの均衡により、スロットル開度の操作量を適宜選定するのがよい。
 図5は、本発明の対象となる車載制御装置の、図3のブロック301のフローチャートの一例である。ステップ501でイグニッションスイッチ、車速、アクセル開度、ブレーキスイッチを読み込む。ステップ502でイグニッションスイッチがONか否かを判定し、判定成立の場合、後述のステップ503に進み、それ以外の場合、後述のステップ510に進む。ステップ503で車速が所定値A以上か否かを判定し、判定成立の場合、後述のステップ504に進み、それ以外の場合、後述のステップ510に進む。なお、所定値Aは、例えば、エンジンを自動停止させ、エンジンと車輪との間の動力伝達経路を遮断させて車両の惰性走行の実施する、と判定する値が設定される。
 ステップ504でブレーキスイッチがOFFか否かを判定し、判定成立の場合、後述のステップ505に進み、それ以外の場合、後述のステップ510に進む。ステップ505でアクセル開度より、アクセルOFF経過時間を演算する。本経過時間は、アクセルON時に、経過時間を0にリセットする。ステップ506では、ステップ505で演算したアクセルOFF経過時間が所定時間B以上経過したか否かを判定し、判定成立の場合、後述のステップ507に進み、それ以外の場合、後述のステップ510に進む。なお、所定時間Bは、例えば、ドライバのアクセルOFF状態が、ブレーキONへの移行中によるものでは無い、と判定する値が設定される。
 ステップ507でエンジンと車輪の動力伝達経路が遮断中か否かを判定し、判定成立の場合、後述のステップ508に進み、それ以外の場合、後述のステップ510に進む。ステップ508でエンジン再始動要求があるか否かを判定し、判定成立の場合、後述のステップ510に進み、それ以外の場合、後述のステップ509に進む。ステップ509でエンジン自動停止条件が成立と判定し、本判定に基づき燃料噴射を停止する。ステップ510でエンジン自動停止条件が不成立と判定し、本判定に基づき、燃料噴射停止中の場合は燃料噴射を再開する。
 図6は、本発明の対象となる車載制御装置の、図3のブロック303のフローチャートの一例である。ステップ601でエンジン回転数、アクセル開度を読み込む。ステップ602でエンジン自動停止中であるか否かを判定し、判定成立の場合、後述のステップ603に進み、それ以外の場合、後述のステップ607に進む。
 ステップ603で、エンジン回転数より、エンジンが完全停止中であるか否かを判定し、判定成立の場合、後述のステップ607に進み、それ以外の場合、後述のステップ604に進む。ステップ604でエンジン出力要求を判定する。
 ステップ605でエンジン出力要求があるか否かを判定し、判定成立の場合、後述のステップ606に進み、それ以外の場合、後述のステップ607に進む。ステップ606でエンジン再始動要求条件が成立と判定する。ステップ607でエンジン再始動要求条件が不成立と判定する。
 図7は、本発明の対象となる車載制御装置の、図6のフローチャートのステップ604のフローチャートの一例である。ステップ701でアクセルがOFFからONとなったか否かを判定し、判定成立の場合、後述のステップ703に進み、それ以外の場合、後述のステップ704に進む。ステップ702でシステム再始動要求があるか否かを判定し、判定成立の場合、後述のステップ703に進み、それ以外の場合、後述のステップ704に進む。ステップ703でエンジン出力要求条件が成立と判定する。ステップ704でエンジン出力要求条件が不成立と判定する。
 図8は、本発明の対象となる車載制御装置の、図3のブロック305のフローチャートの一例である。ステップ801でエンジン回転数、アクセル開度、吸入空気量、吸気管圧力、吸気弁位相、排気弁位相を読み込む。ステップ802でエンジン再始動要求があるか否かを判定し、判定成立の場合、後述のステップ803に進み、それ以外の場合、それ以外の場合、後述のステップ805に進む。
 ステップ803で、エンジン再始動要求条件が不成立から成立のときのエンジン回転数をラッチする。ステップ804では、ステップ803でラッチしたエンジン回転数が所定値C以上か否かを判定し、判定成立の場合、特定の処理を実施せず本フローチャートの処理を終了し、それ以外の場合、後述のステップ806に進む。
 なお、所定値Cは、例えば、スタータ無しでも、燃焼リカバだけによりエンジンの再始動が可能である、と判定する値が設定される。再始動要求が発生すると、エンジン停止状態を解除するため燃料噴射可能な気筒から燃料噴射を再開する。エンジン惰性回転時間が短くエンジン回転数が高い場合は、燃焼のみでエンジン再始動が可能である。エンジン再始動の可能性は、シリンダの吸入空気量が多いほど高い。よってこの場合は充填効率の制限を行う必要はないが、エンジン惰性回転時間が長くエンジン回転数が低い場合は、燃料噴射再開しても燃焼のみでエンジン再始動は不可能である。よってスタータ始動が必要となるタイミングのときに填効率の制限を行う必要があるからである。
 ステップ805で充填効率制御許可条件の前回判定値が成立したか否かを判定し、判定成立の場合、後述のステップ806に進み、それ以外の場合、特定の処理を実施せず本フローチャートの処理を終了する。
 また、ここでは燃焼リカバによる再始動の可否をエンジン再始動要求条件が成立したときのエンジン回転数と所定値Cとの比較で判断する例を示したが、エンジン再始動要求が発生した後に燃料噴射を再開した時のエンジン回転数、エンジン回転数の変化等を確認して燃焼リカバの成立を確認し、燃焼リカバ不成立の時のみスタータによる再始動を実施し、前述のステップ806に進むようにしてもよい。
 なお、エンジンと車輪との動力伝達経路を連結し、車両が惰性走行しているエネルギーを用いてエンジン始動を押しがけで行える場合は、その車両の運動エネルギにより強制的にエンジンを正方向に回転させるため、逆回転発生を制限させる必要はない。したがって、充填効率を制限をしないようにしてもよい。
 ステップ806で充填効率制御許可を判定する。ステップ807で充填効率制御許可中であるか否かを判定し、判定成立の場合、後述のステップ808に進み、それ以外の場合、特定の処理を実施せず本フローチャートの処理を終了する。ステップ808で充填効率を制御する。
 図9は、本発明の対象となる車載制御装置の、図8のフローチャートのステップ806のフローチャートの一例である。ステップ901でスタータ起動要求を判定する。ステップ902でスタータ起動要求があるか否かを判定し、判定成立の場合、後述のステップ903に進み、それ以外の場合、後述のステップ906に進む。ステップ903でスタータ噛み込み完了を判定する。本ステップでは、スタータ起動要求後、図1のピニオンギヤ117のリングギヤ113への噛み込み完了を判定するため、例えば、エンジン回転挙動の低下側から増加側への変化時や、図1のモータ119の起動時における電池121の一時的な電圧低下時、これらに基づいて判定してもよい。
 ステップ904でスタータ噛み込みが完了中であるか否かを判定し、判定成立の場合、後述のステップ906に進み、それ以外の場合、後述のステップ905に進む。ステップ905で充填効率制御許可条件が成立と判定する。ステップ906で充填効率制御許可条件が不成立と判定する。
 図10は、本発明の対象となる車載制御装置の、図9のフローチャートのステップ901のフローチャートの一例である。ステップ1001でエンジン再始動要求があるか否かを判定し、判定成立の場合、後述のステップ1002に進み、それ以外の場合、後述のステップ1006に進む。ステップ1002でスタータ起動要求条件の前回判定値が成立か否かを判定し、判定成立の場合、後述のステップ1003に進み、それ以外の場合、後述のステップ1004に進む。
 ステップ1003でエンジン回転数が所定値D以上か否かを判定し、判定成立の場合、後述のステップ1006に進み、それ以外の場合、後述のステップ1005に進む。所定値Dは、例えば、エンジンが完爆状態である、と判定する値が設定される。ステップ1004でエンジン回転数が所定値E以上か否かを判定し、判定成立の場合、後述のステップ1006に進み、それ以外の場合、後述のステップ1005に進む。
 所定値Eは、例えば、スタータによるクランキングが可能である、と判定し、さらに、スタータとエンジンの噛み込みにおいて、図1のピニオンギヤ117とリングギヤ113への耐久性への影響を軽減できる、と判定する値が設定される。ステップ1005でスタータ起動要求条件が成立と判定する。ステップ1006でスタータ起動要求条件が不成立と判定する。
 図11は、本発明の対象となる車載制御装置の、図8のフローチャートのステップ806のフローチャートの一例である。ステップ1101でエンジン回転数が所定値F以上か否かを判定し、判定成立の場合、後述のステップ1103に進み、それ以外の場合、後述のステップ1102に進む。所定値Fは、例えば、エンジンが完爆状態である、と判定する値が設定される。ステップ1102で充填効率制御許可条件が成立と判定する。ステップ903で充填効率制御許可条件が不成立と判定する。
 図12は、本発明の対象となる車載制御装置の、図8のフローチャートのステップ808のフローチャートの一例である。ステップ1201で、エンジン再始動要求条件が不成立から成立のときのエンジン回転数をラッチする。ステップ1202では、ステップ1201でラッチしたエンジン回転数およびアクセル開度より、目標スロットル開度を演算する。目標スロットル開度は、エンジン回転数とアクセル開度を軸としたマップを予め設定しておき、検索した値を用いてもよい。
 また、本設定では、例えば、アクセル開度に基づくスロットル開度増加分を所定割合または所定量以下に制限する、または、アイドリング回転維持相当分以下へ制限するため、スロットル開度制限値からアクセル操作量相当未満の範囲内で制限する、といった設定でもよい。ステップ1203で目標スロットル開度より、スロットル弁駆動モータ操作量を演算し、本操作量に基づいてエンジンの充填効率を制御する。
 図13は、本発明の対象となる車載制御装置の、図8のフローチャートのステップ808のフローチャートの一例である。
 ステップ1301でエンジン回転数およびエンジン負荷より、目標吸気弁基本位相を演算する。目標吸気弁基本位相は、エンジン回転数とエンジン負荷を軸としたマップを予め設定しておき、検索した値を用いてもよい。また、本設定では、例えば、アイドル維持相当分の吸気弁位相を基に設定してもよい。
 なお、エンジン負荷は吸気管に設置された吸気管圧力センサの出力を、所定の処理で吸気管圧力に変換したもの、または、熱式空気流量計等の吸入空気量センサで計測された吸入空気量で代表させる。ステップ1302で吸気弁位相および排気弁位相より、吸気弁位相補正値を演算する。吸気弁位相補正値は、吸気弁位相と排気弁位相を軸としたマップを予め設定しておき、検索した値を用いてもよい。
 また、本設定では、例えば、吸気弁と排気弁のオーバーラップ量を基に設定してもよい。ステップ1303で目標吸気弁基本位相を吸気弁位相補正値により補正し、目標吸気弁位相として出力する。ステップ1304で目標吸気弁位相より、吸気弁油圧アクチュエータ操作量を演算し、本操作量に基づいてエンジンの充填効率を制御する。
 最後に、本発明の各実施の態様について纏める。
 本発明の一態様における車載制御装置は、エンジン出力要求量に基づいてエンジンの充填効率を制御する車載制御装置において、所定の自動停止条件が成立したときにエンジンを自動停止させ、自動停止条件成立からエンジンの完全停止の間のエンジン出力要求に基づいてエンジンの再始動条件が成立したときの充填効率が、エンジン出力要求量に対する充填効率よりも小さいことを特徴とする。
 エンジンの再始動条件成立時のエンジンの充填効率を、エンジン出力要求量に対する充填効率よりも小さくさせることにより、エンジン完全停止前のエンジン逆回転数の増加、および、エンジンの回転挙動の変化を抑制することで、スタータとエンジンとの噛み込み性を向上できるとともに、耐久性を確保できる。
 好ましくは、自動停止条件が成立したときにエンジンと車輪との間の動力伝達経路が遮断された状態でエンジンを自動停止させる。
 車両走行中にエンジンを自動停止させ、かつ、エンジンと車輪との間の動力伝達経路を遮断させた車両の惰性走行により、走行距離を伸ばせるため、ドライバーの加速要求回数を低下でき、燃費低減を向上できる。
 さらに好ましくは、始動条件が成立したときのエンジンの充填効率を、スロットル弁の開度、スロットル弁の開閉タイミング、吸気弁の開度、または吸入弁の開閉タイミング、のうち少なくとも一つで制御する。
 スロットル弁または吸気弁の少なくとも一つによりエンジンの充填効率を制御することで、広範な制御範囲が得られるとともに、応答性の速い制御が可能になる。
 さらに好ましくは、エンジン始動装置とエンジンとの連結が完了するまでの期間、前記再始動条件が成立したときの前記エンジンの充填効率を、ドライバーのアクセル要求量に対する充填効率よりも小さくする。
 ドライバーのアクセル操作に基づく再始動要求発生時において、ドライバーのアクセル要求量に対する充填効率よりも小さくする期間を、エンジン始動装置とエンジンとの連結完了までとすることにより、連結完了後のアクセルレスポンスが向上できる。
 また、好ましくは、エンジンが完爆するまでの期間、再始動条件が成立したときのエンジンの充填効率を、ドライバーのアクセル要求量に対する充填効率よりも小さくする。
 ドライバーのアクセル操作に基づく再始動要求発生時において、ドライバーのアクセル要求量に対する充填効率よりも小さくする期間を、エンジンが完爆するまでとすることにより、エンジン始動装置とエンジンとの連結時または連結完了後に、エンジンの逆回転が発生する場合に対しても、逆回転数の増加、および、クランキング不可を防ぐことで、再始動性が確保できる。ここいう完爆とは、エンジンが始動装置無しの場合でも、停止することなく自発運転(燃焼状態)が維持できる状態である。
 また、好ましくは、スタータモータを用いてエンジンを再始動させる場合、再始動条件が成立したときのエンジンの充填効率をドライバーのアクセル要求量に対する充填効率よりも小さく制限し、スタータモータを用いずにエンジンを再始動させる場合、再始動条件が成立したときのエンジンの充填効率を制限しない。
 スタータを用いずにエンジンを再始動させる場合、再始動条件が成立したときのエンジンの充填効率を制限しないことにより、スタータによる始動が必要、かつ、エンジンの逆回転による噛み込み悪化が発生するモードにおいてのみ、エンジンの充填効率の制限を行うことにより、スタータを用いない始動モードにおけるアクセルレスポンスの悪化を防ぐことができる。
 また、好ましくは、再始動条件が成立した時のエンジン回転数に応じて、再始動条件が成立したときのエンジンの充填効率を制御する。
 再始動条件成立時のエンジン回転数がスタータとエンジンとの噛み込み可能なエンジン回転数より高い場合、これらの相対値に基づいて、噛み込み可能なエンジン回転数に到達する期間のエンジンの充填効率を制御できるため、エンジンの逆回転数の増加を防ぐとともに、アクセルレスポンスの悪化も防ぐことができる。
 また、好ましくは、エンジンを始動するときにエンジンと連結され、エンジンを駆動するスタータモータを備えた車両に搭載される。
 エンジン自動停止条件成立から完全停止の間の再始動要求が発生する際、燃焼リカバだけでの再始動が不可能な場合においても、スタータを用いたクランキングにより、エンジンの再始動が可能になる。
 また、エンジン出力要求量に基づいてエンジンの充填効率を制御する車載制御装置において、所定の自動停止条件が成立したときにエンジンを自動停止させ、自動停止条件成立からエンジンの完全停止の間のエンジン出力要求に基づいてエンジンの再始動条件が成立したときのスロットル弁開度をエンジン出力要求量に対するスロットル弁開度よりも小さくする制御、自動停止条件成立からエンジンの完全停止の間のエンジン出力要求に基づいてエンジンの再始動条件が成立したときのスロットル弁開弁開始タイミングを、エンジン出力要求タイミングに対するスロットル弁開弁開始タイミングよりも遅くする制御、自動停止条件成立からエンジンの完全停止の間のエンジン出力要求に基づいてエンジンの再始動条件が成立したときの吸入弁開度を、再始動条件が成立していないときの吸入弁開度よりも小さくする制御、自動停止条件成立からエンジンの完全停止の間のエンジン出力要求に基づいてエンジンの再始動条件が成立したときの吸入弁開弁開始タイミングを、再始動条件が成立していないときの吸入弁開弁開始タイミングよりも遅くする制御、のうち少なくとも一つを実行する。また、エンジンの充填効率を制限するにあたっては、アイドル回転数維持相当分のみの吸入空気量・スロットル弁開度に保持し、エンジン始動完了後が所定の速度でアクセル操作量相当の開度まで操作するとよい。これにより、エンジン回転数0直前の圧縮行程で吸入する空気量は増大せず、逆回転現象は増大することはない。
 また、スロットル弁開度を用いた充填効率の操作方法では、アクセル開度によるスロットル増大分を所定割合または所定量以下に制限などが考えられる。エンジン停止判定後、燃料カットとともにエンジン回転停止までスロットル弁開度をアイドリング回転数維持分以下に制限ずる場合はさらに、開度制限値に留めるものから、アクセル操作量相当未満に制御するまで、制限の幅が考えられる。
 スロットル開度は閉方向操作では逆回転現象の縮小に効果を示し、開方向操作では、エンジン燃焼の爆発力増大に効果がある。よって求められるアクセル操作の応答性と燃焼爆発力の度合いの均衡により適宜選定するのが良い。
 また、エンジンの充填効率を制限する期間は、スタータを起動させる際は、まずピニオンをリングギヤ方向に磁力で押し出し、ピニオンがリングギヤに噛み込む程度のストロークとなったとき、モータを回転駆動させるマグネットスイッチが通電してモータ回転を開始する。よって、スタータ起動の信号を発生させてからピニオンがリングギヤに噛み込むまでに応答時間を要する。よって、スタータ起動にあたっては応答時間相当後のエンジン回転数を予想推定し、該推定回転数によりスタータ噛み込み可否判定をするのが良い。
 なお、これまでスタータモータを用いてエンジン始動する例で説明したが、ハイブリッド自動車等に用いられる大出力の始動用モータを用いての始動にも同様に本発明を適用できる。始動用モータにおいても、逆回転現象中に正回転方向にエンジンを駆動すると、電流回路焼損などの不具合を生じるため、回避する必要があるためである。また、本実施例では、図2に示したような、エンジンを直接制御するエンジン制御装置によってエンジンの充填効率を直接制御する例を示したが、この例に限られない。例えば、トランスミッション112を制御する変速機制御装置、車両の自動走行を制御する自動走行制御装置、スタータ本体108のみを単独で制御するスタータ制御装置等から、制御装置同士の通信ネットワークを介してエンジン制御装置にエンジン充填効率の制限に関わる指令を送信するようにしてもよい。その場合、エンジン自動停止条件の成立、再始動要求の成立、これらに関するセンサ情報等を通信ネットワークを介して制御装置同士で共有することが望ましい。
 以上、本発明の一実施形態について詳述したが、本発明は前記実施形態に限定されるものではない。また、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
103・・・ECU(エンジンコントロールユニット)
108・・・スタータ
113・・・リングギヤ
114・・・クランク角度センサ
115・・・スタータソレノイド
117・・・ピニオンギヤ
119・・・スタータモータ
121・・・電池
122・・・アクセルペダル
123・・・アクセル開度センサ
124・・・ブレーキペダル
125・・・ブレーキスイッチ
128・・・車速センサ
203・・・クランク角度センサ
204・・・吸入空気量センサ
205・・・吸気管圧力センサ
206・・・車速センサ
207・・・アクセル開度センサ
208・・・イグニッションスイッチ
209・・・ブレーキスイッチ
211・・・吸気弁位相センサ
212・・・排気弁位相センサ

Claims (11)

  1. 所定の自動停止条件が成立したときに自動停止するエンジンの充填効率を制御する車載制御装置において、
    前記自動停止条件成立から前記エンジンの完全停止前の所定期間中に発生したエンジン出力要求に基づいて前記エンジンの再始動を行うときのエンジン出力要求量に対する充填効率が、
    前記所定期間以外のエンジン出力要求量に対する充填効率よりも小さいことを特徴とする車載制御装置。
  2. 請求項1記載の車載制御装置において、前記車載制御装置は、前記エンジンをクランキングして始動させるためのスタータモータを備える車載に搭載され、
    前記所定期間中に発生したエンジン出力要求に基づき、前記スタータモータを用いて前記エンジンの再始動を行うときのエンジン出力要求量に対する充填効率が、
    前記スタータモータを用いて前記エンジンを始動させるときのエンジン出力要求量に対する充填効率よりも小さいことを特徴とする車載制御装置。
  3. 請求項1または2いずれか一項記載の車載制御装置において、前記自動停止条件が成立したときに前記エンジンと車輪との間の動力伝達経路が遮断された状態で前記エンジンを自動停止させることを特徴とする車載制御装置。
  4. 請求項3記載の車載制御装置において、前記再始動条件が成立したときの前記エンジンの充填効率を、スロットル弁の開度、前記スロットル弁の開閉タイミング、吸気弁の開度、または前記吸入弁の開閉タイミング、のうち少なくとも一つで制御することを特徴とする車載制御装置。
  5. 請求項4記載の車載制御装置において、エンジン始動装置と前記エンジンとの連結が完了するまでの期間、前記再始動条件が成立したときの前記エンジンの充填効率を、エンジン出力要求量に対する充填効率よりも小さくすることを特徴とする車載制御装置。
  6. 請求項4記載の車載制御装置において、前記エンジンが完爆するまでの期間、前記再始動条件が成立したときの前記エンジンの充填効率を、エンジン出力要求量に対する充填効率よりも小さくすることを特徴とする車載制御装置。
  7. 請求項4記載の車載制御装置において、スタータモータを用いて前記エンジンを再始動させる場合、前記再始動条件が成立したときの前記エンジンの充填効率をエンジン出力要求量に対する充填効率よりも小さく制限し、
    前記スタータモータを用いずに前記エンジンを再始動させる場合、前記再始動条件が成立したときの前記エンジンの充填効率を制限しないことを特徴とする車載制御装置。
  8. 請求項4記載の車載制御装置において、前記再始動条件が成立したときのエンジン回転数に応じて、前記再始動条件が成立したときの前記エンジンの充填効率を制御することを特徴とする車載制御装置。
  9. 請求項4記載の車載制御装置において、前記エンジンを始動するときに前記エンジンと連結され、前記エンジンを駆動するスタータモータを備えた車両に搭載されることを特徴とする車載制御装置。
  10. 請求項2記載の車載制御装置において、
    前記自動停止条件成立から前記エンジンの完全停止前の所定期間中に前記エンジンの再始動要求が発生したときに、スタータモータを使用せずに燃料噴射を再開して前記エンジンを燃焼復帰させる第一の再始動モードと、前記スタータモータによって前記エンジンをクランキングして再始動させる第二の再始動モードと、の少なくとも一つを実行し、前記第二の再始動モードを実行するときのエンジン出力要求に対する充填効率が、前記第一の再始動モードを実行するときのエンジン出力要求に対する充填効率よりも小さいことを特徴とする車載制御装置。
  11. エンジン出力要求量に基づいてエンジンの充填効率を制御する車載制御装置において、
    所定の自動停止条件が成立したときに前記エンジンを自動停止させ、
    前記自動停止条件成立から前記エンジンの完全停止の間のエンジン出力要求に基づいて前記エンジンの再始動条件が成立したときのスロットル弁開度をエンジン出力要求量に対するスロットル弁開度よりも小さくする制御、
    前記自動停止条件成立から前記エンジンの完全停止の間のエンジン出力要求に基づいて前記エンジンの再始動条件が成立したときのスロットル弁開弁開始タイミングを、エンジン出力要求タイミングに対するスロットル弁開弁開始タイミングよりも遅くする制御、
    前記自動停止条件成立から前記エンジンの完全停止の間のエンジン出力要求に基づいて前記エンジンの再始動条件が成立したときの吸入弁開度を、前記再始動条件が成立していないときの吸入弁開度よりも小さくする制御、
    前記自動停止条件成立から前記エンジンの完全停止の間のエンジン出力要求に基づいて前記エンジンの再始動条件が成立したときの吸入弁開弁開始タイミングを、前記再始動条件が成立していないときの吸入弁開弁開始タイミングよりも遅くする制御、のうち少なくとも一つを実行することを特徴とする車載制御装置。
PCT/JP2016/066529 2015-06-25 2016-06-03 車載制御装置 WO2016208360A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017524815A JPWO2016208360A1 (ja) 2015-06-25 2016-06-03 車載制御装置
US15/573,909 US10989120B2 (en) 2015-06-25 2016-06-03 Vehicle-mounted control device
EP16814131.5A EP3315748B1 (en) 2015-06-25 2016-06-03 Vehicle-mounted control device
CN201680035533.0A CN107683367B (zh) 2015-06-25 2016-06-03 车载控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015127204 2015-06-25
JP2015-127204 2015-06-25

Publications (1)

Publication Number Publication Date
WO2016208360A1 true WO2016208360A1 (ja) 2016-12-29

Family

ID=57585757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066529 WO2016208360A1 (ja) 2015-06-25 2016-06-03 車載制御装置

Country Status (5)

Country Link
US (1) US10989120B2 (ja)
EP (1) EP3315748B1 (ja)
JP (2) JPWO2016208360A1 (ja)
CN (1) CN107683367B (ja)
WO (1) WO2016208360A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047104A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp エンジンの自動始動停止装置
JP2002115579A (ja) * 2000-08-02 2002-04-19 Toyota Motor Corp 内燃機関の自動始動制御装置及び動力伝達状態検出装置
JP2006077605A (ja) * 2004-09-07 2006-03-23 Yamaha Motor Co Ltd 車両、ならびに車両のエンジンのための制御装置およびエンジン制御方法
JP2008232054A (ja) * 2007-03-22 2008-10-02 Denso Corp 内燃機関の自動始動装置
JP2010053764A (ja) * 2008-08-28 2010-03-11 Mazda Motor Corp 車両の制御装置及びその制御方法
JP2011075011A (ja) * 2009-09-30 2011-04-14 Denso Corp エンジン停止始動制御装置
JP2014238101A (ja) * 2014-09-26 2014-12-18 トヨタ自動車株式会社 車両制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577979B2 (ja) 1999-03-04 2004-10-20 三菱自動車工業株式会社 内燃機関の停止制御装置
JP2002161838A (ja) * 2000-11-29 2002-06-07 Denso Corp 車両用始動装置
JP4012893B2 (ja) 2004-06-11 2007-11-21 トヨタ自動車株式会社 内燃機関の制御装置
JP2006200370A (ja) 2005-01-18 2006-08-03 Mazda Motor Corp エンジン自動停止始動制御装置
JP4696765B2 (ja) 2005-08-05 2011-06-08 日産自動車株式会社 エンジンの始動方法及びエンジンの始動装置
US8140247B2 (en) 2008-11-06 2012-03-20 Ford Global Technologies, Llc Control of intake pressure for restart-enabled idle stop
JP5025752B2 (ja) 2010-03-30 2012-09-12 三菱電機株式会社 内燃機関の自動停止・再始動装置
US8855896B2 (en) * 2010-06-01 2014-10-07 GM Global Technology Operations LLC Intake manifold refill and holding control systems and methods
DE102010040562B4 (de) 2010-09-10 2022-02-03 Robert Bosch Gmbh Verfahren zum Wiederstart einer Brennkraftmaschine
JP5236044B2 (ja) 2011-05-11 2013-07-17 三菱電機株式会社 内燃機関の自動停止再始動装置
DE102011090149A1 (de) 2011-12-30 2013-07-04 Robert Bosch Gmbh Verfahren zur Ansteuerung eines Organs im Luftzufuhrtrakt einer Brennkraftmaschine, insbesondere einer Drosselklappe
CN104204589B (zh) * 2012-04-06 2017-03-08 丰田自动车株式会社 车辆的起步离合器控制装置
US9068546B2 (en) * 2012-05-04 2015-06-30 Ford Global Technologies, Llc Methods and systems for engine cranking
US9896103B2 (en) 2012-10-31 2018-02-20 Toyota Jidosha Kabushiki Kaisha Vehicle drive controller
GB2517751B (en) 2013-08-30 2020-01-29 Ford Global Tech Llc A method of controlling the stopping and starting of an engine of a motor vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047104A (ja) * 1996-07-31 1998-02-17 Suzuki Motor Corp エンジンの自動始動停止装置
JP2002115579A (ja) * 2000-08-02 2002-04-19 Toyota Motor Corp 内燃機関の自動始動制御装置及び動力伝達状態検出装置
JP2006077605A (ja) * 2004-09-07 2006-03-23 Yamaha Motor Co Ltd 車両、ならびに車両のエンジンのための制御装置およびエンジン制御方法
JP2008232054A (ja) * 2007-03-22 2008-10-02 Denso Corp 内燃機関の自動始動装置
JP2010053764A (ja) * 2008-08-28 2010-03-11 Mazda Motor Corp 車両の制御装置及びその制御方法
JP2011075011A (ja) * 2009-09-30 2011-04-14 Denso Corp エンジン停止始動制御装置
JP2014238101A (ja) * 2014-09-26 2014-12-18 トヨタ自動車株式会社 車両制御装置

Also Published As

Publication number Publication date
JPWO2016208360A1 (ja) 2017-12-21
US10989120B2 (en) 2021-04-27
EP3315748A4 (en) 2018-12-26
US20180355806A1 (en) 2018-12-13
JP2019090423A (ja) 2019-06-13
EP3315748A1 (en) 2018-05-02
CN107683367A (zh) 2018-02-09
EP3315748B1 (en) 2021-08-11
JP6738921B2 (ja) 2020-08-12
CN107683367B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
US9074573B2 (en) System for cranking internal combustion engine by engagement of pinion with ring gear
JP4673767B2 (ja) 内燃機関の自動停止装置及びこの自動停止装置を備えた自動車用内燃機関
US8594912B2 (en) Stop/start control systems and methods for internal combustion engines
US9163604B2 (en) Engine starting device and engine starting method
CN108930623B (zh) 用于提高停止/起动车辆的发动机起动器耐久性的方法和系统
WO2012063389A1 (en) Engine automatic stop and start control apparatus
JP6143439B2 (ja) 内燃機関の制御装置
JP5413325B2 (ja) エンジン停止始動制御装置
JP6132931B2 (ja) 車載制御装置
JP4577260B2 (ja) エンジンの始動装置
JP6738921B2 (ja) 車載制御装置
JP4147398B2 (ja) エンジン制御装置
JP5746880B2 (ja) 内燃機関の制御装置
JP6146973B2 (ja) 内燃機関の制御装置
JP2012087733A (ja) 内燃機関の燃料噴射制御方法
JP6075177B2 (ja) 車両の制御装置
JP2009209722A (ja) エンジンの始動制御装置及び始動制御方法
JP6029371B2 (ja) 内燃機関の制御装置
JP7237419B2 (ja) 車両の制御装置
JP2012136980A (ja) エンジン回転停止制御装置
JP2012117413A (ja) 内燃機関の制御装置
JP6108789B2 (ja) 内燃機関の制御装置
JP2016113909A (ja) 内燃機関の制御装置
JP6530989B2 (ja) 車載制御装置
JP2019044598A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524815

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016814131

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE