WO2016207936A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2016207936A1
WO2016207936A1 PCT/JP2015/067825 JP2015067825W WO2016207936A1 WO 2016207936 A1 WO2016207936 A1 WO 2016207936A1 JP 2015067825 W JP2015067825 W JP 2015067825W WO 2016207936 A1 WO2016207936 A1 WO 2016207936A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
axis current
magnetic flux
axis
Prior art date
Application number
PCT/JP2015/067825
Other languages
English (en)
French (fr)
Inventor
信吾 原田
圭一 榎木
泰一 村田
益崇 渡邉
良雅 西島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112015006640.3T priority Critical patent/DE112015006640T5/de
Priority to JP2017524280A priority patent/JP6289754B2/ja
Priority to PCT/JP2015/067825 priority patent/WO2016207936A1/ja
Priority to US15/569,288 priority patent/US10469015B2/en
Priority to CN201580081069.4A priority patent/CN107750427B/zh
Publication of WO2016207936A1 publication Critical patent/WO2016207936A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • H02P29/662Controlling or determining the temperature of the rotor the rotor having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor control device, and more particularly, to a motor control device that alleviates a decrease in system efficiency when performing flux-weakening control.
  • hybrid vehicles and electric vehicles have attracted attention as vehicles that take into consideration energy saving and the environment.
  • a hybrid vehicle uses a motor as a power source in addition to a conventional engine, and an electric vehicle uses a motor as a power source.
  • DC power stored in the battery is converted into AC power by an inverter circuit and supplied to a motor to drive the vehicle.
  • FIG. 9 shows a conventional control device for a permanent magnet type synchronous motor.
  • 7 is a DC power source
  • 6 is an inverter
  • 301 is a current detector
  • 4 is a motor
  • 302 is a magnetic pole position detector
  • 309 is an inverter control circuit.
  • the control circuit 309 receives the torque command value T * and finally generates and outputs the gate pulse signals PU *, PV *, and PW * for each phase switching element of the inverter.
  • the configuration will be described together with the operation.
  • the reference numeral 307 indicates the phase current detection values IU and IW of the motor 4 by the current detector 301 and the DC current detection value Id that is a component of the dq axis coordinate system using the magnetic pole position signal ⁇ .
  • Iq is a three-phase / two-phase converter.
  • reference numeral 303 denotes a current command value generation unit including a dq axis current command calculation unit that converts the torque command value T * into dq axis current command values Id * and Iq *.
  • the dq-axis current command values Id * and Iq * which are the outputs of 303, are input to the automatic flux-weakening control calculation unit 308.
  • the calculation result of the automatic flux-weakening control calculation unit 308 is input to the current control system 304. The calculation of the automatic flux-weakening control unit will be described later.
  • the current control system 304 receives a deviation between the dq axis currents Id and Iq calculated by the coordinate conversion unit 307 and the dq axis current command values Id * and Iq *.
  • the current control system 304 calculates the dq axis voltage command values vd * and vq * by proportional-integral control using the input deviation. In the current control system 304, non-interference control is performed to cancel interference generated between the dq axes.
  • the dq-axis voltage command values vd * and vq * calculated by the current control system 304 are input to the two-phase / three-phase converter 305 to calculate the three-phase voltage command values vU *, vV * and vW *.
  • the three-phase voltage command value calculated by the two-phase / three-phase conversion unit 305 is input to the PWM modulation unit 306, and the gate pulse signals PU *, PV *, PW * are generated and input to the inverter 6.
  • the dq-axis is controlled by feedback control so that the value that can be output by the power supply voltage is compared with the dq-axis voltage command value and the deviation is zero.
  • a technique for controlling the voltage command value to a predetermined value is performed.
  • a method of comparing a value that can be output by the power supply voltage with the dq axis voltage command value and controlling the dq axis voltage command value to a predetermined value by feedback control is referred to as “automatic weakening magnetic flux control”.
  • 308 is an automatic flux-weakening control calculation unit that compares a value that can be output by the power supply voltage with the dq-axis voltage command value, and sets the dq-axis voltage command value to a predetermined value by feedback control.
  • a dq-axis current command value for tracking is calculated.
  • One of the calculated current command value or the input current command values Id * and Iq * is selected based on a predetermined index and input to the current control system 304.
  • a dq axis voltage command value and a voltage value that can be output by the power supply voltage a voltage value in a range where the induced voltage is not higher than the maximum voltage that can be output by the inverter
  • the command value calculated by the automatic flux-weakening control is selected. Otherwise, the input current command values Id * and Iq * are selected.
  • the center of the voltage limit ellipse that can be output by the power supply voltage (the range of the voltage that limits the induced voltage within the range in which the induced voltage is not higher than the maximum voltage that can be output by the inverter) is centered on the motor magnetic flux.
  • the current command value is corrected in the center direction of the voltage limiting ellipse by calculating from the inductance (Patent Document 1).
  • Patent Document 1 when the motor temperature changes from the design value, the motor characteristics change. Therefore, when the current command value is corrected, the combination of dq axis currents is not optimal for torque and rotation speed. Therefore, there is a problem that the motor efficiency is lowered and the system efficiency of the motor and the inverter is lowered.
  • FIG. 10 is a diagram showing a problem of flux-weakening control for correcting the current command value in the center direction of the voltage limit ellipse when the temperature of the motor is lowered.
  • 801 is a voltage limit ellipse calculated from the motor magnetic flux at the actual motor temperature
  • 802 is the center point of the voltage limit ellipse calculated from the motor magnetic flux at the actual motor temperature
  • 803 is A voltage limit ellipse calculated from the magnet magnetic flux of the motor at the design value motor temperature
  • 804 is a center point of the voltage limit ellipse calculated from the magnet magnetic flux of the motor at the design value motor temperature.
  • the center point of the voltage limit ellipse on the dq axis moves in the negative direction on the d axis when the magnet magnetic flux of the motor increases, and moves in the positive direction on the d axis when it decreases.
  • the magnetic flux of the magnet increases as the temperature decreases and decreases as the temperature increases. Therefore, the center point of the voltage limit ellipse moves in the negative direction on the d axis when the motor temperature decreases, and the center point of the voltage limit ellipse moves in the positive direction on the d axis when the motor temperature increases. .
  • the current vector 805 when the current vector 805 is first input as a command value, the current vector is corrected toward the point 804 by automatic flux-weakening control, and stops at the intersection 807 with the voltage limit ellipse 801.
  • the current vector is 806.
  • the maximum system efficiency curve MXSEC determined by the torque and the rotational speed of a certain motor is close to the maximum motor efficiency curve because the inverter efficiency is generally higher than the motor efficiency. Since the maximum motor efficiency curve MXSEC moves on the d-axis in the same direction as the moving direction of the voltage limiting ellipse, the maximum system efficiency curve MXSEC moves in the negative d-axis direction when the motor temperature decreases. Therefore, when the motor temperature decreases, the deviation between the final current vector 806 and the maximum system efficiency curve MXSEC increases, so that the automatic flux-weakening control in Document 1 causes a decrease in system efficiency.
  • the motor 4 for example, a permanent magnet type synchronous motor, a winding type synchronous motor, an induction machine, or the like can be used.
  • the motor control device is a motor control device for controlling the motor in a vehicle having an inverter including a plurality of phase arms having a plurality of switching elements and a plurality of phase motors driven by the inverter.
  • a magnet temperature detector for detecting the magnet temperature of the motor
  • a magnet magnetic flux calculator for calculating a magnet magnetic flux of the motor corresponding to the magnet temperature of the motor, and a voltage limit ellipse determined by a value that can be output by the voltage of the power supply of the motor
  • a dq-axis current combination candidate calculation unit for calculating a dq-axis current combination candidate that minimizes the input current of the inverter, and dq of the motor on the voltage-limiting ellipse by automatic weakening magnetic flux control.
  • a dq-axis current search unit that searches for a dq-axis current that minimizes the input current of the inverter within a range of the dq-axis current combination candidates when the axis current moves;
  • the robustness of the motor control can be improved, and the reduction in the system efficiency of the drive system including the motor and the inverter can be mitigated.
  • FIG. 8 is a diagram showing the effect of the present invention when the motor temperature is lowered.
  • the current motor temperature is detected, the magnet magnetic flux of the motor corresponding to the motor temperature is calculated by the magnet magnetic flux calculation unit, and the calculated magnet magnetic flux of the motor is used.
  • an appropriate voltage limit ellipse 801 and an appropriate voltage limit ellipse center point 802 can be obtained. Therefore, when the current vector 805 is first input as a command value, the current vector is corrected toward the point 802 and reaches the intersection 901 with the voltage limit ellipse 801 by automatic weakening magnetic flux control.
  • a constant torque curve at the intersection 901 is calculated as a dq-axis current combination candidate that minimizes the input current of the inverter.
  • the coordinates are compared with the d-axis coordinate of the point 802.
  • the d-axis coordinate of the point 901 When the d-axis coordinate of the point 901 is large, the d-axis direction is negative, and when the d-axis coordinate of the point 901 is small, the d ⁇ Search for the dq axis current that minimizes the input current of the inverter within the q axis current combination candidates, and correct the current command value at the point 903 where the efficiency is maximized. It is possible to mitigate the decrease in system efficiency. The same effect can be obtained by the present invention even when the motor temperature rises.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to a first embodiment of the present invention. It is a schematic block diagram which shows the typical example of the motor control apparatus which concerns on Embodiment 1 of this invention. It is the figure which showed an example of the function structure of the principal part of the motor control apparatus which concerns on Embodiment 1 of this invention. It is a figure which illustrates the function structure inside the automatic weakening magnetic flux control calculating part 308 in the motor control apparatus of FIG. It is a figure which shows an example of a structure of the magnetic flux table 210MT in FIG.
  • Embodiment 1 FIG.
  • a preferred embodiment 1 of a motor control device according to the present invention will be described with reference to FIGS.
  • the same or corresponding parts will be described with the same reference numerals.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a motor control device according to Embodiment 1 of the present invention.
  • a hybrid vehicle including the engine 1 and the motor 4 is described as an example, but this embodiment can also be applied to an electric vehicle.
  • a generator 2 is driven by an engine 1, whereby the generator 2 generates power, and the generated power is charged to a battery 7 via an inverter 6.
  • the motor 4 is driven by supplying the electric power generated by the generator 2 or the electric power stored in the battery 7 to the motor 4.
  • the motor 4 drives the tire 5 to drive the vehicle.
  • the electric power stored in the battery 7 is supplied to the motor 4
  • the DC power stored in the battery 7 is converted into AC power by the inverter 6 and supplied to the motor 4.
  • the motor 4 when the vehicle is decelerated, the motor 4 is rotated by the tire 5, and the motor 4 performs regenerative power generation, and the generated electric power is charged into the battery 7 via the inverter 6.
  • the inverter 6 also converts the DC power stored in the battery 7 into AC power, drives the generator 2, and starts the engine 1.
  • the vehicle can be driven by transmitting the driving force of the engine 1 to the tire 5 via the motor 4 by coupling the clutch 3.
  • a series hybrid vehicle as described above will be described as an example, but a parallel hybrid vehicle may be used.
  • the generator 2 and the motor 4 may be a motor / generator having both driving and power generation.
  • the vehicle has one battery and one inverter, the vehicle is provided with a plurality of batteries having different voltages, and voltage conversion is performed between the generator and the inverter and between the battery and the inverter. It may have a DC / DC converter or the like.
  • FIG. 2 is a typical schematic configuration diagram of the motor control device according to the first embodiment of the present invention.
  • the motor control device includes a motor 4, a battery 7, and an inverter 201.
  • the inverter 201 converts the DC power stored in the battery 7 into AC power and controls the driving of the motor 4.
  • the inverter 201 includes a U-phase switching circuit 205, a V-phase switching circuit 206, and a W-phase switching circuit 207.
  • the U-phase switching circuit 205 includes an upper arm side switching element 205H provided on the upper arm 203 side (high voltage side) and a lower arm side switching element 205L provided on the lower arm 204 side (low voltage side). Is done.
  • the upper arm side switching element 205H and the lower arm side switching element 205L are connected in series with each other. In addition, one free-wheeling diode is connected in antiparallel to each of the upper arm side switching element 205H and the lower arm side switching element 205L.
  • the V-phase switching circuit 206 includes an upper arm side switching element 206H provided on the upper arm 203 side and a lower arm side switching element 206L provided on the lower arm 204 side.
  • the upper arm side switching element 206H and the lower arm side switching element 206L are connected in series with each other. Further, each of the upper arm side switching element 206H and the lower arm side switching element 206L is connected in reverse parallel with one free-wheeling diode.
  • the W-phase switching circuit 207 includes an upper arm side switching element 207H provided on the upper arm 203 side and a lower arm side switching element 207L provided on the lower arm 204 side.
  • the upper arm side switching element 207H and the lower arm side switching element 207L are connected in series with each other.
  • one free-wheeling diode is connected in antiparallel to each of the upper arm side switching element 207H and the lower arm side switching element 207L.
  • each of the switching elements 205H to 207H and 205L to 207L of the switching circuits 205 to 207 for example, an IGBT (Insulated Gate Bipolar Transistor) and an FET (Field Effect Transistor) can be used.
  • IGBT Insulated Gate Bipolar Transistor
  • FET Field Effect Transistor
  • the motor 4 is provided with a temperature sensor 209 for measuring the temperature of the motor 4.
  • FIGS 2 and 3 show an example in which the motor 4 is provided with the motor temperature sensor 209, but the estimated value of the motor temperature is used instead of the motor temperature measured by the motor temperature sensor 209. In this case, the motor temperature sensor 209 may not be provided.
  • Control unit 210 is provided for U-phase switching circuit 205, V-phase switching circuit 206, and W-phase switching circuit 207.
  • the control unit 210 includes an arithmetic device, a storage device, an input / output device, and the like, and drives and controls the switching elements 205H to 207H and 205L to 207L.
  • the control part 210 acquires the motor temperature (temperature information) of the motor with which the temperature sensor is provided based on the sensor signal from the temperature sensor 209.
  • control unit 210 is disposed inside the inverter 201, but may be disposed outside the inverter 201.
  • FIG. 3 is a diagram showing an example of a functional configuration of a main part of the motor control device according to the first embodiment of the present invention.
  • FIG. 4A is a diagram illustrating a functional configuration inside the automatic flux-weakening control unit 308 in the motor control device of FIG.
  • FIG. 3 is different from FIG. 9 in that a motor temperature sensor 209 and a current sensor 310 are added.
  • the motor temperature sensor 209 measures the coil temperature of the motor to obtain an estimated magnet temperature value of the motor, and the current sensor 310 measures the input current of the inverter 6.
  • the sensor information acquired by the motor temperature sensor 209 and the current sensor 310 is used by the automatic weakening magnetic flux control calculation unit 308.
  • the estimation of the magnet temperature of the motor is performed using one or more of the coil temperature, motor current, and motor voltage of the motor 4.
  • the motor current is either a motor phase current, a line current, or a dq axis current
  • the motor voltage is a motor phase voltage, a line voltage, or a dq axis voltage.
  • FIG. 4A is a diagram illustrating an example of an internal functional configuration of the automatic flux-weakening control unit 308 in FIG. 4A
  • the conventional automatic flux-weakening calculation unit 3083 is equivalent to the processing of the automatic flux-weakening control calculation unit 308 in the conventional apparatus of FIG.
  • FIG. 4A shows a magnet magnetic flux calculation unit 3081 that calculates the magnet magnetic flux of the corresponding motor from the detected motor temperature, and calculates dq axis current command value combination candidates that minimize the inverter input current after the automatic weakening magnetic flux control is performed.
  • FIG. 4B is a diagram illustrating an example of the configuration of the magnetic flux table 210MT in FIG. FIG. 4B illustrates the case where there are 1 set of motor temperature and motor flux corresponding thereto.
  • l is a positive integer.
  • FIG. 5 is a flowchart showing an example of the processing contents and processing procedure of automatic weakening magnetic flux control with an optimum point search function in the present embodiment.
  • FIG. 5 shows a calculation process when the calculation step is the nth time.
  • n is an integer.
  • an example of the processing contents and processing procedure of the automatic flux-weakening control unit 308 will be described in detail with reference to the flowchart of FIG.
  • Each process of process steps S601 to S616 in the process flow illustrated in FIG. 5 is performed according to arrows between the steps in FIG. 5 and Y (yes) and N (no) in the determination process step.
  • the processing contents in each of the processing steps S601 to S616 will be described according to the arrows, Y, and N in FIG.
  • the magnetic flux table 210MT is referred to based on the motor temperature acquired from the motor temperature sensor 209, and the magnetic flux value is updated.
  • the magnetic flux table 210MT is stored in the storage device 210M of the control unit 210 as illustrated in FIG.
  • the magnetic flux table 210MT includes a motor temperature ⁇ and a motor magnetic flux ⁇ corresponding to the motor temperature.
  • the motor magnetic flux corresponding to the input motor temperature is output. Is.
  • the motor flux corresponding to the motor temperature that is output is appropriately updated to correct the dq-axis current command value in the automatic flux-weakening control even when the motor flux changes due to temperature changes. It can be carried out. Therefore, it is possible to improve the robustness of the motor control and mitigate the reduction in system efficiency.
  • step S602 the center point IdM of the voltage limit ellipse is calculated based on the updated motor magnetic flux value.
  • the calculation is performed according to Equation 1.
  • IdM ⁇ / Ld (Formula 1)
  • is the motor magnetic flux acquired in step S601
  • Ld is the d-axis inductance.
  • step S603 the maximum value / phase of the flux-weakening current is calculated.
  • the calculation is performed using Equation 2-1 and Equation 2-2.
  • arctan (Iq * / (Id * ⁇ IdM)) (Formula 2-1)
  • IFWmax ⁇ (Iq * ⁇ 2 + (Id * ⁇ IdM) ⁇ 2) (Formula 2-2)
  • is the phase of the weak flux current
  • IFWmax is the maximum value of the weak flux current.
  • a voltage deviation Ev is calculated.
  • the calculation is performed using Equation 3-1 and Equation 3-2.
  • Ev Vpn ⁇ ⁇ (1/2) ⁇ k ⁇ Vrms (Equation 3-1)
  • Vrms ⁇ (vd * ⁇ 2 + vq * ⁇ 2)
  • Ev is the difference (voltage deviation) between the upper limit value (Vpn ⁇ ⁇ (1/2) ⁇ k) of the output voltage of the power supply voltage and the motor line voltage effective value Vrms
  • k is the voltage margin.
  • the value of k is determined by adjustment from experiments.
  • Vpn is a power supply voltage
  • vd * and vq * are dq axis voltage command values.
  • step S605 the calculation result of step S604 is input to the PI controller, and the output of the PI controller is calculated.
  • This PI controller is provided with a limiter whose lower limit is 0 so that the output does not become negative. Further, an anti-windup function may be added to the integrator.
  • step S606 dq axis current command values IdFW * and IqFW * are calculated using the output of the PI controller. The calculation is performed using Equation 4-1 and Equation 4-2.
  • IdFW * IFW ⁇ cos ⁇ + IdM (Formula 4-1)
  • IqFW * IFW ⁇ sin ⁇ (Formula 4-2)
  • IFW is an output value of the PI controller.
  • step S607 it is determined whether the current operating point is outside the voltage limit ellipse considering the margin.
  • the determination is made according to Equation 5.
  • Ev ⁇ Vrms ⁇ Evth (Formula 5)
  • Evth is a threshold value for determining whether the current operating point is outside the voltage limit ellipse, and is adjusted and determined by experiments or the like.
  • step S608 the automatic weakening flag is enabled.
  • the automatic weakening flag is a variable indicating whether automatic weakening magnetic flux control is effective. If it is 1, it indicates that it is effective, and if it is 0, it indicates that it is not effective.
  • the initial value of the automatic weakening flag after startup is set to zero.
  • step S609 the optimum point search flag is invalidated. Further, the counter and N used in the optimum point search process S616 are initialized. N will be described later.
  • the optimum point search flag is a variable indicating whether or not the optimum point search is valid. If the optimum point search flag is 1, it is valid, and if it is 0, it is not valid.
  • step S610 the dq axis current command values IdFW * and IqFW * calculated in step S606 are selected as output currents to the current control system.
  • step S611 the dq-axis current command values Id * and Iq * input to the automatic flux-weakening control calculation unit 308 change due to changes in the torque command value T * input to the current command value generation unit 303. Determine if you did. The determination is made according to Equation 6.
  • (n) indicates the value at the nth step of the calculation.
  • Ad and Aq are threshold values for determining that the current command value has changed, and are determined by adjustment through experiments.
  • step S612 the automatic weakening flag is invalidated.
  • step S613 the optimum point search flag is invalidated. Also, the counter and N used in the optimum point search process are initialized.
  • step S614 the dq axis current command values Id * and Iq * input to the automatic flux-weakening control unit 308 are selected as the output current to the current control system.
  • step S615 it is determined whether the automatic weakening flag is established. If established, the optimum point search process S616 is continued. If not, the optimum point search process does not need to be performed, and the process continues to step S613.
  • step S616 a combination of dq axis currents that maximizes the system efficiency under the given conditions is obtained by searching. Specific processing will be described later.
  • the first embodiment Although the coil temperature of a motor is acquired, even if it acquires the rotor temperature of a motor with a temperature sensor, the same effect can be acquired.
  • the same effect can be obtained by calculating the magnet temperature of the motor by estimation.
  • the estimation is performed, for example, by measuring the magnet temperature of the motor in advance and storing it in a map with respect to the motor operating conditions, and reading the map according to the current motor operating conditions.
  • FIG. 6 is a flowchart showing an example of the optimum point search control process in FIG.
  • FIG. 6 shows a calculation process when the calculation step is n-th.
  • an example of the processing content and processing procedure of the optimum point search control will be described in detail with reference to the flowchart of FIG.
  • Each process of process steps S701 to S713 in the process flow illustrated in FIG. 6 is performed according to arrows between the steps in FIG. 6 and Y (yes) and N (no) in the determination process step.
  • the processing content in each of the processing steps S701 to S713 will be described according to the arrows, Y, and N in FIG.
  • step S701 it is determined whether a search completion flag for optimal point search control is established. If established, the search process is not performed and the process continues to step S712.
  • step S702 the inverter input current Idc (n) is acquired from the detection value of the current sensor 310 and stored in the memory.
  • step S703 a counter is added.
  • step S704 it is determined whether the counter value is larger than the threshold value 1.
  • the threshold value 1 is set to a value that can sufficiently eliminate the influence of measurement noise and the like.
  • step S705 the counter is initialized. Also, 1 is added to the inverter input current value calculation count N. N is an integer and the initial value is 0.
  • step S706 the inverter input current value Idcave (N) is calculated and stored.
  • the calculation of the inverter input current value Idcave (N) is performed using the inverter input current Idc stored in step S702. For example, the arithmetic average value of all the Idc stored in steps from the initial value to the threshold value 1 being greater than the threshold value 1 is set as the inverter input current value Idcave (N).
  • the calculated inverter input current value Idcave (N) is stored in the memory.
  • a dq axis current combination candidate that minimizes the input current of the inverter is calculated.
  • a dq-axis current combination candidate that has a torque equal to that before the search is calculated.
  • the estimated torque value Test is calculated by Equation 7 from the current dq-axis current command values Id * and Iq *.
  • Test Pn ⁇ ( ⁇ + (Ld ⁇ Lq) ⁇ Id *) ⁇ Iq * ... (Formula 7)
  • Pn is the number of pole pairs of the motor
  • Lq is the q-axis inductance.
  • step S709 the current command values Idsearch * and Iqsearch * that are slightly changed on the dq axes are calculated by Expression 8-1 and Expression 8-2.
  • Equation 8-3 means the slope of the constant torque curve in the dq coordinate system.
  • the change direction is determined by comparing the value IdM of the d-axis coordinate at the center of the voltage limit ellipse with the IdFW * of the step immediately before the optimum point search process S616 is performed. If the immediately preceding IdFW * is smaller than IdM, the optimal point is in the positive d-axis direction, so ⁇ Id is positive.
  • Idsearch * (1) and Iqsearch * (1) are values immediately before the dq-axis current command value input to the current control system 304, respectively.
  • Idsearch * (N + 1) Idsearch * (N) + ⁇ Id (Formula 8-1)
  • Iqsearch * (N + 1) Iqsearch * (N) + ⁇ Iq (Formula 8-2)
  • ⁇ Iq Test ⁇ (Ld ⁇ Lq) / (Pn ⁇ ( ⁇ + (Ld ⁇ Lq) ⁇ Idsearch * (N)) ⁇ 2) ⁇ ⁇ Id (Equation 8-3)
  • step S710 the updated dq axis current command values Idsearch * (N + 1) and Iqsearch * (N + 1) are selected as output currents to the current control system.
  • step S711 it is determined that the search is completed, and the optimum point search completion flag is validated. Also, the optimum values Idopt * and Iqopt * of the dq-axis current command values are determined and stored according to equations 8-4 and 8-5.
  • the search is completed at the Nth time, the result of the (N-1) th time is optimal, and therefore the search value at the (N-1) th time is adopted as shown in equations 8-4 and 8-5.
  • Idot * Idsearch * (N ⁇ 1) (Equation 8-4)
  • Iopt * Iqsearch * (N ⁇ 1) (Formula 8-5)
  • step S712 optimum dq axis current command values Idopt * and Iqopt * are selected as output currents to the current control system.
  • step S713 it is determined that the dq axis current command value is not changed, and the dq axis current command value calculated in the (n-1) th step is selected as the output current to the current control system.
  • step S702 the inverter input current is acquired by the current sensor.
  • the inverter current is detected by using the motor phase current detection values IU and IW, the three-phase voltage command values vU *, vV *, vW *, and the power supply voltage Vpn.
  • the same effect can be obtained as the input current estimated value.
  • the inverter input current Idest is estimated by, for example, Equation 9-1.
  • Idestst (IU ⁇ vU * + IV ⁇ vV * + IW ⁇ vW *) / Vpn (Formula 9-1)
  • IV ⁇ IU ⁇ IW (Formula 9-2)
  • IV is a v-phase current
  • IU is a u-phase current
  • IW is a w-phase current.
  • the current sensor 310 in FIG. 3 can be omitted.
  • FIG. 7 is a time chart of the optimum point search control in FIG. 5 when the motor temperature in Embodiment 1 of the present invention is lowered.
  • FIG. 7 is shown in comparison with the case of the control of the conventional apparatus, and is shown by a solid line in the case of the control of the present invention apparatus and by a dotted line in the case of the control of the conventional apparatus.
  • a d-axis current command value indicates a d-axis current command value input to the current control system 304
  • a q-axis current command value indicates a q-axis current command value input to the current control system 304.
  • FIG. 7 shows the same case as in FIG. However, FIG. 7 does not illustrate measurement noise included in the inverter input current Idc.
  • the optimum point search control is started when the formula (5) is not satisfied during the automatic flux-weakening control. Since the search completion flag is 0 under the initial conditions, the input current acquisition point storage S702 and the counter addition S703 in FIG. 7 are performed. When the counter value is equal to or less than the threshold value 1, the dq axis current command value of n-1 steps is selected as the dq axis current command value output.
  • the counter When the counter value becomes larger than the threshold value 1, the counter is initialized and the inverter input current value Idcave (N) is calculated. If the condition is not satisfied in step S707, the dq-axis current command value is updated by equation 8-1, equation 8-2, and equation 8-3 in step S709, and the value is output.
  • step S707 the search completion flag is validated, and the dq-axis current command values Idopt * and Iqopt * which are optimum values are set. select.
  • the dq-axis current command value is corrected after the automatic flux-weakening control so that the inverter input current Idc is minimized, thereby mitigating the problem of efficiency reduction. It becomes possible.
  • FIG. 8 is a diagram showing the effect of the first embodiment of the present invention when the motor temperature is lowered.
  • Embodiment 1 of the present invention when automatic flux-weakening control is performed, the current motor temperature is detected, the magnet magnetic flux of the motor corresponding to the motor temperature is calculated by the magnet magnetic flux calculation unit, and the calculated motor An appropriate voltage limit ellipse 801 and an appropriate voltage limit ellipse center point 802 can be obtained by updating the center point of the voltage limit ellipse using the magnet magnetic flux. Therefore, when the current vector 805 is first input as a command value, the current vector is corrected toward the center point 802 of the appropriate voltage limiting ellipse 801 corresponding to the change in the motor temperature by automatic flux-weakening control. The intersection point 901 with the appropriate voltage limit ellipse 801 is reached. As described above, the robustness of the automatic flux-weakening control with respect to the temperature change of the motor is improved.
  • a constant torque curve at the torque at the point 901 is calculated as a dq-axis current combination candidate that minimizes the input current of the inverter.
  • the axis coordinate is compared with the d-axis coordinate of the point 802. When the d-axis coordinate of the point 901 is large, the d-axis direction is negative. When the d-axis coordinate of the point 901 is small, the d-axis coordinate is -Search for dq axis current that minimizes inverter input current in q axis current combination candidates, and correct current command value at point 903 where system efficiency is maximized. It is possible to mitigate a decrease in system efficiency of a drive system including an inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

モータ(4)の磁石温度を検出する磁石温度検出部(209)、前記モータの磁石温度に対応したモータの磁石磁束を算出する磁石磁束算出部(3081)、前記モータの電源の電圧により出力可能な値により定まる電圧制限楕円内で前記インバータの入力電流を最小とするd-q軸電流の組み合わせ候補を算出するd-q軸電流の組み合わせ候補算出部(3082)、および自動弱め磁束制御により前記電圧制限楕円上に前記モータのd-q軸電流が移動した場合に前記d-q軸電流の組み合わせ候補の範囲内で前記インバータの入力電流を最小とするd-q軸電流を探索するd-q軸電流探索部(3084)を備え、モータ温度が上昇した場合に弱め磁束制御のロバスト性および効率を改善する。

Description

モータ制御装置
 この発明はモータ制御装置に関し、特に、弱め磁束制御を行う際のシステム効率の低下を緩和するモータ制御装置に関する。
 近年、省エネルギーや環境に考慮した車両としてハイブリッド車や電気自動車が注目されている。ハイブリッド車は従来のエンジンに加えモータを動力源とし、電気自動車はモータを動力源としている。
 ハイブリッド車および電気自動車は、共に、バッテリに蓄電された直流電力をインバータ回路で交流電力に変換してモータに供給し、車両を走行させる。
 以下、従来の永久磁石同期電動機の制御装置の構成と動作を図面を用いて説明する。各図において同一または相当する部分においては同一符号を付して説明する。
 図9は、永久磁石形同期電動機の従来の制御装置を示したものである。図9において、7は直流電源、6はインバータ、301は電流検出器、4はモータ、302は磁極位置検出器、309はインバータ制御回路である。
 ここで、制御回路309は、トルク指令値T*が入力されて最終的にインバータの各相スイッチング素子に対するゲートパルス信号PU*,PV*,PW*を生成し出力するものであり、以下、その構成を動作と共に説明する。
 いま、モータ4の回転子である永久磁石が作り出す磁束と同期して回転する回転座標系で、磁束方向の座標軸をd軸とし、これと直交する方向の座標軸をq軸とするd-q軸座標系を考える。まず、制御回路309において、307は、電流検出器301によるモータ4の相電流検出値IU,IWを、磁極位置信号θを用いて上記d-q軸座標系の成分である直流電流検出値Id,Iqに変換する三相/二相変換器である。
 一方、303は、トルク指令値T*からd-q軸電流指令値Id*、Iq*に変換するd-q軸電流指令演算部からなる電流指令値生成部であり、この電流指令値生成部303の出力であるd―q軸電流指令値Id*、Iq*は、自動弱め磁束制御演算部308に入力される。自動弱め磁束制御演算部308の演算結果は、電流制御系304に入力される。自動弱め磁束制御部の演算については後述する。
 電流制御系304は座標変換部307によって演算されたd-q軸電流Id,Iqと上記d-q軸電流指令値Id*,Iq*との偏差が入力される。また、電流制御系304は、入力された上記偏差を用いて比例積分制御によりd-q軸電圧指令値vd*、vq*を演算する。
 なお、電流制御系304では、d-q軸間で生じる干渉を打ち消す非干渉制御が実施される。
 電流制御系304で演算されたd-q軸電圧指令値vd*、vq*は二相/三相変換部305に入力され、三相電圧指令値vU*、vV*,vW*を演算する。
 二相/三相変換部305で演算された三相電圧指令値はPWM変調部306に入力され、ゲートパルス信号PU*,PV*,PW*を生成しインバータ6に入力する。
 永久磁石形同期電動機を駆動する場合、高速で回転しようとするとインバータの出力し得る最大電圧よりも誘起電圧の方が高くなって発電機動作となってしまうため、運転速度に限界がある。そこで、負のd軸電流を流すことにより見かけ上、磁束を弱め、高速運転を可能にする弱め磁束制御が用いられる。
 弱め磁束制御を実施するためのd軸電流の演算方法として、電源電圧により出力可能な値とd-q軸電圧指令値を比較し、その偏差を0にするよう、フィードバック制御によりd-q軸電圧指令値を所定の値に制御する手法が行われている。以下では、電源電圧により出力可能な値とd-q軸電圧指令値を比較し、フィードバック制御によりd-q軸電圧指令値を所定の値に制御する手法を「自動弱め磁束制御」と呼ぶ。
 図9において、308は自動弱め磁束制御演算部であり、電源電圧により出力可能な値とd-q軸電圧指令値とを比較し、フィードバック制御によりd-q軸電圧指令値を所定の値に追従させるためのd―q軸電流指令値が演算される。演算された電流指令値または入力された電流指令値Id*、Iq*の一方が所定の指標に基づいて選択され、電流制御系304に入力される。
 電流指令値選択の指標として、例えば、d-q軸電圧指令値と電源電圧により出力可能な電圧値(インバータの出力し得る最大電圧よりも誘起電圧の方が高くならない範囲の電圧値)とを比較し、d-q軸電圧指令値が出力可能な電圧値以上の場合は自動弱め磁束制御により演算された指令値、それ以外の場合は入力された電流指令値Id*、Iq*を選択する。
 電流指令値の演算方法として、電源電圧により出力可能な電圧制限楕円(インバータの出力し得る最大電圧よりも誘起電圧の方が高くならない範囲内に制限する電圧の範囲)の中心をモータの磁石磁束およびインダクタンスより算出し、電圧制限楕円の中心方向に電流指令値を補正する方法がある(特許文献1)。
 しかし、この方法では、モータ温度が設計値から変化した時、モータの特性が変化するため、電流指令値を補正した場合に、d-q軸電流の組み合わせがトルクおよび回転数に対して最適ではないために、モータ効率が低下し、モータとインバータを合わせたシステム効率が低下するという課題がある。
 図10は、モータの温度が低下した場合での電圧制限楕円の中心方向に電流指令値を補正する弱め磁束制御の課題を示した図である。図10において、801は実際のモータ温度時のモータの磁石磁束より算出される電圧制限楕円、802は前記実際のモータ温度時のモータの磁石磁束より算出される電圧制限楕円の中心点、803は設計値のモータ温度時のモータの磁石磁束より算出される電圧制限楕円、804は前記設計値のモータ温度時のモータの磁石磁束より算出される電圧制限楕円の中心点である。d-q軸上の電圧制限楕円の中心点はモータの磁石磁束が大きくなるとd軸上を負の方向に、小さくなるとd軸上を正の方向に移動する。また、一般的に磁石の磁束は温度が低くなると大きく、温度が高くなると小さくなる。したがって、モータ温度が低下した場合には電圧制限楕円の中心点はd軸上の負の方向に、モータ温度が上昇した場合は電圧制限楕円の中心点はd軸上の正の方向に移動する。従来装置では、始めに指令値として電流ベクトル805が入力された場合、自動弱め磁束制御により、電流ベクトルは点804に向かって補正され、電圧制限楕円801との交点807で停止し、最終的な電流ベクトルは806となる。一方、あるモータのトルクおよび回転数で定まる最大システム効率曲線MXSECは、一般的にモータ効率よりインバータ効率の方が高いため、最大モータ効率曲線に近い値となる。最大モータ効率曲線MXSECは電圧制限楕円の移動方向と同じ向きにd軸上を移動するため、モータ温度が低下した場合、最大システム効率曲線MXSECは負のd軸方向に移動する。したがって、モータ温度が低下した場合、最終的な電流ベクトル806と最大システム効率曲線MXSECとの偏差が大きくなるため、文献1の自動弱め磁束制御ではシステム効率の低下が生じる。
 なお、モータ4としては、例えば、永久磁石形同期電動機、巻線型同期電動機、誘導機などを用いることができる。
特開2008-5671
 従来の自動弱め磁束制御では、モータ温度の変化に伴うモータの磁石磁束変化により電圧制限楕円中心が移動した場合には、適切な電流指令値に補正できず、モータとモータ駆動電源となるインバータとからなる駆動システムのシステム効率が悪くなるという課題がある。
 この発明に係るモータ制御装置は、複数のスイッチング素子を有する複数相のアームを含むインバータと、前記インバータにより駆動される複数相のモータとを有した車両における前記モータの制御を行うモータ制御装置において、
 前記モータの磁石温度を検出する磁石温度検出部、前記モータの磁石温度に対応したモータの磁石磁束を算出する磁石磁束算出部、前記モータの電源の電圧により出力可能な値により定まる電圧制限楕円内で前記インバータの入力電流を最小とするd-q軸電流の組み合わせ候補を算出するd-q軸電流の組み合わせ候補算出部、および自動弱め磁束制御により前記電圧制限楕円上に前記モータのd-q軸電流が移動した場合に前記d-q軸電流の組み合わせ候補の範囲内で前記インバータの入力電流を最小とするd-q軸電流を探索するd-q軸電流探索部を備えているものであり、モータ制御のロバスト性の向上及びモータとインバータとからなる駆動システムのシステム効率の低下の緩和が可能となる。
 図8はモータ温度が低下した場合におけるこの発明の効果を示す図である。この発明によれば、自動弱め磁束制御実施時に、現在のモータ温度を検出し、前記モータ温度に対応するモータの磁石磁束を前記磁石磁束算出部で算出し、算出されたモータの磁石磁束を用いて電圧制限楕円の中心点を更新することで、適切な電圧制限楕円801および適切な電圧制限楕円の中心点802を得ることができる。したがって、始めに指令値として電流ベクトル805が入力された場合、自動弱め磁束制御により、電流ベクトルは点802に向かって補正され、電圧制限楕円801との交点901に達する。以上によりモータの温度変化に対する自動弱め磁束制御のロバスト性が向上される。さらに、d-q軸電流指令値が点901に達した時にインバータの入力電流を最小とするd-q軸電流の組み合わせ候補定として前記交点901における定トルク曲線を算出し、点901のd軸座標と点802のd軸座標を比較し、点901のd軸座標が大きい場合には負のd軸方向に、点901のd軸座標が小さい場合には正のd軸方向に前記d-q軸電流の組み合わせ候補内でインバータの入力電流を最小とするd-q軸電流を探索し、効率が最大となる点903に電流指令値を補正することで自動弱め磁束制御によるモータとインバータからなるシステム効率の低下を緩和することが可能である。
また、モータ温度が上昇した場合においても本発明により同様の効果を得ることができる。
この発明の実施の形態1に係る車両の概略構成図である。 この発明の実施の形態1に係るモータ制御装置の代表的な事例を示す概略構成図である。 この発明の実施の形態1に係るモータ制御装置の要部の機能構成の一例を示した図である。 図3のモータ制御装置における自動弱め磁束制御演算部308の内部の機能構成を例示する図である。 図2における磁束テーブル210MTの構成の一例を示す図である。 この発明の実施の形態1に係るモータ制御装置の最適点探索機能付き自動弱め磁束制御の処理内容および処理手順の一例を示すフローチャートである。 この発明の実施の形態1に係るモータ制御装置の図5における最適点探索制御の処理の一例を示すフローチャートである。 この発明の実施の形態1におけるモータ温度が低下した場合の図5における最適点探索制御のタイムチャートである。 モータ温度が低下した場合におけるこの発明の実施の形態1の効果を示す図である。 従来のモータ制御装置の要部の機能構成を示すブロック図である。 従来装置の課題を示す図である。
実施の形態1.
 以下、この発明に係るモータ制御装置の好適な実施の形態1につき図1から図8を用いて説明する。各図において同一または相当する部分については、同一符号を付して説明する。
 図1は、この発明の実施の形態1に係るモータ制御装置が搭載された車両の概略構成図である。図1においては、エンジン1とモータ4とを備えたハイブリッド車を例として記載しているが、本実施の形態は電気自動車にも適用可能である。図1において、エンジン1により発電機2が駆動され、それにより発電機2が発電し、その発電された電力はインバータ6を経由して、バッテリ7に充電される。
 そして、発電機2が発電した電力、もしくは、バッテリ7に蓄電された電力を、モータ4に供給することで、モータ4を駆動する。モータ4はタイヤ5を駆動し、車両を走行させる。なお、バッテリ7に蓄電された電力をモータ4に供給する場合には、バッテリ7に蓄電された直流電力をインバータ6によって交流電力に変換して、モータ4に供給する。
 また、車両の減速時などはタイヤ5によりモータ4が回され、モータ4が回生発電を行い、そこで発電された電力はインバータ6を介してバッテリ7に充電される。
 また、インバータ6が、バッテリ7に蓄電された直流電力を交流電力に変換して、発電機2を駆動し、エンジン1を始動することも行う。
 また、クラッチ3を結合することにより、エンジン1の駆動力を、モータ4を介してタイヤ5に伝えることで、車両を走行させることもできる。
 後述する実施の形態1では、上記のようなシリーズ式ハイブリッド車を例に説明するが、パラレル式ハイブリッド車であってもよい。
 また、上記のように、発電機2およびモータ4は、駆動と発電を兼ね備えるモータ・ジェネレータであってもよい。
 また、車両が一つのバッテリと一つのインバータを有するもので説明するが、複数の異なる電圧のバッテリを備え、発電機とインバータとの間、および、バッテリとインバータとの間に、電圧変換を行うDC/DCコンバータ等を有するものであってもよい。
 図2は、この発明の実施の形態1に係るモータ制御装置の代表的な概略構成図である。 図2に示すように、モータ制御装置は、モータ4と、バッテリ7と、インバータ201とから構成される。インバータ201は、バッテリ7に蓄電された直流電力を交流電力に変換してモータ4を駆動制御する。
 インバータ201は、U相スイッチング回路205、V相スイッチング回路206、および、W相スイッチング回路207とから構成されている。
 U相スイッチング回路205は、上アーム203側(高電圧側)に設けられた上アーム側スイッチング素子205Hと、下アーム204側(低電圧側)に設けられた下アーム側スイッチング素子205Lとから構成される。上アーム側スイッチング素子205Hと下アーム側スイッチング素子205Lとは互いに直列に接続されている。また、上アーム側スイッチング素子205H、および、下アーム側スイッチング素子205Lには、それぞれ、1つの還流ダイオードが逆並列に接続されている。
 また、V相スイッチング回路206は、上アーム203側に設けられた上アーム側スイッチング素子206Hと、下アーム204側に設けられた下アーム側スイッチング素子206Lとから構成される。上アーム側スイッチング素子206Hと下アーム側スイッチング素子206Lとは互いに直列に接続されている。また、上アーム側スイッチング素子206H、および、下アーム側スイッチング素子206Lには、それぞれ、1つの還流ダイオードが逆並列に接続されている。
 また、W相スイッチング回路207は、上アーム203側に設けられた上アーム側スイッチング素子207Hと、下アーム204側に設けられた下アーム側スイッチング素子207Lとから構成される。上アーム側スイッチング素子207Hと下アーム側スイッチング素子207Lとは互いに直列に接続されている。また、上アーム側スイッチング素子207H、および、下アーム側スイッチング素子207Lには、それぞれ、1つの還流ダイオードが逆並列に接続されている。
 スイッチング回路205~207の各スイッチング素子205H~207H,205L~207Lとしては、例えば、IGBT(Insulated Gate Bipolar Transistor)およびFET(Field Effect Transistor)を用いることができる。
 さらに、モータ4において、モータ4の温度を計測するための温度センサ209が設けられている。
 なお、図2および図3においては、モータ4にモータ温度センサ209が設けられている事例を示してあるが、モータ温度の推定値を、モータ温度センサ209が計測したモータ温度の代わりに使用する場合は、モータ温度センサ209を設けなくともよい。
 また、制御部210が、U相スイッチング回路205、V相スイッチング回路206、および、W相スイッチング回路207に対して設けられている。制御部210は、演算装置、記憶装置、入出力装置などから構成されており、各スイッチング素子205H~207H,205L~207Lを駆動制御する。
 また、制御部210は、温度センサ209からのセンサ信号に基づいて、温度センサが設けられているモータのモータ温度(温度情報)を取得する。
 なお、図2においては、制御部210はインバータ201の内部に配置しているが、インバータ201の外部に配置してもよい。
 図3は、この発明の実施の形態1に係るモータ制御装置の要部の機能構成の一例を示した図である。また、図4Aは、図3のモータ制御装置における自動弱め磁束制御演算部308の内部の機能構成を例示する図である。
 図3の図9との相違点は、モータ温度センサ209、電流センサ310を追加した点である。図3における電流指令値生成部303、電流制御系304、二相/三相変換部305、PWM変調部306、座標変換部307は、図9における電流指令値生成部303、電流制御系304、二相/三相変換部305、PWM変調部306、座標変換部307と同じ機能であるので、電流指令値生成部303、電流制御系304、二相/三相変換部305、PWM変調部306、座標変換部307についての説明は割愛する。
 モータ温度センサ209はモータのコイル温度を測定しモータの磁石温度推定値とし、電流センサ310はインバータ6の入力電流を計測する。モータ温度センサ209および電流センサ310で取得したセンサ情報を自動弱め磁束制御演算部308で使用する。
 モータの磁石温度推定は、モータ4のコイル温度、モータ電流、モータ電圧のうちいずれか一つ以上を用いて行う。また、モータ電流は、モータの相電流または線間電流またはd-q軸電流のいずれかであり、モータ電圧は、モータの相電圧または線間電圧またはd-q軸電圧である。
 図4Aは、図3における自動弱め磁束制御演算部308の内部の機能構成の一例を示す図である。図4Aにおいて、従来自動弱め磁束演算部3083は、図9の従来装置における自動弱め磁束制御演算部308の処理と同等である。図4Aは、検出したモータ温度から対応するモータの磁石磁束を算出する磁石磁束算出部3081、自動弱め磁束制御の実施後にインバータ入力電流を最小とするd-q軸電流指令値の組み合わせ候補を算出する組み合わせ候補算出部3082、および前記組み合わせ候補よりインバータ入力電流を最小とするd-q軸電流指令値を探索するd-q軸電流探索部3084を、従来の自動弱め磁束制御演算部3083(図9の従来装置における自動弱め磁束制御演算部308)に加えたものである。
 図4Bは,図2における磁束テーブル210MTの構成の一例を示す図である。なお,図4Bではモータ温度とそれに対応するモータ磁束の組がl個である場合を図示した。ここで,lは正の整数である。
 図5は、本実施の形態における、最適点探索機能付き自動弱め磁束制御の処理内容および処理手順の一例を示すフローチャートである。図5は計算ステップがn回目の時の演算処理を表したものである。ここでは、nを整数とする。以下、図5のフローチャートにより、自動弱め磁束制御演算部308の処理内容および処理手順の一例を詳細に説明する。
 図5に例示の処理フローにおける処理ステップS601からS616の各処理は、図5の各ステップ間の矢印、判定処理ステップにおけるY(イエス(yes)),N(ノー(no))に従って行われる。以下、図5の矢印、Y、Nに従って、処理ステップS601からS616の各々での処理内容を説明する。
 ステップS601において、モータ温度センサ209から取得したモータ温度により磁束テーブル210MTを参照し、磁束値を更新する。
 磁束テーブル210MTは、図2に例示のように制御部210の記憶装置210Mに格納されている。磁束テーブル210MTは、図4Bに例示のように、モータ温度τとモータ温度に対応するモータ磁束Ψとで構成されており、モータ温度を入力すると、入力したモータ温度に対応するモータ磁束を出力するものである。出力されたモータ温度対応のモータ磁束はモータ磁束の値を適切に更新することにより、温度変化によりモータ磁束が変化した場合でも自動弱め磁束制御でのd-q軸電流指令値の補正を適切に行うことができる。そのため、モータ制御のロバスト性向上およびシステム効率低下の緩和が可能となる。
 ステップS602では、更新したモータ磁束値をもとに電圧制限楕円の中心点IdMを演算する。演算は、式1により行う。
 IdM=-Ψ/Ld・・・・・(式1)
ここで、ΨはステップS601で取得したモータ磁束、Ldはd軸インダクタンスである。
 ステップS603では、弱め磁束電流の最大値・位相を算出する。演算は、式2-1,式2-2により行う。
 θ=arctan(Iq*/(Id*-IdM))
                   ・・・・・(式2-1)
 IFWmax=√(Iq*^2+(Id*-IdM)^2)
                   ・・・・・(式2-2)
ここで、θは弱め磁束電流の位相、IFWmaxは弱め磁束電流の最大値である。
 ステップS604では、電圧偏差Evを演算する。演算は、式3-1,式3-2により行う。
 Ev=Vpn×√(1/2)×k-Vrms・・・・・(式3-1)
 Vrms=√(vd*^2+vq*^2)・・・・・(式3-2)
 ここで、Evは、電源電圧が出力可能な電圧の上限値(Vpn×√(1/2)×k)とモータの線間電圧実効値Vrmsとの差(電圧偏差)、kは、電圧余裕のマージンであり、kの値は実験などから調整して定める。また、Vpnは電源電圧、vd*、vq*はd-q軸電圧指令値である。
 ステップS605では、ステップS604の演算結果をPI制御器に入力し、PI制御器の出力を算出する。このPI制御器には、出力が負にならないよう、下限を0としたリミッタを設ける。また、積分器にはアンチワインドアップ機能を追加してもよい。
 ステップS606では、PI制御器の出力を用いて、d-q軸電流指令値IdFW*,IqFW*を演算する。演算は、式4-1,式4-2により行う。
 IdFW*=IFW×cosθ+IdM・・・・・(式4-1)
 IqFW*=IFW×sinθ・・・・・(式4-2)
ここで、IFWはPI制御器の出力値である。
 ステップS607では、現在の動作点が、マージンを考慮した電圧制限楕円の外側であるか判定する。判定は、式5により行う。
 Ev-Vrms<Evth・・・・・(式5)
ここで、Evthは現在の動作点が電圧制限楕円の外側であるか判定する閾値であり、実験等により調整し定める。
 ステップS608では、自動弱めフラグを有効化する。自動弱めフラグは、自動弱め磁束制御が有効であるかを示す変数であり、1ならば有効、0ならば有効でないことを表す。起動後の自動弱めフラグの初期値は0とする。
 ステップS609では、最適点探索フラグを無効化する。また、最適点探索処理S616にて用いるカウンタおよびNを初期化する。Nについては後述する。最適点探索フラグは、最適点探索が有効であるかを示す変数であり、1ならば有効、0ならば有効でないことを表す。
 ステップS610では、電流制御系への出力電流として、ステップS606で算出されたd-q軸電流指令値IdFW*、IqFW*を選択する。
 ステップS611では、電流指令値生成部303に入力されたトルク指令値T*が変化したことなどにより自動弱め磁束制御演算部308に入力されたd-q軸電流指令値Id*、Iq*が変化したかを判定する。判定は、式6により行う。
 |Id*(n)-Id*(n-1)| > Ad
 or
 |Iq*(n)-Iq*(n-1)| > Aq・・・・・(式6)
ここで、(n)は演算nステップ目の値であることを示す。また、Ad、Aqは電流指令値が変化したと判定する閾値であり、実験などを行い調整して定める。
 ステップS612では、自動弱めフラグを無効化する。
 ステップS613では、最適点探索フラグを無効化する。また、最適点探索処理にて用いるカウンタおよびNを初期化する。
 ステップS614では、電流制御系への出力電流として、自動弱め磁束制御部308に入力されたd-q軸電流指令値Id*、Iq*を選択する。
 ステップS615では、自動弱めフラグが成立しているか判定する。成立している場合は最適点探索処理S616に続く。成立していない場合は,最適点探索処理を行う必要がないため,ステップS613に続く。
 ステップS616では与えられた条件下でシステム効率を最大とするd-q軸電流の組み合わせを探索により求める。具体的な処理は後述する。
 なお、実施の形態1.では、モータのコイル温度を取得しているが、モータのロータ温度を温度センサにより取得しても同様の効果を得ることができる。
 また、上記モータの磁石温度を推定により算出しても同様の効果を得ることができる。推定は、例えば、モータの運転条件に対して、モータの磁石温度をあらかじめ測定してマップに格納し、前記マップを現在のモータの運転条件に応じて読みだすことで行う。
 図6は、図5における最適点探索制御の処理の一例を示すフローチャートである。図6は計算ステップがn回目の時の演算処理を表したものである。
 以下、図6のフローチャートにより、最適点探索制御の処理内容および処理手順の一例を詳細に説明する。
 図6に例示の処理フローにおける処理ステップS701からS713の各処理は、図6の各ステップ間の矢印、判定処理ステップにおけるY(イエス(yes)),N(ノー(no))に従って行われる。以下、図6の矢印、Y、Nに従って、処理ステップS701からS713の各々での処理内容を説明する。
 ステップS701では、最適点探索制御の探索完了フラグが成立しているか判定を行う。成立している場合は、探索処理は行わず、ステップS712に続く。
 ステップS702では、電流センサ310の検出値よりインバータ入力電流Idc(n)を取得しメモリへの格納を行う。
 ステップS703では、カウンタの加算を行う。
 ステップS704では、カウンタ値が閾値1より大きいか判定する。ここで、閾値1は測定ノイズなどの影響を十分に取り除くことができる値に設定する。
 ステップS705では、カウンタの初期化を行う。また、インバータ入力電流値算出カウントNを1加算する。Nは整数で、初期値は0である。
 ステップS706では、インバータ入力電流値Idcave(N)の算出と格納を行う。インバータ入力電流値Idcave(N)の算出は、ステップS702で格納したインバータ入力電流Idcを用いて行う。例えば、カウンタが初期値から閾値1より大きくなるまでのステップで格納したIdc全ての算術平均値をインバータ入力電流値Idcave(N)とする。算出したインバータ入力電流値Idcave(N)は、メモリに格納する。
 ステップS707では、算出されたインバータ入力電流値Idcave(N)が、1つ前の値Idcave(N-1)よりも大きいか判定する。ただし、N=1の場合、ステップS708に進む。
 ステップS708では、インバータの入力電流を最小とするd-q軸電流の組み合わせ候補を算出する。ここでは一例として、d-q軸電流の組み合わせ候補としてトルクが探索前と等しくなるものを算出する。現在のd-q軸電流指令値Id*およびIq*よりトルク推定値Testを式7により算出する。
 Test=Pn×(Ψ+(Ld-Lq)×Id*)×Iq*
                        ・・・・・(式7)
ここで、Pnはモータの極対数、Lqはq軸インダクタンスである。
 ステップS709では、d-q軸上で微小変化させた電流指令値Idsearch*、Iqsearch*を式8-1、式8-2により演算する。d軸電流をΔId変化させた時のq軸の変化量ΔIqを式8-3により算出する。式8-3は,d-q座標系での定トルク曲線の傾きを意味する。変化方向は、電圧制限楕円の中心のd軸座標の値IdMと、最適点探索処理S616が行われる直前のステップのIdFW*とを比較して判定する。直前のIdFW*がIdMより小さい場合、最適点は正のd軸方向にあるのでΔIdを正、直前のIdFW*がIdMより大きい場合、最適点は負のd軸方向にあるのでΔIdを負にする。また、初期値Idsearch*(1)、Iqsearch*(1)はそれぞれ電流制御系304に入力されるd-q軸電流指令値の直前の値とする。
 Idsearch*(N+1)=Idsearch*(N)+ΔId
                      ・・・・・(式8-1)
 Iqsearch*(N+1)=Iqsearch*(N)+ΔIq
                      ・・・・・(式8-2)
 ΔIq=Test×(Ld-Lq)/(Pn×(Ψ+(Ld-Lq)×Idsearch*(N))^2)×ΔId・・・・・(式8-3)
 ステップS710では、電流制御系への出力電流として、更新されたd-q軸電流指令値Idsearch*(N+1)、Iqsearch*(N+1)を選択する。
 ステップS711では、探索完了と判定し、最適点探索の完了フラグの有効化を行う。
また,d-q軸電流指令値の最適値Idopt*,Iqopt*を式8-4、8-5により定め保存する。N回目で探索が完了した場合、N-1回目の結果が最適であるため、式8-4,8-5に示す通りN-1回目の探索値が採用される。
 Idopt*=Idsearch*(N-1)・・・(式8-4)
 Iqopt*=Iqsearch*(N-1)・・・(式8-5)
 ステップS712では、電流制御系への出力電流として、最適なd-q軸電流指令値Idopt*、Iqopt*を選択する。
 ステップS713では、d-q軸電流指令値を変更しないと判定し、電流制御系への出力電流として、n-1ステップ目に演算されたd-q軸電流指令値を選択する。n=1の場合は、直前のd-q軸電流指令値を出力する。
 なお、ステップS702において、インバータ入力電流を電流センサにより取得しているが、モータの相電流検出値IU,IWと3相電圧指令値vU*,vV*,vW*と電源電圧Vpnを用いてインバータ入力電流推定値としても同様の効果を得ることができる。インバータ入力電流Idcestの推定は、例えば、式9-1により行う。
 Idcest=(IU×vU*+IV×vV*+IW×vW*)/Vpn
                       ・・・・・(式9-1)
 IV=-IU-IW・・・・・(式9-2)
 ここで、IVはv相相電流、IUはu相相電流、IWはw相相電流である。
 また、インバータ入力電流推定値を用いる場合、図3における電流センサ310を省略することができる。
 図7は、本発明の実施の形態1におけるモータ温度が低下した場合の図5における最適点探索制御のタイムチャートである。ただし、図7では、N=5のステップで探索が完了した例を示す。なお、図7は、従来装置の制御の場合と比較して図示してあり、本発明装置の制御の場合は実線で、従来装置の制御の場合は点線で図示してある。図7において、d軸電流指令値は、電流制御系304に入力されるd軸電流指令値、q軸電流指令値は、電流制御系304に入力されるq軸電流指令値を示す。図7におけるd軸電流指令値、q軸電流指令値、モータトルクT,電圧偏差Ev,インバータ入力電流Idcの推移は、図8と同様の場合を示す。ただし,図7ではインバータ入力電流Idcに含まれる測定ノイズなどは図示していない。
 図7において、電圧制限楕円の外側の電流指令値が入力された場合、従来装置では、最適点探索制御がないため、自動弱め磁束制御により電圧偏差Evが0に追従する(図8においてd-q軸電流指令値が点807に近づく)ようなd-q軸電流指令値が出力される。
 一方で、本発明装置では、自動弱め磁束制御中に式(5)が成立しなくなった時に最適点探索制御が開始される。初期条件では、探索完了フラグは0のため図7における入力電流取得点格納S702およびカウンタ加算S703を行う。カウンタ値が閾値1以下の場合はd-q軸電流指令値出力としてn-1ステップのd-q軸電流指令値が選択される。
 カウンタ値が閾値1より大きくなった時、カウンタが初期化され、インバータ入力電流値Idcave(N)が算出される。ステップS707にて条件が不成立の場合はステップS709にて式8-1、式8-2、式8-3によりd-q軸電流指令値が更新され,その値が出力される。
 以降、上記処理がステップS707にて判定が成立するまで繰り返され、ステップS707の判定が成立した場合、探索完了フラグを有効化し、最適値であるd-q軸電流指令値Idopt*、Iqopt*を選択する。
 本実施の形態1によれば、図7において、自動弱め磁束制御後にd-q軸電流指令値を、インバータ入力電流Idcが最小となるよう補正することで、課題である効率低下の緩和を行うことが可能となる。
 図8はモータ温度が低下した場合におけるこの発明の実施の形態1の効果を示す図である。この発明の実施の形態1によれば、自動弱め磁束制御実施時に、現在のモータ温度を検出し、前記モータ温度に対応するモータの磁石磁束を前記磁石磁束算出部で算出し、算出されたモータの磁石磁束を用いて電圧制限楕円の中心点を更新することで、適切な電圧制限楕円801および適切な電圧制限楕円の中心点802を得ることができる。したがって、始めに指令値として電流ベクトル805が入力された場合、自動弱め磁束制御により、電流ベクトルは、モータ温度の変化に対応した適切な電圧制限楕円801の中心点802に向かって補正され、当該適切な電圧制限楕円801との交点901に達する。以上によりモータの温度変化に対する自動弱め磁束制御のロバスト性が向上される。
 さらに、d-q軸電流指令値が点901に達した時にインバータの入力電流を最小とするd-q軸電流の組み合わせ候補として点901でのトルクにおける定トルク曲線を算出し、点901のd軸座標と点802のd軸座標を比較し、点901のd軸座標が大きい場合には負のd軸方向に、点901のd軸座標が小さい場合には正のd軸方向に前記d-q軸電流の組み合わせ候補内でインバータの入力電流を最小とするd-q軸電流を探索し、システム効率が最大となる点903に電流指令値を補正することで自動弱め磁束制御によるモータとインバータとからなる駆動システムのシステム効率の低下を緩和することが可能である。
 また、前述の本発明の実施の形態1では、モータ温度が低下した場合について例示したが、モータ温度が上昇した場合においても同様の効果を得ることができる。
 なお、各図中、同一符合は同一または相当部分を示す。
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形することができる。
1 エンジン、2 発電機、3 クラッチ、4 モータ、5 タイヤ、6 インバータ、7 バッテリ、201 インバータ装置、203 上アーム、204 下アーム、205 U相スイッチング回路、206 V相スイッチング回路、207 W相スイッチング回路、205H,206H,207H 上アーム側スイッチング素子、205L,206L,207L 下アーム側スイッチング素子、209 モータ温度センサ、210 制御部、210M 記憶装置、210MT 磁束テーブル、301 電流検出器、302 磁極位置検出器、303 電流指令値生成部、304 電流制御系、305 二相/三相変換部、306 PWM変調部、307 座標変換部(三相/二相変換部)、308 自動弱め制御演算部、3081 磁石磁束算出部、3082 組み合わせ候補算出部、3083 従来の自動弱め磁束制御演算部、3084 d-q軸電流探索部、309 インバータ制御回路。

Claims (6)

  1.  複数のスイッチング素子を有する複数相のアームを含むインバータと、前記インバータにより駆動される複数相のモータとを有した車両における前記モータの制御を行うモータ制御装置において、
     前記モータの磁石温度を検出する磁石温度検出部、前記モータの磁石温度に対応したモータの磁石磁束を算出する磁石磁束算出部、前記モータの電源の電圧により出力可能な値により定まる電圧制限楕円内で前記インバータの入力電流を最小とするd-q軸電流の組み合わせ候補を算出するd-q軸電流の組み合わせ候補算出部、および自動弱め磁束制御により前記電圧制限楕円上に前記モータのd-q軸電流が移動した場合に前記d-q軸電流の組み合わせ候補の範囲内で前記インバータの入力電流を最小とするd-q軸電流を探索するd-q軸電流探索部を備えていること特徴とするモータ制御装置。
  2.  請求項1に記載のモータ制御装置において、前記d-q軸電流の組み合わせ候補算出部は、前記磁石温度検出部の出力と前記磁石磁束算出部の出力とから前記モータの磁石磁束を取得し、前記モータのd-q軸電流と前記モータの磁石磁束とから前記モータのトルクを推定し、前記モータのトルクが前記推定されたトルクとなるような前記d-q軸電流の組み合わせ候補を算出することを特徴とするモータ制御装置。
  3.  請求項1または請求項2に記載のモータ制御装置において、前記d-q軸電流探索部は、前記電圧制限楕円の中心と、前記d-q軸電流が前記電圧制限楕円上にある時のd軸電流指令値とを比較し、前記電圧制限楕円の中心が大きい場合は、前記d-q軸電流の組み合わせ候補において、前記d軸電流指令値を正方向に、前記電圧制限楕円の中心が小さい場合は、前記d軸電流を負方向に変化させることを特徴とするモータ制御装置。
  4.  請求項1に記載のモータ制御装置において、前記モータの磁石磁束算出部は、前記モータの磁石温度を入力としたモータの磁束テーブルを備え、前記モータの磁石温度と前記モータの磁石磁束マップから前記モータの磁石磁束を求めることを特徴とするモータ制御装置。
  5.  請求項1に記載のモータ制御装置において、前記インバータの入力電流は、前記モータの相電流、3相電圧指令値、電源電圧のうちいずれか1つ以上を用いて推定した値であることを特徴とするモータ制御装置。
  6.  請求項1に記載のモータ制御装置において、前記モータの磁石温度は、前記モータのコイル温度、モータ電流、モータ電圧のうちいずれか1つ以上を用いて推定した値であることを特徴とするモータ制御装置。
PCT/JP2015/067825 2015-06-22 2015-06-22 モータ制御装置 WO2016207936A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112015006640.3T DE112015006640T5 (de) 2015-06-22 2015-06-22 Motorsteuervorrichtung
JP2017524280A JP6289754B2 (ja) 2015-06-22 2015-06-22 モータ制御装置
PCT/JP2015/067825 WO2016207936A1 (ja) 2015-06-22 2015-06-22 モータ制御装置
US15/569,288 US10469015B2 (en) 2015-06-22 2015-06-22 Motor control device
CN201580081069.4A CN107750427B (zh) 2015-06-22 2015-06-22 电动机控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/067825 WO2016207936A1 (ja) 2015-06-22 2015-06-22 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2016207936A1 true WO2016207936A1 (ja) 2016-12-29

Family

ID=57585270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067825 WO2016207936A1 (ja) 2015-06-22 2015-06-22 モータ制御装置

Country Status (5)

Country Link
US (1) US10469015B2 (ja)
JP (1) JP6289754B2 (ja)
CN (1) CN107750427B (ja)
DE (1) DE112015006640T5 (ja)
WO (1) WO2016207936A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003771A1 (ja) * 2018-06-29 2020-01-02 日本電産株式会社 モータ制御装置、モータ制御方法、およびモータシステム
WO2020003772A1 (ja) * 2018-06-29 2020-01-02 日本電産株式会社 モータ制御装置、モータ制御方法、およびモータシステム
WO2020003770A1 (ja) * 2018-06-29 2020-01-02 日本電産株式会社 モータ制御装置、モータ制御方法、およびモータシステム
WO2021002120A1 (ja) * 2019-07-02 2021-01-07 パナソニックIpマネジメント株式会社 インパクト工具
WO2021182382A1 (ja) * 2020-03-10 2021-09-16 株式会社アドヴィックス モータ制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10469015B2 (en) * 2015-06-22 2019-11-05 Mitsubishi Electric Corporation Motor control device
CN112202379A (zh) * 2020-08-11 2021-01-08 南京邮电大学 基于变步长搜索的mtpa曲线标定系统及标定方法
CN112468034B (zh) * 2020-12-21 2022-07-12 哈尔滨工业大学 永磁同步电机弱磁区效率最优控制电流轨迹搜索方法及在线控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359953A (ja) * 2001-05-31 2002-12-13 Denso Corp 車両用同期機
JP2008193796A (ja) * 2007-02-05 2008-08-21 Hitachi Ltd 永久磁石モータの制御装置,永久磁石モータの制御方法及びモジュール
JP2010233392A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 電動機制御システム
JP2012200073A (ja) * 2011-03-22 2012-10-18 Aisin Aw Co Ltd 回転電機制御装置
JP2015089236A (ja) * 2013-10-30 2015-05-07 アイダエンジニアリング株式会社 同期電動機の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701481B2 (ja) 2000-08-01 2011-06-15 富士電機システムズ株式会社 電動機の制御装置
JP4881635B2 (ja) * 2006-03-15 2012-02-22 株式会社日立製作所 永久磁石モータのベクトル制御装置
JP4754417B2 (ja) 2006-06-26 2011-08-24 本田技研工業株式会社 永久磁石型回転電機の制御装置
ITBO20100377A1 (it) * 2010-06-14 2011-12-15 Askoll Holding Srl Metodo di misurazione del momento dâ¬"inerzia di un cestello di una macchina lavatrice e macchina lavatrice predisposta per lâ¬"implementazione di detto metodo
CN104081652B (zh) * 2012-01-20 2016-06-29 三菱电机株式会社 永磁体电动机的控制装置及控制方法
US9628017B2 (en) * 2012-10-11 2017-04-18 Mitsubishi Electric Corporation Motor control device, and motor control method
DE112015002556T5 (de) * 2014-05-30 2017-02-23 Mitsubishi Electric Corporation Mehrgruppen-Mehrphasen-Antriebssystem und Antriebsverfahren für eine elektrische Rotationsmaschine
US10469015B2 (en) * 2015-06-22 2019-11-05 Mitsubishi Electric Corporation Motor control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359953A (ja) * 2001-05-31 2002-12-13 Denso Corp 車両用同期機
JP2008193796A (ja) * 2007-02-05 2008-08-21 Hitachi Ltd 永久磁石モータの制御装置,永久磁石モータの制御方法及びモジュール
JP2010233392A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 電動機制御システム
JP2012200073A (ja) * 2011-03-22 2012-10-18 Aisin Aw Co Ltd 回転電機制御装置
JP2015089236A (ja) * 2013-10-30 2015-05-07 アイダエンジニアリング株式会社 同期電動機の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003771A1 (ja) * 2018-06-29 2020-01-02 日本電産株式会社 モータ制御装置、モータ制御方法、およびモータシステム
WO2020003772A1 (ja) * 2018-06-29 2020-01-02 日本電産株式会社 モータ制御装置、モータ制御方法、およびモータシステム
WO2020003770A1 (ja) * 2018-06-29 2020-01-02 日本電産株式会社 モータ制御装置、モータ制御方法、およびモータシステム
CN112335171A (zh) * 2018-06-29 2021-02-05 日本电产株式会社 电动机控制装置、电动机控制方法以及电动机系统
WO2021002120A1 (ja) * 2019-07-02 2021-01-07 パナソニックIpマネジメント株式会社 インパクト工具
WO2021182382A1 (ja) * 2020-03-10 2021-09-16 株式会社アドヴィックス モータ制御装置
JP2021145417A (ja) * 2020-03-10 2021-09-24 株式会社アドヴィックス モータ制御装置
JP7400559B2 (ja) 2020-03-10 2023-12-19 株式会社アドヴィックス モータ制御装置

Also Published As

Publication number Publication date
CN107750427A (zh) 2018-03-02
DE112015006640T5 (de) 2018-03-08
JP6289754B2 (ja) 2018-03-07
US20180123493A1 (en) 2018-05-03
US10469015B2 (en) 2019-11-05
JPWO2016207936A1 (ja) 2017-08-24
CN107750427B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
JP6289754B2 (ja) モータ制御装置
KR101628385B1 (ko) 영구자석 동기모터의 제어방법
US8912739B2 (en) Synchronous machine control apparatus
CN105471346B (zh) 估算转子磁体温度的方法和其系统
JP4458174B2 (ja) 回転機の制御装置、及び回転機の制御システム
JP4582168B2 (ja) 回転機の制御装置、及び回転機の制御システム
KR102286371B1 (ko) 모터 온도 변화 제어 장치 및 방법
US9853570B2 (en) Parallel inverter scheme for separating conduction and switching losses
KR101535036B1 (ko) 구동모터의 전류지령에 대한 토크 보상장치 및 방법
JP4574412B2 (ja) ハイブリッド車両用モータの定数検出装置およびハイブリッド車両用モータの制御装置
US9007009B2 (en) Control apparatus for AC motor
JP5595835B2 (ja) 電動機の駆動装置
EP2681838B1 (en) Interior permanent magnet machine systems
US20140225540A1 (en) Control apparatus for ac motor
JP4462207B2 (ja) 電動駆動制御装置及び電動駆動制御方法
JP5776349B2 (ja) 回転電機の制御装置
JP2013094031A (ja) 車両駆動用誘導電動機の制御装置
JP7082369B2 (ja) 電動機の駆動装置
US20240283381A1 (en) Motor control device
JPWO2019207754A1 (ja) 電動機制御装置
JP2018046615A (ja) 温度推定装置、鎖交磁束推定装置及びモータ制御装置
RU2432663C1 (ru) Контроллер электродвигателя
CN116365954A (zh) 用于控制同步电机的方法、电子设备和车辆
JP2014072920A (ja) モータシステム、モータ制御装置、モータ制御プログラム、及び、モータ制御方法
JP2013074651A (ja) 回転電機の制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524280

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15569288

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015006640

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896259

Country of ref document: EP

Kind code of ref document: A1