WO2016204476A1 - 형광 복합체, 광전환 필름, 광전환 소자 및 이를 포함하는 디스플레이 장치 - Google Patents
형광 복합체, 광전환 필름, 광전환 소자 및 이를 포함하는 디스플레이 장치 Download PDFInfo
- Publication number
- WO2016204476A1 WO2016204476A1 PCT/KR2016/006284 KR2016006284W WO2016204476A1 WO 2016204476 A1 WO2016204476 A1 WO 2016204476A1 KR 2016006284 W KR2016006284 W KR 2016006284W WO 2016204476 A1 WO2016204476 A1 WO 2016204476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light conversion
- fluorescent
- polymer
- conversion film
- light
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0073—Optical laminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/40—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
- F21V9/45—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/223—Absorbing filters containing organic substances, e.g. dyes, inks or pigments
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1408—Carbocyclic compounds
- C09K2211/1416—Condensed systems
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
Definitions
- the present specification relates to a fluorescent composite, a light conversion film, a light conversion element, and a display device including the same.
- Fluorescent dyes are mainly used as indicators in biotechnology such as bio-imaging, biochips and biosensors.
- biotechnology such as bio-imaging, biochips and biosensors.
- target substances such as antibodies and proteins
- fluorescent dyes in order to induce selective adsorption of target substances such as antibodies and proteins while maintaining the luminescence properties of the dye itself by fixing to various inorganic supports such as silica and iron oxide to reduce photobleaching phenomenon of fluorescent dyes It is used.
- Fluorescent dyes when used as a bio-indicator are not required to have a great durability, but in order to be used as a light conversion film for displays driven under severe conditions, durability to moisture, oxygen, and especially UV is required.
- the present specification is to provide a fluorescent composite, a light conversion film, a light conversion element and a display device including the same.
- the core portion including a polymer and a fluorescent material; And a shell part including silica or alumina covering at least a part of the surface of the core part.
- the core portion comprising a polymer and a fluorescent material; And a shell part including silica or alumina covering at least a portion of the surface of the core part.
- the optical conversion film including a fluorescent composite having a core shell structure or a cured product thereof is included.
- the core portion comprising a polymer and a fluorescent material; And a shell part comprising silica or alumina covering at least a part of the surface of the core part.
- the optical conversion device includes a light conversion film including a fluorescent composite having a core shell structure or a cured product thereof.
- the core portion comprising a polymer and a fluorescent material; And a shell unit comprising silica or alumina covering at least a portion of the surface of the core unit.
- the display apparatus includes a light conversion element including a fluorescent composite having a core shell structure or a cured product thereof. do.
- the fluorescent dye is effectively supported on the polymer resin, and the fluorescent dye-supported polymer is protected by using a shell portion including silica or alumina to block moisture, oxygen, and UV with the fluorescent dye.
- a shell portion including silica or alumina to block moisture, oxygen, and UV with the fluorescent dye.
- 1 through 5 illustrate a laminate structure in accordance with some embodiments of the present disclosure.
- Figure 6 shows the results of measuring the optical conversion film in accordance with some embodiments of the present disclosure using the PR-705 spectra scanning equipment.
- the core portion including a polymer and a fluorescent material; And a shell part including silica or alumina covering at least a part of the surface of the core part.
- the fluorescent material may be a fluorescent dye, and the fluorescent material may be supported on the polymer resin. Specifically, the fluorescent dye may be supported between the main chain and the main chain of the polymer or in the space of the main chain and the side chain of the branched polymer.
- the polymer may be an ionic polymer resin or a polymer precursor.
- the ionic polymer or ionic polymer resin is not limited as long as it is an anionic or cationic polymer in an aqueous solution state, it may be referred to an ionic polymer commonly used in the art.
- the ionic polymer may be polyacrylamide, polyacrylic acid, polysilicic acid, polymaleic acid, polyamine, polyamideamine, PAMAM dendrimer derivative, and the like, but is not limited thereto.
- the precursor may refer to a material before the specific material finally obtained through a reaction such as a chemical reaction. At this time, it is not necessary to be the last substance of any reaction, and may refer to a substance that can be obtained at any predetermined stage.
- the polymer precursor may refer to an organic material having a high molecular weight that is converted into a polymer by a chemical reaction such as heat, light, or a catalyst.
- the polymer precursor may be a prepolymer, and may refer to a prepolymer obtained by stopping a polymerization or polycondensation reaction at an appropriate stage.
- the polymer precursor is not limited as long as it can form the aforementioned polymer, and may include a monomer or an oligomer.
- the fluorescent material may be an ionic organic fluorescent material.
- the fluorescent material is not limited as long as it is an ionic organic fluorescent material having an anionic or cationic property in an aqueous solution, and is not limited to pyrene-based, pyrrole-based derivatives, acridine-based, xanthene-based, arylmethane-based, coumarin-based and polycyclic aromatic hydrocarbons. And polycyclic heteroaromatic systems.
- the organic fluorescent material may be a dye that selectively absorbs light in the visible region from near ultraviolet rays and emits light having a wavelength different from that of the absorbed light.
- a green light emitting fluorescent dye having a maximum emission wavelength of 500 to 550 nm may be used.
- a pyrene-based or pyrrole-based derivative is preferable, and more preferably, full width at half maximum (FWHM) is 55 nm or less and the molar extinction coefficient (molecular absorption coefficient) 50,000 ⁇ 150,000 M -1 cm - can be used to 1.
- the dye may comprise two or more dyes different from each other.
- the dye may be 1-hydroxy-3,6,8-pyrenesulfonic acid (HTPS).
- the organic fluorescent material is preferably an anionic organic fluorescent material, and when the polymer is an anionic polymer, the organic fluorescent material is preferably a cationic organic fluorescent material, but is not limited thereto. It doesn't happen.
- the weight average molecular weight of the polymer may be 1,000 or more and 300,000 or less, specifically, 1,000 or more and 100,000 or less, more specifically 1,000 or more and 50,000 or less.
- the polymer When the polymer is a polymer precursor, it may be 1,000 or more and 30,000 or less, more specifically 1,000 or more and 10,000 or less.
- the silica may be formed using an alkoxy silane.
- the alkoxy silane may form silica through a silane reaction. That is, the shell portion of the present specification may include silica.
- the alkoxy silane includes one or more selected from the group consisting of -NH 2 , -SH, -SO 3 H, -OH, -NH 4 +, and R, wherein R may be saturated hydrocarbon having a chain of 1-10 carbon atoms.
- the alkoxy silane forms a shell outside the core portion, some may form silica or silica shells.
- the substituents may be present at the outermost side of the core-shell structure to improve particle dispersibility or to induce a secondary reaction.
- the alumina may be formed as an alumina precursor.
- the fluorescent material may be 0.01 parts by weight or more and 50 parts by weight or less based on 100 parts by weight of the polymer.
- the fluorescent material is contained in the polymer within the above range, there is an advantage in that the core portion of the fluorescent composite having excellent luminescence properties and excellent durability at the same time can be formed.
- the fluorescent material When the fluorescent material is included in the above range with respect to 100 parts by weight of the polymer, it is possible to maintain excellent light emission characteristics of the fluorescent material without changing the inherent light emission wavelength of the fluorescent material, that is, ⁇ max. In addition, when the fluorescent material is in the above range, there is an advantage that can prevent the fluorescence intensity is reduced by preventing the quenching (quenching) generated when an excessively large amount is added.
- the core part may be prepared by adding and stirring the fluorescent composite in a reactor in which the polymer is dissolved.
- a crosslinking agent for curing the core part may be further included, and after heating and solidification proceed, the polymer powder loaded with the fluorescent dye may be obtained by drying.
- the solvent for dissolving the polymer is not limited as long as it is generally used in the art can be used.
- water capable of dissolving the polymer dimethylformamide (DMF), dimethylsulfoxide (DMSO), ethanol, methanol, and the like may be used, and a mixed solvent of two or more kinds of the above-described solvents may be used.
- the silica or alumina is slowly added and reacted at an appropriate temperature to form a shell portion.
- the method of adding the silica or alumina may be a dropping method, the temperature may be 70 °C to 150 °C, specifically may be 100 °C.
- the reaction is filtered and the obtained powder is dried at an appropriate temperature, a fluorescent complex having a core-shell structure can be obtained.
- the filtering may be a filtration method such as membrane filtration or vacuum filtration, but is not limited thereto.
- the core portion may further include a crosslinking agent.
- the crosslinking agent is not limited as long as it is a material capable of forming crosslinks by moisture, a photoinitiator or a thermal initiator, and may be a curable resin.
- the curable resin may include hexanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate having 2 to 14 ethylene groups, and trimethylolpropane di (meth) acrylate.
- the crosslinking agent may be 0.5 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the polymer.
- the crosslinking agent is in the above range, there is an advantage that the durability can be improved by appropriately curing the core part containing the fluorescent dye and the polymer carrying the fluorescent dye.
- the fluorescent dye when not limited to this, when polyethyleneimine is used as the cationic polymer and 3-triethoxypropyl isocyanate is used as the anionic fluorescent dye and the crosslinking agent, the fluorescent dye is ionized in the amine group having the cation of polyethyleneimine. Can be attached by joining. At this time, when the 3-triethoxypropyl isocyanate is reacted, it is possible to form a rigid core portion supporting the fluorescent dye.
- the isocyanate group participates in the reaction with the amine group in polyethyleneimine, and the triethoxysilyl propyl group is directed out of the core.
- the triethoxysilyl propyl group later reacts with tetraethyl orthosilicate (TEOS) to form a silica shell or It is possible to form an alumina shell.
- TEOS tetraethyl orthosilicate
- the particle diameter of the core part may be 1 nm or more and 10 ⁇ m or less.
- the particle diameter of the core part is within the above range, there is an advantage in that a fluorescent composite having excellent light conversion efficiency and excellent durability can be manufactured.
- the particle diameter of the core part is not limited thereto, and may be measured after imaging by using a dynamic light scattering (DLS) measuring device, a scanning electron microscopy (SEM), and a transmission electron microscopy (TEM).
- DLS dynamic light scattering
- SEM scanning electron microscopy
- TEM transmission electron microscopy
- the thickness of the shell portion may be 0.1 nm or more and 1 ⁇ m or less.
- the thickness of the shell portion is an average of the lengths of the straight line distances from one point of the shell portion contacting the core portion to a surface including the point and a surface parallel to the surface and including the outermost point of the shell portion. It may mean.
- the thickness of the shell portion may be measured using a TEM, but is not limited thereto.
- the silica or the alumina may be included in the shell portion in an amount of 0.1 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the total core part.
- the core part including the fluorescent dye supported on the polymer is effectively protected against moisture, oxygen, and UV without lowering the light conversion efficiency of the fluorescent dye. There is an advantage that can increase the durability of the fluorescent dye.
- an exemplary embodiment of the present specification provides a light conversion film including the above-described fluorescent composite or a cured product thereof.
- the light conversion film may include the fluorescent composite as it is, or may include a cured product of the fluorescent composite cured according to the kind of polymer included in the fluorescent composite or binder resin or other additives added.
- the light conversion film may include a binder resin, a polymerizable monomer, a light diffusing agent, and a polymerization initiator, and the haze value may include a cured product of the composition of 60 to 90%.
- the light conversion film may include a cured product of the composition including the fluorescent composite and a binder resin, and optionally including a polymerizable monomer, a polymerization initiator, and / or a solvent, if necessary.
- the light diffusing agent is to spread the incident light evenly to adjust the amount of light transmission to a desired degree, but the type is not particularly limited, but may be any one selected from the group consisting of silicon, acrylic and calcium carbonate. have.
- the haze value may be affected depending on how much the light diffusing agent is included.
- the haze value may be 60 to 90%, specifically, 65 to 85%, more Specifically, it may be 70 to 80%.
- the binder resin may be a photocurable resin, a thermosetting resin, a thermoplastic resin, or the like, but is not limited thereto. Specifically, the binder resin may use a water-soluble polymer, only one type may be used, or two or more types may be used together.
- the light conversion film may further include an additive, and the additive may include a light stabilizer, a curing agent, an infrared absorber, an ultraviolet absorber, an antioxidant, a surfactant, an antistatic agent, a flame retardant, a lubricant, a heavy metal inert agent, a hydrotalside, and an organic compound.
- the additive may include a light stabilizer, a curing agent, an infrared absorber, an ultraviolet absorber, an antioxidant, a surfactant, an antistatic agent, a flame retardant, a lubricant, a heavy metal inert agent, a hydrotalside, and an organic compound.
- additives such as carboxylic acid, colorant, processing aid, inorganic additive, filler, clearing agent, nucleating agent, crystallization agent and the like may be used, but are not limited thereto.
- the light conversion film may include a substrate provided on one surface.
- the substrate may be used without particular limitation, as long as it is known in the art, but in view of the possibility that the substrate is included in the final product without removing the substrate, it is preferable that the substrate is light transmissive.
- the substrate is light transmissive.
- glass, quartz, sapphire, or plastic substrates can be used.
- the core portion including a polymer and a fluorescent material; And a shell part including silica or alumina covering at least a portion of the surface of the core part.
- the optical conversion film including a fluorescent composite having a core shell structure or a cured product thereof is included.
- the light conversion film may include the fluorescent complex as it is, the polymer; And a cured product obtained by curing the polymer and the fluorescent composite according to the kind of polymer included in the dye or the binder resin or other additives added.
- the light conversion film may include a cured product of a composition including a binder resin, a polymerizable monomer, and a polymerization initiator.
- the light conversion film may further include an additive. Description of the said binder resin and an additive is as above-mentioned.
- the polymerizable monomer is preferably included 1 to 30% by weight of the polymer.
- the polymerizable monomer is included in the above range, it is possible to prevent the problem that the adhesion with the film is lowered.
- by preventing the curing reaction from proceeding at room temperature it is possible to prevent the problem of significantly reducing the stability and coating properties of the composition for forming a light conversion film.
- the polymerizable monomer is more preferably glycidyl (glycidyl), but is not limited to this, aldehyde (aldehyde), dialdehyde (dialdehyde), isocyanate (isocyante), alcohol (alcohol) and the like Can be used.
- the substrate may include a substrate provided on one surface of the light conversion film according to the aforementioned exemplary embodiments.
- the description of the substrate is as described above.
- the above-described light conversion film provides a light conversion element comprising a barrier film provided on at least one surface of the light conversion film.
- the light conversion element may include two or more layers of light conversion film.
- the plurality of light conversion films may convert the light incident from the light source into light having a different wavelength (color), and in this case, the light conversion element may convert the light incident from the light emitting diode (LED) light source into white light and emit the light. Can be.
- FIG. 1 illustrates a light conversion device according to an exemplary embodiment of the present application, and a barrier film including a transparent substrate and a barrier layer is provided at both sides of the light conversion film. At this time, the barrier layer of the barrier film is disposed in contact with the light conversion film.
- the permeability of oxygen and moisture of the barrier layer may be, for example, 10 ⁇ 1 cc / m 2 / day or less. This is referred to as an example of the barrier film, the oxygen and moisture permeability of the barrier layer may have a different value.
- the barrier film may include a transparent substrate and a barrier layer formed on one surface of the transparent substrate.
- the barrier layer is not particularly limited as long as it can block moisture or oxygen, and those known in the art may be used.
- the barrier layer may include aluminum oxide or nitride that imparts moisture or oxygen barrier, and ionic metal oxide.
- the barrier layer may further include a buffer layer including at least one selected from a sol-gel, acrylic, epoxy, and urethane coating liquid composition as a buffer layer.
- the barrier film may include a protective coating layer including inorganic nanoparticles surface-modified with an organic-inorganic hybrid coating layer, an inorganic layer, and an organosilane on one or both surfaces of the substrate.
- the inorganic layer may be formed of a metal oxide or a nitride.
- the inorganic nanoparticles may be nanoparticles of alumina, silica, zinc oxide, antimony oxide, titanium oxide, zirconium oxide.
- the organic-inorganic hybrid coating layer may be formed by curing the coating composition of the sol state containing the organosilane by heat or UV, and the coating solution composition of the sol state is optionally in combination with the organosilane, appropriate additives, solvents, Polymerization catalysts and the like.
- the photoconversion device applies a composition for a photoconversion film, a polymerizable monomer, and a polymerizable initiator including the above-described dye composite and a binder resin on a barrier film including a transparent substrate and a barrier layer. And, by curing or drying as necessary to produce a light conversion film, it may be formed by laminating a barrier film including a transparent substrate and a barrier layer on the light conversion film. In this case, the lamination of the light conversion film and the barrier film may be performed without the help of a separate adhesive or an adhesive. When the curing is performed after the composition is applied, the curing method and conditions may be determined according to the type of binder resin or other components.
- the transparent substrate may include a resin such as PET, but is not limited thereto, and a transparent plastic film or substrate known in the art may be used. Although the light conversion film is shown in one layer in FIG. 1, two or more light conversion films may be laminated as necessary.
- the light conversion film is a light conversion fluorescence diffusion film including one or more light diffusion particles. That is, the light conversion film included in FIG. 2 includes a polymer medium including at least one organic fluorescent dye, at least one light diffusing particle, and at least one ionic polymer.
- the light diffusing particles serve to diffuse light incident from the light source into the light conversion film.
- the light diffusing particles may include TiO 2 or silica particles, but are not limited thereto.
- the above description may be applied to a barrier film, an organic fluorescent dye, and a polymer medium including a transparent substrate and a barrier layer.
- the light conversion element according to FIG. 3 further includes a light extraction plate.
- a light extraction plate Specifically, in a structure in which a barrier film including a transparent substrate and a barrier layer is laminated on both surfaces of the light conversion film, an adhesive layer or an adhesive layer is provided on an opposite side of the surface of the barrier film that faces the light conversion film.
- the light extraction plate is attached thereto.
- the light extraction plate is not particularly limited as long as it is known in the art to increase the conversion efficiency of the light conversion film.
- Figure 4 illustrates a structure of a light conversion element in which a plurality of light conversion film is disposed sequentially.
- the light conversion element is a barrier film including the transparent substrate and a barrier layer formed on the transparent substrate; A first light conversion film coated on the barrier film; It includes a second light conversion film provided on the first light conversion film in the same way.
- the first light conversion film and the second light conversion film are the same as the description of the light conversion film described above, and the first light conversion film and the second light conversion film may be made of the same dye composite, or may be made of different dye composites. have.
- the second light conversion film may be directly stacked on the first light conversion film.
- the scope of the present invention is not limited to FIG.
- first light conversion film and the second light conversion film may be disposed apart from each other.
- another additional film may be provided between the first light conversion film and the second light conversion film.
- three or more light conversion films may be laminated as necessary.
- the light conversion device including the plurality of light conversion films may further include a light extraction plate attached through an adhesive layer or an adhesive layer, as in FIG. 3, and such a structure is illustrated in FIG. 5.
- the light extraction plate is to extract the light emitted from the light source is converted through the light conversion film is emitted, by further comprising a light extraction plate, it is possible to further increase the conversion efficiency of the light conversion film.
- the light extraction plate may include two or more materials having a scattering structure on the surface or inside, or having different refractive indices therein, in order to improve light extraction efficiency.
- the light extraction layer may be prepared by coating a composition including scattering particles and a binder on a transparent substrate, and drying or curing. If necessary, a planarization layer may be further provided on the coating layer including the scattering particles and the binder.
- the light extraction layer may be prepared by forming an uneven structure through microembossing on a transparent substrate. If necessary, a planarization layer may be further provided on the uneven structure.
- the plurality of light conversion films may be arranged to have a long emission wavelength, for example, away from the light source, for example, the first and second light conversion films may be red and green light conversion films, respectively. Can be. As a result, light absorbed from a single color LED light source may be converted into white light while passing through a plurality of light conversion films.
- the arrangement of the plurality of light conversion films is merely exemplary, and the arrangement and / or structure for increasing the conversion efficiency of each light conversion film is not particularly limited as long as it is known in the art.
- the backlight unit may have a configuration known in the art except for the light conversion element.
- the backlight unit may include an edge type light source; A light guide plate configured to diffuse light received from the edge light source; And a light conversion element provided on one surface of the light guide plate.
- the backlight unit may include a direct light source and a light conversion element provided on one surface of the direct light source.
- a reflective plate may be provided on an opposite side of the light guide plate to the light conversion element, and a light collecting sheet, a brightness enhancement sheet, and the like may be further provided on the opposite side of the light conversion element to the light source or the light guide plate.
- the display device may have a configuration known in the art except for the light conversion element included in the backlight unit.
- the display module may include a display module provided on one surface of the backlight unit.
- the display module may be a liquid crystal module including a thin film transistor and a color filter.
- Trisodium 1-hydroxy-3,6,8-pyrenesulfonic acid (HPTS) was added to a reactor in which 1 g of polyethyleneimine (molecular weight 5,000) was dissolved, and stirred at 500 rpm. After stirring until HTPS is completely dissolved, 1 g of 3-triethoxypropyl isocyanate is slowly dropped. While the reaction was exothermic, and gradually solidified, after the reaction was completed and dried at 75 °C to obtain a powder carrying a fluorescent dye.
- Example 1 The powder prepared in Example 1 was added to water and stirred. Thereafter, 0.67 g of tetraethoxysilane was slowly added, followed by reaction at 100 ° C. After the reaction was filtered and the powder obtained after filtering was dried at 70 °C.
- Example 2 The powder obtained in Example 2 was dispersed by mixing 0.01% by weight of solids in a solution in which 25% of the SAN resin was dissolved in toluene, and dried on a plastic substrate with the composition. After the coating so as to measure the light conversion film made by hot air drying for 10 minutes in a 100 °C drying oven using a PR-705 spectra scan equipment is shown in Figure 6 below.
- the green light conversion film prepared as described above was placed on a 300 nit blue LED panel installed in a thermo-hygrostat at a temperature of 60 conditions to observe the optical properties change over time, the results are shown in Table 1 below.
- Example 2 After putting the powder prepared in Example 1 into water and stirring, 0.5 g of aluminum isopropoxide was slowly added, followed by reaction at 90 ° C. After the reaction was filtered and the powder obtained after filtering was dried at 70 °C.
- Dissolve trisodium 1-hydroxy-3,6,8-pyrenesulfonic acid by mixing 0.01% by weight of solids in a solution in which 10% PVA resin by weight of the total solution is dissolved in water. After drying, the coating was applied to a thickness of 10 ⁇ m, and the optical conversion film made by hot air drying for 10 minutes in a drying oven at 100 ° C. was placed on a 300 nit blue LED panel installed in a constant temperature and humidity chamber at 60 ° C. The change in properties was observed, and the results are shown in Table 1 below.
- Example 1 Dispersing the powder obtained in Example 1 by mixing 0.01% by weight relative to the weight of the solid content in a solution in which 25% of the SAN resin is dissolved in toluene, and dried on the plastic substrate in the composition to a thickness of 10 ⁇ m After the coating, the light conversion film made by hot air drying in a 100 °C drying oven for 10 minutes was placed on a 300 nit blue LED panel installed in a constant temperature and humidity chamber at 60 °C. Is shown in Table 1 below.
- Table 1 shows changes in luminance over time for 500 hours of each Comparative Example and Example at 60 °C light conditions.
- HPTS contained on the PVA resin is completely oxidized and decomposed after 240 hours to lose the fluorescence properties.
- the optical conversion film of Comparative Example 2 dispersed on the SAN resin using the fluorescent polymer-supported polymer composite powder maintained at least 40% of the fluorescence characteristics by 500 hours, which is a polymer composite contained therein This is because the oxidation of the fluorescent dye by light and heat is delayed by blocking a certain portion of the fluorescent dye from contact with external oxygen or moisture.
- the optical conversion film to which the core-shell powder surrounding the outside of the polymer composite was coated with silica maintained 76% of fluorescence even after 500 hours. It can be seen that the contact with oxygen or moisture is more effectively blocked.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 고분자 및 형광물질을 포함하는 코어부;와 상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체, 광전환 필름, 및 이를 포함하는 전자소자를 제공한다.
Description
본 명세서는 2015년 6월 15일에 한국 특허청에 제출된 한국 특허 출원 제 10-2015-0084517호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 명세서는 형광 복합체, 광전환 필름, 광전환 소자 및 이를 포함하는 디스플레이 장치에 관한 것이다.
형광 염료는 바이오 이미징, 바이오 칩, 바이오 센서 등 주로 바이오 분야의 인디케이터(indicator)로써 사용이 되고 있다. 특히, 형광 염료의 포토블리칭(photobleaching) 현상을 줄이기 위해 실리카, 철 산화물 등 다양한 무기 지지체에 고정을 하여 염료 자체의 발광 특성을 유지 시키면서, 항체 및 단백질 등 표적 물질의 선택적인 흡착을 유도하기 위하여 사용되고 있다. 바이오 인디케이터(indicator)로 사용될 때의 형광염료는 큰 내구성이 요구되지는 않으나, 가혹 조건에서 구동되는 디스플레이용 광 전환 필름으로 사용되기 위해서는 수분, 산소, 특히 UV에 대한 내구성이 상당히 요구된다.
본 명세서는 형광 복합체, 광전환 필름, 광전환 소자 및 이를 포함하는 디스플레이 장치를 제공하고자 한다.
본 명세서의 일 실시상태는, 고분자 및 형광 물질을 포함하는 코어부; 및 상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체를 제공한다.
본 명세서의 또 다른 실시상태는, 고분자 및 형광 물질을 포함하는 코어부; 및 상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체 또는 이의 경화물을 포함하는 광전환 필름을 제공한다.
본 명세서의 또 다른 실시상태는, 고분자 및 형광 물질을 포함하는 코어부; 및 상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체 또는 이의 경화물을 포함하는 광전환 필름을 포함하는 광전환 소자를 제공한다.
본 명세서의 또 다른 실시상태는, 고분자 및 형광 물질을 포함하는 코어부; 및 상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체 또는 이의 경화물을 포함하는 광전환 필름을 포함하는 광전환 소자를 포함하는 디스플레이 장치를 제공한다.
본 명세서의 실시상태들에 따르면, 형광 염료를 고분자 수지에 효과적으로 담지시키고, 형광 염료가 담지된 고분자를 실리카 또는 알루미나를 포함한 쉘부를 이용하여 보호함으로써 수분, 산소 및 UV를 형광 염료와 차단할 수 있는 이점이 있다. 이에 따라, 광 전환 효율이 우수하면서도 형광 염료의 내구성이 증가된 형광 복합체를 제공할 수 있는 이점이 있다.
도 1 내지 5는 본 명세서의 몇몇 실시상태에 따른 적층 구조를 예시한 것이다.
도 6은 본 명세서의 몇몇 실시상태에 따른 광전환 필름을 PR-705 스펙트라 스캔 장비를 이용하여 측정한 결과를 나타낸 것이다.
본 명세서의 일 실시상태는, 고분자 및 형광 물질을 포함하는 코어부; 및 상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체를 제공한다.
상기 형광 물질은, 형광 염료일 수 있으며, 상기 형광 물질은 상기 고분자 수지에 담지된 것일 수 있다. 구체적으로, 상기 형광 염료는 고분자의 주쇄와 주쇄 사이 또는 분지형 고분자의 주쇄와 측쇄의 공간에 담지된 것일 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 고분자는 이온성 고분자 수지 또는 고분자 전구체일 수 있다.
상기 이온성 고분자 또는 이온성 고분자 수지는 수용액 상태에서 음이온성 혹은 양이온성을 띠는 고분자라면 한정되지 않으며, 당업계에서 통상적으로 사용되는 이온성 고분자를 일컬을 수 있다. 구체적으로, 상기 이온성 고분자는 폴리아크릴아미드, 폴리아크릴산, 폴리실리시익산, 폴리말레익산, 폴리아민, 폴리아미드아민, PAMAM 덴드리머 유도체 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 전구체란, 화학반응과 같은 반응을 통하여 최종적으로 얻을 수 있는 특정 물질이 되기 전 단계의 물질을 일컬을 수 있다. 이 때, 어떤 반응의 마지막 물질일 필요는 없으며, 임의로 정한 어느 단계에서 얻을 수 있는 물질을 일컬을 수 있다.
상기 고분자 전구체란 열, 빛 또는 촉매 등의 화학적 반응에 의해 고분자로 전환되는 높은 분자량의 유기 물질을 일컬을 수 있다. 상기 고분자 전구체는 프리폴리머일 수 있으며, 중합 또는 중축합 반응을 적당한 단계에서 정지시킨 예비 중합물을 일컬을 수 있다. 상기 고분자 전구체란 전술한 고분자를 형성할 수 있는 것이라면 한정되지 않으며, 단량체 또는 올리고머를 포함할 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 형광 물질은 이온성 유기 형광 물질일 수 있다. 상기형광 물질은 수용액 상태에서 음이온성 혹은 양이온성을 띠는 이온성 유기 형광 물질이라면 한정되지 않으며, 피렌계, 피롤계 유도체, 아크리딘계, 크산텐계, 아릴메탄계, 쿠마린계, 폴리시클릭 방향족 탄화수소계 및 폴리시클릭 헤테로방향족계 중에서 선택될 수 있다.
상기 유기 형광 물질은 구체적으로, 근자외선으로부터 가시광선 영역의 빛을 선택적으로 흡수하여, 흡수한 광과 다른 파장의 빛을 방출하는 염료가 사용될 수 있다. 예컨대, 염료로는 최대 발광 파장이 500~550 nm 사이에 존재하는 녹색 발광 형광 염료가 사용될 수 있으며, 특별히 제한을 두는 것은 아니나 피렌계, 피롤계 유도체 등이 바람직하며, 보다 바람직하게는 발광파장의 반치폭(FWHM)이 55 nm 이하이고 몰흡광계수(molecular absorption coefficient)가 50,000~150,000 M-1cm-
1 인 것이 사용될 수 있다. 상기 염료는 서로 상이한 2종 이상의 염료를 포함할 수도 있다. 구체적으로, 상기 염료는 1-하이드록시-3,6,8-파이렌설폰산(HTPS)일 수 있다.
상기 고분자가 양이온성 고분자일 경우, 상기 유기 형광 물질은 음이온성 유기 형광 물질인 것이 바람직하고, 상기 고분자가 음이온성 고분자일 경우, 상기 유기 형광 물질은 양이온성 유기 형광 물질인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태는, 상기 고분자의 중량 평균 분자량이 1,000 이상 300,000 이하일 수 있으며, 구체적으로, 1,000 이상 100,000 이하, 더욱 구체적으로 1,000 이상 50,000 이하일 수 있다. 상기 고분자가 고분자 전구체일 경우는 1,000 이상 30,000 이하, 더욱 구체적으로 1,000 이상 10,000 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 실리카는 알콕시 실란을 이용하여 형성될 수 있다. 상기 알콕시 실란은 실란 반응을 통하여 실리카를 형성할 수 있다. 즉, 본 명세서의 쉘부는 실리카를 포함할 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 알콕시 실란은 -NH2, -SH, -SO3H, -OH, -NH4
+ 및 R로 이루어진 군에서 선택되는 1 이상을 포함하고, 이 때, R은 탄소수 1-10의 사슬을 갖는 포화탄화수소일 수 있다.
상기 알콕시 실란이 코어부 바깥에 쉘을 형성하면서 일부는 실리카 또는 실리카 쉘을 형성할 수 있다. 이때, 상기 치환기들은 코어-쉘 구조의 가장 바깥에 존재하면서 입자의 분산성을 향상시키거나 2차 반응을 유도할 수 있는 이점이 있다. 본 명세서의 또 다른 실시상태에 있어서, 상기 알루미나는 알루미나 전구체로서 형성될 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 형광 물질은 상기 고분자 100 중량부에 대하여 0.01 중량부 이상 50 중량부 이하일 수 있다. 상기 형광 물질이 상기 범위 내로 상기 고분자 내에 포섭될 경우, 형광 물질의 발광 특성이 우수하면서, 동시에 내구성이 뛰어난 형광 복합체의 코어부를 형성할 수 있는 장점이 있다.
상기 형광 물질이 상기 고분자 100 중량부에 대하여 상기 범위 내로 포함될 경우, 형광 물질이 가지고 있는 고유한 발광파장, 즉 λmax를 변화시키지 않으면서 형광 물질의 발광 특성을 우수하게 유지할 수 있다. 또한, 상기 형광 물질이 상기 범위 내일 경우, 지나치게 많은 양이 투입됨에 따라 발생하는 소광현상(quenching)을 방지하여 형광세기가 감소하는 것을 막을 수 있는 이점이 있다.
상기 코어부는 상기 고분자가 녹아있는 반응기에 상기 형광 복합체를 첨가하여 교반함으로써 제조할 수 있다. 이 때, 코어부를 경화시키기 위한 가교제를 더 포함시킬 수 있으며, 발열이 되고 고체화가 진행 된 후, 건조함으로써 형광염료가 담지된 고분자 분말을 얻을 수 있다. 이 때, 고분자를 녹이는 용매는 당업계에서 일반적으로 사용되는 것이라면 한정되지 않고 사용이 가능하다. 예컨대, 상기 고분자를 용해시킬 수 있는 물, DMF(Dimethylformamide), DMSO(Dimethylsulfoxide), 에탄올, 메탄올 등이 사용 가능하며, 전술한 용매들을 2종 이상 혼합한 혼합 용매를 사용할 수도 있다.
형광염료가 담지된 고분자 분말, 즉, 코어부를 물에 넣고 교반한 뒤, 상기 실리카 또는 알루미나를 천천히 첨가한 후 적절한 온도에서 반응시켜 쉘부를 형성할 수 있다. 상기 실리카 또는 알루미나를 첨가하는 방법은 적하 방식일 수 있으며, 상기 온도는 70℃ 내지 150℃ 일 수 있으며, 구체적으로 100℃ 일 수 있다. 반응이 끝난 후 필터링(filtration)한 후, 얻어진 분말을 적절한 온도에서 건조시킴으로써 코어-쉘 구조를 갖는 형광 복합체를 얻을 수 있다. 상기 필터링은 막여과법 또는 감압여과법과 같은 여과법일 수 있으나 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 코어부는 가교제를 더 포함할 수 있다. 상기 가교제는 수분, 광개시제 또는 열개시제에 의하여 가교를 형성할 수 있는 물질이라면 한정되지 않으며, 경화 가능한 수지일 수 있다. 예컨대, 상기 경화성 수지는 헥산디올디(메타)아크릴레이트, 에틸렌글리콜 디(메타)아크릴레이트, 에틸렌 기의 수가 2 내지 14인 폴리에틸렌 글리콜 디(메타)아크릴레이트, 트리메틸올프로판 디(메타)아크릴레이트, 트리메틸올프로판 트리(메타)아크릴레이트, 펜타에리스리톨 트리(메타)아크릴레이트, 펜타에리스리톨 테트라(메타)아크릴레이트, 2-트리스아크릴로일옥시메틸에틸프탈산, 프로필렌기의 수가 2 내지 14인 프로필렌 글리콜 디(메타)아크릴레이트, 디펜타에리스리톨 펜타(메타)아크릴레이트, 디펜타에리스리톨 헥사(메타)아크릴레이트, 디펜타에리스리톨 펜타(메타)아크릴레이트의 산성 변형물과 디펜타에리스리톨 헥사(메타)아크릴레이트의 혼합물(상품명으로 일본 동아합성사의 TO-2348, TO-2349) 등의 다가 알코올을 α,β-불포화 카르복실산으로 에스테르화하여 얻어지는 화합물; 트리메틸올프로판 트리글리시딜에테르아크릴산 부가물, 비스페놀 A 디글리시딜에테르아크릴산 부가물 등의 글리시딜기를 함유하는 화합물에 (메타)아크릴산을 부가하여 얻어지는 화합물; β-히드록시에틸(메타)아크릴레이트의 프탈산디에스테르, β-히드록시에틸 (메타)아크릴레이트의 톨루엔 디이소시아네이트 부가물 등의 수산기 또는 에틸렌성 불포화 결합을 갖는 화합물과 다가 카르복실산과의 에스테르 화합물, 또는 폴리이소시아네이트와의 부가물; 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 부틸(메타)아크릴레이트, 2-에틸헥실(메타)아크릴레이트 등의 (메타)아크릴산 알킬에스테르; 및 9,9'-비스[4-(2-아크릴로일옥시에톡시)페닐]플루오렌으로 이루어지는 군으로부터 선택되는 1종 이상을 포함할 수 있으며, 이들로만 한정되지 않고 당 기술분야에 알려져 있는 일반적인 것들을 사용할 수 있다. 구체적으로, 상기 가교제는 3-트리에톡시프로필 이소시아네이트일 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 가교제는 상기 고분자 100 중량부에 대하여 0.5 중량부 이상 100 중량부 이하일 수 있다. 상기 가교제가 상기 범위내일 경우, 상기 형광 염료 및 형광 염료를 담지한 고분자가 포함된 코어부를 적절히 경화시킴으로써 내구성을 높일 수 있는 이점이 있다.
예컨대, 이에 한정되는 것은 아니지만, 양이온성 고분자로서 폴리에틸렌이민을 사용하고, 음이온계 형광염료 및 가교제로서 3-트리에톡시프로필 이소시아네이트를 사용하는 경우, 폴리에틸렌이민의 양이온을 띠는 아민기에 형광염료가 이온결합을 통해 붙어있는 상태가 될 수 있다. 이때, 상기 3-트리에톡시프로필이소시아네이트를 반응시키면, 형광염료를 담지하는 단단한 코어부의 형성이 가능하다. 이소시아네이트기는 폴리에틸렌이민에 있는 아민기와의 반응에 참여하고, 트리에톡시실릴 프로필기는 코어 외부로 향하게 되는데, 트리에톡시실릴 프로필기는 추후 테트라에틸 오르쏘실리케이트(TEOS)와 반응하여 코어 외부에 실리카 쉘이나 알루미나 쉘을 형성할 수 있게 된다.
본 명세서의 일 실시상태에 있어서, 상기 코어부의 입경은 1nm 이상 10 ㎛ 이하일 수 있다. 상기 코어부의 입경이 상기 범위일 경우, 광 전환 효율이 우수하면서도 내구성이 우수한 형광 복합체의 제조가 가능한 이점이 있다.
상기 코어부의 입경은 이에 한정되는 것은 아니지만, DLS(dynamic light scattering) 측정 장비, SEM(Scanning Electron Microscopy) 및 TEM(Transmission electron microscopy)을 이용하여 이미지화 한 뒤 측정할 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 쉘부의 두께는 0.1 nm 이상 1 ㎛ 이하일 수 있다. 상기 쉘부의 두께가 상기 범위 이내일 경우, 코어부를 충분히 보호할 수 있는 이점이 있다. 상기 쉘부의 두께는 상기 코어부와 접하는 상기 쉘부의 한 지점으로부터, 상기 지점을 포함하는 면과, 상기 면과 평행하면서 상기 쉘부의 최외곽의 한 지점을 포함하는 면 사이의 직선 거리의 길이의 평균을 의미할 수 있다.
상기 쉘부의 두께는 TEM을 이용하여 측정할 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태는, 상기 실리카 또는 상기 알루미나가 상기 코어부 전체 100 중량부에 대하여 0.1 중량부 이상 100 중량부 이하로 상기 쉘부에 포함될 수 있다. 상기 실리카 또는 상기 알루미나가 상기 수치 범위 이내로 상기 쉘부에 포함될 경우, 형광 염료의 광 전환 효율을 저하시키지 않으면서도, 고분자에 담지된 형광 염료를 포함하는 코어부를 수분, 산소 및 UV에 대하여 효과적으로 차단시켜 보호함으로써 형광염료의 내구성을 증가시킬 수 있는 이점이 있다.
본 명세서의 일 실시상태는, 전술한 형광 복합체 또는 이의 경화물을 포함하는 광전환 필름을 제공한다. 예컨대, 상기 광전환 필름은 상기 형광 복합체를 그대로 포함할 수도 있고, 상기 형광 복합체에 포함되는 중합체의 종류 또는 첨가되는 바인더 수지나 그외 첨가제에 따라 상기 형광 복합체를 경화시킨 경화물을 포함할 수도 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 광전환 필름은 바인더 수지, 중합성 모노머, 광확산제 및 중합개시제를 포함하고, 헤이즈 값은 60 내지 90%인 조성물의 경화물을 포함할 수 있다. 예컨대, 상기 광전환 필름은 상기 형광 복합체 및 바인더 수지를 포함하고, 필요에 따라 중합성 모노머, 중합개시제 및/또는 필요에 따라 용매를 포함하는 조성물의 경화물을 포함할 수 있다.
상기 광확산제는 입사하는 광을 고르게 확산시켜 원하는 정도의 광 투과량을 조절할 수 있는 것으로, 그 종류로는 특별히 한정이 있는 것은 아니나, 실리콘계, 아크릴계 및 탄산칼슘계로 이루어지는 군에서 선택되는 어느 하나일 수 있다.
또한, 상기 광확산제가 얼마나 포함되는지 여부에 따라서 헤이즈 값에 영향을 줄 수 있으며, 본 명세서의 일 실시상태에 따르면, 헤이즈 값은 60 내지 90%일 수 있으며, 구체적으로는 65 내지 85%, 더욱 구체적으로는 70 내지 80%일 수 있다.
상기 바인더 수지는 광경화성 수지, 열경화성 수지, 열가소성 수지 등이 사용될 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 바인더 수지는 수용성 고분자를 사용할 수 있으며, 1종만이 사용될수도 있으나, 2종 이상이 함께 사용될수도 있다.
상기 광전환 필름은 첨가제를 더 포함할 수도 있으며, 상기 첨가제로는 광안정제, 경화제, 적외선 흡수제, 자외선 흡수제, 항산화제, 계면 활성제, 대전 방지제, 난연제, 활제, 중금속 불활성제, 하이드로탈사이드, 유기카르복실산, 착색제, 가공 조제, 무기첨가제, 충전제, 투명화제, 조핵제, 결정화제 등의 각종 첨가제가 1 종 이상 사용될 수 있으나, 역시 이에 한정되는 것은 아니다.
본 명세서의 또 다른 실시상태에 있어서, 상기 광전환 필름의 일면에 구비된 기판을 포함할 수 있다. 상기 기판으로는 당기술분야에 알려져 있는 것이라면 특별히 제한되지 않고 사용될 수 있으나, 추후, 기판을 제거하지 않고, 최종 제품에 기판이 포함되어 있을 가능성을 고려하여, 광투과성인 것이 바람직하다. 예컨대, 이에 한정되는 것은 아니며 유리, 석영, 사파이어, 또는 플라스틱 기판이 사용될 수 있다.
본 명세서의 일 실시상태는, 고분자 및 형광 물질을 포함하는 코어부; 및 상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체 또는 이의 경화물을 포함하는 광전환 필름을 제공한다. 예컨대, 상기 광전환 필름은 상기 형광 복합체를 그대로 포함할 수도 있고, 상기 중합체; 및 염료에 포함되는 중합체의 종류 또는 첨가되는 바인더 수지나 그외 첨가제에 따라 상기 중합체 및 상기 형광 복합체를 경화시킨 경화물을 포함할 수도 있다.
본 명세서의 또 다른 실시상태에 있어서, 상기 광전환 필름은 바인더 수지, 중합성 모노머 및 중합 개시제를 포함하는 조성물의 경화물을 포함할 수 있다. 또한, 상기 광전환 필름은 첨가제를 더 포함할 수도 있다. 상기 바인더 수지, 첨가제에 관한 설명은 전술한 바와 같다.
상기 중합성 모노머를 포함하는 경우 접착성을 증대시킬 수 있는 이점이 있다. 상기 중합성 모노머는 상기 중합체 중량 대비 1~30% 포함되는 것이 바람직하다. 상기 중합성 모노머가 상기 범위내로 포함될 경우 필름과의 부착능이 저하되는 문제를 방지할 수 있다. 또한, 상온에서 경화반응이 진행되는 것을 막아 광전환 필름 형성용 조성물의 안정성 및 도포성이 현저히 감소하는 문제를 방지할 수 있다. 상기 중합성 모노머로는 글리시딜(glycidyl)류가 보다 바람직하며, 이로써 한정하는 것은 아니지만, 알데히드(aldehyde)류, 디알데히드(dialdehyde)류, 이소시아네이트(isocyante)류, 알코올(alcohol)류 등이 사용될 수 있다.
본 명세서의 또 다른 실시상태에 있어서, 전술한 실시상태들에 따른 광전환 필름의 일면에 구비된 기판을 포함할 수 있다. 상기 기판에 관한 설명은 전술한 바와 같다.
본 명세서의 또 다른 실시상태는, 전술한 광전환 필름; 및 상기 광전환 필름 중 적어도 하나의 일면에 구비된 배리어 필름을 포함하는 광전환 소자를 제공한다.
상기 광전환 소자는 광전환 필름을 2층 이상 포함할 수 있다. 복수의 광전환 필름들이 광원으로부터 입사된 빛을 각각 다른 파장(색)의 빛으로 전환할 수 있으며, 이 경우 광전환 소자는 예컨대 발광 다이오드(LED) 광원으로부터 입사된 빛을 백색광으로 전환하여 출사할 수 있다.
도 1은 본 출원의 일 실시상태에 따른 광전환 소자를 도시한 것으로서, 광변환 필름의 양측에 투명 기판 및 배리어 층을 포함하는 배리어 필름이 구비된다. 이 때, 배리어 필름의 배리어 층이 상기 광변환 필름에 접하여 배치된다.
상기 배리어 층의 산소 및 수분의 투과도는, 예를 들면 각각 10-1cc/m2/day 이하가 될 수 있다. 이는 배리어 필름의 일례로 언급한 것으로, 상기 배리어 층의 산소 및 수분 투과도는 이와 다른 값을 가질 수도 있다.
상기 배리어 필름은 투명 기판, 및 상기 투명 기판의 일면에 형성된 배리어 층을 포함할 수 있다. 상기 배리어 층으로는 수분 또는 산소를 차단할 수 있는 층이라면 특별히 한정되지 않고 당기술분야에 알려져 있는 것들을 사용할 수 있다. 예컨대, 상기 배리어 층은 수분 또는 산소 차단성을 부여하는 알루미늄 산화물 또는 질화물, 및 이온성 금속 산화물을 포함할 수 있다. 상기 배리어 층은 버퍼층으로서 졸-겔계, 아크릴계, 에폭시계 및 우레탄계 코팅액 조성물 중에서 선택된 1종 이상으로 이루어진 버퍼층을 더 포함할 수도 있다. 일 예로서, 상기 배리어 필름은 기재의 일면 또는 양면에 유무기 하이브리드 코팅층, 무기물층 및 유기실란으로 표면개질된 무기 나노입자를 포함하는 보호코팅층을 포함할 수 있다. 여기서 무기물층은 금속 산화물 또는 질화물로 이루어질 수 있다. 상기 무기 나노입자는 알루미나, 실리카, 산화아연, 산화안티모늄, 산화티타늄, 산화지르코늄의 나노입자일 수 있다. 상기 유무기 하이브리드 코팅층은 유기실란을 포함하는 졸 상태의 코팅 조성물을 열 또는 UV에 의해 경화시켜 형성할 수 있으며, 상기 졸 상태의 코팅 용액 조성물은 유기실란과 함께, 경우에 따라 적절한 첨가제, 용매, 중합 촉매 등을 포함할 수 있다.
도 1에 따른 광전환 소자는 투명 기판 및 배리어 층을 포함하는 배리어 필름 상에 전술한 염료 복합체와 바인더 수지를 포함하는 광변환 필름용 조성물, 중합성 모노머 및 중합성 개시제를 포함하는 조성물을 도포하고, 이를 필요에 따라 경화 또는 건조시켜 광전환 필름을 제조한 뒤, 상기 광전환 필름 상에 투명 기판 및 배리어 층을 포함하는 배리어 필름을 적층함으로써 형성될 수 있다. 이 때, 광전환 필름과 배리어 필름의 적층은, 별도의 점착제나 접착제의 도움없이 수행될 수 있다. 상기 조성물 도포후 경화를 수행하는 경우 경화 방법 및 조건은 바인더 수지나 다른 성분들의 종류에 따라 결정될 수 있다. 상기 투명 기판은 PET 등과 같은 수지를 포함할 수 있지만, 이에 한정되는 것은 아니며 당 기술분야에 알려져 있는 투명 플라스틱 필름 또는 기판이 사용될 수 있다. 도 1에는 광전환 필름이 1층으로 도시되어 있으나, 필요에 따라 2층 이상의 광전환 필름이 적층될 수 있다.
도 2에 따른 광전환 소자에 있어서, 광전환 필름이 1종 이상의 광확산 입자를 포함하는 광전환 형광확산 필름이다. 즉, 도 2에 포함되는 광전환 필름은 1종 이상의 유기형광염료, 1종 이상의 광확산 입자 및 1종 이상의 이온성 고분자를 포함하는 고분자 매질을 포함한다. 상기 광확산 입자는 광원으로부터 입사된 빛을 광전환 필름 내부에서 확산시키는 역할을 한다. 여기서, 광확산 입자는 TiO2 또는 실리카 입자를 포함할 수 있지만, 이에 한정되는 것은 아니다. 그외 투명 기판 및 배리어 층을 포함하는 배리어 필름, 유기형광염료, 고분자 매질 등에 대하여는 전술한 설명이 적용될 수 있다.
도 3에 따른 광전환 소자는 광추출판을 추가로 포함한다. 구체적으로, 광전환 필름의 양면에 투명 기판 및 배리어 층을 포함하는 배리어 필름이 적층된 구조에 있어서, 어느 하나의 배리어 필름의 상기 광전환 필름에 대향하는 면의 반대면에 점착층 또는 접착층이 구비되고, 여기에 광추출판이 부착된다. 상기 광추출 판은 광전환 필름의 변환효율을 높이기 위한 것으로 당 기술 분야에 알려져 있는 것이면 특별히 제한을 두지 않는다.
한편, 도 4는 복수의 광전환 필름이 순차적으로 배치된 광전환 소자의 구조를 예시한다. 구체적으로, 상기 광전환 소자는 상기 투명 기판과, 상기 투명 기판 상에 형성된 배리어 층을 포함하는 배리어 필름; 상기 배리어 필름 상에 도포된 제1 광전환 필름; 상기 제1 광전환 필름 상에 동일한 방법으로 마련된 제2 광전환 필름을 포함한다. 제1 광전환 필름과 제2 광전환 필름은 전술한 광전환 필름의 설명과 같으며, 제1 광전환 필름과 제2 광전환 필름이 동일한 염료 복합체로 이루어질 수도 있고, 상이한 염료 복합체로도 이루어질 수 있다. 도 4에 도시된 바와 같이, 상기 제1 광전환 필름 상에 상기 제2 광전환 필름이 직접 적층되어 배치될 수 있다. 다만, 본 발명의 범위가 도 4로 한정되는 것은 아니며, 상기 제1 광전환 필름과 상기 제2 광전환 필름이 서로 떨어져서 배치될 수 있다. 이 경우, 상기 제1 광전환 필름과 상기 제2 광전환 필름 사이에는 다른 추가의 필름이 구비될 수 있다. 또한, 도 4에는 2장의 광전환 필름을 포함하는 구조가 예시되어 있으나, 필요에 따라 3장 이상의 광전환 필름이 적층될 수도 있다.
도 4와 같이 복수의 광전환 필름을 포함하는 광전환 소자도 역시, 도 3과 마찬가지로 점착층 또는 접착층을 통하여 부착된 광추출판을 더 포함할 수 있으며, 이와 같은 구조를 도 5에 예시하였다. 상기 광추출판은 광원으로부터 입사된 빛이 상기 광전환 필름을 통해 전환되어 출사되는 빛을 추출하는 것으로서, 이와 같이 광추출 판을 더 포함함으로써, 광전환 필름의 변환효율을 더 높일 수 있다.
상기 광추출판은 빛의 추출 효율을 향상시키기 위하여, 표면 또는 내부에 산란 구조를 갖거나, 내부에 굴절율이 상이한 2종 이상의 물질을 포함할 수 있다. 예컨대, 상기 광추출층은 투명 기판 상에 산란입자 및 바인더를 포함하는 조성물을 코팅하고, 건조 또는 경화를 함으로써 제조될 수 있다. 필요한 경우, 상기 산란입자 및 바인더를 포함하는 코팅층 상에 평탄화층이 더 구비될 수도 있다. 또 하나의 예로서, 상기 광추출층은 투명 기재에 마이크로 엠보싱을 통하여 요철 구조를 형성함으로써 제조될 수 있다. 필요한 경우, 상기 요철 구조 상에 평탄화층이 더 구비될 수도 있다.
일 예에 따르면, 복수의 광전환 필름은, 예를 들면 광원으로부터 멀어질수록 긴 발광파장을 가지도록 배치될 수 있는데, 예컨대 제1 및 제2 광전환 필름은 각각 적색 및 녹색 광전환 필름이 될 수 있다. 그 결과 단일 색상의 LED 광원으로부터 흡수한 빛이 복수의 광전환 필름을 통과하면서 백색광으로 전환될 수 있다. 상기 복수의 광전환 필름의 배치는 예시적인 것에 불과하며, 각 광전환 필름의 변환효율을 높이기 위한 배치 및/또는 구조는 당 기술 분야에 알려져 있는 것이면 특별히 제한을 두지 않는다.
본 명세서의 일 실시상태는, 전술한 광전환 소자를 포함하는 백라이트 유닛을 제공한다. 백라이트 유닛은 광전환 소자를 제외하고는 당기술분야에 알려져 있는 구성을 가질 수 있다. 예컨대, 백라이트 유닛은 엣지형 광원; 상기 엣지형 광원으로부터 받은 빛을 확산시키는 도광판; 및 상기 도광판의 일면에 구비된 광전환 소자를 포함할 수 있다. 또 하나의 예로서, 백라이트 유닛은 직하형 광원 및 상기 직하형 광원의 일면에 구비된 광전환 소자를 포함할 수 있다. 상기 도광판의 광전환 소자에 대항하는 면의 반대면에는 반사판이 구비될 수도 있고, 상기 광전환 소자의 광원 또는 도광판에 대향하는 면의 반대측에는 집광 시트, 휘도 향상시트 등이 추가로 구비될 수 있다.
본 명세서의 또 다른 실시상태는, 전술한 백라이트 유닛을 포함하는 디스플레이 장치를 제공한다. 디스플레이 장치는 상기 백라이트 유닛 내에 포함되는 광전환 소자를 제외하고는 당기술분야에 알려져 있는 구성을 가질 수 있다. 예컨대, 백라이트 유닛의 일면에 구비된 디스플레이 모듈을 포함할 수 있다. 상기 디스플레이 모듈은 박막트랜지스터 및 컬러필터를 포함하는 액정 모듈일 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세히 설명한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지는 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1 - 형광염료가 담지된 고분자 복합체의 제조
1g의 폴리에틸렌이민 (분자량 5,000)이 녹아있는 반응기에 트리소듐 1-하이드록시-3,6,8-파이렌설폰산(HPTS)을 넣고 500 rpm으로 교반하였다. HTPS가 완전히 녹을 때까지 교반한 후, 1g의 3-트리에톡시프로필 이소시아네이트를 천천히 떨어뜨렸다. 반응이 되면서, 발열이 되고 서서히 고체화가 진행되었으며, 반응이 끝난 후 75℃ 에서 건조 후 형광 염료가 담지된 분말을 얻었다.
실시예 2 - 코어-쉘 구조를 갖는 형광 실리카 복합체의 제조
실시예 1에서 제조된 분말을 물에 넣고 교반하였다. 그 후, 0.67g의 테트라에톡시실란을 천천히 첨가한 후, 100℃ 에서 반응시켰다. 반응이 끝난 후 필터 처리하였고, 필터링 후 얻어진 분말을 70℃ 에서 건조시켰다.
상기 실시예 2를 통해 얻어진 분말을 전체 용액 중량대비 25%의 SAN 수지가 톨루엔에 용해되어 있는 용액에 고형분 중량대비 0.01%를 혼합하여 분산시키고, 상기 조성으로 플라스틱 기재 위에 건조 후 두께가 10 ㎛가 되도록 도포한 후 100℃ 건조 오븐에서 10분 동안 열풍 건조시켜 만들어진 광전환 필름을 PR-705 스펙트라스캔 장비를 이용하여 측정한 결과를 하기 도 6에 나타내었다.
또한, 상기와 같이 제작한 녹색 광전환 필름을 온도 60 조건의 항온항습기에 설치한 300 nit의 blue LED 패널 상에 올려놓고 시간에 따른 광특성 변화를 관찰하였으며, 결과는 하기 표 1에 나타내었다.
실시예 3-코어-쉘 구조를 갖는 형광 실리카 복합체의 제조
실시예 1에서 제조된 분말을 물에 넣고 교반한 후, 0.5g의 알루미늄 이소프로폭사이드를 천천히 첨가한 후, 90℃ 에서 반응시켰다. 반응이 끝난 후 필터 처리하였고, 필터링 후 얻어진 분말을 70℃ 에서 건조시켰다.
비교예 1-형광염료를 이용한 광전환 필름의 제조
트리소듐 1-하이드록시-3,6,8-파이렌설폰산을 전체 용액 중량대비 10%의 PVA수지가 물에 용해되어 있는 용액에 고형분 중량대비 0.01%를 혼합하여 녹이고, 상기 조성으로 플라스틱 기재 위에 건조 후 두께가 10㎛가 되도록 도포한 후 100 ℃ 건조 오븐에서 10분 동안 열풍 건조시켜 만들어진 광전환 필름을 60 ℃ 조건의 항온항습기에 설치한 300 nit의 blue LED 패널 상에 올려놓고 시간에 따른 광특성 변화를 관찰하였으며, 결과는 하기 표 1에 나타내었다.
비교예 2-형광염료가 담지된 고분자 복합체를 이용한 광전환 필름의 제조
상기 실시예 1를 통해 얻어진 분말을 전체 용액 중량대비 25%의 SAN 수지가 톨루엔에 용해되어 있는 용액에 고형분 중량대비 0.01%를 혼합하여 분산시키고, 상기 조성으로 플라스틱 기재 위에 건조 후 두께가 10 ㎛가 되도록 도포한 후 100 ℃ 건조 오븐에서 10분 동안 열풍 건조시켜 만들어진 광전환 필름을 60 ℃ 조건의 항온항습기에 설치한 300 nit의 blue LED 패널 상에 올려놓고 시간에 따른 광특성 변화를 관찰하였으며, 결과는 하기 표 1에 나타내었다.
휘도 | ||
0 시간 | 500 시간 | |
비교예 1 | 100% | 0% |
비교예 2 | 100% | 40% |
실시예 2 | 100% | 76% |
상기 표 1은 60 ℃ 내광 조건에서 각 비교예와 실시예의 500 시간 동안의 휘도 경시 변화를 나타낸 것이다. 상기 표 1에서 볼 수 있듯이, 비교예 1의 경우 PVA 수지 상에 포함된 HPTS는 240 시간 경과 후 완전히 산화 및 분해되어 형광특성을 잃어버린다. 그러나 형광염료가 담지된 고분자 복합체 분말을 사용하여 SAN 수지 상에 분산시킨 비교예 2의 광전환 필름은 500 시간까지 적어도 40%의 형광특성을 유지하는 것을 확인하였는데, 이는 고분자 복합체가 내부에 포함된 형광염료를 외부의 산소나 수분 등과의 접촉을 일정 부분을 차단함으로써 빛과 열에 의한 형광염료의 산화를 지연시키기 때문이다.
상기 비교예 결과들과는 달리 고분자 복합체의 외부를 실리카로 둘러싼 코어쉘 형태의 분말을 적용한 광전환 필름은 500 시간 경과 후에도 76%의 형광특성을 유지하고 있는 것으로 보아 이는 고분자 복합체 외부의 실리카 쉘이 외부의 산소나 수분과의 접촉을 보다 효과적으로 차단하는 것을 확인할 수 있다.
Claims (19)
- 고분자 및 형광 물질을 포함하는 코어부; 및상기 코어부의 표면 중 적어도 일부를 덮는 실리카 또는 알루미나를 포함하는 쉘부;를 포함하는 코어쉘 구조의 형광 복합체.
- 청구항 1에 있어서,상기 고분자는 이온성 고분자 수지 또는 고분자 전구체인 것인 형광 복합체.
- 청구항 1에 있어서,상기 형광 물질은 이온성 유기 형광 물질인 것인 형광 복합체.
- 청구항 1에 있어서,상기 고분자의 중량 평균 분자량은 1,000 이상 300,000 이하인 것인 형광 복합체.
- 청구항 1에 있어서,상기 실리카는 알콕시 실란을 이용하여 형성되는 것인 형광 복합체.
- 청구항 5에 있어서,상기 알콕시 실란은 -NH2, -SH, -SO3H, -OH, -NH4 + 및 R로 이루어진 군에서 선택되는 1 이상을 포함하고, R은 탄소수 1-10의 사슬을 갖는 포화탄화수소인 것인 형광 복합체.
- 청구항 1에 있어서,상기 알루미나는 알루미나 전구체로 형성되는 것인 형광 복합체.
- 청구항 1에 있어서,상기 형광 물질은 상기 고분자 100 중량부에 대하여 0.01 중량부 이상 50 중량부 이하인 것인 형광 복합체.
- 청구항 1에 있어서,상기 코어부는 가교제를 더 포함하는 것인 형광 복합체.
- 청구항 9에 있어서,상기 가교제는 상기 고분자 100 중량부에 대하여 0.5 중량부 이상 100 중량부 이하인 것인 형광 복합체.
- 청구항 1에 있어서,상기 코어부의 입경은 1 nm 이상 10 ㎛ 이하인 것인 형광 복합체.
- 청구항 1에 있어서,상기 쉘부의 두께는 0.1 nm 이상 1 ㎛ 이하인 것인 형광 복합체.
- 청구항 1에 있어서,상기 실리카 또는 알루미나는 상기 코어부 전체 100 중량부에 대하여 0.1 중량부 이상 100 중량부 이하로 상기 쉘부에 포함되는 것인 형광 복합체.
- 청구항 1 내지 13 중 어느 하나의 항에 따른 형광 복합체 또는 이의 경화물을 포함하는 광전환 필름.
- 청구항 14에 있어서, 상기 광전환 필름은 바인더 수지, 중합성 모노머, 광확산제 및 중합개시제를 포함하고, 헤이즈 값은 60 내지 90%인 것인 조성물의 경화물을 포함하는 것인 광전환 필름.
- 청구항 14에 있어서, 상기 광전환 필름의 일면에 구비된 기판을 포함하는 것인 광전환 필름.
- 청구항 14에 따른 광전환 필름; 및 상기 광전환 필름 중 적어도 하나의 일면에 구비된 배리어 필름을 포함하는 광전환 소자.
- 청구항 17에 따른 광전환 소자를 포함하는 백라이트 유닛.
- 청구항 18에 따른 백라이트 유닛을 포함하는 디스플레이 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680034597.9A CN107771195A (zh) | 2015-06-15 | 2016-06-14 | 荧光缀合物、光转换膜、光转换装置和包括其的显示装置 |
US15/579,157 US10927293B2 (en) | 2015-06-15 | 2016-06-14 | Fluorescent conjugate, optical conversion film, optical conversion device and display device comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150084517 | 2015-06-15 | ||
KR10-2015-0084517 | 2015-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016204476A1 true WO2016204476A1 (ko) | 2016-12-22 |
Family
ID=57545473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/006284 WO2016204476A1 (ko) | 2015-06-15 | 2016-06-14 | 형광 복합체, 광전환 필름, 광전환 소자 및 이를 포함하는 디스플레이 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10927293B2 (ko) |
KR (1) | KR101938284B1 (ko) |
CN (1) | CN107771195A (ko) |
WO (1) | WO2016204476A1 (ko) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016122286A1 (ko) * | 2015-01-31 | 2016-08-04 | 주식회사 엘지화학 | 광전환 소자 및 이를 포함하는 디스플레이 장치 |
KR102054751B1 (ko) * | 2017-12-27 | 2019-12-11 | 주식회사 디엔에스 | 코어 셀 구조를 갖는 청색 형광체 나노입자를 포함하는 고분자 필름 |
JP7325885B2 (ja) | 2018-06-22 | 2023-08-15 | ベーアーエスエフ・エスエー | ディスプレイ及び照明用途用の緑色発光体としての光安定性シアノ置換ホウ素-ジピロメテン染料 |
JP7399120B2 (ja) * | 2018-06-22 | 2023-12-15 | ベーアーエスエフ・エスエー | 色変換用の光安定性染料を含む押し出しpetフィルム |
JP7063438B2 (ja) | 2018-11-12 | 2022-05-09 | エルジー・ケム・リミテッド | 色変換フィルム、これを含むバックライトユニット及びディスプレイ装置 |
EP3719547B1 (en) * | 2018-11-12 | 2022-08-24 | Lg Chem, Ltd. | Colour conversion film, and back light unit and display device comprising same |
KR102531874B1 (ko) * | 2018-11-12 | 2023-05-12 | 주식회사 엘지화학 | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 |
EP3757631B1 (en) | 2018-11-12 | 2022-09-14 | Lg Chem, Ltd. | Colour conversion film, and back light unit and display device comprising same |
CN114335382A (zh) * | 2018-12-07 | 2022-04-12 | 京东方科技集团股份有限公司 | 显示模组及其制备方法 |
CN112820803A (zh) * | 2019-11-15 | 2021-05-18 | 深圳市聚飞光学材料有限公司 | 增光膜及其制作方法、发光装置 |
KR20220008063A (ko) | 2020-07-13 | 2022-01-20 | 씨엘에스코리아(주) | 색변환필름 및 이의 제조방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006517985A (ja) * | 2002-11-26 | 2006-08-03 | コーネル リサーチ ファウンデーション,インコーポレーティッド | シリカ系の蛍光ナノ粒子 |
KR20150008738A (ko) * | 2013-07-15 | 2015-01-23 | 한국과학기술연구원 | 표면개질 형광 나노복합체 및 이를 이용한 백색 led |
KR20150036211A (ko) * | 2012-07-06 | 2015-04-07 | 미쓰이 가가쿠 가부시키가이샤 | 중합체 입자 및 그의 용도 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6013531A (en) * | 1987-10-26 | 2000-01-11 | Dade International Inc. | Method to use fluorescent magnetic polymer particles as markers in an immunoassay |
US6964747B2 (en) * | 2003-01-21 | 2005-11-15 | Bioarray Solutions, Ltd. | Production of dyed polymer microparticles |
CN1312479C (zh) * | 2003-08-08 | 2007-04-25 | 清华大学 | 一种纳米荧光磁粒及其制备方法 |
DE102004033050A1 (de) | 2004-07-08 | 2006-01-26 | International University Bremen Gmbh | Photostabilisierung von Fluoreszenzfarbstoffen |
KR100507844B1 (ko) * | 2005-01-19 | 2005-08-17 | 주식회사 맥스필 | 광확산 및 파장 변환 필름 |
CN101768437B (zh) * | 2010-01-19 | 2012-12-26 | 无锡中德伯尔生物技术有限公司 | 以正电聚电解质为模板掺杂负电染料的SiO2纳米粒子及其制备方法 |
JP2011241160A (ja) * | 2010-05-17 | 2011-12-01 | Yamamoto Chem Inc | 色変換材料、該材料を含む組成物、該組成物を使用した色変換光学部品および該色変換光学部品を使用した発光素子 |
KR101129521B1 (ko) * | 2011-08-08 | 2012-03-29 | 김준성 | 형광 안정성이 향상되는 유기 형광 물질 |
US9827191B2 (en) * | 2012-05-03 | 2017-11-28 | The Johns Hopkins University | Compositions and methods for ophthalmic and/or other applications |
KR20140032811A (ko) * | 2012-09-07 | 2014-03-17 | 삼성전자주식회사 | 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치 |
CN103286312A (zh) * | 2013-05-08 | 2013-09-11 | 复旦大学 | 一种表面共增强荧光及表面增强拉曼的多层核壳结构的复合微粒及其制备方法 |
KR20150023206A (ko) * | 2013-08-22 | 2015-03-05 | 세종대학교산학협력단 | 양자점-무기입자-고분자 복합체 및 이를 포함하는 광학요소 |
CN103484101B (zh) | 2013-09-17 | 2015-08-05 | 中国工程物理研究院化工材料研究所 | 核壳结构荧光微球及其制备方法和应用 |
KR102223504B1 (ko) * | 2013-09-25 | 2021-03-04 | 삼성전자주식회사 | 양자점-수지 나노복합체 및 그 제조 방법 |
US9597418B2 (en) * | 2014-03-18 | 2017-03-21 | Universite De Nantes | Magnetic and fluorescent reverse nanoassemblies |
US20150289372A1 (en) * | 2014-04-03 | 2015-10-08 | Yikang Deng | Fluorescent conductive fill material for plated through hole structures and methods of defect inspection utilizing the same |
-
2016
- 2016-05-11 KR KR1020160057659A patent/KR101938284B1/ko active IP Right Grant
- 2016-06-14 WO PCT/KR2016/006284 patent/WO2016204476A1/ko active Application Filing
- 2016-06-14 CN CN201680034597.9A patent/CN107771195A/zh active Pending
- 2016-06-14 US US15/579,157 patent/US10927293B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006517985A (ja) * | 2002-11-26 | 2006-08-03 | コーネル リサーチ ファウンデーション,インコーポレーティッド | シリカ系の蛍光ナノ粒子 |
KR20150036211A (ko) * | 2012-07-06 | 2015-04-07 | 미쓰이 가가쿠 가부시키가이샤 | 중합체 입자 및 그의 용도 |
KR20150008738A (ko) * | 2013-07-15 | 2015-01-23 | 한국과학기술연구원 | 표면개질 형광 나노복합체 및 이를 이용한 백색 led |
Non-Patent Citations (2)
Title |
---|
QIAN, H. S. ET AL.: "Mesoporous-Silica-coated up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy", SMALL, vol. 5, no. 20, 2009, pages 2285 - 2290 * |
ZHANG, L. ET AL.: "Multifunctional Fluorescent-Magnetic Polyethyleneimine Functionalized Fe304-Mesoporous Silica Yolk-Shell Nanocapsules for siRNA Delivery", CHEMICAL COMMUNICATIONS, vol. 48, no. 69, 2012, pages 8706 - 8708, XP055338125 * |
Also Published As
Publication number | Publication date |
---|---|
CN107771195A (zh) | 2018-03-06 |
US10927293B2 (en) | 2021-02-23 |
US20180134953A1 (en) | 2018-05-17 |
KR101938284B1 (ko) | 2019-01-15 |
KR20160147645A (ko) | 2016-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016204476A1 (ko) | 형광 복합체, 광전환 필름, 광전환 소자 및 이를 포함하는 디스플레이 장치 | |
JP6661872B2 (ja) | 化合物およびこれを含む色変換フィルム | |
US10323104B2 (en) | Dye complex, photoconversion film and electronic element including same | |
JP6733122B2 (ja) | 色変換フィルムおよびこれを含むバックライトユニットとディスプレイ装置 | |
WO2016122286A1 (ko) | 광전환 소자 및 이를 포함하는 디스플레이 장치 | |
TWI708776B (zh) | 化合物與包含其之色轉換膜、背光單元及顯示裝置 | |
JP6950874B2 (ja) | ディスプレイ装置 | |
WO2018117095A1 (ja) | 波長変換フィルムおよびバックライトユニット | |
WO2019107821A1 (ko) | 색변환 필름, 및 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
CN110770644B (zh) | 颜色转换膜和包括其的背光单元和显示装置 | |
WO2016126143A1 (ko) | 광전환 필름 및 이를 포함하는 광전환 소자 및 디스플레이 장치 | |
KR102276612B1 (ko) | 함질소 고리 화합물 및 이를 포함하는 색변환 필름 | |
TWI829878B (zh) | 色彩轉換組成物、包含其之色彩轉換膜、背光單元以及顯示器裝置 | |
TWI831934B (zh) | 化合物、包含其的色彩轉換膜、背光單元以及顯示器裝置 | |
EP3766886A1 (en) | Compound, color conversion film comprising same, back-light unit, and display device | |
WO2020101299A1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 | |
JP2019534855A (ja) | 含窒素化合物およびこれを含む色変換フィルム | |
KR102164759B1 (ko) | 색변환 필름, 이를 포함하는 백라이트 유닛 및 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16811889 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15579157 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16811889 Country of ref document: EP Kind code of ref document: A1 |