WO2016204257A1 - パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体 - Google Patents

パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体 Download PDF

Info

Publication number
WO2016204257A1
WO2016204257A1 PCT/JP2016/068018 JP2016068018W WO2016204257A1 WO 2016204257 A1 WO2016204257 A1 WO 2016204257A1 JP 2016068018 W JP2016068018 W JP 2016068018W WO 2016204257 A1 WO2016204257 A1 WO 2016204257A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor module
power semiconductor
terminal
power
flange
Prior art date
Application number
PCT/JP2016/068018
Other languages
English (en)
French (fr)
Inventor
貴裕 小山
広道 郷原
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2016/064456 external-priority patent/WO2016203884A1/ja
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201680003922.5A priority Critical patent/CN107004675B/zh
Priority to DE112016000158.4T priority patent/DE112016000158T5/de
Priority to JP2017524842A priority patent/JP6365775B2/ja
Priority to CN202010057550.2A priority patent/CN111162060B/zh
Publication of WO2016204257A1 publication Critical patent/WO2016204257A1/ja
Priority to US15/606,787 priority patent/US10192807B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/4917Crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present invention relates to a power semiconductor module including a cooler that circulates and circulates a coolant for cooling a semiconductor element, a flow path member combined with the power semiconductor module, and a power semiconductor module structure.
  • Power conversion devices are used for energy saving in devices that use motors such as hybrid vehicles and electric vehicles.
  • a power semiconductor module is widely used for this power converter.
  • the power semiconductor module includes a power semiconductor element for controlling a large current.
  • the power semiconductor element generates a large amount of heat when controlling a large current. Further, since the power semiconductor module is required to be reduced in size and weight and the output density tends to increase, in the power semiconductor module including a plurality of power semiconductor elements, the cooling method affects the power conversion efficiency.
  • a power semiconductor module that includes a liquid cooling type cooling body and cools the heat generated by the power semiconductor element by this cooling body.
  • the cooling body of the power semiconductor module includes a metal base plate that transfers heat generated by the power semiconductor element, a heat sink that is bonded to the back surface of the metal base plate, and a cooling case that is bonded to the metal base plate and accommodates the heat sink. It has a structure that allows the coolant to flow through the space in the cooling case through the inlet and outlet formed in the cooling case (Patent Document 1). For example, a nipple is attached to the introduction port and the discharge port, and an external pipe or an external hose is connected to the nipple, respectively.
  • Hybrid vehicles and electric vehicles have limited space for mounting power semiconductor modules. Therefore, it may not be easy to attach the power semiconductor module and attach the external pipe to the inlet and outlet of the cooling case. In addition, it is necessary to separately perform the work of attaching the power semiconductor module and the work of attaching the external pipe to the inlet and outlet of the cooling case, which takes time.
  • Some cooling members of a power semiconductor module include a connection plate in an inlet passage and an outlet passage in order to facilitate connection with an additional cooling member or a termination plate (Patent Document 2).
  • this cooling member is provided with an inlet passage and an outlet passage on the side surface of the plastic base having the top surface on which the semiconductor module is mounted, the semiconductor module to which the cooling member is attached becomes bulky.
  • the connection plate of the cooling member is not connected to the external pipe, the ease of mounting the external pipe has not been sufficient.
  • the present invention has been made in view of the above points, and can easily connect the power semiconductor module to the inlet and outlet of the cooling body, and can easily attach the power semiconductor module. It is an object of the present invention to provide a power semiconductor module that can be used, a flow path member combined with the power semiconductor module, and a power semiconductor module structure.
  • a power semiconductor module includes a metal base plate having a first surface and a second surface, a laminated substrate bonded to the first surface and having a third surface and a fourth surface, and a semiconductor element mounted on the third surface
  • a resin case disposed on the first surface side of the metal base plate and surrounding the laminated substrate and the semiconductor element, and a cooling case.
  • the cooling case has a bottom wall and a side wall formed around the bottom wall, and one end of the side wall is joined to the second surface side of the metal base plate, and the metal base plate, the bottom wall, and the side wall The coolant can be circulated in the space surrounded by.
  • the cooling case has an inlet portion and an outlet portion for a coolant that is connected to either the bottom wall or the side wall and is disposed along a peripheral edge of the second surface of the metal base plate.
  • a first flange disposed on the inlet side and a second flange disposed on the outlet side of the outlet portion are provided.
  • the following flow path member is provided as another embodiment of the present invention. It is a flow path member combined with the power semiconductor module.
  • the power semiconductor module has a metal base plate, a bottom wall and a side wall formed around the bottom wall, and one end of the side wall is joined to a back surface of the metal base plate, and the metal base plate, the bottom
  • a cooling case capable of circulating a coolant in a space surrounded by the wall and the side wall; Further, the cooling case has an inlet portion and an outlet portion of a coolant that is connected to either the bottom wall or the side wall and is disposed along a peripheral edge of the back surface of the metal base plate.
  • a first flange disposed on the inlet side and a second flange disposed on the outlet side of the outlet portion are provided.
  • the flow path member includes a first connection portion that can be connected to the first flange, a second connection portion that can be connected to the second flange, and a second connection portion that is connected to the first connection portion and can flow the coolant.
  • 1 flow path and the 2nd flow path which can be connected to the 2nd connection part and can distribute the cooling fluid, and may be arranged facing the bottom of the cooling case.
  • the power semiconductor module structure of the present invention in which the power semiconductor module and the flow path member are combined has the following aspects.
  • the power semiconductor module can be easily connected to the inlet and outlet of the cooling body, and the power semiconductor module can be easily attached.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 1.
  • FIG. 1 is a perspective view showing an appearance of an embodiment of a power semiconductor module of the present invention.
  • FIG. 2 is a perspective view of the power semiconductor module of FIG. 1 viewed from the back side.
  • a power semiconductor module 1 shown in FIGS. 1 and 2 is a 6-in-1 type power semiconductor module constituting an inverter circuit.
  • the power semiconductor module 1 accommodates a metal base plate 12 and a semiconductor chip 16, a resin case 11 having a bottom surface bonded to the front surface of the metal base plate 12, and a cooling bonded to the back surface of the metal base plate 12. Case 13 is provided.
  • External terminals 14A to 14E protrude from the inside of the resin case 11 along the periphery of the upper surface of the resin case 11. Further, the resin case 11 is formed with a through hole 11a penetrating in the thickness direction. A total of eight through-holes 11a are formed in the vicinity of both ends of the longitudinal edge portion of the upper surface of the resin case 11 and at two places spaced between the both ends. Of these through-holes 11a, two through-holes 11a formed near the center in the longitudinal direction at one end portion on the long side of the resin case 11 are first bolts formed in a flange 13g1 of the cooling case 13 described later. It is the 1st through-hole which can penetrate a hole. In addition, two through holes 11a formed near the center in the longitudinal direction at the other end portion on the long side of the resin case 11 pass through a second bolt hole formed in a flange 13g2 of the cooling case 13 described later. 2 through holes.
  • the metal base plate 12 is a rectangular plate having a front surface, that is, a first surface and a back surface opposite to the front surface, that is, a second surface.
  • the metal base plate 12 is approximately the same size as the resin case 11.
  • the metal base plate 12 has bolt holes 12a penetrating in the thickness direction.
  • the bolt holes 12a are formed at the same intervals as the through holes 11a formed in the resin case 11, and are arranged at the same positions as the through holes 11a.
  • the cooling case 13 joined to the back surface of the metal base plate 12 has a bottom wall 13a and a side wall 13b formed around the bottom wall 13a, and an upper end side is open.
  • an internal space surrounded by the metal base plate 12 and the cooling case 13 is formed.
  • fins 17 as heat sinks are arranged in this internal space.
  • the metal base plate 12, the cooling case 13 and the fins 17 constitute a cooling body for the semiconductor chip 16.
  • the fins 17 are not limited to the thin plate shape shown in the figure, but may be a pin shape.
  • the cooling space supplied from the outside can circulate through the internal space of the cooling case 13.
  • the cooling case 13 has an inlet portion 13c and an outlet portion 13d for the coolant at the center of the longitudinal edge.
  • the inlet portion 13 c and the outlet portion 13 d are connected to the side wall of the cooling case 13 and are disposed along the periphery of the back surface of the metal base plate 12.
  • the inlet portion 13c has an inlet 13e on the bottom surface
  • the outlet portion 13d has a discharge port 13f on the bottom surface. These bottom surfaces are disposed on the opposite side to the metal base plate 12.
  • the cooling case 13 includes a flange 13g1 that is a first flange on the inlet 13e side of the inlet portion 13c.
  • the cooling case 13 includes a flange 13g2 that is a second flange on the outlet 13f side of the outlet portion 13d.
  • the flanges 13g1 and 13g2 are substantially elliptical plates, and are arranged such that the major axis direction extends along the long side direction of the metal base plate.
  • the flanges 13g1 and 13g2 may be roughly diamond-shaped plates.
  • the flanges 13g1 and 13g2 can be joined by brazing, for example, with a washer made of a clad material of a brazing material and an aluminum material around the introduction port 13e and the discharge port 13f. In addition to the washer, the flanges 13g1 and 13g2 may be fixed by bonding.
  • the flanges 13g1 and 13g2 are made of a material and a structure having sufficient strength for bolt fastening.
  • the flanges 13g1 and 13g2 have main surfaces on the side far from the metal base plate 12. Each main surface of the flanges 13g1 and 13g2 may be parallel to the front surface of the metal base plate 12, or may be a flat surface.
  • the flange 13g1 and the flange 13g2 may be disposed at positions opposite to each other with the cooling case 13 interposed therebetween.
  • the flange 13g1 includes an opening 13eg that is a first opening disposed to face the introduction port 13e.
  • the flange 13g2 includes an opening 13fg that is a second opening disposed so as to face the discharge port 13f.
  • two flanges 13g1 are arranged with the opening 13eg interposed therebetween, and a bolt hole 13h which is a set of first bolt holes is formed.
  • Two flanges 13g2 are arranged with an opening 13fg interposed therebetween, and a bolt hole 13h which is a set of second bolt holes is formed.
  • bolt holes 13h are formed at the same intervals as the bolt holes 12a formed in the metal base plate 12, and are arranged at the same positions as the bolt holes 12a. These bolt holes 13h connect the bolt holes for attaching the power semiconductor module 1 to the flow path member 31 (see FIG. 7), and the inlet and outlet of the power semiconductor module to the flow path of the flow path member 31. Also serves as a bolt hole.
  • Each of the flanges 13g1 and 13g2 may include one or more sets of bolt holes 13h.
  • a line segment connecting a pair of bolt holes of the flange 13g1 joined to the inlet portion 13c and a line segment connecting a set of bolt holes of the flange 13g2 joined to the outlet portion 13d are substantially parallel to each other. Is preferred. In the illustrated embodiment, the line segments extend substantially along the long side direction of the metal base plate, and are therefore substantially parallel.
  • the flange 13g1 and the flange 13g2 may be disposed with two opposing side walls 13b among the four side walls 13b of the cooling case 13 interposed therebetween.
  • FIG. 3 shows an exploded perspective view of the power semiconductor module 1.
  • the resin case 11 is made of an insulating resin such as PPS resin or urethane resin, and has a frame shape having an opening in the center from the top surface to the bottom surface.
  • External terminals 14A to 14E are integrally attached to the resin case 11 by insert molding or the like.
  • the through hole 11a can be formed at the time of insert molding.
  • the metal base plate 12 has a rectangular front surface and back surface that are substantially the same size as the resin case 11.
  • the metal base plate 12 is made of a metal having good thermal conductivity, such as aluminum or an aluminum alloy, or a composite material (cladding material) of these metals and a brazing material.
  • the back surface of the insulating substrate 15 as a specific example of the laminated substrate, that is, the fourth surface is bonded by a bonding material such as solder, brazing material, or sintered material.
  • three insulating substrates 15 are arranged in a line along the longitudinal direction at the center of the metal base plate 12 in the short direction.
  • Each insulating substrate 15 has four semiconductor chips 16 mounted on the front surface of one insulating substrate 15, that is, the third surface.
  • the illustrated semiconductor chip 16 of the present embodiment is an example of a reverse conducting IGBT (RC-IGBT) in which IGBT and FWD are integrated into one chip.
  • RC-IGBT reverse conducting IGBT
  • a total of two sets of two semiconductor chips connected in parallel on one insulating substrate 15 constitute an upper arm and a lower arm in one phase constituting the inverter circuit.
  • the upper arm is composed of two semiconductor chips 16A that are first semiconductor elements connected in parallel.
  • the lower arm is constituted by two semiconductor chips 16B which are second semiconductor elements connected in parallel.
  • the three insulating substrates 15 of the metal base plate 12 constitute the U phase, V phase, and W phase of the inverter circuit.
  • a set of external terminals 14 ⁇ / b> A, 14 ⁇ / b> D, 14 ⁇ / b> E is electrically connected to the U-phase semiconductor chip 16.
  • a set of external terminals 14B, 14D, and 14E is electrically connected to the V-phase semiconductor chip 16.
  • a set of external terminals 14C, 14D, and 14E are electrically connected to the W-phase semiconductor chip 16.
  • a through hole 11a may be disposed between the external terminals 14A and 14B.
  • a through hole 11a may be disposed between the external terminals 14B and 14C.
  • These through holes 11a correspond to a set of bolt holes 13h of the flange 13g2. Further, a through hole 11a may be arranged between the U-phase external terminals 14D and 14E and the V-phase external terminals 14D and 14E. A through hole 11a may be disposed between the V-phase external terminals 14D and 14E and the W-phase external terminals 14D and 14E. These through holes 11a correspond to a set of bolt holes 13h of the flange 13g1.
  • the material of the cooling case 13 is the same as that of the metal base plate 12 because the thermal expansion coefficients of both can be made the same.
  • Fins 17 as heat sinks are accommodated in a substantially rectangular space surrounded by the bottom wall 13a and the side wall 13b.
  • the fins 17 have a thin plate shape, and a plurality of fins 17 are arranged at intervals along the short direction of the cooling case 13.
  • the upper ends of the fins 17 are joined to the back surface of the metal base plate 12 by brazing. Thereby, the heat generated from the semiconductor chip 16 is conducted to the fins 17 through the insulating substrate 15 and the metal base plate 12.
  • a flow path 13i of the coolant introduced from the outside through the introduction port 13e is formed between the inlet portion 13c and the fin. Further, a channel 13j is formed between the outlet portion 13d and the fins 17 for discharging the coolant flowing through the gaps between the fins toward the discharge port 13f.
  • the cooling water supplied from the inlet portion 13c flows through the gaps of the fins 17 through the flow paths 13i, and flows through the flow paths 13j. It passes through the outlet 13f of the outlet 13d.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG.
  • the insulating substrate 15 includes a ceramic insulating plate 15a, a circuit board 15b made of copper foil or the like selectively formed on the front surface of the ceramic insulating plate 15a, and copper formed on the back surface of the ceramic insulating plate 15a.
  • a metal plate 15c made of foil or the like is bonded together.
  • the circuit board 15b and the semiconductor chip 16 are joined by, for example, solder 18 as a joining material.
  • the joining of the metal plate 15c and the metal base plate 12 is made of, for example, solder 18 as a joining material.
  • a brazing material or a sintered material may be used as the bonding material.
  • the insulating substrate 15 and the semiconductor chip 16 in the resin case 11 are sealed with a sealing material made of an insulating resin such as an epoxy resin or an insulating gel such as silicone in order to enhance the insulating property.
  • a sealing material made of an insulating resin such as an epoxy resin or an insulating gel such as silicone in order to enhance the insulating property.
  • FIG. 4 illustration of bonding wires and the like electrically connected to the electrodes formed on the surface of the semiconductor chip 16 is omitted.
  • the sealing material injected into the frame of the resin case 11 and the lid attached to the upper surface of the resin case 11 are also omitted.
  • FIG. 5 shows a plan view of the power semiconductor module 1 of FIG. In order to facilitate understanding, this plan view shows a state in which the insulating substrate 15 and the semiconductor chip 16 disposed in the resin case 11 are visible without showing a lid, a sealing material, and a bonding wire. .
  • the power semiconductor module 1 is a 6-in-1 type power semiconductor module that constitutes an inverter circuit as described above. This inverter circuit is shown in FIG.
  • the four semiconductor chips 16 bonded to one insulating substrate 15 constitute an upper arm and a lower arm in one phase as described above. More specifically, in FIG. 5, two semiconductor chips 16A arranged along the short side direction of the metal base plate 12 constitute an upper arm, and the semiconductor chip 16B constitutes a lower arm.
  • Two semiconductor chips 16 ⁇ / b> A corresponding to the upper arm are arranged along the moving direction of the coolant flowing between the fins 17 immediately below the metal base plate 12.
  • the two semiconductor chips 16B corresponding to the lower arm are arranged along the moving direction of the coolant.
  • the power semiconductor module 1 of the present embodiment includes flanges 13g1 and 13g2 at the inlet portion 13c and the outlet portion 13d of the cooling case 13, respectively, a member having an external flow path without using a pipe, that is, a flow path
  • the member 31 can be connected. Therefore, even if it is a vehicle-mounted power semiconductor module with a limited installation space, the power semiconductor module can be easily attached. Further, since pipes and hoses are not used, stress is not applied to the connection part and the cooling body for the handling of the pipes and hoses, and the deterioration of reliability can be prevented.
  • a pair of bolt holes 13h is formed on the flange 13g1 so as to be disposed with an opening 13eg connected to the inlet 13e interposed therebetween.
  • the flange 13g2 also has a pair of bolt holes 13h that are arranged with two openings 13fg connected to the discharge port 13f. These bolt holes 13 h are arranged at the same positions at the same intervals as the through holes 11 a of the resin case 11 and the bolt holes 12 a of the metal base plate 12.
  • the bolt holes 13h, the through holes 11a, and the bolt holes 12a may be arranged so that the bolts can penetrate in the thickness direction from the upper surface to the bottom surface of the power semiconductor module 1.
  • the three holes are arranged so that the axes of the bolt hole 13h, the through hole 11a, and the bolt hole 12a are coaxial.
  • the cross-sectional shape of each hole is a circle, an ellipse, an ellipse or the like, preferably a circle.
  • the flanges 13g1 and 13g2 are provided with one or more bolt holes 13h across the opening 13eg connected to the inlet 13e or the opening 13fg connected to the outlet 13f, so that the inlet 13e and the outlet 13f Since the bolt fastening force for connecting the flow path of the flow path member acts evenly in the vicinity of the inlet 13e and the outlet 13f, it is possible to prevent liquid leakage near the inlet 13e or the outlet 13f. it can.
  • the flanges 13g1 and 13g2 are disposed on the bottom surface side of the inlet portion 13c and the bottom surface side of the outlet portion 13d, respectively.
  • the power semiconductor module of the type in which the coolant flows from the bottom surface side of the cooling case 13 can be reduced in height, which is advantageous for thinning.
  • the flange 13g1 is provided at the tip of the inlet portion 13c and the flange 13g2 is provided at the tip of the outlet portion 13d.
  • members other than the flange are not excluded, It may be an attachment having a similar function.
  • FIG. 7 is a perspective view of the power semiconductor module 1 and the flow path member 31. A cross section is shown partially.
  • the power semiconductor module 1 can be the same as the power semiconductor module 1 shown in FIGS. Therefore, in FIG. 7, the power semiconductor module 1 and its members are denoted by the same reference numerals as those in FIGS. 1 to 6, and the redundant description is omitted below.
  • the flow path member 31 is a substantially rectangular parallelepiped in this embodiment shown in FIG. 7, and is attached so that the bottom surface of the cooling case 13 of the power semiconductor module 1 faces the top surface thereof.
  • a protrusion 31a1 that contacts the flange 13g1 of the power semiconductor module 1
  • a protrusion 31a2 that contacts the flange 13g2
  • a portion 31d is formed.
  • these convex portions 31 a 1, 31 a 2, and 31 d are not essential on the upper surface of the flow path member 31.
  • the portion where the flange 13g1 of the power semiconductor module 1 abuts on the upper surface of the flat flow path member 31 may be used as the first connection portion.
  • the portion of the upper surface of the flat flow path member 31 with which the flange 13g2 abuts may be used as the second connection portion.
  • a protrusion including the bolt hole 12 a of the metal base plate 12 may abut on the upper surface of the flat flow path member 31.
  • the convex portion 31a1 that contacts the flange 13g1 is formed with an opening 31b1 of the coolant introduction flow passage 31f formed inside the flow passage member 31, and is connected to the introduction port 13e via the opening 13eg of the flange 13g1. To do.
  • an opening 31b2 of the coolant discharge passage 31g is formed in the convex portion 31a2 that contacts the flange 13g2, and is connected to the discharge port 13f through the opening 13fg of the flange 13g2.
  • the coolant introduction flow path 31 f and the discharge flow path 31 g can be arbitrarily arranged inside the flow path member 31.
  • a pair of female screw holes 31c for fastening a bolt are formed in the convex portion 31a1 with the opening 31b1 interposed therebetween.
  • a pair of female screw holes 31c are also arranged on the convex portion 31a2 with the opening 31b2 interposed therebetween.
  • bolt is formed in the convex part 31d.
  • a pair of convex portions 31d are arranged with the convex portion 31a1 interposed therebetween, and the female screw hole 31c and the female screw hole 31e are aligned.
  • a pair of convex portions 31d are arranged with the convex portion 31a1 interposed therebetween.
  • These female screw holes 31 c and 31 e are arranged to face the through hole 11 a of the resin case 11 of the power semiconductor module 1, the bolt hole 12 a of the metal base plate 12, and the bolt hole 13 h of the cooling case 13.
  • the power semiconductor module 1 is fixed to the flow path member 31 by screwing the male screw and female screw holes of the bolts penetrating these bolt holes, and the introduction port 13e and the discharge port 13f of the power semiconductor module 1 are respectively provided.
  • the flow path member 31 is connected to the opening 31b1 of the introduction flow path 31f and the opening 31b2 of the discharge flow path 31g.
  • the flow path member 31 is a substantially rectangular parallelepiped in the example illustrated in FIG. 7, but the shape is not limited as long as the power semiconductor module 1 can be attached.
  • the flow path member 31 is not limited to an independent member having the coolant introduction flow path 31f and the discharge flow path 31g, and may be, for example, an automobile engine member or a part of a member for cooling the engine. .
  • FIG. 8 is a front view of the power semiconductor module structure 3
  • FIG. 9 is a partially enlarged view of a portion IX in FIG. 8 and 9, the power semiconductor module 1 and the flow path member 31 are denoted by the same reference numerals as those in FIGS. 1 to 7, and redundant descriptions are omitted below.
  • the power semiconductor module structure 3 shown in FIGS. 8 and 9 is obtained by fastening and fixing the power semiconductor module 1 and the flow path member 31 of the second embodiment with bolts 33. As shown in FIG.
  • an O-ring 32 is disposed between the flange 13g1 and the convex portion 31a1, thereby preventing liquid leakage.
  • an O-ring 32 is also disposed between the flange 13g2 and the convex portion 31a2. It is preferable that the O-ring 32 is formed in a groove on the surface of the convex portions 31a1 and 31a2 and accommodated in the groove.
  • the power semiconductor module structure 3 of the present embodiment it is possible to attach the power semiconductor module 1 without using a pipe, or it is possible to reduce the labor of the installation work.
  • FIG. 10A is a perspective view of the power semiconductor module 2 as viewed obliquely from above
  • FIG. 10B is a perspective view of the power semiconductor module 2 as viewed from the back side.
  • the power semiconductor module 2 shown in FIGS. 10A and 10B is different from the power semiconductor module 1 shown in FIGS. 1 and 2 in that a cooling case 23 having a bottom wall 23a and a side wall 23b has an inlet for a coolant.
  • the part 23 c and the outlet part 23 d are located in the vicinity of the diagonal corners of the metal base plate 12.
  • Flange 23g1 and 23g2 are provided at the leading ends of the inlet 23e of the inlet 23c and the outlet 13f of the outlet 23d, respectively.
  • the flanges 23g1 and 23g2 have openings 23eg and 23fg, respectively, a pair of bolt holes 23h arranged with the opening 23eg interposed therebetween, and a pair of bolt holes 23h arranged with the opening 23fg interposed therebetween. And further comprising.
  • One bolt hole 23h of the flange 23g1 is arranged with respect to the through hole 11a and the bolt hole 12a so that the bolt can penetrate in the thickness direction from the upper surface to the bottom surface of the power semiconductor module 1.
  • One bolt hole 23h of the flange 23g2 is similarly arranged.
  • the power semiconductor module 2 of the present embodiment is provided with flanges 23g1 and 23g2 at the tip of the inlet portion 23c and the tip of the outlet portion 23d of the cooling case 23 in the same manner as the power semiconductor module 1 of the first embodiment, Etc., it is possible to connect to the flow path member suitable for the position of the tip of the inlet 23c and the outlet 23d of the power semiconductor module 2. Therefore, even if it is a vehicle-mounted power semiconductor module with a limited installation space, the power semiconductor module can be easily attached.
  • the positions of the inlet and outlet portions of the cooling case having the flange in the power semiconductor module of the present invention are not particularly limited. .
  • FIGS. 11A and 11B For comparison, a conventional power semiconductor module 100 is shown in FIGS. 11A and 11B.
  • FIG. 11A is a perspective view of the power semiconductor module 100 as viewed from above
  • FIG. 11B is a perspective view of the power semiconductor module 100 as viewed from the back.
  • an introduction side pipe 114 and a discharge side pipe 115 are attached to a cooling body 113.
  • the power semiconductor module 100 including the pipe 114 and the pipe 115 is not easily attached and the hose is attached to the pipe 114 and the pipe 115.
  • the mounting operation of the power semiconductor module 100 and the mounting operation of the hose to the pipe 114 and the pipe 115 are separate, it takes time and effort. The effect of the present invention is apparent by comparing the conventional power semiconductor module 100 shown in FIGS. 11A and 11B with the power semiconductor modules 1 and 2 of the first and fourth embodiments of the present invention described above.
  • FIG. 12 is a plan view of the power semiconductor module 4.
  • the structure below the resin case 11 can include the metal base plate 12 and the cooling case 13 as in the power semiconductor module 1 shown in FIGS.
  • the front surface of the metal base plate 12 is bonded to the bottom surface of the resin case 11, and the cooling case 13 is bonded to the back surface of the metal base plate 12.
  • the fins arranged in the cooling case 13 have a thin plate shape, and a plurality of fins can be arranged along the short direction of the cooling case 13 at intervals.
  • the resin case 11 is made of an insulating resin such as PPS resin or urethane resin, and has a frame shape having an opening in the center from the top surface to the bottom surface on the opposite side.
  • the upper surface is the front side of the paper
  • the bottom surface is the rear side of the paper.
  • External terminals 14A, 14B, 14C, 141D, 141E, 142D, 142E, 143D, and 143E are integrally attached to the resin case 11 by insert molding or the like.
  • the external terminal 14A is a U terminal
  • the external terminal 14B is a V terminal
  • the external terminal 14C is a W terminal
  • the external terminals 141D, 142D, and 143D are positive terminals (P terminals)
  • the external terminals 141E, 142E, and 143E are negative terminals (N terminals). It is.
  • the metal base plate 12 has a rectangular front surface and a reverse surface opposite to the resin case 11.
  • the metal base plate 12 is made of a metal having good thermal conductivity, such as aluminum or an aluminum alloy, or a composite material (cladding material) of these metals and a brazing material.
  • the back surface of the insulating substrate 15 as a specific example of the laminated substrate, that is, the fourth surface is bonded by a bonding material such as solder, brazing material, or sintered material.
  • the insulating substrate 15 has a metal plate (not shown) formed on the lower surface of the ceramic insulating plate 15a, and circuit boards 15ba, 15bb, 15bc, 15bd, 15be, and 15bf formed on the upper surface of the ceramic insulating plate 15a. Further, the semiconductor chips 16A1 and 16A2 are arranged on the circuit board 15bf via solder, respectively. Further, on the circuit board 15bb, the semiconductor chips 16B1 and 16B2 are respectively arranged via solder.
  • Such an insulating substrate 15 is accommodated in the opening of the resin case 11.
  • a wire 19 is connected between the electrodes.
  • the main electrodes formed on the front surfaces of the semiconductor chips 16A1 and 16A2 on the circuit board 15bf are connected to the circuit board 15bb by wires 19.
  • a main electrode formed on the front surface of the semiconductor chips 16B1 and 16B2 on the circuit board 15bb and the circuit board 15be are connected by a wire 19.
  • the power semiconductor module 4 is a 6 in 1 type power semiconductor module that constitutes an inverter circuit.
  • An example of this inverter circuit is shown in FIG.
  • Four semiconductor chips 16A1, 16A2, 16B1, and 16B2 bonded to one insulating substrate 15 constitute a pair of upper arm Au and lower arm Al, that is, a leg in one phase.
  • the two semiconductor chips 16A1 and 16A2 arranged along the short side direction of the metal base plate 12 are one phase, for example, the upper arm Au in the U phase, constituting the inverter circuit.
  • the semiconductor chip 16B1 and the semiconductor chip 16B2 constitute the lower arm Al.
  • Two semiconductor chips 16 ⁇ / b> A ⁇ b> 1 and 16 ⁇ / b> A ⁇ b> 2 corresponding to the upper arm Au are arranged along the moving direction of the coolant flowing between the fins 17 immediately below the metal base plate 12.
  • two semiconductor chips 16B1 and 16B2 corresponding to the lower arm Al are arranged along the moving direction of the coolant.
  • each insulating substrate 15 has four semiconductor chips 16A1, 16A2, 16B1, and 16B2 mounted on the front surface of one insulating substrate 15, that is, the third surface.
  • the illustrated semiconductor chips 16A1, 16A2, 16B1, and 16B2 are all examples of a reverse conducting IGBT (RC-IGBT) in which IGBT and FWD are integrated into one chip.
  • RC-IGBT reverse conducting IGBT
  • a total of two sets of two semiconductor chips that are electrically connected in parallel on one insulating substrate 15 constitute an upper arm Au and a lower arm Al in one phase constituting the inverter circuit.
  • the upper arm Au is composed of two semiconductor chips 16A1 and 16A2 which are first semiconductor elements connected in parallel on the circuit board 15bf.
  • the lower arm Al is composed of two semiconductor chips 16B1 and 16B2 which are second semiconductor elements connected in parallel on the circuit board 15bb.
  • the three insulating substrates 15 of the metal base plate constitute the U phase, V phase, and W phase of the inverter circuit.
  • Each of the U phase, the V phase, and the W phase includes a pair of legs L U , L V , and L W including an upper arm Au and a lower arm Al.
  • the legs L U , L V , and L W are respectively formed on the insulating substrate 15, the first semiconductor element that constitutes the upper arm Au, the second semiconductor element that constitutes the lower arm Al, the first semiconductor element, and the second semiconductor element.
  • the specific one phase of the U phase, the V phase, and the W phase will be described separately from one phase different from the specific one phase.
  • the specific one phase includes a first arm composed of an upper arm and a lower arm.
  • One phase that includes a set (leg) and is different from the specific one phase includes a second set (leg) that includes an upper arm and a lower arm.
  • the insulating substrate 15 of the first leg is changed to the first phase. This is referred to as one laminated substrate, and the second leg insulating substrate 15 is referred to as a second laminated substrate.
  • a semiconductor element mounted on the first laminated substrate and constituting the upper arm is referred to as a first semiconductor element
  • a semiconductor element constituting the lower arm is referred to as a second semiconductor element
  • a semiconductor element mounted on the second laminated substrate and constituting the upper arm is referred to as a third semiconductor element
  • a semiconductor element constituting the lower arm is referred to as a fourth semiconductor element.
  • a power supply terminal that supplies power to the first semiconductor element and the second semiconductor element is referred to as a first power supply terminal
  • a power supply terminal that supplies power to the third semiconductor element and the fourth semiconductor element is referred to as a second power supply terminal.
  • the power semiconductor module 4 of the present embodiment includes a first set including an upper arm and a lower arm, and a second set including an upper arm and a lower arm.
  • the first set includes at least a first laminated substrate as a laminated substrate, a first semiconductor element constituting an upper arm and a second semiconductor element constituting a lower arm as semiconductor elements, and the first semiconductor element and the second semiconductor. And a first power supply terminal for supplying power to the element.
  • the second set includes at least a second laminated substrate as a laminated substrate, a third semiconductor element constituting an upper arm and a fourth semiconductor element constituting a lower arm, and a third semiconductor element and a fourth semiconductor element as semiconductor elements. And a second power supply terminal for supplying power to the power supply.
  • the power terminals of the U-phase leg are respectively a positive terminal 141D that can be connected to the positive side of the external power source and a negative terminal 141E that can be connected to the negative side of the external power source. May be included.
  • Each of the power terminals of the V-phase leg may include a positive terminal 142D that can be connected to the positive side of the external power supply and a negative terminal 142E that can be connected to the negative side of the external power supply.
  • the power terminals of the W-phase leg may include a positive terminal 143D that can be connected to the positive side of the external power supply and a negative terminal 143E that can be connected to the negative side of the external power supply.
  • the U-phase leg L U is the first leg and one of the V-phase leg L V and the W-phase leg L W , for example, the V-phase leg L V is the second leg
  • the positive terminal 141D is a first plus terminal
  • minus terminal 141E is a first minus terminal
  • plus terminal 143D is a second plus terminal
  • minus terminal 142E is a second minus terminal.
  • the U-phase plus terminal 141D, the V-phase plus terminal 142D, and the W-phase plus terminal 143D are different from each other, independent, and may have the same shape.
  • the U-phase minus terminal 141E, the V-phase minus terminal 142E, and the W-phase minus terminal 143E may be different from each other and independent, and may have the same shape.
  • the U-phase plus terminal 141D, the V-phase plus terminal 142D, and the W-phase plus terminal 143D may have the same dimensions, and the U-phase minus terminal 141E, the V-phase minus terminal 142E, and the W-phase minus terminal 143E may have the same dimensions.
  • the U-phase plus terminal 141D includes a body portion 141Db and a leg portion 141Dl.
  • the V-phase plus terminal 142D includes a trunk portion 142Db and a leg portion 142Dl.
  • the W-phase plus terminal 143D includes a body portion 143Db and a leg portion 143Dl.
  • each of the leg portions 141Dl, 142Dl, and 143Dl includes three ribbon-like members, and the ribbon-like members are connected to the body portions 141Db, 142Db, and 143Db. Three ribbon-like members are arranged in parallel at each terminal.
  • the negative terminal 141E for U phase includes a body portion 141Eb and a leg portion 141E1.
  • the V-phase negative terminal 142E includes a trunk portion 142Eb and a leg portion 142E1.
  • the W-phase negative terminal 143E includes a body portion 143Eb and a leg portion 143El.
  • each of the leg portions 141E1, 142E1, and 143E1 includes three ribbon-like members, and the ribbon-like members are connected to the body portions 141Eb, 142Eb, and 143Eb. Three ribbon-like members are arranged in parallel at each terminal.
  • the extending direction of the ribbon-shaped member of the U-phase plus terminal 141D, that is, the leg portion 141D1, and the extending direction of the ribbon-shaped member of the U-phase minus terminal 141E, that is, the leg portion 141E1, may be arranged in parallel.
  • the extending direction of the leg 142Dl of the V-phase plus terminal 142D and the leg 142El of the V-phase minus terminal 142E may be arranged in parallel.
  • the extending direction of the leg portion 143Dl of the W-phase plus terminal 143D and the leg portion 143El of the W-phase minus terminal 143E may be arranged in parallel.
  • the U-phase plus terminal 141D, the V-phase plus terminal 142D, and the W-phase plus terminal 143D are arranged so that the extending direction of the leg 141Dl and the extending direction of the leg 142Dl and the leg 143Dl are parallel to each other. May be.
  • the U-phase minus terminal 141E, the V-phase minus terminal 142E, and the W-phase minus terminal 143E are arranged so that the extending direction of the leg portion 141El and the extending direction of the leg portion 142El and the leg portion 143El are parallel to each other. May be. Since the extending directions of the leg portions of the power supply terminals are parallel to each other, the inductance can be reduced.
  • a capacitor such as a film capacitor
  • a capacitor may be connected to each of the power terminals of the legs L U , L V , and L W. Independent film capacitors are connected between the U-phase plus terminal 141D and the minus terminal 141E, between the V-phase plus terminal 142D and the minus terminal 142E, and between the W-phase plus terminal 143D and the minus terminal 143E. Alternatively, a common film capacitor may be connected.
  • a common film capacitor 25 is connected to the circuit diagram shown in FIG. 14 is provided with a film capacitor 25A between a U-phase plus terminal 141D and a minus terminal 141E, and a V-phase plus terminal 142D and a minus terminal 142E with a film capacitor 25B.
  • a film capacitor 25C is provided between the W-phase plus terminal 143D and the minus terminal 143E.
  • the illustrated film capacitor 25A, film capacitor 25B, and film capacitor 25C are independent film capacitors.
  • the film capacitor 25A, the film capacitor 25B, and the film capacitor 25C may be accommodated in a case or the like and integrated.
  • 14 shows a mode in which the inside of the resin case 11 of the power semiconductor module 4 shown in FIG. 12 is sealed with a sealing material, and the upper end of the opening of the resin case 11 is covered with the lid 20. Yes.
  • the total capacitance of the capacitors is preferably 100 ⁇ F to 3000 ⁇ F, and preferably 400 ⁇ F to 600 ⁇ F in total.
  • the power semiconductor module 4 of this embodiment includes a single positive terminal common to the U phase, the V phase, and the W phase, and a U phase by providing each phase leg with a power supply terminal including a plus terminal and a minus terminal independently.
  • the spike voltage generated during the inverter operation can be reduced. More specifically, in a conventional power semiconductor module having a three-phase inverter circuit and having a smoothing capacitor connected between the positive terminal and the negative terminal, the spike voltage is different from that of one specific phase and the other phase. This occurs in a superimposed manner between the positive terminal and the negative terminal at the time of turn-off.
  • the length of the plus terminal and the minus terminal of each leg inside the power semiconductor module 4 is provided by providing a pair of a plus terminal and a minus terminal independently for each phase. Since the distance from the positive terminal and the negative terminal of each leg to the capacitor can be shortened, the spike voltage can be reduced as compared with the prior art.
  • FIG. 15 is a graph showing the spike voltage measurement results of the power semiconductor module 4 of this embodiment.
  • FIG. 16 is a graph showing a measurement result of spike voltage of a conventional power semiconductor module.
  • the superimposed spike voltage ⁇ V PVNV generated at the V-phase power supply terminal generated at the U-phase turn-off time uses a common power supply terminal for the three phases. It is smaller than the conventional module. In the illustrated example, even when the switching speed at turn-off is about 1.5 times faster than that of the conventional module, ⁇ V PVNV is about 1/5, that is, about 20V.
  • the power semiconductor module 4 of the present embodiment can include the same cooler as the power semiconductor module 1 of the first embodiment. Therefore, the power semiconductor module can be easily attached even when it is used for in-vehicle applications where the installation space is limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

第1面及び第2面を備える金属ベース板と、底壁及び前記底壁の周りに形成された側壁を有し、前記側壁の一端が前記金属ベース板の第2面に接合され、前記金属ベース板、前記底壁及び前記側壁により囲まれた空間内に冷却液を流通可能な冷却ケースと、を備え、前記冷却ケースが、前記底壁及び前記底壁のいずれかに接続するとともに前記金属ベース板の第2面の周縁に沿って配置された冷却液の入口部及び出口部を有し、前記入口部の導入口側に配置された第1フランジ及び前記出口部の排出口側に配置された第2フランジを備えた。

Description

パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
 本発明は、半導体素子を冷却するための冷却液を循環流通させる冷却器を備えるパワー半導体モジュール、このパワー半導体モジュールに組み合わされる流路部材及びパワー半導体モジュール構造体に関する。
 ハイブリッド自動車や電気自動車等に代表される、モータを使用する機器には、省エネルギーのために電力変換装置が利用されている。この電力変換装置には、広くパワー半導体モジュールが利用されている。このパワー半導体モジュールは、大電流を制御するためにパワー半導体素子を備えている。
 パワー半導体素子は、大電流を制御する際の発熱量が大きい。また、パワー半導体モジュールの小型化や軽量化が要請され、出力密度は上昇する傾向にあるため、パワー半導体素子を複数備えたパワー半導体モジュールでは、その冷却方法が電力変換効率を左右する。
 パワー半導体モジュールの冷却効率を向上させるために、液冷式の冷却体を備え、この冷却体によりパワー半導体素子の発熱を冷却するパワー半導体モジュールがある。このパワー半導体モジュールの冷却体は、パワー半導体素子の発熱を伝熱させる金属ベース板と、金属ベース板の裏面に接合されたヒートシンクと、金属ベース板に接合され、ヒートシンクを収容する冷却ケースとを備え、冷却ケースに形成された導入口及び排出口を通して冷却ケース内の空間に冷却液を流通できるような構造を有している(特許文献1)。導入口及び排出口には、例えばニップルが取り付けられて、それぞれ外部パイプ又は外部ホースが接続される。
 ハイブリッド自動車や電気自動車は、パワー半導体モジュールの取り付けスペースが限られている。したがって、パワー半導体モジュールの取り付け及び冷却ケースの導入口及び排出口への外部パイプの取り付けが容易でない場合がある。また、パワー半導体モジュールの取り付け作業と、冷却ケースの導入口及び排出口への外部パイプの取り付け作業とを別個に行う必要があり、作業に手間がかかっていた。
 パワー半導体モジュールの冷却部材に関して、追加の冷却部材又は終端プレートとの接続を容易にするために、入口通路、出口通路に接続プレートを含むものがある(特許文献2)。しかし、この冷却部材は、半導体モジュールが装着される頂表面を有するプラスチックベースの側面に入口通路、出口通路が設けられているので、冷却部材を取り付けた半導体モジュールは嵩高になってしまう。また、冷却部材の接続プレートは、外部パイプと接続するものではないため、外部パイプの取り付けの容易さは十分ではなかった。更に、ハイブリッド自動車や電気自動車等へのパワー半導体モジュールの取り付け作業と、冷却部材の入口通路及び出口通路への外部パイプの取り付け作業とを別個に行う必要がある問題は残されていた。
特開2012-64609号公報 特表2013-51340号公報
 本発明は、このような点に鑑みてなされたものであり、パワー半導体モジュールの冷却体の導入口及び排出口への接続を容易にすることができ、また、パワー半導体モジュールの取り付け作業を容易にすることができるパワー半導体モジュール、このパワー半導体モジュールに組み合わされる流路部材及びパワー半導体モジュール構造体を提供することを目的とする。
 上記目的を達成するために本発明の実施態様として、以下のパワー半導体モジュールが提供される。
 パワー半導体モジュールは、第1面及び第2面を備える金属ベース板と、前記第1面に接合され、第3面及び第4面を備える積層基板と、前記第3面に搭載された半導体素子と、前記金属ベース板の第1面側に配置され、前記積層基板及び前記半導体素子を囲む樹脂ケースと、冷却ケースとを備える。冷却ケースは、底壁及び前記底壁の周りに形成された側壁を有し、前記側壁の一端が前記金属ベース板の第2面側に接合され、前記金属ベース板、前記底壁及び前記側壁により囲まれた空間内に冷却液を流通可能である。前記冷却ケースは、前記底壁及び前記側壁のいずれかに接続するとともに前記金属ベース板の第2面の周縁に沿って配置された冷却液の入口部及び出口部を有し、前記入口部の導入口側に配置された第1フランジ及び前記出口部の排出口側に配置された第2フランジを備える。
 上記目的を達成するため本発明の他の実施態様として、以下の流路部材が提供される。
 上記パワー半導体モジュールに組み合わされる流路部材である。前記パワー半導体モジュールが、金属ベース板と、底壁及び前記底壁の周りに形成された側壁を有し、前記側壁の一端が前記金属ベース板の裏面に接合され、前記金属ベース板、前記底壁及び前記側壁により囲まれた空間内に冷却液を流通可能な冷却ケースとを備える。さらに、前記冷却ケースは、前記底壁及び前記側壁のいずれかに接続するとともに前記金属ベース板の裏面の周縁に沿って配置された冷却液の入口部及び出口部を有し、前記入口部の導入口側に配置された第1フランジ及び前記出口部の排出口側に配置された第2フランジを備える。前記流路部材は、前記第1フランジに接続し得る第1接続部と、前記第2フランジに接続し得る第2接続部と、前記第1接続部に接続し前記冷却液を流通可能な第1流路と、前記第2接続部に接続し前記冷却液を流通可能な第2流路とを備え、前記冷却ケースの底面に対向して配置され得る。
 上記パワー半導体モジュールと上記流路部材が組み合わされた本発明のパワー半導体モジュール構造体は、以下の態様を有する。
 前記パワー半導体モジュールと、前記流路部材とを組み合わされてなるパワー半導体モジュール構造体。
 本発明のパワー半導体モジュールによれば、パワー半導体モジュールの冷却体の導入口及び排出口への接続を容易にすることができ、また、パワー半導体モジュールの取り付け作業を容易にすることができる。
本発明のパワー半導体モジュールの一実施形態の外観を示す斜視図である。 図1のパワー半導体モジュールを裏面から見た斜視図である。 図1のパワー半導体モジュールの分解斜視図である。 図1のIV-IV線の断面図である。 図1のパワー半導体モジュールの平面図である。 図1のパワー半導体モジュールのインバータ回路の回路図である。 本発明の流路部材の一実施形態の斜視図である。 本発明のパワー半導体モジュール構造体の一実施形態の正面図である。 図8のパワー半導体モジュール構造体の部分拡大図である。 本発明のパワー半導体モジュールの別の実施形態の外観を上方から見た斜視図である。 本発明のパワー半導体モジュールの別の実施形態の外観を裏面側から見た斜視図である。 従来のパワー半導体モジュールの外観を上方から見た斜視図である。 従来のパワー半導体モジュールの外観を裏面側から見た斜視図である。 本発明のパワー半導体モジュールの一実施形態の平面図である。 図12のパワー半導体モジュールのインバータ回路の回路図である 本発明のパワー半導体モジュールの一実施形態の平面図である。 スパイク電圧の計測結果を示すグラフである。 スパイク電圧の計測結果を示すグラフである。
 本発明のパワー半導体モジュールの実施形態を、図面を用いて具体的に説明する。以下の説明に表れる「上」、「下」、「底」、「前」、「後」等の方向を示す用語は、添付図面の方向を参照して用いられている。
(実施形態1)
 図1は本発明のパワー半導体モジュールの一実施形態の外観を示す斜視図である。図2は、図1のパワー半導体モジュールを裏面側から見た斜視図である。図1及び図2に示すパワー半導体モジュール1は、インバータ回路を構成する6in1タイプのパワー半導体モジュールである。パワー半導体モジュール1は、金属ベース板12と、半導体チップ16を収容し、底面が金属ベース板12のおもて面に接着された樹脂ケース11と、金属ベース板12の裏面に接合された冷却ケース13とを備えている。
 樹脂ケース11の内部から樹脂ケース11の上面の周縁に沿って外部端子14A~14Eが突出している。また、樹脂ケース11には、その厚さ方向に貫通する貫通孔11aが形成されている。貫通孔11aは、樹脂ケース11の上面の長手方向縁部の両端近傍と、その両端の間で間隔を空けた二か所の合計8個が形成されている。これらの貫通孔11aのうち、樹脂ケース11の長辺側一端部において長手方向の中央寄りに形成された2個の貫通孔11aは、後述する冷却ケース13のフランジ13g1に形成された第1ボルト孔と貫通し得る第1貫通孔である。また樹脂ケース11の長辺側他端部において長手方向の中央寄りに形成された2個の貫通孔11aは、後述する冷却ケース13のフランジ13g2に形成された第2ボルト孔と貫通し得る第2貫通孔である。
 金属ベース板12は、おもて面、すなわち第1面及びおもて面に対向する裏面、すなわち第2面を有する長方形の板である。金属ベース板12は樹脂ケース11と略同じ大きさである。図2に示すように金属ベース板12には、その厚さ方向に貫通するボルト孔12aが形成されている。このボルト孔12aは、樹脂ケース11に形成された貫通孔11aと同じ間隔で形成され、貫通孔11aと同じ位置に配置されている。
 金属ベース板12の裏面に接合された冷却ケース13は、底壁13a及び底壁13aの周りに形成された側壁13bを有し、上端側が開口している。冷却ケース13の上端を金属ベース板12に例えばろう付けにより接合することにより、金属ベース板12と冷却ケース13で囲まれた内部空間が形成されている。図3に示されるように、この内部空間に、ヒートシンクとしてのフィン17が配置されている。金属ベース板12と冷却ケース13とフィン17とにより、半導体チップ16の冷却体が構成される。なお、フィン17は、図示したような薄板形状のものに限られず、ピン状のものでもよい。冷却ケース13の内部空間は外部から供給される冷却液を流通できる。
 冷却ケース13は、長手方向縁部の中央に、冷却液の入口部13c及び出口部13dを有する。入口部13c及び出口部13dは冷却ケース13の側壁に接続するとともに金属ベース板12の裏面の周縁に沿って配置されている。入口部13cはその底面に導入口13eを有し、出口部13dはその底面に排出口13fを有している。これらの底面は金属ベース板12に対し反対側に配置されている。導入口13eを入口部13cの底面に、また、排出口13fを出口部13dの底面にそれぞれ形成することにより、側面に形成する場合に比べて冷却体を構成する冷却ケース13の高さを抑制できるので、小型化、薄型化、軽量化が求められている車載用のパワー半導体モジュールに好ましい。入口部13c及び出口部13dは冷却ケース13の底壁に接続するよう配置されてもよい。
 冷却ケース13は、入口部13cの導入口13e側に第1フランジであるフランジ13g1を備えている。また、冷却ケース13は、出口部13dの排出口13f側に第2フランジであるフランジ13g2を備えている。フランジ13g1、13g2は、概略楕円形の板であり、その長径方向が金属ベース板の長辺方向に沿って延びるように配置されている。フランジ13g1、13g2は、概略ひし形の板であってもよい。フランジ13g1、13g2は、例えば導入口13e及び排出口13fの周囲に、ろう材とアルミ材とのクラッド材からなるワッシャを介在させて、ろう付けすることより接合することができる。ワッシャのほか、接着によってフランジ13g1、13g2を固定してもよい。フランジ13g1、13g2は、ボルト締結に対して十分な強度を持つ材料、構造とする。フランジ13g1、13g2は金属ベース板12から遠い側に主面を備える。フランジ13g1、13g2のそれぞれの主面は、金属ベース板12のおもて面に平行であってよく、平面であってよい。また、フランジ13g1とフランジ13g2は、冷却ケース13を間に挟んで、互いに反対側の位置に配置されてよい。
 フランジ13g1は導入口13eに対向する様に配置された第1開口部である開口部13egを備える。フランジ13g2は排出口13fに対向する様に配置された第2開口部である開口部13fgを備える。さらにフランジ13g1は開口部13egを挟んで配置された2つで一組の第1ボルト孔であるボルト孔13hが形成されている。フランジ13g2は開口部13fgを挟んで配置された2つで一組の第2ボルト孔であるボルト孔13hが形成されている。これらのボルト孔13hは、金属ベース板12に形成されたボルト孔12aと同じ間隔で形成され、ボルト孔12aと同じ位置に配置されている。これらのボルト孔13hは、パワー半導体モジュール1を流路部材31(図7参照)に取り付けるためのボルト孔と、パワー半導体モジュールの導入口及び排出口を流路部材31の流路に接続するためのボルト孔とを兼ねる。フランジ13g1、13g2はそれぞれ一組以上のボルト孔13hを備えてもよい。
 入口部13cに接合されたフランジ13g1の一組のボルト孔間を結ぶ線分と、出口部13dに接合されたフランジ13g2の一組のボルト孔間を結ぶ線分とは、ほぼ平行であることが好ましい。図示した本実施形態では、当該線分が、金属ベース板の長辺方向に沿って延びているので、ほぼ平行である。フランジ13g1及びフランジ13g2は冷却ケース13の4つの側壁13bのうち2つの対向する側壁13bを挟んで配置され得る。
 図3にパワー半導体モジュール1の分解斜視図を示す。樹脂ケース11は、PPS樹脂やウレタン樹脂等の絶縁性樹脂よりなり、上面から底面にかけて貫通する開口を中央に有する枠形状を有している。樹脂ケース11に外部端子14A~14Eが、インサート成形等により一体的に取り付けられている。貫通孔11aは、インサート成形時に形成することができる。
 金属ベース板12は、樹脂ケース11と略同じ大きさになる長方形のおもて面及び裏面を有している。金属ベース板12は、熱伝導性の良好な金属、例えばアルミニウム若しくはアルミニウム合金、又はこれらの金属と、ろう材との複合材料(クラッド材)よりなる。金属ベース板12のおもて面に、積層基板の具体例としての絶縁基板15の裏面、すなわち第4面が、接合材、例えばはんだ、ろう材や焼結材により接合されている。
 図示した本実施形態では3個の絶縁基板15が、金属ベース板12の短手方向の中央に、長手方向に沿って一列に配置されている。各絶縁基板15は、一個の絶縁基板15のおもて面、すなわち第3面上に4個の半導体チップ16を搭載している。図示した本実施形態の半導体チップ16は、いずれもIGBTとFWDとを1チップ化した逆導通IGBT(RC-IGBT)の例である。1つの絶縁基板15上で電気的に並列に接続された2個1組の合計2組の半導体チップが、インバータ回路を構成する一相における上アーム及び下アームを構成している。上アームが、並列接続された第1半導体素子である2個の半導体チップ16Aにより構成されている。下アームが、並列接続された第2半導体素子である2個の半導体チップ16Bにより構成されている。そして、金属ベース板12の3個の絶縁基板15が、インバータ回路のU相、V相及びW相を構成している。U相の半導体チップ16には一組の外部端子14A,14D、14Eが電気的に接続される。V相の半導体チップ16には一組の外部端子14B,14D、14Eが電気的に接続される。また、W相の半導体チップ16には一組の外部端子14C,14D、14Eが電気的に接続される。外部端子14A,14Bの間には貫通孔11aが配置されてよい。外部端子14B,14Cの間には貫通孔11aが配置されてよい。これらの貫通孔11aはフランジ13g2の一組のボルト孔13hに対する。また、U相用の外部端子14D,14E、とV相用の外部端子14D,14Eとの間には貫通孔11aが配置されてよい。V相用の外部端子14D,14EとW相用の外部端子14D,14Eとの間には貫通孔11aが配置されてよい。これらの貫通孔11aはフランジ13g1の一組のボルト孔13hに対する。
 冷却ケース13の材料を金属ベース板12と同じにすると、両者の熱膨張係数を同じにすることができるので好ましい。底壁13aと側壁13bにより囲まれた略直方体の空間に、ヒートシンクとしてのフィン17が収容されている。図3に示した例では、フィン17は薄板形状であり、冷却ケース13の短手方向に沿って複数個がそれぞれ間隔を空けて配置されている。各フィン17の上端は金属ベース板12の裏面に、ろう付けにより接合されている。これにより、半導体チップ16から生じた熱は、絶縁基板15及び金属ベース板12を経てフィン17に伝導される。
 冷却ケース13内の空間において、入口部13cとフィンとの間には、外部から導入口13eを通して導入された冷却液の流路13iが形成されている。また、出口部13dとフィン17との間には、フィン間の間隙を流れた冷却液を、排出口13fに向けて排出させるための流路13jが形成されている。
 薄板形状のフィン17が冷却ケース13の短手方向に沿って配置されることにより、入口部13cから供給される冷却水は、流路13iを通ってフィン17の間隙を流れ、流路13jを通って出口部13dの排出口13fから排出される。
 図4に図1のIV-IV線の断面図を示す。絶縁基板15は、セラミック絶縁板15aと、このセラミック絶縁板15aのおもて面に選択的に形成された銅箔等よりなる回路板15bと、このセラミック絶縁板15aの裏面に形成された銅箔等よりなる金属板15cとを貼り合わせてなる。回路板15bと半導体チップ16との接合は、例えば接合材としてのはんだ18よりなる。金属板15cと金属ベース板12との接合は、例えば接合材としてのはんだ18よりなる。接合材にはろう材や焼結材を用いてもよい。樹脂ケース11内における絶縁基板15及び半導体チップ16は、絶縁性を高めるため、エポキシ樹脂等の絶縁性樹脂又はシリコーン等の絶縁性ゲルよりなる封止材によって封止されている。なお、図4では、半導体チップ16の表面に形成されている電極と電気的に接続しているボンディングワイヤ等については図示を省略している。また、図4では、樹脂ケース11の枠内に注入された封止材及び樹脂ケース11の上面に取り付けられている蓋についても図示を省略している。
 図5に、図1のパワー半導体モジュール1の平面図を示す。なお、この平面図では理解を容易にするために、蓋、封止材及びボンディングワイヤを図示せず樹脂ケース11内に配置された絶縁基板15及び半導体チップ16が見えている状態を示している。パワー半導体モジュール1は、前述したようにインバータ回路を構成する6in1タイプのパワー半導体モジュールである。このインバータ回路を図6に示す。1個の絶縁基板15に接合された4個の半導体チップ16は、前述したように一相における上アーム及び下アームを構成している。より具体的に、図5においては、金属ベース板12の短辺方向に沿って配置された2個の半導体チップ16Aが上アームを、半導体チップ16Bが下アームをそれぞれ構成している。上アームに対応する2個の半導体チップ16Aが、金属ベース板12の直下でフィン17間を流れる冷却液の移動方向に沿って配置されている。下アームに対応する2個の半導体チップ16Bも同様に冷却液の移動方向に沿って配置されている。これにより、上アームを構成する半導体チップ16Aと、下アームを構成する半導体チップ16Bとの冷却効率を等しくすることができる。
 本実施形態のパワー半導体モジュール1は、冷却ケース13の入口部13c及び出口部13dにそれぞれフランジ13g1、13g2を備えていることから、パイプを用いることなく外部の流路を備える部材、すなわち流路部材31と接続することができる。したがって、取り付けスペースが限られている車載用のパワー半導体モジュールであっても、パワー半導体モジュールの取り付けを容易にすることができる。また、パイプやホースを用いることがないのでパイプやホースの取り回しのために接続部及び冷却体に応力が加わることはなく、信頼性の低下を防止できる。
 フランジ13g1は、導入口13eに接続した開口部13egを挟んで配置された2つで一組のボルト孔13hが形成されている。フランジ13g2も、排出口13fに接続した開口部13fgを挟んで配置された2つで一組のボルト孔13hが形成されている。これらのボルト孔13hは、樹脂ケース11の貫通孔11a及び金属ベース板12のボルト孔12aと同じ間隔で、同じ位置に配置されている。ボルト孔13h、貫通孔11a及びボルト孔12aは、パワー半導体モジュール1の上面から底面へ向かって厚み方向にボルトが貫通し得るよう配置されるとよい。好ましくはボルト孔13h、貫通孔11a及びボルト孔12aのそれぞれの軸が同軸となるよう、3つの孔を配置するとよい。それぞれの孔の断面形状は円、長円、だ円等であり、好ましくは円である。
 このようにボルト孔13h、貫通孔11a及びボルト孔12aを配置することにより、ボルトによりパワー半導体モジュールを流路部材31に締結固定するとともに、導入口13e及び排出口13fを流路部材31の流路に接続できるので、取り付け作業の手間を軽減することができ、また、ボルト数も低減できる。また、パワー半導体モジュール1を取り付けたときの剛性を向上させることができる。更に、パワー半導体モジュール1を固定するための領域と流路を接続するための領域とのトータルの領域を削減することができるので、パワー半導体モジュール1を小型化することができる。
 フランジ13g1、13g2が導入口13eに接続した開口部13eg又は排出口13fに接続した開口部13fgを挟んで一組もしくは一組以上のボルト孔13hを備えることにより、導入口13e及び排出口13fと、流路部材の流路とを接続するためのボルト締結力が導入口13e及び排出口13f付近に均等に作用するので、導入口13e又は排出口13f付近で液漏れすることを防止することができる。
 本実施形態において、フランジ13g1、13g2はそれぞれ、入口部13cの底面側及び出口部13dの底面側に配置されている。このように冷却ケース13の底面側から冷却液を流通させるタイプのパワー半導体モジュールは、高さを低くすることができるので薄型化に有利である。
 図示した本実施形態では、入口部13cの先端にフランジ13g1を、出口部13dの先端にフランジ13g2をそれぞれ備えている例を示しているが、フランジ以外の部材を排除するものではなく、フランジに類似する機能を有するアタッチメントであってもよい。
(実施形態2)
 実施形態1のパワー半導体モジュール1が取り付けられる流路部材31を、図7を用いて説明する。図7は、パワー半導体モジュール1及び流路部材31の斜視図である。部分的に断面を示している。図7において、パワー半導体モジュール1は、図1~図6に示したパワー半導体モジュール1と同一とすることができる。したがって、図7ではパワー半導体モジュール1及びその部材について図1~図6と同一の符号を付しており、以下では重複する説明を省略する。
 流路部材31は、図7に示した本実施形態では略直方体であり、その上面にパワー半導体モジュール1の冷却ケース13の底面が対向するように取り付けられる。流路部材31の上面には、パワー半導体モジュール1のフランジ13g1と当接する凸部31a1と、フランジ13g2と当接する凸部31a2と、金属ベース板12のボルト孔12aを含む突起部に当接する凸部31dとが形成されている。もっとも、これらの凸部31a1、31a2、31dは、流路部材31の上面に必須ではない。平坦な流路部材31の上面に、パワー半導体モジュール1のフランジ13g1が当接するその部分を第1接続部としてもよい。同様に、平坦な流路部材31の上面の、フランジ13g2が当接する部分を第2接続部としてもよい。また、平坦な流路部材31の上面に、金属ベース板12のボルト孔12aを含む突起部が当接するようにしてもよい。更に、凸部31a1、31a2、31dの代わりに、フランジ13g1、13g2及びボルト孔12aに同軸に接続した円筒部材と嵌め合い可能な形状の凹部としてもよい。
 フランジ13g1と当接する凸部31a1は、流路部材31の内部に形成された冷却液の導入流路31fの開口31b1が形成されていて、フランジ13g1の開口部13egを介して導入口13eと接続する。同様にフランジ13g2と当接する凸部31a2は、冷却液の排出流路31gの開口31b2が形成されていて、フランジ13g2の開口部13fgを介して排出口13fと接続する。冷却液の導入流路31f、排出流路31gは流路部材31の内部で任意に配置することができる。液漏れを防止するために、フランジ13g1と凸部31a1との間、及び、フランジ13g2と凸部31a2との間には、Oリングを配置することが好ましい。また、このOリングを取り付けるための溝を、凸部31a1、31a2の表面に形成することが好ましい。
 凸部31a1には、ボルトを締結するための2つ一組の雌ねじ孔31cが開口31b1を挟んで形成されている。凸部31a2にも同様に2つ一組の雌ねじ孔31cが開口31b2を挟んで配置されている。また、凸部31dには、ボルトを締結するための雌ねじ孔31eが形成されている。2つ一組の凸部31dが凸部31a1を挟んで配置され、雌ねじ孔31c及び雌ねじ孔31eが整列している。同様に凸部31a1を挟んで2つ一組の凸部31dが配置されている。これらの雌ねじ孔31c、31eは、パワー半導体モジュール1の樹脂ケース11の貫通孔11a、金属ベース板12のボルト孔12a及び冷却ケース13のボルト孔13hと対向する様配置されている。これらのボルト孔を貫通させたボルトの雄ねじと雌ねじ孔をねじ結合することにより、パワー半導体モジュール1が流路部材31に固定され、かつ、パワー半導体モジュール1の導入口13e及び排出口13fがそれぞれ流路部材31の導入流路31fの開口31b1及び排出流路31gの開口31b2に接続される。
 流路部材31は、図7に示した例では略直方体であるが、パワー半導体モジュール1を取り付けることができる形状であれば形状は問わない。また流路部材31は、冷却液の導入流路31f、排出流路31gを有する独立した部材に限られず、例えば、自動車のエンジン部材又はエンジンを冷却するための部材の一部であってもよい。
 流路部材31は、実施形態1のパワー半導体モジュール1と組み合わせることにより、パイプを用いることなくパワー半導体モジュール1を取り付けることができ、または取り付け作業の手間を軽減することができる。
(実施形態3)
 実施形態1のパワー半導体モジュール1と実施形態2の流路部材31との組み合わせからなるパワー半導体モジュール構造体3を図8及び図9を用いて説明する。図8はパワー半導体モジュール構造体3の正面図であり、図9は、図8のIX部分の部分拡大図である。なお、図8及び図9ではパワー半導体モジュール1及び流路部材31について図1~図7と同一の符号を付しており、以下では重複する説明を省略する。
 図8及び図9に示したパワー半導体モジュール構造体3は、パワー半導体モジュール1と実施形態2の流路部材31とを、ボルト33により締結固定したものである。図9に示すように、フランジ13g1と凸部31a1の間には、Oリング32が配置されていて、これにより液漏れを防止している。図示していないがフランジ13g2と凸部31a2の間にもOリング32が配置されている。Oリング32は、凸部31a1、31a2の表面に溝を形成して、この溝内に収容することが好ましい。
 本実施形態のパワー半導体モジュール構造体3を用いることにより、パイプを用いることなくパワー半導体モジュール1を取り付けることができ、または取り付け作業の手間を軽減することができる。
(実施形態4)
  図10A及び図10Bを用いて、本発明の別の実施形態のパワー半導体モジュール2を説明する。図10Aはパワー半導体モジュール2を斜め上方から見た斜視図であり、図10Bはパワー半導体モジュール2を裏面側から見た斜視図である。
 図10A及び図10Bに示したパワー半導体モジュール2が、図1及び図2に示したパワー半導体モジュール1との相違する点は、底壁23a及び側壁23bを有する冷却ケース23は、冷却液の入口部23c及び出口部23dが、金属ベース板12の対角の角部近傍に位置している点である。入口部23cの導入口23e及び出口部23dの排出口13fの先端に、それぞれフランジ23g1、23g2を備えている。フランジ23g1、23g2はそれぞれ開口部23eg、23fgを備え、開口部23egを挟んで配置された2つ一組のボルト孔23hと、開口部23fgを挟んで配置された2つ一組のボルト孔23hとをさらに備える。フランジ23g1の一方のボルト孔23hは、パワー半導体モジュール1の上面から底面へ向かって厚み方向にボルトが貫通し得るよう貫通孔11a及びボルト孔12aに対し配置されている。フランジ23g2の一方のボルト孔23hも同様に配置されている。
 本実施形態のパワー半導体モジュール2は、実施形態1のパワー半導体モジュール1と同様に冷却ケース23の入口部23cの先端及び出口部23dの先端に、フランジ23g1、23g2を備えていることから、パイプ等を用いることなく、パワー半導体モジュール2の入口部23cの先端及び出口部23dの位置に適合した流路部材と接続することができる。したがって、取り付けスペースが限られている車載用のパワー半導体モジュールであっても、パワー半導体モジュールの取り付けを容易にすることができる。
 本実施形態のパワー半導体モジュール2及び実施形態1のパワー半導体モジュール1から理解されるように、本発明のパワー半導体モジュールは、フランジを有する冷却ケースの入口部及び出口部の位置は、特に限定されない。
(比較例)
 比較のために従来のパワー半導体モジュール100を図11A及び図11Bに示す。図11Aはパワー半導体モジュール100の外観を上方から見た斜視図であり、図11Bはパワー半導体モジュール100の外観を裏面から見た斜視図である。
 従来のパワー半導体モジュール100は、冷却体113に、導入側のパイプ114及び排出側のパイプ115が取り付けられている。このようなパイプ114及びパイプ115を備えるパワー半導体モジュール100は、その取り付け作業及びパイプ114及びパイプ115へのホースの取り付け作業が容易でない場合があった。また、パワー半導体モジュール100の取り付け作業と、パイプ114及びパイプ115へのホースの取り付け作業とが別個であるため、作業に手間がかかっていた。
 図11A及び図11Bに示した従来のパワー半導体モジュール100と、前述した本発明の実施形態1、実施形態4のパワー半導体モジュール1、2との対比により本発明の効果は明らかである。
(実施形態5)
 図12に、パワー半導体モジュール4の平面図を示す。なお、この平面図では理解を容易にするために、蓋及び封止材を図示せず樹脂ケース11内に配置された絶縁基板15及び半導体チップ16A1、16A2、16B1、16B2が見えている状態を示している。樹脂ケース11より下方の構造は、図1~3に示したパワー半導体モジュール1と同様に金属ベース板12及び冷却ケース13を備えることができる。具体的に、樹脂ケース11の底面には、金属ベース板12のおもて面が接着され、金属ベース板12の裏面には、冷却ケース13が接合されている。冷却ケース13に配置されたフィンは薄板形状であり、冷却ケース13の短手方向に沿って複数個がそれぞれ間隔を空けて配置されている構造とすることができる。
 樹脂ケース11は、PPS樹脂やウレタン樹脂等の絶縁性樹脂よりなり、上面から反対側の底面にかけて貫通する開口を中央に有する枠形状を有している。ここで上面は紙面手前側、底面は紙面奥側である。これは図1~3に示したパワー半導体モジュール1と同様である。樹脂ケース11に外部端子14A、14B、14C、141D、141E、142D、142E、143D及び143Eが、インサート成形等により一体的に取り付けられている。外部端子14AはU端子、外部端子14BはV端子、外部端子14CはW端子、外部端子141D、142D及び143Dはプラス端子(P端子)、外部端子141E、142E及び143Eはマイナス端子(N端子)である。
 金属ベース板12は、樹脂ケース11と略同じ大きさになる長方形のおもて面及び反対側の裏面を有している。金属ベース板12は、熱伝導性の良好な金属、例えばアルミニウム若しくはアルミニウム合金、又はこれらの金属と、ろう材との複合材料(クラッド材)よりなる。金属ベース板12のおもて面に、積層基板の具体例としての絶縁基板15の裏面、すなわち第4面が、接合材、例えばはんだ、ろう材や焼結材により接合されている。
 絶縁基板15は、セラミック絶縁板15aの下面に金属板(図示を省略)と、セラミック絶縁板15aの上面に回路板15ba、15bb、15bc、15bd、15be、15bfとが形成されている。さらに、回路板15bf上に、半導体チップ16A1、16A2が、それぞれはんだを介して配置されている。また、回路板15bb上に、半導体チップ16B1、16B2がそれぞれ、はんだを介して配置されている。
 このような絶縁基板15が樹脂ケース11の開口に収納されている。樹脂ケース11の開口内で露出している制御端子14Fの一端の電極部14Faと、回路板15ba、15bc、15bdと、半導体チップ16A1、16A2、16B1、16B2のおもて面に形成された制御電極と、の間がワイヤ19により接続されている。
 また、回路板15bf上の半導体チップ16A1、16A2のおもて面に形成された主電極と、回路板15bbとが、ワイヤ19により接続されている。回路板15bb上の半導体チップ16B1、16B2のおもて面に形成された主電極と、回路板15beとが、ワイヤ19により接続されている。
 パワー半導体モジュール4は、インバータ回路を構成する6in1タイプのパワー半導体モジュールである。このインバータ回路の一例を図13に示す。
 1個の絶縁基板15に接合された4個の半導体チップ16A1、16A2、16B1、16B2は、一相における一組の上アームAu及び下アームAl、すなわちレグを構成している。より具体的に、図12においては、金属ベース板12の短辺方向に沿って配置された2個の半導体チップ16A1及び半導体チップ16A2がインバータ回路を構成する一相、例えばU相における上アームAuを構成し、半導体チップ16B1及び半導体チップ16B2が下アームAlをそれぞれ構成している。上アームAuに対応する2個の半導体チップ16A1及び半導体チップ16A2が、金属ベース板12の直下でフィン17間を流れる冷却液の移動方向に沿って配置されている。下アームAlに対応する2個の半導体チップ16B1及び半導体チップ16B2も同様に冷却液の移動方向に沿って配置されている。これにより、上アームAuを構成する半導体チップ16A1及び半導体チップ16A2と、下アームAlを構成する半導体チップ16B1及び半導体チップ16B2との冷却効率を等しくすることができる。
 パワー半導体モジュール4では3個の絶縁基板15が、金属ベース板12の短手方向の中央に、長手方向に沿って一列に配置されている。各絶縁基板15は、一個の絶縁基板15のおもて面、すなわち第3面上に4個の半導体チップ16A1、16A2、16B1及び16B2を搭載している。図示した本実施形態の半導体チップ16A1、16A2、16B1及び16B2は、いずれもIGBTとFWDとを1チップ化した逆導通IGBT(RC-IGBT)の例である。1つの絶縁基板15上で電気的に並列に接続された2個1組の合計2組の半導体チップが、インバータ回路を構成する一相における上アームAu及び下アームAlを構成している。上アームAuが、回路板15bf上で並列接続された第1半導体素子である2個の半導体チップ16A1及び半導体チップ16A2により構成されている。下アームAlが、回路板15bb上で並列接続された第2半導体素子である2個の半導体チップ16B1及び半導体チップ16B2により構成されている。そして、金属ベース板の3個の絶縁基板15が、インバータ回路のU相、V相及びW相を構成している。
 U相、V相及びW相はそれぞれ、上アームAu及び下アームAlからなる一組のレグL、L、Lを備える。レグL、L、Lはそれぞれ、絶縁基板15と、上アームAuを構成する第1半導体素子及び下アームAlを構成する第2半導体素子と、第1半導体素子及び第2半導体素子に電源を供給する電源端子と、を含んでいる。
 U相、V相及びW相のうちの特定の一相と、当該特定の一相とは異なる一相とを区別して説明すると、特定の一相は、上アーム及び下アームからなる第1の組(レグ)を備え、当該特定の一相とは異なる一相は、上アーム及び下アームからなる第2の組(レグ)を備えている。U相、V相及びW相のうちの特定の一相、例えばU相と、当該特定の一相とは異なる一相、例えばV相を区別するときには、第1のレグの絶縁基板15を第1積層基板と言い、第2のレグの絶縁基板15を第2積層基板と言う。同様に、第1積層基板に搭載され、上アームを構成する半導体素子を第1半導体素子と言い、下アームを構成する半導体素子を第2半導体素子と言う。第2積層基板に搭載され、上アームを構成する半導体素子を第3半導体素子と言い、下アームを構成する半導体素子を第4半導体素子と言う。第1半導体素子及び第2半導体素子に電源を供給する電源端子を第1電源端子と言い、第3半導体素子及び第4半導体素子に電源を供給する電源端子を第2電源端子と言う。
 本実施形態のパワー半導体モジュール4は、上アーム及び下アームからなる第1の組と、上アーム及び下アームからなる第2の組とを備えている。第1の組は、少なくとも、積層基板として第1積層基板と、半導体素子として上アームを構成する第1半導体素子及び下アームを構成する第2半導体素子と、前記第1半導体素子及び第2半導体素子に電源を供給する第1電源端子と、を含んでいる。第2の組は、少なくとも、積層基板として第2積層基板と、半導体素子として上アームを構成する第3半導体素子及び下アームを構成する第4半導体素子と、第3半導体素子及び第4半導体素子に電源を供給する第2電源端子と、を含んでいる。
 より具体的に説明すると、図12に示されるように、U相用レグの電源端子はそれぞれ、外部電源のプラス側に接続され得るプラス端子141D及び外部電源のマイナス側に接続され得るマイナス端子141Eを含んでよい。V相用レグの電源端子はそれぞれ、外部電源のプラス側に接続され得るプラス端子142D及び外部電源のマイナス側に接続され得るマイナス端子142Eを含んでよい。また、W相用レグの電源端子はそれぞれ、外部電源のプラス側に接続され得るプラス端子143D及び外部電源のマイナス側に接続され得るマイナス端子143Eを含んでよい。
 例えばU相用レグLを第1のレグをとし、V相用レグL及びW相用レグLのいずれか、例えばV相用レグLを第2のレグをとすると、プラス端子141Dが第1プラス端子であり、マイナス端子141Eが第1マイナス端子であり、プラス端子143Dが第2プラス端子であり、マイナス端子142Eが第2マイナス端子である。
 U相用プラス端子141D、V相用プラス端子142D及びW相用プラス端子143Dは互いに異なり、独立しており、かつ同じ形状であってもよい。また、U相用マイナス端子141E、V相用マイナス端子142E及びW相用マイナス端子143Eは互いに異なり、独立しており、かつ同じ形状であってもよい。U相用プラス端子141D、V相用プラス端子142D及びW相用プラス端子143Dは同じ寸法であってもよく、また、U相用マイナス端子141E、V相用マイナス端子142E及びW相用マイナス端子143Eは同じ寸法であってもよい。
 U相用プラス端子141Dは胴部141Db及び脚部141Dlを備える。V相用プラス端子142Dは胴部142Db及び脚部142Dlを備える。W相用プラス端子143Dは胴部143Db及び脚部143Dlを備える。図12に示す例では脚部141Dl、142Dl、143Dlはそれぞれ3本のリボン状部材を含み、リボン状部材は胴部141Db、142Db、143Dbに接続されている。各端子において3本のリボン状部材は並列に配置されている。
 U相用マイナス端子141Eは胴部141Eb及び脚部141Elを備える。V相用マイナス端子142Eは胴部142Eb及び脚部142Elを備える。W相用マイナス端子143Eは胴部143Eb及び脚部143Elを備える。図12に示す例では脚部141El、142El、143Elはそれぞれ3本のリボン状部材を含み、リボン状部材は胴部141Eb、142Eb、143Ebに接続されている。各端子において3本のリボン状部材は並列に配置されている。
 U相用プラス端子141Dのリボン状部材、すなわち脚部141Dlの延在方向と、U相用マイナス端子141Eのリボン状部材、すなわち脚部141Elの延在方向とは平行に配置されてよい。V相用プラス端子142Dの脚部142Dlの延在方向と、V相用マイナス端子142Eの脚部142Elも、同様に平行に配置されてよい。W相用プラス端子143Dの脚部143Dlの延在方向と、W相用マイナス端子143Eの脚部143Elも、同様に平行に配置されてよい。さらに、U相用プラス端子141D、V相用プラス端子142D及びW相用プラス端子143Dは、脚部141Dlの延在方向、脚部142Dl及び脚部143Dlの延在方向が平行になるように配置されてよい。さらに、U相用マイナス端子141E、V相用マイナス端子142E及びW相用マイナス端子143Eは、脚部141Elの延在方向、脚部142El及び脚部143Elの延在方向が平行になるように配置されてよい。
 電源端子の脚部の延在方向がそれぞれ平行であることにより、インダクタンスを低減させることができる。
 レグL、L、Lのそれぞれの電源端子にはコンデンサ、例えばフィルムコンデンサが接続されてよい。U相用プラス端子141D及びマイナス端子141Eの間、V相用プラス端子142D及びマイナス端子142Eの間、及び、W相用プラス端子143D及びマイナス端子143Eの間、それぞれに独立したフィルムコンデンサが接続されてよいし、共通のフィルムコンデンサが接続されてもよい。図13に示した回路図には、共通のフィルムコンデンサ25が接続されている。
 また、図14に平面図を示すパワー半導体モジュール4は、U相用プラス端子141D及びマイナス端子141Eの間にフィルムコンデンサ25Aが設けられ、V相用プラス端子142D及びマイナス端子142Eにフィルムコンデンサ25Bが設けられ、W相用プラス端子143D及びマイナス端子143Eの間にフィルムコンデンサ25Cが設けられている。図示するフィルムコンデンサ25A、フィルムコンデンサ25B及びフィルムコンデンサ25Cは、それぞれ独立したフィルムコンデンサである。フィルムコンデンサ25A、フィルムコンデンサ25B及びフィルムコンデンサ25Cは、ケース等に収容され一体とされてもよい。なお、図14の平面図は、図12に示したパワー半導体モジュール4の樹脂ケース11内が封止材で封止され、蓋20で樹脂ケース11の開口の上端を覆っている態様を示している。
 コンデンサの容量は好ましくは合計で100μF~3000μF、好ましくは合計で400μF~600μFである。
 本実施形態のパワー半導体モジュール4は、各相のレグが独立にプラス端子及びマイナス端子からなる電源端子を備えることにより、U相、V相及びW相に共通した一個のプラス端子と、U相、V相及びW相に共通した一個のマイナス端子とを備えた従来のパワー半導体モジュールに比べて、インバータ動作時に発生するスパイク電圧を低減することができる。より具体的に、三相インバータ回路を備え、プラス端子とマイナス端子との間に平滑コンデンサが接続された従来のパワー半導体モジュールでは、スパイク電圧が、特定の一つの相と他の一つの相とのターンオフ時に、プラス端子とマイナス端子との間に重畳して発生する。これに対し、実施形態のパワー半導体モジュール4は、プラス端子とマイナス端子との組を、各相にそれぞれ独立して設けることにより、パワー半導体モジュール4内部の各レグのプラス端子及びマイナス端子の長さを短くし、かつ、略等しくすることができ、しかも各レグのプラス端子及びマイナス端子からコンデンサまでの距離を短くすることができるので、スパイク電圧を従来よりも低減することができる。
 図15は本実施形態のパワー半導体モジュール4のスパイク電圧の計測結果を示すグラフである。図16は、従来のパワー半導体モジュールのスパイク電圧の計測結果を示すグラフである。図15と図16のグラフを対比することにより、U相のターンオフ時に発生する、V相の電源端子に発生する重畳スパイク電圧(superimposed spike voltage)ΔVPVNVは、3相で共通の電源端子を用いる従来のモジュールに比べ、小さくなった。図示した例では、ターンオフ時のスイッチング速度を従来モジュールの約1.5倍に速くしても、ΔVPVNVは従来の5分の1、約20Vであった。
 本実施形態のパワー半導体モジュール4は、実施形態1のパワー半導体モジュール1と同様の冷却器を備えることができる。したがって、取り付けスペースが限られている車載用途に用いる場合でも、パワー半導体モジュールの取り付けを容易にすることができる。
 以上、本発明のパワー半導体モジュール等の実施形態を、図面を用いて説明したが、本発明のパワー半導体モジュール等は、各実施形態及び図面の記載に限定されず、本発明の趣旨を逸脱しない範囲で幾多の変形が可能であることはいうまでもない。
 1、2 パワー半導体モジュール
 11 樹脂ケース
 11a 貫通孔
 12 金属ベース板
 13、23 冷却ケース
 13a、23a 底壁
 13b、23b 側壁
 13c、23c 入口部
 13d、23d 出口部
 13e、23e 導入口
 13f、23f 排出口
 13g1、23g1 フランジ(第1フランジ)
 13g2、23g2 フランジ(第2フランジ)
 13eg、23eg 開口部(第1開口部)
 13fg、23fg 開口部(第2開口部)
 13h、23h ボルト孔
 14D、14E 外部端子
 15 絶縁基板
 16 半導体チップ(半導体素子)
 17 フィン
 25 フィルムコンデンサ
 31 流路部材

Claims (18)

  1.  第1面及び第2面を備える金属ベース板と、
     前記第1面に接合され、第3面及び第4面を備える積層基板と、
     前記第3面に搭載された半導体素子と、
     前記金属ベース板の第1面側に配置され、前記積層基板及び前記半導体素子を囲む樹脂ケースと、
     底壁及び前記底壁の周りに形成された側壁を有し、前記側壁の一端が前記金属ベース板の第2面側に接合され、前記金属ベース板、前記底壁及び前記側壁により囲まれた空間内に冷却液を流通可能な冷却ケースと、
    を備え、
     前記冷却ケースが、前記底壁及び前記側壁のいずれかに接続するとともに前記金属ベース板の第2面の周縁に沿って配置された冷却液の入口部及び出口部を有し、前記入口部の導入口側に配置された第1フランジ及び前記出口部の排出口側に配置された第2フランジを備えるパワー半導体モジュール。
  2.  前記第1フランジが前記導入口に対向する第1開口部と、前記第1開口部を挟んで配置された一組の第1ボルト孔とを備え、
     前記第2フランジが前記排出口に対向する第2開口部と、前記第2開口部を挟んで配置された一組の第2ボルト孔とを備える請求項1記載のパワー半導体モジュール。
  3.  前記樹脂ケースが、前記第1ボルト孔に対応する一組の第1貫通孔と前記第2ボルト孔に対応する一組の第2貫通孔とを備え、前記第1ボルト孔及び第1貫通孔が前記樹脂ケースの厚み方向にボルトを挿入できるように配置され、前記第2ボルト孔及び第2貫通孔が前記樹脂ケースの厚み方向にボルトを挿入できるように配置されている請求項2記載のパワー半導体モジュール。
  4.  前記第1ボルト孔間を結ぶ線分と、前記第2ボルト孔間を結ぶ線分とが、ほぼ平行である請求項2記載のパワー半導体モジュール。
  5.  前記第1フランジ及び第2フランジのそれぞれの長径方向が金属ベース板の長辺方向に沿って延びている請求項4記載のパワー半導体モジュール。
  6.  前記半導体素子が、インバータ回路の上アームを構成する複数の第1半導体素子及び前記インバータ回路の下アームを構成する複数の第2半導体素子を含み、かつ、第1半導体素子及び第2半導体素子が、前記冷却ケースを流通し得る冷却液の移動方向に沿って配置されている請求項1記載のパワー半導体モジュール。
  7.  前記第1フランジ及び第2フランジが、それぞれ前記冷却ケースにワッシャを介して、ろう付けされてなる請求項1記載のパワー半導体モジュール。
  8.  パワー半導体モジュールと組み合わせて使用され得る流路部材であって、
     前記パワー半導体モジュールが、
     金属ベース板と、
     底壁及び前記底壁の周りに形成された側壁を有し、前記側壁の一端が前記金属ベース板の裏面に接合され、前記金属ベース板、前記底壁及び前記側壁により囲まれた空間内に冷却液を流通可能な冷却ケースとを備え、
     さらに、前記冷却ケースが、前記底壁及び前記側壁のいずれかに接続するとともに前記金属ベース板の裏面の周縁に沿って配置された冷却液の入口部及び出口部を有し、前記入口部の導入口側に配置された第1フランジ及び前記出口部の排出口側に配置された第2フランジを備え、
     前記流路部材が、前記第1フランジに接続し得る第1接続部と、前記第2フランジに接続し得る第2接続部と、前記第1接続部に接続し前記冷却液を流通可能な第1流路と、前記第2接続部に接続し前記冷却液を流通可能な第2流路とを備え、前記冷却ケースの底面に対向して配置され得る流路部材。
  9.  前記第1フランジが前記導入口に対向する第1開口部と、前記第1開口部を挟んで配置された一組の第1ボルト孔とを備え、
     前記第2フランジが前記排出口に対向する第2開口部と、前記第2開口部を挟んで配置された一組の第2ボルト孔とを備え、
     前記第1接続部に、前記第1ボルト孔と位置合わせされた雌ねじ孔が形成され、
     前記第2接続部に、前記第2ボルト孔と位置合わせされた雌ねじ孔が形成された請求項8記載の流路部材。
  10.  前記第1接続部及び第2接続部に、それぞれOリングを収容する溝を備える請求項8記載の流路部材。
  11.  請求項1記載のパワー半導体モジュールと、請求項8記載の流路部材とを組み合わされてなるパワー半導体モジュール構造体。
  12.  前記パワー半導体モジュールと前記流路部材とが、複数のボルトにより締結された請求項11記載のパワー半導体モジュール構造体。
  13.  前記第1接続部及び第2接続部に、それぞれOリングを収容する溝を備え、前記各溝に、Oリングを備える請求項11記載のパワー半導体モジュール構造体。
  14.  上アーム及び下アームからなる第1の組と、上アーム及び下アームからなる第2の組とを備え、
     前記第1の組は、少なくとも、前記積層基板として第1積層基板と、前記半導体素子として前記上アームを構成する第1半導体素子及び下アームを構成する第2半導体素子と、前記第1半導体素子及び第2半導体素子に電源を供給する第1電源端子と、を含み、
     前記第2の組は、少なくとも、前記積層基板として第2積層基板と、前記半導体素子として前記上アームを構成する第3半導体素子及び下アームを構成する第4半導体素子と、前記第3半導体素子及び第4半導体素子に電源を供給する第2電源端子と、を含む、請求項1記載のパワー半導体モジュール。
  15.  前記第1電源端子は、電源のプラス側に接続され得る第1プラス端子及び前記電源のマイナス側に接続され得る第1マイナス端子を含み、
     前記第2電源端子は、電源のプラス側に接続され得る第2プラス端子及び前記電源のマイナス側に接続され得る第2マイナス端子を含み、
     前記第1プラス端子及び前記第2プラス端子は異なる端子であり、かつ同じ形状であり、
     前記第1マイナス端子及び前記第2マイナス端子は異なる端子であり、かつ同じ形状である、請求項14記載のパワー半導体モジュール。
  16.  前記第1プラス端子及び前記第2プラス端子は同じ寸法であり、
     前記第1マイナス端子及び前記第2マイナス端子は同じ寸法である、請求項15記載のパワー半導体モジュール。
  17.  前記第1プラス端子及び前記第2プラス端子はそれぞれ脚部を備え、
     前記第1マイナス端子及び前記第2マイナス端子はそれぞれ脚部を備え、
     前記第1プラス端子の脚部の延在方向と前記第1マイナス端子の脚部の延在方向が平行であり、
     前記第2プラス端子の脚部の延在方向と前記第2マイナス端子の脚部の延在方向が平行であり、かつ、
     前記第1プラス端子の脚部の延在方向と前記第2プラス端子の脚部の延在方向が平行である、請求項15記載のパワー半導体モジュール。
  18.  前記第1プラス端子と前記第1マイナス端子とは、間に第1コンデンサが接続可能に構成され、
     前記第2プラス端子と前記第2マイナス端子とは、間に第2コンデンサが接続可能に構成されている請求項15記載のパワー半導体モジュール。
     
PCT/JP2016/068018 2015-06-17 2016-06-16 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体 WO2016204257A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680003922.5A CN107004675B (zh) 2015-06-17 2016-06-16 功率半导体模块、流路部件及功率半导体模块结构体
DE112016000158.4T DE112016000158T5 (de) 2015-06-17 2016-06-16 Leistungshalbleitermodul, strömungspfadbauteil und leistungshalbleitermodulstruktur
JP2017524842A JP6365775B2 (ja) 2015-06-17 2016-06-16 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
CN202010057550.2A CN111162060B (zh) 2015-06-17 2016-06-16 功率半导体模块、流路部件及功率半导体模块结构体
US15/606,787 US10192807B2 (en) 2015-06-17 2017-05-26 Power semiconductor module, flow path member, and power-semiconductor-module structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-122283 2015-06-17
JP2015122283 2015-06-17
JPPCT/JP2016/064456 2016-05-16
PCT/JP2016/064456 WO2016203884A1 (ja) 2015-06-17 2016-05-16 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/606,787 Continuation US10192807B2 (en) 2015-06-17 2017-05-26 Power semiconductor module, flow path member, and power-semiconductor-module structure

Publications (1)

Publication Number Publication Date
WO2016204257A1 true WO2016204257A1 (ja) 2016-12-22

Family

ID=57545950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068018 WO2016204257A1 (ja) 2015-06-17 2016-06-16 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体

Country Status (2)

Country Link
CN (1) CN111162060B (ja)
WO (1) WO2016204257A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019153764A (ja) * 2018-03-06 2019-09-12 富士電機株式会社 冷却装置、半導体モジュールおよび車両
JP2020053622A (ja) * 2018-09-28 2020-04-02 京セラ株式会社 パワーモジュール及びパワーモジュールを有する電気装置
JP2021068740A (ja) * 2019-10-18 2021-04-30 富士電機株式会社 半導体モジュール
US11158563B2 (en) 2018-08-13 2021-10-26 Fuji Electric Co., Ltd. Power semiconductor module and vehicle
USD942405S1 (en) 2019-01-11 2022-02-01 Fuji Electric Co., Ltd. Semiconductor module
USD942404S1 (en) 2019-01-11 2022-02-01 Fuji Electric Co., Ltd. Semiconductor module
US11251108B2 (en) 2018-11-06 2022-02-15 Fuji Electric Co., Ltd. Semiconductor module mounted on a cooling device for use in a vehicle
US11355420B2 (en) 2018-06-27 2022-06-07 Fuji Electric Co., Ltd. Cooling apparatus, semiconductor module, and vehicle
US11664296B2 (en) 2020-04-02 2023-05-30 Fuji Electric Co., Ltd. Semiconductor module and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166867A (ja) * 2003-12-02 2005-06-23 Fuji Electric Holdings Co Ltd 電力変換装置の導体構造
WO2008029858A1 (en) * 2006-09-05 2008-03-13 Kabushiki Kaisha Toshiba Semiconductor package and semiconductor package assembly
JP2011103369A (ja) * 2009-11-11 2011-05-26 Nippon Inter Electronics Corp パワー半導体モジュール及びその製造方法
JP2014082283A (ja) * 2012-10-15 2014-05-08 T Rad Co Ltd ヒートシンク
JP2015053410A (ja) * 2013-09-09 2015-03-19 株式会社東芝 半導体モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293246B2 (ja) * 2007-02-19 2009-07-08 株式会社日立製作所 電力変換装置
JP5162518B2 (ja) * 2009-04-10 2013-03-13 日立オートモティブシステムズ株式会社 電力変換装置
JP5422468B2 (ja) * 2010-04-01 2014-02-19 日立オートモティブシステムズ株式会社 電力変換装置
JP5618595B2 (ja) * 2010-04-01 2014-11-05 日立オートモティブシステムズ株式会社 パワーモジュール、およびパワーモジュールを備えた電力変換装置
JP5851372B2 (ja) * 2012-09-28 2016-02-03 日立オートモティブシステムズ株式会社 電力変換装置
JP5739956B2 (ja) * 2013-09-09 2015-06-24 日立オートモティブシステムズ株式会社 半導体モジュールおよびこれを用いた電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166867A (ja) * 2003-12-02 2005-06-23 Fuji Electric Holdings Co Ltd 電力変換装置の導体構造
WO2008029858A1 (en) * 2006-09-05 2008-03-13 Kabushiki Kaisha Toshiba Semiconductor package and semiconductor package assembly
JP2011103369A (ja) * 2009-11-11 2011-05-26 Nippon Inter Electronics Corp パワー半導体モジュール及びその製造方法
JP2014082283A (ja) * 2012-10-15 2014-05-08 T Rad Co Ltd ヒートシンク
JP2015053410A (ja) * 2013-09-09 2015-03-19 株式会社東芝 半導体モジュール

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468333B2 (en) 2018-03-06 2019-11-05 Fuji Electric Co., Ltd. Cooling apparatus, semiconductor module, and vehicle
JP7067129B2 (ja) 2018-03-06 2022-05-16 富士電機株式会社 冷却装置、半導体モジュールおよび車両
JP2019153764A (ja) * 2018-03-06 2019-09-12 富士電機株式会社 冷却装置、半導体モジュールおよび車両
US11355420B2 (en) 2018-06-27 2022-06-07 Fuji Electric Co., Ltd. Cooling apparatus, semiconductor module, and vehicle
US11158563B2 (en) 2018-08-13 2021-10-26 Fuji Electric Co., Ltd. Power semiconductor module and vehicle
JP7034043B2 (ja) 2018-09-28 2022-03-11 京セラ株式会社 パワーモジュール及びパワーモジュールを有する電気装置
JP2020053622A (ja) * 2018-09-28 2020-04-02 京セラ株式会社 パワーモジュール及びパワーモジュールを有する電気装置
US11251108B2 (en) 2018-11-06 2022-02-15 Fuji Electric Co., Ltd. Semiconductor module mounted on a cooling device for use in a vehicle
USD942404S1 (en) 2019-01-11 2022-02-01 Fuji Electric Co., Ltd. Semiconductor module
USD942405S1 (en) 2019-01-11 2022-02-01 Fuji Electric Co., Ltd. Semiconductor module
JP2021068740A (ja) * 2019-10-18 2021-04-30 富士電機株式会社 半導体モジュール
JP7380062B2 (ja) 2019-10-18 2023-11-15 富士電機株式会社 半導体モジュール
US11664296B2 (en) 2020-04-02 2023-05-30 Fuji Electric Co., Ltd. Semiconductor module and vehicle

Also Published As

Publication number Publication date
CN111162060A (zh) 2020-05-15
CN111162060B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
JP6569781B2 (ja) パワー半導体モジュール、流路部材、パワー半導体モジュール構造体及び自動車
WO2016204257A1 (ja) パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
JP7284566B2 (ja) 半導体装置
JP5521091B2 (ja) 電力変換装置
US8686601B2 (en) Power conversion apparatus for vehicle use
US10076068B2 (en) Electric power convertor
US11653481B2 (en) Electric power conversion device
US20070236883A1 (en) Electronics assembly having heat sink substrate disposed in cooling vessel
JPWO2013145619A1 (ja) 半導体装置及び半導体装置の製造方法
JP6822000B2 (ja) 半導体装置
JP2015167428A (ja) 電力変換装置
JP2020077679A (ja) 半導体モジュールおよび車両
US20200068749A1 (en) Cooling structure of power conversion device
CN114830328A (zh) 用于半导体开关元件的冷却装置、功率逆变器设备以及具有功率逆变器设备和电机的装置
WO2020071102A1 (ja) 半導体装置、半導体モジュールおよび車両
JP2004040900A (ja) 半導体モジュール及び電力変換装置
WO2020071058A1 (ja) 半導体装置
JP6672659B2 (ja) 電力変換装置
JP6459904B2 (ja) 電力変換装置
US11916491B2 (en) Electric power converter
JP4579314B2 (ja) 半導体モジュール
WO2017046841A1 (ja) 電子装置
CN112509993A (zh) 半导体模块及车辆
JP2014113051A (ja) 電力変換装置
JP7056533B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016000158

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2017524842

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16811731

Country of ref document: EP

Kind code of ref document: A1