JP2015053410A - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
JP2015053410A
JP2015053410A JP2013185934A JP2013185934A JP2015053410A JP 2015053410 A JP2015053410 A JP 2015053410A JP 2013185934 A JP2013185934 A JP 2013185934A JP 2013185934 A JP2013185934 A JP 2013185934A JP 2015053410 A JP2015053410 A JP 2015053410A
Authority
JP
Japan
Prior art keywords
mounting
pattern
conductor
semiconductor module
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013185934A
Other languages
English (en)
Inventor
田多 伸光
Nobumitsu Tada
伸光 田多
和也 小谷
Kazuya Kotani
和也 小谷
久里 裕二
Yuuji Kuri
裕二 久里
関谷 洋紀
Hironori Sekiya
洋紀 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013185934A priority Critical patent/JP2015053410A/ja
Publication of JP2015053410A publication Critical patent/JP2015053410A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

【課題】通電時の発生熱量を低減し、必要な冷却器の小形化を可能とすることにより、装置体格を縮小することが可能な半導体モジュールを提供する。
【解決手段】実施形態によれば、電力変換装置の半導体モジュールは、放熱板24と、絶縁基板、およびこの絶縁基板上に形成された複数の導体パターンを有し、放熱板上に接合された実装基板53、54と、一部の導体パターン上に実装された半導体素子と、を備えている。導体パターンは、半導体素子が実装された実装パターン32Fと、半導体素子が非搭載の非実装パターン32Aと、を含み、非実装パターンは、実装パターンよりも厚く形成されている。
【選択図】図2

Description

ここで述べる実施形態は、インバータ等の電力変換装置に用いる半導体モジュールに関する。
一般に、各種用途のインバータは、高効率および高信頼性であるとともに、より小形であることが期待されている。それを実現するため、インバータのキー部品であるパワー半導体モジュールの改善が要求される。
高効率化するためには、パワー半導体モジュールの通電に伴う発熱量の低減、すなわち、低損失化が重要となる。しかしながら、通電発熱に伴う温度上昇を抑制するためには、冷却機構を装備する必要があり、この冷却機構は通常大きな容積を必要とするので、インバータの大きさを支配する最大要因となっている。このことから、低損失化はインバータの小形化に通じる。
パワー半導体モジュールには、スイッチング素子等のパワー半導体素子が収納され、これを効率良く利用することも重要である。すなわち、パワー半導体素子の電圧、電流などの通電定格の許容上限値にできるだけ近い値まで通電することが求められる。パワー半導体素子を、その許容上限値に近い通電条件で使用した場合でも、長期的に信頼性を維持し続けることも期待される。
パワー半導体素子は、高純度のシリコン材料を用い、各種の極めて微細な加工を施して製造されている。装置に組み込む際の取扱の便宜を図るため、半導体素子をパッケージに収納したパワー半導体モジュールとして扱われる(一般の半導体部品と同様)。
パワー半導体素子は、複数個を並列もしくは直列に接続して使用する場合が多い。また、インバータ回路を構成する場合、素子群からなる単位回路を複数個組み合わせて所要の回路を構成する必要がある。そこで、半導体素子1個単位で1個のパッケージに収納するのではなく、複数個の半導体素子もしくは複数の単位回路を1個のパッケージに収納する形態が主流となっている。
パワー半導体モジュールにおいては、収納する半導体素子の配置方法や素子間を接続する配線構造が通電特性や信頼性を左右する。そのため、様々な構成や構造が提案されている。
特開2010−1303222号公報
パワー半導体モジュールの発熱量低減のためには、半導体素子の発熱量低減と、モジュールの内部配線の抵抗成分に起因する発熱量低減が必要である。前者は半導体素子の特性向上、後者は配線の材料、形状および敷設形態の工夫による抵抗低減が必要となる。
また、通電時に発生するサージ電圧を低減することにより、通電条件(電圧、電流)の制限を緩和でき、より大きい電圧または電流で使用できる。サージ電圧低減には、回路の寄生インダクタンスを低減する必要があり、素子の内部配線に寄生するインダクタンスの低減も不可欠である。
この発明は上記事情に鑑みて成されたものであり、その課題は、通電時の発生熱量を低減し、必要な冷却器の小形化を可能とすることにより、装置体格を縮小することが可能な半導体モジュールを提供することにある。
実施形態によれば、電力変換装置の半導体モジュールは、放熱板と、絶縁基板、およびこの絶縁基板上に形成された複数の導体パターンを有し、前記放熱板上に接合された実装基板と、前記導体パターンの一部の導体パターン上に実装された半導体素子と、を備えている。前記導体パターンは、前記半導体素子が実装された実装パターンと、半導体素子が非搭載の非実装パターンと、を含み、前記非実装パターンは、前記実装パターンよりも厚く形成されている。
図1は、第1の実施形態に係るパワー半導体モジュールを示す斜視図。 図2は、前記パワー半導体モジュールの分解斜視図。 図3は、前記パワー半導体モジュールの平面図。 図4は、前記パワー半導体モジュールの実装基板を示す平面図。 図5は、前記実装基板を示す斜視図。 図6は、図4の線A−Aに沿った実装基板の断面図。 図7は、第2の実施形態に係るパワー半導体モジュールの実装基板を示す分解斜視図。 図8は、第3の実施形態に係るパワー半導体モジュールの実装基板を示す分解斜視図。 図9は、第4の実施形態に係るパワー半導体モジュールの実装基板を示す分解斜視図。 図10は、第5の実施形態に係るパワー半導体モジュールの実装基板を示す斜視図。 図11は、第6の実施形態に係るパワー半導体モジュールの実装基板を示す斜視図 図12は、第6の実施形態に係るパワー半導体モジュールの平面図。 図13は、第7の実施形態に係るパワー半導体モジュールの平面図。 図14は、パワー半導体モジュールを用いたインバータの等価回路図。
以下、図面を参照しながら、実施形態に係るパワー半導体モジュールについて詳細に説明する。
(第1の実施形態)
始めに、パワー半導体モジュールを用いる半導体電力変換装置(インバータ)について説明する。図14は、インバータの等価回路を示している。
図14に示すように、インバータ20は、例えば、U相、V相、W相の3相インバータとして構成されているとともに、負荷対象として、例えば、3相電動機70に電力を供給するように構成されている。インバータ20は、それぞれU相、V相、W相に対応する3つのパワー半導体モジュール10と、直流電源1からパワー半導体モジュール10に供給される直流電圧を平滑する平滑コンデンサ4と、3相電動機70に3相出力を出力する出力部2と、3相電動機70へ流れる電流を検出する電流検出器72a、72b、72cと、電流検出器により検出された電流情報や平滑コンデンサ4に印加される電圧等に基づき、パワー半導体モジュール10を制御する制御ユニット74と、制御ユニット74の制御信号に基づき、パワー半導体モジュールの半導体素子を駆動する駆動回路を有する駆動基板75と、を備えている。駆動基板75には、半導体素子のゲートに駆動信号を入力する駆動用IC76が半導体素子に対して1対1の対応で設けられている。即ち、この回路では、駆動用IC76が6個設けられている。また、パワー半導体モジュール10、および平滑コンデンサ4の下方には、これらを冷却する図示しないヒートシンク、放熱板等の冷却器が設けられている。
各相のパワー半導体モジュール10は、半導体素子として、例えば、IGBT(Insulated gate bipolar transistor)191、192と、ダイオード201、202とを有している。パワー半導体モジュール10は、直流電源1から供給される直流電力の正極及び負極を正極端子(C1端子)38及び負極端子(E2端子)39にそれぞれ印加し、コンデンサ4を利用して、IGBT191、192のそれぞれのゲートを制御することにより、交流電力に変換して、出力部2に出力する。これにより、インバータ20は、直流電力を三相交流電力に変換し、出力部2から3相電動機70に出力する。ダイオード201、202は、例えば、低損失半導体素子である窒化ケイ素(SiC)素子により形成されている。スイッチング素子としてのIGBT191、192と、このIGBTに逆並列に接続されたダイオード201、202とがモジュール化されている。IGBT191およびダイオード201は、インバータの上アームを構成し、IGBT192およびダイオード202は、インバータの下アームを構成している。
なお、図14において、各パワー半導体モジュール10のIGBT191、192、およびダイオード201、202は、それぞれ1つずつ図示しているが、実施形態においては、各IGBTは、3つのIGBTを並列に接続して構成され、同様に、各ダイオードは、3つのダイオードを並列に接続して構成されている。また、スイッチング素子は、IGBT以外、例えばMOSFETなども使用可能である。
次に、インバータ20の各相を構成するパワー半導体モジュールについて詳細に説明する。図1は、第1の実施形態に係るパワー半導体モジュールの外観を示す斜視図、図2はパワー半導体モジュールの分解斜視図、図3は、蓋体を除いて内部構造を示すパワー半導体モジュールの平面図である。
図1ないし図3に示すように、パワー半導体モジュール10は、全体として偏平な矩形箱状に形成されている。パワー半導体モジュール10は、ベースとして機能する矩形状の放熱板24と、放熱板の上面、すなわち、設置面、上に配置された第1実装基板(ハイサイド用絶縁基板)53および第2実装基板(ローサイド用絶縁基板)54と、第1実装基板53上に実装された第1半導体素子としてのIGBT191A、191B、191C、およびダイオード201A、201B、201Cと、第2実装基板54上に実装された第2半導体素子としてのIGBT192A、192B、192C、およびダイオード202A、202B、202Cと、樹脂ケース52と、蓋体55と、接続配線(接続導体)用のボンディングワイヤ31A〜31Gと、を備えている。
放熱板24は、銅や金属メッキを施したセラミック材などが用いられる。第1および第2実装基板53、54は、例えば、セラミック等の絶縁板の表裏両面に銅箔などの金属回路パターン(導体パターン)が直接接合して構成されている。第1および第2実装基板53、54は、全体を1枚構成にすると、面積が大きくなり、反り変形などが発生しやすくなるため、2枚構成としている。第1および第2実装基板53、54は大きさと細部形状が同一に形成されている。第1および第2実装基板53、54の裏面導体パターンは、ハンダなどを用いて放熱板24上に接合されている。これにより、第1および第2実装基板53、54は、放熱板24の長手方向に並んで配置されている。
第1実装基板53の導体パターン32F上に、IGBT191A〜191C、およびダイオード201A〜201Cが実装されている。この場合、IGBTのアノード(陽極)側およびダイオードのカソード(陰極)側がハンダ等により導体パターン32F上に接合されている。IGBTのカソード側およびダイオードのアノード側は、配線としてのボンディングワイヤ31Aにより互いに接続されている。これにより、IGBT191A〜191C、およびダイオード201A〜201Cは、互いに逆並列に接続されインバータ回路の正極側を構成している。第1実装基板53、IGBT191A〜191C、およびダイオード201A〜201Cは、駆動信号入力部(ゲート)を有する上アーム回路部を構成している。IGBT191A〜191Cのカソードは、図示しないボンディングワイヤによりゲート信号パターン32Dに電気的に接続されている。更に、ダイオード201A〜201Cのアノードは、配線としてのボンディングワイヤ31Aにより、第1実装基板53の配線パターン32Aに電気的に接続されている。
第2実装基板54の導体パターン32F上に、IGBT192A〜192C、およびダイオード202A〜202Cが実装されている。この場合、IGBTのアノード(陽極)側およびダイオードのカソード(陰極)側がハンダ等により導体パターン32F上に接合されている。IGBTのカソード側およびダイオードのアノード側は、配線としてのボンディングワイヤ31Bにより互いに接続されている。これにより、IGBT192A〜192C、およびダイオード202A〜202Cは、互いに逆並列に接続され、インバータ回路の負極側を構成している。第2実装基板54、IGBT192A〜192C、およびダイオード202A〜202Cは、駆動信号入力部(ゲート)を有する下アーム回路部を構成している。IGBT192A〜192Cのカソードは、図示しないボンディングワイヤによりゲート信号パターン32Dに電気的に接続されている。更に、IGBT192A〜192Cのカソードは、配線としてのボンディングワイヤ31Bにより、第2実装基板54の配線パターン32Gに電気的に接続されている。
第1実装基板53の導体パターン32Fは、ボンディングワイヤ31Cにより、第2実装基板54の導体パターン(配線パターン)32Aに電気的に接続されている。また、第1実装基板53の導体パターン(配線パターン)32Aは、ボンディングワイヤ31Dにより、第2実装基板54の導体パターン32Fに電気的に接続されている。
図1ないし図3に示すように、樹脂ケース52は、矩形枠形状に形成されている。樹脂ケース52は、放熱板24に対応した大きさの矩形状の底壁52aと、底壁の周囲に立設された枠状の側壁52bと、側壁の一方短辺側から長手方向外側に突出する2つの端子支持部52cと、側壁の他方短辺側から長手方向外側に突出する2つの端子支持部52dと、を一体に有し、底壁52aには、矩形状の開口56が形成されている。そして、樹脂ケース52は、その底壁52aが放熱板24の上面に接着固定されている。この際、第1および第2実装基板53、54は、樹脂ケース52の開口56内に位置し、樹脂ケース内に露出している。
一方の端子支持部52cには、正極端子(C1端子)38が保持され、この正極端子の端部は、樹脂ケース52内に延出している。他方の端子支持部52cには、負極端子(E2端子)39が保持され、この負極端子の端部は、樹脂ケース52内に延出している。正極端子38および負極端子39は、それぞれ金属板により、あるいは、絶縁板の表面を金属メッキすることにより形成されている。第2実装基板54の配線パターン32Aは、ボンディングワイヤ31Eにより正極端子38に電気的に接続され、導体パターン(配線パターン)32Gは、ボンディングワイヤ31Fにより負極端子39に電気的に接続されている。
一対の端子支持部52dには、一対の出力端子(E1C2端子)40が保持されている。これらの出力端子40の端部は、樹脂ケース52内に延出し、互いに連結されている。すなわち、一対の出力端子40は、それぞれ金属板により、あるいは、絶縁板の表面を金属メッキすることにより一体に形成されている。第1実装基板53の配線パターン32Aは、ボンディングワイヤ31Gにより出力端子40に電気的に接続されている。
樹脂ケース52の側壁において、第1実装基板53の近傍に、図示しないゲート信号入力端子およびエミッタ入力端子が取り付けられている。他方の側壁において、第2実装基板54の近傍に、図示しないゲート信号入力端子およびエミッタ入力端子が取り付けられている。これらのゲート入力端子およびエミッタ入力端子は、後述する第1および第2実装基板53、54のゲート信号パターン32Dに電気的に接続される。
なお、図2および図3において、図面の簡略化を図るためにボンディングワイヤ31を帯状に示しているが、実際には、各帯状部分は、8本以上のワイヤで構成されている。
ボンディングワイヤ31により各構成要素を電気的に接続した後、樹脂ケース52内に図示しない絶縁モールドが充填され、更に、矩形板状の蓋体55により樹脂ケース52の上部開口を閉じることにより、パワー半導体モジュール10が構成される。
このように構成したパワー半導体モジュール10を、長方形の長辺が隣接するように3個近接配置する。この場合、3組の正極端子38と負極端子39とが、比較的近い間隔で略一列に配列される。これら3個のパワー半導体モジュール群の外側かつ、3組の正極端子38と負極端子39に近接するように平滑コンデンサ4を配置することにより、どのパワー半導体モジュール10からも比較的近距離で平滑コンデンサ4に接続することができる。それにより、一巡の電流経路に対するインダクタンス低減に配慮している。
次に、第1および第2実装基板53、54について詳細に説明する。
前述したように、第1および第2実装基板53、54は、同一の構成であり、互いに180度向きを変えて配置されている。そのため、一方の基板、例えば、第2実装基板54を代表して、その構成を説明する。
図4は実装基板54の平面図、図5は実装基板54の斜視図、図6は、図4の線A−Aに沿った実装基板の断面図である。
図4ないし図6に示すように、第2実装基板54は、セラミックからなる矩形状の絶縁基板32Iと、絶縁基板の表面側に銅箔等で形成された複数の導体パターンと、絶縁基板の裏面側に銅箔等で形成された裏面導体バターン32Hと、を有している。表面側の導体パターンは、半導体素子を搭載する実装パターン32Fと、半導体素子を搭載しない非実装パターン(配線パターン)32A、32D、32Gとを含んでいる。
すなわち、表側の導体パターンは、絶縁基板32Iの中央部に比較的広い面積で形成された半導体素子搭載用の実装パターン(C2パターン)32Fと、非実装パターンである第1非実装パターン(C1パターン)32A、第2非実装パターン(E2パターン)32G、およびゲート信号パターン32Dと、を有している。第1非実装パターン32A、第2非実装パターン32Gは、実装パターン32Fの両側にそれぞれ独立して設けられている。図2および図3に示したように、実装パターン32F上に、IGBT192A〜192C、およびダイオード202A〜202Cが実装され、また、これらIGBTおよびダイオードの負極はボンディングワイヤ31Bにより第2非実装パターン32Gに電気的に接続されている。
ゲート信号パターン32Dを除く各パターンは、半導体素子を搭載するか否かにかかわらず、半導体モジュール内部配線経路の一部であり、配線抵抗を有する。そこで、第1および第2非実装パターン32A、32Gは、その断面積が従来よりも大きくなるように形成されている。本実施形態では、半導体素子を搭載する実装パターン32Fに対して、半導体素子を搭載しない第1、第2非実装パターン32A、32Gの厚さを大きくしている。具体的には、実装パターン32Fを基準として、そのパターン厚さよりも、第1および第2非実装パターン32A、32Gのパターン厚さを大きく、例えば、約2倍程度の厚さとしている。
第1実装基板53についても、第2実装基板54と同様に形成されている。
半導体モジュール10のハイサイド通電経路(正極端子38→ボンディングワイヤ31E→第1非実装パターン32A→ボンディングワイヤ31C→実装パターン32F→半導体素子→第1非実装パターン32A→ボンディングワイヤ31G→出力端子40)において、2つの第1非実装パターン32Aの抵抗が実装パターン32Fの抵抗より大きく、抵抗の大きさは群を抜いており、この部分の抵抗低減が必要である。本実施形態では、第1および第2非実装パターン32A、32Gのパターン厚さを実装パターン32Fの厚さよりも大きくし、その抵抗を大幅に低減している。
以上のように構成された第1の実施形態に係るパワー半導体モジュール10によれば、非実装パターンの層厚を増大することにより、配線経路の断面積が増え、パターンの配線抵抗低減を図ることができる。
前述したように、絶縁基板のパターン厚さを増大すると、基板のそり変形を生じさせるなどの懸念があるが、本実施形態によれば、基板の表面側パターン全ての厚さを増大するのではなく、半導体素子を搭載しない一部の非実装パターンに限定して厚さの増大を行っている。また、半導体素子を搭載する実装パターン32Fの方が、絶縁基板中央部の大面積を占めているため、比較的外周に近い限られたエリアの非実装パターンに限定して厚さ増大を図っている。これにより、実装基板の反り変形発生を抑制した上で、配線抵抗を低減することが可能となる。
本実施形態における効果を計算で算出する。
(変更前→変更後)
・非実装パターン厚さ:0.3mm→0.6mm(0.3mm増大)
・第2実装基板54の第1非実装パターン32A:0.67mΩ(厚さ0.3mm)→0.34mΩ(厚さ0.6mm)
・第1実装基板53の実装パターン32F:0.1mΩ(厚さ0.3mm)→0.1mΩ(厚さ0.3mm)変更なし
・第1実装基板53の第1非実装パターン32A:0.35mΩ(厚さ0.3mm)→0.18mΩ(厚さ0.6mm)
・端子およびボンディングワイヤ(一式):0.32mΩ→0.32mΩ(変更なし)
・トータル(ハイサイド):1.44mΩ(100%)→0.94mΩ(65%)
以上の通り、基板パターンの限定的な厚さ増大により、抵抗低減効果が生じパワー半導体全体として、35%の配線抵抗低減という顕著な効果が得られる。
なお、第1非実装パターン32Aは2つ存在するが、第2実装基板54に形成された一方の第1非実装パターン32Aは、基板のほぼ片端から反対端までの、長い電流経路をとるため抵抗が非常に大きい。他方、第1実装基板53に形成された第1非実装パターン32Aでは、3並列敷設されたボンディングワイヤ31Aを介して電流経路が形成されるため、前者よりは抵抗が小さい。すなわち同じ第1非実装パターン32でも抵抗値が異なっている。
以上のように、本実施形態によれば、パワー半導体モジュールの絶縁基板に形成した複数の導体パターンの内、半導体素子を搭載する導体パターンに対して、半導体素子を搭載しない導体パターンの厚さを大きくする。絶縁基板の一部のパターンに限定して厚さを増大することで、パターン厚さ増大に起因する基板のそり変形を防止しながら、配線抵抗を低減できる。その結果、パワー半導体モジュール内部の配線抵抗による通電時の発熱量を低減でき、適用装置の高効率化、高信頼性化、および小形化を実現することができる。
次に、他の実施形態に係るパワー半導体モジュールについて説明する。後述する他の実施形態において、前述した第1の実施形態と同一の部分には同一の参照符号を付してその詳細な説明を省略し、異なる部分を中心に詳細に説明する。
(第2の実施形態)
図7は、第2の実施形態に係るパワー半導体モジュールの実装基板54(53)を示す分解斜視図である。
前述した第1の実施形態においては、半導体素子を搭載する導体パターン(実装パターン)に対して、半導体素子を搭載しない導体パターン(第1、第2非実装パターン)の厚さを大きくした。
これに対して、第2の本実施形態では、実装基板53、54の製造段階では、半導体素子を搭載する実装パターン32F、および半導体素子を搭載しない第1、第2非実装パターン32A、32Gを、同じ厚さで形成する。次に、第1および第2非実装パターンの形状と同等以下の面積を有する第1積層用導体板32A2および第2積層用導体板32G2を、それぞれ第1および第2非実装パターン32A1、32G1の表面側に積層することにより、非実装パターンの厚さを厚くする。
第1および第2積層用導体板32A2、32G2は、実装基板の製造段階でロー付けなどの接合方法で結合する、もしくはパワー半導体モジュール10の組立工程にて、半導体素子搭載や、放熱板との接合と同じ形態で、ハンダ接合により非実装パターンに結合するといった方法を用いることができる。
なお、積層用導体板は、対応するパターンのサイズを超過しない範囲で自由に設定することができる。積層用導体板は、必ずしも、非実装パターンと同一形状でなくても良い。
第2の実施形態において、パワー半導体モジュールの他の構成は、第1の実施形態と同一である。
以上のように構成された第2の実施形態においても、第1の実施形態と同様に配線パターンの抵抗低減効果が期待できる。本実施形態では、導体板積層前の実装基板の構成は、従来の構成と同様のため、第1の実施形態と比較して、実装基板の製造が容易となる。また、本実施形態では、積層用導体板の形状や厚さを任意に設定でき、該当するパターンの厚さや形状設定の自由度が向上する。
(第3の実施形態)
図8は、第3の実施形態に係るパワー半導体モジュールの実装基板54(53)を示す分解斜視図である。
第3の実施形態における実装基板54の基本構成は、第2の実施形態と同等である。第3の実施形態における相違点は、積層用導体板32A2、32G2に複数の貫通孔33A、33Bを形成した点にある。すなわち、図8に示すように、第1非実装パターン32A1に積層する積層用導体板32A2には、貫通孔33Aが複数個形成されている。また、第2非実装パターン32G1に積層する積層用導体板32G2には、貫通孔33Bが複数個形成されている。
第1の実施形態と同様に、半導体素子を搭載しない一部の非実装パターンに限定して厚さの増大を行うことで、実装基板の反りや変形発生を小さくしている。本実施形態によれば、積層用導体板32A2、32G2に貫通孔33A、33Bを設けることで、貫通孔付近に応力緩和効果を得ることができる。複数個の貫通孔33A、33Bにより、メッシュ材を使用した場合と同様の効果が発揮される。
パワー半導体モジュールにおいては、通電発熱による温度上昇が不可避であり、温度変化による熱変形の抑制が重要である。本実施形態によれば、第1、第2の実施形態と比較して、実装基板の導体パターンの配線抵抗低減と同時に、実装基板の変形抑制による信頼性向上の効果を得ることができる。
本実施形態において、積層用導体板32A2、32G2と、第1非実装パターン32A、第2非実装パターンとの接合面積は、必ずしも、積層用導体板または非実装パターンの全面積でなくても良い。積層用導体板の保持固定に必要な接合面積を確保できれば、複数分割された小面積で接合しても良い。この場合、さらに有効な応力緩和効果が得られる。
(第4の実施形態)
図9は、第4の実施形態に係るパワー半導体モジュールの実装基板54(53)を示す分解斜視図である。
第4の実施形態における実装基板54の基本構成は、第2の実施形態と同等である。第4の実施形態における相違点は、積層用導体板32A2、32G2に、導体幅を貫通しない範囲で幅方向にスリット34A、34Bを複数形成した点である。
すなわち、図9に示すように、第1非実装パターン32A1に積層する積層用導体板32A2には、スリット34Aが複数個形成されている。また、第2非実装パターン32G1に積層する積層用導体板32G2には、スリット34Bが複数個形成されている。いずれのスリット34A、34bも、導体板の幅を貫通しない範囲で形成され、積層用導体板が第1、第2非実装パターンに結合された後に、パターンと一体化して、必要な強度が確保される。
第4の実施形態によれば、第3の実施形態と同様に、積層用導体板にスリットを設けることで、スリット付近に応力緩和効果が期待できる。パワー半導体モジュールにおいては、通電発熱による温度上昇が不可避であり、温度変化による熱変形の抑制が重要である。本実施形態おいても、第1ないし第3の実施形態と比較して、実装基板の導体パターンの配線抵抗低減と同時に、実装基板の変形抑制による信頼性向上の効果が得られる。
(第5の実施形態)
図10は、第5の実施形態に係るパワー半導体モジュールの実装基板54(53)を示す斜視図である。
第5の実施形態においては、実装基板54の導体パターンの内、半導体素子を搭載しない第1非実装パターン32Aに、始点側接合点と終点側接合点ともに当該パターン内に設置されるように、複数のボンディングワイヤ35を接合した構成である。これらのボンディングワイヤ35は、半導体素子/導体パターン/端子の各相互間を接続して必要な回路を構成するために使用されるワイヤとは異なり、始点側も終点側も単一の非実装パターン32Aのエリア内に接続されている。
本実施形態によれば、半導体素子を搭載しない第1非実装パターン32A内にボンディングワイヤ35を敷設することで、導体パターンと並行する電流経路が増設されることになる。これにより、第1非実装パターン(増設ボンディングワイヤ35も含め)に対応する配線抵抗低減効果が得られる。また、ボンディングワイヤ35には、材料と形状に起因する応力緩和効果が期待できるため、非実装パターンの配線抵抗低減と同時に、実装基板の変形抑制効果が得られる。ボンディングワイヤ35は、幅2mm程度の帯状のワイヤを用いることも可能である。
(第6の実施形態)
前述した第1ないし第5の実施形態では、実装基板の導体パターンの厚さを増大、もしくはそれに準ずる効果が期待できる構成を採用することで、半導体モジュール全体の中でウェイトの大きい導体パターンの抵抗低減を実現した。これに対して第6の実施形態では、導体パターンの厚さを増大するのではなく、導体パターンの幅の増大により、当該パターンの配線抵抗低減を図っている。
ただし、導体パターン幅の増大は、パターンの占有面積増大につながり、実装基板の面積増大と、さらにはパワー半導体モジュール外形の増大につながる懸念がある。その場合、適用装置の体格増大に至る懸念までもある。
そこで、本実施形態では、パワー半導体モジュールにおいて、半導体素子を搭載しない非実装パターンについて、パターン幅を部分的に拡大している。すなわち、非実装パターンの幅を一律に拡大するのではなく、最も効果が期待できる箇所に限定して導体幅を拡大し、当該部分の断面積の増大と、配線抵抗低減を図っている。
図11は、第6の実施形態に係るパワー半導体モジュールの実装基板54を示す斜視図、図12は、第6の実施形態に係るパワー半導体モジュールの平面図である。これらの図に示すように、ハイサイドの電流経路の中で最も抵抗の大きい部材である第1および第2実装基板53、54の第1非実装パターン32Aについて、両端部の幅は変えず、中央部の幅のみを拡大している。
本実施形態では、適用箇所を限定しているものの、部分的にパターン幅を増大したため、増大分に対応して実装基板の外形も増大している。図12に示すように、本実施形態の第1および第2実装基板53、54をパワー半導体モジュール10に搭載した場合、第1および第2実装基板53、54の外形増大分は、ゲート信号用配線接続部スペース(樹脂ケースの底壁52a)の幅を縮小することで相殺し、半導体モジュール外形寸法を維持している。
第6の実施形態によれば、実装基板の導体パターンの断面積増大箇所が限定的であり、第1ないし第5の実施形態に準ずる抵抗低減効果が得られる。一方、導体パターンの厚さは、実装基板の同一面内で均等に維持できるため、実装基板の反り変形発生の懸念を小さくすることできる。また、実装基板の製造方法は従来構成と同等のため、製造コストや組立工数の増大を抑制することできる。
(第7の実施形態)
図13は、第7の実施形態に係るパワー半導体モジュールの平面図である。
第7の実施形態は、第6の実施形態と同じ構成の実装基板を用いる。本実施形態において、第6の実施形態との相違点は、第1および第2実装基板53、54を放熱板24上に非対称に配置した構成にある。
図13に示すように、第1実装基板(ハイサイド基板)53、および第2実装基板(ローサイド基板)54ともに、放熱板に対して非対称に配置されている。両実装基板ともに、パワー半導体モジュール10の中心軸からオフセットして配置している。この配置に対応するため、ゲート信号用配線接続部(樹脂ケース52の底壁52a)は、両側共、約半分はさらに幅狭形状となっているものの、約半分は当初有していた幅を確保できている。当該スペースが、ゲート信号用配線接続に必要なエリアである。
本実施形態によれば、第6の実施形態と同様に、第1ないし第5の実施形態に準ずる抵抗低減効果が得られる。一方、実装基板の導体パターンの厚さは、基板の同一面内で均等に維持できるため、実装基板の反り変形発生の懸念を小さくすることができる。また、実装基板の製造方法は従来構成と同等のため、製造コストや組立工数の増大を抑制できる。さらに、面積増大した実装基板を放熱板に対して非対称で搭載したことで、ゲート信号用配線接続の必要エリアの維持をでき、第6の実施形態と比較して、信号接続がしやすいという効果が得られる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
例えば、各実施形態において、IGBT及びダイオードを実装する個数は、実施形態に限定されることなく、必要に応じて増減可能である。半導体素子は、大容量化したものを選択すると寿命が短くなる。しかし、あまり小容量化のものを選択すると、並列接続する個数を増やす必要があり、この場合、装置全体が大型化し、配線経路が増え、配線抵抗増大を招くおそれがある。従って、目的や用途などにより適切に選択し、最適なパワー半導体モジュールを製造することができる。
10…パワー半導体モジュール、24…放熱板、
31A〜31G…ボンディングワイヤ、32A…第1非実装パターン、
32F…実装パターン、32G…第2非実装パターン、
32A2、32G2…積層用導体板、33A,33B…貫通孔、
34A、34B…スリット、38…正極端子、39…負極端子、40…出力端子、
52…樹脂ケース、52a…底壁、52b…側壁、52c、52d…端子支持部、
53…第1実装基板、54…第2実装基板、
191A、191B、191C、192A、192B、192C…IGBT、
201A、201B、201C、202A、202B、202C…ダイオード

Claims (8)

  1. 電力変換装置の半導体モジュールであって、
    放熱板と、
    絶縁基板、およびこの絶縁基板上に形成された複数の導体パターンを有し、前記放熱板上に接合された実装基板と、
    前記導体パターンの一部の導体パターン上に実装された半導体素子と、を備え、
    前記導体パターンは、前記半導体素子が実装された実装パターンと、半導体素子が非搭載の非実装パターンと、を含み、前記非実装パターンは、前記実装パターンよりも厚く形成されていることを特徴とする半導体モジュール。
  2. 前記実装基板は、前記非実装パターンの形状と同等以下の面積を有し前記非実装パターン上に積層された導体板を備え、前記非実装パターンおよびこれに積層された導体板の合計の厚さが、前記実装パターンの厚さよりも大きいことを特徴とする請求項1に記載の半導体モジュール。
  3. 前記導体板は複数の貫通孔を有することを特徴とする請求項2に記載の半導体モジュール。
  4. 前記導体板は、それぞれ導体板の幅の範囲内で幅方向に延びる複数のスリットを有することを特徴とする請求項2に記載の半導体モジュール。
  5. 前記実装パターンは、前記絶縁基板の中央部に設けられ、前記非実装パターンは、前記実装パターンの外側で前記絶縁基板の側縁近傍に設けられていることを特徴とする請求項1ないし4のいずれか1項に記載の半導体モジュール。
  6. 前記非実装パターンは、配線経路を形成する配線パターンであることを特徴とする請求項1ないし5のいずれか1項に記載の半導体モジュール。
  7. 電力変換装置の半導体モジュールであって、
    放熱板と、
    絶縁基板、およびこの絶縁基板上に形成された複数の導体パターンを有し、前記放熱板上に接合された実装基板と、
    前記導体パターンの一部の導体パターン上に実装された半導体素子と、を備え、
    前記導体パターンは、前記半導体素子が実装された実装パターンと、半導体素子が非搭載の非実装パターンと、を含み、前記非実装パターンに、始点側接合点および終点側接合点が前記非実装パターン内に設置された複数のボンディングワイヤが接合されていることを特徴とする半導体モジュール。
  8. 電力変換装置の半導体モジュールであって、
    放熱板と、
    絶縁基板、およびこの絶縁基板上に形成された複数の導体パターンを有し、前記放熱板上に接合された第1実装基板と、
    絶縁基板、およびこの絶縁基板上に形成された複数の導体パターンを有し、前記放熱板上に接合された第2実装基板と、
    前記第1実装基板の一部の導体パターン上に実装された第1半導体素子と、
    前記第2実装基板の一部の導体パターン上に実装された第2半導体素子と、を備え、
    前記第1および第2実装基板の導体パターンの各々は、前記第1あるいは第2半導体素子が実装された実装パターンと、半導体素子が非搭載の非実装パターンと、を含み、前記非実装パターンの少なくとも一部は、他の部分よりも大きなパターン幅に拡大され、
    前記第1および第2実装基板は、前記放熱板に対して、互いに非対称に配置されていることを特徴とする半導体モジュール。
JP2013185934A 2013-09-09 2013-09-09 半導体モジュール Pending JP2015053410A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185934A JP2015053410A (ja) 2013-09-09 2013-09-09 半導体モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185934A JP2015053410A (ja) 2013-09-09 2013-09-09 半導体モジュール

Publications (1)

Publication Number Publication Date
JP2015053410A true JP2015053410A (ja) 2015-03-19

Family

ID=52702208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185934A Pending JP2015053410A (ja) 2013-09-09 2013-09-09 半導体モジュール

Country Status (1)

Country Link
JP (1) JP2015053410A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204257A1 (ja) * 2015-06-17 2016-12-22 富士電機株式会社 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
JPWO2016204257A1 (ja) * 2015-06-17 2017-09-07 富士電機株式会社 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
JP2020080348A (ja) * 2018-11-12 2020-05-28 ローム株式会社 半導体装置
US11705438B2 (en) 2020-09-18 2023-07-18 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204257A1 (ja) * 2015-06-17 2016-12-22 富士電機株式会社 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
JPWO2016204257A1 (ja) * 2015-06-17 2017-09-07 富士電機株式会社 パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
JP2018166215A (ja) * 2015-06-17 2018-10-25 富士電機株式会社 パワー半導体モジュール、流路部材、パワー半導体モジュール構造体及び自動車
US10192807B2 (en) 2015-06-17 2019-01-29 Fuji Electric Co., Ltd. Power semiconductor module, flow path member, and power-semiconductor-module structure
JP2020080348A (ja) * 2018-11-12 2020-05-28 ローム株式会社 半導体装置
JP7267716B2 (ja) 2018-11-12 2023-05-02 ローム株式会社 半導体装置
US11705438B2 (en) 2020-09-18 2023-07-18 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
US11532538B2 (en) Component structure, power module and power module assembly structure
JP5259016B2 (ja) パワー半導体モジュール
JP5724314B2 (ja) パワー半導体モジュール
KR101926854B1 (ko) 반도체 장치
JP6836201B2 (ja) 電力変換装置
JP5434986B2 (ja) 半導体モジュールおよびそれを備えた半導体装置
US10283488B2 (en) Semiconductor module
US20140334203A1 (en) Power converter and method for manufacturing power converter
US9780684B2 (en) Power converter
US9041052B2 (en) Semiconductor device, semiconductor unit, and power semiconductor device
JP2013222885A (ja) インバータモジュール
JP2023544138A (ja) 統合信号ボードを備えたエレベーテッドパワープレーンを有するパワーモジュール及びその実装プロセス
JP2015053410A (ja) 半導体モジュール
JP6922450B2 (ja) 半導体モジュール
CN112992845A (zh) 功率模块及其制造方法
WO2013105456A1 (ja) 回路基板および電子デバイス
CN111668165B (zh) 半导体模块和具备该半导体模块的半导体装置
JP6305362B2 (ja) 電力用半導体モジュール
JP6123722B2 (ja) 半導体装置
CN112910287A (zh) 功率用半导体装置
CN111279476B (zh) 半导体装置
CN214480328U (zh) 智能功率模块及采用其的智能功率模块结构
WO2021014875A1 (ja) 半導体装置
US20230282569A1 (en) Power supply circuit module
JP2010021188A (ja) 半導体電力変換モジュール