WO2020071058A1 - 半導体装置 - Google Patents

半導体装置

Info

Publication number
WO2020071058A1
WO2020071058A1 PCT/JP2019/035398 JP2019035398W WO2020071058A1 WO 2020071058 A1 WO2020071058 A1 WO 2020071058A1 JP 2019035398 W JP2019035398 W JP 2019035398W WO 2020071058 A1 WO2020071058 A1 WO 2020071058A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
heat dissipation
cooling case
cooling
engagement pieces
Prior art date
Application number
PCT/JP2019/035398
Other languages
English (en)
French (fr)
Inventor
悠司 佐藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP19869307.9A priority Critical patent/EP3761356B1/en
Priority to JP2020550235A priority patent/JP7047929B2/ja
Priority to CN201980024342.8A priority patent/CN111937141A/zh
Publication of WO2020071058A1 publication Critical patent/WO2020071058A1/ja
Priority to US17/039,710 priority patent/US12009279B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate

Definitions

  • the present invention relates to a semiconductor device provided with a cooler for cooling a semiconductor element.
  • power converters are used to variably drive motors.
  • This power conversion device uses a semiconductor module (power semiconductor module) including a plurality of power semiconductor elements.
  • a power semiconductor element generates heat when controlling a large current, and the amount of heat generated increases as the size and power output of a power converter increase.
  • a semiconductor device provided with a refrigerant-type cooler for cooling a power semiconductor module has been proposed.
  • a metal heat-dissipating substrate joined to a surface of the insulating substrate on which the power semiconductor element is mounted on the opposite side to the semiconductor module is formed integrally with the heat-dissipating substrate.
  • a heat-dissipating fin is provided, and a box-shaped cooling case that accommodates the fin and is mounted on the heat-dissipating substrate in a liquid-tight manner.
  • a concave portion is provided in a part of a cooling case in which a coolant flow path is formed, while a convex portion that fits into the concave portion is provided in a part of a cooling fin base that constitutes a heat dissipation board, and a cooling fin is provided at an appropriate position with respect to the cooling case.
  • a semiconductor device to which a base is attached has been proposed (for example, see Patent Document 1).
  • the present invention has been made in view of the above circumstances, and has as its object to provide a semiconductor device capable of accurately positioning a heat radiating substrate with respect to a cooling case without requiring a complicated configuration. I do.
  • the semiconductor device of the present embodiment includes an insulating substrate having a first surface and a second surface opposite to the first surface, a semiconductor element mounted on the first surface of the insulating substrate, A cooler for cooling, wherein the cooler has a bonding surface and a heat radiating surface opposite to the bonding surface, and the bonding surface is formed on the second surface of the insulating substrate.
  • a plurality of positioning pieces for engaging with a part of the inner wall surface of the recess are provided.
  • the heat dissipation board can be accurately positioned with respect to the cooling case without requiring a complicated configuration.
  • FIG. 3 is a perspective view of the semiconductor device according to the present embodiment.
  • 3A and 3B are a perspective view and a plan view of a cooling case included in the semiconductor device according to the present embodiment.
  • FIG. 3 is an explanatory diagram of fins provided on a heat dissipation board of the semiconductor device according to the present embodiment.
  • FIG. 3 is an explanatory diagram of a flow of a cooling medium of the semiconductor device according to the present embodiment.
  • FIG. 5 is a sectional view taken along line AA shown in FIG. 4.
  • FIG. 3 is a perspective view of a state where a resin case is attached to the semiconductor device according to the present embodiment.
  • FIG. 1 is a perspective view of the semiconductor device according to the present embodiment.
  • FIG. 2 is a perspective view and a plan view of a cooling case included in the semiconductor device according to the present embodiment.
  • FIG. 1A shows a heat radiating substrate 21 included in the semiconductor device 1 according to the present embodiment
  • FIG. 1B shows a cooling case 23 to which the heat radiating substrate 21 is attached. 2A, the cooling case 23 shown in FIG. 1B is rotated and shown, and in FIG. 2B, the cooling case 23 is shown from above.
  • the vertical direction, the horizontal direction, and the front-back direction shown in FIG. 1 will be described as the vertical direction, the left-right direction, and the front-back direction of the semiconductor device.
  • a plan view means a case where the upper surface of a semiconductor device is viewed from above.
  • the semiconductor device 1 includes a semiconductor module 10 and a cooler 20 for cooling the semiconductor module 10.
  • the semiconductor module 10 has a plurality of circuit element portions 11A, 11B, 11C arranged on a heat dissipation board 21 of a cooler 20, which will be described later.
  • the semiconductor module 10 constitutes a three-phase inverter circuit.
  • the circuit element units 11A, 11B, and 11C constitute a W-phase circuit, a V-phase circuit, and a U-phase circuit that form a three-phase inverter circuit, respectively.
  • a circuit element portion 11A constituting a W-phase circuit includes an IGBT element 12 as a semiconductor element constituting an upper arm, and a freewheel diode 13 connected in antiparallel to the IGBT element 12. It has an IGBT element 12 constituting the lower arm and a freewheel diode 13 connected in anti-parallel to the IGBT element 12.
  • the IGBT element 12 and the freewheel diode 13 are mounted on an insulating substrate 14 joined to a heat dissipation substrate 21.
  • the circuit element section 11B forming the V-phase circuit and the circuit element section 11C forming the U-phase circuit also have the same configuration as the circuit element section 11A.
  • On the insulating substrate 14, a circuit pattern for forming the above circuit is formed.
  • the semiconductor module 10 forms a three-phase inverter circuit is described.
  • the semiconductor module 10 according to the present invention is not limited to the case where a three-phase inverter circuit is configured, and can be appropriately changed.
  • the cooler 20 is configured to include the heat radiating board 21 shown in FIG. 1A, a plurality of fins 22 (see FIG. 3) provided on the heat radiating board 21, and the cooling case 23 shown in FIG. 1B.
  • the fins 22 are provided on a surface (heat radiating surface) of the heat radiating substrate 21 opposite to a surface (bonding surface) to which the insulating substrate 14 is bonded.
  • the heat radiating board 21 is attached to an upper part of the cooling case 23.
  • the plurality of fins 22 provided on the lower surface (heat radiating surface) of the heat radiating substrate 21 are accommodated in a concave portion 24 formed in a cooling case 23.
  • the cooling case 23 may be called a refrigerant jacket or a water jacket.
  • the heat dissipation board 21 is formed of a metal plate having a generally rectangular shape.
  • the heat dissipation board 21 is made of a metal material such as aluminum, copper, and iron.
  • the heat dissipation board 21 has a longitudinal direction extending in the left-right direction of the semiconductor device 1 and a short direction extending in the front-rear direction of the semiconductor device 1.
  • the semiconductor module 10 is arranged in a central region on the upper surface of the heat dissipation board 21.
  • the circuit element portions 11A, 11B, and 11C that constitute the semiconductor module 10 are arranged side by side in the center region of the heat dissipation board 21 in the left-right direction.
  • screw holes 211 are formed to penetrate.
  • a screw (fastening member) for fixing the heat dissipation board 21 to the cooling case 23 is inserted into the screw hole 211.
  • the cooling case 23 has a substantially rectangular parallelepiped outer shape, and has a rectangular shape in plan view.
  • the outer shape of the cooling case 23 when viewed in a plan view has substantially the same shape as the outer shape of the heat dissipation board 21.
  • the cooling case 23 has a bottom wall 231 and a side wall 232 provided on a peripheral edge of the bottom wall 231, and has a box shape with an open top.
  • the recess 24 is formed on the upper surface of the cooling case 23.
  • the concave portion 24 is defined by an upper surface of the bottom wall 231, an inner wall surface of the side wall 232, and upper surfaces (inclined surfaces) of a diffusion wall 237 and a converging wall 238 described later.
  • the concave portion 24 has a rectangular shape whose longitudinal direction is arranged in the left-right direction of the semiconductor device 1 in a plan view (see FIG. 2B).
  • the cooling case 23 is provided with an inlet 233 for introducing a cooling medium into the cooling case 23 and an outlet 234 for discharging the cooling medium from the inside of the cooling case 23.
  • the inlet 233 and the outlet 234 are respectively provided in a part of the first side wall 232a and the second side wall 232b extending along the longitudinal direction.
  • the inlet 233 is located near one end (the right end shown in FIG. 1) of the first side wall 232 a and at a position communicating with the recess 24.
  • the outlet 234 is located near the other end (the left end shown in FIG. 1) of the second side wall 232 b and at a position communicating with the recess 24.
  • the inlet 233 and the outlet 234 are arranged at positions deviated in opposite directions from the longitudinal center line CL1 of the recess 24.
  • An inlet pipe 233a and an outlet pipe 234a are connected to the inlet 233 and the outlet 234, respectively.
  • An O-ring 235 is attached to the upper surface of the side wall 232.
  • the O-ring 235 is disposed at a position near the concave portion 24 on the side wall 232 and surrounds the concave portion 24.
  • the O-ring 235 serves to prevent liquid from leaking from inside the cooling case 23 when the heat radiating substrate 21 is attached to the cooling case 23 and a cooling medium flows into the cooling case 23.
  • the configuration for preventing liquid leakage is not limited to the O-ring 235, but may be a metal gasket or a liquid packing.
  • Screw holes 236 are formed near the four corners of the cooling case 23 (side wall 232).
  • the screw holes 236 are arranged at positions corresponding to the screw holes 211 of the heat dissipation board 21 when the heat dissipation board 21 is overlaid on the cooling case 23.
  • the heat dissipation board 21 is attached to the cooling case 23 by inserting and fastening a screw (fastening member) into the screw hole 236 via the screw hole 211 in a state where the heat dissipation board 21 is overlaid on the cooling case 23.
  • a diffusion wall 237 is provided between the bottom wall 231 and the first side wall 232a in the recess 24 of the cooling case 23.
  • a converging wall 238 is provided between the bottom wall 231 and the second side wall 232b.
  • the diffusion wall 237 is arranged on the front side of the bottom wall 231 and is connected to the front edge of the bottom wall 231.
  • the converging wall 238 is arranged on the rear side of the bottom wall 231 and is connected to the rear edge of the bottom wall 231.
  • These diffusion wall 237 and convergence wall 238 extend along the longitudinal direction of semiconductor device 1.
  • the diffusion wall 237 has an inclined surface and plays a role of diffusing the cooling medium introduced from the inlet 233 along the first side wall 232a.
  • the converging wall 238 is formed of an inclined surface, and plays a role of converging the cooling medium in the cooling case 23 to the outlet 234 along the second side wall 232b.
  • FIG. 3 is an explanatory diagram of the fins 22 provided on the heat dissipation board 21 of the semiconductor device 1 according to the present embodiment.
  • FIG. 3A is a perspective view illustrating a state in which the lower surface of the heat dissipation board 21 is directed upward
  • FIG. 3B is a plan view illustrating the heat dissipation board 21 viewed from below.
  • the outer shape of the concave portion 24 when attached to the cooling case 23 is indicated by a broken line 241.
  • the fins 22 are provided integrally on the lower surface of the heat dissipation board 21.
  • the fins 22 may be made of the same metal material as the heat dissipation board 21.
  • the fins 22 are used as a heat sink, in other words, a heat sink.
  • a plurality of prismatic pins (square pins) and pin fins arranged at a predetermined pitch with an interval can be used as the fins 22.
  • the configuration of the fins 22 provided on the heat dissipation board 21 is not limited to this, and can be appropriately changed.
  • a columnar pin may be provided instead of the prismatic shape shown in FIG. 3, or a plurality of blade-shaped fins extending in the front-rear direction may be arranged in parallel with each other.
  • the shape and dimensions of the fins 22 are appropriately determined in consideration of the conditions for introducing the cooling medium into the cooler 20 (that is, pump performance, etc.), the type and properties of the cooling medium (particularly, viscosity, etc.), the desired heat removal amount, and the like. It is preferable to set.
  • the fins 22 are accommodated in the cooling case 23 (more specifically, the recesses 24 of the cooling case 23), a certain clearance is provided between the tip of the fin 22 and the bottom wall 231 of the cooling case 23. It is formed at a height that exists (see FIG. 5).
  • the region where the fins 22 are provided is on the side opposite to the mounting region of the semiconductor element (IGBT element 12, freewheel diode 13) on the insulating substrate 14 when the insulating substrate 14 is joined to the heat dissipating substrate 21. It is preferable to include a (back side) region.
  • the region where the fins 22 are provided integrally with the heat dissipation substrate 21 is preferably a region including a region immediately below the IGBT element 12 and the freewheel diode 13.
  • an aggregate 22 a of fins 22 in which a plurality of fins 22 having a prismatic shape are arranged on the lower surface (heat dissipation surface) of the heat dissipation board 21.
  • the outer shape of the aggregate 22a of the fins 22 has a substantially rectangular parallelepiped shape. More preferably, the outer shape of the aggregate 22a of the fins 22 is a rectangular parallelepiped shape, but is not limited thereto, and may be a chamfered or deformed shape.
  • the longitudinal direction of the aggregate 22a of the fins 22 matches the longitudinal direction of the cooling case 23 (the concave portion 24).
  • FIG. 3 shows a center line CL2 in the longitudinal direction of the aggregate 22a of the fins 22 having a substantially rectangular parallelepiped shape.
  • engaging pieces 221 and 222 for positioning are provided near the aggregate 22a of the fins 22.
  • These engagement pieces 221 and 222 are provided integrally on the lower surface of the heat dissipation board 21.
  • the engagement pieces 221 and 222 may be made of the same metal material as the heat dissipation board 21.
  • the engaging piece 221 is disposed at a position corresponding to the left front corner of the aggregate 22a of the fins 22, and the engaging piece 222 is positioned at the right rear corner of the aggregate 22a of the fins 22.
  • Each of the engagement pieces 221 and 222 is configured by arranging a plurality of (three in this embodiment) prismatic pins (square pins).
  • the engagement piece 221 includes a reference engagement piece 221a arranged corresponding to a left front corner of the heat dissipation board 21 and a right side and a rear side of the reference engagement piece 221a. And a pair of auxiliary engagement pieces 221b and 221c arranged at the same position.
  • the reference engagement piece 221a and the auxiliary engagement pieces 221b, 221c may have the same shape.
  • the engagement piece 221 has a configuration in which two sides of adjacent prismatic pins are directed to the front side and the left side of the semiconductor device 1 in plan view.
  • the engagement piece 222 includes a reference engagement piece 222a disposed corresponding to a right rear corner of the heat dissipation board 21, a front side of the reference engagement piece 222a, A pair of auxiliary engagement pieces 222b and 222c are provided on the left side.
  • the reference engagement piece 222a and the auxiliary engagement pieces 222b and 222c may have the same shape.
  • the engagement piece 222 has a configuration in which two sides of adjacent prismatic pins are directed to the right side and the rear side of the semiconductor device 1 in plan view. Further, the reference engagement piece 222a and the auxiliary engagement pieces 222b and 222c may have the same shape as the reference engagement piece 221a and the auxiliary engagement pieces 221b and 221c.
  • engagement pieces 221 and 222 are used for positioning when attaching the heat dissipation board 21 to the cooling case 23. These engaging pieces 221 and 222 engage with a part of the inner wall surface of the concave portion 24 of the cooling case 23 when attaching the heat radiating substrate 21 to the cooling case 23, and adjust the position of the heat radiating substrate 21 with respect to the cooling case 23. Play a role to decide.
  • the engagement pieces 221 and 222 engage with the inner wall surfaces of the corners 242 and 243 arranged diagonally in the recess 24, respectively. More specifically, the engaging piece 221 engages with the inner wall surface of the left front corner 242 of the recess 24, and the engaging piece 222 engages with the inner wall surface of the right rear corner 243 of the recess 24. I do.
  • the reference engagement pieces 221a and 222a constitute a pair of engagement pieces, and have outer shapes corresponding to the shapes of the corners 242 and 243 of the recess 24, respectively.
  • the reference engagement pieces 221a and 222a have a square cross-sectional shape, and engage with the corners 242 and 243 of the recess 24 at their right-angled portions.
  • the auxiliary engaging pieces 221b and 221c and the auxiliary engaging pieces 222b and 222c constitute auxiliary engaging pieces arranged around the reference engaging piece 221a and the reference engaging piece 222a, respectively. Engage with a part of the wall.
  • the distance between the reference engaging piece 221a and the auxiliary engaging pieces 221b, 221c is set to be smaller than the distance between the fins 22 constituting the aggregate 22a of fins 22. .
  • this is because it is difficult for the cooling medium introduced into the cooling case 23 to enter the gap between the reference engagement piece 221a and the auxiliary engagement pieces 221b, 221c.
  • the dimensions of the engagement pieces 221 and 222 are appropriately set in consideration of the conditions for introducing the cooling medium into the cooling case 23 (that is, pump performance and the like), the type and properties of the cooling medium (particularly viscosity, etc.), and the like. Is preferred.
  • the dimensions of each of the engaging pieces constituting the engaging pieces 221 and 222 are such that the length of one side is 5 mm and the height is 3 to 5 mm. By setting the length of one side to 5 mm, it is possible to appropriately contact a part of the inner wall surface of the concave portion 24. Further, by setting the height to 3 to 5 mm, a clearance can be formed with the lower surface of the concave portion 24, so that the cooling medium can easily flow.
  • FIG. 4 is a plan view showing the case where the heat dissipation board 21 shown in FIG. 1A is attached to the cooling case 23 shown in FIG. 1B
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. Note that, in FIGS. 4 and 5, components on the heat radiation board 21 are omitted to facilitate understanding of the present invention.
  • FIG. 4 for convenience of explanation, the fins 22 and the engagement pieces 221 and 222 provided on the lower surface of the heat dissipation board 21 are shown, and the flow of the cooling medium in the recess 24 is indicated by arrows.
  • the engaging pieces 221 and 222 are engaged with the inner wall surface of the concave portion 24 as shown in FIG. More specifically, the engaging piece 221 is engaged with the inner wall surface of the corner 242 of the recess 24, and the engaging piece 222 is engaged with the inner wall surface of the corner 243 of the recess 24. Thereby, the positioning of the heat dissipation board 21 with respect to the cooling case 23 is performed. In this state, a screw (not shown) is inserted into the screw hole 236 of the cooling case 23 through the screw hole 211 of the heat dissipation board 21, so that the heat dissipation board 21 is fastened to the upper surface of the cooling case 23. With the cooling case 23 attached to the heat dissipation board 21 in this manner, a cooling medium is introduced into the cooling case 23.
  • the diffusion wall 237 is formed of an upwardly inclined surface formed from the bottom of the first side wall 232a toward the bottom wall 231.
  • the converging wall 238 is formed of a downwardly inclined surface formed from the bottom wall 231 to the bottom of the second side wall 232b. Since the diffusion wall 237 and the converging wall 238 are formed as inclined surfaces, a vortex that can be generated when these are provided perpendicular to the inlet 233 and the outlet 234 is suppressed.
  • the cooling medium introduced from the inlet 233 collides with the diffusion wall 237, and along the diffusion wall 237 in the longitudinal direction (more specifically, the cooling case 23). , (Left direction shown in FIG. 4). Then, the cooling medium passes through the gap between the fins 22 arranged opposite to the bottom wall 231 and flows in the short direction of the cooling case 23 (more specifically, the rear side shown in FIG. And heat exchange. Thereafter, the cooling medium flows along the converging wall 238 and converges, and is discharged out of the cooling case 23 from the outlet 234.
  • a plurality of positioning engaging pieces 221 and 222 that engage with a part of the inner wall surface of the concave portion 24 of the cooling case 23 are provided on the lower surface (heat radiating surface) of the heat radiating substrate 21. ing. Therefore, the heat radiating substrate 21 can be positioned with respect to the cooling case 23 by utilizing a part of the concave portion 24 that accommodates the fin 22. Thus, the heat dissipation board 21 can be accurately positioned with respect to the cooling case 23 without requiring a complicated configuration.
  • the engagement pieces 221 and 222 include a pair of reference engagement pieces 221a and 222a that engage with the corners 242 and 243 that are arranged diagonally to the recess 24.
  • the heat dissipation board 21 can be positioned in the cooling case 23 at the corners 242 and 243 arranged diagonally of the recess 24, the displacement with respect to the cooling case 23 can be effectively prevented.
  • the reference engagement pieces 221a and 222a are respectively formed at corners 242 and 243 arranged at positions separated from the inlet 233 or the outlet 234 among the corners continuous with the first side wall 232a or the second side wall 232b. It is configured to engage (see FIG. 4). Accordingly, the heat dissipation substrate 21 can be positioned with respect to the cooling case 23 without reducing the flow velocity of the cooling medium introduced from the inlet 233 or discharged from the outlet 234.
  • the reference engagement pieces 221a, 222a have outer shapes corresponding to the shapes of the corners 242, 243 that are continuous with the first side wall 232a or the second side wall 232b.
  • the positioning of the heat radiating substrate 21 with respect to the cooling case 23 can be efficiently performed by utilizing the shapes of the corners 242 and 243 of the recess 24.
  • the reference engagement pieces 221a and 222a have a square cross-sectional shape, and are configured to engage with the corners 242 and 243 at right-angled portions. Since the rectangular portions of the reference engagement pieces 221a and 222a are engaged with the corners 242 and 243, the radiation board 21 can be reliably positioned with respect to the cooling case 23.
  • Auxiliary engaging pieces 221b and 221c and auxiliary engaging pieces 222b and 222c that engage with a part of the inner wall surface of the concave portion 24 are provided around the reference engaging piece 221a and the reference engaging piece 222a, respectively. Thereby, not only the reference engagement pieces 221a and 222a, but also the plurality of engagement pieces can be engaged with the inner wall surface of the concave portion 24, so that the heat radiation board 21 is positioned with respect to the cooling case 23 while ensuring strength. can do.
  • the distance between the reference engagement piece 221a (222a) and the auxiliary engagement pieces 221b, 221c (222b, 222c) is set to be smaller than the distance between the fins 22 constituting the aggregate 22a of the fins 22. .
  • the influence of the engagement pieces 221 (222) on the flow velocity of the cooling medium introduced into the cooling case 23 can be reduced.
  • the engagement pieces 221 and 222 may be made of the same metal material as the heat dissipation board 21. Accordingly, the engaging pieces 221 and 222 can be manufactured in the manufacturing process of the heat radiation board 21, and thus it is not necessary to add a special process for forming the engaging pieces 221 and 222. Therefore, the engaging pieces 221 and 222 can be formed on the heat dissipation board 21 in the existing manufacturing process without adding a special manufacturing process.
  • the heat dissipation board 21 is fastened to the cooling case 23 with screws (fastening members) in a state where the engagement pieces 221 and 222 are engaged with a part of the inner wall surface of the recess 24. You.
  • the heat radiating substrate 21 can be fixed in a state where the heat radiating substrate 21 is positioned in the cooling case 23, and deterioration of the cooling performance and the fastening failure of the cooler 20 due to the displacement of the heat radiating substrate 21 can be prevented.
  • FIG. 6 shows a perspective view of the semiconductor device 1 in which the resin case 15 accommodating the semiconductor module 10 is attached to the periphery of the heat dissipation board 21 constituting the cooler 20.
  • the resin case 15 has a substantially rectangular parallelepiped outer shape.
  • the length in the longitudinal direction and the width in the short direction when viewed from above have substantially the same dimensions as the cooler 20 (the cooling case 23).
  • a P terminal and an N terminal 16 On the upper surface of the resin case 15, a P terminal and an N terminal 16, a U terminal, a V terminal and a W terminal 17 connected to the circuit of the semiconductor module 10 protrude.
  • the P terminal and the N terminal 16, the U terminal, the V terminal and the W terminal 17 are respectively provided along the longitudinal direction of the cooling case 23. At least one of the terminals 16 and 17 may be provided along the short direction of the cooling case 23.
  • a plurality of IGBT elements 12 and freewheel diodes 13 are arranged in parallel along the longitudinal direction of the heat dissipation board 21 as the circuit element portions 11A, 11B and 11C as shown in FIG.
  • the inductance between these terminals 16 and 17 and the IGBT element 12 and the freewheel diode 13 can be reduced as compared with the case where the cooling case 23 is provided along the lateral direction. Can be.
  • the plurality of circuit element portions 11A, 11B and 11C including the plurality of IGBT elements 12 connected to these terminals are arranged close to each other. can do. Accordingly, the fins 22 for radiating the heat from the circuit element portions 11A, 11B, and 11C can be formed as one aggregate, so that the production of the fins 22 becomes easy and the production cost of the fins 22 can be reduced. it can.
  • the concave portion 24 provided in the cooling case 23 has a substantially rectangular shape.
  • the shape of the recess 24 is not limited to this, and can be appropriately changed.
  • the concave portion 24 may be changed to a rectangular shape such as a square.
  • the engaging pieces 221 and 222 provided on the heat dissipation board 21 engage with the corners 242 and 243 arranged on the opposite corners of the recess 24, respectively.
  • the configuration of the engagement piece that engages with the inner wall surface of the concave portion 24 is not limited to this, and can be appropriately changed.
  • an engagement piece that engages with a corner other than the corners 242 and 243 may be further provided.
  • the engagement pieces 221 and 222 may be configured to engage with portions other than the corners 242 and 243 on the assumption that the engagement pieces 221 and 222 engage with a part of the inner wall surface of the recess 24.
  • each of the engagement pieces 221 and 222 may be formed of a single engagement piece having a square or right triangle cross section.
  • the right-angled portions engage the corners 242 and 243 of the recess 24, respectively.
  • the contact area of the engagement piece with the cooling medium introduced into the cooling case 23 can be reduced. Thereby, the influence of the engagement piece on the flow velocity of the cooling medium introduced into the cooling case 23 can be further reduced.
  • the semiconductor device includes an insulating substrate having a first surface and a second surface opposite to the first surface; a semiconductor element mounted on the first surface of the insulating substrate; A cooling device for cooling an element, wherein the cooling device has a bonding surface and a heat-dissipating surface opposite to the bonding surface, and the bonding device is configured to be bonded to the second surface of the insulating substrate.
  • a plurality of positioning engagement pieces are provided to engage with a part of the inner wall surface of the recess in the case.
  • the positioning surface is provided with the positioning engagement piece that engages with a part of the inner wall surface of the concave portion of the cooling case on the heat radiation surface of the heat radiation substrate, a part of the concave portion that accommodates the fin is utilized.
  • the heat dissipation board can be positioned with respect to the cooling case.
  • the heat dissipation board can be accurately positioned with respect to the cooling case without requiring a complicated configuration.
  • the plurality of fins are provided in a substantially rectangular region on the heat dissipation surface, and the recess of the cooling case has a substantially rectangular shape.
  • the plurality of engagement pieces since the plurality of engagement pieces include a pair of engagement pieces that engage with the corners disposed diagonally to the recess, the plurality of engagement pieces include the pair of engagement pieces that are disposed diagonally to the recess. Since the heat radiating substrate can be positioned in the cooling case, it is possible to effectively prevent displacement of the heat radiating substrate with respect to the cooling case.
  • the cooling case includes a plurality of side walls that define the concave portion, and among the plurality of side walls, a pair of second fins provided along a longitudinal direction of the fin assembly.
  • An inlet and an outlet for the cooling medium are provided on the first side wall and the second side wall, respectively, at positions deviated in opposite directions from a longitudinal center line of the recess.
  • the corners that are continuous with the first side wall or the second side wall they are respectively engaged with the corners of the concave portion that is arranged at a position separated from the inlet or the outlet.
  • the pair of engagement pieces respectively engage with the corners that are arranged at positions separated from the introduction port or the discharge port.
  • the radiation board can be positioned with respect to the cooling case without reducing the flow velocity of the cooling medium introduced from the inlet or discharged from the outlet.
  • the pair of engagement pieces has an outer shape corresponding to a shape of a corner disposed diagonally to the recess. According to this configuration, since the positioning is performed by the pair of engagement pieces having the cross-sectional shapes corresponding to the shapes of the corners arranged on the diagonal of the recess, the shape of the corner of the recess is reliably used. The positioning of the heat dissipation board with respect to the cooling case can be performed.
  • the pair of engaging pieces have a square or right-angled triangular cross-sectional shape, and engage with the corners that are continuous with the first side wall and the second side wall at right-angled portions. . According to this configuration, since the right-angled portions of the pair of engagement pieces engage with the corners that are continuous with the first side wall and the second side wall, the positioning of the heat dissipation board with respect to the cooling case can be performed reliably. .
  • an auxiliary engagement piece that engages with a part of the inner wall surface of the recess is provided around the pair of engagement pieces.
  • the auxiliary engagement piece that engages with a part of the inner wall surface of the concave portion is provided around the pair of engagement pieces, not only the pair of engagement pieces but also the plurality of engagement pieces is provided. Since it can be engaged with the inner wall surface of the concave portion, the heat dissipation board can be positioned with respect to the cooling case while ensuring strength.
  • an interval between the pair of engagement pieces and the auxiliary engagement piece is set smaller than an interval between the fins that constitute the fin assembly.
  • the interval between the pair of engagement pieces and the auxiliary engagement piece is set to be narrower than the interval between the fins that constitute the fin assembly. Since it is possible to make it difficult for the coolant to enter the gap between the pieces, the influence of the pair of engagement pieces and the like on the flow rate of the coolant can be reduced.
  • the plurality of engagement pieces are made of the same metal material as the heat dissipation board. According to this configuration, since the plurality of engagement pieces are formed of the same metal material as the heat dissipation board, the engagement pieces can be manufactured in the manufacturing process of the heat dissipation board. There is no need to add a special process to the system. Therefore, a plurality of engaging pieces can be formed on the heat dissipation board in the existing manufacturing process without adding a special manufacturing process.
  • the heat dissipation board is fastened to the cooling case by a fastening member with the plurality of engagement pieces engaged with a part of the inner wall surface of the recess.
  • the heat radiating board is fastened to the cooling case in a state where the plurality of engaging pieces are engaged with a part of the inner wall surface of the concave portion, the heat radiating board is positioned in the cooling case.
  • the cooling device can be fixed, thereby preventing the cooling performance of the cooler from deteriorating due to the positional deviation of the heat dissipation board and the fastening failure.
  • the semiconductor device of this invention has the effect that a heat dissipation board can be accurately positioned with respect to a cooling case, without requiring a complicated structure, It is suitable for a semiconductor device requiring output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

複雑な構成を必要とすることなく、冷却ケースに対して精度良く放熱基板を位置決めすること。半導体装置(1)は、絶縁基板(14)と、絶縁基板上に搭載された半導体素子(12、13)と、半導体素子を冷却する冷却器(20)とを備える。冷却器は、絶縁基板に接合される放熱基板(21)と、放熱基板における絶縁基板との接合面とは反対側の放熱面に設けられた複数のフィン(22)と、フィンを収容する凹部(24)を有する冷却ケース(23)とを備える。放熱面には、冷却ケースにおける凹部の内壁面の一部と係合する位置決め用の複数の係合片(221、222)が設けられる。

Description

半導体装置
 本発明は、半導体素子を冷却するための冷却器を備える半導体装置に関する。
 ハイブリッド自動車や電気自動車においては、モータを可変駆動するために電力変換装置が利用されている。この電力変換装置には、複数のパワー半導体素子を備えた半導体モジュール(パワー半導体モジュール)が用いられている。一般に、パワー半導体素子は、大電流を制御する際に発熱し、電力変換装置の小型化や高出力化が進むに連れてその発熱量が増大している。
 従来、パワー半導体モジュールを冷却するために、冷媒式の冷却器を備えた半導体装置が提案されている。例えば、このような冷媒式冷却器では、パワー半導体素子が搭載される絶縁基板における半導体モジュールとは反対側の面に接合される金属製の放熱基板と、この放熱基板に一体的に形成される放熱用のフィンと、このフィンを収容し、放熱基板に液密に取り付けられる箱型形状の冷却ケースとを備える。外部ポンプにより加圧された冷却媒体を冷却ケース内の流路に流すことにより、パワー半導体素子の発熱エネルギーは、フィンを介して冷却媒体に放熱される。
 このような冷却器を備える半導体装置では、冷却ケースに対する適切な位置に放熱基板を取り付けることが要求される。従来、冷媒流路が形成された冷却ケースの一部に凹部を設ける一方、放熱基板を構成する冷却フィンベースの一部に当該凹部に嵌る凸部を設け、冷却ケースに対する適切な位置に冷却フィンベースを取り付ける半導体装置が提案されている(例えば、特許文献1参照)。
特開2016-92209号公報
 しかしながら、上述した特許文献1に記載の半導体装置においては、冷却ケース及び冷却フィンベースの双方に位置決めのための構成を設ける必要がある。このため、半導体装置を構成する部品が複雑になるという問題がある。
 本発明はかかる点に鑑みてなされたものであり、複雑な構成を必要とすることなく、冷却ケースに対して精度良く放熱基板を位置決めすることができる半導体装置を提供することを目的の1つとする。
 本実施形態の半導体装置は、第1面と前記第1面と反対側の第2面を有する絶縁基板と、前記絶縁基板の前記第1面上に搭載された半導体素子と、前記半導体素子を冷却するための冷却器と、を備える半導体装置であって、前記冷却器は、接合面と前記接合面の反対側の放熱面を有し、前記絶縁基板の前記第2面に前記接合面が接合される放熱基板と、前記放熱基板における前記放熱面に設けられた複数のフィンと、前記複数のフィンを収容する凹部を有する冷却ケースと、を備え、前記放熱面には、前記冷却ケースにおける前記凹部の内壁面の一部と係合する位置決め用の複数の係合片が設けられることを特徴としている。
 本発明によれば、複雑な構成を必要とすることなく、冷却ケースに対して精度良く放熱基板を位置決めすることができる。
本実施の形態に係る半導体装置の斜視図である。 本実施の形態に係る半導体装置が有する冷却ケースの斜視図及び平面図である。 本実施の形態に係る半導体装置の放熱基板に設けられるフィンの説明図である。 本実施の形態に係る半導体装置の冷却媒体の流れの説明図である。 図4に示すA-A線で切断した断面図である。 本実施の形態に係る半導体装置に樹脂ケースを取り付けた状態の斜視図である。
 以下、本実施の形態に係る半導体装置の構成について、図面を参照して説明する。図1は、本実施の形態に係る半導体装置の斜視図である。図2は、本実施の形態に係る半導体装置が有する冷却ケースの斜視図及び平面図である。図1Aにおいては、本実施の形態に係る半導体装置1が有する放熱基板21を示し、図1Bにおいては、この放熱基板21が取り付けられる冷却ケース23を示している。図2Aにおいては、図1Bに示す冷却ケース23を回転させて示し、図2Bにおいては、冷却ケース23を上方から示している。以下においては、説明の便宜上、図1に示す上下方向、左右方向及び前後方向を半導体装置の上下方向、左右方向及び前後方向として説明するものとする。また、本明細書において、平面視は、半導体装置の上面を上方向から視た場合を意味する。
 図1に示すように、本実施の形態に係る半導体装置1は、半導体モジュール10と、この半導体モジュール10を冷却する冷却器20とを含んで構成される。半導体モジュール10は、後述する冷却器20の放熱基板21の上に配置された複数の回路素子部11A、11B、11Cを有している。これらの回路素子部11A、11B、11Cにより、例えば、半導体モジュール10は、三相インバータ回路を構成する。例えば、回路素子部11A、11B、11Cは、それぞれ三相インバータ回路を形成するW相用回路、V相用回路及びU相用回路を構成する。
 図1Aに示すように、W相用回路を構成する回路素子部11Aは、上側アームを構成する半導体素子としてのIGBT素子12及びこのIGBT素子12に逆並列に接続されるフリーホイールダイオード13と、下側アームを構成するIGBT素子12及びこのIGBT素子12に逆並列に接続されるフリーホイールダイオード13とを有している。これらのIGBT素子12及びフリーホイールダイオード13が、放熱基板21に接合された絶縁基板14上に実装されている。
 V相用回路を構成する回路素子部11B及びU相用回路を構成する回路素子部11Cについても、回路素子部11Aと同様の構成を有している。絶縁基板14には、上記回路を構成するための回路パターンが形成されている。なお、ここでは、半導体モジュール10が三相インバータ回路を構成する場合について説明している。しかしながら、本発明に係る半導体モジュール10は、三相インバータ回路を構成する場合に限定されず、適宜変更が可能である。
 冷却器20は、図1Aに示す放熱基板21と、放熱基板21に設けられる複数のフィン22(図3参照)と、図1Bに示す冷却ケース23とを含んで構成される。詳細について後述するように、フィン22は、放熱基板21における絶縁基板14が接合される面(接合面)とは反対側の面(放熱面)に設けられている。放熱基板21は、冷却ケース23の上部に取り付けられる。放熱基板21の下面(放熱面)に設けられた複数のフィン22は、冷却ケース23に形成された凹部24に収容される。なお、冷却ケース23は、冷媒ジャケット又はウォータージャケットと称呼されることがある。
 図1Aに示すように、放熱基板21は、概して長方形状を有する金属板材で構成される。例えば、放熱基板21は、アルミニウム、銅、鉄などの金属材料で構成される。放熱基板21は、その長手方向が半導体装置1の左右方向に延び、その短手方向が半導体装置1の前後方向に延びている。半導体モジュール10は、放熱基板21の上面の中央領域に配置されている。本実施の形態では、半導体モジュール10を構成する回路素子部11A、11B、11Cが、放熱基板21の中央領域において、左右方向に並べて配置されている。また、放熱基板21の四隅部近傍には、ねじ孔211が貫通して形成されている。ねじ孔211には、放熱基板21を冷却ケース23に固定するためのねじ(締結部材)が挿通される。
 冷却ケース23は、図1B及び図2に示すように、略直方体形状の外形を有し、平面視にて、長方形状を有している。平面視した場合の冷却ケース23の外形は、実質的に放熱基板21の外形と同一の形状を有している。冷却ケース23は、底壁231と、この底壁231の周縁に設けられた側壁232とを有し、上部が開口した箱型形状を有している。言い換えると、冷却ケース23の上面には、凹部24が形成されている。凹部24は、底壁231の上面と、側壁232の内壁面と、後述する拡散壁237及び収束壁238の上面(傾斜面)とで規定される。凹部24は、平面視にて、長手方向を半導体装置1の左右方向に配置した長方形状を有している(図2B参照)。
 冷却ケース23には、冷却ケース23内に冷却媒体を導入するための導入口233と、冷却ケース23内から冷却媒体を排出するための排出口234とが設けられている。導入口233及び排出口234は、それぞれ長手方向に沿って延在する第1側壁232a、第2側壁232bの一部に設けられている。導入口233は、第1側壁232aの一端部(図1に示す右方側端部)の近傍であって、凹部24に連通する位置に配置されている。排出口234は、第2側壁232bの他端部(図1に示す左方側端部)の近傍であって、凹部24に連通する位置に配置されている。導入口233及び排出口234は、凹部24における長手方向の中心線CL1から互いに逆方向にずれた位置に配置されている。導入口233及び排出口234には、それぞれ導入管233a及び排出管234aが接続されている。
 側壁232の上面には、Oリング235が取り付けられている。Oリング235は、側壁232における凹部24寄りの位置であって、凹部24を囲むように配置されている。Oリング235は、冷却ケース23に対して放熱基板21が取り付けられ、冷却ケース23内に冷却媒体が流された場合に、冷却ケース23内から液漏れするのを防止する役割を果たす。なお、液漏れ防止の構成については、Oリング235に限定されず、メタルガスケットや液体パッキンであってもよい。
 冷却ケース23(側壁232)の四隅部の近傍には、ねじ孔236が形成されている。ねじ孔236は、放熱基板21を冷却ケース23に重ねた場合に、放熱基板21のねじ孔211と対応する位置に配置されている。冷却ケース23に放熱基板21を重ねた状態で、ねじ孔211を介してねじ孔236にねじ(締結部材)を挿入して締結することにより、冷却ケース23に対して放熱基板21が取り付けられる。
 冷却ケース23の凹部24内において、底壁231と第1側壁232aとの間には、拡散壁237が設けられている。また、凹部24内において、底壁231と第2側壁232bとの間には、収束壁238が設けられている。拡散壁237は、底壁231の前方側に配置され、底壁231の前縁に接続されている。収束壁238は、底壁231の後方側に配置され、底壁231の後縁に接続されている。これらの拡散壁237及び収束壁238は、半導体装置1の長手方向に沿って延びている。拡散壁237は、傾斜面で構成され、導入口233から導入された冷却媒体を第1側壁232aに沿って拡散させる役割を果たす。収束壁238は、傾斜面で構成され、冷却ケース23内の冷却媒体を第2側壁232bに沿って排出口234へ収束させる役割を果たす。
 ここで、放熱基板21の下面に設けられるフィン22の構成について、図3を参照して説明する。図3は、本実施の形態に係る半導体装置1の放熱基板21に設けられるフィン22の説明図である。図3Aにおいては、放熱基板21の下面を上方側に向けた状態の斜視図を示し、図3Bにおいては、放熱基板21を下方側から見た平面図を示している。また、図3Bにおいては、説明の便宜上、冷却ケース23に取り付けられた場合における凹部24の外形部分を破線241で示している。
 フィン22は、放熱基板21の下面に一体的に設けられている。フィン22は、放熱基板21と同一の金属材料で構成されてよい。フィン22は、放熱板、言い換えると、ヒートシンク(heat sink)として用いられる。例えば、フィン22には、図3に示すように、角柱形状のピン(角ピン)を複数個、間隔を空けて所定ピッチで配列されたピンフィンを用いることができる。放熱基板21に設けられるフィン22の構成については、これに限定されるものではなく適宜変更が可能である。例えば、図3に示す角柱形状の代わりに円柱形状のピンを設けることや、前後方向に延在するブレード形状の複数のフィンを互いに平行に配列する構成としてもよい。
 フィン22の形状及び寸法は、冷却媒体の冷却器20への導入条件(すなわち、ポンプ性能等)、冷却媒体の種類と性質(特に粘性等)、目的とする除熱量等を考慮して、適宜設定することが好ましい。また、フィン22は、冷却ケース23(より具体的には、冷却ケース23の凹部24)に収容された場合に、フィン22の先端と冷却ケース23の底壁231との間に一定のクリアランスが存在するような高さに形成される(図5参照)。
 放熱基板21において、フィン22が設けられる領域は、絶縁基板14が放熱基板21に接合された状態において、絶縁基板14上の半導体素子(IGBT素子12、フリーホイールダイオード13)の実装領域の反対側(裏面側)の領域を含むことが好ましい。言い換えると、フィン22が放熱基板21に一体的に設けられる領域は、IGBT素子12及びフリーホイールダイオード13の直下の領域を含む領域であることが好ましい。
 本実施の形態において、放熱基板21の下面(放熱面)には、角柱形状を有するフィン22を複数配列したフィン22の集合体22aが設けられている。このフィン22の集合体22aの外形は、略直方体形状を有している。より好ましくは、フィン22の集合体22aの外形は、直方体形状であるが、これらに限定されるものではなく、面取りや変形された形状であってもよい。フィン22の集合体22aの長手方向は、冷却ケース23(凹部24)の長手方向と合致している。図3においては、略直方体形状を有するフィン22の集合体22aの長手方向における中心線CL2を示している。放熱基板21が冷却ケース23に取り付けられた状態において、この中心線CL2は、凹部24の長手方向の中心線CL1(図2B参照)と一致する。
 また、放熱基板21の下面(放熱面)には、フィン22の集合体22aの近傍に位置決め用の係合片221、222が設けられている。これらの係合片221、222は、放熱基板21の下面に一体的に設けられている。係合片221、222は、放熱基板21と同一の金属材料で構成されてよい。係合片221は、フィン22の集合体22aの左前方側の角部に対応する位置に配置され、係合片222は、フィン22の集合体22aの右後方側の角部に対応する位置に配置されている。これらの係合片221、222は、それぞれ角柱形状のピン(角ピン)を複数個(本実施の形態では3個)配列して構成されている。
 図3Bに示すように、係合片221は、放熱基板21の左前方側の角部に対応して配置された基準係合片221aと、この基準係合片221aの右方側及び後方側に配置された一対の補助係合片221b、221cとを有している。基準係合片221aと、補助係合片221b、221cとは、同一の形状を有してよい。係合片221は、平面視にて、隣り合う角柱形状のピンの2辺を半導体装置1の前方側及び左方側に向けた構成を有している。
 また、係合片222は、係合片221と同様に、放熱基板21の右後方側の角部に対応して配置された基準係合片222aと、この基準係合片222aの前方側及び左方側に一対の補助係合片222b、222cとを有している。基準係合片222aと、補助係合片222b、222cとは、同一の形状を有してよい。係合片222は、平面視にて、隣り合う角柱形状のピンの2辺を半導体装置1の右方側及び後方側に向けた構成を有している。また、基準係合片222a及び補助係合片222b、222cと、基準係合片221a及び補助係合片221b、221cとは、同一の形状を有してよい。
 これらの係合片221、222は、冷却ケース23に対して放熱基板21を取り付ける際の位置決めに利用される。これらの係合片221、222は、冷却ケース23に対して放熱基板21を取り付ける際、冷却ケース23の凹部24の内壁面の一部に係合し、冷却ケース23に対する放熱基板21の位置を決める役割を果たす。係合片221、222は、それぞれ凹部24における対角に配置される角部242、243の内壁面に係合する。より具体的には、係合片221が凹部24の左前方側の角部242の内壁面に係合し、係合片222が凹部24の右後方側の角部243の内壁面に係合する。
 基準係合片221a、222aは、一対の係合片を構成するものであり、それぞれ凹部24の角部242、243の形状に対応する外形形状を有している。基準係合片221a、222aは、正方形の断面形状を有し、その直角形状部でそれぞれ凹部24の角部242、243に係合する。補助係合片221b、221c及び補助係合片222b、222cは、それぞれ基準係合片221a及び基準係合片222aの周辺に配置される補助係合片を構成するものであり、凹部24の内壁面の一部と係合する。
 放熱基板21の下面(放熱面)において、基準係合片221aと補助係合片221b、221cとの間隔は、フィン22の集合体22aを構成するフィン22同士の間隔よりも狭く設定されている。詳細について後述するように、冷却ケース23内に導入された冷却媒体が、基準係合片221aと補助係合片221b、221cとの隙間に入り難くするためである。基準係合片222aと補助係合片222b、222cとの間隔についても同様である。なお、基準係合片221a(222a)と補助係合片221b、221c(222b、222c)との隙間を排除することは、熱抵抗及び圧力損失の劣化を抑制する観点から好ましい。
 また、係合片221、222の寸法は、冷却媒体の冷却ケース23への導入条件(すなわち、ポンプ性能等)、冷却媒体の種類と性質(特に粘性等)等を考慮して、適宜設定することが好ましい。例えば、係合片221、222を構成する各係合片の寸法は、一辺の長さが5mm、高さが3~5mmに設定される。一辺の長さを5mmに設定することにより凹部24の内壁面の一部に適切に接触させることができる。また、高さを3~5mmに設定することにより凹部24の下面との間にクリアランスを形成でき、冷却媒体を流れ易くすることができる。
 図1Aに示す放熱基板21を、図1Bに示す冷却ケース23に取り付けた場合の平面図を図4に示し、図4におけるA-A線で切断した断面図を図5に示す。なお、図4及び図5においては、本発明の理解を容易にするために、放熱基板21上の構成要素を省略している。また、図4においては、説明の便宜上、放熱基板21の下面に設けられたフィン22及び係合片221、222を示すと共に、凹部24内の冷却媒体の流れを矢印にて示している。
 冷却ケース23に放熱基板21を取り付ける際には、図4に示すように、凹部24の内壁面に係合片221、222を係合させる。より具体的には、凹部24の角部242の内壁面に係合片221を係合させる一方、凹部24の角部243の内壁面に係合片222を係合させる。これにより、冷却ケース23に対する放熱基板21の位置決めが行われる。この状態で放熱基板21のねじ孔211を介して、冷却ケース23のねじ孔236に不図示のねじを挿通することで、放熱基板21が冷却ケース23の上面に締結される。このように冷却ケース23に放熱基板21に取り付けられた状態において、冷却ケース23内に冷却媒体が導入される。
 図5に示すように、拡散壁237は、第1側壁232aの底辺から底壁231に向かって形成される上り傾斜面で構成される。一方、収束壁238は、底壁231から第2側壁232bの底辺に向かって形成される下り傾斜面で構成される。拡散壁237及び収束壁238が傾斜面で構成されることにより、これらが導入口233や排出口234に対して垂直に設けられる場合に発生し得る渦流が抑制される。
 冷却ケース23内に拡散壁237が設けられることにより、導入口233から導入された冷却媒体は、拡散壁237に衝突し、拡散壁237に沿って冷却ケース23の長手方向(より具体的には、図4に示す左方側方向)に拡散する。そして、冷却媒体は、底壁231に対向して配置されたフィン22間の隙間を通過して冷却ケース23の短手方向(より具体的には、図4に示す後方側)に流れてヒートシンクと熱交換を行う。その後、冷却媒体は、収束壁238に沿って流れて収束され、排出口234から冷却ケース23外に排出される。
 このように半導体装置1において、放熱基板21の下面(放熱面)には、冷却ケース23の凹部24の内壁面の一部と係合する位置決め用の複数の係合片221、222が設けられている。このため、フィン22を収容する凹部24の一部を活用して冷却ケース23に対する放熱基板21の位置決めを行うことができる。これにより、複雑な構成を必要とすることなく、冷却ケース23に対して精度良く放熱基板21を位置決めすることができる。
 特に、係合片221、222には、凹部24の対角に配置される角部242、243に係合する一対の基準係合片221a、222aが含まれている。これにより、凹部24の対角に配置される角部242、243で放熱基板21を冷却ケース23に位置決めできるので、冷却ケース23に対する位置ずれを効果的に防止することができる。
 また、基準係合片221a、222aは、第1側壁232a又は第2側壁232bに連続する角部のうち、導入口233又は排出口234から離間した位置に配置される角部242、243にそれぞれ係合するように構成されている(図4参照)。これにより、導入口233から導入され、或いは、排出口234から排出される冷却媒体の流速を低下させることなく、冷却ケース23に対する放熱基板21の位置決めを行うことができる。
 さらに、基準係合片221a、222aは、第1側壁232a又は第2側壁232bに連続する角部242、243の形状に対応する外形形状を有している。これにより、凹部24の角部242、243の形状を利用して効率的に冷却ケース23に対する放熱基板21の位置決めを行うことができる。より具体的には、基準係合片221a、222aは、正方形状の断面形状を有し、直角形状部で角部242、243に係合するように構成されている。基準係合片221a、222aが有する直角形状部によって角部242、243に係合することから、確実に冷却ケース23に対する放熱基板21の位置決めを行うことができる。
 基準係合片221a及び基準係合片222aの周辺には、それぞれ凹部24の内壁面の一部と係合する補助係合片221b、221c及び補助係合片222b、222cが設けられている。これにより、基準係合片221a、222aだけでなく、複数の係合片で凹部24の内壁面に係合させることができるので、強度を確保しながら冷却ケース23に対して放熱基板21を位置決めすることができる。
 なお、基準係合片221a(222a)と、補助係合片221b、221c(222b、222c)との間隔は、フィン22の集合体22aを構成するフィン22同士の間隔よりも狭く設定されている。これにより、冷却ケース23内に導入された冷却媒体が、基準係合片221a(222a)と、補助係合片221b、221c(222b、222c)との隙間に入り難くすることができる。これにより、係合片221(222)を設ける場合であっても、係合片221(222)が冷却ケース23内に導入された冷却媒体の流速に与える影響を低減することができる。
 また、係合片221、222は、放熱基板21と同一の金属材料で構成されてよい。これにより、放熱基板21の製造工程で係合片221、222を製造することができるので、係合片221、222を形成するために特別な工程を追加する必要がない。したがって、特別な製造工程を追加することなく、既存の製造工程で放熱基板21に係合片221、222を形成することができる。
 さらに、半導体装置1において、放熱基板21は、これらの係合片221、222を凹部24の内壁面の一部に係合させた状態で冷却ケース23に対してねじ(締結部材)により締結される。これにより、冷却ケース23に位置決めした状態で放熱基板21を固定することができ、放熱基板21の位置ズレに起因する冷却器20における冷却性能の劣化や締結不具合を防止することができる。
 ここで、図6に半導体モジュール10を収容する樹脂ケース15が、冷却器20を構成する放熱基板21の周縁部に取り付けられた形態の半導体装置1を斜視図で示す。図6に示すように、樹脂ケース15は、略直方体形状の外形を有している。放熱基板21に取り付けられた状態において、樹脂ケース15は、上方から見たときの長手方向、短手方向の寸法が、冷却器20(冷却ケース23)と略同一の寸法を有している。
 樹脂ケース15の上面には、半導体モジュール10の回路と接続されたP端子及びN端子16、U端子、V端子及びW端子17が突出している。P端子及びN端子16、U端子、V端子及びW端子17は、それぞれ冷却ケース23の長手方向に沿って設けられている。これらの端子16、17の少なくとも一つを、冷却ケース23の短手方向に沿って設けることも可能である。しかしながら、図1に示すように複数のIGBT素子12、フリーホイールダイオード13を回路素子部11A、11B、11Cとして放熱基板21の長手方向に沿って並列に配列させた場合は、端子16、17を冷却ケース23の長手方向に沿って設けることにより、短手方向に沿って設けた場合に比べて、これらの端子16、17とIGBT素子12、フリーホイールダイオード13との間のインダクタンスを小さくすることができる。また、端子16、17を冷却ケース23の長手方向に沿って設けることにより、これらの端子と接続する複数のIGBT素子12を備える複数の回路素子部11A、11B及び11Cを、互いに近接させて配置することができる。これにより、回路素子部11A、11B及び11Cを放熱させるフィン22を、一つの集合体として形成することができるので、フィン22の製造が容易になり、またフィン22の製造コストを低くすることができる。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている構成要素の大きさや形状、機能などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 例えば、上記実施の形態においては、冷却ケース23に設けられた凹部24が略長方形状を有する場合について説明している。しかしながら、凹部24の形状については、これに限定されるものではなく適宜変更が可能である。例えば、凹部24は、正方形などの矩形状に変更してもよい。
 また、上記実施の形態においては、放熱基板21に設けられた係合片221、222が、それぞれ凹部24の対角に配置される角部242、243に係合する場合について説明している。しかしながら、凹部24の内壁面に係合する係合片の構成は、これに限定されるものではなく適宜変更が可能である。例えば、角部242、243以外の角部に係合する係合片を更に備えるようにしてもよい。但し、この場合には、導入口233又は排出口234の位置を適宜変更する必要がある。また、係合片221、222は、凹部24の内壁面の一部に係合することを前提として、角部242、243以外の部分に係合する構成としてもよい。
 さらに、上記実施の形態においては、放熱基板21の下面(放熱面)に設けられる係合片221、222が複数の係合片で構成される場合について示している。しかしながら、係合片221、222の構成については、これに限定されるものではなく適宜変更が可能である。例えば、係合片221、222は、それぞれ正方形や直角三角形の断面形状を有する単一の係合片で構成されてもよい。
 直角三角形の断面形状を有する単一の係合片を適用する場合においては、直角形状部でそれぞれ凹部24の角部242、243に係合することが好ましい。この場合には、冷却ケース23内に導入された冷却媒体に対する係合片の接触面積を小さくすることができる。これにより、冷却ケース23内に導入された冷却媒体の流速への係合片の影響を更に低減できる。
 下記に、上記の実施の形態における特徴点を整理する。
 上記実施の形態に係る半導体装置は、第1面と前記第1面と反対側の第2面を有する絶縁基板と、前記絶縁基板の前記第1面上に搭載された半導体素子と、前記半導体素子を冷却するための冷却器と、を備える半導体装置であって、前記冷却器は、接合面と前記接合面の反対側の放熱面を有し、前記絶縁基板の前記第2面に前記接合面が接合される放熱基板と、前記放熱基板における前記放熱面に設けられた複数のフィンと、前記複数のフィンを収容する凹部を有する冷却ケースと、を備え、前記放熱面には、前記冷却ケースにおける前記凹部の内壁面の一部と係合する位置決め用の複数の係合片が設けられることを特徴とする。この構成によれば、放熱基板における放熱面には、冷却ケースの凹部の内壁面の一部と係合する位置決め用の係合片が設けられることから、フィンを収容する凹部の一部を活用して冷却ケースに対する放熱基板の位置決めを行うことができる。これにより、複雑な構成を必要とすることなく、冷却ケースに対して精度良く放熱基板を位置決めすることができる。
 上記実施の形態に係る半導体装置において、平面視において、前記複数のフィンは、前記放熱面における略長方形状の領域に設けられ、前記冷却ケースの前記凹部は、略長方形状を有し、前記複数の係合片は、前記凹部の対角に配置される角部に係合する一対の係合片を有する。この構成によれば、複数の係合片には、凹部の対角に配置される角部に係合する一対の係合片が含まれることから、凹部の対角に配置される角部で放熱基板を冷却ケースに位置決めできるので、冷却ケースに対する位置ずれを効果的に防止することができる。
 上記実施の形態に係る半導体装置において、前記冷却ケースは、前記凹部を規定する複数の側壁を含み、前記複数の側壁のうち、前記フィンの集合体の長手方向に沿って設けられた一対の第1側壁及び第2側壁には、冷却媒体の導入口と排出口とが、前記凹部における長手方向の中心線から互いに逆方向にずれた位置に設けられ、前記一対の係合片は、前記第1側壁又は第2側壁に連続する角部のうち、前記導入口又は排出口から離間した位置に配置される前記凹部の角部にそれぞれ係合する。この構成によれば、第1側壁又は第2側壁に連続する角部のうち、導入口又は排出口から離間した位置に配置される角部に一対の係合片がそれぞれ係合することから、導入口から導入され、或いは、排出口から排出される冷却媒体の流速を低下させることなく、冷却ケースに対する放熱基板の位置決めを行うことができる。
 上記実施の形態に係る半導体装置において、前記一対の係合片は、前記凹部の対角に配置される角部の形状に対応する外形形状を有する。この構成によれば、凹部の対角に配置される角部の形状に応じた断面形状を有する一対の係合片により位置決めが行われることから、凹部の角部の形状を利用して確実に冷却ケースに対する放熱基板の位置決めを行うことができる。
 上記実施の形態に係る半導体装置において、前記一対の係合片は、正方形又は直角三角形の断面形状を有し、直角形状部で前記第1側壁及び第2側壁に連続する角部に係合する。この構成によれば、一対の係合片が有する直角形状部によって第1側壁及び第2側壁に連続する角部に係合することから、確実に冷却ケースに対する放熱基板の位置決めを行うことができる。
 上記実施の形態に係る半導体装置において、前記一対の係合片の周辺には、前記凹部の内壁面の一部と係合する補助係合片が設けられる。この構成によれば、一対の係合片の周辺に、凹部の内壁面の一部と係合する補助係合片が設けられることから、一対の係合片だけでなく複数の係合片で凹部の内壁面に係合させることができるので、強度を確保しながら冷却ケースに対して放熱基板を位置決めすることができる。
 上記実施の形態に係る半導体装置において、前記一対の係合片と前記補助係合片との間隔は、前記フィンの集合体を構成する前記フィン同士の間隔よりも狭く設定されている。この構成によれば、フィンの集合体を構成するフィン同士の間隔よりも、一対の係合片と補助係合片との間隔が狭く設定されることから、一対の係合片と補助係合片との間の隙間に冷却媒体が入り込み難くすることができるので、一対の係合片等が冷却媒体の流速に与える影響を低減することができる。
 上記実施の形態に係る半導体装置において、前記複数の係合片は、前記放熱基板と同一の金属材料で構成される。この構成によれば、放熱基板と同一の金属材料で複数の係合片が構成されることから、放熱基板の製造工程で係合片を製造することができるので、係合片を形成するために特別な工程を追加する必要がない。したがって、特別な製造工程を追加することなく、既存の製造工程で放熱基板に複数の係合片を形成することができる。
 上記実施の形態に係る半導体装置において、前記放熱基板は、前記複数の係合片を前記凹部の内壁面の一部に係合させた状態で前記冷却ケースに対して締結部材により締結される。この構成によれば、複数の係合片を凹部の内壁面の一部に係合させた状態で冷却ケースに対して放熱基板が締結されることから、冷却ケースに位置決めした状態で放熱基板を固定することができ、放熱基板の位置ズレに起因する冷却器における冷却性能の劣化や締結不具合を防止することができる。
 本発明の半導体装置は、複雑な構成を必要とすることなく、冷却ケースに対して精度良く放熱基板を位置決めすることができるという効果を有し、車載用モータ駆動制御インバータなどの小型化や高出力化が要求される半導体装置に好適である。
 本出願は、2018年10月3日出願の特願2018-188532に基づく。この内容は、すべてここに含めておく。

Claims (9)

  1.  第1面と前記第1面と反対側の第2面を有する絶縁基板と、
     前記絶縁基板の前記第1面上に搭載された半導体素子と、
     前記半導体素子を冷却するための冷却器と、
    を備える半導体装置であって、
     前記冷却器は、
    接合面と前記接合面の反対側の放熱面を有し、前記絶縁基板の前記第2面に前記接合面が接合される放熱基板と、
     前記放熱基板における前記放熱面に設けられた複数のフィンと、
     前記複数のフィンを収容する凹部を有する冷却ケースと、を備え、
     前記放熱面には、前記冷却ケースにおける前記凹部の内壁面の一部と係合する位置決め用の複数の係合片が設けられることを特徴とする半導体装置。
  2.  平面視において、
     前記複数のフィンは、前記放熱面における略長方形状の領域に設けられ、
     前記冷却ケースの前記凹部は、略長方形状を有し、
     前記複数の係合片は、前記凹部の対角に配置される角部に係合する一対の係合片を有することを特徴とする請求項1に記載の半導体装置。
  3.  前記冷却ケースは、前記凹部を規定する複数の側壁を含み、前記複数の側壁のうち、前記フィンの集合体の長手方向に沿って設けられた一対の第1側壁及び第2側壁には、冷却媒体の導入口と排出口とが、前記凹部における長手方向の中心線から互いに逆方向にずれた位置に設けられ、
     前記一対の係合片は、前記第1側壁又は第2側壁に連続する角部のうち、前記導入口又は排出口から離間した位置に配置される前記凹部の角部にそれぞれ係合することを特徴とする請求項2に記載の半導体装置。
  4.  前記一対の係合片は、前記凹部の対角に配置される角部の形状に対応する外形形状を有することを特徴とする請求項2又は請求項3に記載の半導体装置。
  5.  前記一対の係合片は、正方形又は直角三角形の断面形状を有し、直角形状部で前記第1側壁及び第2側壁に連続する角部に係合することを特徴とする請求項4に記載の半導体装置。
  6.  前記一対の係合片の周辺には、前記凹部の内壁面の一部と係合する補助係合片が設けられることを特徴とする請求項2から請求項5のいずれかに記載の半導体装置。
  7.  前記一対の係合片と前記補助係合片との間隔は、前記フィンの集合体を構成する前記フィン同士の間隔よりも狭いことを特徴とする請求項6に記載の半導体装置。
  8.  前記複数の係合片は、前記放熱基板と同一の金属材料で構成されることを特徴とする請求項1から請求項7のいずれかに記載の半導体装置。
  9.  前記放熱基板は、前記複数の係合片を前記凹部の内壁面の一部に係合させた状態で前記冷却ケースに対して締結部材により締結されることを特徴とする請求項1から請求項8のいずれかに記載の半導体装置。
PCT/JP2019/035398 2018-10-03 2019-09-09 半導体装置 WO2020071058A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19869307.9A EP3761356B1 (en) 2019-09-09 Semiconductor apparatus
JP2020550235A JP7047929B2 (ja) 2018-10-03 2019-09-09 半導体装置
CN201980024342.8A CN111937141A (zh) 2018-10-03 2019-09-09 半导体装置
US17/039,710 US12009279B2 (en) 2018-10-03 2020-09-30 Semiconductor apparatus including cooler for cooling semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018188532 2018-10-03
JP2018-188532 2018-10-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/039,710 Continuation US12009279B2 (en) 2018-10-03 2020-09-30 Semiconductor apparatus including cooler for cooling semiconductor element

Publications (1)

Publication Number Publication Date
WO2020071058A1 true WO2020071058A1 (ja) 2020-04-09

Family

ID=70054964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035398 WO2020071058A1 (ja) 2018-10-03 2019-09-09 半導体装置

Country Status (4)

Country Link
US (1) US12009279B2 (ja)
JP (1) JP7047929B2 (ja)
CN (1) CN111937141A (ja)
WO (1) WO2020071058A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042899A1 (ja) * 2022-08-24 2024-02-29 富士電機株式会社 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951781B (zh) * 2021-04-01 2024-05-17 中创杜菲(北京)汽车科技有限公司 一种功率半导体模块冷却装置及功率半导体模块
CN113133287B (zh) * 2021-04-26 2022-07-12 合肥钧联汽车电子有限公司 一种浸入式水冷功率模块装置、散热控制方法及设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169012A1 (ja) * 2011-06-07 2012-12-13 トヨタ自動車株式会社 冷却器
WO2014069174A1 (ja) * 2012-10-29 2014-05-08 富士電機株式会社 半導体装置
WO2014125548A1 (ja) * 2013-02-14 2014-08-21 富士電機株式会社 冷却構造体及び電力変換装置
JP2016092209A (ja) 2014-11-05 2016-05-23 三菱電機株式会社 電力半導体装置、および電力半導体装置の製造方法
JP2018188532A (ja) 2017-05-01 2018-11-29 デンカ株式会社 クロロプレンゴム組成物及びその加硫物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150956A1 (en) * 2003-01-24 2004-08-05 Robert Conte Pin fin heat sink for power electronic applications
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
JP2009200338A (ja) * 2008-02-22 2009-09-03 Renesas Technology Corp 半導体装置の製造方法
JP5023020B2 (ja) 2008-08-26 2012-09-12 株式会社豊田自動織機 液冷式冷却装置
JP5061065B2 (ja) 2008-08-26 2012-10-31 株式会社豊田自動織機 液冷式冷却装置
JP2012243808A (ja) 2011-05-16 2012-12-10 Toyota Motor Corp 冷却装置
US8963321B2 (en) * 2011-09-12 2015-02-24 Infineon Technologies Ag Semiconductor device including cladded base plate
WO2014045766A1 (ja) * 2012-09-19 2014-03-27 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP6227970B2 (ja) * 2013-10-16 2017-11-08 本田技研工業株式会社 半導体装置
US10080313B2 (en) 2014-01-27 2018-09-18 Hitachi, Ltd. Power module and method for manufacturing the same
JP2015159149A (ja) * 2014-02-21 2015-09-03 アイシン・エィ・ダブリュ株式会社 冷却装置及び半導体装置
JP6257478B2 (ja) * 2014-09-02 2018-01-10 三菱電機株式会社 電力用半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169012A1 (ja) * 2011-06-07 2012-12-13 トヨタ自動車株式会社 冷却器
WO2014069174A1 (ja) * 2012-10-29 2014-05-08 富士電機株式会社 半導体装置
WO2014125548A1 (ja) * 2013-02-14 2014-08-21 富士電機株式会社 冷却構造体及び電力変換装置
JP2016092209A (ja) 2014-11-05 2016-05-23 三菱電機株式会社 電力半導体装置、および電力半導体装置の製造方法
JP2018188532A (ja) 2017-05-01 2018-11-29 デンカ株式会社 クロロプレンゴム組成物及びその加硫物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3761356A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042899A1 (ja) * 2022-08-24 2024-02-29 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
US20210050277A1 (en) 2021-02-18
EP3761356A1 (en) 2021-01-06
JP7047929B2 (ja) 2022-04-05
EP3761356A4 (en) 2021-08-25
CN111937141A (zh) 2020-11-13
US12009279B2 (en) 2024-06-11
JPWO2020071058A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
US10014236B2 (en) Semiconductor device
US7859103B2 (en) Semiconductor module and inverter device
JP7284566B2 (ja) 半導体装置
WO2020071058A1 (ja) 半導体装置
WO2014045766A1 (ja) 半導体装置及び半導体装置の製造方法
JP6569781B2 (ja) パワー半導体モジュール、流路部材、パワー半導体モジュール構造体及び自動車
JP7159617B2 (ja) 冷却装置、半導体モジュール、車両および製造方法
WO2016204257A1 (ja) パワー半導体モジュール、流路部材及びパワー半導体モジュール構造体
JP2019161979A (ja) 電力変換装置
JP6324457B2 (ja) 電気機器
JP7205662B2 (ja) 半導体モジュール
JP2011155207A (ja) インバータモジュールの製造方法及びインバータモジュール
JP6870253B2 (ja) 半導体装置及び半導体装置の製造方法
WO2021124704A1 (ja) 半導体装置
EP3761356B1 (en) Semiconductor apparatus
JP7487533B2 (ja) 半導体モジュールおよび車両
JP7367418B2 (ja) 半導体モジュールおよび車両
EP4199078A1 (en) Semiconductor device and vehicle
WO2017098621A1 (ja) 電子部品ユニット及び熱伝導載置部材
JP2023103785A (ja) 半導体装置
JP2011151193A (ja) 冷却器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550235

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019869307

Country of ref document: EP

Effective date: 20201001

NENP Non-entry into the national phase

Ref country code: DE