WO2016204234A1 - 反射フィルムおよび面光源装置用反射ユニット - Google Patents
反射フィルムおよび面光源装置用反射ユニット Download PDFInfo
- Publication number
- WO2016204234A1 WO2016204234A1 PCT/JP2016/067952 JP2016067952W WO2016204234A1 WO 2016204234 A1 WO2016204234 A1 WO 2016204234A1 JP 2016067952 W JP2016067952 W JP 2016067952W WO 2016204234 A1 WO2016204234 A1 WO 2016204234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- index layer
- low refractive
- layer
- thickness
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0883—Mirrors with a refractive index gradient
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K2/00—Non-electric light sources using luminescence; Light sources using electrochemiluminescence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/22—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
- F21V7/24—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/22—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
- F21V7/28—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
Definitions
- the present invention relates to a reflective film used in a surface light source device used in a display device such as a backlight of a liquid crystal display (LCD backlight), a signboard for illumination, an automobile, a vehicle, etc., and a reflection unit for a surface light source device.
- a display device such as a backlight of a liquid crystal display (LCD backlight), a signboard for illumination, an automobile, a vehicle, etc.
- a reflection unit for a surface light source device such as a backlight of a liquid crystal display (LCD backlight), a signboard for illumination, an automobile, a vehicle, etc.
- the direct type an air gap having an arbitrary thickness is provided from a light source provided at the bottom of the backlight, a diffusion plate is installed, and an optical film is installed on the diffusion plate.
- the edge type uses a light guide plate from a light source provided on the side surface of the backlight to make light uniform in the surface direction.
- the light guide plate is a plate-like light guide, and a light diffusing portion such as unevenness by dot printing or molding is formed on the surface of the light guide.
- the optical film is installed on the light guide plate.
- the reflective film is installed behind the light source in the direct type and on the back of the light guide plate in the edge type.
- Patent Document 1 describes a configuration in which a light guide plate and a reflective film are bonded together.
- Patent Document 2 describes a light source device that emits light from both sides, and discloses a configuration in which a low refractive index layer and a transflective layer are provided on at least one surface of a light guide.
- Patent Document 3 discloses a configuration in which a low refractive index layer is provided on both surfaces of a light guide plate, and a reflective layer is provided on a low refractive index on the surface opposite to the light guide plate.
- JP 2013-93195 A Japanese Patent Laid-Open No. 2015-32565 Japanese Patent Laid-Open No. 2015-15185
- the low refractive index layer and the semi-transmissive reflective layer disclosed in Patent Document 2 and the low refractive index layer and the reflective layer disclosed in Patent Document 3 cannot obtain sufficient light guide properties.
- a surface light source device such as a liquid crystal display
- a light emitting color unevenness is reduced, and a reflective film and a surface light source device reflection unit with good light guide and productivity are provided.
- the purpose is to provide.
- the present invention adopts the following configuration.
- Reflective film [2] The reflective film as described in [1] above, wherein the low refractive index layer has a thickness of 150 to 1,000 nm.
- the present invention even when a surface light source device such as a liquid crystal display is used by being bonded to a light guide plate, it is possible to provide a reflective film and a reflective unit for a surface light source device that reduce light emission color unevenness and have high productivity. it can.
- the distance between two totally reflecting surfaces it is important to reduce the number of reflections, and it is preferable that the distance between two totally reflecting surfaces be as far as possible.
- the total reflection surface is a low refractive index layer provided on the upper surface of the light guide plate and the reflection sheet surface, the total reflection surface can take a distance corresponding to the thickness obtained by adding the light guide plate and the adhesive layer. it can.
- a low refractive index layer can be formed by continuous treatment on the surface of a reflective sheet having no uneven pattern such as a light guide plate, productivity can also be improved.
- the surface light source device reflection unit 1 includes a reflection film 6, an adhesive layer 4, and a light guide plate 5.
- the reflective film 6 is a reflective film having a low refractive index layer 3 on at least one surface of the reflective sheet 2, and the low refractive index layer 3 and the reflective sheet 2 are in contact with each other.
- the low refractive index layer 3 is formed on the surface of the reflection sheet 2 that faces the light guide plate 5.
- the light guide plate 5 includes a light guide 5a and a light diffusion portion 5b.
- polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polylactic acid (PLA), polyethylene (PE), polypropylene (PP), and cycloolefin (COC, COP).
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PLA polylactic acid
- PE polyethylene
- PP polypropylene
- COC cycloolefin
- Polyolefin resins such as resins, cellulose resins such as cellulose triacetate and acetate, acrylic resins such as polymethyl methacrylate (PMMA), polycarbonate (PC) resins, polytetrafluoroethylene (PTFE), etc.
- PMMA polymethyl methacrylate
- PC polycarbonate
- PTFE polytetrafluoroethylene
- a fluorine-based resin or the like can be used.
- PET polyethylene terephthalate
- COC cyclic polyolefin
- PMMA polymethyl methacrylate
- PC polycarbonate
- the reflective sheet 2 in the present invention can be obtained, for example, by adding an incompatible resin (hereinafter referred to as an incompatible resin) to inorganic particles, organic particles, or a base resin to the above-described material.
- an incompatible resin hereinafter referred to as an incompatible resin
- the inorganic particles include calcium carbonate, titanium dioxide, zinc oxide, silicon dioxide, barium sulfate, alumina, talc, zirconium oxide, zinc sulfide, and basic lead carbonate (lead white).
- at least one selected from the group consisting of calcium carbonate, zinc oxide, barium sulfate and titanium dioxide is preferable.
- organic particles include thermally crosslinkable resin particles such as polypropylene and polystyrene.
- incompatible resins include polyolefin resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, cyclic polyolefin resins, polystyrene resins, polyacrylate resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, and fluorine resins.
- the reflection sheet 2 may be a single layer or a laminate of two or more layers.
- the reflection sheet 2 in the present invention is preferably a white polyester film from the viewpoint of reflection performance and heat resistance.
- the laminated body of at least 2 layer or more of the A layer and the B layer containing a cavity which are substantially made of polyester and do not contain a cavity may be used.
- the resin constituting the A layer and the B layer is preferably polyester, and particularly preferably polyethylene terephthalate (PET) or polyethylene naphthalate (PEN). Further, various known additives such as an antioxidant and an antistatic agent may be added to the polyester.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- various known additives such as an antioxidant and an antistatic agent may be added to the polyester.
- the A layer is a layer that does not substantially contain bubbles. “Contains substantially no bubbles” means a layer state having a porosity of less than 10%.
- the thickness of the A layer is determined as the thickness from the surface to the depth in the cross-section direction in which bubbles are not substantially contained when the cross section is observed with an electron microscope.
- the A layer preferably contains inorganic particles.
- the inorganic particles contained in the A layer include calcium carbonate, titanium dioxide, zinc oxide, silicon dioxide, barium sulfate, alumina, and talc.
- the inorganic particles contained in the A layer are preferably 3% by mass or less, more preferably 0.1% by mass or more, and further preferably 1% by mass or more with respect to 100% by mass of the entire A layer.
- the surface of the low refractive index layer 3 is roughened, and the light guide property may be lowered.
- a minimum is not specifically limited, It is preferable that it is 0.01 mass% or more.
- the preferable particle diameter of the inorganic particles to be contained in the layer A is not particularly limited as long as the above characteristics are obtained, but is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and more preferably 3 ⁇ m or less from the viewpoint of less adhesion unevenness between the light guide plate and the reflective film. Preferably it is 1 micrometer or less.
- the B layer is preferably a layer that is whitened by containing fine bubbles inside the film. Formation of fine bubbles can be achieved by finely dispersing a polymer incompatible with polyester in a film substrate such as a polyester film and stretching (for example, biaxial stretching).
- the B layer preferably contains a resin that is incompatible with the resin constituting the B layer.
- a resin that is incompatible with the resin constituting the B layer By containing the incompatible resin, a cavity having the incompatible resin as a nucleus is formed at the time of stretching, and light reflection occurs at the cavity interface.
- the resin incompatible with the polyester may be a homopolymer or a copolymer.
- Polyolefin resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, cyclic polyolefin resins, polystyrene resins, polyacrylate resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, and fluorine resins are preferably used. Two or more of these may be used in combination.
- a resin that has a large critical surface tension difference with polyester and is difficult to be deformed by heat treatment after stretching is preferable, and specifically, a polyolefin-based resin is preferable.
- the polyolefin resin include polyolefin resins such as polyethylene, polypropylene, polybutene, and polymethylpentene, cyclic polyolefin resins, and copolymers thereof.
- a copolymer of ethylene and bicycloalkene, which is a cyclic olefin copolymer is particularly preferable.
- the preferable content of the incompatible resin to be contained in the B layer is 5% by mass or more and 25% by mass or less.
- the incompatible resin contained in the B layer is dispersed in a matrix made of a polyester resin so that the number average particle diameter is 0.4 ⁇ m or more and 3.0 ⁇ m or less. In the range of 0.5 ⁇ m or more and 1.5 ⁇ m or less.
- the number average particle diameter refers to a cross section in the width direction (TD) of the film, and the B layer portion of the cross section is a scanning electron microscope (FE-SEM) model S-2100A manufactured by Hitachi, Ltd. The average value of the diameters when the area of 100 particles observed in this way is obtained and converted to a perfect circle.
- FE-SEM scanning electron microscope
- inorganic particles may be contained, and examples thereof include calcium carbonate, titanium dioxide, zinc oxide, zirconium oxide, zinc sulfide, basic lead carbonate (lead white), and barium sulfate.
- calcium carbonate, barium sulfate, titanium dioxide and the like which absorb less in the visible light range of 400 to 700 nm, are preferable from the viewpoints of reflection characteristics, concealability, production cost, and the like.
- barium sulfate and titanium dioxide are most preferable from the viewpoints of film winding property, long-term film-forming stability, and improvement in reflection characteristics.
- the particle size of the inorganic particles it is preferable to use particles having a number average particle size of 0.1 ⁇ m or more and 3.0 ⁇ m or less in order to realize excellent reflectivity and concealability.
- the B layer contains inorganic particles at a high concentration, it can be stably formed and has a role as a dispersant for the incompatible resin in the B layer.
- the copolymer polyester has a main dicarboxylic acid component of terephthalic acid, a main glycol component of ethylene glycol, and a copolymer component of aromatic carboxylic acid or aliphatic carboxylic acid such as isophthalic acid or naphthalene dicarboxylic acid, and tetra It is a polyester containing at least one selected from the group consisting of aliphatic diols such as methylene glycol, cyclohexanedimethanol, polyethylene glycol and polytetramethylene glycol.
- the copolymer polyester used is based on polyethylene terephthalate, a copolymer of polyethylene terephthalate and isophthalic acid, a copolymer of polyethylene terephthalate and cyclohexanedimethanol, and a copolymer of polybutylene terephthalate and polytetramethylene terephthalate. It is preferable to contain at least two or more types of copolyesters selected from the coalescence.
- an easy-adhesion layer may be provided on the surface of the reflection sheet 2 in order to improve the adhesion with the low refractive index layer 3.
- the easy adhesion layer is provided in the reflection sheet, it is called a reflection sheet including the easy adhesion layer.
- the constituent material of the low refractive index layer 3 includes inorganic materials such as a silicon oxide film and a magnesium fluoride film, fluorine-containing resins such as polychlorotrifluoroethylene (PCTFE) and polytetrafluoroethylene (PTFE), and the like. Examples thereof include a method of containing a hollow particle such as silica in a binder component such as an acrylic resin, a method of containing porous silica, and the like.
- the hollow particles are particles having cavities inside the particles, and the number average particle diameter is preferably 50 nm or more and 100 nm or less, and more preferably 60 nm or more and 100 nm or less.
- the material of the hollow particles include a composition made of either a silicon compound or a polymerized (condensed) compound of an organic silicon compound.
- the porous silica may be in the form of particles or a film.
- an acrylic resin is preferable as the binder component contained in the low refractive index layer 3, in order to obtain a transparent optical film having a lower refractive index, It is more preferable to contain an acrylic resin and hollow particles, and it is more preferable to contain an acrylic resin and hollow silica particles.
- the thickness of the low refractive index layer 3 can be appropriately selected in accordance with the constituent materials and the forming method, but is preferably 150 nm or more and 1,000 nm or less, and more preferably 200 nm or more and 400 nm or less from the viewpoint of applicability and productivity.
- the refractive index of the low refractive index layer 3 is preferably 1.01 or more and 1.38 or less, more preferably 1.01 or more and 1.34 or less, still more preferably 1.01 or more and 1.25 or less, and 1.10. More preferably, it is 1.25 or less.
- the refractive index exceeds 1.38, since the total reflection angle of the low refractive index layer and the adhesive layer becomes small, the light that is not guided increases, so that the light guide property described later may be insufficient.
- the refractive index is less than 1.01, the film strength of the low refractive index layer may decrease.
- the formation of the low refractive index layer 3 differs depending on the constituent materials, but dip coating method, spray coating method, spinner coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, curtain coating method, It can be formed by a wet method such as a slit die coater method, a gravure coater method, a slit reverse coater method, a micro gravure method or a comma coater method, or a dry method such as a vacuum deposition method or a sputtering method.
- a wet method such as a slit die coater method, a gravure coater method, a slit reverse coater method, a micro gravure method or a comma coater method, or a dry method such as a vacuum deposition method or a sputtering method.
- FIG. 2 is a schematic cross-sectional view showing an example of the surface recess of the low refractive index layer.
- FIG. 3 shows a surface SEM observation image (magnification 2,500 times, tilted 30 degrees with respect to the surface) showing an example of the surface dent of the low refractive index layer.
- the surface dent where T1 / T2 is 0.9 or less
- the number of surface depressions existing on an arbitrary length of 1 mm is measured, and the average value is defined as the number of surface depressions.
- the number of surface recesses is preferably 200 pieces / mm or less, more preferably 100 pieces / mm or less, and further preferably 50 pieces / mm or less.
- the number of surface dents is small because the light that is guided may be scattered at the interface between the low refractive index layer and the adhesive layer due to the dents existing on the surface of the low refractive index layer. Is preferred.
- the number of surface recesses can be controlled, for example, by adjusting the temperature conditions when forming the low refractive index layer, the drying speed of the coating liquid, the surface roughness of the reflective sheet, and the like.
- the surface roughness of the low refractive index layer 3 was measured based on JIS B0601 (2001) using a stylus type surface roughness meter (model number: ET 4000A) manufactured by Kosaka Laboratory Ltd. (SRa). Three arbitrary samples are measured, and the average value thereof is defined as the surface roughness of the low refractive index layer.
- the surface roughness is preferably 5 nm or more and 50 nm or less, and more preferably 10 nm or more and 30 nm or less.
- the slip property of the surface of the low refractive index layer is lowered, so that the handling property of the film roll after the formation of the low refractive index layer may be lowered.
- the light guide property may be reduced. It is ideal that the light is guided by repetition of total reflection, and when the surface roughness exceeds 50 nm, the light emitted from the light source is scattered on the surface of the low refractive index layer 3 for the reason. Presumed.
- the material constituting the adhesive layer 4 examples include an acrylic adhesive, a silicone adhesive, a butadiene adhesive, a urethane adhesive, and the like, and an acrylic adhesive is particularly preferable.
- the acrylic pressure-sensitive adhesive is a polymer containing an acrylic monomer unit as a main component.
- the acrylic monomer include (meth) acrylic acid, itaconic acid, (anhydrous) maleic acid, (anhydrous) fumaric acid, crotonic acid, and alkyl esters thereof.
- (meth) acrylic acid is used as a general term for acrylic acid and methacrylic acid.
- Examples of the light guide plate 5 include a plate-shaped plate and a wedge-shaped plate that is thick on one side surface on which the light source is disposed and gradually becomes thinner as the distance from the side surface is increased.
- a transparent resin material such as an acrylic resin or a polycarbonate resin, or a glass material can be used.
- the light diffusion portion 5b is a dot printing pattern by screen printing or the like, and includes a polymer resin, a crosslinking agent, and a filler.
- a polymer resin examples include polyester, polycarbonate, vinyl, polyurethane, and acrylic resin.
- the crosslinking agent functions to interconnect molecules constituting the polymer resin, and examples thereof include melamine, toluene diisocyanate, methylene diisocyanate, and hexamethylene diisocyanate.
- the filler include particles such as silicon dioxide, barium sulfate, titanium dioxide, and magnesium oxide.
- the refractive index of the low refractive index layer is a low refractive index using a sample in which a low refractive index layer (for example, about 100 nm in thickness) is laminated on a film having a known refractive index. It calculated using the thickness of the layer and the reflection spectrum of the low refractive index layer. The thickness of the low refractive index layer was calculated by the same method as in (1) above. The reflection spectrum was measured in steps of 10 nm with a reflectance of 300 to 800 nm using a spectrophotometer UV-3150 manufactured by Shimadzu Corporation.
- the polyester film surface opposite to the low refractive index layer is uniformly scratched with # 320-400 water-resistant sandpaper, and then black paint (black magic ink (registered trademark) liquid) is applied.
- black paint black magic ink (registered trademark) liquid
- composition analysis of the material constituting the low refractive index layer, number average particle diameter of hollow particles The composition of the material contained in the low refractive index layer is confirmed by appropriately selecting an analysis method such as EDX, FT-IR, etc. it can.
- the number average particle size of the hollow particles contained in the low refractive index layer was observed with a transmission electron microscope (H-7100FA type manufactured by Hitachi) at an acceleration voltage of 100 kV (observed at a magnification of 100,000 times).
- the equivalent circle diameter of 30 particles was measured, and the average value was defined as the number average particle diameter.
- grains which measured the number average particle diameter simultaneously was observed, and if the inside was a cavity, it was judged that it was a hollow particle.
- magnification in the observation method can be adjusted as appropriate, as an example, a concave portion where thickness measurement is performed by surface observation (magnification 2,500 times) is selected, and thickness measurement is performed by cross-sectional observation (magnification 50,000 times). By carrying out, the number of surface dents is measured.
- the center surface average roughness (SRa) of the surface of the low refractive index layer is made by Kosaka Laboratory Ltd., stylus type surface roughness meter ( Model No .: ET 4000A). Measurement was performed five times for one sample, and the average value thereof was defined as the surface roughness of the low refractive index layer in the sample. This was performed for three different samples, and the surface roughness of the low refractive index layer in each sample was calculated. The surface roughness of the low refractive index layer obtained for each of the three samples was further averaged, and the average value was defined as the surface roughness of the low refractive index layer.
- the measurement conditions are as follows.
- Light guide evaluation For the light guide evaluation, a light guide plate taken out from a CIMEI 24-inch LED monitor (model number: 24LH) was used. From a position corresponding to the central portion of the monitor in the length direction of the LED bar, a rectangle of 5 cm in the direction parallel to the LED bar and 10 cm in the vertical direction was cut out.
- the reflective film having a low refractive index layer and the cut light guide plate are bonded together with an acrylic adhesive adjusted to a thickness of 20 ⁇ m so that the low refractive index layer and the dot surface face each other, and in order to remove bubbles around the dots as appropriate Samples for evaluation were prepared by autoclaving.
- Light was incident from an end surface serving as a light incident portion in the monitor, and was visually observed from the surface of the light guide plate, and brightness and unevenness were compared and evaluated.
- an optical sheet (from the light guide plate side to the diffusion sheet, the prism sheet, and the diffusion sheet) mounted on the monitor was used.
- the light guide is good, the brightness is uniform when viewed from the front, and when the light guide is not good, bright portion unevenness parallel to the LED bar occurs near the light incident portion.
- the evaluation criteria are as follows.
- Class A Brightness distribution in the vertical direction with respect to the LED is almost uniform
- Class B Weak bright part unevenness is visually recognized near the LED
- Class C Strong bright part unevenness is visually recognized near the LED
- optical sheet Class D that is not visually recognized when placed and observed: Strong bright portion unevenness is visually recognized in the vicinity of the LED, and is visually recognized even when the optical sheet is placed and observed.
- Luminance unevenness evaluation In the brightness unevenness evaluation, the same sample as (6) light guide evaluation was observed. When there is unevenness in the thickness of the low refractive index layer, etc., brightness unevenness in which brightness is distributed in the plane is generated separately from the bright part unevenness of the light incident part. A comparative evaluation was conducted by visual observation. The evaluation criteria are as follows. Class A: Brightness unevenness is not visually recognized Class B: Thin brightness unevenness is visually recognized Class C: Brightness unevenness is visually recognized, but is not visible when the optical sheet is placed and observed Class D: Brightness unevenness is visually recognized, and the optical sheet Visible even when placed and observed.
- Example 1 A reflective film was prepared in the following manner.
- “Lumirror” registered trademark
- E6SR thickness: 225 ⁇ m
- Toray Industries, Inc. was used.
- JGC C & C ELCOM P-5062 solid content 3% by mass, hollow particles
- Metabar # 12 dried at 80 ° C. for 2 minutes, and then UV 400 mJ / cm 2 with a Fusion UV irradiator. Irradiation was performed to form a low refractive index layer 3.
- the thickness of the low refractive index layer 3 was 300 nm, and the refractive index was 1.38.
- Example 2 (Creation of hollow silica particles) A mixture of 100 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass and 1,900 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5. In the mother liquor, 9,000 g of a 1.17% by mass sodium silicate aqueous solution as SiO 2 and 9,000 g of a 0.83% by mass sodium aluminate aqueous solution as Al 2 O 3 were obtained. Were added simultaneously. Meanwhile, the temperature of the reaction solution was kept at 80 ° C.
- reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 primary particle dispersion having a solid content concentration of 20% by mass. 1,700 g of pure water was added to 500 g of this primary particle dispersion and heated to 98 ° C., and while maintaining this temperature, 50,400 g of sodium sulfate having a concentration of 0.5% by mass was added, and then the concentration was set as SiO 2.
- a dispersion of composite oxide fine particles was obtained by adding 3,000 g of an aqueous 1.17 mass% sodium silicate solution and 9,000 g of an aqueous sodium aluminate solution having a concentration of 0.5 mass% as Al 2 O 3 .
- This coating solution (preparation 1) was applied to a white film ("Lumirror” (registered trademark) E81E (thickness 50 ⁇ m) manufactured by Toray Industries, Inc.) by a bar coater method, dried at 80 ° C. for 1 minute, and a thickness of 130 nm. A refractive index layer was formed to create a reflective film.
- a white film (“Lumirror” (registered trademark) E81E (thickness 50 ⁇ m) manufactured by Toray Industries, Inc.) by a bar coater method, dried at 80 ° C. for 1 minute, and a thickness of 130 nm.
- a refractive index layer was formed to create a reflective film.
- Examples 3 to 9 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index shown in Table 1 was obtained, and a reflective sheet ("Lumirror” (registered trademark) manufactured by Toray Industries, Inc. ) E81E (thickness 50 ⁇ m) was applied by a bar coater method to form a low refractive index layer, and a reflective film was prepared.
- a reflective sheet (“Lumirror” (registered trademark) manufactured by Toray Industries, Inc. ) E81E (thickness 50 ⁇ m) was applied by a bar coater method to form a low refractive index layer, and a reflective film was prepared.
- Example 10 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror" manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by applying it to the E81E (trademark) E81E (thickness 50 ⁇ m) to form a reflective film, but the drying temperature during the formation of the coating film was changed to 90 ° C.
- E81E trademark
- E81E thickness 50 ⁇ m
- Example 11 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror" manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by applying it to the E81E (trademark) E81E (thickness: 50 ⁇ m) to form a reflective film, but the drying temperature at the time of forming the coating film was changed to 100 ° C.
- E81E trademark
- E81E thickness: 50 ⁇ m
- Example 12 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror" manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by applying it to the E81E (trademark) E81E (thickness: 50 ⁇ m) to form a reflective film, but the drying temperature during forming the coating film was changed to 110 ° C.
- E81E trademark
- E81E thickness: 50 ⁇ m
- Example 13 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror" manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by coating on a E81E (trademark) E81E (thickness 50 ⁇ m) to form a reflective film, except that the drying temperature during the formation of the coating film was changed to 120 ° C.
- a reflective sheet (“Lumirror” manufactured by Toray Industries, Inc. (registered)
- E81E trademark
- E81E thickness 50 ⁇ m
- Example 14 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror” manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by applying it to the E81E (trademark) E81E (thickness: 50 ⁇ m) to form a reflective film, but the drying temperature during the formation of the coating film was changed to 130 ° C.
- E81E trademark
- E81E thickness: 50 ⁇ m
- Example 15 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror” manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by applying it to a trademark E6SR (thickness: 188 ⁇ m) by a bar coater method, and a reflective film was prepared.
- a reflective sheet (“Lumirror” manufactured by Toray Industries, Inc. (registered)
- E6SR thickness: 188 ⁇ m
- Example 16 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror” manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by applying it to a trademark E81C (thickness: 188 ⁇ m) by a bar coater method, and a reflective film was prepared.
- a reflective sheet (“Lumirror” manufactured by Toray Industries, Inc. (registered)
- E81C thickness: 188 ⁇ m
- Example 17 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror" manufactured by Toray Industries, Inc. (registered) A low-refractive-index layer was formed by applying a trademark E6SJ (thickness: 188 ⁇ m) by a bar coater method, and a reflective film was prepared.
- a reflective sheet (“Lumirror” manufactured by Toray Industries, Inc. (registered)
- E6SJ thickness: 188 ⁇ m
- Example 18 Using the same coating solution (formulation 1) as in Example 2, the bar coater count was adjusted so that the thickness of the low refractive index layer shown in Table 1 was obtained, and a reflective sheet ("Lumirror" manufactured by Toray Industries, Inc. (registered) A low-refractive index layer was formed by applying the product to a trademark E82C (thickness: 188 ⁇ m) by a bar coater method, and a reflective film was prepared.
- a reflective sheet (“Lumirror” manufactured by Toray Industries, Inc. (registered)
- E82C thickness: 188 ⁇ m
- Example 19 to 21 Production of Hollow Silica Particles
- the temperature and time of each step were adjusted as appropriate under the production conditions, and hollow silica particles were produced so as to have the number average particle diameter described in Table 1.
- 50 g of the prepared hollow silica particle alcohol dispersion diluted with ethanol to a solid content concentration of 5 mass%, 3 g of acrylic resin (Hitaloid 1007, manufactured by Hitachi Chemical Co., Ltd.), and 1/1 of isopropanol and n-butanol (Mass ratio) and 47 g of the mixed solvent were sufficiently mixed to prepare a coating solution (Formulations 2 to 4).
- This coating solution (formulations 2 to 4) was applied to a white film (“Lumirror” (registered trademark) E81E (thickness 50 ⁇ m) manufactured by Toray Industries, Inc.) by a bar coater method, dried at 80 ° C. for 1 minute, and a thickness of 300 nm.
- a reflective film was formed by forming a low refractive index layer.
- DIC Corporation “Defenser” OP-3801 (Fluororesin, Refractive Index 1.38) is applied to a white film (“Lumirror” (registered trademark) E81E (thickness 50 ⁇ m) manufactured by Toray Industries, Inc.) by a bar coater method, and a metal halide lamp After UV irradiation (20 kJ / m 2 ), a low refractive index layer having a thickness of 300 nm was formed, and a reflective film was prepared.
- a white film (“Lumirror” (registered trademark) E81E (thickness 50 ⁇ m) manufactured by Toray Industries, Inc.)
- a metal halide lamp After UV irradiation (20 kJ / m 2 ), a low refractive index layer having a thickness of 300 nm was formed, and a reflective film was prepared.
- Example 23 “HIPRETECH” (registered trademark) FM-107M (refractive index 1.29) manufactured by Nissan Chemical Industries, Ltd. was applied to a white film (“Lumirror” (registered trademark) E81E (thickness 50 ⁇ m) manufactured by Toray Industries, Inc.) by a bar coater method. After drying at 120 ° C. for 3 minutes, after UV irradiation with a metal halide lamp (400 mJ / cm 2 ), a low refractive index layer having a thickness of 300 nm was formed to prepare a reflective film.
- a white film (“Lumirror” (registered trademark) E81E (thickness 50 ⁇ m) manufactured by Toray Industries, Inc.) by a bar coater method. After drying at 120 ° C. for 3 minutes, after UV irradiation with a metal halide lamp (400 mJ / cm 2 ), a low refractive index layer having a thickness of 300 nm was formed to prepare
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Planar Illumination Modules (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
Abstract
Description
特許文献1に記載されている導光板表面に低屈折率層を形成した構成の場合、導光板上下面の全反射での導光であるため、反射面間の距離は、導光板厚みと同じになる。ディスプレイの薄型化のためには導光板の厚みを薄くする必要があるが、導光板を薄くすることにより、全反射回数は増加してしまうことになる。また、導光板に低屈折率層を設けるためには、枚葉処理が必要となり、凹凸パターンのある表面に均一に低屈折率層を形成することは難易度が高いことから、生産性も低下する。
[1]反射シートの少なくとも片面に屈折率が1.01~1.38である低屈折率層を有する反射フィルムであって、前記低屈折率層と前記反射シートとが接していることを特徴とする反射フィルム。
[2]前記低屈折率層の厚みが、150~1,000nmであることを特徴とする前記[1]に記載の反射フィルム。
[3]前記低屈折率層表面の凹み個数が、200個/mm以下であることを特徴とする前記[1]または[2]に記載の反射フィルム。
[4]前記低屈折率層の表面粗さが、5~50nmであることを特徴とする前記[1]~[3]のいずれかに記載の反射フィルム。
[5]前記低屈折率層がアクリル樹脂および中空粒子を含有することを特徴とする前記[1]~[4]のいずれかに記載の反射フィルム。
[6]前記中空粒子の数平均粒子径が50~100nmであることを特徴とする前記[5]に記載の反射フィルム。
[7]導光板、粘着層および前記[1]~[6]いずれかに記載の反射フィルムの順に積層してなり、前記粘着層と前記低屈折率層とが接していることを特徴とする面光源装置用反射ユニット。
(1)低屈折率層の厚みの測定
サンプルの断面を超薄切片に切り出し、透過型電子顕微鏡(日立製H-7100FA型)で加速電圧100kVにて観察(10万倍の倍率で観察)し、その断面写真から低屈折率層の厚みを測定した。
低屈折率層の屈折率は、屈折率が既知のフィルム上に低屈折率層(例えば、厚み約100nm)を積層したサンプルを用い、低屈折率層の厚みと低屈折率層の反射スペクトルを用いて算出した。低屈折率層の厚みは、上記(1)と同様の方法で算出した。反射スペクトルは、(株)島津製作所の分光光度計UV-3150を用いて300~800nmの反射率を10nm刻みで測定した。反射スペクトル測定時には、低屈折率層とは反対側のポリエステルフィルム面に#320~400の耐水サンドペーパーで均一に傷をつけた後、黒色塗料(黒マジックインキ(登録商標)液)を塗布して、低屈折率層とは反対側の面からの反射を完全に無くした状態にして測定した。
低屈折率層に含有される材料の組成はEDX,FT-IR等の分析手法を適宜選択することで確認できる。また、低屈折率層に含有される中空粒子の数平均粒子径は、透過型電子顕微鏡(日立製H-7100FA型)で加速電圧100kVにて観察(10万倍の倍率で観察)し、任意の粒子30点の円相当直径を測定し、その平均値を数平均粒子径とした。また、同時に数平均粒子径の測定を行った粒子の切断面を観察し、内部が空洞になっていれば中空粒子であると判断した。
日本ミクロトーム研究所(株)製ロータリー式ミクロトームを使用し、ナイフ傾斜角度3°にて反射フィルム平面に垂直な方向に切断して作成したサンプルを、走査型電子顕微鏡((株)日立製作所製S-3400N)で観察して測定した。図2に示すように、低屈折率層の厚みをT2、低屈折率層表面から凹み部の最深部まで距離をT1とした場合、T1/T2が0.9以下であるものを表面凹みとし、その個数を測定した。任意の3箇所について、長さ1mmを観察し、長さ1mm上に存在する表面凹みの個数を測定し、その平均値を表面凹み個数とした。観察方法における倍率は適宜調整可能であるが、例としては、表面観察(倍率2,500倍)で厚み測定を実施する凹み部分を選定し、断面観察(倍率50,000倍)で厚み測定を実施することで、表面凹み個数を測定する。
JIS B0601(2001)に基づき、低屈折率層表面の中心面平均粗さ(SRa)を(株)小坂研究所製、触針式表面粗さ計(型番:ET 4000A)を用いて測定した。1つのサンプルについて5回測定を行い、それらの平均値を当該サンプルにおける低屈折率層の表面粗さとした。これを異なる3つのサンプルについて行い、各サンプルにおける低屈折率層の表面粗さを算出した。当該3つのサンプルそれぞれについて得られた低屈折率層の表面粗さをさらに平均し、平均値を低屈折率層の表面粗さとした。測定条件は以下の通りである。
触針先端半径:0.1μm
触針荷重:100μN
測定長:1.0mm
カットオフ値:0.25mm。
導光評価には、CHIMEI製24型LEDモニター(型番:24LH)から取り出した導光板を用いた。モニターのLEDバー長さ方向中央部に対応する位置から、LEDバーに平行方向に5cm、垂直方向に10cmの長方形を切り出した。低屈折率層を有する反射フィルムと切り出した導光板を、低屈折率層とドット面が対向するように、厚み20μmに調整したアクリル系粘着剤で貼り合わせ、ドット周辺の気泡を取り除くために適宜オートクレーブ処理して評価用サンプルを作成した。モニター内で入光部となる端面から光を入光させて、導光板表面から目視観察し、明るさおよびムラを比較評価した。また比較評価のために、モニターに搭載されていた光学シート(導光板側から、拡散シート、プリズムシート、拡散シートの順)を用いた。導光が良好である場合は、正面から観察したときに均一な明るさであり、導光が良好でない場合は、入光部付近にLEDバーに平行な明部ムラが発生する。評価基準は以下のとおりである。
A級:LEDに対して垂直方向の明るさ分布がほぼ均一である
B級:LED付近に弱い明部ムラが視認される
C級:LED付近に強い明部ムラが視認されるが、光学シートを載せて観察すると視認されない
D級:LED付近に強い明部ムラが視認され、光学シートを載せて観察しても視認される。
輝度ムラ評価は、(6)導光評価と同一のサンプルを観察した。低屈折率層の厚みムラなどがある場合は、入光部の明部ムラとは別に、明暗が面内に分布する輝度ムラが発生するため、LEDから5cm以上離れた部分の輝度ムラについて、目視観察による比較評価を実施した。評価基準は以下のとおりである。
A級:輝度ムラが視認されない
B級:薄い輝度ムラが視認される
C級:輝度ムラが視認されるが、光学シートを載せて観察すると視認されない
D級:輝度ムラが視認され、光学シートを載せて観察しても視認される。
反射フィルムの低屈折率層側の面を、株式会社巴川製紙製アクリル粘着剤“TD43A”を使用して、三菱レイヨン株式会社製アクリル板“アクリライト”Sに貼り合わせて測定用サンプルを作成した。サンプル幅は25mmとし、空気が噛みこまないように2kg/25mmの加圧条件でゴムローラーを1往復して圧着した。作成した測定サンプルは、温度23℃、相対湿度50%の雰囲気下で30分保管後、同雰囲気下で、引張試験機(株式会社オリエンテック製“テンシロン”RTM-100を用い、JIS-Z2337(2000)に準拠して引張速度300mm/分で180度剥離した際の剥離強度を測定した。判定基準は以下のとおりである。
A級:0.3N/25mm以上
B級:0.3N/25mm未満。
以下の要領で反射フィルムを作製した。
(中空シリカ粒子の作成)
平均粒径5nm、SiO2濃度20質量%のシリカゾル100gと純水1,900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として1.17質量%の珪酸ナトリウム水溶液9,000gとAl2O3として0.83質量%のアルミン酸ナトリウム水溶液9,000gとを同時に添加した。その間、反応液の温度を80℃に保持した。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO2・Al2O3一次粒子分散液を調製した。この一次粒子分散液500gに純水1,700gを加えて98℃に加温し、この温度を保持しながら、濃度0.5質量%の硫酸ナトリウム50,400gを添加し、ついでSiO2として濃度1.17質量%の珪酸ナトリウム水溶液3,000gとAl2O3としての濃度0.5質量%のアルミン酸ナトリウム水溶液9,000gを添加して複合酸化物微粒子の分散液を得た。ついで、限外濾過膜で洗浄して固形分濃度13質量%になった複合酸化物微粒子の分散液500gに純水1125gを加え、さらに濃塩酸(濃度35.5質量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離して固形分濃度20質量%の中空シリカ粒子の水分散液とし、ついで限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の中空シリカ粒子のアルコール分散液を調製した。
中空シリカ粒子のアルコール分散液をエタノールで固形分濃度5質量%に希釈した分散液50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn-ブタノールの1/1(質量比)、混合溶媒47gとを充分に混合して塗布液を調製した(調合1)。
この塗布液(調合1)を白色フィルム(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布し、80℃で、1分間乾燥させて、厚みが130nmの低屈折率層を形成し、反射フィルムを作成した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。ただし、塗布膜形成時の乾燥温度は90℃に変更した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。ただし、塗布膜形成時の乾燥温度は100℃に変更した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。ただし、塗布膜形成時の乾燥温度は110℃に変更した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。ただし、塗布膜形成時の乾燥温度は120℃に変更した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。ただし、塗布膜形成時の乾燥温度は130℃に変更した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E6SR(厚み188μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E81C(厚み188μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E6SJ(厚み188μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。
実施例2と同じ塗布液(調合1)を用い、表1に記載の低屈折率層の厚みとなるよう、バーコーターの番手を調整して、反射シート(東レ株式会社製“ルミラー”(登録商標)E82C(厚み188μm)にバーコーター法で塗布して低屈折率層を形成し、反射フィルムを作成した。
中空シリカ粒子の作成製造条件において各工程の温度、時間を適宜調整し、表1に記載した数平均粒子径となるように、中空シリカ粒子を作成した。作成した中空シリカ粒子のアルコール分散液をエタノールで固形分濃度5質量%に希釈した分散液50gと、アクリル樹脂(ヒタロイド1007、日立化成(株)製)3gおよびイソプロパノールとn-ブタノールの1/1(質量比)、混合溶媒47gとを充分に混合して塗布液を調製した(調合2~4)。
この塗布液(調合2~4)を白色フィルム(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布し、80℃で、1分間乾燥させて、厚みが300nmの低屈折率層を形成し 、反射フィルムを作成した。
DIC株式会社製“ディフェンサ”OP-3801(フッ素樹脂、屈折率1.38)を白色フィルム(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布し、メタルハライドランプでUV照射(20kJ/m2)後、厚み300nmの低屈折率層を形成し、反射フィルムを作成した。
日産化学工業株式会社製“HIPRETECH”(登録商標)FM-107M(屈折率1.29)を白色フィルム(東レ株式会社製“ルミラー”(登録商標)E81E(厚み50μm)にバーコーター法で塗布し、120℃で3分乾燥後、メタルハライドランプでUV照射(400mJ/cm2)後、厚み300nmの低屈折率層を形成し、反射フィルムを作成した。
反射シート2として、東レ製“ルミラー”(登録商標)E6SR(厚み225μm)を用いた。
上記の実施例および比較例で作製した反射フィルムについて、前述した測定および評価を行った。その結果を表2に示す。
2 反射シート
3 低屈折率層
4 粘着層
5 導光板
5a 導光体
5b 光拡散部
6 反射フィルム
Claims (7)
- 反射シートの少なくとも片面に屈折率が1.01~1.38である低屈折率層を有する反射フィルムであって、前記低屈折率層と前記反射シートとが接していることを特徴とする反射フィルム。
- 前記低屈折率層の厚みが、150~1,000nmであることを特徴とする請求項1に記載の反射フィルム。
- 前記低屈折率層表面の凹み個数が、200個/mm以下であることを特徴とする請求項1または2に記載の反射フィルム。
- 前記低屈折率層の表面粗さが、5~50nmであることを特徴とする請求項1~3のいずれかに記載の反射フィルム。
- 前記低屈折率層がアクリル樹脂および中空粒子を含有することを特徴とする請求項1~4のいずれかに記載の反射フィルム。
- 前記中空粒子の数平均粒子径が50~100nmであることを特徴とする請求項5に記載の反射フィルム。
- 導光板、粘着層および前記請求項1~6のいずれかに記載の反射フィルムの順に積層してなり、前記粘着層と前記低屈折率層とが接していることを特徴とする面光源装置用反射ユニット。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177037368A KR20180018586A (ko) | 2015-06-17 | 2016-06-16 | 반사 필름 및 면 광원 장치용 반사 유닛 |
JP2016544170A JP6926474B2 (ja) | 2015-06-17 | 2016-06-16 | 反射フィルムおよび面光源装置用反射ユニット |
CN201680033462.0A CN107636497A (zh) | 2015-06-17 | 2016-06-16 | 反射膜及面光源装置用反射单元 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-121853 | 2015-06-17 | ||
JP2015121853 | 2015-06-17 | ||
JP2016056693 | 2016-03-22 | ||
JP2016-056693 | 2016-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016204234A1 true WO2016204234A1 (ja) | 2016-12-22 |
Family
ID=57545708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067952 WO2016204234A1 (ja) | 2015-06-17 | 2016-06-16 | 反射フィルムおよび面光源装置用反射ユニット |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6926474B2 (ja) |
KR (1) | KR20180018586A (ja) |
CN (1) | CN107636497A (ja) |
WO (1) | WO2016204234A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018124409A (ja) * | 2017-01-31 | 2018-08-09 | 日東電工株式会社 | 導光板方式液晶ディスプレイ用光学シート、導光板方式液晶ディスプレイ用バックライトユニット、および導光板方式液晶ディスプレイ |
JP2018123299A (ja) * | 2017-01-31 | 2018-08-09 | 日東電工株式会社 | 低屈折率層含有粘接着シート、低屈折率層含有粘接着シートの製造方法、および光学デバイス |
EP4130547A4 (en) * | 2020-03-27 | 2024-04-03 | Nitto Denko Corporation | OPTICAL ELEMENT AND BACKLIGHT UNIT USING SAID OPTICAL ELEMENT, AND IMAGE DISPLAY DEVICE |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102224832B1 (ko) | 2020-07-07 | 2021-03-08 | 코오롱글로텍주식회사 | 면조명 장치 및 이의 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004255581A (ja) * | 2003-02-24 | 2004-09-16 | Mitsubishi Polyester Film Copp | 反射フィルム用二軸延伸積層ポリエステルフィルム |
JP2006236771A (ja) * | 2005-02-24 | 2006-09-07 | Sony Corp | バックライト装置及び液晶表示装置 |
WO2011074399A1 (ja) * | 2009-12-15 | 2011-06-23 | シャープ株式会社 | 光学積層体、照明装置、液晶表示装置、及び光学積層体の製造方法 |
WO2012026445A2 (ja) * | 2010-08-27 | 2012-03-01 | 東レ株式会社 | 白色積層フィルムの製造方法および白色積層ポリエステルフィルム |
WO2014077228A1 (ja) * | 2012-11-14 | 2014-05-22 | 富士フイルム株式会社 | 感光性転写材料、感光性低屈折率転写層を有する基板、感光性低屈折率転写層の製造方法、永久膜の形成方法、光学デバイス及びその製造方法 |
WO2016031397A1 (ja) * | 2014-08-28 | 2016-03-03 | ソニー株式会社 | 表示装置および照明装置 |
-
2016
- 2016-06-16 JP JP2016544170A patent/JP6926474B2/ja active Active
- 2016-06-16 CN CN201680033462.0A patent/CN107636497A/zh active Pending
- 2016-06-16 WO PCT/JP2016/067952 patent/WO2016204234A1/ja active Application Filing
- 2016-06-16 KR KR1020177037368A patent/KR20180018586A/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004255581A (ja) * | 2003-02-24 | 2004-09-16 | Mitsubishi Polyester Film Copp | 反射フィルム用二軸延伸積層ポリエステルフィルム |
JP2006236771A (ja) * | 2005-02-24 | 2006-09-07 | Sony Corp | バックライト装置及び液晶表示装置 |
WO2011074399A1 (ja) * | 2009-12-15 | 2011-06-23 | シャープ株式会社 | 光学積層体、照明装置、液晶表示装置、及び光学積層体の製造方法 |
WO2012026445A2 (ja) * | 2010-08-27 | 2012-03-01 | 東レ株式会社 | 白色積層フィルムの製造方法および白色積層ポリエステルフィルム |
WO2014077228A1 (ja) * | 2012-11-14 | 2014-05-22 | 富士フイルム株式会社 | 感光性転写材料、感光性低屈折率転写層を有する基板、感光性低屈折率転写層の製造方法、永久膜の形成方法、光学デバイス及びその製造方法 |
WO2016031397A1 (ja) * | 2014-08-28 | 2016-03-03 | ソニー株式会社 | 表示装置および照明装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018124409A (ja) * | 2017-01-31 | 2018-08-09 | 日東電工株式会社 | 導光板方式液晶ディスプレイ用光学シート、導光板方式液晶ディスプレイ用バックライトユニット、および導光板方式液晶ディスプレイ |
JP2018123299A (ja) * | 2017-01-31 | 2018-08-09 | 日東電工株式会社 | 低屈折率層含有粘接着シート、低屈折率層含有粘接着シートの製造方法、および光学デバイス |
US11402569B2 (en) | 2017-01-31 | 2022-08-02 | Nitto Denko Corporation | Optical sheet for light guide plate type liquid crystal display, backlight unit for light guide plate type liquid crystal display, and light guide plate type liquid crystal display |
JP7182358B2 (ja) | 2017-01-31 | 2022-12-02 | 日東電工株式会社 | 低屈折率層含有粘接着シート、低屈折率層含有粘接着シートの製造方法、および光学デバイス |
EP4130547A4 (en) * | 2020-03-27 | 2024-04-03 | Nitto Denko Corporation | OPTICAL ELEMENT AND BACKLIGHT UNIT USING SAID OPTICAL ELEMENT, AND IMAGE DISPLAY DEVICE |
US11966075B2 (en) | 2020-03-27 | 2024-04-23 | Nitto Denko Corporation | Optical member and backlight unit using said optical member, and image display device |
Also Published As
Publication number | Publication date |
---|---|
CN107636497A (zh) | 2018-01-26 |
JP6926474B2 (ja) | 2021-08-25 |
KR20180018586A (ko) | 2018-02-21 |
JPWO2016204234A1 (ja) | 2018-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4548430B2 (ja) | 反射板用白色積層ポリエステルフィルム | |
US8227073B2 (en) | White polyester film for light reflective plate | |
JP4967274B2 (ja) | 光反射フィルムおよびそれを用いた面光源 | |
WO2016204234A1 (ja) | 反射フィルムおよび面光源装置用反射ユニット | |
JP6540508B2 (ja) | 面光源装置用ユニットおよび面光源装置 | |
TW200937044A (en) | Anti-glare film, anti-glare polarizing plate, and image display device | |
WO2007000856A1 (ja) | 防眩性ハードコートフィルム | |
TWI474051B (zh) | A light diffusing sheet and a backlight device using the same | |
JP2019101142A (ja) | 光反射シートおよび光学部材 | |
TW202103981A (zh) | 轉印片及其製造方法、使用該轉印片之成形體之製造方法與成形體、以及使用該成形體之前面板與影像顯示裝置 | |
JP2013254116A (ja) | 光学積層体、及びこれを用いた偏光板 | |
JP2009020502A (ja) | 白色反射フィルム | |
JP2007168089A (ja) | 反射板用白色積層ポリエステルフィルム | |
JP5817165B2 (ja) | 反射板用白色積層ポリエステルフィルムおよびバックライト装置 | |
JP2011075779A (ja) | 白色反射フィルム | |
JP6641627B2 (ja) | 反射フィルムおよびそれを用いたエッジライト型バックライトユニット | |
JP2008286907A (ja) | 反射用積層体 | |
JP4525055B2 (ja) | 光反射フィルムおよびそれを用いた面光源 | |
WO2010073611A1 (ja) | 光反射体及び面光源装置 | |
JP5267922B2 (ja) | 偏光板の製造方法 | |
JP2013254117A (ja) | 光学積層体、及びこれを用いた偏光板 | |
TWI477396B (zh) | 反射片用白色積層聚酯膜 | |
WO2006088151A1 (ja) | 光拡散光学部材 | |
JP2013254115A (ja) | 光学積層体、及びこれを用いた偏光板 | |
JP2017090560A (ja) | 反射フィルムおよびそれを用いたエッジライト型バックライトユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016544170 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16811708 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177037368 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16811708 Country of ref document: EP Kind code of ref document: A1 |