WO2016204192A1 - 結晶シリコン太陽電池モジュールおよびその製造方法 - Google Patents

結晶シリコン太陽電池モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2016204192A1
WO2016204192A1 PCT/JP2016/067841 JP2016067841W WO2016204192A1 WO 2016204192 A1 WO2016204192 A1 WO 2016204192A1 JP 2016067841 W JP2016067841 W JP 2016067841W WO 2016204192 A1 WO2016204192 A1 WO 2016204192A1
Authority
WO
WIPO (PCT)
Prior art keywords
interconnector
solar cell
insulating layer
electrode
finger electrode
Prior art date
Application number
PCT/JP2016/067841
Other languages
English (en)
French (fr)
Inventor
訓太 吉河
徹 寺下
邦裕 中野
勇人 河▲崎▼
小西 克典
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US15/579,387 priority Critical patent/US20180083152A1/en
Priority to CN201680028660.8A priority patent/CN107771360B/zh
Priority to JP2017525267A priority patent/JP6697456B2/ja
Publication of WO2016204192A1 publication Critical patent/WO2016204192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a crystalline silicon solar cell module and a manufacturing method thereof.
  • a light receiving surface of a solar cell is provided with a grid-like metal electrode including a finger electrode that collects current from a photoelectric conversion unit and a bus bar electrode that collects current from the finger electrode and flows it to an interconnector such as a tab wire.
  • the interconnector plays a role of electrical connection (interconnection) between electrodes of solar cells arranged adjacent to each other and current extraction to the outside.
  • Patent Document 1 a grid-like metal electrode composed of a finger electrode and a bus bar electrode is formed on the surface of the photoelectric conversion portion, and a silicon oxide insulating film is provided at least in a region where the metal electrode on the photoelectric conversion portion is not provided.
  • a solar cell is disclosed. Interconnection is performed by soldering a tab wire as an interconnector onto the bus bar electrode of the solar cell.
  • Patent Document 1 describes that an insulating layer is provided on the surface of the photoelectric conversion portion, thereby exhibiting good alkali barrier properties and high reliability.
  • the tab wire which is an interconnection member, usually has a width of about 0.8 to 2 mm, and the bus bar electrode connected to the tab wire has the same width.
  • the electrode material cost and shadowing loss can be reduced by reducing the width of the tab wire and bus bar electrode to reduce the electrode area. However, if the electrode width is reduced, the line resistance and contact resistance increase, and the conversion characteristics deteriorate.
  • Patent Document 2 discloses a solar cell module in which wire-like interconnectors are connected at intervals of 5 to 15 mm so as to be orthogonal to the finger electrodes.
  • a bus bar is not provided on the photoelectric conversion part of a solar cell, and interconnection is performed by thermocompression bonding of a metal wire as an interconnector to a finger electrode by thermocompression bonding or the like.
  • the width (diameter) of the wire used for SWT is several hundred ⁇ m, which is smaller than a conventional interconnector such as a tab wire. For this reason, even when the interval between the interconnectors is shortened and the number of interconnectors provided on the cell is increased, the shadowing loss can be reduced as compared with the interconnection using the tab line.
  • the effective length of the finger electrode (distance to the nearest interconnector) is shortened by shortening the arrangement interval of the interconnector, even when the number of finger electrodes and the electrode width are reduced, it is caused by the line resistance. Current loss is unlikely to occur.
  • the bus bar electrode is unnecessary, and the area of the finger electrode can be reduced, so that the electrode material cost and the shadowing loss can be reduced.
  • the interconnection method that connects the finger electrodes of solar cells with wire-like interconnectors is expected to reduce electrode material costs and increase power generation by reducing shadowing loss.
  • practical problems remain. .
  • One of them is the long-term reliability of the module.
  • an object of the present invention is to provide a solar cell module that has little optical loss due to an interconnector and is excellent in reliability.
  • an insulating layer is provided so as to cover the entire surface of the photoelectric conversion portion and the metal electrode, and an opening is locally formed in the insulating layer between the metal electrode and the interconnector.
  • the crystalline silicon solar cell module of the present invention has a crystalline silicon solar cell and an interconnector electrically connected to the crystalline silicon solar cell.
  • the crystalline silicon solar cell includes a plurality of finger electrodes provided in parallel on the first main surface of the photoelectric conversion unit, and an insulating layer is provided to cover the first main surface and the finger electrodes of the photoelectric conversion unit. ing. It is preferable that an insulating layer is also provided on the second main surface of the photoelectric conversion portion and the finger electrodes provided on the second main surface.
  • the interconnector has a width of 50 ⁇ m or more and less than 400 ⁇ m, and is arranged so as to be electrically connected across a plurality of finger electrodes. At the intersection of the finger electrode and the interconnector, an opening is formed in the insulating layer provided between the finger electrode and the interconnector, and the finger electrode and the interconnector are electrically connected via the opening. Connected. It is preferable that the finger electrode and the interconnector are electrically connected via a metal material filled in the opening of the insulating layer.
  • an opening can be selectively formed at a portion where the finger electrode and the interconnector intersect.
  • the interconnector has a core material and a low melting point material layer. It is preferable that a low-melting-point material layer is provided in a portion that contacts the insulating layer of the interconnector, that is, a portion that is electrically connected to the finger electrode through the opening.
  • the interconnector provided with the low-melting-point material layer is heated to melt the metal material that is a component of the low-melting-point material layer, thereby forming the metal material constituting the low-melting-point metal material layer or the low-melting-point metal material.
  • the opening of the insulating layer is filled with an alloy of the metal material to be formed and the metal material constituting the finger electrode.
  • the opening of the insulating layer may be filled with a metal material by electrolytic plating.
  • a solar cell module having excellent power generation characteristics and durability can be obtained.
  • the crystalline silicon solar cell module of the present invention includes a crystalline silicon solar cell 4 and interconnectors 3 and 5 electrically connected to the crystalline silicon solar cell.
  • the crystalline silicon solar cell 4 has finger electrodes 9 and 17 on both sides of the photoelectric conversion unit 50.
  • the solar cell module of FIG. 1 includes a light-receiving surface protective material 1, a sealing member 2, a first interconnector 3, a crystalline silicon solar cell 4, a second interconnector 5, a sealing member 6, and a back sheet 7 from the light-receiving surface side.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the solar cell before connecting the interconnector.
  • the photoelectric conversion unit 50 of the solar cell 4 includes a crystalline silicon substrate 13.
  • the crystalline silicon substrate may be either a single crystal silicon substrate or a polycrystalline silicon substrate.
  • the surface on the light receiving surface side of the crystalline silicon substrate is preferably provided with irregularities having a height of about 1 to 10 ⁇ m. By forming irregularities on the light receiving surface, the light receiving area is increased and the reflectance is reduced, so that the light confinement efficiency is increased. Irregularities may also be provided on the back side of the crystalline silicon substrate.
  • the solar cell 4 shown in FIG. 2 is a so-called heterojunction solar cell, and from the light receiving surface side, the light receiving surface insulating layer 8 (first insulating layer), the light receiving surface finger electrode 9 (first finger electrode), and the light receiving surface transparent electrode layer.
  • 10 first transparent electrode layer
  • light receiving surface conductive silicon layer 11 first conductive silicon layer
  • light receiving surface intrinsic silicon layer 12 first intrinsic silicon layer
  • crystalline silicon substrate 13 back surface intrinsic silicon layer 14 ( (Second intrinsic silicon layer), back conductive silicon layer 15 (second conductive silicon layer), back transparent electrode layer 16 (second transparent electrode layer), back finger electrode 17 (second finger electrode), and back insulating layer 18 (second insulating layer) in order.
  • a p-type or n-type single crystal silicon substrate is used as the crystalline silicon substrate 13.
  • An n-type single crystal silicon substrate is preferred because of its long carrier life.
  • the first conductivity type silicon layer 11 provided on the light receiving surface of the silicon substrate 13 and the second conductivity type silicon layer 15 provided on the back surface have different conductivity types, one being p-type and the other being n-type.
  • the metal electrodes provided on the light receiving surface and the back surface include a plurality of finger electrodes 9 and 17 arranged in parallel.
  • the finger electrodes 9 and 17 can be formed by printing a conductive paste containing metal particles, a plating method, or the like.
  • the metal particles of the conductive paste include Ag particles and particles obtained by coating the surface of Cu with Ag.
  • the metal of the plating electrode include Cu, Ni, Ag, and Sn.
  • the finger electrode may be a single layer or a plurality of layers.
  • a metal thin film made of Ag, Cu, Ni, NiCu or the like or a conductive paste layer with a small film thickness is formed as a seed layer on the surface of the photoelectric conversion portion (on the transparent electrode layers 10 and 16),
  • a plating layer may be formed by electrolytic plating.
  • the seed electrode layer may be formed by plating.
  • the width of the finger electrode is preferably 15 to 80 ⁇ m, more preferably 25 to 50 ⁇ m. If the width of the finger electrode is within this range, it is possible to ensure both conductivity and reduce shadowing loss.
  • the distance d between adjacent finger electrodes may be set, for example, within a range of about 0.3 to 2 mm so as to maximize the amount of power generation in consideration of the influence of shadowing loss, line resistance, and the like.
  • interval of an adjacent electrode is the distance of the center line (center of the width direction of an electrode) of the extension direction of an electrode.
  • the interval between the finger electrodes 9 on the light receiving surface side and the interval between the finger electrodes 17 on the back surface side may be the same or different. Since the amount of light incident from the back surface side is 10% or less of the light receiving surface side, the finger electrode on the back surface side is less affected by shadowing loss due to the increase in electrode area than the light receiving surface. For this reason, the back surface finger electrode is preferably designed with priority on improving carrier recovery efficiency, and is preferably formed more densely than the light receiving surface finger electrode. For example, the interval between the light receiving surface finger electrodes may be set to about 1.5 to 5 times the interval between the back surface finger electrodes.
  • the thickness of the finger electrode is preferably 10 to 40 ⁇ m, more preferably 15 to 30 ⁇ m. If the thickness of the finger electrode is within this range, the line resistance can be reduced, and the use efficiency of the electrode material and the simplicity of the electrode shape can be ensured. Further, if the thickness is about 20 to 50% with respect to the width of the finger electrode, the electrical loss due to shadowing loss and line resistance can be reduced.
  • FIG. 4 is a plan view of the solar cell (solar cell string) after the interconnector is connected, and the interconnector 3 is provided on the finger electrode 9.
  • the extending direction of the interconnector (x direction) and the extending direction of the finger electrodes (y direction) are orthogonal to each other.
  • a compensation electrode 91 having substantially the same width as the finger electrode is provided so as to extend in a direction orthogonal to the finger electrode 9.
  • a compensation electrode 91 for connecting the finger electrodes is provided, and the electrode pattern is grid-shaped. It is preferable.
  • a compensation electrode is provided, even if a miscontact occurs at some connection locations, photogenerated carriers can be recovered to the interconnector from the finger electrode that is electrically connected via the adjacent compensation electrode. , Electrical loss can be suppressed.
  • the compensation electrode 91 is preferably provided so as to extend in a direction orthogonal to the finger electrode, that is, in a direction parallel to the interconnector.
  • the compensation electrode may be provided directly below the interconnector 3 or may be provided separately from the interconnector.
  • the compensation electrode is preferably present at a position close to the interconnector 3 because of its role.
  • the compensation electrodes do not have to be disposed under all the interconnectors 3, and for example, the compensation electrodes may be provided under some of the interconnectors.
  • the number and arrangement interval of the compensation electrodes may be different from the number and arrangement interval of the interconnector.
  • the width of the compensation electrode may be the same as or different from the width of the finger electrode, preferably 15 to 120 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the compensation electrode When the compensation electrode is provided directly under the interconnector, stress may concentrate when the electrode and the interconnector are completely overlapped. As shown in FIG. 3C, the stress can be dispersed by forming the compensation electrode in a zigzag shape with a slight angle.
  • the compensation electrode can be formed by printing a conductive paste, a plating method, or the like, like the finger electrode.
  • the compensation electrode is formed by printing or plating, it is preferable to form the finger electrode and the compensation electrode at the same time. For example, by performing printing using a screen plate having an opening pattern corresponding to the pattern shape of the finger electrode and the compensation electrode, the finger electrode and the compensation electrode can be formed simultaneously.
  • a finger electrode and a compensation electrode can be formed simultaneously by providing an opening corresponding to the pattern shape of the finger electrode and the compensation electrode in the resist.
  • An insulating layer 8 is provided on at least one surface on the photoelectric conversion unit.
  • a first insulating layer 8 and a second insulating layer 18 are provided on the first main surface and the second main surface of the photoelectric conversion unit, respectively.
  • the insulating layers 8 and 18 are provided so as to cover the finger electrodes 9 and 17 in addition to the surface of the photoelectric conversion unit 50 (on the transparent electrode layers 10 and 16).
  • the insulating layer is provided so as to cover the compensation electrode.
  • the insulating layers 8 and 18 are preferably provided so as to cover the entire surfaces of both main surfaces of the solar cell before connection to the interconnector.
  • the insulating layer is not locally formed, such as pinholes that are unavoidable during the formation of the insulating layer, fine cracks due to thermal expansion, and contact parts with the jig that holds the substrate during film formation You may do it.
  • the metal electrode is also covered with the insulating layer, thereby suppressing the entry of alkali, moisture and the like into the photoelectric conversion part, and improving the reliability of the solar cell.
  • the insulating layers 8 and 18 may be any material having a barrier property against alkali and moisture.
  • examples thereof include ceramic materials such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, and molybdenum oxide, resin materials such as acrylic resin and fluorine resin, and laminates thereof.
  • ceramic materials such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, and molybdenum oxide
  • resin materials such as acrylic resin and fluorine resin, and laminates thereof.
  • silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, acrylic resin, or a laminate thereof from the viewpoint of cost and light transmittance, it is preferable to use silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, acrylic resin, or a laminate thereof.
  • the material of the front and back insulating layers may be the same or different. From the viewpoint of productivity, it is preferable that the front and back insulating layers are made of the same
  • the thickness of the insulating layers 8 and 18 is preferably 10 nm or more. As will be described in detail later, when connecting the finger electrode and the interconnector, an opening is provided in the insulating layer on the finger electrode, and electrical connection is performed through the opening. In order to facilitate the formation of the opening, the thickness of the insulating layers 8 and 18 is preferably 1000 nm or less. From the viewpoint of achieving both barrier properties and ease of opening formation, the thickness of the insulating layers 8 and 18 is more preferably 20 nm to 500 nm, and even more preferably 30 to 300 nm.
  • the formation method of the insulating layers 8 and 18 is not particularly limited as long as the entire surface on the photoelectric conversion portion and the finger electrode can be covered, and dry processes such as CVD and PVD and various wet processes are performed depending on the material. To select. Since it is easy to form a uniform thin film having the above thickness, it is preferable to form the insulating layer by a dry process. When a silicon thin film or a transparent electrode layer is included in the photoelectric conversion part as in a heterojunction solar cell, it is preferable to perform film formation at 200 ° C. or lower in order to suppress deterioration of these thin films.
  • FIG. 5 is a schematic cross-sectional view of a solar cell (solar cell string) after connecting the finger electrodes 9 and 17 to the interconnectors 3 and 5. Openings are formed in the insulating layers 8 and 18 at portions intersecting the interconnectors 3 and 5 on the finger electrodes 9 and 17. The openings of the insulating layer are filled with metal materials 31 and 32, and the finger electrodes 9 and 17 and the interconnectors 3 and 5 are electrically connected through the openings of the insulating layer.
  • the interconnector is arranged to be orthogonal to the finger electrodes and to be electrically connected across the plurality of finger electrodes.
  • a thin metal wire is preferably used, and a plurality of metal wires combined may be used.
  • the interconnectors 3 and 5 have a width W in the in-plane direction of the main surface of the photoelectric conversion unit 50 (a width when the solar cell module is viewed from the light receiving surface or the back surface) from 50 ⁇ m to less than 400 ⁇ m. If the width is less than 400 ⁇ m, the shadowing loss can be reduced and the opening to the insulating layer can be easily formed at the time of interconnection. Moreover, if the width
  • the width W of the interconnector is preferably 100 to 350 ⁇ m, and more preferably 120 to 300 ⁇ m. In the solar cell module, the interval between adjacent interconnectors is preferably about 3 to 25 mm, and more preferably 4 to 20 mm.
  • the cross-sectional shape of the interconnector is not particularly limited, and is, for example, a polygon such as a triangle, a quadrangle, or a pentagon, or a circle. Since the production of the interconnector is easy, an interconnector having a circular cross section is preferably used. Moreover, the cross-connector with a circular cross-section has no anisotropy (specific direction) in the cross-sectional shape, so that it is not necessary to check and adjust the direction of the interconnector when connecting to the finger electrode, and the connection is easy Has the advantage of On the other hand, as will be described later, the light utilization efficiency of the solar cell module can be improved by using an interconnector having anisotropy in cross-sectional shape.
  • the interconnector material preferably has a low resistivity.
  • a metal material mainly composed of copper is particularly preferable because of its low cost. You may use what coat
  • the surface coating layer of the interconnector may be provided on the entire core material or may be provided partially.
  • the low-melting-point metal material layer may be provided in a position-selective manner at a period according to the arrangement interval of the finger electrodes.
  • a low melting point metal material layer may be selectively provided on the surface in contact with the finger electrodes.
  • the low melting point metal material examples include metals such as In, Ga, Sn, Ga, and Bi, and alloys (for example, solder alloys) containing these metals.
  • the low melting point metal material preferably has a melting point of 230 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 180 ° C. or lower.
  • a plurality of interconnectors are arranged on the insulating layer at predetermined intervals so as to be orthogonal to the finger electrodes. In order to properly arrange a plurality of interconnectors, it is necessary to adjust the positions and intervals. If a substrate 29 with wiring in which an interconnector 3 is previously disposed on a support substrate 20 such as an insulating resin film as shown in FIG. 6 is used, operations such as alignment are simplified and module production is performed. Can be improved.
  • FIG. 6A is a schematic plan view showing an embodiment of a substrate with wiring in which a plurality of interconnectors 3 are attached on a supporting substrate
  • FIG. 6B is a sectional view thereof.
  • the interconnector 3 is bonded to the first main surface of the first support base material 20, and the interconnector 3 is bonded to the second main surface of the second support base material 25.
  • the first support substrate is disposed on the light receiving surface side of one solar cell
  • the second support substrate is disposed on the back surface side of the adjacent solar cell
  • the interconnector-equipped surface on each support substrate and the photoelectric By facing the insulating layer on the surface of the conversion part, a plurality of interconnectors can be appropriately disposed on the finger electrodes on the front and back surfaces of the two solar cells.
  • the thickness and material of the support substrate are not particularly limited.
  • the support base material may be transparent or opaque.
  • an optical detection means such as a camera
  • an adhesive layer 21 may be provided on the surface of the support base material.
  • the material and thickness of the adhesive layer 21 are not particularly limited as long as the interconnector can be bonded and fixed to the surface.
  • the thickness of the adhesive layer is, for example, about 2 to 10 ⁇ m, and the material of the adhesive layer is preferably a transparent resin.
  • the support substrate itself may have adhesiveness.
  • the supporting transparent resin adhesive layer is softened by heating during the interconnection, and is pushed sideways from the contact point with the interconnector. Since the extruded transparent resin adhesive adheres to the insulating layer provided on the surface of the photoelectric conversion portion, the interconnector can be more firmly fixed.
  • the interconnector preferably has no cross-sectional anisotropy.
  • the aspect ratio between the horizontal direction (plane direction of the solar cell) and the vertical direction (thickness direction) in the cross-section of the interconnector is preferably less than 1.5.
  • the cross-sectional aspect ratio of the interconnector may be large.
  • the cross-section of the interconnector is higher in the normal direction of the main surface of the substrate 13 so that the length in the normal direction of the substrate is larger than the length in the in-plane direction of the substrate. It is preferable to arrange the interconnector so as to have an aspect ratio.
  • FIG. 7 is a conceptual diagram showing a state in which interconnectors having various cross-sectional shapes are arranged on the finger electrodes 9 of the solar cell by cross-sectional aspect orientation control.
  • FIG. 7 shows an example in which cross-sectional aspect orientation control is performed by bonding an interconnector to the support base material 20 provided with the adhesive layer 21.
  • the insulating layer is not shown.
  • the cross-connector 3 having a circular cross-section has an aspect ratio of 1, and is always arranged on the finger electrodes in the same orientation regardless of whether or not the cross-sectional aspect orientation control is performed.
  • the interconnector 301 having a square cross section and the interconnector 302 having a regular polygonal cross section also have an aspect ratio of 1, and are arranged on the finger electrodes in the same direction regardless of whether or not the cross section aspect orientation is controlled. Due to mechanical stability, the interconnectors 301 and 302 are often arranged so that one of the sides is parallel to the substrate surface.
  • an interconnector having a large aspect ratio such as an interconnector 311 having a rectangular cross section or an interconnector 312 having an elliptical cross section, has a long side in view of mechanical stability when cross-sectional aspect orientation control is not performed. There is a tendency that the (major axis) is arranged in parallel with the substrate surface. In this case, since the width on the substrate surface is increased, the optical loss due to light reflection at the interconnector is large, and the light utilization efficiency of the solar cell module is reduced. On the other hand, as shown in FIG.
  • the width on the substrate surface becomes small.
  • the cross-sectional area is larger than that of the interconnector having a small aspect ratio and the same width, the line resistance of the interconnector is decreased, and the module characteristics tend to be improved. That is, module characteristics can be improved by controlling the cross-sectional aspect orientation using an interconnector having a large cross-sectional aspect ratio (for example, 1.5 or more).
  • the light reflected by the interconnector is reflected at the interface between the protective material 1 and air by controlling the cross-sectional aspect orientation control so that the inclination angle ⁇ is increased. Therefore, it is possible to prevent the incident light from being emitted outside the module and improve the module light utilization efficiency.
  • the protective material 1 is glass (refractive index: 1.5)
  • is 41 ° or more
  • the light reflected by the interconnector 313 is totally reflected at the interface between the protective material 1 and air.
  • the cross-sectional aspect orientation control of the interconnector may be performed by a method other than the method using the support base material. For example, by embedding and fixing the sealing members 2 and 6 in the interconnector, it is possible to control the orientation of the interconnector without using a support base material. In addition, even if the interconnector orientation is controlled by performing the interconnection in a state where the aspect orientation control is performed by a method such as gripping a portion of the interconnector that does not contact the finger electrode with a supporting jig. Good.
  • the formation of the opening in the insulating layer is performed by a method capable of locally forming the opening at the connection portion between the finger electrode and the interconnector. For example, an opening is locally formed in the insulating layer on the finger electrode by applying pressure in a state where the interconnector is disposed on the finger electrode. Further, the finger electrode is thermally expanded by local heating such as solder connection or thermocompression bonding, and a crack-like opening is formed in the insulating layer on the finger electrode.
  • the mask When an opening is provided in the insulating layer by limiting the film formation region using a mask or the like when forming the insulating layer, the mask needs to be aligned. Further, since it is necessary to enlarge the area covered by the mask in order to provide an alignment margin, an opening is formed in an area larger than the interconnection area. For this reason, exposed portions of the photoelectric conversion part and the electrode are generated, and the reliability of the solar cell module tends to be lowered.
  • the interconnectors 3 and 5 and the finger electrodes 9 and 17 will contact, and will be joined ( An opening is locally formed at the interconnection point).
  • This method is preferable from the viewpoint of productivity because the formation of the opening can be automatically concentrated at the interconnection where the opening is necessary.
  • an opening is locally formed at the interconnection location, and the opening is closed by connection with the interconnector. Therefore, the entire surface of the photoelectric conversion portion and the electrode is covered with an insulating layer or an interconnector, and an exposed portion is hardly generated, so that the reliability of the solar cell module can be improved.
  • the tab wire generally used as an interconnector has a width of about 0.8 to 2 mm, and the contact cross-sectional area between the solar cell electrode (bus bar electrode) and the tab wire is large. For this reason, it is difficult to form an opening in the insulating layer by locally applying pressure to the interconnection location.
  • an interconnector having a width of less than 400 ⁇ m an opening can be easily formed because a force is likely to be locally applied to a contact portion with the insulating layer on the finger electrode.
  • the openings formed in the insulating layers 8 and 18 are filled with the metal materials 31 and 32 to electrically connect the interconnectors 3 and 5 and the finger electrodes 9 and 17.
  • the method of filling the opening with a metal material include application of a conductive paste, connection with molten solder, fusion with a low melting point metal such as In, and metal deposition by plating.
  • Productivity can be achieved by forming an opening in the insulating layer by bringing the interconnector into contact with the interconnection, and then maintaining the contact state of the interconnector and filling the opening with a metal material by heat melting or plating of metal. From the viewpoint of
  • the opening can be filled with a metal material by heating and melting a coated metal layer provided on the surface of the interconnector.
  • the opening of the insulating layer is filled with a metal material constituting the covering metal layer of the interconnector, or an alloy material of the metal material constituting the covering metal layer and the metal material constituting the finger electrode.
  • the finger electrode and the interconnector can be fused by locally heating the interconnect portion to melt the solder and filling the opening with the molten solder. .
  • the plated metal is locally deposited near the opening of the insulating layer provided on the finger electrode by energizing the finger electrode and performing electrolytic plating. With this plated metal, the finger electrode under the opening and the interconnector provided thereon can be conducted and electrically connected. Note that a fine opening (crack) may be generated in the insulating layer on the finger electrode in accordance with the volume change of the metal material during firing of the conductive paste (see, for example, WO2013 / 077038). When performing the interconnection by electrolytic plating, the plated metal may be deposited on the finger electrodes other than the interconnection region through the fine openings of the insulating layers 8 and 18. The deposited metal does not greatly affect the conversion characteristics and reliability of the module.
  • a solar cell module is obtained by sealing a solar cell string to which a plurality of solar cells are connected via an interconnector with a sealing member.
  • a sealing member For example, in a state where the sealing members 2 and 6 and the protective materials 1 and 7 are disposed and laminated on the light receiving surface side and the back surface side of the solar cell string, respectively, between the adjacent solar cells and the module
  • the sealing member also flows at the end portion and modularization is performed.
  • the sealing members 2 and 6 include ethylene / vinyl acetate copolymer (EVA), ethylene / vinyl acetate / triallyl isocyanurate (EVAT), polyvinyl butyrate (PVB), silicone, urethane, acrylic, epoxy, and the like. It is preferable to use a light-sensitive resin.
  • EVA ethylene / vinyl acetate copolymer
  • EVAT ethylene / vinyl acetate / triallyl isocyanurate
  • PVB polyvinyl butyrate
  • silicone silicone
  • urethane acrylic, epoxy, and the like. It is preferable to use a light-sensitive resin.
  • the sealing member may be filled in a space surrounded by the two adjacent finger electrodes 9, the interconnector 3 connecting them, and the insulating layer 8 provided on the surface of the photoelectric conversion unit. preferable. As a result, there is no difference in refractive index from the surroundings, and light diffuses also in this region, so that the light confinement effect is enhanced. Moreover, since the sealing member 2 forms a close contact state between the insulating layer 8 and the interconnector 3, the interconnector 3 is more firmly connected to the solar cell 4 and the reliability of the module is improved.
  • the light-receiving surface protecting material 1 is light-transmitting, and as a material thereof, a fluororesin film such as a glass substrate (blue plate glass substrate or white plate glass substrate), polyvinyl fluoride film (for example, Tedlar film (registered trademark)), or the like. And organic films such as polyethylene terephthalate (PET) film. From the viewpoint of mechanical strength, light transmittance, moisture resistance reliability, cost and the like, a white plate glass substrate is particularly preferable.
  • the back surface side protective material 7 may be light transmissive, light absorptive, or light reflective.
  • the light-transmitting protective material those described above as the light-receiving surface protective material are preferably used.
  • the light-reflecting back surface protective material a material exhibiting a metallic color or white color is preferable, and a white resin film, a laminate in which a metal foil such as aluminum is sandwiched between resin films, and the like are preferably used.
  • the light-absorbing protective material for example, a material including a black resin layer is used.
  • a 6-inch n-type single crystal silicon substrate having an incident plane of (100) and a thickness of 200 ⁇ m was washed in acetone, and then immersed in a 2 wt% HF aqueous solution for 5 minutes to remove the silicon oxide layer on the surface. Then, rinsing with ultrapure water was performed twice.
  • This substrate was immersed in a 5/15 wt% KOH / isopropyl alcohol aqueous solution maintained at 75 ° C. for 15 minutes. Then, it was immersed in a 2% by weight HF aqueous solution for 5 minutes, rinsed with ultrapure water twice, and dried at room temperature.
  • AFM atomic force microscope
  • the surface of the single crystal silicon substrate after the texture formation was immersed in a 5% HCl aqueous solution at 70 ° C. for 5 minutes to neutralize the alkali component remaining on the surface. Thereafter, the surface was cleaned with 15 ppm ozone water for 10 minutes, and immersed in a 5% HF aqueous solution for 2 minutes to remove the ozone oxide film.
  • This substrate is introduced into a CVD apparatus, an i-type amorphous silicon layer is formed as a light-receiving surface intrinsic silicon layer on one surface of the substrate, and 4 p-type amorphous silicon is formed thereon as a light-receiving surface conductive silicon layer.
  • a layer was deposited to 5 nm.
  • the film forming conditions for the i-type amorphous silicon layer were a substrate temperature of 180 ° C., a pressure of 130 Pa, a SiH 4 / H 2 flow rate ratio of 2/10, and an input power density of 0.03 W / cm 2 .
  • the conditions for forming the p-type amorphous silicon layer are as follows: the substrate temperature is 190 ° C., the pressure is 130 Pa, the SiH 4 / H 2 / B 2 H 6 flow rate ratio is 1/10/3, and the input power density is 0.04 W / cm 2 .
  • the above-described B 2 H 6 gas using a gas obtained by diluting B 2 H 6 concentration 5000ppm by H 2.
  • an i-type amorphous silicon layer having a thickness of 5 nm was formed as a back surface intrinsic silicon layer on the other surface of the substrate, and an n-type amorphous silicon layer was formed as a back surface conductivity type silicon layer thereon by a thickness of 10 nm.
  • the film forming conditions for the n-type amorphous silicon layer were as follows: the substrate temperature was 180 ° C., the pressure was 60 Pa, the SiH 4 / PH 3 flow rate ratio was 1/2, and the input power density was 0.02 W / cm 2 .
  • As the PH 3 gas described above using a gas obtained by diluting PH 3 concentration to 5000ppm by H 2.
  • the substrate was transferred to a sputtering chamber, and an ITO layer was formed to 120 nm as a light-receiving surface transparent electrode layer on the p-type amorphous silicon layer.
  • an ITO layer having a thickness of 100 nm was formed on the n-type amorphous silicon layer as a back transparent electrode layer.
  • a sputtering target in which SnO 2 was added to In 2 O 3 by 10% was used.
  • a solar cell is produced by forming an electrode on the transparent electrode layer of the photoelectric conversion part (solar cell work product) obtained as described above, and a plurality of solar cells are provided via an interconnector. It was modularized by connecting.
  • Example 1 (Formation of grid electrode) On the transparent electrode layer on the light receiving surface, silver paste was screen-printed to form a light receiving surface grid electrode including a finger electrode and a compensation electrode (electrode crossing between the finger electrodes) orthogonal to the finger electrode.
  • the interval between adjacent finger electrodes was 2 mm, and the interval between compensation electrodes was 30 mm.
  • the width of the compensation electrode was substantially the same as the width of the finger electrode, and no wide bus bar electrode was provided.
  • the grid electrode which consists of a finger electrode and a compensation electrode was formed on the back surface transparent electrode layer similarly to the light-receiving surface side.
  • the number of compensation electrodes of the back surface grid electrode is the same as that of the light receiving surface grid electrode, and the number of finger electrodes is about twice that of the light receiving surface side.
  • the solar cell after forming the metal electrode was introduced into a CVD apparatus, and a silicon oxide layer having a thickness of 100 nm was formed as an insulating layer on each of the light receiving surface and the back surface by plasma CVD.
  • a metal wire having a diameter of about 180 ⁇ m obtained by coating the surface of a copper wire having a diameter of 170 ⁇ m with an indium layer having a thickness of 5 ⁇ m was used as an interconnector.
  • the interconnectors are arranged at an interval of 6 mm so as to be orthogonal to the finger electrodes of the solar cells, the light receiving surface finger electrodes and the back surface finger electrodes of two adjacent solar cells are connected by the interconnector, and nine solar cells are connected in series.
  • a connected solar cell string was formed.
  • the part where the interconnector is placed on the finger electrode is thermocompression bonded at 180 ° C. for 2 minutes, and the indium on the surface of the interconnector is fused with the Ag finger electrode, thereby Connected.
  • the transparent electrode layer and the grid electrode on both sides were covered with an insulating layer, and the insulating layer penetrated and an opening was formed at the fused portion between the interconnector and the finger electrode. This opening is caused by a crack generated in the insulating layer due to the deformation of the finger electrode due to the contact between the finger electrode and the interconnector.
  • Example 2 A solar cell module was produced in the same manner as in Example 1 except that the finger electrode and the interconnector (copper wire having a diameter of 170 ⁇ m whose surface was not coated) were connected by electrolytic plating in the interconnection. An opening was formed in the insulating layer by bringing the interconnector into contact with the finger electrode. By performing electrolytic copper plating in a state where both were brought into contact, plated copper was deposited between the interconnector and the finger electrode exposed under the opening. The contact point between the surface of the interconnector and the finger electrode was covered with 1 to 3 ⁇ m of plated copper, and a good connection was formed.
  • Example 3 A solar cell module was produced in the same manner as in Example 1 except that the light receiving surface grid electrode and the back surface grid electrode were formed by copper plating.
  • a 100 nm Ni layer and a 150 nm Cu seed layer were formed on the light-receiving surface transparent electrode layer and the back transparent electrode layer by sputtering.
  • a resist was applied on the front and back Cu seed layers, and exposure and development were performed to form resist openings corresponding to the grid electrode pattern. After forming a plated copper electrode on the Cu seed layer exposed under the resist opening by electrolytic copper plating, the resist was removed, and the Ni layer / Cu seed layer remaining between the plated copper electrodes was removed by etching. Thereafter, a 100 nm silicon oxide layer was formed by plasma CVD so as to cover the photoelectric conversion portion and the plated copper electrode.
  • Example 4 In the formation of the insulating layer, a solar cell module was produced in the same manner as in Example 1 except that a 100 nm silicon oxide layer was formed as an insulating layer only on the light-receiving surface and no insulating layer was formed on the back surface. .
  • Example 5 In the formation of the insulating layer, a solar cell module was produced in the same manner as in Example 1 except that a 100 nm silicon oxide layer was formed as an insulating layer only on the back surface and no insulating layer was formed on the light receiving surface. .
  • Example 6 In the same manner as in Example 3, after forming the light receiving surface grid electrode and the back surface grid electrode by copper plating, a 170 ⁇ m diameter copper wire covered with solder (film thickness 30 to 80 ⁇ m) is soldered to the finger electrode at the interconnection. Connected. In solder connection, in a state where the finger electrode and the interconnector are in contact with each other, the joint is locally heated to melt the solder, and the interconnector is fused to the finger electrode.
  • solder film thickness 30 to 80 ⁇ m
  • Example 7 Similarly to Example 3, after the light-receiving surface grid electrode and the back surface grid electrode were formed by copper plating, the finger electrode and the interconnector were connected by electrolytic plating as in Example 2.
  • Example 8 In the same manner as in Example 1, a grid electrode was formed using a silver paste and an insulating layer was formed. Then, the solar cell was stored for 10 days in an environment of 60% humidity and 27 ° C. temperature. Thereafter, in the same manner as in Example 1, interconnection and sealing were performed to obtain a solar cell module.
  • Example 1 A solar cell module was produced in the same manner as in Example 1 except that the insulating layer was not formed on either the light receiving surface or the back surface of the photoelectric conversion unit.
  • Example 2 As in Example 1, grid electrodes were formed on the light receiving surface and the back surface using silver paste. The spacing between the finger electrodes is the same as in Example 1, and in the direction orthogonal to the finger electrodes, four bus bar electrodes having a width of 1.5 mm are used as adjacent electrodes, instead of the compensation electrodes, as electrodes traversing between the finger electrodes. The distance (distance between center lines) was set to 39 mm. After forming the electrodes, interconnection was performed without forming an insulating layer. As an interconnector, a strip-shaped tab wire (copper foil surface coated with 5-7 ⁇ m solder) with a width of 1.5 mm and a thickness of 250 ⁇ m is used. Carried out.
  • Comparative Example 3 Similarly to Comparative Example 2, a grid electrode composed of finger electrodes and bus bar electrodes was formed on the light receiving surface and the back surface using silver paste. After that, a 100 nm silicon oxide layer is formed as an insulating layer only on the transparent electrode layer and the finger electrode while the bus bar electrode which is the interconnection region is covered with a mask, and the insulating layer is formed on the interconnection region. Did not form. After forming the insulating layer, as in Comparative Example 2, the tab wires were solder-connected on the bus bar to carry out interconnection.
  • the insulating layer was formed in a state where the finger electrode and the compensation electrode were covered with a mask, and a 100 nm silicon oxide layer was formed only on the transparent electrode layer.
  • a solar cell module was prepared in the same manner as in 1.
  • the insulating layer is formed in a state where the interconnection region on the finger electrode is covered with a mask, and other than the interconnection region (on the transparent electrode layer, the compensation electrode, and the metal wire of the finger electrode)
  • a solar cell module was produced in the same manner as in Example 1 except that a 100 nm silicon oxide layer was formed on the non-connected portion.
  • Example 9 A solar cell module was produced in the same manner as in Example 1 except that the insulating layer was not formed on either the light receiving surface or the back surface of the photoelectric conversion unit.
  • Example 10 Similarly to Example 1, after forming a grid electrode using a silver paste, a solar cell without an insulating layer was stored for 10 days in an environment of 60% humidity and 27 ° C. Thereafter, without forming an insulating layer, interconnection and sealing were performed in the same manner as in Example 1 to obtain a solar cell module.
  • Examples 1 to 7 using copper thin wires as interconnectors and Comparative Examples 1 and 5 to 8 were higher than Comparative Examples 2 to 4 using tab wires. This is due to an increase in current due to a reduction in shadowing loss due to the electrodes and an improvement in fill factor due to a decrease in interconnector resistance.
  • Examples 3, 6 and 7 in which grid electrodes were formed by copper plating showed particularly high output. This is because loss due to series resistance is reduced because the resistivity of the plated electrode is lower than that of the metal paste electrode containing a resin material.
  • Example 6 in which a solder-coated metal wire was connected as an interconnector on a copper plated electrode was compared with Comparative Examples 7 and 8, Example 6 was excellent in initial output and retention after a reliability test.
  • Comparative Examples 7 and 8 in which the insulating layer was not provided in the interconnection region, connection failure between copper and solder occurred.
  • the copper of the plating electrode was melted together with the solder and sucked toward the interconnector, forming a void. This is due to the fact that so-called solder erosion occurred because of the high alloying rate of copper and solder.
  • Example 6 since the surface of the plating electrode is covered with the insulating layer except for the fine opening in the interconnection region, the flow of copper to the solder side is suppressed. Therefore, it is considered that the location where the alloy between the fluidized solder and copper is formed is limited to the vicinity of the opening of the insulating layer, and that excessive alloying is suppressed, thereby enabling a good connection with solder.
  • Example 8 in which a storage period of 10 days was provided before interconnection after the solar cell was manufactured, high initial output and retention ratio were shown as in Example 1 in which no storage period was provided.
  • Comparative Example 10 in which the insulating layer was not provided, both the initial output and the retention rate were lower than those in Comparative Example 1 in which the storage period was not provided. From these results, covering the surface of the photoelectric conversion portion and the metal electrode with an insulating layer increases the reliability after modularization, and also reduces the quality in the period before the modularization after manufacturing the solar cell. It turns out that it can suppress.

Abstract

太陽電池モジュールは、結晶シリコン太陽電池(4)と、結晶シリコン太陽電池に電気的に接続されたインターコネクタ(3)とを有する。インターコネクタは、幅が50μm以上400μm未満であり、複数のフィンガー電極を横断して電気的に接続するように配置されている。結晶シリコン太陽電池は、光電変換部(50)上に平行に並んで設けられた複数のフィンガー電極(9)を有し、光電変換部の主面およびフィンガー電極を覆うように絶縁層(8)が設けられている。フィンガー電極とインターコネクタとが交差する部分では、フィンガー電極とインターコネクタとの間の絶縁層に設けられた開口部を介してフィンガー電極とインターコネクタとが電気的に接続されている。

Description

結晶シリコン太陽電池モジュールおよびその製造方法
 本発明は、結晶シリコン太陽電池モジュールおよびその製造方法に関する。
 一般に、太陽電池の受光面には、光電変換部から電流を回収するフィンガー電極と、フィンガー電極から電流を回収しタブ線等のインターコネクタへ流すバスバー電極とからなるグリッド状の金属電極が設けられている。複数の太陽電池が接続された太陽電池モジュールにおいて、インターコネクタは、隣接して配置された太陽電池の電極間の電気的接続(インターコネクション)および外部への電流取出しの役割を担っている。
 特許文献1では、光電変換部の表面にフィンガー電極とバスバー電極とからなるグリッド状の金属電極を形成し、少なくとも光電変換部上の金属電極が設けられていない領域に酸化シリコン絶縁膜を設けた太陽電池が開示されている。この太陽電池のバスバー電極上に、インターコネクタとしてのタブ線を半田付けすることにより、インターコネクションが行われる。特許文献1では、光電変換部の表面に絶縁層が設けられることにより、良好なアルカリバリア性を発揮し、高信頼性が得られる旨が記載されている。
 結晶シリコン太陽電池に関わる課題として、金属電極に使用される銀ペースト等の電極材料のコストが高いこと、および受光面の金属電極によるシャドーイングロスに起因する光利用効率の低下が挙げられる。インターコネクション部材であるタブ線は、通常、幅が0.8~2mm程度であり、タブ線に接続されるバスバー電極も同程度の幅を有している。タブ線およびバスバー電極の幅を小さくして、電極面積を小さくすれば、電極材料コストおよびシャドーイングロスの低減が可能である。しかし、電極幅を小さくすると、ライン抵抗や接触抵抗が大きくなり、変換特性が低下する。
 金属電極の面積を低減可能なインターコネクション方式として、スマートワイヤーテクノロジー(SWT)方式が提案されている。例えば、特許文献2には、フィンガー電極に直交するように、5~15mm間隔でワイヤー状のインターコネクタを接続した太陽電池モジュールが開示されている。
 SWT方式は、太陽電池の光電変換部上にバスバーを設けず、インターコネクタとしての金属ワイヤーを熱圧着等によりフィンガー電極に熱圧着することにより、インターコネクションを行うものである。SWTに用いられるワイヤーの幅(直径)は数百μmであり、タブ線等の従来のインターコネクタに比べて小さい。そのため、インターコネクタの配置間隔を短くして、セル上に設けられるインターコネクタの本数を多くした場合でも、タブ線によるインターコネクションに比べてシャドーイングロスを低減できる。また、インターコネクタの配置間隔を短くすることにより、フィンガー電極の実効長(最近接のインターコネクタまでの距離)も短くなるため、フィンガー電極の本数および電極幅を小さくした場合でもライン抵抗に起因する電流ロスが生じ難い。このように、SWT方式では、バスバー電極が不要である上に、フィンガー電極の面積も低減可能であり、電極材料コストおよびシャドーイングロスを低減できる。
特開2006-100522号公報 特開2014-146697号公報
 太陽電池のフィンガー電極をワイヤー状のインターコネクタにより接続するインターコネクション方式は、電極材料コストの低減、シャドーイングロスの低減による発電量の向上等が期待されるが、実用上の課題も残されている。その1つとして、モジュールの長期信頼性が挙げられる。
 上記に鑑み、本発明はインターコネクタによる光学的ロスが少なく、かつ信頼性に優れる太陽電池モジュールの提供を目的とする。
 本発明者らが検討の結果、光電変換部および金属電極の全面を覆うように絶縁層を設け、金属電極とインターコネクタとの間の絶縁層に局所的に開口を形成し、当該開口を介して金属電極とインターコネクタとを接続することにより、信頼性に優れる太陽電池モジュールが得られることを見出した。
 本発明の結晶シリコン太陽電池モジュールは、結晶シリコン太陽電池と、結晶シリコン太陽電池に電気的に接続されたインターコネクタとを有する。結晶シリコン太陽電池は、光電変換部の第一主面上に平行に並んで設けられた複数のフィンガー電極を備え、光電変換部の第一主面およびフィンガー電極を覆うように絶縁層が設けられている。光電変換部の第二主面および第二主面上に設けられたフィンガー電極上にも絶縁層が設けられていることが好ましい。
 インターコネクタは、幅が50μm以上400μm未満であり、複数のフィンガー電極を横断して電気的に接続するように配置される。フィンガー電極とインターコネクタとが交差する部分では、フィンガー電極とインターコネクタとの間に設けられた絶縁層に開口部が形成されており、この開口部を介して、フィンガー電極とインターコネクタとが電気的に接続される。フィンガー電極とインターコネクタとは、絶縁層の開口部に充填された金属材料を介して電気的に接続されていることが好ましい。
 例えば、インターコネクションの際に、絶縁層上にインターコネクタを接触させることにより、フィンガー電極とインターコネクタとが交差する部分に、選択的に開口部を形成できる。また、絶縁層上にインターコネクタを接触させた状態で、インターコネクタを加熱することにより、フィンガー電極とインターコネクタとが交差する部分に、選択的に開口部を形成してもよい。
 本発明の太陽電池モジュールの一実施形態において、インターコネクタは、芯材と低融点材料層とを有する。インターコネクタの絶縁層に接する部分、すなわち開口部を介してフィンガー電極と電気的に接続される部分に、低融点材料層が設けられていることが好ましい。低融点材料層が設けられたインターコネクタを加熱して、低融点材料層の構成成分である金属材料を溶融させることにより、低融点金属材料層を構成する金属材料、または低融点金属材料を構成する金属材料とフィンガー電極を構成する金属材料との合金が、絶縁層の開口部に充填される。電解鍍金により、絶縁層の開口部への金属材料の充填を行ってもよい。
 本発明によれば、発電特性および耐久性に優れる太陽電池モジュールが得られる。
太陽電池モジュールの一形態を表す模式的断面図である。 太陽電池の一形態を表す模式的断面図である。 絶縁層形成前の太陽電池一形態を表す模式的平面図である。 絶縁層形成前の太陽電池一形態を表す模式的平面図である。 絶縁層形成前の太陽電池一形態を表す模式的平面図である。 インターコネクタを接続後の太陽電池の模式的平面図である。 インターコネクタを接続後の太陽電池の模式的断面図である。 配線付き基材の一実施形態を示す模式的平面図である。 配線付き基材の一実施形態を示す模式的断面図である。 インターコネクタを配置する様子を表す概念図である。
 図1に示すように、本発明の結晶シリコン太陽電池モジュールは、結晶シリコン太陽電池4と、結晶シリコン太陽電池に電気的に接続されたインターコネクタ3,5とを有する。結晶シリコン太陽電池4は、光電変換部50の両面のそれぞれに、フィンガー電極9,17を有する。
 以下では、第一主面を受光面、第二主面を裏面として説明するが、第一主面が裏面、第二主面が受光面であってもよい。図1の太陽電池モジュールは、受光面側から受光面保護材1、封止部材2、第一インターコネクタ3、結晶シリコン太陽電池4、第二インターコネクタ5、封止部材6、およびバックシート7を有する。
[結晶シリコン太陽電池]
 結晶シリコン太陽電池4としては、結晶シリコン基板を用い、太陽電池間をインターコネクタにより接続するタイプのものが用いられる。図2は、インターコネクタを接続する前の太陽電池の一形態を表す模式的断面図である。
(光電変換部)
 太陽電池4の光電変換部50は結晶シリコン基板13を備える。結晶シリコン基板は、単結晶シリコン基板および多結晶シリコン基板のいずれでもよい。結晶シリコン基板の受光面側の表面には、高さ1~10μm程度の凹凸が形成されていることが好ましい。受光面に凹凸が形成されることにより、受光面積が増大するとともに反射率が低減するため、光閉じ込め効率が高められる。結晶シリコン基板の裏面側にも凹凸が設けられていてもよい。
 図2に示す太陽電池4はいわゆるヘテロ接合太陽電池であり、受光面側から、受光面絶縁層8(第一絶縁層)、受光面フィンガー電極9(第一フィンガー電極)、受光面透明電極層10(第一透明電極層)、受光面導電型シリコン層11(第一導電型シリコン層)、受光面真性シリコン層12(第一真性シリコン層)、結晶シリコン基板13、裏面真性シリコン層14(第二真性シリコン層)、裏面導電型シリコン層15(第二導電型シリコン層)、裏面透明電極層16(第二透明電極層)、裏面フィンガー電極17(第二フィンガー電極)、および裏面絶縁層18(第二絶縁層)を順に有する。
 ヘテロ接合太陽電池では、結晶シリコン基板13として、p型またはn型の単結晶シリコン基板が用いられる。キャリア寿命が長いことから、n型単結晶シリコン基板が好ましい。シリコン基板13の受光面に設けられる第一導電型シリコン層11と裏面に設けられる第二導電型シリコン層15とは、異なる導電型を有し、一方がp型、他方がn型である。
(金属電極)
 受光面および裏面に設けられる金属電極は、図3Aに示すように、平行に並ぶ複数のフィンガー電極9,17を含む。フィンガー電極9,17は、金属粒子を含む導電性ペーストの印刷や、鍍金法等により形成できる。導電性ペーストの金属粒子としては、Ag粒子や、Cuの表面をAgで被覆した粒子等が挙げられる。鍍金電極の金属としては、Cu,Ni,Ag,Sn等が挙げられる。
 フィンガー電極は、単層であっても複数層であってもよい。例えば、光電変換部の表面(透明電極層10,16上)に、シード層として、Ag,Cu,Ni,NiCu等からなる金属薄膜や膜厚の小さい導電性ペースト層等を形成し、その上に電解鍍金により、鍍金層を形成してもよい。シード電極層を、鍍金により形成してもよい。
 フィンガー電極の幅は15~80μmが好ましく、25~50μmがより好ましい。フィンガー電極の幅がこの範囲であれば、導電性の確保と、シャドーイングロスの低減とを両立できる。隣接するフィンガー電極同士の間隔dは、例えば0.3~2mm程度の範囲で、シャドーイングロスやライン抵抗等の影響を考慮して、発電量が最大となるように設定すればよい。なお、隣接する電極の間隔とは、電極の延在方向の中心線(電極の幅方向の中心)の距離である。
 受光面側のフィンガー電極9の間隔と裏面側のフィンガー電極17の間隔は、同一でもよく異なっていてもよい。裏面側から入射する光量は受光面側の10%以下であるため、裏面側のフィンガー電極は、電極面積増大によるシャドーイングロスの影響は受光面に比べて小さい。そのため、裏面フィンガー電極は、キャリア回収効率向上を優先して設計することが好ましく、受光面フィンガー電極よりも密に形成されることが好ましい。例えば、受光面フィンガー電極の間隔を、裏面フィンガー電極の間隔の1.5~5倍程度に設定してもよい。
 フィンガー電極の厚みは、10~40μmが好ましく、15~30μmが好ましい。フィンガー電極の厚みがこの範囲であれば、ライン抵抗を低減できるとともに、電極材料の使用効率および電極形状の簡便性を確保できる。また、フィンガー電極の幅に対して、厚みが20~50%程度であれば、シャドーイングロスとライン抵抗に起因する電気的ロスを小さくできる。
 図4は、インターコネクタを接続後の太陽電池(太陽電池ストリング)の平面図であり、フィンガー電極9上にインターコネクタ3が設けられている。インターコネクタの延在方向(x方向)とフィンガー電極の延在方向(y方向)とは直交している。このインターコネクション方式では、フィンガー電極とインターコネクタとを多くの点で接続するため、フィンガー電極と直交する幅広のバスバー電極を設ける必要がない。図4に示す形態では、フィンガー電極と略同じ幅を有する補償電極91が、フィンガー電極9と直交する方向に延在するように設けられている。
 フィンガー電極とワイヤー状のインターコネクタとの接続では、バスバーと帯状のタブ線とを接続する場合よりも接続部分における接触面積が小さいため、電極とインターコネクタとのミスコンタクトが生じる場合がある。フィンガー電極とインターコネクタとのミスコンタクトに起因する電気的ロスを低減するために、図3Bおよび図3Cに示すように、フィンガー電極同士を接続する補償電極91を設け、電極パターンをグリッド状とすることが好ましい。補償電極が設けられている場合、一部の接続箇所でミスコンタクトが生じた場合でも、近接する補償電極を介して電気的に接続されたフィンガー電極から、光生成キャリアをインターコネクタに回収できるため、電気的ロスを抑制できる。
 補償電極91は、フィンガー電極と直交する方向、すなわちインターコネクタと平行な方向に延在するように設けられていることが好ましい。インターコネクション後の太陽電池モジュールにおいて、補償電極はインターコネクタ3の直下に設けられていてもよく、インターコネクタと離間して設けられていてもよい。補償電極は、その役割上、インターコネクタ3に近い位置に存在することが好ましい。補償電極は、全てのインターコネクタ3の下に配置されている必要はなく、例えば、一部のインターコネクタの下に補償電極が設けられていてもよい。また補償電極の本数および配置間隔は、インターコネクタの本数および配置間隔と異なっていてもよい。補償電極の幅は、フィンガー電極の幅と同一でも異なっていてもよく、15~120μmが好ましく、50~100μmがより好ましい。
 インターコネクタの直下に補償電極が設けられる場合、電極とインターコネクタとが完全に重なると応力が集中する場合がある。図3Cに示すように、わずかに角度を持たせ、ジグザグ状に補償電極を形成することにより、応力を分散させることができる。
 補償電極は、フィンガー電極と同様、導電性ペーストの印刷や、鍍金法等により形成できる。印刷や鍍金により補償電極が形成される場合、フィンガー電極と補償電極とを同時に形成することが好ましい。例えば、フィンガー電極と補償電極のパターン形状に対応した開口パターンを有するスクリーン版を用いて印刷を行うことにより、フィンガー電極と補償電極とを同時に形成できる。鍍金法では、例えば、レジストに、フィンガー電極と補償電極のパターン形状に対応した開口を設けて鍍金を行うことにより、フィンガー電極と補償電極とを同時に形成できる。
(絶縁層)
 光電変換部上の少なくとも一方の面には、絶縁層8が設けられる。好ましくは光電変換部の第一主面および第二主面に、それぞれ、第一絶縁層8および第二絶縁層18が設けられる。インターコネクタとの接続前において、絶縁層8,18は、光電変換部50の表面(透明電極層10,16上)に加えて、フィンガー電極9,17も覆うように設けられている。光電変換部の表面に、フィンガー電極に直交する補償電極が設けられている場合、絶縁層は、補償電極も覆うように設けられる。すなわち、絶縁層8,18は、インターコネクタとの接続前の太陽電池の両主面の全面を覆うように設けられることが好ましい。なお、絶縁層の成膜時に不可避的に生じるピンホールや、熱膨張に伴う微細な亀裂、製膜時に基板を保持する治具との接触部等、局所的に絶縁層が形成されない領域が存在していてもよい。光電変換部表面の透明電極層に加えて、金属電極も絶縁層により覆われることにより、光電変換部へのアルカリや湿分等の侵入を抑制し、太陽電池の信頼性を向上できる。
 絶縁層8,18は、アルカリや湿分に対するバリア性を有しているものであればよく、その材料としては。例えば、シリコンオキサイド、シリコンナイトライド、シリコンオキシナイトライド、アルミニウムオキサイド、モリブデンオキサイド等のセラミック材料や、アクリル系樹脂、フッ素系樹脂等の樹脂材料、あるいはこれらの積層体等が挙げられる。中でも、コストや光透過率の観点から、シリコンオキサイド、シリコンナイトライド、シリコンオキシナイトライド、アルミニウムオキサイド、アクリル系樹脂、あるいはこれらの積層体を使用することが好ましい。光電変換部の両面に絶縁層が設けられる場合、表裏の絶縁層の材料は同一でも異なっていてよい。生産性の観点からは、表裏の絶縁層の材料が同一であることが好ましい。
 アルカリや湿分等に対するバリア性を持たせるために、絶縁層8,18の膜厚は、10nm以上が好ましい。後に詳述するように、フィンガー電極とインターコネクタとを接続する際には、フィンガー電極上の絶縁層に開口部が設けられ、その開口部を介して電気的な接続が行われる。開口部の形成を容易とするために、絶縁層8,18の膜厚は、1000nm以下が好ましい。バリア性と開口部形成の容易性とを両立させる観点から、絶縁層8,18の膜厚は、20nm~500nmがより好ましく、30~300nmがさらに好ましい。
 絶縁層8,18の形成方法は、光電変換部およびフィンガー電極上の全面を覆うことが可能であれば、特に限定されず、CVDやPVD等のドライプロセスおよび各種のウェットプロセスを、材料に応じて選択すればよい。上記の膜厚を有する均一な薄膜の形成が容易であることから、ドライプロセスにより絶縁層を形成することが好ましい。ヘテロ接合太陽電池のように、光電変換部にシリコン薄膜や透明電極層が含まれる場合は、これらの薄膜の劣化を抑制するために、200℃以下で製膜を実施することが好ましい。
[太陽電池モジュール]
 図5は、フィンガー電極9,17を、インターコネクタ3,5と接続後の太陽電池(太陽電池ストリング)の模式断面図である。フィンガー電極9,17上のインターコネクタ3,5と交差する部分では、絶縁層8,18に開口部が形成されている。絶縁層の開口部には、金属材料31,32が充填されており、フィンガー電極9,17とインターコネクタ3,5とは、絶縁層の開口部を介して電気的に接続されている。
(インターコネクタ)
 図4に示すように、インターコネクタは、フィンガー電極と直交し、複数のフィンガー電極を横断して電気的に接続するように配置される。インターコネクタとしては、細い金属線を用いることが好ましく、複数の金属線を結合させたものを用いてもよい。
 インターコネクタ3,5は、光電変換部50の主面の面内方向での幅W(太陽電池モジュールを受光面または裏面から正面視した場合の幅)が、50μm以上400μm未満である。幅が400μm未満であれば、シャドーイングロスを低減できるとともに、インターコネクションの際に絶縁層への開口の形成が容易となる。また、インターコネクタの幅が50μm以上であれば、断線やライン抵抗に起因する電気的ロスを抑制できる。インターコネクタの幅Wは、100~350μmが好ましく、120~300μmがより好ましい。太陽電池モジュールにおいて、隣接するインターコネクタの配置間隔は、3~25mm程度が好ましく、4~20mmがより好ましい。
 インターコネクタの断面形状は特に限定されず、例えば、三角形、四角形、五角形等の多角形、円形等である。インターコネクタの作製が容易であることから、断面円形状のインターコネクタが好ましく用いられる。また、断面円形状のインターコネクタは、断面形状に異方性(特定の向き)がないため、フィンガー電極との接続時にインターコネクタの向きの確認や調整を必要とせず、接続が容易であるとの利点を有する。一方、後述するように、断面形状に異方性を有するインターコネクタを用いることにより、太陽電池モジュールの光利用効率を向上できる。
 抵抗に起因する電流ロスを低減するために、インターコネクタの材料は低抵抗率であることが好ましい。中でも、低コストであることから、銅を主成分とする金属材料が特に好ましい。銅等の金属からなる芯材の表面を、低融点金属材料や、Ag,Au,Al等の高反射率金属材料で被覆したものを用いてもよい。
 インターコネクタの表面被覆層は、芯材の全体に設けられていてもよく、部分的に設けられていてもよい。例えば、フィンガー電極の配置間隔にあわせた周期で、位置選択的に低融点金属材料層を設けてもよい。また、インターコネクタの断面形状が非円形であり、後述のアスペクト配向制御を行う場合は、フィンガー電極と接する面に、選択的に低融点金属材料層を設けてもよい。このように、インターコネクタとフィンガー電極との接続箇所に、位置選択的に低融点金属材料層を設けることにより、材料コストの低減やミスインターコネクションの低減が可能となる。低融点金属材料としては、In,Ga,Sn,Ga,Bi等の金属およびこれらを含む合金(例えば半田合金)等が挙げられる。低融点金属材料は、融点が230℃以下であることが好ましく、200℃以下であることがより好ましく、180℃以下であることがさらに好ましい。
(フィンガー電極上へのインターコネクタの配置)
 上記の様に、フィンガー電極と直交するように、絶縁層上に複数のインターコネクタが所定の間隔で配置される。複数のインターコネクタを適切に配置するためには、位置や間隔の調整が必要となる。図6に示すような、絶縁樹脂フィルム等の支持基材20上に予めインターコネクタ3を配置して付設した配線付き基材29を用いれば、位置合わせ等の作業を簡略化して、モジュールの生産性を向上できる。
 図6Aは支持基材上に複数のインターコネクタ3が付設された配線付き基材の一実施形態を示す模式的平面図であり、図6Bはその断面図である。この配線付き基材29を、絶縁層が設けられた太陽電池上に配置することにより、1回の位置合わせで複数のインターコネクタの位置合わせが可能となる。
 図6Aに示す形態では、第一支持基材20の第一主面にインターコネクタ3が貼り合わせられており、第二支持基材25の第二主面にインターコネクタ3が貼り合わせられている。例えば、第一支持基材を1つの太陽電池の受光面側に配置し、第二支持基材を隣接する太陽電池の裏面側に配置し、それぞれの支持基材上のインターコネクタ付設面と光電変換部表面の絶縁層とを対向させることにより、2つの太陽電池の表裏のフィンガー電極上に、複数のインターコネクタを適切に配置できる。
 支持基材の厚みや材質等は特に限定されない。太陽電池の表面にインターコネクタを配置後、封止の前に支持基材を除去する場合は、支持基材は透明でも不透明でもよい。カメラ等の光学的検出手段により配置の確認や調整を行う場合は、透明な支持基材を用いることが好ましい。インターコネクタが支持基材に付設された状態のままでモジュールの封止が行われる場合は、透明な支持基材が用いられる。
 透明な支持基材の材料としては、PET、シリコーン、アクリル、エポキシ、フッ素系樹脂等の透明且つ耐熱性やUV耐性のある樹脂が好ましい。図6Bに示すように、支持基材の表面に接着層21が設けられていてもよい。接着層21は、表面にインターコネクタを接着固定できるものであれば、その材料や厚みは特に限定されない。接着層の厚みは、例えば2~10μm程度であり、接着層の材料は透明樹脂であることが好ましい。また、支持基材自体が接着性を有していてもよい。
 支持基材の表面に接着層21が設けられている場合は、インターコネクションの際の加熱により、支持用透明樹脂接着層が軟化し、インターコネクタとの接触点から横に押し出される。押し出された透明樹脂接着剤は、光電変換部の表面に設けられた絶縁層と接着するため、インターコネクタをより強固に固定できる。
 前述のように、インターコネクタは、断面形状が異方性を有していないことが好ましい。具体的には、インターコネクタの断面における、横方向(太陽電池の面方向)と縦方向(厚み方向)とのアスペクト比は、1.5未満であることが好ましい。インターコネクタの断面のアスペクト比が大きい場合、長辺方向が太陽電池の面方向と平行な状態が力学的に安定であるため、インターコネクタの幅Wが大きくなり、反射による光学的なロスが増大する傾向がある。
 一方、インターコネクタの断面アスペクト比の配向を制御する機構(以下、断面アスペクト配向制御という)を設ける場合は、インターコネクタの断面のアスペクト比が大きくてもよい。この場合、インターコネクタの断面が、基板の面内方向における長さよりも、基板の法線方向における長さの方が大きくなるように、換言すれば、基板13の主面の法線方向に高いアスペクト比を有するように、インターコネクタを配置することが好ましい。
 図7は、様々な断面形状を有するインターコネクタを、断面アスペクト配向制御により、太陽電池のフィンガー電極9上に配置する様子を表す概念図である。図7では、接着層21が設けられた支持基材20にインターコネクタを貼り合わせることにより、断面アスペクト配向制御を行う例が示されている。なお、図7では、絶縁層の図示が省略されている。
 断面円形状のインターコネクタ3は、アスペクト比が1であり、断面アスペクト配向制御の有無に関わらず、常に同一の向きでフィンガー電極上に配置される。断面正方形状のインターコネクタ301および断面正多角形状のインターコネクタ302もアスペクト比が1であり、断面アスペクト配向制御の有無に関わらず、同一の向きでフィンガー電極上に配置される。力学的な安定性から、インターコネクタ301,302は、いずれかの辺が基板面と平行になるように配置されることが多い。
 一方、断面長方形状のインターコネクタ311や、断面楕円形状のインターコネクタ312のように、アスペクト比の大きいインターコネクタは、断面アスペクト配向制御を行わない場合には、力学的な安定性から、長辺(長軸)が、基板面と平行になるように配置される傾向がある。この場合、基板面における幅が大きくなるため、インターコネクタでの光反射による光学的ロスが大きく、太陽電池モジュールの光利用効率が低下する。これに対して、図7に示すように、断面アスペクト配向制御を行い、長辺(長軸)が、基板面の法線方向と平行になるように配置すれば、基板面における幅が小さくなる。この場合、アスペクト比が小さく同一の幅を有するインターコネクタと比べて断面積が大きいため、インターコネクタのライン抵抗が小さくなり、モジュール特性が向上する傾向がある。すなわち、断面のアスペクト比が大きい(例えば1.5以上)のインターコネクタを用い、断面アスペクト配向制御を行うことにより、モジュール特性を向上できる。
 インターコネクタ313のように、傾斜面を有する場合、傾斜角θが大きくなるように断面アスペクト配向制御を行うことにより、インターコネクタで反射された光が、保護材1と空気との界面で反射される際に全反射となるため、入射光のモジュール外への放出を防止し、モジュール光利用効率を向上できる。例えば、保護材1がガラス(屈折率:1.5)である場合、θが41°以上であれば、インターコネクタ313で反射された光は、保護材1と空気との界面で全反射される。
 支持基材を用いる方法以外により、インターコネクタの断面アスペクト配向制御を行ってもよい。例えば、封止部材2,6にインターコネクタに埋め込み固定することにより、支持基材を用いずに、インターコネクタの配向制御を実施できる。また、インターコネクタのフィンガー電極と接触しない部分を支持用治具により把持する等の手法により、アスペクト配向制御を行った状態で、インターコネクションを実施することにより、インターコネクタの配向制御を行ってもよい。
(開口部の形成)
 フィンガー電極と直交するようにインターコネクタを配置し、インターコネクタ3,5とフィンガー電極9,17との間の絶縁層8,18に、局所的に開口部を形成することにより、両者の電気的接続が行われる。電気的接続は、封止部材の圧力等によりインターコネクタとフィンガー電極とを物理的に接触させる方法、インターコネクタとフィンガー電極との間の開口部に金属材料31,32を充填する方法等により行われる。
 絶縁層への開口部の形成は、フィンガー電極とインターコネクタとの接続箇所に局所的に開口部を形成可能な方法により行われる。例えば、フィンガー電極上にインターコネクタを配置した状態で圧力を加えることにより、フィンガー電極上の絶縁層に局所的に開口部が形成される。また、半田接続や熱圧着等の局所加熱により、フィンガー電極が熱膨張し、フィンガー電極上の絶縁層に亀裂状の開口部が形成される。
 絶縁層の製膜時にマスク等を用いて製膜領域を限定することにより絶縁層に開口部を設ける場合は、マスクの位置合わせが必要となる。また、位置合わせのマージンを設けるために、マスクによる被覆領域を大きくする必要があるため、インターコネクション領域よりも大きな領域に開口部が形成される。そのため、光電変換部や電極の露出部分が生じ、太陽電池モジュールの信頼性が低下する傾向がある。
 一方、本発明においては、光電変換部および電極上の全面を覆うように絶縁層8,18を形成した後、インターコネクタ3,5とフィンガー電極9,17とが接触し、接合される箇所(インターコネクション箇所)に局所的に開口部が形成される。この方法では、開口部が必要なインターコネクション箇所に自動的に開口部の形成を集中させることができるため、生産性の観点から好ましい。また、インターコネクション箇所に局所的に開口部が形成され、インターコネクタとの接続により開口部が塞がれる。そのため、光電変換部や電極の全面が絶縁層またはインターコネクタにより覆われた状態となり、露出部分が生じ難く、太陽電池モジュールの信頼性を向上できる。
 インターコネクタとして一般的に用いられているタブ線は、幅が0.8~2mm程度であり、太陽電池の電極(バスバー電極)とタブ線との接触断面積が大きい。そのため、インターコネクション箇所に局所的に圧力を付与して、絶縁層に開口部を形成することが困難である。これに対して、幅が400μm未満のインターコネクタを用いる場合は、フィンガー電極上の絶縁層との接触箇所に局所的に力が加わりやすいため、容易に開口部を形成できる。
(インターコネクタの接続)
 接続の信頼性を高めるために、絶縁層8,18に形成された開口部に金属材料31,32を充填して、インターコネクタ3,5とフィンガー電極9,17とを電気的に接続することが好ましい。開口部に金属材料を充填する方法としては、導電性ペーストの塗布、溶融半田による接続、In等の低融点金属による融着、鍍金による金属の析出等が挙げられる。インターコネクション箇所にインターコネクタを接触させて絶縁層に開口部を形成した後、インターコネクタの接触状態を維持して、金属の加熱溶融または鍍金により開口部を金属材料で充填することが、生産性の観点から好ましい。
 例えば、インターコネクタの表面に設けられた被覆金属層を加熱溶融させることにより、開口部を金属材料で充填できる。この場合、インターコネクタの被覆金属層を構成する金属材料、または被覆金属層を構成する金属材料とフィンガー電極を構成する金属材料との合金材料が、絶縁層の開口部に充填される。例えば、半田被覆されたインターコネクタを用いる場合、インターコネクト箇所を局所的に加熱することにより、半田が融解し、溶融半田が開口部に充填されることにより、フィンガー電極とインターコネクタとを融着できる。また、In等の金属材料で被覆されたインターコネクタを用いる場合、熱圧着により被覆金属材料を溶融させることにより、フィンガー電極とインターコネクタとを融着すればよい。これらの方法においては、加熱によるフィンガー電極の熱膨張に伴う絶縁層への亀裂状の開口部の形成と、その中への溶融金属材料の充填とが略同時に進行してもよい。インターコネクタの被覆金属層を溶融させる際に、フィンガー電極を構成する金属材料が溶融すると、インターコネクタの被覆金属材料とフィンガー電極を構成する金属材料との合金が形成される場合がある。特に、半田材料は銅との相溶性が高いため、銅電極上にインターコネクタを半田接続する場合には、絶縁層の開口部に合金が形成されやすい。
 インターコネクション箇所にインターコネクタを接触させた状態で、フィンガー電極に通電して電解鍍金を行うことにより、フィンガー電極上に設けられた絶縁層の開口部付近に局所的に鍍金金属が析出する。この鍍金金属により、開口部下のフィンガー電極とその上に設けられたインターコネクタとを導通させ電気的に接続できる。なお、導電性ペーストの焼成時等の金属材料の体積変化に伴って、フィンガー電極上の絶縁層に微細な開口(亀裂)が生じる場合がある(例えば、WO2013/077038号参照)。電解鍍金によりインターコネクションを実施する場合は、絶縁層8,18の微細な開口を介して、インターコネクション領域以外のフィンガー電極上に鍍金金属が析出する場合があるが、この程度の微細な亀裂および析出金属は、モジュールの変換特性や信頼性に大きな影響を与えることはない。
(封止)
 インターコネクタを介して複数の太陽電池が接続された太陽電池ストリングを、封止部材で封止することにより、太陽電池モジュールが得られる。例えば、太陽電池ストリングの受光面側および裏面側のそれぞれに封止部材2,6および保護材1,7を配置して積層した状態で、加熱圧着することにより、隣接する太陽電池間やモジュールの端部にも封止部材が流動してモジュール化が行われる。
 封止部材2,6としては、エチレン/酢酸ビニル共重合体(EVA)、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、シリコン、ウレタン、アクリル、エポキシ等の透光性の樹脂を用いることが好ましい。
 封止部材は、隣接する2本のフィンガー電極9と、それらを接続するインターコネクタ3と、光電変換部の表面に設けられた絶縁層8とで囲まれた空間にも充填されていることが好ましい。これにより周囲との屈折率差がなく、光がこの領域にも拡散するため、光閉じ込め効果が高められる。また、封止部材2により、絶縁層8とインターコネクタ3との密着状態が形成されるため、インターコネクタ3がより強固に太陽電池4に接続され、モジュールの信頼性が向上する。
 受光面保護材1は光透過性であり、その材料としては、ガラス基板(青板ガラス基板や、白板ガラス基板)、ポリフッ化ビニルフィルム(例えば、テドラーフィルム(登録商標))等のフッ素樹脂フィルムやポリエチレンテレフタレート(PET)フィルム等の有機フィルムが例示される。機械強度、光線透過率、耐湿信頼性およびコスト等の点から、白板ガラス基板が特に好ましい。
 裏面側保護材7は、光透過性、光吸収性および光反射性のいずれでもよい。光透過性の保護材としては、受光面保護材の材料として上述したものが好ましく用いられる。光反射性の裏面保護材としては、金属色または白色等を呈するものが好ましく、白色樹脂フィルムや、樹脂フィルム間にアルミニウム等の金属箔を挟持した積層体等が好ましく用いられる。光吸収性の保護材としては、例えば、黒色樹脂層を含むものが用いられる。
 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[ヘテロ接合太陽電池の光電変換部の作製]
 入射面の面方位が(100)で、厚みが200μmの6インチn型単結晶シリコン基板をアセトン中で洗浄した後、2重量%のHF水溶液に5分間浸漬して表面の酸化シリコン層を除去し、超純水によるリンスを2回行った。この基板を、75℃に保持した5/15重量%のKOH/イソプロピルアルコール水溶液に15分間浸漬した。その後、2重量%のHF水溶液に5分間浸漬し、超純水によるリンスを2回行い、常温で乾燥させた。原子間力顕微鏡(AFM)により単結晶シリコン基板の表面観察を行ったところ、両面に四角錐状のテクスチャ構造が形成されており、その算術平均粗さは2100nmであった。
 テクスチャ形成後の単結晶シリコン基板の表面を70℃の5%HCl水溶液に5分間浸漬し、表面に残存するアルカリ成分を中和した。その後、15ppmのオゾン水を用いて10分間表面洗浄を行い、5%HF水溶液に2分間浸漬してオゾン酸化膜を除去した。
 この基板をCVD装置へ導入し、基板の一方の面に受光面真性シリコン層としてi型非晶質シリコン層を4nm製膜し、その上に受光面導電型シリコン層としてp型非晶質シリコン層を5nm製膜した。i型非晶質シリコン層の製膜条件は、基板温度が180℃、圧力が130Pa、SiH/H流量比が2/10、投入パワー密度が0.03W/cmであった。p型非晶質シリコン層の製膜条件は、基板温度が190℃、圧力が130Pa、SiH/H/B流量比が1/10/3、投入パワー密度が0.04W/cmであった。なお、上記のBガスとしては、HによりB濃度を5000ppmに希釈したガスを用いた。
 次に、基板の他方の面に、裏面真性シリコン層としてi型非晶質シリコン層を5nm製膜し、その上に、裏面導電型シリコン層としてn型非晶質シリコン層を10nm製膜した。n型非晶質シリコン層の製膜条件は、基板温度が180℃、圧力が60Pa、SiH/PH流量比が1/2、投入パワー密度が0.02W/cmであった。なお、上記のPHガスとしては、HによりPH濃度を5000ppmまで希釈したガスを用いた。
 基板をスパッタ室へ移送し、p型非晶質シリコン層上に受光面透明電極層としてITO層を120nm製膜した。次にn型非晶質シリコン層上へ裏面透明電極層としてITO層を100nm製膜した。ITO層の成膜には、InにSnOを10%添加したスパッタリングターゲットを用いた。
 以下の実施例および比較例では、上記により得られた光電変換部(太陽電池仕掛品)の透明電極層上に電極を形成することにより太陽電池を作製し、インターコネクタを介して複数の太陽電池を接続することにより、モジュール化を行った。
[実施例1]
(グリッド電極の形成)
 受光面の透明電極層上に、銀ペーストをスクリーン印刷して、フィンガー電極とフィンガー電極に直交する補償電極(フィンガー電極間を横断する電極)とからなる受光面グリッド電極を形成した。隣接するフィンガー電極の間隔は2mm、補償電極の間隔は30mmとした。補償電極の幅は、フィンガー電極の幅と略同じであり、幅広のバスバー電極は設けなかった。
 裏面透明電極層上に、受光面側と同様に、フィンガー電極と補償電極とからなるグリッド電極形成した。裏面グリッド電極の補償電極の本数は受光面グリット電極と同一であり、フィンガー電極の本数は受光面側の約2倍とした。
(絶縁層の形成)
 金属電極を形成後の太陽電池をCVD装置へ導入し、プラズマCVD法により、受光面および裏面のそれぞれに、絶縁層として100nmのシリコンオキサイド層を製膜した。
(インターコネクション)
 直径170μmの銅線の表面を膜厚5μmのインジウム層でコートした直径約180μmの金属線をインターコネクタとして用いた。インターコネクタを、太陽電池のフィンガー電極と直交するように6mm間隔で配置し、隣接する2つの太陽電池の受光面フィンガー電極と裏面フィンガー電極とをインターコネクタにより接続し、9枚の太陽電池が直列接続された太陽電池ストリングを形成した。
 フィンガー電極上にインターコネクタが重なって配置されている箇所を、180℃で2分間熱圧着して、インターコネクタの表面のインジウムをAgフィンガー電極と融着することにより、フィンガー電極とインターコネクタとの接続を行った。両面の透明電極層およびグリッド電極は、絶縁層により覆われており、インターコネクタとフィンガー電極との融着箇所では、絶縁層が貫通して、開口部が形成されていた。この開口部は、フィンガー電極とインターコネクタとの接触によりフィンガー電極が変形し、それに伴い絶縁層に生じた亀裂によるものである。
(封止)
 6本の太陽電池ストリングス(計54枚の太陽電池)を直列接続してストリング集合体を作製した。受光面保護材として厚さ4mmの白板ガラス、受光面封止部材および裏面封止部材としてそれぞれ厚さ400μmのEVAシート、バックシートとしてPETフィルムを準備し、2枚のEVAシートの間にストリング集合体を狭持して、150℃で20分間ラミネートを実施し、太陽電池モジュールを得た。
[実施例2]
 インターコネクションにおいて、電解鍍金によりフィンガー電極とインターコネクタ(表面が被覆されていない直径170μmの銅線)との接続を行ったこと以外は、実施例1と同様にして太陽電池モジュールを作製した。
 インターコネクタをフィンガー電極に接触させることにより、絶縁層に開口部が形成された。両者を接触させた状態で電解銅鍍金を行うことにより、インターコネクタと開口部下に露出したフィンガー電極との間に鍍金銅が析出した。インターコネクタの表面とフィンガー電極との接触点は、1~3μmの鍍金銅により覆われており、良好な接続が形成されていた。
[実施例3]
 受光面グリッド電極および裏面グリッド電極を銅鍍金により形成したこと以外は、実施例1と同様にして太陽電池モジュールを作製した。
 受光面透明電極層上および裏面透明電極層上のそれぞれに、スパッタ法により、100nmのNi層および150nmのCuシード層を形成した。表裏のCuシード層上に、レジストを塗布し、露光および現像を行いグリッド電極パターンに対応するレジスト開口を形成した。レジスト開口下に露出したCuシード層上に電解銅鍍金により鍍金銅電極を形成後、レジストを除去し、鍍金銅電極間に残存しているNi層/Cuシード層をエッチングにより除去した。その後、光電変換部上および鍍金銅電極上を覆うように、100nmのシリコンオキサイド層をプラズマCVD法により製膜した。
[実施例4]
 絶縁層の形成において、受光面のみに絶縁層として100nmのシリコンオキサイド層を製膜し、裏面には絶縁層を形成しなかったこと以外は、実施例1と同様にして太陽電池モジュールを作製した。
[実施例5]
 絶縁層の形成において、裏面のみに絶縁層として100nmのシリコンオキサイド層を製膜し、受光面には絶縁層を形成しなかったこと以外は、実施例1と同様にして太陽電池モジュールを作製した。
[実施例6]
 実施例3と同様に、銅鍍金により受光面グリッド電極および裏面グリッド電極を形成した後、インターコネクションにおいて、半田(膜厚30~80μm)で被覆された直径170μmの銅線を、フィンガー電極に半田接続した。半田接続においては、フィンガー電極とインターコネクタとを接触させた状態で、接合点を局所的に加熱することにより半田を融解させ、インターコネクタをフィンガー電極に融着した。
[実施例7]
 実施例3と同様に、銅鍍金により受光面グリッド電極および裏面グリッド電極を形成した後、実施例2と同様に、電解鍍金によりフィンガー電極とインターコネクタとの接続を実施した。
[実施例8]
 実施例1と同様に、銀ペーストを用いてグリッド電極を形成し、絶縁層を形成した後、太陽電池を、湿度60%気温27℃の環境下で10日間保管した。その後、実施例1と同様に、インターコネクションおよび封止を行い、太陽電池モジュールを得た。
[比較例1]
 光電変換部の受光面および裏面のいずれにも絶縁層の形成を行わなかった点を除いて、実施例1と同様に太陽電池モジュールを作製した。
[比較例2]
 実施例1と同様に、銀ペーストを用いて受光面および裏面にグリッド電極を形成した。フィンガー電極の間隔は実施例1と同じであり、フィンガー電極と直交する方向には、フィンガー電極間を横断する電極として、補償電極に代えて幅1.5mmのバスバー電極4本を、隣接する電極の間隔(中心線間距離)が39mmとなるように設けた。電極形成後、絶縁層を形成せずに、インターコネクションを実施した。
 インターコネクタとして、幅1.5mm、厚み250μmの帯状のタブ線(銅箔の表面を5~7μmの半田で被覆したもの)を用い、バスバー上に重なるようにタブ線を配置して、半田接続を実施した。
[比較例3]
 比較例2と同様に、銀ペーストを用いて受光面および裏面にフィンガー電極およびバスバー電極からなるグリッド電極を形成した。その後、インターコネクション領域であるバスバー電極上をマスクで被覆した状態で、透明電極層上およびフィンガー電極上にのみ、絶縁層として100nmのシリコンオキサイド層を製膜し、インターコネクション領域には絶縁層を形成しなかった。絶縁層を形成後、比較例2と同様に、バスバー上にタブ線を半田接続してインターコネクションを実施した。
[比較例4]
  絶縁層の形成において、マスクを用いずに、透明電極層上およびグリッド電極上の全面に絶縁層を製膜した点を除いて、比較例3と同様に、バスバー上にタブ線を半田接続してインターコネクションを実施した。
[比較例5]
 絶縁層の形成において、フィンガー電極上および補償電極上をマスクで被覆した状態で絶縁層の製膜を行い、透明電極層上にのみ100nmのシリコンオキサイド層を製膜した点を除いて、実施例1と同様に太陽電池モジュールを作製した。
[比較例6]
 絶縁層の形成において、フィンガー電極上のインターコネクション領域をマスクで被覆した状態で絶縁層の製膜を行い、インターコネクション領域以外(透明電極層上、補償電極上、およびフィンガー電極の金属線との非接続部分)に100nmのシリコンオキサイド層を製膜した点を除いて、実施例1と同様に太陽電池モジュールを作製した。
[比較例7]
 光電変換部の受光面および裏面のいずれにも絶縁層を形成せずに、実施例6と同様に銅鍍金グリッド電極上へのインターコネクションの接続を試みた。しかしながら、銅鍍金グリッド電極上へのインターコネクタ(半田被覆銅線)の半田接合を適切に行うことができず、インターコネクタの密着性が乏しいために、適切なインターコネクションができなかった。
[比較例8]
 絶縁層の形成において、フィンガー電極上のインターコネクション領域をマスクで被覆した状態で製膜を行い、インターコネクション領域以外に100nmのシリコンオキサイド層を製膜した。それ以外は、実施例6と同様に銅鍍金グリッド電極上へのインターコネクションの接続を試みたが。適切なインターコネクションができなかった。
[比較例9]
 光電変換部の受光面および裏面のいずれにも絶縁層の形成を行わなかった点を除いて、実施例1と同様に太陽電池モジュールを作製した。
[比較例10]
 実施例1と同様に、銀ペーストを用いてグリッド電極を形成した後、絶縁層が設けられていない太陽電池を湿度60%気温27℃の環境下で10日間保管した。その後、絶縁層を形成せずに、実施例1と同様に、インターコネクションおよび封止を行い、太陽電池モジュールを得た。
[評価]
 実施例および比較例(比較例7,8を除く)の太陽電池モジュールの出力特性を測定した後、温度85℃湿度85%の恒温槽中に2000時間保管した。恒温槽から取り出した耐熱耐湿信頼性試験後の太陽電池モジュールの出力特性を測定し、信頼性試験前後の出力の比を保持率とした。実施例および比較例の太陽電池モジュールにおけるグリッド電極の構成(材料およびフィンガー電極と直交する横断電極の種類)、絶縁層の形態(形成面、ならびに形成面におけるグリッド電極上およびインターコネクション(IC)領域上の絶縁層の有無)、インターコネクタの材料およびインターコネクション方法、ならびに出力特性を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 モジュールの初期出力では、インターコネクタとして銅細線を用いた実施例1~7、および比較例1,5~8が、タブ線を用いた比較例2~4に比べて高くなっていた。これは、電極によるシャドーイングロスの低減による電流の増加およびインターコネクタの抵抗低減による曲線因子の改善に起因するものである。中でも、銅鍍金によりグリッド電極を形成した実施例3,6,7が特に高い出力を示した。これは樹脂材料を含む金属ペースト電極に比べて、鍍金電極の抵抗率が低いために、直列抵抗によるロスが低減したためである。
 インターコネクタとして、In合金で表面をコートした銅線を用いた実施例1,4,5と比較例1,5,6とを比較すると、初期出力には殆ど差がみられなかったが、信頼性試験後の保持率は、両面の全面に絶縁層を形成した実施例1が特に高く、受光面および裏面のいずれか一方に絶縁層を形成した実施例4,5が次に高い値を示した。受光面および裏面のいずれにも絶縁層を設けなかった比較例1では、保持率が大幅に低下していた。比較例5,6では、両面に絶縁層が設けられているにも関わらず、片面にのみ絶縁層が設けられた実施例4,5よりも低い保持率を示した。これらの結果から、インターコネクション領域において、光電変換部表面の透明電極とグリッド電極との境界部分が絶縁層により覆われている構造が、モジュール信頼性の向上に有用であることが分かる。
 また、銅鍍金電極上にインターコネクタとして半田コート金属線を接続した実施例6と比較例7,8とを比較すると、実施例6は初期出力および信頼性試験後の保持率も優れていたのに対して、インターコネクション領域に絶縁層が設けられていない比較例7,8では、銅と半田との接続不良が生じた。比較例7,8のインターコネクション領域の断面を観察したところ、鍍金電極の銅が半田と共に溶融し、インターコネクタの方へ吸い取られ、ボイドが形成されていた。これは、銅と半田との合金化速度が大きいために、いわゆる半田食われが生じたことに起因する。
 一方、実施例6では、インターコネクション領域の微細な開口部以外は、鍍金電極の表面が絶縁層で覆われているため、半田側への銅の流動が抑制される。そのため、流動半田と銅との合金形成個所が絶縁層の開口部付近に限定され、過度の合金化が抑制されることにより、半田による良好な接続が可能になったと考えられる。
 太陽電池を作製後、インターコネクションの前に10日間の保管期間を設けた実施例8では、保管期間を設けなかった実施例1と同様に高い初期出力および保持率を示した。一方、絶縁層を設けなかった比較例10では、保管期間を設けなかった比較例1に比べて、初期出力および保持率ともに低下していた。これらの結果から、絶縁層により光電変換部および金属電極の表面を覆うことにより、モジュール化後の信頼性が高められることに加えて、太陽電池を作製後モジュール化前の期間における品質の低下を抑制できることが分かる。
  1,9   保護材
  2,6   封止部材
  3,5   インターコネクタ
  4     結晶シリコン太陽電池
  50    光電変換部
  13    結晶シリコン基板
  11,15 導電型シリコン層
  12,14 真性シリコン層
  10,16 裏面透明電極層
  8,18  絶縁層
  9,17  フィンガー電極
  91    補償電極

Claims (14)

  1.  結晶シリコン太陽電池と、前記結晶シリコン太陽電池に電気的に接続されたインターコネクタと、を有する太陽電池モジュールであって、
     前記結晶シリコン太陽電池は、光電変換部の第一主面上に平行に並んで設けられた複数の第一フィンガー電極を有し、
     前記光電変換部の第一主面および前記第一フィンガー電極を覆うように第一絶縁層が設けられており、
     前記インターコネクタは、前記光電変換部の第一主面の面内方向における幅が50μm以上400μm未満であり、前記複数の第一フィンガー電極を横断して電気的に接続するように配置されており、
     前記第一フィンガー電極と前記インターコネクタとが交差する部分において、
      前記第一フィンガー電極と前記インターコネクタとの間に設けられた前記第一絶縁層に開口部が形成されており、
      前記第一フィンガー電極と前記インターコネクタとが、前記第一絶縁層の開口部を介して電気的に接続されている、
     結晶シリコン太陽電池モジュール。
  2.  前記開口部に金属材料が充填されることにより、前記第一フィンガー電極と前記インターコネクタとが電気的に接続されている、請求項1に記載の結晶シリコン太陽電池モジュール。
  3.  前記インターコネクタは、前記第一絶縁層に接する部分に低融点金属材料層を有し、
     前記低融点金属材料層を構成する金属材料、または前記低融点金属材料を構成する金属材料と前記第一フィンガー電極を構成する金属材料との合金が、前記開口部に充填されている、請求項2に記載の結晶シリコン太陽電池モジュール。
  4.  前記開口部に、鍍金金属が充填されている、請求項2に記載の結晶シリコン太陽電池モジュール。
  5.  前記第一フィンガー電極は、前記絶縁層の直下に鍍金銅を有する、請求項1~4のいずれか1項に記載の結晶シリコン太陽電池モジュール。
  6.  前記インターコネクタの断面は、光電変換部の第一主面の面内方向における長さよりも、第一主面の法線方向における長さの方が大きい、請求項1~5のいずれか1項に記載の結晶シリコン太陽電池モジュール。
  7.  前記光電変換部は、単結晶シリコン基板の第一主面上に、第一真性シリコン層、第一導電型シリコン層および第一透明電極層を順に備え、
     前記第一透明電極層上に、前記第一フィンガー電極および前記第一絶縁層が設けられている、請求項1~6のいずれか1項に記載の結晶シリコン太陽電池モジュール。
  8.  前記結晶シリコン太陽電池は、光電変換部の第二主面上に平行に並んで設けられた複数の第二フィンガー電極を有し、
     前記光電変換部の第二主面および前記第二フィンガー電極を覆うように第二絶縁層が設けられており、
     前記複数の第二フィンガー電極を横断して電気的に接続するようにインターコネクタが配置されており、
     前記第二フィンガー電極と前記インターコネクタとが交差する部分において、
      前記第二フィンガー電極と前記インターコネクタとの間に設けられた前記第二絶縁層に開口部が形成されており、
      前記第二フィンガー電極と前記インターコネクタとが、前記第二絶縁層の開口部を介して電気的に接続されている、
     請求項1~7のいずれか1項に記載の結晶シリコン太陽電池モジュール。
  9.  請求項1~8のいずれか1項に記載の結晶シリコン太陽電池モジュールを製造する方法であって、
     前記第一フィンガー電極上に設けられた第一絶縁層に、前記インターコネクタを接触させることにより、
     前記第一フィンガー電極と前記インターコネクタとが交差する部分に、選択的に前記開口部が形成される、結晶シリコン太陽電池モジュールの製造方法。
  10.  請求項1~8のいずれか1項に記載の結晶シリコン太陽電池モジュールを製造する方法であって、
     前記第一フィンガー電極上に設けられた第一絶縁層に、前記インターコネクタを接触させた状態で前記インターコネクタを加熱することにより、
     前記第一フィンガー電極と前記インターコネクタとが交差する部分に、選択的に前記開口部が形成される、結晶シリコン太陽電池モジュールの製造方法。
  11.  前記インターコネクタは、前記第一フィンガー電極と交差する部分に低融点金属材料層を有し、
     前記低融点金属材料層を加熱することにより溶融させ、前記絶縁層の開口部に金属材料を充填させ、前記インターコネクタと前記第一フィンガー電極とを電気的に接続する、請求項9または10に記載の結晶シリコン太陽電池モジュールの製造方法。
  12.  前記第一フィンガー電極上に設けられた第一絶縁層に、前記インターコネクタを接触させた状態で、前記第一フィンガー電極に通電して電解鍍金を行うことにより、前記開口部に鍍金金属を析出させ、前記インターコネクタと前記第一フィンガー電極とを電気的に接続する、請求項9または10に記載の結晶シリコン太陽電池モジュールの製造方法。
  13.  支持基材上に複数のインターコネクタが付設された配線付き基材を準備し、
     前記配線付き基材のインターコネクタ付設面と、前記太陽電池の前記第一絶縁層とを接触させることにより、前記第一絶縁層上にインターコネクタが配置される、請求項9~12のいずれか1項に記載の結晶シリコン太陽電池モジュールの製造方法。
  14.  前記インターコネクタを、光電変換部の第一主面の面内方向における長さよりも、第一主面の法線方向における長さの方が大きくなるように、前記第一絶縁層上に配置した状態で、前記第一フィンガー電極と前記インターコネクタとの接続が行われる、請求項9~13のいずれか1項に記載の結晶シリコン太陽電池モジュールの製造方法。
PCT/JP2016/067841 2015-06-17 2016-06-15 結晶シリコン太陽電池モジュールおよびその製造方法 WO2016204192A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/579,387 US20180083152A1 (en) 2015-06-17 2016-06-15 Crystalline silicon solar cell module and manufacturing method for same
CN201680028660.8A CN107771360B (zh) 2015-06-17 2016-06-15 晶体硅太阳能电池模块及其制造方法
JP2017525267A JP6697456B2 (ja) 2015-06-17 2016-06-15 結晶シリコン太陽電池モジュールおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015122458 2015-06-17
JP2015-122458 2015-06-17

Publications (1)

Publication Number Publication Date
WO2016204192A1 true WO2016204192A1 (ja) 2016-12-22

Family

ID=57545278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067841 WO2016204192A1 (ja) 2015-06-17 2016-06-15 結晶シリコン太陽電池モジュールおよびその製造方法

Country Status (4)

Country Link
US (1) US20180083152A1 (ja)
JP (1) JP6697456B2 (ja)
CN (1) CN107771360B (ja)
WO (1) WO2016204192A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968129A (zh) * 2017-12-21 2018-04-27 君泰创新(北京)科技有限公司 光伏电池加工工艺以及光伏电池串焊固化装置
JP2021055540A (ja) * 2021-01-07 2021-04-08 株式会社Lixil 透明基材およびブラインド
JP6941252B1 (ja) * 2021-03-05 2021-09-29 ジョジアン ジンコ ソーラー カンパニー リミテッド セルストリング構造及び光起電力モジュール並びにそれらの製造方法
JP2021528835A (ja) * 2019-05-28 2021-10-21 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽電池アレイ及び太陽光発電モジュール
EP4358154A1 (en) * 2022-10-19 2024-04-24 Trina Solar Co., Ltd Solar cell, solar cell module and solar cell manufacturing equipment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201809794SA (en) 2016-12-20 2018-12-28 Zhejiang Kaiying New Materials Co Ltd Interdigitated back contact metal-insulator-semiconductor solar cell with printed oxide tunnel junctions
US11018272B2 (en) * 2017-03-23 2021-05-25 Imec Vzw Methods for forming metal electrodes concurrently on silicon regions of opposite polarity
CN110311002B (zh) * 2018-03-22 2022-12-23 上饶市晶科绿能科技发展有限公司 太阳能电池板的互连构件和包括该构件的太阳能电池板
DE102018120248A1 (de) * 2018-08-20 2020-02-20 EnBW Energie Baden-Württemberg AG Verfahren zur Verschaltung von Solarzellen, dazugehöriger Solarzellenstring sowie dazugehöriges Solarmodul
US10749045B1 (en) * 2019-05-23 2020-08-18 Zhejiang Kaiying New Materials Co., Ltd. Solar cell side surface interconnects
CN113035974A (zh) * 2021-02-26 2021-06-25 上海日御新材料科技有限公司 一种正面电极及其制备方法
IT202100009254A1 (it) * 2021-04-13 2022-10-13 Fly Solartech Solutions S R L Macchina e procedimento per la produzione di un elettrodo
FR3124043B1 (fr) * 2021-06-14 2023-06-23 Commissariat Energie Atomique Chaîne photovoltaïque
CN117916896A (zh) * 2021-07-09 2024-04-19 隆基绿能科技股份有限公司 太阳能电池结构
CN113690324B (zh) * 2021-08-17 2024-04-30 江苏辉伦太阳能科技有限公司 一种新型hit电池片及其制作方法与组件制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014810A1 (ja) * 2011-07-26 2013-01-31 三洋電機株式会社 太陽電池モジュール及びその製造方法
JP2013152979A (ja) * 2012-01-24 2013-08-08 Mitsubishi Electric Corp 太陽電池モジュール及びその製造方法
JP2014232775A (ja) * 2013-05-28 2014-12-11 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025135B2 (ja) * 2006-01-24 2012-09-12 三洋電機株式会社 光起電力モジュール
JP5121181B2 (ja) * 2006-07-28 2013-01-16 三洋電機株式会社 光起電力素子及びその製造方法
JP4294048B2 (ja) * 2006-11-29 2009-07-08 三洋電機株式会社 太陽電池モジュール
KR101155891B1 (ko) * 2010-05-24 2012-06-20 엘지전자 주식회사 페이스트 및 이를 이용한 태양 전지
DE102010042642B4 (de) * 2010-10-19 2013-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur galvanischen Beschichtung von Substraten und Solarzellen
US9714262B2 (en) * 2012-07-19 2017-07-25 Hitachi Chemical Company, Ltd. Composition for forming passivation layer, semiconductor substrate having passivation layer, method of producing semiconductor substrate having passivation layer, photovoltaic cell element, method of producing photovoltaic cell element and photovoltaic cell
CN102779904B (zh) * 2012-08-17 2016-01-20 常州天合光能有限公司 防止晶硅太阳能模块的有害极化和黑线现象发生的方法
JP5695283B1 (ja) * 2013-05-17 2015-04-01 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014810A1 (ja) * 2011-07-26 2013-01-31 三洋電機株式会社 太陽電池モジュール及びその製造方法
JP2013152979A (ja) * 2012-01-24 2013-08-08 Mitsubishi Electric Corp 太陽電池モジュール及びその製造方法
JP2014232775A (ja) * 2013-05-28 2014-12-11 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968129A (zh) * 2017-12-21 2018-04-27 君泰创新(北京)科技有限公司 光伏电池加工工艺以及光伏电池串焊固化装置
EP3503209A1 (en) * 2017-12-21 2019-06-26 Beijing Juntai Innovation Technology Co., Ltd Processing method for photovoltaic cell and string welding and curing device for photovoltaic cell
JP2019114767A (ja) * 2017-12-21 2019-07-11 ベイジン ジュンタイイノベーション テクノロジー カンパニー,リミティッド 光電池加工工芸及び光電池シリーズ溶接硬化装置
JP2021528835A (ja) * 2019-05-28 2021-10-21 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽電池アレイ及び太陽光発電モジュール
JP7209720B2 (ja) 2019-05-28 2023-01-20 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽電池アレイ及び太陽光発電モジュール
JP2021055540A (ja) * 2021-01-07 2021-04-08 株式会社Lixil 透明基材およびブラインド
JP6941252B1 (ja) * 2021-03-05 2021-09-29 ジョジアン ジンコ ソーラー カンパニー リミテッド セルストリング構造及び光起電力モジュール並びにそれらの製造方法
US11362226B1 (en) 2021-03-05 2022-06-14 Zhejiang Jinko Solar Co., Ltd. Solar cell string, photovoltaic module and manufacturing methods therefor
JP2022135851A (ja) * 2021-03-05 2022-09-15 ジョジアン ジンコ ソーラー カンパニー リミテッド セルストリング構造及び光起電力モジュール並びにそれらの製造方法
EP4358154A1 (en) * 2022-10-19 2024-04-24 Trina Solar Co., Ltd Solar cell, solar cell module and solar cell manufacturing equipment

Also Published As

Publication number Publication date
JP6697456B2 (ja) 2020-05-20
CN107771360A (zh) 2018-03-06
JPWO2016204192A1 (ja) 2018-04-05
CN107771360B (zh) 2019-10-22
US20180083152A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6697456B2 (ja) 結晶シリコン太陽電池モジュールおよびその製造方法
JP6550042B2 (ja) 太陽電池モジュールおよびその製造方法
US20130213451A1 (en) Photovoltaic module
US20200091362A1 (en) Solar cell module and method for producing same
JP6568518B2 (ja) 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法
CN107112378B (zh) 太阳能电池及其制造方法、以及太阳能电池模块
JP6564874B2 (ja) 結晶シリコン系太陽電池の製造方法および結晶シリコン系太陽電池モジュールの製造方法
WO2012006130A2 (en) High performance multi-layer back contact stack for silicon solar cells
JP2005159173A (ja) 太陽電池素子接続用配線材および太陽電池モジュール
KR20130011328A (ko) 리본 및 이를 구비한 태양전지 모듈
JP6362932B2 (ja) 太陽電池モジュール及びその製造方法
JP2006278695A (ja) 太陽電池モジュール
JP6684278B2 (ja) 太陽電池モジュール
WO2016153007A1 (ja) 太陽電池モジュールおよびその製造方法
JP2013175502A (ja) 太陽電池モジュール
JP2010171127A (ja) 薄膜太陽電池およびその製造方法
JP4969337B2 (ja) 光電変換装置
US20120024340A1 (en) Solar Cells With Localized Silicon/Metal Contact For Hot Spot Mitigation and Methods of Manufacture
JP2006073706A (ja) 太陽電池モジュール
JP4463135B2 (ja) 太陽電池モジュール製造方法
JP6681607B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP2008135573A (ja) 太陽電池素子、太陽電池モジュール及びその製造方法
TW202341506A (zh) 電極組件
JP2006278697A (ja) 太陽電池モジュール
JP2016103525A (ja) 太陽電池ユニット及び太陽電池ユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525267

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15579387

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811666

Country of ref document: EP

Kind code of ref document: A1