WO2016203758A1 - ヘッドホンケーブル - Google Patents

ヘッドホンケーブル Download PDF

Info

Publication number
WO2016203758A1
WO2016203758A1 PCT/JP2016/002844 JP2016002844W WO2016203758A1 WO 2016203758 A1 WO2016203758 A1 WO 2016203758A1 JP 2016002844 W JP2016002844 W JP 2016002844W WO 2016203758 A1 WO2016203758 A1 WO 2016203758A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
copper
twisted
silver alloy
cable
Prior art date
Application number
PCT/JP2016/002844
Other languages
English (en)
French (fr)
Inventor
坂上 佳宏
剛 大達
Original Assignee
昭和電線ケーブルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線ケーブルシステム株式会社 filed Critical 昭和電線ケーブルシステム株式会社
Publication of WO2016203758A1 publication Critical patent/WO2016203758A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors

Definitions

  • the present invention relates to a headphone cable (including, for example, an inner ear cable (so-called earphone cable) and an overhead cable) used by being connected to a portable electronic device such as a mobile phone or a music player.
  • a headphone cable including, for example, an inner ear cable (so-called earphone cable) and an overhead cable
  • a portable electronic device such as a mobile phone or a music player.
  • Such a headphone cable is generally an insulated wire in which a plurality of conductors are twisted using a tensile strength fiber as a core, and polyethylene or the like is coated on the outer periphery thereof, or an insulated wire obtained by twisting a plurality of enamel wires. Two to four cores are twisted, and the outer periphery is covered with a resin such as polyvinyl chloride resin. And, as the conductor or the conductor of the enameled wire, an annealed copper wire using high-purity copper is frequently used because of its high conductivity.
  • an annealed copper wire is a conductive material that is used for a cable that is frequently subjected to external forces such as bending, twisting, and tension, such as a headphone cable. It was not always suitable. Moreover, recently, the use of the above-mentioned electronic devices has spread from indoors to the outdoors, and for example, it is increasingly used in trains and during exercise, and conductors are required to have higher bending resistance and tensile strength. It has been.
  • the above conductors basically fall within the category of an annealed copper wire, and some improvements in bending resistance and tensile strength were recognized but not sufficient. In particular, both bending resistance and tensile strength are insufficient for use in electronic devices used in trains and during exercise.
  • the present invention has been made to solve such problems of the prior art, and has excellent bending resistance and tensile strength that can sufficiently withstand use in a vehicle or motion while having high conductivity.
  • An object of the present invention is to provide a headphone cable including a conductor having the following.
  • the present inventors have used a copper alloy containing silver in a specific ratio, thereby providing a conductor having both high conductivity, excellent bending resistance and tensile strength.
  • the present inventors have found that a headphone cable provided with can be obtained, and have completed the present invention.
  • the headphone cable according to the first aspect of the present invention includes an insulating wire comprising 0.5 to 10% by mass of Ag, the balance of which is an insulating film on the surface of a copper-silver alloy wire composed of Cu and inevitable impurities.
  • a plurality of twisted wires are twisted to form a twisted wire whose twist pitch is 5 to 20 times the outer diameter of the twisted wire, and a plurality of these twisted wires are assembled to form a cable core, and a protective coating is provided on the outer periphery of the cable core. It will be.
  • the copper-silver alloy wire contains 1 to 10% by mass of Ag and the balance is made of Cu and inevitable impurities.
  • the copper-silver alloy wire is cold worked after heat treatment.
  • the copper-silver alloy wire has an outer diameter of 0.03 mm to 0.10 mm. .
  • the copper silver alloy wire has a tensile strength (based on JIS C 3002 (1992)) of 700 MPa or more. It is what is.
  • the stranded wire is obtained by twisting only the copper silver alloy wire.
  • a headphone cable provided with a conductor having excellent bending resistance and tensile strength, which has high conductivity and can sufficiently withstand use during exercise.
  • FIG. 1 is a cross-sectional view showing an embodiment of the headphone cable of the present invention.
  • the headphone cable 10 includes a cable core 21 composed of a plurality of (two in the example of the drawing) stranded wires 12 and a protective covering having a circular cross section provided on the outer periphery of the cable core 21. (Sheath) 23.
  • the stranded wire 12 includes a plurality of, for example, 14 stranded wires 12a each containing an insulating film on the surface of a copper-silver alloy wire containing 0.5 to 10% by mass of Ag and the balance being Cu and inevitable impurities. It is configured together.
  • the method for twisting the insulated wires 12a is not particularly limited, and may be concentric twisting or collective twisting.
  • the copper-silver alloy wire constituting the insulating wire 12a contains 0.5 to 10% by mass of Ag, and the balance is made of Cu and inevitable impurities.
  • the Ag content is less than 0.5% by mass, sufficient Cu and Ag eutectic phase and precipitated phase cannot be obtained even if heat treatment is performed, and sufficient strength cannot be obtained even if high processing is performed after heat treatment. The effect of improving the bending resistance and the tensile strength is hardly recognized.
  • it exceeds 10% by mass the workability deteriorates, and many annealing treatments are required when cold working is performed at a high workability and the core wire is processed to an ultrafine wire.
  • the Ag content is preferably in the range of 1 to 10% by mass, and more preferably in the range of 3 to 10% by mass.
  • the copper-silver alloy wire is produced by, for example, casting by continuous casting and repeating heat treatment and cold working. By repeating the heat treatment and the cold working, the bending resistance and the tensile strength are improved.
  • the cold working after the final heat treatment is preferably performed at a surface reduction rate of 94% or more. When high cold working with a reduction in area of 94% or more is performed, the eutectic structure of the copper-silver alloy is stretched into fine filaments to form a dense fiber-reinforced structure, and high tensile strength can be obtained.
  • the outer diameter of the copper-silver alloy wire is not particularly limited, but is usually 0.03 mm to 0.10 mm.
  • the outer diameter of the copper-silver alloy wire is preferably 0.05 mm to 0.07 mm.
  • the insulating film provided on the surface of the copper silver alloy wire is formed by applying and baking an insulating varnish on the copper silver alloy wire.
  • an insulating varnish for example, polyurethane-based or polyester-based varnish is used.
  • the insulated wire 12a can be further improved in bending resistance by twisting it, but the copper-silver alloy wire has high tensile strength and little elongation. For this reason, if twisted as they are, a twisting stress is applied to each insulated wire 12a, and so-called twist fracture may occur. Further, when the stranded wire 12 is cut for the terminal treatment, each insulated wire 12a tries to release the twisting stress, and therefore, a break occurs at the cut portion of the stranded wire 12. As a result, it becomes impossible to identify the insulated wire 12a constituting each stranded wire 12, which causes trouble in terminal processing.
  • the twist pitch of the insulated wire 12a in the stranded wire 12 is set to the outer diameter of the stranded wire. 5 times to 20 times, preferably 6 times to 19 times, more preferably 8 times to 12 times. If the twist pitch is less than 5 times the outer diameter of the twisted wire, the risk of twisting breakage increases, and there is also a risk of breakage during twisting. On the other hand, when it exceeds 20 times the outer diameter of the stranded wire, there is a possibility that the variation at the time of terminal processing cannot be prevented.
  • twisting the insulated wire 12a By twisting the insulated wire 12a, twisting stress can be offset and twisting breakage of the insulated wire 12a during twisting can be suppressed.
  • the twisting can be performed by using a twisting machine having a conventionally known twisting mechanism, for example, a twisting machine having a structure in which a guide pulley turns around the central axis of the twisting machine. That is, in this twisting machine, each strand is bundled and twisted by turning the guide pulley while pulling the strand sent out from the delivery bobbin. At this time, the delivery bobbin rotates in synchronization with the guide pulley. By twisting, the strand is twisted and sent to the twisting machine. Thereby, each strand is sent into a twisting machine in the state where twisting was performed beforehand.
  • the cable core 21 is composed of the stranded wire 12.
  • the number of stranded wires 12 is usually 2 to 4.
  • a cable including a cable core 21 having two twisted wires 12 is used as a cable on the headphone body side that is attached to both ears.
  • the cable provided with the cable core whose number of strands is 3 or 4 is connected to those two cables, and is integrated into one cable as a terminal side cable connected to the terminal of an audio equipment. used.
  • the plurality of stranded wires may be simply assembled, but are preferably twisted together from the viewpoint of improving the bending resistance.
  • the protective coating (sheath) 23 provided on the outer periphery of the cable core 21 is formed, for example, by extrusion-coating nylon resin, vinyl chloride resin, or the like on the outer periphery of the cable core 21.
  • the extrusion coating may be a solid extrusion coating or a so-called pipe extrusion coating, and is not particularly limited.
  • the coating is preferably coated so that the outer diameter is 2.2 mm or less, preferably 2.0 mm or less.
  • a copper silver alloy wire containing a specific amount of Ag is used as the conductor instead of the conventional annealed copper wire.
  • Such a copper-silver alloy wire has high conductivity, high tensile strength, and excellent bending resistance. Therefore, it is possible to provide a conductor having excellent bending resistance and tensile strength that can sufficiently withstand use in a vehicle or under exercise while having high conductivity. In addition, it is possible to eliminate the use of tensile strength fibers that are essential when using an annealed copper wire.
  • the use of the tensile fiber can be omitted, but the tensile fiber may be used as necessary.
  • the stranded wire 12 may be formed by twisting the insulating wire 12 a around the tensile strength fiber and the outer periphery thereof.
  • the tensile strength fiber may be twisted together with the insulating wire 12a. That is, in the conventional headphone cable, the tensile strength fiber is arranged at the center of the conductor to prevent the tensile tension from being directly applied to the conductor or the protective coating.
  • the conductor has a high tensile strength. Since the copper silver alloy wire is used, the position of the tensile strength fiber is not particularly limited.
  • the tensile strength fiber for example, an aramid fiber or the like is used, but a known material may be used for the headphone cable.
  • the present invention is not limited to the above-described embodiment as it is, and in the implementation stage, the constituent elements are modified and embodied without departing from the spirit of the present invention. can do.
  • Example 1 A copper silver alloy material (containing 3 mass% Ag) with a diameter of 9 mm is cast by continuous casting, repeated heat treatment and cold working, and after the final heat treatment, cold working with a reduction in area of 99.89% is performed to obtain a copper silver alloy wire.
  • a polyurethane resin varnish was applied to the outer periphery of the copper-silver alloy wire and then baked to provide an insulating film having a thickness of 7 ⁇ m to obtain an insulating wire having a diameter of 0.07 mm.
  • the 14 insulated wires are collectively twisted to form a stranded wire having an outer diameter of about 0.30 mm and a twist pitch of 3.0 mm.
  • the two twisted wires are twisted together (twist pitch 24 mm), and a vinyl chloride resin is provided on the outer periphery thereof.
  • a vinyl chloride resin is provided on the outer periphery thereof.
  • Example 2 Twenty-eight insulated wires produced in the same manner as in Example 1 are twisted together to form a twisted wire having an outer diameter of 0.43 mm and a twisted pitch of 4.5 mm, and these three twisted wires are twisted together (twisted pitch of 40 mm).
  • a vinyl chloride resin was thoroughly extrusion coated on the outer periphery to produce a headphone cable having an outer diameter of 3.2 mm.
  • Example 3 A copper silver alloy material with a diameter of 9 mm is cast by continuous casting (containing 10% by mass of Ag), heat treatment and cold work are repeated, and after the final heat treatment, cold work with a reduction in area of 99.92% is performed to obtain a copper silver alloy wire.
  • a polyurethane resin varnish was applied to the outer periphery of the copper-silver alloy wire and then baked to provide an insulating film having a thickness of 7 ⁇ m to obtain an insulating wire having a diameter of 0.06 mm.
  • the 31 insulated wires are collectively twisted to form a twisted wire having an outer diameter of 0.39 mm and a twist pitch of 4.0 mm. Further, the two twisted wires are twisted together (twist pitch of 32 mm), and a vinyl chloride resin is placed on the outer periphery thereof.
  • the headphone cable having an outer diameter of 1.4 mm was manufactured by full extrusion coating.
  • Example 4 A copper silver alloy material with a diameter of 9 mm is cast by continuous casting (containing 1% by mass of Ag), heat treatment and cold work are repeated, and after the final heat treatment, cold work with a reduction in area of 99.89% is performed to obtain a copper silver alloy wire.
  • a polyurethane resin varnish was applied to the outer periphery of the copper-silver alloy wire and then baked to provide an insulating film having a thickness of 7 ⁇ m to obtain an insulating wire having a diameter of 0.07 mm.
  • the 14 insulated wires are collectively twisted to form a stranded wire having an outer diameter of 0.30 mm and a twist pitch of 3.0 mm. Further, the two twisted wires are twisted together (twist pitch 24 mm), and a vinyl chloride resin is placed on the outer periphery thereof.
  • the headphone cable having an outer diameter of 1.4 mm was manufactured by full extrusion coating.
  • Example 5 A copper silver alloy material with a diameter of 9 mm is cast by continuous casting (containing 5% by mass of Ag), heat treatment and cold work are repeated, and after the final heat treatment, cold work with a reduction in area of 99.89% is performed to obtain a copper silver alloy wire.
  • a polyurethane resin varnish was applied to the outer periphery of the copper-silver alloy wire and then baked to provide an insulating film having a thickness of 7 ⁇ m to obtain an insulating wire having a diameter of 0.07 mm.
  • the 14 insulated wires are collectively twisted to form a stranded wire having an outer diameter of 0.3 mm and a twist pitch of 3.0 mm.
  • a headphone cable having an outer diameter of 1.4 mm was manufactured by thoroughly extrusion-coating the resin.
  • Example 1 Fourteen insulated wires produced in the same manner as in Example 1 are twisted together to form a twisted wire having an outer diameter of 0.30 mm and a twisted pitch of 6.3 mm, and these two twisted wires are twisted together (twisted pitch of 24 mm).
  • a vinyl chloride resin was thoroughly extrusion coated on the outer periphery to produce a headphone cable having an outer diameter of 1.4 mm.
  • Example 2 Twenty-eight insulated wires produced in the same manner as in Example 1 were twisted together to form a twisted wire having an outer diameter of 0.43 mm and a twisted pitch of 9.2 mm, and these two twisted wires were twisted together (twisted pitch 40 mm), A vinyl chloride resin was thoroughly extrusion coated on the outer periphery to produce a headphone cable having an outer diameter of 1.4 mm.
  • a copper silver alloy wire (Ag content of 0.5 to 10% by mass) was used as the conductor, and the twist pitch of the twisted wire was in the range of 5 to 20 times the outer diameter of the twisted wire.
  • Example 1 to 5 good results were obtained in all of the properties of bending resistance, tensile strength, and insulation wire breakage.
  • Comparative Examples 1 and 2 in which the twist pitch of the twisted wire exceeds 20 times the outer diameter of the twisted wire, evaluation of the bending resistance and tensile strength was performed. Although the result was good, the insulation wire was broken.
  • the comparative example 3 which used the conventional annealed copper wire for the conductor, since the tensile strength of the annealed copper wire was small, reinforcement by the tensile strength fiber was essential for practical use.
  • the cable of the present invention has high conductivity and excellent bending resistance and tensile strength, and is suitable as a headphone cable used in a vehicle or under movement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

高い導電性と優れた耐屈曲性、引張強度を併せ持つ導体を備えたヘッドホンケー ブルを提供する。0.5~10質量%のAgを含有し、残部がCuおよび不可避的不純物からなる銅銀合金線の表面に絶縁皮膜を備える絶縁線を複数本撚り合わせて、撚りピッチが撚線外径の5~20倍の撚線とし、さらにこの撚線を複数本集合してケーブルコアを形成するとともに、前記ケーブルコア外周に保護被覆を設けてなるヘッドホンケーブル。

Description

ヘッドホンケーブル
 本発明は、携帯電話や音楽プレーヤー等の携帯型電子機器に接続して使用されるヘッドホンケーブル(例えば、インナーイヤー型ケーブル(いわゆる、イヤホンケーブル)およびオーバーヘッド型ケーブルを含む)に関する。
 音楽プレーヤー等の携帯型の電子機器からの音声を聴くために、ヘッドホンケーブルと称するケーブルが使用されている。このようなヘッドホンケーブルは、一般に、抗張力繊維を芯材として複数本の導体を撚り合わせ、その外周に絶縁体としてポリエチレン等を被覆した絶縁線心、あるいは複数本のエナメル線を撚り合わせた絶縁線心を、2~4本撚り合わせ、その外周にポリ塩化ビニル樹脂等の樹脂を被覆して構成される。そして、導体、あるいはエナメル線の導体には、その導電性の高さから、純度の高い銅を用いた軟銅線が多用されている。
 しかしながら、軟銅線は、導電性が高い半面、耐屈曲性、引張強度に乏しく、ヘッドホンケーブルのように、頻繁に曲げ、捩れ、引張り等の外力が負荷されるケーブルに用いるには、導体材料として必ずしも適したものではなかった。しかも、最近は、上記電子機器の使用が室内から戸外へ広がり、例えば、電車の中や運動中に使用されることも増えてきており、導体には、さらに高い耐屈曲性、引張強度が求められてきている。
 このため、高導電性を維持しながら、耐屈曲性、引張強度に優れる導体材料の開発が進められており、例えば、Ti、Mg、Zr、Nb、Ca、V、Ni、Mn、Cr等の元素を含む銅合金からなるイヤホンケーブル用導体が提案されている(例えば、特許文献1参照。)。
 しかしながら、上記導体は基本的に軟銅線の範疇に入るものであり、耐屈曲性、引張強度について、多少の改善は認められるものの十分ではなかった。特に、電車の中や運動中等に用いる電子機器の用途に用いるには、耐屈曲性および引張強度がともに不十分であった。
特開2013-040386号公報
 本発明はこのような従来技術の課題を解決するためになされたもので、高い導電性を有しながら、車中や運動下での使用にも十分耐え得る、優れた耐屈曲性、引張強度を有する導体を備えたヘッドホンケーブルを提供することを目的とする。
 本発明者らは、上記の目的を達成するため鋭意研究を重ねた結果、銀を特定の比率で含有する銅合金を用いることにより、高い導電性と優れた耐屈曲性、引張強度を併せ持つ導体を備えたヘッドホンケーブルが得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の態様のヘッドホンケーブルは、0.5~10質量%のAgを含有し、残部がCuおよび不可避的不純物からなる銅銀合金線の表面に絶縁皮膜を備える絶縁線を複数本撚り合わせて、撚りピッチが撚線外径の5~20倍の撚線とし、さらにこの撚線を複数本集合してケーブルコアを形成するとともに、前記ケーブルコア外周に保護被覆を設けてなるものである。
 本発明の第2の態様は、第1の態様のヘッドホンケーブルにおいて、前記銅銀合金線は、1~10質量%のAgを含有し、残部がCuおよび不可避的不純物からなるものである。
 本発明の第3の態様は、第1の態様または第2の態様のヘッドホンケーブルにおいて、前記銅銀合金線が、熱処理後に冷間加工をしてなるものである。
 本発明の第4の態様は、第1の態様乃至第3の態様のいずれかの態様のヘッドホンケーブルにおいて、前記銅銀合金線が、0.03mm~0.10mmの外径を有するものである。
 本発明の第5の態様は、第1の態様乃至第4の態様のいずれかの態様のヘッドホンケーブルにおいて、前記銅銀合金線の引張強さ(JIS C 3002(1992)に準拠)が700MPa以上であるものである。
 本発明の第6の態様は、第1の態様乃至第5の態様のいずれかの態様のヘッドホンケーブルにおいて、前記撚線が、前記銅銀合金線のみを撚り合わせたものである。
 本発明によれば、高い導電性を有しながら、運動下等の使用にも十分耐え得る、優れた耐屈曲性、引張強度を有する導体を備えたヘッドホンケーブルが提供される。
本発明のヘッドホンケーブルの一実施形態を示す横断面図である。 本発明のヘッドホンケーブルの特性(耐屈曲性)評価の方法を説明する図である。
 以下、本発明の実施形態について説明する。なお、説明は図面に基づいて行うが、図面は単に図解のために提供されるものであって、本発明は図面により何ら限定されるものではない。
 図1は、本発明のヘッドホンケーブルの一実施形態を示す横断面図である。
 図1に示すように、ヘッドホンケーブル10は、複数本(図面の例では、2本)の撚線12からなるケーブルコア21と、このケーブルコア21の外周に設けられた断面円形状の保護被覆(シース)23とを備えている。
 撚線12は、0.5~10質量%のAgを含有し、残部がCuおよび不可避的不純物からなる銅銀合金線の表面に絶縁皮膜を備える絶縁線12aを複数本、例えば14本、撚り合わせて構成される。絶縁線12aの撚り合わせ方法は、特に限定されず、同心撚りであっても、集合撚りであってもよい。
 絶縁線12aを構成する銅銀合金線は、上記のように、0.5~10質量%のAgを含有し、残部がCuおよび不可避的不純物からなるものである。Agの含有量が0.5質量%未満では、熱処理を施しても十分なCuとAgの共晶相と析出相が得られず、熱処理後に高い加工を行っても十分な強度が得られず、耐屈曲性、引張強度を改善する効果が殆ど認められない。一方、10質量%を超えると、加工性が低下し、高い加工度で冷間加工を行い極細線にまで心線加工を行う際に何回もの焼鈍処理を必要とする。また、高価なAgを多量に含有させることはコストアップにつながり、さらに、導電性も低下する。高導電率を維持しながら、耐屈曲性、引張強度を改善する観点からは、Agの含有量は1~10質量%の範囲が好ましく、3~10質量%の範囲がより好ましい。
 銅銀合金線は、例えば、連続鋳造で鋳造し、熱処理と冷間加工の繰り返しによって製造される。熱処理と冷間加工を繰り返すことによって、耐屈曲性および引張強度が向上する。最終熱処理後の冷間加工は減面率94%以上で行うことが好ましい。減面率94%以上という高い冷間加工を行うと、銅銀合金の共晶組織が微細なフィラメント状に引き伸ばされて緻密な繊維強化組織が形成され、高い引張強度を得ることができる。なお、銅銀合金線の外径は、特に限定されないが、通常、0.03mm~0.10mmである。銅銀合金線の外径が細すぎると、製造時に断線のおそれがあり、また端末処理作業が困難になる。一方、銅銀合金線の外径が太すぎるとケーブル外径が大きくなる。銅銀合金線の外径は、0.05mm~0.07mmが好ましい。
 また、このような銅銀合金線表面に設けられる絶縁皮膜は、銅銀合金線上に絶縁ワニスを塗布し焼付けることにより形成される。絶縁ワニスとしては、例えばポリウレタン系、ポリエステル系等のワニスが使用される。
 絶縁線12aは、これを撚り合わせることで、耐屈曲性をさらに向上させることができるが、銅銀合金線は抗張力が高く伸びが少ない。このため、そのまま撚り合わせると、各絶縁線12aに捩りの応力が加わり、いわゆる捻回破断が生ずるおそれがある。また、端末処理のために撚線12を切断すると、各絶縁線12aは捩りの応力を解放しようとするため、撚線12の切断部分でバラケが生じる。その結果、各撚線12を構成する絶縁線12aの識別ができなくなり、端末処理に支障をきたすようになる。
 したがって、本発明においては、このような撚り合わせ時の絶縁線12aの捻回破断や端末処理時のバラケの問題を解消するため、撚線12における絶縁線12aの撚りピッチを、撚線外径の5倍~20倍、好ましくは6倍~19倍、より好ましくは8倍~12倍とする。撚りピッチが、撚線外径の5倍未満では、捻回破断のおそれが高くなり、また撚り合わせ時に破断するおそれもある。一方、撚線外径の20倍を超えると、端末処理時のバラケを防止できないおそれがある。
 本発明においては、また、撚り合わせの際に絶縁線12aに撚り返しを施すことが好ましい。絶縁線12aに撚り返しを施すことにより、捩りの応力を相殺して、撚り合わせ時の絶縁線12aの捻回破断を抑制することができる。撚り返しには、従来より知られる撚り返し機構を備えた撚線機、例えば、ガイドプーリが撚線機の中心軸の周囲を旋回する構造の撚線機を用いて行うことができる。すなわち、この撚線機では、送り出しボビンから送り出された素線を引き取りながらガイドプーリを旋回させることで、各素線が束ねられ撚り合わせられるが、このとき送り出しボビンをガイドプーリと同期させて回転させることにより、素線に捻りを与えて撚線機に送り込む。これにより、各素線は予め撚り返しが施された状態で撚線機に送り込まれることになる。
 ケーブルコア21は、上記撚線12から構成される。撚線12の数は、通常2本~4本である。図1に示すように、撚線12の数が2本のケーブルコア21を備えたケーブルは、両耳に装着されるヘッドホン本体側のケーブルとして使用される。また、撚線数が3本または4本のケーブルコアを備えたケーブルは、それらの2本のケーブルに接続され、1本のケーブルに統合して音響機器の端子に接続される端子側ケーブルとして使用される。複数本の撚線は、単に集合するだけでもよいが、耐屈曲性を高める観点からは、撚り合わされていることが好ましい。
 ケーブルコア21外周に設けられる保護被覆(シース)23は、例えば、ナイロン樹脂、塩化ビニル樹脂等をケーブルコア21外周に押出被覆することにより形成される。
 押出被覆は、充実押出被覆であっても、いわゆるパイプ押出被覆であってもよく、特に限定されない。被覆は、外径が2.2mm以下、好ましくは2.0mm以下になるように被覆されていることが好ましい。
 本実施形態のヘッドホンケーブル10においては、導体として、従来の軟銅線に代えて、特定量のAgを含有する銅銀合金線を使用している。このような銅銀合金線は、導電性が高い上に、引張強度が大きく、耐屈曲性に優れている。したがって、高い導電性を有しながら、車中や運動下等の使用にも十分耐え得る、優れた耐屈曲性、引張強度を有する導体を備えることができる。また、軟銅線を用いた場合に必須であった抗張力繊維の使用を不要とすることもできる。
 なお、上記のように、本実施形態のヘッドホンケーブル10においては、抗張力繊維の使用を不要とすることができるが、必要に応じて抗張力繊維を使用してもよい。例えば、図1に示すヘッドホンケーブル10において、抗張力繊維を中心に、その外周に絶縁線12aを撚り合わせて撚線12を構成してもよい。なお、抗張力繊維は絶縁線12aとともに集合撚りするようにしてもよい。すなわち、従来のヘッドホンケーブルでは、導体の中心に抗張力繊維を配置することで、引張張力が導体や保護被覆に直接かかるのを防止する構成としていたが、本実施形態では、導体に引張強度が大きい銅銀合金線が使用されているため、抗張力繊維の位置は特に限定されない。
 抗張力繊維としては、例えば、アラミド繊維等が使用されるが、ヘッドホンケーブルとして既知の材料を用いればよい。
 以上、本発明の一実施形態およびその変形例について説明したが、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の実施例および比較例においては、絶縁線を撚り合わせる際、いずれも撚り返しを行った。
(実施例1)
 連続鋳造で直径9mmの銅銀合金材(Ag3質量%含有)を鋳造し、熱処理および冷間加工を繰り返し、最終熱処理後に減面率99.89%の冷間加工を行って、銅銀合金線を得た。次いで、この銅銀合金線の外周にポリウレタン樹脂ワニスを塗布した後、焼付けて厚さ7μmの絶縁皮膜を設け、直径0.07mmの絶縁線を得た。この絶縁線14本を集合撚りして、外径約0.30mm、撚ピッチ3.0mmの撚線とし、さらに、この撚線2本を撚り合わせ(撚ピッチ24mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径1.4mmのヘッドホンケーブルを製造した。
(実施例2)
 実施例1と同様に作製した絶縁線28本を集合撚りして、外径0.43mm、撚ピッチ4.5mmの撚線とし、さらに、この撚線3本を撚り合わせ(撚ピッチ40mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径3.2mmのヘッドホンケーブルを製造した。
(実施例3)
 連続鋳造で直径9mmの銅銀合金材(Ag10質量%含有)を鋳造し、熱処理および冷間加工を繰り返し、最終熱処理後に減面率99.92%の冷間加工を行って、銅銀合金線を得た。次いで、この銅銀合金線の外周にポリウレタン樹脂ワニスを塗布した後、焼付けて厚さ7μmの絶縁皮膜を設け、直径0.06mmの絶縁線を得た。この絶縁線31本を集合撚りして、外径0.39mm、撚ピッチ4.0mmの撚線とし、さらに、この撚線2本を撚り合わせ(撚ピッチ32mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径1.4mmのヘッドホンケーブルを製造した。
(実施例4)
 連続鋳造で直径9mmの銅銀合金材(Ag1質量%含有)を鋳造し、熱処理および冷間加工を繰り返し、最終熱処理後に減面率99.89%の冷間加工を行って、銅銀合金線を得た。次いで、この銅銀合金線の外周にポリウレタン樹脂ワニスを塗布した後、焼付けて厚さ7μmの絶縁皮膜を設け、直径0.07mmの絶縁線を得た。この絶縁線14本を集合撚りして、外径0.30mm、撚ピッチ3.0mmの撚線とし、さらに、この撚線2本を撚り合わせ(撚ピッチ24mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径1.4mmのヘッドホンケーブルを製造した。
(実施例5)
 連続鋳造で直径9mmの銅銀合金材(Ag5質量%含有)を鋳造し、熱処理および冷間加工を繰り返し、最終熱処理後に減面率99.89%の冷間加工を行って、銅銀合金線を得た。次いで、この銅銀合金線の外周にポリウレタン樹脂ワニスを塗布した後、焼付けて厚さ7μmの絶縁皮膜を設け、直径0.07mmの絶縁線を得た。この絶縁線14本を集合撚りして、外径0.3おmm、撚ピッチ3.0mmの撚線とし、さらに、この撚線2本を撚り合わせ(撚ピッチ24mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径1.4mmのヘッドホンケーブルを製造した。
(比較例1)
 実施例1と同様に作製した絶縁線14本を集合撚りして、外径0.30mm、撚ピッチ6.3mmの撚線とし、さらに、この撚線2本を撚り合わせ(撚ピッチ24mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径1.4mmのヘッドホンケーブルを製造した。
(比較例2)
 実施例1と同様に作製した絶縁線28本を集合撚りして、外径0.43mm、撚ピッチ9.2mmの撚線とし、さらに、この撚線2本を撚り合わせ(撚ピッチ40mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径1.4mmのヘッドホンケーブルを製造した。
(比較例3)
 軟銅線の外周にポリウレタン樹脂ワニスを塗布した後、焼付けて厚さ7μmの絶縁皮膜を設け、直径0.07mmの絶縁線を得た。この絶縁線14本をアラミド繊維の外周に同心撚りして、外径0.38mm、撚ピッチ3.0mmの撚線とし、さらに、この撚線2本を撚り合わせ(撚ピッチ24mm)、その外周に塩化ビニル樹脂を充実押出被覆して、外径1.4mmのヘッドホンケーブルを製造した。
 上記各実施例および各比較例で得られたヘッドホンケーブルについて、下記に示す方法で各種特性を測定・評価した。
[耐屈曲性]
 図2に示すように、得られたヘッドホンケーブル10から切り出した長さ300mmの試料ケーブルに50gの錘31をつけて垂下させ、同試料の両側に曲率半径Rがそれぞれ0.5mm、2mm、5mmの曲面を有する一対の押えブロック32を配置した状態で、片側90度で1往復を1回として、毎分60回屈曲させて破断までの回数を測定した。
[引張強さ]
 銅銀合金線(実施例1~5、比較例1、2)および軟銅線(比較例3)について、JIS C 3002(1992)の規定にしたがって測定した。
[絶縁線のバラケ]
 得られたヘッドホンケーブルの保護被覆を剥ぎ取った際、絶縁線がバラケず、撚線状態を保持していた場合を合格(○)、絶縁線がバラケて、撚線状態を保持できなかった場合を不合格(×)とした。
 これらの結果をケーブル構成とともに表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、導体として銅銀合金線(Ag含有量0.5~10質量%)を使用し、かつ撚線の撚りピッチを撚線外径の5~20倍の範囲とした実施例1~5では、耐屈曲性、引張強さ、および絶縁線のバラケの各特性において、いずれも良好な結果が得られた。
 一方、導体として実施例と同様の銅銀合金線を使用したものの、撚線の撚りピッチが撚線外径の20倍を超える比較例1、2では、耐屈曲性および引張強さの特性評価結果は良好であったが、絶縁線にバラケを生じた。また、導体に従来の軟銅線を用いた比較例3では、軟銅線の引張強さが小さいため、実用には抗張力繊維による補強が必須であった。
 本発明のケーブルは、導電性が高く、かつ優れた耐屈曲性および引張強度を有しており、車中や運動下等で使用するヘッドホンケーブルとして好適である。
 10…ヘッドホンケーブル、12…撚線、12a…絶縁線、21…ケーブルコア、23…保護被覆(シース)。

Claims (6)

  1.  0.5~10質量%のAgを含有し、残部がCuおよび不可避的不純物からなる銅銀合金線の表面に絶縁皮膜を備える絶縁線を複数本撚り合わせて、撚りピッチが撚線外径の5倍~20倍の撚線とし、さらにこの撚線を複数本集合してケーブルコアを形成するとともに、前記ケーブルコアの外周に保護被覆を設けてなることを特徴とするヘッドホンケーブル。
  2.  前記銅銀合金線は、1~10質量%のAgを含有し、残部がCuおよび不可避的不純物からなることを特徴とする請求項1記載のヘッドホンケーブル。
  3.  前記銅銀合金線は、熱処理後に冷間加工をしてなるものである請求項1または2記載のヘッドホンケーブル。
  4.  前記銅銀合金線は、0.03mm~0.10mmの外径を有することを特徴とする請求項1乃至3のいずれか1項記載のヘッドホンケーブル。
  5.  前記銅銀合金線の引張強さ(JIS C 3002(1992))が700MPa以上であることを特徴とする請求項1乃至4のいずれか1項記載のヘッドホンケーブル。
  6.  前記撚線が、前記銅銀合金線のみを撚り合わせたものであることを特徴とする請求項1乃至5のいずれか1項記載のヘッドホンケーブル。
PCT/JP2016/002844 2015-06-16 2016-06-13 ヘッドホンケーブル WO2016203758A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015120824A JP6089071B2 (ja) 2015-06-16 2015-06-16 ヘッドホンケーブル
JP2015-120824 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016203758A1 true WO2016203758A1 (ja) 2016-12-22

Family

ID=57545337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002844 WO2016203758A1 (ja) 2015-06-16 2016-06-13 ヘッドホンケーブル

Country Status (2)

Country Link
JP (1) JP6089071B2 (ja)
WO (1) WO2016203758A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495228B (zh) * 2018-06-21 2024-05-07 广东朝阳电子科技股份有限公司 增强线扣拉力的耳机线材结构及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249660A (ja) * 2008-04-02 2009-10-29 Sumitomo Electric Ind Ltd 伸線材、撚り線、同軸ケーブルおよび伸線材用鋳造材
JP2015021138A (ja) * 2013-07-16 2015-02-02 住友電気工業株式会社 銅−銀合金線の製造方法、及び銅−銀合金線

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996706B (zh) * 2009-08-25 2015-08-26 清华大学 一种耳机线及具有该耳机线的耳机
JP2013040386A (ja) * 2011-08-17 2013-02-28 Hitachi Cable Ltd イヤホンケーブル用導体及びイヤホンケーブル
JP2014078390A (ja) * 2012-10-10 2014-05-01 Hitachi Cable Fine Tech Ltd イヤホンケーブル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249660A (ja) * 2008-04-02 2009-10-29 Sumitomo Electric Ind Ltd 伸線材、撚り線、同軸ケーブルおよび伸線材用鋳造材
JP2015021138A (ja) * 2013-07-16 2015-02-02 住友電気工業株式会社 銅−銀合金線の製造方法、及び銅−銀合金線

Also Published As

Publication number Publication date
JP2017004904A (ja) 2017-01-05
JP6089071B2 (ja) 2017-03-01

Similar Documents

Publication Publication Date Title
JP4143087B2 (ja) 極細絶縁線と同軸ケーブル及びその製造方法並びにこれを用いた多芯ケーブル
JP2019033101A5 (ja)
US20180151272A1 (en) Composite cable
JP2002352630A (ja) 可動部配線材用撚線導体及びそれを用いたケーブル
WO2003036659A1 (fr) Cable d'emission de signaux, bornes, et procede de transmission de donnees utilisant ce cable d'emission
JP2852847B2 (ja) 同軸ケーブル
JP2019061776A (ja) 多心ケーブル
WO2006022117A1 (ja) 同軸ケーブル
JP2011082050A (ja) 伸縮電線
JP5872787B2 (ja) 信号伝送用多芯型伸縮ケーブル
JP2009004256A (ja) 複合導体及びそれを用いた配線用ケーブル
JP6893496B2 (ja) 同軸ケーブル
CN209312455U (zh) 一种机器人械臂用扭转软电缆
JP2012146591A (ja) 多心ケーブル及びその製造方法
JP6089071B2 (ja) ヘッドホンケーブル
JP2015026476A (ja) 多層型伸縮伝送線
US9281100B2 (en) Coiled cable
JP2018045855A (ja) 平形ケーブル
JP2019102237A (ja) 平型エレベータケーブル及びその製造方法
US9786417B2 (en) Multi-core cable and method of manufacturing the same
JP2004055179A (ja) 銅銀合金の撚線導体、これを用いたシート状発熱体、及び銅銀合金の撚線導体の端末加工方法
JP2017183099A (ja) ケーブル
JP6939324B2 (ja) 同軸電線および多心ケーブル
JP7280236B2 (ja) 撚り導体、電線及びケーブル
JP6948561B2 (ja) 撚り線導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811233

Country of ref document: EP

Kind code of ref document: A1