WO2016203667A1 - 高速撮像装置 - Google Patents

高速撮像装置 Download PDF

Info

Publication number
WO2016203667A1
WO2016203667A1 PCT/JP2015/081636 JP2015081636W WO2016203667A1 WO 2016203667 A1 WO2016203667 A1 WO 2016203667A1 JP 2015081636 W JP2015081636 W JP 2015081636W WO 2016203667 A1 WO2016203667 A1 WO 2016203667A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
electron beam
electron
line
scanning
Prior art date
Application number
PCT/JP2015/081636
Other languages
English (en)
French (fr)
Inventor
江藤 剛治
宏之 白神
Original Assignee
江藤 剛治
宏之 白神
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江藤 剛治, 宏之 白神 filed Critical 江藤 剛治
Publication of WO2016203667A1 publication Critical patent/WO2016203667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/64Magnetic lenses
    • H01J29/68Magnetic lenses using permanent magnets only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/74Deflecting by electric fields only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/49Pick-up adapted for an input of electromagnetic radiation other than visible light and having an electric output, e.g. for an input of X-rays, for an input of infrared radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Definitions

  • Non-Patent Document 1 In the fluorescence lifetime measurement microscopic method (FLIM, Fluorescence Lifetime Imaging Microscopy), the position of a specific substance in a cell, the state of a cell such as a potential and PH, etc. are examined by measuring the decay constant of the fluorescent protein. Many fluorescent proteins have an attenuation constant shorter than 1 nanosecond.
  • FLIM Fluorescence lifetime measurement microscopic method
  • FRET Fluorescence Resonance Energy Transfer
  • Beam split type multi-framing camera An existing practical apparatus that can capture continuous images with a time resolution of several nanoseconds or less is a “beam split type multi-framing camera”.
  • a normal camera generates a single image with a lens. This is called an original image.
  • Two images that are the same as the original image can be created by separating the incident light using a half mirror. When the half mirrors are combined, many images that are the same as the original image are formed.
  • ⁇ Place a photocathode on the front of the MCP to convert the incident light flux into an electron flux.
  • the gating of the MCP type image intensifier is performed by turning on and off the acceleration voltage. The on / off speed is limited by the voltage transmission time from the periphery of the photocathode to the center. The time shift caused by this is several nanoseconds.
  • FIG. 3 shows an output image 11 by a multi-framing camera using a two-way scanning type vacuum tube. Immediately after taking one image, the electronic bundle is scanned in the horizontal direction 8 and stopped. The electron bundle is scanned in the horizontal direction 8 immediately after the second image is taken. The electron bundle is scanned in the vertical direction 7 immediately after the fourth image is taken. In this way, 16 continuous images can be taken.
  • This type of multi-framing camera is referred to as a “frame scanning multi-framing camera”.
  • the minimum time interval of images of the frame scanning type multi-framing camera is a time required for scanning for moving from one frame to the next.
  • the time required for scanning is a time required until the deflection voltage applied to the deflection electrode is stabilized.
  • the time required for stabilization is the time delay 12 at the time of deflection voltage rise or fall (not shown because it is the same as that at the rise), and the continuation of ringing 13 and the like generated after overshoot. It is the sum of time.
  • An ultrahigh-speed multi-framing electron microscope 15 shown in FIG. 5 has also been developed using the same scanning method as the frame scanning multi-framing camera (Non-Patent Document 2).
  • a fluorescent plate 21, a thick lead glass 22 that does not transmit generated X-rays, a camera lens 23, and a camera 24 are provided.
  • a short pulse laser 25 for electron gun excitation is provided.
  • the electron gun is irradiated with laser light 26 having a pulse width of 5 nanoseconds and a minimum pulse time interval of 20 nanoseconds from a short pulse laser.
  • the pulse electron bundle 27 is emitted only while the laser beam is irradiated.
  • a sample stimulation laser 28 is provided.
  • the sample 29 is irradiated with the stimulation laser, the sample instantaneously undergoes a phase change.
  • the deflection voltage By changing the deflection voltage abruptly, nine continuous high-speed transmission electron microscope images 30 can be obtained.
  • FIGS. 6 and 7 A one-way scanning type multi-framing imaging method is shown in FIGS. 6 and 7 (Non-Patent Document 1).
  • a light shielding layer 35 is provided on the front surface of the photocathode 3.
  • M ⁇ N holes 31 are opened in the light shielding layer. Therefore, the number of pixels is M ⁇ N.
  • the electron bundle is scanned obliquely.
  • the scanning direction 32 is a direction in which an electron bundle generated by one hole is in contact with an electron bundle generated by a hole immediately below. This oblique scanning is stopped at a position where the trajectory 33 of the electron bundle reaches the adjacent hole row. This scanning method will be referred to as a “skew streak method”.
  • the pixel size is equal to the hole pitch.
  • the number of continuous image signals is (pixel pitch / hole size) ⁇ (pixel pitch / hole size).
  • (pixel pitch / hole size) 3 nine consecutive images 34 are obtained.
  • the problem of electromagnetic wave arrival time also occurs in streak scanning. Even with a unidirectional streak, the distance between the deflection electrodes is several mm to 10 mm. Accordingly, it takes several tens of picoseconds for the deflection voltage to reach between the deflection electrodes.
  • the distance between the comb-shaped electrodes is slightly narrower than the pitch of the holes, it is 100 microns or less to several hundreds of microns.
  • the time during which the deflection voltage propagates during this period is 1 picosecond or less.
  • the problem of the time difference until the deflection voltage sent from the end of the deflection electrode propagates to the center of the deflection electrode has not been solved.
  • the world's first digital high-speed video camera was developed by Eto et al.
  • the big feature is that it had a continuous overwrite function. That is, the latest image signal is overwritten and recorded in the memory in which the oldest image signal is recorded. Then, the latest image signal sequence is always recorded on the memory.
  • shooting is stopped, the recorded image signal is read back in the past, and is reproduced as a continuous image. This makes it easy to synchronize the occurrence of the shooting phenomenon and the shooting timing, which is one of the major issues in high-speed shooting. This is one of the reasons why digital high-speed video cameras have since been taped out in a very short period of time.
  • Patent Document 2 The world's first video camera with 1 million frames / second also had a continuous overwrite function (Patent Document 2) and (Non-Patent Document 4). All current digital high-speed cameras have this function.
  • Non-Patent Document 1 (X-ray focusing means: zone plate)
  • the application object of the imaging method described in Non-Patent Document 1 is laser fusion. Therefore, the amount of incident light (X-rays in this case) was sufficient. Therefore, the light collecting means in front of each hole was unnecessary.
  • Shirakami the author of Non-Patent Document 1, proposes to attach a microzone plate as a local focusing means for later application to general ultrahigh-speed X-ray imaging (reference is not shown).
  • Patent Document 1 also discloses an electrostatic lens array.
  • the electron beam array emitted from the photocathode is converged by an electric field control type electron lens (hereinafter referred to as an “electrostatic lens”) composed of three metal plates having a large number of holes with the pinholes aligned. .
  • the converged electron beam array is deflected by comb-shaped electrodes arranged so as to avoid the pinhole position, thereby performing ultra-high-speed continuous photographing with high resolution.
  • neodymium magnets with very high permanent magnetic force have been put into practical use, and permanent magnetic lenses using neodymium magnets have come to be used in small SEMs (scanning electron microscopes). This eliminates the need for an external power supply and is not affected by noise superimposed on the external power supply. Therefore, higher stability can be obtained.
  • Permanent magnetic lens is covered with a high permeability material, usually called a yoke. This prevents the magnetic field from leaking outside. This means that it is hardly affected by an external magnetic field.
  • the electron beam is reduced to 10 nanometers or less.
  • Aberration correction is performed using a plurality of permanent magnetic lenses, and these are overlapped to reduce the beam diameter by 3 to 4 digits.
  • the convergence of the electrostatic lens is originally lower than that of the magnetic lens. Further, the peripheral electric field fluctuates due to the gating of the front photocathode and the rapid voltage fluctuation when the electron beam is deflected by the rear deflection electrode. The power supply voltage of the electrostatic lens also fluctuates due to noise.
  • a beam split type multi-framing camera or a frame scanning type multi-framing camera cannot achieve sub-nanosecond time resolution.
  • the amount of light incident on each camera decreases in inverse proportion to the number of shots.
  • Wiring for the deflection voltage and gating voltage is quasi-equal distance wiring.
  • Typical quasi-equal distance wiring includes H-type wiring. In this case, it is better that the variation is smaller than the average value of the distance to the end of the wiring.
  • Quasi-equal distance wiring is arranged in a dead space between electron beams or between holes in the light shielding layer.
  • an electron lens to reduce the diameter of the electron beam In the present invention, it is necessary to squeeze each of the electron beam arrays composed of a large number of electron beams. Therefore, a micro electron lens array having a hole at each electron beam position is employed.
  • a micro permanent magnetic lens array in which permanent magnetic lenses are arranged has the highest stability.
  • a microcoil magnetic lens array or a micro electrostatic lens array made up of a plurality of metal plates having a large number of holes may be used.
  • the pitch of holes and electron beams is on the order of 100 microns. Since the line width of recent semiconductor circuits is on the order of 100 nanometers, semiconductor circuits can be freely formed in holes or dead spaces of electron beams. By sending a control signal from the outer edge with quasi-equal distance wiring and turning on the local power supply, local amplifier circuit, and switching circuit, RCL delay and the like can be minimized.
  • Each of the first incident lines incident on each of the non-overlapping M (M ⁇ 2) first surface elements on the first incident surface is on the second incident surface and the first incident line is incident on the first incident surface.
  • First spotting means for irradiating a second surface element having an area smaller than the area of the surface element; When the first incident line is not an electron beam, an electron beam is generated according to the intensity of the first incident line incident on the second surface element, and when the first incident line is an electron beam, An electron beam generating means that transmits the first incident ray and directly uses it as an electron beam; Deflection means for scanning each of the electron beams on a third incident surface; A recording means for generating and recording an image signal corresponding to the intensity of the electron beam at the irradiation position of the electron beam on the third incident surface at each moment; At least one branching from a single starting point and multiple terminations in a space that does not substantially overlap the second surface element or the electron beam path, from the starting point to all terminations
  • a high-speed imaging device provided
  • the control voltage of the deflecting means is set so that the scanning locus of one central point of the electron beam has a spiral shape or a shape in which the tip and the end of the spiral are connected on the third incident surface.
  • a high-speed imaging device comprising means for generating a waveform.
  • a control voltage comprising a sine waveform is generated and sent to one of the two pairs of deflection means, and the other includes at least a set of control voltages comprising a cosine waveform having the same or different period and amplitude as the sine waveform.
  • a high-speed imaging device comprising means for generating and sending a voltage.
  • Second spotting means for reducing the diameter of the electron beam on the third incident surface to be smaller than the diameter at the position of the electron beam generating means, and the second spotting means includes at least a magnetic field.
  • a high-speed imaging device including a lens. Thereby, it is possible to perform ultra-high-speed shooting with a larger number of shots.
  • a single permanent magnet with a plurality of holes as the magnetic lens, it is possible to narrow down an extremely stable electron beam that is not affected by external power source noise, environmental electromagnetic field fluctuations, and the like. .
  • the electrostatic lens may be an electrostatic lens. Since the structure is simpler than a magnetic lens, it is advantageous in applications where stability is not so required.
  • the high-speed imaging device characterized in that the third incident surface is a back surface of a back-illuminated imaging device, wherein the electron beam implantation energy to the third incident surface is 4 keV or less.
  • the diffusion of the secondary electrons can be more effectively prevented by providing signal charge diffusion suppression means at the boundary position between the pixels on the back surface of the image sensor.
  • Sectional drawing of backside-illuminated image sensor (description figure of electron diffusion suppression by a trench).
  • Neodymium magnet with an open hole array Permanent magnetic lens array.
  • the time change of the deflection voltage pair of the first embodiment Looped spiral trajectory.
  • Explanatory drawing of 2nd Example Example of local circuit.
  • Explanatory drawing of a 3rd Example (ultra-high-speed TEM).
  • FIG. 11 shows a first embodiment 38 of the present invention.
  • the incident line 39 includes ultraviolet rays (fluorescence excitation light) and visible light (fluorescence).
  • the incident optical system 40 includes a filter 41, a lens 42, a diaphragm 43, and a mechanical shutter 44.
  • the optical filter passes only light having a wavelength of 500 nm or more.
  • the incident optical system is connected to a camera unit 45, and the camera unit includes an imaging tube 47 with an image sensor 46 and a control unit 48.
  • the control unit includes an imaging control unit 49, a signal readout control unit 50, and a general control unit 51.
  • a buffer memory 52 is connected to the signal read control unit.
  • the general control unit includes a communication control unit 53, a signal processing unit 54, and an image information memory (built-in) 55.
  • External devices such as an external memory 56, a mouse 57, a console 58, and a display 59 are connected to the communication control unit.
  • the communication control unit also processes a signal for timing adjustment with the illumination 60.
  • the photographing control unit 49 includes an image sensor and two types of drive signal generation units for controlling the deflection voltage. They are a digital drive signal generator 61 and an analog drive signal generator 62.
  • the analog drive signal generation unit is a means for generating a control voltage waveform of the deflection electrode. Thereby, a drive voltage waveform of the deflection electrode such as a sine curve or a cosine curve is generated.
  • the digital drive signal generation unit generates other drive signals. Further, the digital drive signal generation unit is provided with a driver IC for converting into a drive voltage waveform having the same waveform as the generated digital signal.
  • An on-chip microlens 66 is formed on the image plane.
  • One of the major features is that the permanent magnetic lens array 67 is provided.
  • a hole 69 is formed in the light shielding layer 68.
  • the hole pitch 70 is 90 microns and the hole diameter 71 is 30 microns.
  • the actually functioning hole is located in the central 18 mm ⁇ 18 mm region. Therefore, the number of effective holes (number of pixels) is 200 ⁇ 200.
  • a pair of deflection electrodes for deflecting the electron flux 76 in the X direction and a pair of deflection electrodes 74 and 75 for deflecting in the Y direction are provided for each hole. Since the figure is a sectional view in the Y direction, only the deflection electrode pair in the Y direction is shown.
  • FIG. 13 shows the positional relationship between the hole 69, the wirings 73 and 79, and the deflection electrode on a plane perpendicular to the optical axis.
  • the wirings 73 and 79 are shown in two layers, they are actually made of five layers of metal.
  • the wirings 73 and 79 are not a single line but a large number of wirings.
  • FIG. 14 shows an H-shaped wiring 80 which is an example of quasi-equal distance wiring. The distances from the starting end 81 to all the ends 82 are substantially equal. Two sets of H-type wirings are provided for the X-direction and Y-direction deflection electrodes. These wirings are stretched over the entire light receiving surface using the five-layer metal wirings 73 and 79. Since the H-type wiring is a wiring generally used in a high-speed drive semiconductor, only the conceptual diagram of FIG. 14 is shown.
  • the incident surface of the image sensor 46 is inside a vacuum tube (imaging tube) 47 shown in FIG.
  • the image sensor has a backside illumination type with an aperture ratio of 100%, a pixel size of 9 microns ⁇ 9 microns, and a light receiving surface size of 18 mm ⁇ 18 mm. Therefore, the number of pixels is 2000 ⁇ 2000 pixels (4 million pixels).
  • the pixel pitch of the image sensor must be sufficiently smaller than the actual pixel pitch determined by the arrangement of the holes in the light shielding layer.
  • FIG. 15 shows one pixel 84 in a cross-sectional view 83 of the backside illuminated image sensor.
  • the electrons enter from the back surface 85.
  • oxide silicon dioxide
  • the dark current becomes large.
  • the frame interval is very short in ultra high-speed photography, the influence of the dark current is small.
  • the image sensor is cooled to -50 degrees C (not shown).
  • the generated charge is once collected in the charge collection gate 87 in the center of the pixel. Thereafter, the pixel is read out of the pixel via a readout circuit 88 placed in the periphery.
  • FIG. 16 shows a neodymium magnet 89 with an open hole array. The thickness is 10 mm.
  • FIG. 17 shows a permanent magnetic lens array 91 surrounded by a yoke 90 made of pure iron. By surrounding the yoke with such a shape, both the upper surface and the lower surface become S poles and magnetic field leakage is eliminated. The elimination of magnetic field leakage means that it is not easily affected by fluctuations in the external magnetic field.
  • a permanent magnetic lens consists of a neodymium magnet and a yoke.
  • FIG. 18 shows the time change 92 of the deflection voltage of the two pairs of deflection electrodes. It is assumed that all functional elements shown in FIG. 11 have already been activated.
  • the X-direction deflection voltage 93 has a sine curve shape
  • the Y-direction deflection and summer 94 has a cosine curve shape
  • the amplitude 95 decreases monotonously and decreases, and returns to the original state after three cycles 96.
  • the voltage curve is bent and the amplitude is suddenly recovered, but in reality, it is recovered through a smooth transition state.
  • the time to return to the start point of the spiral is 150 picoseconds.
  • the number of continuous shots is 50 frames. Therefore, the time resolution is 3 picoseconds.
  • the trajectory of the electron beam draws a looped spiral shape 97 shown in FIG.
  • the intersection angle is close to 90 degrees, the signal at the intersection can be estimated from the signals before and after the intersection on the spiral trajectory. Further, the return signal can be estimated from this value.
  • the signal restoration accuracy of this portion is not high, the advantage that continuous overwrite recording is possible is great.
  • FIG. 1 A second embodiment of the present invention is shown in FIG.
  • An MCP 99 is provided behind the photocathode 98.
  • the deflection electrode 100 is provided in the subsequent stage of the MCP.
  • wiring and a circuit layer 101 are provided in the shadowed area immediately after the photocathode.
  • a voltage of 7.5 V is applied between the photocathode and the MCP, and the generated 200 ⁇ 200 electron flux once enters the MCP and is avalanche amplified. It draws a locus that forms a loop on the back of the image sensor by the deflection electrode. Thereby, very high sensitivity is obtained.
  • the driving voltage of the photocathode is sent from the surroundings.
  • the electric resistance of the photocathode layer is orders of magnitude greater than that of metal.
  • FIG. 21 shows an example of the circuit 102 provided in the circuit layer 101.
  • One set of this circuit 102 is formed for each hole. Once the incident light is spotted, a sufficiently wide space for inserting the circuit layer 101 can be obtained without impairing sensitivity (substantial aperture ratio).
  • the circuit 102 includes a power supply line 103, a ground line 104, a signal line 105, transistor switches 107 and 102, and an output line 108.
  • the voltage amplitude of the signal line is 1/5 of the voltage amplitude of the photocathode, and the electric capacity of the signal line and the transistor switch is much smaller than that of the photocathode. Therefore, not only can the electrical resistance be lowered by using a relatively wide metal wiring to increase the gating speed of the photocathode voltage, but further high speed gating can be performed by incorporating an appropriate electronic circuit.
  • FIG. 5 A third embodiment of the present invention is shown in FIG.
  • the third embodiment is a transmission electron microscope (TEM).
  • the difference from the ultrahigh-speed TEM (FIG. 5) shown in Non-Patent Document 1 is that a collimating electron lens 109, electron bundle spotting means 110, and deflection means 111 are provided.
  • the spotting means are holes regularly formed in the shielding layer of the electron bundle.
  • Deflection means are the deflection electrode pairs 74, 75, 77, 78 shown in FIG. By applying the voltage of FIG. 11 to these, each spotted electron bundle draws a donut-shaped scanning locus 112.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Studio Devices (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

ピコ秒の時間分解能の連続撮影装置を提供する。入射光(63)をスポット化し、光電面(72)で電子ビームアレイ(76)を生成し、永久磁界レンズアレイ(67)で小さく絞り込む。撮影枚数が増える。偏向電極(74、75)を電子ビーム間の空スペースに作り込む。偏向電圧が1/100以下になり撮影速度が上がる。準等距離配線の偏向電圧送付配線(73)も空スペースに入れる。受光面内の偏向電圧の位相差が微小になり画像の歪が無視できる。偏向電圧の組を振幅が線形減衰するサインとコサイン波形にする。電子ビームの軌跡は渦巻き形状となり画素面積の80%以上を覆う。撮影枚数が増える。偏向電圧が滑らかに変わるのでさらなる高速化ができる。振幅が下限に達すると最初の振幅に戻す。これを1周期として繰り返す。連続上書き記録ができ、1周期以内に発光が終了する被写体を撮影すると、タイミング合わせも不要になる。

Description

高速撮像装置
 超高速超高感度で連続撮影できる撮像装置に関する。先端科学技術計測では、ナノ秒以下の時間分解能で撮影できる撮影技術が必要である。例えば核融合の計測では10ピコ秒程度の時間分解能が必要である(非特許文献1)。蛍光寿命計測顕微法(FLIM, Fluorescence Lifetime Imaging Microscopy)では、蛍光タンパクの減衰定数の計測により、細胞内の特定物質の存在位置や、細胞内の電位やPH等の状態を調べる。蛍光タンパクには減衰定数が1ナノ秒よりも短いものも多い。蛍光共鳴エネルギー移動(FRET, Flurescence Resonance Energy Transfer)を使う場合は、さらに短い時間での蛍光の減衰定数を計測する必要がある。
 (ビームスプリット型マルチフレーミングカメラ)
 時間分解能数ナノ秒以下で連続画像を撮影できる既存の実用的な装置は「ビームスプリット型マルチフレーミングカメラ」である。
 通常のカメラではレンズにより1枚の画像を生成する。これを原画像と呼ぶことにする。ハーフミラーを使い入射光を分けると原画像と同じ画像を2枚作れる。ハーフミラーを組み合わせると原画像と同じ多数の画像が結像する。
また底面に対して45度に近い三角形斜面からなる多角錐ミラーの頂点側にレンズを通した画像を入射すると、各斜面により入射光軸と直角に近い方向に光が反射され、多少の歪みはあるが、原画像とほぼ同じ多数の画像が結像する。
 前記の多数の画像の結像面のそれぞれに、高速ゲーティングができるカメラを備え、短い時間間隔で順次ゲーティングすれば、複数枚の連続画像を超高速撮影できる。このような撮像装置がビームスプリット型マルチフレーミングカメラである。
 欠点は、各カメラへの入射光量がカメラの数に逆比例して減少することである。実際には複雑な光学系のために、入射光量はさらに少なくなる。入射光量の大幅な減少は、1フレーム当たりの入射光量が激減する超高速撮影にとって大きな欠点である。
 (MCP)
 ビームスプリット型マルチフレーミングカメラの各カメラの前には、通常、MCP(マルチチャンネルプレート)型イメージインテンシファイヤが取り付けられている。MCP型イメージインテンシファイヤは大きな電子増倍機能と、高速ゲーティング機能を備えている。大きな電子増倍機能は光量の不足を補う。高速ゲーティング機能はビームスプリット型マルチフレーミングカメラの高い時間分解能を実現する。
 MCPには直径10ミクロン程度の多数の孔が稠密に規則正しく開いている。孔の方向は、MCP面の直角方向(光軸方向)に対して10度程度傾いている。孔の壁面には高電圧が印加されており、電気的不安定限界に近い状態に保たれている。壁面に電子が衝突すると2次電子が発生する。この繰り返しで生じる電子アバランシュにより、最大で10万倍程度の電子増倍ができる。
 MCPの前面に光電面を置き、入射光束を電子束に変換する。光電面とMCPの間には10V程度の電圧差があり、この電圧差で電子束は加速されMCPの孔に突入する。この電圧を0V以下にすれば光電面からMCPへの電子束の流入は停止する。MCP型イメージインテンシファイヤのゲーティングはこの加速電圧のオンオフで行う。このオンオフの速度は、光電面の周辺から中心部への電圧の送付時間により制限される。これによって生じる時間のずれは数ナノ秒である。
 MCPの利用に対して別の課題がある。孔のピッチは20ミクロン程度である。MCPで電子増倍され、偏向電極で偏向した電子ビームは蛍光面に衝突する。加速エネルギーは8keV程度である。これにより生じる蛍光の広がりは30ミクロン以上である。この蛍光画像を撮像素子で撮影する。電子ビームや蛍光像の広がりは空間分解能を制約する。とくにストリークカメラでは、ストリーク像から時間変化を計測するので、空間分解能が時間分解能を制約する。
 (電子打ち込み撮像素子)
 MCPを使わずに、蛍光面のかわりに裏面照射撮像素子を付け、電子ビームを打ち込むことで発生する多数の電子により電子増倍する方法もある。しかし、使用中に撮像素子が徐々にダメージを受け、大きなリーク電流で真っ白になってしまう画素(「白キズ」と呼ぶ)が増える。このため、現在ではこの方法はあまり使われない。ただし超高速撮影では、実際の撮影時間は非常に短いのでこの課題は大きな問題ではない。
 また1個の電子の打ち込みにより、撮像素子内で生成する電子群が広がるので、空間解像力が下がる。電子打ち込みが使われていた当時の撮像素子の画素サイズは数10ミクロンであったので、この問題は無視できた。しかし、最新の撮像素子の最小画素サイズは1ミクロン程度であり、電子打ち込みを使う場合は打ち込みエネルギーを下げる必要がある。
 (ストリークカメラ)
 図1にストリークカメラの概形を示す。1方向走査型の真空管1を用いる。入射窓2に入射した光は光電面3で電子束4に変換される。偏向電極対5に印加する電圧を急変させることにより、電子束4を光軸とは直角方向6に高速で走査する。通常は、入射窓2に、走査方向6に対して直角方向(紙面に垂直方向)に伸びる細い窓(描かれていない)を設け、水平の細い短冊状の画像を走査方向6に高速走査させる。
 図2に2方向走査型の真空管を示す。X方向8(水平方向)に走査するための偏向電極対9と、Y方向7に走査するための偏向電極対10を備える。
 (フレーム走査型マルチフレーミングカメラ)
 図3に2方向走査型の真空管を用いたマルチフレーミングカメラによる出力画像11を示す。1枚の画像を撮影した直後に水平方向8に電子束を走査し、停止する。2枚目の画像を撮影した直後に水平方向8に電子束を走査する。4枚目の画像を撮影した直後に垂直方向7に電子束を走査する。こうして16枚の連続画像を撮影できる。このような方式のマルチフレーミングカメラを「フレーム走査型マルチフレーミングカメラ」と呼ぶことにする。フレーム走査型マルチフレーミングカメラの画像の最小時間間隔は、フレームから次のフレームに移動するための走査に要する時間である。
 走査に要する時間は、偏向電極に印加する偏向電圧が安定するまでに必要な時間である。図4に示すように、安定に要する時間は、偏向電圧の立ち上がり、または立下り時(立ち上がり時と同様であるので図示していない)の時間遅れ12と、オーバーシュート後に生じるリンギング13等の継続時間の和である。
 デジタル回路などではリンギングがあっても、電圧がある閾値14(通常は高電圧と低電圧の中間値)の上または下にとどまっていれば正しく動作する。ただし図2、図3に示すフレーム走査型マルチフレーミングカメラでは、リンギングがあると画像のぶれの原因となり、鮮明な画像が得られない。リンギングが生じないように偏向電圧の駆動回路に大きな緩和要素を入れると、安定までの遷移時間が非常に長くなる。どちらの場合でもぶれのない画像が得られる最小の時間長は100ナノ秒程度である。これがフレーム走査型マルチフレーミングカメラの時間分解能である。
 (超高速マルチフレーミング電子顕微鏡)
 フレーム走査型マルチフレーミングカメラと同じ走査方式を用いて、図5に示す超高速マルチフレーミング電子顕微鏡15も開発された(非特許文献2)。超真空の鏡筒16内に電子銃17、試料ホールダー18、拡大電子レンズ系(実際は組電子レンズ)19、偏向電極20(図では1対であるが、実際はX、Y方向に2対)、蛍光板21、生成するX線を透過させない厚い鉛ガラス22、カメラ用レンズ23、カメラ24を備える。
 電子銃からパルス化された電子束を射出するために、電子銃励起用短パルスレーザ25を備える。短パルスレーザからパルス幅5ナノ秒、最小パルス時間間隔20ナノ秒のレーザ光26を電子銃に照射する。レーザ光が照射されている間のみパルス電子束27が射出される。
 また試料刺激用レーザ28を備えている。刺激用レーザを試料29に照射すると、瞬間的に試料が相変化を生じる。偏向電圧を急変することにより、連続9枚の超高速透過電子顕微鏡画像30を得ることができる。
 時間分解能は電子銃励起用レーザのパルス間隔である。したがって20ナノ秒の時間分解能で撮影できる。
 (斜行ストリーク型マルチフレーミングカメラ)
 1方向走査型のマルチフレーミング撮像方式を図6と図7に示す(非特許文献1)。
 図6に示すように光電面3の前面に遮光層35を備える。図7に黒い丸で示すように、遮光層にM×N個の孔31が開いている。したがって画素数はM×Nである。図7に示すように電子束を斜めに走査する。走査方向32は、1個の孔で生成した電子束が、直下の孔で生成した電子束と接する方向である。この斜行走査を電子束の軌跡33が隣接する孔の列に届く位置で停止する。この走査法式を「斜行ストリーク法」と呼ぶことにする。
 画素サイズは孔のピッチに等しい。オンチップレンズ等がない場合の開口率は(孔の面積/画素面積)=((孔の面積/(孔のピッチ×孔のピッチ))である。ある瞬間には孔の位置でのみ飛び飛びに画像信号が得られる。
 これにより、各孔で生成した重複しない連続画像信号34が得られる。連続画像信号の個数は(画素ピッチ/孔のサイズ)×(画素ピッチ/孔のサイズ)である。図7の例では(画素ピッチ/孔のサイズ)=3であるので、連続9枚の画像34が得られる。
 図6において、実質開口率を上げるには、孔の位置に合わせてオンチップマイクロレンズ36、もしくは光ガイド37、もしくはその両方等の局所集光手段を備える。
 図7では孔が正方格子点に開けられており、走査方向は孔の格子方向に対してarctan(孔のサイズ/孔の格子間隔)だけ傾いている。走査方向を垂直方向にすることもできる。この場合は孔の配列が垂直方向に対して―arctan(孔のサイズ/孔の格子間隔)だけ傾いた格子点上に開けられる。すなわちこの場合の孔の配置と走査方向は、図7を―arctan(孔のサイズ/孔の格子間隔)だけ回転した図で表される。非特許文献1によれば、この方法により時間分解能10ピコ秒を達成した。
 非特許文献1では時間分解能10ピコ秒を達成したが、画像には大きなひずみがある。偏向電極の長さは20mm程度であるから、端部で与えた電圧は、中央に届くまでに10mmを伝播する。10mmを電磁波が進む時間は、真空中でも33ピコ秒である。これにより画像に歪が生じる。
 電磁波の到達時間の問題は、ストリーク走査においても生じる。1方向ストリークであっても偏向電極間距離は数mmから10mmである。したがって、偏向電極間を偏向電圧が到達する時間も数10ピコ秒かかる。
 この方式には別の大きな課題もある。各孔から出た細い電子ビームは、結像面に届くまでに広がる。孔の点像の直径が小さいほど撮影枚数を大きくできる。撮影枚数が同じであれば、孔のピッチを小さくして画素数(孔の数)を大きくできる。
 特許文献1にはこの課題を解決する手段が開示されている。孔と孔のスペースに長い電極を配置する。このような電極を櫛歯形電極と名付けている。これにより、偏向電極から結像面までの距離を、孔のスペースの数倍という短い距離にできるので、電子ビームの広がりを小さくできる。
 また、櫛歯型電極間の距離は孔のピッチよりやや狭くなるので、100ミクロン以下から数100ミクロンである。この間を偏向電圧が伝播する時間は1ピコ秒以下となる。しかし、偏向電極の端部から送られた偏向電圧が、偏向電極の中央部に伝播するまでの時間差の課題については解決していない。
 上記の撮像技術に共通の特徴として、連続上書き撮影機能が備えられていない。
世界最初のデジタル高速度ビデオカメラは江藤らによって開発された(非特許文献3)。大きな特徴は連続上書き機能を備えていたことである。すなわち、一番古い画像信号が記録されているメモリに、最新の画像信号を上書き記録していく。そうするとメモリ上には常に最新の画像信号列が記録されている。撮影対象現象の生起が検出されると、撮影を停止し、記録されている画像信号を過去に遡って読み出し、連続画像として再生する。これにより、高速現象の撮影における大きな課題の一つである、撮影現象の生起と撮影タイミングとの同期が容易になった。これがその後、デジタル高速ビデオカメラが非常に短い期間にテープ式を駆逐した理由の一つである。
 世界初の100万枚/秒のビデオカメラも、連続上書き機能を備えていた(特許文献2)、(非特許文献4)。現在のデジタル式ハイスピードカメラは全てこの機能を備えている。
 (X線の集光手段:ゾーンプレート)
 非特許文献1に記載された撮像方式の適用対象はレーザ核融合であった。したがって入射光量(この場合はX線)は十分に足りていた。したがって各孔の前の集光手段は不要であった。非特許文献1の著者である白神は後に一般的な超高速X線撮影に適用するために、局所集光手段としてマイクロゾ―ンプレートを付けることを提唱している(文献は示していない)。
 (電子レンズアレイ)
 特許文献1では静電レンズアレイも開示されている。光電面から射出される電子ビームアレイを、ピンホールの位置を合わせて多数の孔の開いた3枚の金属板からなる電界制御型の電子レンズ(以後「静電レンズ」と書く)で収束する。収束した電子ビームアレイを、ピンホール位置を避けて配置した櫛歯型電極で偏向することによって、高い解像度で超高速連続撮影する。
 電子レンズには磁界型電子レンズ(以下「磁界レンズ」と書く)と静電レンズがある。磁界レンズの方が収束性と安定性が良いので、最近の電子顕微鏡のレンズには、特別の機能を持たせる場合を除いて磁界レンズが使われている。
 近年、非常に高い永久磁力を持つネオジウム磁石が実用化され、小型SEM(走査型電子顕微鏡)にネオジウム磁石を用いた永久磁界レンズが使われるようになった。これにより、外部電源が不要となるので外部電源に重畳するノイズの影響も受けない。したがってさらに高い安定性が得られるようになった。
 永久磁界レンズは、普通ヨークと呼ばれる高い透磁率材料で覆われている。これにより、磁界が外部に漏れないようにしている。このことは外部の磁界の影響も受けにくいことを意味する。
 SEMの場合は、電子ビームを10ナノメートル以下に絞る。複数の永久磁界レンズを用いて収差補正を行い、さらにこれらを重ねて、ビームの直径を3桁から4桁絞っている。
 一方、静電レンズの収束性は、元々磁界レンズのそれより低い。さらに周辺の電界は、前段の光電面のゲーティングや、後段の偏向電極による電子ビームの偏向時の急激な電圧変動のために変動が生じる。また、静電レンズの電源電圧もノイズのために変動する。
特開平6-275216 特開2000-165750
H. Shiraga et al., Ultra-fast 2-dimensional X-ray imaging with a 10-ps resolution for use in laser fusion research, J. Electron Spectroscopy and Related  Phenomena, 80, 287-290, 1996. Approaches for ultrafast imaging of transient materials processes in the transmission electron microscope,Micron,  43, 1108-1120, 2012. 4500枚/秒の高速度ビデオカメラ、テレビジョン学会誌, Vol.46, No. 5,543-545頁, 1992. 斜行直線CCD型画素周辺記録領域を持つ100万枚/秒の撮像素子, 映像情報メディア, Vol. 56, No. 3, 483-486頁,2002.
ビームスプリット型マルチフレーミングカメラやフレーム走査型マルチフレーミングカメラではナノ秒未満の時間分解能を達成できない。またビームスプリット型マルチフレーミングカメラでは撮影枚数に逆比例して各カメラへの入射光量が減る。
 ストリーク管を用いて斜行ストリーク法を適用すると、10ピコ秒の時間分解能が得られる。しかし、偏向電極の端部から中央部までの距離や、偏向電極間距離が数mmから数cmあり、その間を電磁波が進む時間は数10ピコ秒かかる。このため各画像中の各部分は少しづつ異なる時間の画像信号を表示している。したがって、この画像は大きな歪を伴っている。偏向電圧やゲーティング電圧は受光面の外縁部から受光面内の各部分に送られるので、外縁部から各部分までの電圧の送付配線を等距離配線にする必要がある。実際にはどのようにして等距離配線するかが課題となる。
 ピコ秒からナノ秒程度の時間分解能でマルチフレーミング撮影ができる従来の撮影装置では連続上書き記録ができなかった。
撮影枚数を増やすには電子ビームの直径を小さくする必要がある。
 高速で変化する駆動電圧を送付すると、いわゆるRCL遅れのために遅れや波形の変形が生じる。
また電子ビームの直径を小さくするだけでなく、結像位置である蛍光面や裏面照射型撮像素子裏面での電子ビームの衝突による像の広がりもできるだけ小さくする必要がある。
 非常に短い時間間隔で微細な空間で生じる現象を観察するには、以上の技術を透過型電子顕微鏡(TEM)等の技術と組み合わせる必要がある。既存の超高速TEMでは、電子銃に当てる連続短パルスレーザーの時間間隔で最小時間分解能が制限されている。
 (課題の解決の方針)
 偏向電圧やゲーティング電圧の配線を準等距離配線とする。代表的な準等距離配線にはH型配線等がある。この場合、配線の末端までの距離の平均値に対して、バラツキが小さいほど良い。準等距離配線を電子ビーム間、もしくは遮光層の孔の間のデッドスペースに配置する。
 図8の円形走査によるドーナツ型走査軌跡により、1周期以内に発光が終われば連続上書きができる。走査軌跡で覆われていない面を減らして撮影枚数を増やすには図9に示す渦巻き型走査や図10に示す8の字型走査の採用が好適である。例えば図9に対して理論的に可能な最大面積利用率は、円の半径をRとするとき、図中の長方形の中に円が4個入っていることから簡単に計算できる。約90%となる。この場合軌跡の一部に重複が生じるので、この部分に記録されている信号の復元技術を開発する必要がある。
 電子ビームの直径を小さくするために電子レンズを用いる。本発明では多数の電子ビームからなる電子ビームアレイのそれぞれを絞る必要がある。したがって各電子ビームの位置に孔の開いた、マイクロ電子レンズアレイを採用する。永久磁界レンズを並べたマイクロ永久磁界レンズアレイの安定性が最も高い。用途によってはマイクロコイル磁界レンズアレイや多数の孔の開いた複数の金属板によるマイクロ静電レンズアレイを用いても良い。
 孔や電子ビームのピッチは100ミクロンのオーダーである。最近の半導体回路の線幅は100ナノメーターのオーダーであるから、孔や電子ビームのデッドスペースに自由に半導体回路を作り込むことができる。準等距離配線で制御信号を外縁から送り、ローカル電源、ローカル増幅回路、スイッチング回路を入れることで、RCL遅れなどを最小限に抑えることができる。
 電子ビームの結像位置での像の広がりを小さくするために、蛍光面の代わりに裏面照射撮像素子を備える。また電子の打ち込みエネルギーを4KeV以下にする。
 裏面照射撮像素子内での広がりを小さくするために、裏面の画素境界に、垂直の酸化膜からなるトレンチや、少し濃度の高いボロン打ち込み等を行い、パーテフィション効果を持たせると良い。
 超高速TEMにストリーク型の超高速撮影技術を導入する。10から数100ナノ秒の長い1発の短パルスレーザーによる電子銃の照射で生成する電子ビームを走査するので、複数の短パルスレーザーの最小時間間隔よりはるかに短い時間間隔で撮影できる。
 第1の入射面上にある重複しないM(M≧2)個の第1の面要素の各々に入射する第1の入射線のそれぞれを、第2の入射面上にあって該第1の面要素の面積よりも小さい面積の第2の面要素に照射させる第1のスポット化手段と、
 第1の入射線が電子線でない場合は、前記の第2の面要素に入射した第1の入射線の強度に応じた電子ビームを生成し、第1の入射線が電子線の場合は、第1の入射線を透過させてそのまま電子ビームとする電子ビーム生成手段と、
 前記の電子ビームの各々を第3の入射面上で走査させる偏向手段と、
 各瞬間に、該第3の入射面上の該電子ビームの照射位置で、該電子ビームの強度に応じた画像信号を生成し、それを記録する記録手段とを備えるとともに、
 前記の第2の面要素、もしくは前記の電子ビームの経路と実質的に重複しない空間に、少なくとも1個の、単一の始点から枝分かれして多数の終端を備え、該始点から全ての終端までの距離の標準偏差が、平均値よりも小さいことを特徴とする配線を備える高速撮影装置を提供する。
 これにより、偏向電圧やゲーティング電圧の受光面内での遅れを一様にし、画像の歪を小さくできる。
 前記の第3の入射面上で、前記の電子ビームの1個の中心点の走査軌跡が、渦巻き形状、もしくは渦巻きの先端と末端を接続した形状をなすように、前記の偏向手段の制御電圧波形を生成する手段を備えることを特徴とする高速撮影装置を提供する。
 これにより、より多い撮影枚数で連続上書き超高速撮影ができる。
 前記の2対の偏向手段の一方にサイン波形からなる制御電圧を生成して送付し、他方に前記のサイン波形と周期や振幅が同じ、もしくは異なるコサイン波形からなる制御電圧の組を少なくとも含む制御電圧を生成して送付する手段を備えることを特徴とする高速撮影装置を提供する。
 これにより、渦巻き走査とは別の手段で、より多い撮影枚数で連続上書き超高速撮影ができる。
 前記の第3の入射面上の電子ビームの直径を、前記の電子ビーム生成手段の位置での直径よりも小さくする第2のスポット化手段を備え、該第2のスポット化手段が、少なくとも磁界レンズを備えることを特徴とする高速撮影装置を提供する。
 これにより、さらに多い撮影枚数の超高速撮影ができる。とくに、前記の磁界レンズとして、1枚の複数の孔の開いた永久磁石を用いることにより、外部電源のノイズ、環境電磁界変動などの影響を受けない極めて安定な電子ビームの絞り込みが可能になる。
 前記の電子レンズは静電レンズでも良い。構造が磁界レンズより単純であるので、安定性がそれほど要求されない用途では有利になる。
 孔や電子ビームの経路と実質的に重複しない空間に、半導体回路を備えることを特徴とする高速撮影装置により、駆動電圧等の送付におけるRCL遅れなどを抑制できる。
 前記の第3の入射面が裏面照射撮像素子の裏面であることを特徴とする高速撮影装置であって、前記の第3の入射面への電子ビームの打ち込みエネルギーが4keV以下であることを特徴とする高速撮影装置により、電子ビームの打ち込みで生じる2次電子の拡散を抑制でき、より多くの枚数の連続画像を撮影できる。
 さらに該撮像素子の裏面の画素と画素の境界位置に信号電荷の拡散抑制手段を備えることで、該2次電子の拡散をより効果的に妨げることができる。
 パルス電子銃と、該パルス電子銃で生成したパルス電子束を面的に広げる手段と、該面的に広げられたパルス電子束が通過する試料台とを備えることを特徴とする高速撮影装置により、より高い時間分解能の超高速TEMを提供する。
ストリークカメラの概形。 2方向走査型の真空管。 2方向走査型の真空管を用いたマルチフレーミングカメラによる出力画像。 偏向電圧の立ち上がり時の遷移過程。 超高速マルチフレーミング電子顕微鏡。 1方向走査型のマルチフレーミング撮影方式(構造の概要)。 1方向走査型のマルチフレーミング撮影方式(孔の配列と走査方向)。 円形ストリーク走査の例。 渦巻き型ストリーク走査の例。 8の字型ストリーク操作の例。 本発明の第1の実施の形態の全体図。 本発明の第1の実施の形態の撮像管。 本発明の第1の実施形態における孔と偏向電極の位置関係。 H型配線の説明図。 裏面照射撮像素子の断面図(トレンチによる電子の拡散抑制の説明図)。 ホールアレイの開いたネオジウム磁石。 永久磁界レンズアレイ。 第1の実施例の偏向電圧対の時間変化。 ループ化された渦巻き軌跡。 第2実施例の説明図。 ローカル回路の例。 第3の実施例(超高速TEM)の説明図。
(第1の実施の形態)
  (第1の実施の形態の構成)
 図11は本発明の第1の実施の形態38を示している。入射線39には紫外線(蛍光の励起光)と可視光(蛍光)が含まれている。入射光学系40はフィルター41、レンズ42、絞り43、機械シャッター44からなる。光学フィルターは500nm以上の波長の光のみを通す。入射光学系はカメラ部45に接続されており、カメラ部はイメージセンサ46付の撮像管47と制御部48から成る。制御部は撮影制御部49、信号読み出し制御部50、総合制御部51からなる。信号読み出し制御部にはバッファメモリ52が接続している。
 総合制御部は通信制御部53と信号処理部54および画像情報メモリ(内蔵)55からなる。通信制御部には、外部メモリ56、マウス57、コンソール58、ディスプレイ59の外部機器が接続している。また通信制御部は照明60との間のタイミング合わせのための信号も処理する。
 撮影制御部49にはイメージセンサと偏向電圧制御のための2種の駆動信号生成部を備えている。デジタル駆動信号生成部61とアナログ駆動信号生成部62である。アナログ駆動信号生成部は、偏向電極の制御電圧波形の生成手段である。これにより、サインカーブ、コサインカーブ等の偏向電極の駆動電圧波形を生成する。デジタル駆動信号生成部はそれ以外の駆動信号を生成する。またデジタル駆動信号生成部には、生成したデジタル信号と同一波形の駆動電圧波形に変換するためのドライバーICが備えられている。
 照明は波長390nmでパルス幅100ピコ秒のパルスレーザである。図示していないが、顕微鏡下の細胞試料にこのレーザを当て励起すると、ピーク波長600nmの蛍光を放出する。図11の入射光には波長390nmの紫外線も含まれているが、500nm以下の波長の光は、ローパスフィルターを3枚重ねたフィルターでほぼ完全に除去され、カメラ部には入射しない。
 図12は本発明の第1の実施の形態の撮像管47の構造を示している。撮像管に入射する入射光63は光学フィルターを通過後の光であるので波長が500nm以上でピーク波長が600nmの蛍光である。
 入射光はカメラのレンズ42により入射面ガラス64の背面の結像面65上で結像する。結像面は円形であるが、イメージセンサ(裏面照射撮像素子)46の受光面が正方形であるので、実際に機能するのは18mm×18mmで正方形領域である。
 結像面にはオンチップマイクロレンズ66が形成されている。永久磁界レンズアレイ67を備えていることが大きな特徴の一つである。遮光層68には孔69が開けられている。孔のピッチ70は90ミクロンで、孔の直径71は30ミクロンである。実際に機能する孔は中央の18mm×18mmの領域に配置されたものである。したがって有効な孔の数(画素数)は200×200個である。
 遮光層の後方に光電面72がある。孔の周辺に配線73とY方向の偏向電極74、75が配置されていることも第2の大きな特徴である。電子束76は孔の位置のみで発生する。
 各孔に対して、電子束76をX方向に偏向するための1対の偏向電極と、Y方向に偏向するための1対の偏向電極74、75が備えられている。図はY方向の断面図であるので、Y方向の偏向電極対のみを示している。
 図13は光軸と直角な面の上での孔69と配線73、79と偏向電極の位置関係を示している。配線73と79は2層で示しているが実際には5層の金属からなる。また配線73と79はそれぞれ1本ではなく多数の配線からなる。
 図14は準等距離配線の例であるH型配線80を示している。始端81から全ての末端82までの距離はほぼ等しい。H型配線はX方向とY方向偏向電極のために2セット備えられている。これの配線が配線73、79の5層金属配線を用いて受光面全体に張り巡らされている。H型配線は高速駆動の半導体で一般的に使われる配線であるので図14の概念図のみを示している。
 本実施の形態では、偏向電極は孔と隣接する孔の間に1個だけ備えられている。すなわちX方向の偏向電極ペアXA77およびXB78は孔をはさんで1個おきに配置されている。Y方向の偏向電極ペアYA74およびYB75についても同様である。孔の間にX方向、Y方向にそれぞれ2個づつの偏向電極を設けても良い。
 イメージセンサ46の入射面は図12に示す真空管(撮像管)47の内部にある。イメージセンサは裏面照射型で開口率100%、画素サイズは9ミクロン×9ミクロン、受光面のサイズは18mm×18mmである。したがって画素数は2000×2000画素(400万画素)である。イメージセンサの画素ピッチは、遮光層の孔の配置で決まる実際の画素ピッチよりも十分小さくなければならない。
 図15は裏面照射撮像素子の断面図83の1画素84を示している。電子は裏面85から入射する。裏面の画素と画素の境界にオキサイド(2酸化シリコン)からなる深いトレンチ86があり、電子の衝突で生じる2次電子の拡散を防いでいる。このようなトレンチを入れると暗電流が大きくなるが、超高速撮影ではフレーム間隔が非常に短いので、暗電流の影響は小さい。しかし光子計数感度を確保するために、撮像素子は―50度Cに冷却されている(図示していない)。
 生成した電荷は、一旦画素中央の電荷収集ゲート87に集められる。その後、周辺に置かれた読み出し回路88を経由して画素外に読み出される。
 遮光層の孔に入射した光により200×200個の電子束が出射される。200×200個の電子束は2KeVのエネルギーで加速されイメージセンサの裏面に直入する。1個の入射電子の入射でイメージセンサ内に多数の2次電子が発生する。これにより、この撮像系は光子検出感度となっている。
 図16はホールアレイの開いたネオジウム磁石89である。厚さは10mmである。図17はこれを純鉄からなるヨーク90で囲み、永久磁界レンズアレイ91としたものである。このような形状のヨークで囲むことにより、上面も下面もS極になり磁界の漏れがなくなる。磁界のもれがなくなるということは外部磁界の変動の影響も受けにくいということである。このように永久磁界レンズはネオジウム磁石とヨークからなる。
  (第1の実施の形態の動作)
 第1の実施の形態の動作について説明する。2対の偏向電極の偏向電圧の時間変化92を図18に示す。図11に示された全ての機能要素は既に起動しているものとしている。X方向偏向電圧93はサインカーブ形状、Y方向偏向で夏94はコサインカーブ形状で、振幅95は単調減少で小さくなって、3周期96後にもとに戻る。図では電圧曲線が折れ曲がり、急激に振幅が回復しているが、実際は滑らかな遷移状態を経て回復する。
 この2対の電圧波形は、偏向電極の制御電圧波形の生成手段62で生成される。電圧の片側振幅の最大値は1Vで全振幅は2Vである。サイン、コサイン波形の周期は50ピコ秒である。
 3周期であるから渦巻きの始点に復帰するまでの時間は150ピコ秒でる。連続撮影枚数は50フレームである。したがって時間分解能は3ピコ秒である。
 このとき電子ビームの軌跡は図19に示すループ化された渦巻き形状97を描く。振幅がもとに戻るとき、渦巻き軌跡と帰路軌跡が重複するが、交角が90度に近いので、渦巻き軌跡上の交点の前後の信号で、交点の信号を推定できる。またこの値から、帰路の信号を推定することができる。この部分の信号復元精度は高くないが、連続上書き記録することができるという利点は大きい。
 図19の場合は、電子ビームの配置は正方格子点上になっている。図9の千鳥配置では結像面の最大可能利用率は約90%であったが、正方格子配置の場合は約80%である。しかし、電子ビームの経路のデッドスペースも水平、垂直に直交する直線になるので、配線やローカル回路の配置設計が容易になる。
(第2の実施の形態)
 本発明の第2の実施の形態を図20に示す。光電面98の後方にMCP99を備える。偏向電極100はMCPの後段に備える。また光電面の直後の孔の影になっている部分に配線と回路層101を備えている。
 光電面とMCPの間には7.5Vの電圧が印加されており、生成した200×200個の電子束は一旦MCPに入射し、アバランシュ増幅される。それが偏向電極によりイメージセンサの裏面にループを成す軌跡を描く。これにより、非常に高い感度が得られる。
 第2の実施の形態の特徴は超高感度だけにとどまらない。第1の実施例よりはるかに高速にゲーティングができる。
 通常のMCP型イメージインテンシファイヤでは、光電面の駆動電圧を周囲から送る。光電面層の電気抵抗は金属に比べて桁違いに大きい。金属細線を光電面層に埋め込むこともできるが、電気抵抗を下げるために線幅を広くすると実質開口率が下がり、感度が低下する。
 図21に回路層101に備えられている回路102の1例を示す。この回路102を各孔に対して一組づつ作り込んでいる。入射光を一旦スポット化することにより、感度(実質開口率)を損なうことなく、回路層101を挿入するための十分広いスペースが得られる。
 回路102は電源線103、グランド線104、信号線105、トランジスタスイッチ107、102、出力線108からなる。
 信号線の電圧振幅は1.5Vである。この信号がトランジスタスイッチにより光電面の電圧振幅である7.5Vの電圧をオンオフする。信号線電圧が0Vのときはスイッチ107がオンになり、グランド線104から0Vの電圧が出力線に供給され、それが光電面に供給される(この部分は図示していない)。信号線電圧が1.5Vのときはスイッチ106がオンになり電源線103から7.5Vの電圧が光電面に供給される。
 信号線の電圧振幅は光電面の電圧振幅の1/5であり、信号線とトランジスタスイッチの電気容量は光電面のそれよりはるかに小さい。したがって、比較的幅広の金属配線で電気抵抗を下げて光電面電圧のゲーティング速度を上げるだけではなく、適切な電子回路を組み入れることでさらに高速のゲーティングができる。
 現在のICの製造技術を使えば、電源用のキャパシタや、電圧レベルシフタ等を組み入れることもできる。またこれらの回路は1個の孔ごとではなく、孔のグループに対して1組備えても良い。
 第2の実施の形態の偏向電圧は、サイン波形と、周期が2倍のコサイン波形である。したがって、電子ビームの軌跡は図10に示す8の字型である。
(第3の実施の形態)
 本発明の第3の実施の形態を図22に示す。第3の実施の形態は透過型電子顕微鏡(TEM)である。非特許文献1に示されている超高速TEM(図5)との違いは、平行化電子レンズ109、電子束のスポット化手段110と偏向手段111を備えていることである。
スポット化手段は電子束の遮蔽層に規則正しく開けられた孔である。偏向手段は図10に示す偏向電極対74、75、77、78である。これらに図11の電圧を印加することにより、スポット化された各電子束はドーナッツ状の走査軌跡112を描く。
(その他の実施の形態)
 以上の例は2方向偏向の場合について説明したが、デッドスペースにおける准等距離配線や、回路の作り込みや、磁界電子レンズの採用は、1方向偏向の通常のストリークカメラに対しても適用できる。
 前記の第3の面が試料面となる試料台と、該試料台の移動手段と、1列もしくは2列の永久磁界レンズアレイと、該永久磁界レンズの各々の側面にプローブを備える走査型電子顕微鏡(SEM)。高速走査ができる。永久磁界レンズは、電源ノイズや外部磁界の影響などを受けないので、安定で高精度の計測ができる。
 1 1方向走査型の真空管
 2 入射窓
 3 光電面
 4 電子束
 5 偏向電極対
 6 1方向走査型の真空管の電子束走査方向
 7 2方向走査型の真空管の電子束のY方向の走査方向
 8 2方向走査型の真空管の電子束のX方向の走査方向
 9 2方向走査型の真空管の電子束のX方向の偏向電極
 10 2方向走査型の真空管の電子束のY方向の偏向電極
 11 フレーム走査型マルチフレーミングカメラによる出力画像
 12 偏向電圧の立ち上がり時の時間遅れ
 13 偏向電圧の立ち上がり時のリンギング
 14 低電圧と高電圧の判定の閾値
 15 超高速マルチフレーミング電子顕微鏡
 16 鏡筒
 17 電子銃
 18 試料ホールダー
 19 拡大電子レンズ系
 20 偏向電極
 21 蛍光板
 22 鉛ガラス
 23 カメラ用レンズ
 24 カメラ
 25 電子銃励起用短パルスレーザ
 26 パルスレーザ光
 27 パルス電子束
 28 試料刺激用レーザ
 29 試料
 30 超高速TEMの画像
 31 斜光層の孔の配列
 32 斜行走査の走査方向
 33 斜行走査の電子束の軌跡
 34 重複しない連続画像信号
 35 遮光層
 36 オンチップマイクロレンズ
 37 光ガイド
 38 第1の実施の形態
 39 入射線
 40 入射光学系
 41 フィルター
 42 レンズ
 43 絞り
 44 機械シャッター
 45 カメラ部
 46 イメージセンサ
 47 撮像管
 48 制御部
 49 撮影制御部
 50 信号読み出し制御部
 51 総合制御部
 52 バッファメモリ
 53 通信制御部
 54 信号処理部
 55 画像情報メモリ(内蔵)
 56 外部メモリ
 57 マウス
 58 コンソール
 59 ディスプレイ
 60 照明
 61 デジタル駆動信号生成部
 62 アナログ駆動信号生成部(2対の偏向電圧生成手段)
 63 カメラへの入射光
 64 入射面ガラス
 65 結像面
 66 オンチップマイクロレンズ
 67 永久磁界レンズアレイ
 68 遮光層
 69 遮光層の孔
 70 孔のピッチ
 71 孔の直径
 72 光電面
 73 偏向電圧の送付配線
 74、75 Y方向の偏向電極ペア
 76 電子束
 77、78 X方向の偏向電極ペア
 79 偏向電圧の送付配線
 80 H型配線
 81 H型配線の始端
 82 H型配線の終端
 83 裏面照射撮像素子の断面図
 84 1画素
 85 裏面照射撮像素子の裏面(入射面)
 86 裏面の画素境界のトレンチ
 87 電荷収集ゲート
 88 信号読み出し回路
 89 ホールアレイを備えるネオジウム磁石
 90 ヨーク
 91 永久磁界レンズアレイ
 92 第1の実施例の2対の偏向電圧の時間変化
 93 X方向の偏向電圧の時間変化
 94 Y方向の偏向電圧の時間変化
 95 偏向電圧の振幅の時間変化
 96 偏向電圧の3周期(振幅回復の1周期)
 97 ループ化された渦巻き型軌跡
 98 光電面
 99 MCP
 100 偏向電極
 101 孔の影になっている部分の配線と回路層
 102 回路層に備えられている回路
 103 電源線
 104 グランド線
 105 信号線
 106、107 トランジスタスイッチ
 108 出力線
 109 平行化電子レンズ
 110 電子束のスポット化手段
 111 偏向手段
 112 ドーナッツ状の走査軌跡

Claims (10)

  1.  第1の入射面上にある重複しないM(M≧2)個の第1の面要素の各々に入射する第1の入射線のそれぞれを、第2の入射面上にあって該第1の面要素の面積よりも小さい面積の第2の面要素に照射させる第1のスポット化手段と、
     第1の入射線が電子線でない場合は、前記の第2の面要素に入射した第1の入射線の強度に応じた電子ビームを生成し、第1の入射線が電子線の場合は、第1の入射線を透過させてそのまま電子ビームとする電子ビーム生成手段と、
     前記の電子ビームの各々を第3の入射面上で走査させる偏向手段と、
     前記の第2の面要素、もしくは前記の電子ビームの経路と実質的に重複しない空間に、少なくとも1個の、単一の始点から枝分かれして多数の終端を備え、該始点から全ての終端までの距離の標準偏差が、平均値よりも小さいことを特徴とする配線を備える高速撮影装置。
  2.  第1の入射面上にある重複しないM(M≧2)個の第1の面要素の各々に入射する第1の入射線のそれぞれを、第2の入射面上にあって該第1の面要素の面積よりも小さい面積の第2の面要素に照射させる第1のスポット化手段と、
     第1の入射線が電子線でない場合は、前記の第2の面要素に入射した第1の入射線の強度に応じた電子ビームを生成し、第1の入射線が電子線の場合は、第1の入射線を透過させてそのまま電子ビームとする電子ビーム生成手段と、
     前記の電子ビームの各々を第3の入射面上で2つの異なる方向に走査させる2対の偏向手段と、
     前記の第3の入射面上で、前記の電子ビームの1個の中心点の走査軌跡が、渦巻き形状、もしくは渦巻きの先端と末端を接続した形状をなすように、前記の偏向手段の制御電圧波形を生成する手段を備えることを特徴とする高速撮影装置。
  3.  第1の入射面上にある重複しないM(M≧2)個の第1の面要素の各々に入射する第1の入射線のそれぞれを、第2の入射面上にあって該第1の面要素の面積よりも小さい面積の第2の面要素に照射させる第1のスポット化手段と、
     第1の入射線が電子線でない場合は、前記の第2の面要素に入射した第1の入射線の強度に応じた電子ビームを生成し、第1の入射線が電子線の場合は、第1の入射線を透過させてそのまま電子ビームとする電子ビーム生成手段と、
     前記の電子ビームの各々を第3の入射面上で2つの異なる方向に走査させる2対の偏向手段と、
     前記の2対の偏向手段の一方にサイン波形からなる制御電圧を生成して送付し、他方に前記のサイン波形と周期や振幅が同じ、もしくは異なるコサイン波形からなる制御電圧の組を少なくとも含む制御電圧を生成して送付する手段を備えることを特徴とする高速撮影装置。
  4.  第1の入射面上にある重複しないM(M≧2)個の第1の面要素の各々に入射する第1の入射線のそれぞれを、第2の入射面上にあって該第1の面要素の面積よりも小さい面積の第2の面要素に照射させる第1のスポット化手段と、
     第1の入射線が電子線でない場合は、前記の第2の面要素に入射した第1の入射線の強度に応じた電子ビームを生成し、第1の入射線が電子線の場合は、第1の入射線を透過させてそのまま電子ビームとする電子ビーム生成手段と、
     前記の電子ビームの各々を第3の入射面上で走査させる偏向手段と、
     前記の第3の入射面上の電子ビームの直径を、前記の電子ビーム生成手段の位置での直径よりも小さくする第2のスポット化手段を備え、該第2のスポット化手段が、少なくとも磁界レンズを備えることを特徴とする高速撮影装置。
  5.  請求項4に記載の装置であって、
     前記の磁界レンズが、1枚の複数の孔の開いた永久磁石を備えることを特徴とする高速撮影装置。
  6.  請求項1から請求項5までのいずれかの請求項に記載の装置であって、
    前記の第2の面要素、もしくは前記の電子ビームの経路と実質的に重複しない空間に、半導体回路を備えることを特徴とする高速撮影装置。
  7.  請求項1から請求項6までのいずれかの請求項に記載の装置であって、
     前記の第3の入射面が裏面照射撮像素子の裏面であることを特徴とする高速撮影装置。
  8.  請求項7に記載の装置であって、
     前記の第3の入射面への電子ビームの打ち込みエネルギーが4keV以下であることを特徴とする高速撮影装置。
  9.  請求項7に記載の装置であって、
     裏面の画素と画素の境界位置に、信号電荷の水平方向の移動の抑制手段を備えることを特徴とする高速撮影装置。
  10.  請求項1から請求項6までのいずれかの請求項に記載の装置であって、
    パルス電子銃と、該パルス電子銃で生成したパルス電子束を面的に広げる手段と、該面的に広げられたパルス電子束が通過する試料台とを備えることを特徴とする高速撮影装置。
PCT/JP2015/081636 2015-06-19 2015-11-10 高速撮像装置 WO2016203667A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015136499A JP2018129559A (ja) 2015-06-19 2015-06-19 高速撮像装置
JP2015-136499 2015-06-19

Publications (1)

Publication Number Publication Date
WO2016203667A1 true WO2016203667A1 (ja) 2016-12-22

Family

ID=57545783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081636 WO2016203667A1 (ja) 2015-06-19 2015-11-10 高速撮像装置

Country Status (2)

Country Link
JP (1) JP2018129559A (ja)
WO (1) WO2016203667A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117615266A (zh) * 2024-01-19 2024-02-27 珠海燧景科技有限公司 图像传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112060A (en) * 1979-12-13 1981-09-04 Akademii Dea Buitsusenshiyafut Timingly dispersing sensor tube
JPH02227945A (ja) * 1989-01-09 1990-09-11 Tektronix Inc ストリーク管ターゲット
JPH06275216A (ja) * 1993-03-23 1994-09-30 Hamamatsu Photonics Kk ストリーク管
JP2001053223A (ja) * 1999-08-13 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> 光モジュール
JP2001196018A (ja) * 2000-01-12 2001-07-19 Hamamatsu Photonics Kk ストリーク装置
JP2001230322A (ja) * 2000-02-14 2001-08-24 Matsushita Electric Ind Co Ltd 半導体集積回路装置及び半導体集積回路配線装置
WO2013129559A1 (ja) * 2012-02-29 2013-09-06 Etoh Takeharu 固体撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112060A (en) * 1979-12-13 1981-09-04 Akademii Dea Buitsusenshiyafut Timingly dispersing sensor tube
JPH02227945A (ja) * 1989-01-09 1990-09-11 Tektronix Inc ストリーク管ターゲット
JPH06275216A (ja) * 1993-03-23 1994-09-30 Hamamatsu Photonics Kk ストリーク管
JP2001053223A (ja) * 1999-08-13 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> 光モジュール
JP2001196018A (ja) * 2000-01-12 2001-07-19 Hamamatsu Photonics Kk ストリーク装置
JP2001230322A (ja) * 2000-02-14 2001-08-24 Matsushita Electric Ind Co Ltd 半導体集積回路装置及び半導体集積回路配線装置
WO2013129559A1 (ja) * 2012-02-29 2013-09-06 Etoh Takeharu 固体撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAGRANGE THOMAS ET AL.: "Approaches for ultrafast imaging of transient materials processes in the transmission electron microscope", MICRON, vol. 43, no. 11, November 2012 (2012-11-01), pages 1108 - 1120, XP028414550 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117615266A (zh) * 2024-01-19 2024-02-27 珠海燧景科技有限公司 图像传感器
CN117615266B (zh) * 2024-01-19 2024-04-16 珠海燧景科技有限公司 图像传感器

Also Published As

Publication number Publication date
JP2018129559A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
KR102454320B1 (ko) 복수의 하전 입자 빔들을 이용하여 샘플을 검사하는 장치 및 방법
JP6129334B2 (ja) パルス照射を使用する移動画像の高速取得のための方法および装置
TW579536B (en) Examining system for the particle-optical imaging of an object, deflector for charged particles as well as method for the operation of the same
CN104488064A (zh) 用于检查样品的表面的设备及方法
US10903042B2 (en) Apparatus and method for inspecting a sample using a plurality of charged particle beams
Nagel et al. The dilation aided single–line–of–sight x–ray camera for the National Ignition Facility: Characterization and fielding
JP2020074331A (ja) 電子衝撃検出器を動作させる方法
CN110361413A (zh) 在透射带电粒子显微镜中研究动态试样
CN108013891B (zh) 一种x射线诊断装置
JP2006260957A (ja) 電子線装置
CN108292579B (zh) 带电粒子束装置
Hilsabeck et al. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation
WO2016203667A1 (ja) 高速撮像装置
JP2007242252A (ja) 質量分析装置
JP2019175861A (ja) 収差補正およびイオンダメージ軽減のためのイメージインテンシファイア管設計
US7566873B1 (en) High-resolution, low-distortion and high-efficiency optical coupling in detection system of electron beam apparatus
Walasek-Hoehne et al. Video Cameras used in Beam Instrumentation--an Overview
Etoh et al. A 100 Mfps image sensor for biological applications
JP4113229B2 (ja) 基板検査方法および基板検査システム
JP3851740B2 (ja) 基板検査装置
JP2011103273A (ja) エネルギーフィルタを用いた電子エネルギー損失分光装置
Bradley et al. Development and characterization of a single-line-of-sight framing camera
JP4327625B2 (ja) 光の位置情報検出装置
JP2019161211A (ja) 高速イメージセンサ
Kamiyama et al. Improvement of vacuum tube type neutron image intensifier for accelerator-based neutron imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP