JP3851740B2 - 基板検査装置 - Google Patents

基板検査装置 Download PDF

Info

Publication number
JP3851740B2
JP3851740B2 JP03312599A JP3312599A JP3851740B2 JP 3851740 B2 JP3851740 B2 JP 3851740B2 JP 03312599 A JP03312599 A JP 03312599A JP 3312599 A JP3312599 A JP 3312599A JP 3851740 B2 JP3851740 B2 JP 3851740B2
Authority
JP
Japan
Prior art keywords
electron beam
image
resolution
substrate
mapping projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03312599A
Other languages
English (en)
Other versions
JP2000232140A (ja
Inventor
崎 裕一郎 山
好 元 介 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03312599A priority Critical patent/JP3851740B2/ja
Publication of JP2000232140A publication Critical patent/JP2000232140A/ja
Application granted granted Critical
Publication of JP3851740B2 publication Critical patent/JP3851740B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビームを用いた基板検査装置および基板検査システム並びに基板検査方法に関し、特に、半導体ウェーハやフォトマスクの欠陥の検査に好適な検査装置および検査システム並びに検査方法に関するものである。
【0002】
【従来の技術】
半導体装置の高集積度化に伴い、半導体ウェーハやフォトマスク上の欠陥、異物の検出に要求される感度がますます高くなっている。一般に、製品の品質上重大な不良を発生させるパターン欠陥および異物を検査するには、パターン配線幅の1/2以下の検出感度が必要となるため、1/4μm以下のデザインルールの半導体ウェーハの欠陥検査において、近年は、光学式によるパターン欠陥検査の限界に近づいてきている。そこで、光学式に替わり、電子ビームを用いたパターン欠陥検査装置が開発されており、特開平5−258703号公報、特開平7−249393号公報などに提案されている。
【0003】
電子ビームによる半導体ウェーハのパターン欠陥検査の高速処理を達成させるためには、特開平7−249393号公報に提案の電子光学系の構成が最も有力な手段と予想される。その実現のために、特願平9−300275では光学系の提案もなされている。ここでは、特願平9−300275記載の電子ビーム検査装置を図6に示す。
【0004】
同図に示す検査装置は、その概略構成として、一次電子ビーム照射部とその制御部、試料搭載用のステージ12とその制御部、二次電子、反射電子および後方散乱電子ビーム写像投影光学部(以下、単に写像投影光学部という)とその制御部、電子ビーム検出部とその制御部、さらに、電子ビーム偏向部とその制御部を備えている。
【0005】
一次電子ビーム照射部は、ステージ12に搭載された半導体ウェーハ又はフォトマスク等の試料11の表面に垂直な方向に対し、一定の角度θ(例えば30〜40度)を有するように斜め上方向に配置されている。
【0006】
この一次電子ビーム照射部は、電子銃と、2段構成の四極子レンズとを備えている。より具体的な構成として、電子銃は、100μm×10μmの矩形の電子放出面を有するランタンヘキサボライド(以下、LaB6という)陰極1と、矩形開口を有するウェーネルト(Wehnelt)電極2と、矩形開口部を有する陽極3と、光軸調整用の偏向器4とを備えている。ここで、陰極1は矩形の電子放出面を有しているので、一次電子ビームの断面形状は矩形となる。矩形の他に、例えば線状、長楕円等の細長形状の断面を有する電子ビームを用いると、電流密度が高くなるので、検出信号のS/N比を高くすることができる。しかし、細長形状に限らず様々な断面形状の電子ビームを用いてもよい。
【0007】
LaB6陰極1、ウェーネルト電極2、陽極3、偏向器4の動作は、制御部7〜10により制御され、一次電子ビーム31aおよび31bの加速電圧、エミッション電流、光軸が調整される。
【0008】
また、2段構成の静電型四極子レンズ5および6と、このレンズ5および6の動作を制御する制御部10とが設けられている。陰極1から放出された一次電子ビーム31aおよび31bが、試料11面上で約100μm×25μmの矩形ビームを形成するように、レンズ5および6によって集束される。集束された一次電子ビームは、電子ビーム偏向部27に入射する。このように、一次電子ビーム照射部から照射された一次電子ビームは、試料11面に対して斜めの角度θ方向から電子ビーム偏向部27に入射される。ここで、四極子レンズに限らず、1つのレンズ、あるいは2つ以上の多極子レンズで電子光学レンズ系が構成されていてもよい。
【0009】
一次電子ビーム31a、32bが電子ビーム偏向部27に入射すると、試料11の表面に対してほぼ垂直になるように偏向された後、電子ビーム偏向部27を出射する。出射した一次電子ビームは、電源15により所定の電圧を印加された回転対称静電レンズ14によって縮小されて、試料11表面上に垂直に照射される。後述するように、試料11表面から発生する二次電子、反射電子および後方散乱電子(以下、単に二次/反射/後方散乱電子という)が写像投影光学系に取り込まれる角度は、試料11表面に対して垂直である。よって、試料11への一次電子ビームの入射角と、試料11表面から発生する二次/反射/後方散乱電子が写像投影光学系に取り込まれる角度とは、共に試料11表面に対して垂直である。しかし、この二つの角度は必ずしも完全に一致している必要はなく、−5度から+5度の範囲内に納まっていればよい。
【0010】
試料11には、電源13により所定の電圧が印加されている。ステージ12は、制御部45によってX−Y平面上の移動が制御される。ここで、試料11に印加すべき電圧値は、後述する写像投影光学部の解像性能に基づいて決定する必要がある。例えば、0.1μm以下の解像度を得るためには、二次/反射/後方散乱電子ビーム(二次電子ビーム)は5kV程度の電圧を有することが要求されるので、試料に印加する電圧として約5kVが望ましい。しかし、一方で二次電子ビームのエネルギーは試料11に印加する電圧と、試料11へ入射される一次電子ビームが有する電圧との差によって決定される。試料11として半導体ウェーハを検査する場合には、電子ビームの照射ダメージの低減および帯電防止の観点から、半導体ウェーハへの印加電圧は800V程度が一般に用いられている。従って、一次電子ビームの電圧は5.8kV程度が望ましいことになる。
【0011】
一次電子ビーム31aおよび31bが試料11の表面上に照射されると、試料11の表面からウェーハ表面の形状/材料/電位情報をもった二次/反射/後方散乱電子32aおよび32bが放出される。この電子は、上述したように電源13により試料11に印加された電圧により試料11と静電レンズ14との間に発生している加速電界によって加速され、さらに静電レンズ14によって無限遠に焦点をもつ軌道を描きながら二次電子ビームとして電子ビーム偏向部27に入る。
【0012】
ここで、電子ビーム偏向部27は、制御部43aおよび43b、44aおよび44bの制御によって、試料11側から入射された二次電子ビーム32aおよび32bが直進するように動作する。この結果、二次電子ビーム32aおよび32bは、電子ビーム偏向部27の中を直進して写像投影光学部に入射される。
【0013】
この写像投影光学部は、その光軸が試料11の表面に対して垂直方向になるように配置されており、3段構成の回転対称静電レンズ16、18および20を備えている。二次電子ビーム32aおよび32bは、静電レンズ16、18および20によって拡大される。ここで、静電レンズ16、18および20の電圧は、それぞれ制御部17、19および21により制御される。
【0014】
拡大された二次電子ビーム32aおよび32bは、電子ビーム検出部により検出される。電子ビーム検出部は、MCP(Micro-Channel Plate)検出器22、蛍光面23、ライトガイド24およびCCD(Charge Coupled Device)カメラ25を備えている。MCP検出器22に入射された二次電子ビーム32aおよび32bは、入射時の電子量の104倍から106倍に増幅されて蛍光面23を照射する。蛍光面23に二次電子ビームが照射されると蛍光像が発生し、ライトガイド24を介してCCDカメラ25がこの蛍光像を検出する。さらにCCDカメラ25は、制御部27の制御に従い、検出した蛍光像を画像データとして信号制御部28を介してホストコンピュータ29に転送する。ホストコンピュータ29は、表示器30上への画像表示と、画像データ保存および画像処理等の処理を行う。ここで、CCDエリアセンサによる画像取り込みを例に挙げているが、基板ステージ12の移動と同期させて蛍光像をTDICCDセンサ(Time Delay Integration Charge Coupled Device Sensor)に取込むことも可能である。この手法は、より高速で検査する場合に非常に有効な手段である。
【0015】
ここで、電子ビーム偏向部27の詳細な構造について、図7の横断面図、および図7のA−A線に沿う縦断面を示した図8を用いて説明する。図7に示すように、電子ビーム偏向部27の場は、上記写像投影光学部の光軸に垂直な平面内において、電界と磁界とを直交させた構造、即ちE×B構造とする。電界は平行平板電極40aおよび40bにより発生させる。平行平板電極40aおよび40bが発生する電界は、それぞれ制御部43aおよび43bにより制御される。一方、電界発生用の平行平板電極40aおよび40bと直交するように、電磁コイル41aおよび41bを配置させることにより、磁界を発生させている。
【0016】
図7のA−A線に沿う縦断面における電子ビームの挙動は、図8に示されるようである。照射された一次電子ビーム31aおよび31bは、平行平板電極40aおよび40bが発生する電界と、電磁コイル41aおよび41bが発生する磁界とによって偏向された後、静電レンズ14を通過して試料11面上に対して垂直方向に入射する。一方、試料11面で発生した二次/反射/後方散乱電子は、試料11と静電レンズ14との間において発生した加速電界で加速されて試料11面に対して垂直な方向に進み、二次電子ビーム32aおよび32bとして静電レンズ14を通過した後に電子ビーム偏向部27に入射する。
【0017】
一次電子ビーム31aおよび31bの電子ビーム偏向部27への入射位置および角度は、電子のエネルギーが決定されると一義的に決定される。さらに、二次電子ビーム32aおよび32bが直進するように、電界および磁界の条件、即ちvB=eEとなるように平行平板電極40aおよび40bが発生する電界と、電磁コイル41aおよび41bが発生する磁界とを、それぞれの制御部43aおよび43b、44aおよび44bが制御することで、二次電子ビームは電子ビーム偏向部27を直進して、写像投影光学部に入射する。ここで、vは電子32の速度(m/s)、Bは磁場(T)、eは電荷量(C)、Eは電界(V/m)である。
【0018】
以上の構成により、特願平9−300275記載の電子ビーム検査装置は、試料表面に照射する矩形ビームのアスペクト比を適当に設定し、かつ電子ビーム検出手段において並列に信号処理することで高速にウェーハパターンの欠陥検査を出来ることを特徴としている。
【0019】
基板検査装置の写像投影光学系に設定される拡大率は、電子ビーム検出系の分解能、即ち、2点または2線を見分ける能力によって決定される。上述した特願平9−300275に記載の写像投影光学部においては、2次電子ビーム32a,32bにより形成される電子像34をMCP22の入射面に結像させる。
【0020】
図9に既知の電子ビーム検査装置に備えられた電子ビーム検出器の一例のより詳細な構成を示す。同図に示す電子ビーム検出器は、MCP502,503、蛍光板504、ライトガイド505、レンズ506、CCDカメラ507を備えている。この電子ビーム検出器は、MCPの増倍率(gain)を得るために、MCPを2段(502,503)に組み合わせた構成になっている。MCP502,503は、いずれも内径10μm、長さ600μmの空芯のガラスチューブを接着して形成したものであり、チューブの内面には2次電子放出効率の高い材質が塗布されている。MCP502の電子入射面は接地されて0電位となっており、各MCPの電子出射面は、それぞれ接続される電源509,510によってMCP502の電子入射面に対して段階的に増大する正の電位に保たれており、これにより、チューブ内には入射面から出射面に向けた加速電界が形成される。
【0021】
入射された電子501は一段目のMCP502の各チューブ内で散乱を繰り返しながら、増倍されてMCP502の出射面から出射され、二段目のMCP503に入射されて増倍される。二段目のMCP503の出射面から放出された電子は、さらに接続される電源511で形成された加速電解により蛍光板504の蛍光面に向けて加速されて、この蛍光面を照射して発光させる。このようにして、MCPの入射面に結像された電子像をMCPで増倍させながら、蛍光面を発光させることで光学像に変換させることができる。MCPは分解能を維持したまま、電子増倍できることから、電子像のS/N向上には非常に有効な手段である。この蛍光面で発生した光学像は、光学レンズ506もしくは縮小型FOP(taperd fiber optical plate)によって縮小し、その光学像をラインセンサ、TDIセンサ、エリアセンサ等を備えたCCDカメラ507にて検出する。
【0022】
このように従来の技術においては、電子像の検出に当っては、電子ビームをエリアセンサ等に直接照射するのでなく、一旦光学像に変換した後にCCDカメラで光電変換することにより電子ビーム画像を取得する方法を採用している。これは、CCD素子の表面に多数のポリシリコン電極を形成するために、この電極に電子ビームを直接照射してもその大部分が転送電極に吸収されてしまい、光電変換部に十分な電子ビームが到達せず、良好な電子ビーム画像を取得するために十分な信号電荷を発生させることができない、というきわめて感度の低い構成となるからである。
【0023】
図10に、一般的なCCD素子の電極構造の一具体例を示す。同図に示すCCD素子は、3相駆動方式のCCD素子であり、表面部に不純物拡散層が形成されたシリコン基板100上に酸化膜101を介してゲート/転送電極102がポリシリコンで形成されている。被写体から照射された光は、ポリシリコンのゲート電極を通過して不純物拡散層で電子−正孔対を発生させ、このうちの電子が信号電荷として酸化膜101と不純物拡散層との界面に蓄積され、各転送電極に3相のクロックパルスP1〜P3をそれぞれ印加することにより信号電荷を順次転送していく構造になっている。
【0024】
電子ビームを高速で走査させるためには、この走査速度に同期するように信号電荷を効率良く転送させることが不可欠の条件となり、転送電極102を相互に接近させて多数配列することとしている。この結果、CCD素子の表面領域の大部分はポリシリコン電極に被覆される。従って、CCD素子の表面に電子ビームを照射してもその大部分はポリシリコン電極で吸収され、電子−正孔対が十分に形成されないので、電子画像の形成に必要な量の信号電荷が発生しない。さらに、電子ビームをCCD素子に照射させた場合には、素子表面の絶縁膜やMIS(Metal Insulator Semiconductor)構造の酸化膜でチャージアップ等の問題が発生する。以上の理由から従来は電子ビームから信号電荷を直接取得することなく、光画像に変換した後CCD素子で画像信号を取得していた。
【0025】
【発明が解決しようとする課題】
しかしながら、従来の電子ビーム検出器では、MCPの分解能が40μm程度しかないために、写像投影光学系において、ウェーハ上のパターンからの電子像を大幅に拡大してMCP上に結像させる必要がある。例えば、ウェーハ上のパターン像で0.1μmの分解能を得るためには、写像投影光学系にて400倍以上に拡大させてMCP入射面で結像させなくては、分解能の劣化を発生させてしまう。MCPの分解能は、(1)MCPの段間での電子の漏れ、(2)MCP出射面から蛍光面までの間に電子ビームが拡がることによる電子像のぼけの2つの要因によって決定される。これらのぼけは電子の増倍率にも影響され、この増倍率が大きいほど分解能は劣化する。
【0026】
この一方、写像投影光学系は、その拡大率が大きいほど軸外収差および像面湾曲を増大させる特徴を有している。そのため、MCPの分解能に対応して電子像を拡大する光学系では、光学系自身の分解能の低下および電子像の歪を発生させるという問題点があった。
【0027】
このような問題点に対し、MCPの分解能を向上させる研究が進められており、将来的には25μm程度の高分解能化が可能であるといわれている。
【0028】
しかし、図9に示すように、MCPを用いた電子ビーム検出器では、写像投影光学系で拡大させた電子像を光学像に一旦変換した後、再度光学レンズまたはFOPなどにより縮小させるという構造を採用するため、構成が複雑になり、検出器全体のサイズが大きくなる上、蛍光面で残像現象が発生し、CCDカメラで画像を取込んだ直後も所定時間だけ蛍光像が残存するので、高速での画像取込みが困難であり、装置の処理速度の向上を妨げるという問題があった。
【0029】
さらに、写像投影光学系で電子像を拡大したにもかかわらず、CCDカメラ上で結像させるため、レンズまたはFOPなどより光学像を縮小させる必要があり、効率が悪い上、レンズ等により透過率が低下する、という問題点があり、従来のMCPを用いた電子ビーム検出器では限界が見えてきている。
【0030】
本発明は上記事情に鑑みてなされたものであり、その目的は、分解能に優れ、かつ検査効率の高い基板検査装置およびこれを備えた基板検査システム並びに基板検査方法を提供することにある。
【0031】
【課題を解決するための手段】
本発明は、以下の手段により上記課題の解決を図る。
【0032】
即ち、本発明によれば、
試料である基板に電子ビームを一次電子ビームとして照射する一次電子ビーム照射手段と、前記一次電子ビームの照射を受けて、前記基板から発生する二次電子および反射電子を導いて二次電子ビームとして電子像を拡大投影する写像投影手段と、前記写像投影手段により拡大投影された前記二次電子ビームを、光学像への変換を介することなく画像信号に変換する電子ビーム検出手段と、前記電子ビーム検出手段から供給される前記画像信号を受けて電子ビーム画像を表示する表示手段と、を備え、前記電子ビーム検出手段は、前記二次電子ビームが入射する入射面と反対側の表面部に信号電荷を発生させる信号電荷発生部と、前記信号電荷を転送する電荷転送部とを含む薄型イメージセンサを含み、前記信号電荷発生部は、厚さが前記イメージセンサの分解能と略同一以下である半導体領域に形成されることを特徴とする、基板検査装置が提供される。
【0040】
【発明の実施の形態】
以下、本発明の実施の一形態について図面を参照しながら説明する。なお、以下の各図において同一の部分には同一の参照番号を付してその説明を適宜省略する。
【0041】
図1は、本発明に係る基板検査システムの実施の一形態のブロック図である。同図に示す基板検査システムは、その概略構成として、電子ビーム照射部とその制御部、電子ビーム偏向部とその制御部、ステージ12とその制御部、写像投影光学部とその制御部、本実施形態において特徴的な電子ビーム検出部とその制御部、およびホストコンピュータ29と表示器30とメモリ63とを備えている。
【0042】
以上の構成のうち、電子ビーム照射部とその制御部、電子ビーム偏向部とその制御部、ステージ12とその制御部、写像投影光学部とその制御部、および、ホストコンピュータ29と表示器30は、図6に示す基板検査装置と同様であるためこれらの説明は省略し、以下では電子ビーム検出部とその制御部に関して詳細に説明する。
【0043】
本実施形態の基板検査システムは、写像投影光学部により拡大投影された電子像を電子ビームに感度の高い裏面照射型のCCD素子を備えたCCDカメラ60に直接照射させて画像信号を取得する構造を採用している。CCDカメラ60は、CCDカメラ制御部61により制御され、取得した画像信号を画像処理部62に供給する。画像処理部62は、画像信号に対して補正等の各種画像処理を行い、画像データとしてホストコンピュータ29に転送する。ホストコンピュータ29は、表示器30上への画像表示と、画像データ処理およびメモリ63への画像データ格納等の欠陥検査処理を行う。
【0044】
裏面照射型CCD素子とは、微少な強度のX線やUV光を検出するため開発されたものであり、基板側の裏面をエッチング処理により薄くし、この裏面へX線等を照射させることにより感度を向上させたものである(M.Lemonier et.al.,“Thinned Backside-Bombarded RGS-CCD for Electron Imaging",Advanced in Electronics and Electron Physics, vol.64A,pp257-265,1985)。
【0045】
裏面照射型CCDの構造および動作を図3の模式図(J.Janesick,“CCD charge collection efficiency and the photon transfer technique",SPIE vol.570, pp7-19)を用いて説明する。
【0046】
同図に示すCCD素子は、転送電極110が形成される側を表面側とし、これと反対の裏面側をX線等の光検出領域としたものである。このCCD素子の形成方法の一具体例は次のとおりである。
【0047】
まず、既知のCCD素子と同様に、p型シリコン基板120の表面部にn型のチャネル不純物層121を形成し、表面に酸化膜111を形成した後、転送電極110を形成する。次に、基板120の裏面側を化学エッチング(chemical etching)によりエッチング処理してCCD素子の分解能と略同等の厚さにまで薄くする。次に、p型不純物イオン、例えば、B(ホウ素)をイオン注入し、アニール処理により、裏面の近傍に高濃度の不純物拡散層(accumulation layer)124を形成させ、基板内に電位勾配を発生させる。その後、裏面の自然酸化膜を除去した後、Al等の金属薄膜112を形成する。
【0048】
このCCD素子の動作は、次のとおりである。即ち、素子の裏面にX線やUV光が照射されると、基板120内の裏面近傍の無電界領域123で電子−正孔対が発生する。この電子−正孔対のうちの電子は、基板120内に形成された電位勾配によって空乏領域122内を移動し、素子表面側のチャネル不純物層121のpn接合部で信号電荷として蓄積される。その後の電荷転送は、通常のCCD素子と同様の原理で行われ、画像データが形成される。なお、電子−正孔対のうちの正孔は、裏面近傍の高濃度不純物拡散層124内で蓄積される。
【0049】
本実施形態の基板検査システムは、このような構成の裏面照射型CCDが有する高い感度に着目し、電子ビーム画像の検出に利用したものである。
【0050】
図2は、図1に示すCCDカメラ60の拡大図である。CCDカメラ60が備える裏面照射型CCD素子58は、画素のサイズが約10μm×約10μmで2,084pixel以上の大領域画像の取り込みが可能となっている。CCD素子58の厚さも約10μmであり、その裏面には、Al薄膜が数百オングストローム以下の厚さで形成されている。
【0051】
写像投影光学部により拡大投影された二次電子ビームは、CCD素子58の裏面に入射し、このAl薄膜を通過して基板内で電子−正孔対を発生させる。CCD素子58の厚さが素子自身の分解能と略同一なので、電子ビーム像が必要以上に拡大されて劣化することが防止される。基板内で発生した電子−正孔対のうち、電子は、基板内に形成された電位勾配によって、表面側のチャネル不純物層に移動して蓄積した後、転送電極により信号電荷として順次転送されて取出される。
【0052】
図4は、本実施形態の電子ビーム検出部の分解能と、200μm視野でのウェーハ上での写像投影光学系の分解能との関係を示す特性図である。同図から、検出器の分解能が向上するに従い、写像投影光学系の分解能も比例して向上させることができることがわかる。例えば、既知のMCPの分解能である40μm程度では、ウェーハ上での画像の分解能は0.15μm程度まで劣化してしまうが、本実施形態により検出器の分解能を10μm程度まで向上させることで、写像投影光学系の分解能は0.07μm以下となり、高分解能化が可能となる。
【0053】
図5は、電子ビーム検出部の分解能と、写像投影光学系において0.1μmの分解能を維持できる視野サイズとの関係を示す特性図である。同図から、電子ビーム検出部の分解能の向上に比例して視野サイズが増大することが分かる。
【0054】
このように、電子ビーム検出部の分解能を向上させることにより視野サイズが大きくとれるため、一度に取り込むことができる検査領域を大幅に拡大することができる。この結果、検査のスループットを向上させることができる。本実施形態においては、電子ビーム検出部の分解能を約10μmに上げることができるため、従来のMCPの分解能では実現出来なかった、0.1μm分解能を維持したままで400μm以上の検査領域を確保することができる。検査のスループットは検査領域に比例するため、大幅なスループット向上が期待できる。
【0055】
また、電子ビーム検出部の分解能が向上することにより、写像投影光学系で電子ビームを拡大投影する倍率を大幅に低下させることが可能になる。本実施形態では、電子ビーム検出部の分解能が約10μmにまで向上するため、拡大倍率が約半分にまで低下させることができる。これにより、写像投影光学部の筐体であるコラムの長さを約半分にすることができ、装置全体のサイズを大幅に縮小することができ、同時に装置全体の重量も約半分に軽減することができる。
【0056】
さらに、CCD素子58をTDI(Time Delay Integration)モードで動作させ、ステージの走査と同期させて画像取り込みを行うこととすれば、検査速度の向上と画像信号のS/N向上を同時に達成することができる。
【0057】
以上、本発明の実施の一形態について説明したが、本発明は上記形態に限るものでなく、その要旨を逸脱しない範囲で種々変形して適用することができる。電子ビーム検出部の裏面照射型CCD素子も、画素のサイズが約10μm×約10μmで半導体領域の厚さが約10μmのものについて説明したが、画素サイズが20μm×約20μm、画像領域約1000pixelで半導体領域の厚さが20μm程度のものであっても、図4および図5の特性図から明らかなように、MCPを用いた場合と比較して十分に高い分解能と広い検査領域を有する基板検査システムが提供される。
【0058】
【発明の効果】
以上詳述したとおり、本発明は、以下の効果を奏する。
【0059】
即ち、本発明に係る基板検査装置によれば、写像投影手段により拡大投影された二次電子ビームを直接画像信号に変換する電子ビーム検出手段を備えているので、電子ビーム画像を直接CCD素子で検出することができる。これにより検出器における透過率の低減を防止することができ、電子ビーム画像を効率よく取得できる。また、従来の技術のように蛍光板を用いて一旦蛍光像に変換することがないので、残像現象を考慮する必要がない。これにより画像取込みの速度を向上させることができる。さらに、電子ビーム入射面の面積を拡大することができるので、分解能に優れたCCD素子を用いることができ、電子ビーム検出手段の分解能を大幅に向上させることができる。この結果、写像投影手段の拡大率を低減させることができるので、装置全体のサイズを縮小し、軽量化できる上、写像投影手段による軸外収差および歪みが大幅に低減され、高い感度で鮮明な電子ビーム画像を取得することができる基板検査装置が提供される。
【0060】
上記電子ビーム検出手段として、上記二次電子ビームが入射する入射面と反対側の表面部に信号電荷を発生させる信号電荷発生部と、この信号電荷を転送する電荷転送部とを含む薄型イメージセンサを備える場合は、きわめて単純な構成で、分解能に優れ、鮮明な電子ビーム画像を取得できる基板検査装置が提供される。
【0061】
厚さが上記イメージセンサの分解能と略同一以下である導体領域に上記信号電荷発生部が形成される場合は、二次電子ビームが必要以上に拡大されてビーム画像が劣化することを防止することができる。
【0062】
また、上記イメージセンサの分解能が20μm以下である場合は、電子ビーム検出手段の分解能が向上する他、その視野サイズを拡大することができるので、検査領域が拡大する。これにより、基板検査のスループットが大幅に向上した基板検査装置が提供される。
【0063】
また、本発明に係る基板検査方法によれば、二次電子ビームをイメージセンサにより直接画像信号に変換する第3の過程を備えているので、高い分解能と広い視野サイズで電子ビーム画像を検出できるので、残像現象を考慮する必要もなく鮮明な電子ビーム画像を優れた効率で取得することができ、高速での画像取込みができる基板検査方法が提供される。
【0064】
さらに、本発明に係る基板検査システムによれば、上述の効果を奏する基板検査装置と、上記効果を奏する基板検査方法に基づいて上記基板検査装置と信号処理手段と記憶手段とを制御する制御手段とを備えているので、鮮明な電子ビーム画像に基づく画像データを高い効率で取得することができる基板検索システムが提供される。
【図面の簡単な説明】
【図1】本発明に係る基板検査システムの実施の一形態のブロック図である。
【図2】図1に示す基板検索システムが備えるCCDカメラの拡大図である。
【図3】裏面照射型CCDの構造および動作を示す模式図である。
【図4】図1に示す基板検索システムが備える電子ビーム検出部の分解能と、200μm視野でのウェーハ上での写像投影光学部の分解能との関係を示す特性図である。
【図5】図1に示す基板検索システムが備える電子ビーム検出部の分解能と、写像投影光学部において0.1μmの分解能を維持できる視野サイズの関係を示す特性図である。
【図6】特願平9−300275記載の電子ビーム検査装置の概略構成を示すブロック図である。
【図7】図6に示す基板検索システムが備える電子ビーム偏向部の詳細な構成を示す横断面図である。
【図8】図7のA−A断面図である。
【図9】従来の電子ビーム検査装置に備えられた電子ビーム検出器の一例のより詳細な構成を示すブロック図である。
【図10】一般的なCCD素子の電極構造の一具体例を示す略示断面図である。
【符号の説明】
1 (LaB6)陰極
2 ウェーネルト電極
3 陽極
4 偏向器
5、6 静電型四極子レンズ
7〜10、17、19、21、26、27、43a、43b、44a、44b 制御部
11 試料
12 ステージ
13、15 電源
14 回転対称静電レンズ
16、18、20 静電レンズ
22 MCP検出器
23 蛍光面
24 ライトガイド
25,60 CCDカメラ
29 画像データホストコンピュータ
30 表示器
40a、40b 平行平板電極
41a、41b 電磁コイル
58 裏面照射型CCD素子
62 画像処理部
63 メモリ

Claims (2)

  1. 試料である基板に電子ビームを一次電子ビームとして照射する一次電子ビーム照射手段と、
    前記一次電子ビームの照射を受けて、前記基板から発生する二次電子および反射電子を導いて二次電子ビームとして電子像を拡大投影する写像投影手段と、
    前記写像投影手段により拡大投影された前記二次電子ビームを、光学像への変換を介することなく画像信号に変換する電子ビーム検出手段と、
    前記電子ビーム検出手段から供給される前記画像信号を受けて電子ビーム画像を表示する表示手段と、を備え、
    前記電子ビーム検出手段は、前記二次電子ビームが入射する入射面と反対側の表面部に信号電荷を発生させる信号電荷発生部と、前記信号電荷を転送する電荷転送部とを含む薄型イメージセンサを含み、
    前記信号電荷発生部は、厚さが前記イメージセンサの分解能と略同一以下である半導体領域に形成されることを特徴とする、基板検査装置。
  2. 前記写像投影手段は、MCP(Micro-Channel Plate)を用いて前記二次電子ビームを間接的に画像信号に変換する場合の約半分の拡大倍率で前記電子像を拡大投影することを特徴とする請求項1に記載の基板検査装置。
JP03312599A 1999-02-10 1999-02-10 基板検査装置 Expired - Fee Related JP3851740B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03312599A JP3851740B2 (ja) 1999-02-10 1999-02-10 基板検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03312599A JP3851740B2 (ja) 1999-02-10 1999-02-10 基板検査装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006213512A Division JP4113229B2 (ja) 2006-08-04 2006-08-04 基板検査方法および基板検査システム

Publications (2)

Publication Number Publication Date
JP2000232140A JP2000232140A (ja) 2000-08-22
JP3851740B2 true JP3851740B2 (ja) 2006-11-29

Family

ID=12377912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03312599A Expired - Fee Related JP3851740B2 (ja) 1999-02-10 1999-02-10 基板検査装置

Country Status (1)

Country Link
JP (1) JP3851740B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW589723B (en) * 2001-09-10 2004-06-01 Ebara Corp Detecting apparatus and device manufacturing method
KR101110224B1 (ko) * 2003-01-27 2012-02-15 가부시끼가이샤 도시바 샘플에서 반사된 전자들을 이용하여 샘플을 검사하는 맵핑 투영식 전자빔 장치

Also Published As

Publication number Publication date
JP2000232140A (ja) 2000-08-22

Similar Documents

Publication Publication Date Title
US6184526B1 (en) Apparatus and method for inspecting predetermined region on surface of specimen using electron beam
US5576833A (en) Wafer pattern defect detection method and apparatus therefor
KR102145469B1 (ko) 검사 장치
USRE40221E1 (en) Object observation apparatus and object observation
KR101980930B1 (ko) 전자 충격식 전하 결합 장치 및 ebccd 검출기를 이용한 검사 시스템
JPH11132975A (ja) 電子ビームを用いた検査方法及びその装置
US6365897B1 (en) Electron beam type inspection device and method of making same
US20090294665A1 (en) Scanning electron microscope and similar apparatus
US10832901B2 (en) EELS detection technique in an electron microscope
US10825648B2 (en) Studying dynamic specimens in a transmission charged particle microscope
CN109411320B (zh) 透射带电粒子显微镜中的衍射图案检测
JP3713864B2 (ja) パターン検査装置
US20090026369A1 (en) Electron Beam Inspection System and an Image Generation Method for an Electron Beam Inspection System
JPH11345585A (ja) 電子ビームによる検査装置および検査方法
JP3851740B2 (ja) 基板検査装置
JP4113229B2 (ja) 基板検査方法および基板検査システム
JP2021048114A (ja) 走査型電子顕微鏡および走査型電子顕微鏡の2次電子検出方法
JP3943832B2 (ja) 基板検査装置およびその制御方法
JP3244620B2 (ja) 走査電子顕微鏡
JP4332922B2 (ja) 検査装置
JP4042185B2 (ja) パターン検査装置
US9666419B2 (en) Image intensifier tube design for aberration correction and ion damage reduction
JP3926621B2 (ja) 荷電粒子ビーム光学装置
JP4011608B2 (ja) 荷電粒子ビーム光学装置、及び荷電粒子ビーム制御方法
JP4505674B2 (ja) パターン検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees