WO2016199784A1 - 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 - Google Patents

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 Download PDF

Info

Publication number
WO2016199784A1
WO2016199784A1 PCT/JP2016/066975 JP2016066975W WO2016199784A1 WO 2016199784 A1 WO2016199784 A1 WO 2016199784A1 JP 2016066975 W JP2016066975 W JP 2016066975W WO 2016199784 A1 WO2016199784 A1 WO 2016199784A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
ring
Prior art date
Application number
PCT/JP2016/066975
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
河村 昌宏
舟橋 正和
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201680002211.6A priority Critical patent/CN106660940B/zh
Priority to US15/502,572 priority patent/US10243148B2/en
Priority to KR1020177003632A priority patent/KR102629838B1/ko
Publication of WO2016199784A1 publication Critical patent/WO2016199784A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/18Radicals substituted by singly bound hetero atoms other than halogen by sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to a compound, a material for an organic electroluminescence element, an organic electroluminescence element, and an electronic device.
  • an organic electroluminescence element is composed of an anode, a cathode, and an organic thin film layer including one or more layers sandwiched between the anode and the cathode.
  • organic EL element organic electroluminescence element
  • a voltage is applied between both electrodes, electrons from the cathode side and holes from the anode side are injected into the light emitting region, and the injected electrons and holes recombine in the light emitting region to generate an excited state, which is excited.
  • Light is emitted when the state returns to the ground state. Therefore, the development of a compound that efficiently transports electrons or holes to the light emitting region and facilitates recombination of electrons and holes is important in obtaining a high-efficiency organic EL device.
  • Patent Document 1 describes an amine compound in which 9,9′-spirobifluorene, 9,9-dimethylfluorene, and phenanthrene are directly bonded to the same nitrogen atom. Although it is described that the amine compound of Patent Document 1 is suitable as a hole transport material, the performance of the organic EL device containing the amine compound is not described.
  • Patent Document 2 discloses that 9,9′-spirobifluorene, triphenylene substituted with three phenyl groups, and an arene selected from benzene, naphthalene, 9,9-dimethylfluorene, phenanthrene, and the like are directly bonded to the same nitrogen atom. The bound amine compound is described.
  • Patent Document 3 describes an amine compound in which substituted or unsubstituted triphenylene, 9,9-dimethylfluorene, and biphenyl or terphenyl are bonded to the same nitrogen atom. In the organic EL device produced in the examples, these amine compounds are contained in the hole transport layer.
  • Patent Document 4 describes an amine compound in which biphenyl, 9,9-diphenylfluorene, and triphenylene substituted with a phenyl group are bonded to the same nitrogen atom.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a long-life organic EL element that can be driven at a low voltage and a material for an organic EL element that can realize this.
  • the present inventors can obtain a long-life organic EL device that can be driven at a low voltage by using a compound represented by the following formula (1). I found out.
  • the present invention provides a compound represented by formula (1).
  • R 1 to R 4 each independently represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms, a halogen atom, a substituted or unsubstituted carbon;
  • a fluoroalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon atom having 6 to 10 carbon atoms Represents an aryloxy group or a cyano group.
  • a is an integer of 0 to 3
  • b, c and d each independently represent an integer of 0 to 4.
  • (R 1 ) 0 , (R 2 ) 0 , (R 3 ) 0 , and (R 4 ) 0 mean that R 1 , R 2 , R 3, or R 4 does not exist, respectively.
  • a, b, c or d represents an integer of 2 or more
  • 2 or 3 R 1 , 2 to 4 R 2 , 2 to 4 R 3 , and 2 to 4 R 4 are each Two adjacent R 1 s , two adjacent R 2 s , two adjacent R 3 s , and two adjacent R 4 s may be bonded to each other to form a ring structure. Good.
  • L 0 to L 2 each independently represents a single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • Ar represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • the optional substituents when referred to as “substituted or unsubstituted” are: an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group having 3 to 50 ring carbon atoms; an aryl group having 6 to 10 ring carbon atoms; An aralkyl group having 7 to 30 carbon atoms having an aryl group having 6 to 10 carbon atoms; an alkoxy group having 1 to 20 carbon atoms; an aryloxy group having 6 to 10 ring carbon atoms; an alkyl group having 1 to 20 carbon atoms and a ring Mono-substituted, di-substituted or tri-substituted silyl groups having a substituent selected from aryl groups having 6 to 10 carbon atoms; haloalkyl groups having 1 to 20 carbon atoms; haloalkoxy groups having 1 to 20 carbon atoms; halogen atoms; A group; and at least one group selected from the group consist
  • the present invention provides a material for an organic electroluminescence device comprising the compound (1).
  • the present invention is an organic electroluminescent device comprising a cathode, an anode, and an organic thin film layer disposed between the cathode and the anode, wherein the organic thin film layer includes one or more layers.
  • the organic thin film layer includes a light emitting layer, and at least one of the organic thin film layers provides an organic electroluminescence device including the compound (1).
  • the present invention provides an electronic device comprising the organic electroluminescence element.
  • the organic EL device produced using the compound (1) can be driven at a low voltage and has a long life.
  • the “carbon number XX to YY” in the expression “substituted or unsubstituted ZZ group having XX to YY” represents the number of carbon atoms in the case where the ZZ group is unsubstituted. The carbon number of the substituent in the case where it is present is not included.
  • atom number XX to YY in the expression “a ZZ group having a substituted or unsubstituted atom number XX to YY” represents the number of atoms when the ZZ group is unsubstituted. In this case, the number of substituent atoms is not included.
  • unsubstituted ZZ group in the case of “substituted or unsubstituted ZZ group” means that the hydrogen atom of the ZZ group is not substituted with a substituent.
  • hydroxogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • the “ring-forming carbon number” means the ring itself of a compound having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic compound, a condensed ring compound, a bridged compound, a carbocyclic compound, or a heterocyclic compound). This represents the number of carbon atoms among the constituent atoms.
  • the carbon contained in the substituent is not included in the ring-forming carbon.
  • the “ring-forming carbon number” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring carbon atoms
  • the naphthalene ring has 10 ring carbon atoms
  • the pyridinyl group has 5 ring carbon atoms
  • the furanyl group has 4 ring carbon atoms.
  • the carbon number of the alkyl group is not included in the number of ring-forming carbons.
  • the carbon number of the fluorene ring as a substituent is not included in the ring-forming carbon number.
  • the “number of ring-forming atoms” means a compound (for example, a monocyclic compound, a condensed ring compound, a bridging compound, or a carbocyclic compound) having a structure in which atoms are bonded in a cyclic manner (for example, a monocyclic ring, a condensed ring, or a ring assembly).
  • a heterocyclic compound represents the number of atoms constituting the ring itself.
  • An atom that does not constitute a ring for example, a hydrogen atom that terminates a bond of an atom that constitutes a ring
  • an atom contained in a substituent when the ring is substituted by a substituent is not included in the number of ring-forming atoms.
  • the “number of ring-forming atoms” described below is the same unless otherwise specified.
  • the pyridine ring has 6 ring atoms
  • the quinazoline ring has 10 ring atoms
  • the furan ring has 5 ring atoms.
  • the hydrogen atoms bonded to the ring-forming carbon atoms of the pyridine ring and quinazoline ring and the atoms constituting the substituent are not included in the number of ring-forming atoms. Further, when, for example, a fluorene ring is bonded to the fluorene ring as a substituent (including a spirobifluorene ring), the number of atoms of the fluorene ring as a substituent is not included in the number of ring-forming atoms.
  • the compound according to one embodiment of the present invention is represented by the formula (1) (hereinafter sometimes referred to as “compound (1)”).
  • the compound (1) is preferably represented by any of the following formulas (1-1) to (1-4).
  • the formula (1-1) is preferably represented by the formula (1-1a) or (1-1b).
  • the formula (1-2) is preferably represented by the formula (1-2a) or (1-2b).
  • the formula (1-3) is preferably represented by the formula (1-3a) or (1-3b).
  • the formula (1-4) is preferably represented by the formula (1-4a) or (1-4b).
  • R 1 to R 4 each independently represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, or a substituted or unsubstituted ring forming carbon number 6 to 10 carbon atoms.
  • it is an alkoxy group having 1 to 5, more preferably 1 to 4, a substituted or unsubstituted C 1-20, preferably 1 to 5, more preferably 1 to 4 fluoroalkoxy group, a substituted or unsubstituted ring.
  • R 1 to R 4 are preferably selected from a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms, and a halogen atom.
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, t-butyl group, pentyl group (including isomer), hexyl group (including isomer), heptyl group (including isomer), octyl group (including isomer), nonyl group (including isomer), Examples include decyl group (including isomers), undecyl group (including isomers), and dodecyl group (including isomers), such as methyl group, ethyl group, n-propyl group, isopropyl group, and n-butyl group.
  • An isobutyl group, an s-butyl group, a t-butyl group, and a pentyl group are preferable, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, - more preferably butyl, and t- butyl group, further preferably a methyl group and t- butyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group, and a phenyl group is preferable.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom.
  • examples of the fluoroalkyl group include at least one of the above alkyl groups having 1 to 20 carbon atoms, preferably 1 to 7 hydrogen atoms, Or a group obtained by substituting all hydrogen atoms with fluorine atoms, such as heptafluoropropyl group (including isomers), pentafluoroethyl group, 2,2,2-trifluoroethyl group, trifluoromethyl group
  • a pentafluoroethyl group, a 2,2,2-trifluoroethyl group and a trifluoromethyl group are more preferred, and a trifluoromethyl group is still more preferred.
  • the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms is represented by —OR 11 , and R 11 represents the above substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • the alkoxy group is preferably a t-butoxy group, a propoxy group (including isomers), an ethoxy group or a methoxy group, more preferably an ethoxy group or a methoxy group, and even more preferably a methoxy group.
  • the substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms is represented by —OR 12 , and R 12 represents the above substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms.
  • R 12 represents the above substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms.
  • the fluoroalkoxy group a heptafluoropropoxy group (including isomers), a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group, and a trifluoromethoxy group are preferable, and a pentafluoroethoxy group, 2,2, A 2-trifluoroethoxy group and a trifluoromethoxy group are more preferable, and a trifluoromethoxy group is more preferable.
  • the substituted or unsubstituted aryloxy group having 6 to 10 ring carbon atoms is represented by —OR 13 , and R 13 represents the above substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms.
  • the aryl group is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • a is an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0 or 1.
  • b, c and d are each independently an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1.
  • all of a to d are preferably 0, and in another embodiment, 1 to 3 selected from b, c and d are preferably 1.
  • R 1 ) 0 , (R 2 ) 0 , (R 3 ) 0 , and (R 4 ) 0 are R 1 , R 2 , R 3, or It means that R 4 is not present, ie not substituted with R 1 , R 2 , R 3 or R 4 .
  • R 1 , 2 to 4 R 2 , 2 to 4 R 3 , and 2 to 4 R 4 are each Two adjacent R 1 s , two adjacent R 2 s , two adjacent R 3 s , and two adjacent R 4 s may be bonded to each other to form a ring structure. Or a ring structure may not be formed.
  • the ring structure is preferably an aromatic hydrocarbon ring and an aromatic heterocycle having a ring-forming heteroatom such as a nitrogen atom, oxygen atom or sulfur atom.
  • Ar is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, preferably 6 to 24, more preferably 6 to 12, or a substituted or unsubstituted ring atom number 5 to 50, preferably 5 to 24, more preferably 5-18 heteroaryl groups.
  • examples of the aryl group include a phenyl group, a biphenylyl group, a terphenylyl group, a biphenylenyl group, a naphthyl group, an acenaphthylenyl group, an anthryl group, a benzoan group, and the like.
  • Tolyl group aceanthryl group, benzophenanthryl group, triphenylenyl group, phenenylenyl group, fluorenyl group, pentacenyl group, picenyl group, pentaphenyl group, pyrenyl group, chrysenyl group, benzocrisenyl group, s-indacenyl group, as-indacenyl group ,
  • a fluoranthenyl group, a perylenyl group, and the like, and a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, and a fluorenyl group are preferable.
  • the heteroaryl group is 1 to 5, preferably 1 to 3, more preferably 1 to 2 ring-forming heteroatoms,
  • a nitrogen atom, a sulfur atom, and an oxygen atom are included.
  • heteroaryl group examples include a pyrrolyl group, a furyl group, a thienyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, an imidazolyl group, an oxazolyl group, a thiazolyl group, an isoxazolyl group, an isothiazolyl group.
  • Ar is represented by any of the following formulas (a) to (n).
  • each R independently represents a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms; a substituted or unsubstituted ring A cycloalkyl group having 3 to 50, preferably 3 to 6, more preferably 5 or 6 carbon atoms; a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms, preferably 6; a substituted or unsubstituted ring A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms and an aryl group having 6 to 10 carbon atoms, preferably 6; a substituted or unsubstituted carbon atom having 1 to 20, preferably 1 to 5, more preferably 1 An alkoxy group having 4 to 4 carbon atoms; a substituted or unsubstituted aryloxy group having 6 to 10, preferably 6 ring-forming carbon atoms; a substituted
  • the ring-forming carbon atoms to which two adjacent Rs of the formulas (a) to (n), preferably of the formulas (k) to (n) are bonded to each other and the two adjacent Rs are bonded A benzene ring may be formed together.
  • two adjacent Rs may not be bonded to each other.
  • R is preferably each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms, a halogen atom, a substituted or unsubstituted carbon number.
  • examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • An adamantyl group, and a cyclopentyl group and a cyclohexyl group are preferred.
  • the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms having a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms represented by R is the substituted or unsubstituted carbon described above with respect to R 1 to R 4.
  • a mono-, di- or tri-substituted silyl group having a substituent selected from a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms and a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms represented by R is selected from aryl alkyl group, and R 1 ⁇ above-mentioned substituted or unsubstituted ring carbon atoms 6 to 10 with respect to R 4 in a substituted or unsubstituted 1 to 20 carbon atoms described above for R 1 ⁇ R 4 Silyl groups substituted with groups such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, propyldimethylsilyl group, isopropyldimethylsilyl group, triphenylsilyl group, phenyldimethylsilyl group, t-butyldiphenyl A silyl group and a
  • the haloalkyl group is at least one, preferably 1 to 7 of the alkyl groups having 1 to 20 carbon atoms described above with respect to R 1 to R 4.
  • a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, and a trifluoromethyl group are preferred, a pentafluoroethyl group, a 2,2,2-trifluoroethyl group, and a trifluoromethyl group are more preferred. More preferred is a fluoromethyl group.
  • R 14 is the above substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, preferably 1 to 20 fluoroalkyl groups are represented.
  • haloalkoxy group a heptafluoropropoxy group (including isomers), a pentafluoroethoxy group, a 2,2,2-trifluoroethoxy group, and a trifluoromethoxy group are preferable, and a pentafluoroethoxy group, 2,2, A 2-trifluoroethoxy group and a trifluoromethoxy group are more preferable, and a trifluoromethoxy group is more preferable.
  • p independently represents an integer of 0 to 5, preferably an integer of 0 to 3, more preferably 0 or 1, and further preferably 0.
  • q independently represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Each r independently represents an integer of 0 to 3, preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • s represents 0 or 1, preferably 0.
  • a ring structure may be formed.
  • the ring formed by two adjacent R and two ring-forming carbon atoms bonded to each other includes an aromatic hydrocarbon ring and an aromatic group having a ring-forming heteroatom such as a nitrogen atom, an oxygen atom, or a sulfur atom. Heterocycles are preferred.
  • R 0 means that R is not present, that is, not substituted with R.
  • the groups represented by formulas (a) to (n) preferably have 1 or 2 Rs, and more preferably have 1 R. In another embodiment of the present invention, the groups represented by formulas (a) to (n) are preferably not substituted with R.
  • R a and R b are each independently a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, a substituted or unsubstituted ring.
  • C6-C10 preferably C6 aryl group, halogen atom, substituted or unsubstituted C1-C20, preferably C1-C5, more preferably C1-C4 fluoroalkyl group, substituted or unsubstituted
  • Two members selected from R, R a and R b may be bonded to each other to form a ring structure.
  • R a and R b are preferably each independently selected from a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms and a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms.
  • R a and R b are the same as those described above for R 1 to R 4 .
  • R c represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 5, more preferably 1 to 4 carbon atoms, or a substituted or unsubstituted ring forming carbon number. It represents 6 to 10, preferably 6 aryl groups.
  • R c is preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 ring carbon atoms. 10 aryl groups are more preferred.
  • R c The details of each group represented by R c are the same as those described above for R 1 to R 4 .
  • Formula (b) preferably represents a 2-, 3- or 4-biphenylyl group optionally substituted with R.
  • Formula (c) is preferably a 2-, 3- or 4-p-terphenylyl group, a 2-, 3- or 4-m-terphenylyl group, or 2-, 3 each optionally substituted by R.
  • Formula (d) is preferably a 2′-p-terphenylyl group, 2′-, 4′-, or 5′-m-terphenylyl group, or 4′-o-, each optionally substituted with R. Represents a terphenylyl group.
  • Formulas (b), (c) and (d) are preferably represented by the following formulas (b-1), (b-2), (c-1), (c-2) and (d-1) Expressed in either. [Wherein, R, p, q, r and * are the same as described above. ]
  • Formula (e) preferably represents a 1-naphthyl group or a 2-naphthyl group, each of which may be substituted with R.
  • both R a and R b are a methyl group or a phenyl group, or one of R a and R b is a methyl group and the other is a phenyl group.
  • the group represented by the formula (f) is bonded to L 2 of the formula (1) at the 1 to 4 position, preferably the 2 position or the 4 position of the fluorene ring.
  • Formula (g) preferably represents a 4- (9-phenylfluoren-9-yl) phenyl group which may be substituted with R.
  • the group represented by the formula (h) is bonded to L 2 of the formula (1) at the 1 to 4 position, preferably the 2 position or the 4 position of the fluorene ring.
  • the group represented by formula (i) is preferably bonded to L 2 of formula (1) at the 2-position of the thiophene ring.
  • the group represented by formula (j) is preferably bonded to L 2 of formula (1) at the 2-position of the benzothiophene ring.
  • the group represented by the formula (l) is bonded to L 2 of the formula (1) at the 1 to 4 position, preferably the 2 or 4 position of the dibenzofuran ring.
  • the group represented by the formula (m) is bonded to L 2 of the formula (1) at the 1 to 4 position, preferably the 2 or 4 position of the dibenzothiophene ring.
  • R c is preferably a phenyl group, and the group represented by the formula (n) is bonded to L 2 of the formula (1) at the 1 to 4 position, preferably the 3 position, of the carbazole ring. .
  • L 0 to L 2 each independently represents a single bond, a substituted or unsubstituted arylene group having 6 to 50, preferably 6 to 24, more preferably 6 to 12 ring-forming carbon atoms, or a substituted or unsubstituted ring. It represents a heteroarylene group having 5 to 50 atoms, preferably 5 to 24, more preferably 5 to 18 atoms.
  • the arylene group is a group obtained by removing one hydrogen atom from the aryl group having 6 to 50 ring carbon atoms described above with respect to Ar.
  • the heteroarylene group is obtained by removing one hydrogen atom from the heteroaryl group having 5 to 50 ring atoms described above with respect to Ar. Is a group obtained.
  • L 0 to L 2 are preferably each independently a single bond or a substituted or unsubstituted ring-forming carbon number 6 to 50 arylene group.
  • the substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms is preferably represented by the following formula (ii) or (iii).
  • R and q are as defined for formulas (a) to (n).
  • L 0 is represented by the formula (ii) or (iii)
  • one of * and ** represents a bond with a spirobifluorene structure, and the other represents a bond with a nitrogen atom
  • L 1 is represented by formula (ii) or (iii)
  • one of * and ** represents a bond with triphenylene
  • the other represents a bond with a nitrogen atom
  • L 2 is represented by the formula (ii) or (iii)
  • one of * and ** represents a bond with Ar, and the other represents a bond with a nitrogen atom.
  • Formulas (ii) and (iii) are preferably represented by the following formulae.
  • a compound (1) in which L 0 to L 2 are single bonds and Ar is an aryl group represented by any one of the above formulas (a) to (h) is preferable.
  • L 0 and L 1 are a single bond
  • L 2 is a substituted or unsubstituted aryl group having 6 to 50 ring atoms or a substituted or unsubstituted ring atom having 5 to 50 hetero atoms.
  • An arylene group preferably a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, more preferably an arylene group represented by the formula (ii) or (iii), wherein Ar is the formula (i) to ( The compound (1) which is a heteroaryl group represented by n) is preferable.
  • L 0 is preferably bonded to the 2- to 4-position of the 9,9′-spirobifluorene ring, and more preferably bonded to the 2- or 4-position.
  • L 1 is preferably bonded to the 2-position of the triphenylene ring.
  • the optional substituent when referred to as “substituted or unsubstituted” is an alkyl group having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms; 3 to 50 ring carbon atoms, preferably Is a cycloalkyl group having 3 to 6, more preferably 5 or 6; an aryl group having 6 to 10 ring carbon atoms, preferably 6; an aralkyl having 7 to 30 carbon atoms having an aryl group having 6 to 10 ring carbon atoms A substituent selected from an alkoxy group having 1 to 20 carbon atoms; an aryloxy group having 6 to 10 ring carbon atoms, preferably 6; an alkyl group having 1 to 20 carbon atoms and an aryl group having 6 to 10 ring carbon atoms A mono-substituted, di-substituted or tri-substituted silyl group having a group; a haloal
  • An organic EL element has an organic thin film layer including one or more layers between a cathode and an anode.
  • the organic thin film layer includes a light emitting layer, and at least one of the organic thin film layers includes a compound represented by the formula (1) (compound (1)).
  • Examples of the organic thin film layer containing the compound (1) include an anode-side organic thin film layer (hole transport layer, hole injection layer, etc.) provided between the anode and the light emitting layer, a light emitting layer, a space layer, Although a barrier layer etc. are mentioned, it is not limited to these.
  • it can be used as a host material, a dopant material, a hole injection layer material, or a hole transport layer material in the light emitting layer of the fluorescent light emitting unit. Further, it can be used as a host material, a hole injection layer material, and a hole transport layer material in a light emitting layer of a phosphorescent light emitting unit.
  • the organic EL device may be a fluorescent or phosphorescent monochromatic light emitting device, a fluorescent / phosphorescent hybrid white light emitting device, or a simple type having a single light emitting unit.
  • a tandem type having a plurality of light emitting units may be used, and among them, a fluorescent light emitting type element is preferable.
  • the “light emitting unit” includes an organic thin film layer including one or more layers, at least one of which is a light emitting layer, and is a minimum unit that emits light by recombination of injected holes and electrons.
  • typical element configurations of simple organic EL elements include the following element configurations.
  • Anode / light emitting unit / cathode The above light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, the light emitting unit is generated by a phosphorescent light emitting layer between the light emitting layers. In order to prevent the excitons from diffusing into the fluorescent light emitting layer, a space layer may be provided.
  • a typical layer structure of the simple light emitting unit is shown below.
  • A (hole injection layer /) hole transport layer / fluorescent light emitting layer (/ electron transport layer)
  • B (Hole injection layer /) Hole transport layer / First phosphorescence layer / Second phosphor layer (/ Electron transport layer)
  • C (hole injection layer /) hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D (hole injection layer /) hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E (hole injection layer /) hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F (hole injection layer /) hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • G (hole injection layer /)
  • Each phosphorescent or fluorescent light-emitting layer may have a different emission color.
  • the layer structure include a light emitting layer (blue light emission) / electron transport layer.
  • An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the first light emitting unit and the second light emitting unit can be independently selected from the above light emitting units, for example.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element.
  • the organic EL element 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 has at least one light emitting layer 5.
  • Hole injection / transport layer 6 anode-side organic thin film layer
  • electron injection / transport layer 7 cathode-side organic thin film layer
  • an electron barrier layer (not shown) may be provided on the anode 3 side of the light emitting layer 5, and a hole barrier layer (not shown) may be provided on the cathode 4 side of the light emitting layer 5.
  • a host combined with a fluorescent dopant is called a fluorescent host
  • a host combined with a phosphorescent dopant is called a phosphorescent host
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material for forming a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the substrate is used as a support for the organic EL element.
  • a plate made of glass, quartz, plastic, or the like can be used.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include plastic substrates made of polycarbonate, polyarylate, polyethersulfone, polypropylene, polyester, polyvinyl fluoride, and polyvinyl chloride. .
  • an inorganic vapor deposition film can also be used.
  • Anode As the anode formed on the substrate, it is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more).
  • a metal an alloy, an electrically conductive compound, a mixture thereof, or the like having a high work function (specifically, 4.0 eV or more).
  • ITO indium tin oxide
  • indium oxide-tin oxide containing silicon or silicon oxide indium oxide-zinc oxide
  • indium oxide containing tungsten oxide and zinc oxide examples include graphene.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • a nitride of the metal for example, titanium nitride
  • indium oxide-zinc oxide is a target in which 1 to 10 wt% of zinc oxide is added to indium oxide, and indium oxide containing tungsten oxide and zinc oxide is 0.5 to 5 wt. % And a target containing 0.1 to 1 wt% of zinc oxide can be formed by a sputtering method.
  • the hole injection layer formed in contact with the anode is formed using a material that is easy to inject holes regardless of the work function of the anode. Therefore, a material generally used as an electrode material (for example, metal , Alloys, electrically conductive compounds, and mixtures thereof, elements belonging to Group 1 or Group 2 of the Periodic Table of Elements) can be used.
  • a material generally used as an electrode material for example, metal , Alloys, electrically conductive compounds, and mixtures thereof, elements belonging to Group 1 or Group 2 of the Periodic Table of Elements
  • An element belonging to Group 1 or Group 2 of the periodic table which is a material having a low work function, that is, an alkali metal such as lithium (Li) or cesium (Cs), and magnesium (Mg), calcium (Ca), or strontium Alkaline earth metals such as (Sr), and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these can also be used.
  • an alkali metal such as lithium (Li) or cesium (Cs), and magnesium (Mg), calcium (Ca), or strontium Alkaline earth metals such as (Sr), and alloys containing these (eg, MgAg, AlLi), rare earth metals such as europium (Eu), ytterbium (Yb), and alloys containing these
  • a vacuum evaporation method or a sputtering method can be used.
  • the hole injecting layer is a layer containing a material having a high hole injecting property (hole injecting material).
  • the compound (1) may be used alone or in combination with the following materials for the hole injection layer.
  • Hole injection materials include molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, tungsten oxide Products, manganese oxides, and the like can be used.
  • Polymer compounds (oligomers, dendrimers, polymers, etc.) can also be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK)
  • poly (4-vinyltriphenylamine) (abbreviation: PVTPA)
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide]
  • PTPDMA poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine]
  • High molecular compounds such as Poly-TPD
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (PEDOT / PSS), polyaniline / poly (styrenesulfonic acid) (PAni / PSS) is added is used. You can also.
  • acceptor material such as a hexaazatriphenylene (HAT) compound represented by the following formula (K) in combination with the compound (1).
  • HAT hexaazatriphenylene
  • R 21 to R 26 may be the same as or different from each other, and each independently represents a cyano group, —CONH 2 , carboxyl group, or —COOR 27 (R 27 represents an alkyl group having 1 to 20 carbon atoms or And represents a cycloalkyl group having 3 to 20 carbon atoms, and in R 21 and R 22 , R 23 and R 24 , and R 25 and R 26 , two adjacent groups are bonded to each other to form —CO—.
  • R 27 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the hole transport layer is a layer containing a material having a high hole transport property (hole transport material). You may use the said compound (1) for a positive hole transport layer individually or in combination with the following compound.
  • an aromatic amine compound for example, an aromatic amine compound, a carbazole derivative, an anthracene derivative, or the like can be used.
  • aromatic amine compound for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and N, N′-bis (3-methylphenyl) -N , N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BAFLP), 4,4′-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: DFLDPBi), 4,4 ′, 4 ′′ -tris (N, N -Diphenylamin
  • the hole-transporting layer includes 4,4′-di (9-carbazolyl) biphenyl (abbreviation: CBP), 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene (abbreviation: CzPA), 9- Carbazole derivatives such as phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA) and 2-t-butyl-9,10-di (2-naphthyl) anthracene
  • An anthracene derivative such as (abbreviation: t-BuDNA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), 9,10-diphenylanthracene (abbreviation: DPAnth) may be used.
  • a high molecular compound such as poly (N-vinylcarbazole) (abbreviation: PVK) or poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly(N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • the layer including a compound having a high hole-transport property may be a single layer or a stacked layer including two or more layers including the above compound.
  • the hole transport layer may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the compound (1) may be contained in either the first hole transport layer or the second hole transport layer.
  • the dopant material of a light emitting layer is a layer containing material (dopant material) with high luminescent property, A various material can be used.
  • a fluorescent material or a phosphorescent material can be used as the dopant material.
  • the fluorescent light-emitting material is a compound that emits light from a singlet excited state
  • the phosphorescent material is a compound that emits light from a triplet excited state.
  • pyrene derivatives As a blue fluorescent material that can be used for the light emitting layer, pyrene derivatives, styrylamine derivatives, chrysene derivatives, fluoranthene derivatives, fluorene derivatives, diamine derivatives, triarylamine derivatives, and the like can be used.
  • N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenylstilbene-4,4′-diamine (abbreviation: YGA2S)
  • 4- (9H -Carbazol-9-yl) -4 '-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA)
  • 4- (10-phenyl-9-anthryl) -4'-(9-phenyl-9H -Carbazol-3-yl) triphenylamine abbreviation: PCBAPA
  • An aromatic amine derivative or the like can be used as a green fluorescent material that can be used for the light emitting layer.
  • Tetracene derivatives, diamine derivatives and the like can be used as red fluorescent materials that can be used for the light emitting layer.
  • N, N, N ′, N′-tetrakis (4-methylphenyl) tetracene-5,11-diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N, N, N ′, And N′-tetrakis (4-methylphenyl) acenaphtho [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD).
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex is used.
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex.
  • FIr6 bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C2 ′] iridium (III) picolinate (abbreviation: FIrpic), bis [2- (3 ′, 5′bistrifluoromethylphenyl) pyridinato-N, C2 ′] iridium (III ) Picolinate (abbreviation: Ir (CF3ppy) 2 (pic)), bis [2- (4 ′, 6′-difluorophenyl)
  • An iridium complex or the like is used as a green phosphorescent material that can be used for the light emitting layer.
  • red phosphorescent light-emitting material that can be used for the light-emitting layer
  • metal complexes such as iridium complexes, platinum complexes, terbium complexes, and europium complexes are used.
  • iridium complexes bis [2- (2′-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3 ′] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2 ′) iridium (III) acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (acetylacetonato) bis [2,3-bis (4-fluoro Phenyl) quinoxalinato] iridium (III) (abbreviation: Ir (Fdpq) 2 (acac)), 2,
  • red phosphorescent light-emitting material that can be used for the light-emitting layer
  • metal complexes such as iridium complexes, platinum complexes, terbium complexes, and europium complexes are used.
  • iridium complexes bis [2- (2′-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3 ′] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2 ′) iridium (III) acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (acetylacetonato) bis [2,3-bis (4-fluoro Phenyl) quinoxalinato] iridium (III) (abbreviation: Ir (Fdpq) 2 (acac)), 2,
  • Tb (acac) 3 (Phen) tris (1,3-diphenyl-1,3-propanedionato) (monophenanthroline) europium (III) (abbreviation
  • the light-emitting layer may have a configuration in which the above-described dopant material is dispersed in another material (host material).
  • host material various materials can be used, and it is preferable to use a material having a lowest lowest orbital level (LUMO level) and a lower highest occupied orbital level (HOMO level) than the dopant material.
  • a metal complex such as an aluminum complex, a beryllium complex, or a zinc complex
  • heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives
  • condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives
  • An aromatic amine compound such as a triarylamine derivative or a condensed polycyclic aromatic amine derivative is used.
  • tris (8-quinolinolato) aluminum (III) (abbreviation: Alq)
  • tris (4-methyl-8-quinolinolato) aluminum (III) abbreviation: Almq3)
  • bis (10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq2)
  • bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) abbreviation: BAlq
  • bis (8-quinolinolato) zinc (II) (abbreviation: Znq )
  • Bis [2- (2-benzoxazolyl) phenolato] zinc (II) abbreviation: ZnPBO
  • bis [2- (2-benzothiazolyl) phenolato] zinc (II) abbreviation: ZnBTZ
  • the electron transport layer is a layer containing a material having a high electron transport property (electron transport material).
  • a material having a high electron transport property for example, (1) Metal complexes such as aluminum complexes, beryllium complexes, zinc complexes, (2) heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, phenanthroline derivatives, (3) A polymer compound can be used.
  • Examples of the metal complex include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3), bis (10-hydroxybenzo [h] quinolinato ) Beryllium (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq) ), Bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), and bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ).
  • Alq tris (8-quinolinolato) aluminum
  • Almq3 tris (4-methyl-8-quinolinolato) aluminum
  • heteroaromatic compound for example, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5 -(Pt-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 3- (4-tert-butylphenyl) -4-phenyl-5- (4 -Biphenylyl) -1,2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl) -4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4 -Triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: BPhen), bathocuproin (abbreviation: BCP), 4,4'-bis (5-methylbenzo
  • polymer compound for example, poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py), poly [(9, 9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy).
  • the above materials are mainly materials having an electron mobility of 10 ⁇ 6 cm 2 / Vs or higher. Note that materials other than those described above may be used for the electron-transport layer as long as the material has a higher electron-transport property than the hole-transport property. Further, the electron transport layer is not limited to a single layer, and two or more layers made of the above materials may be stacked.
  • the electron injection layer is a layer containing a material having a high electron injection property.
  • a material having a high electron injection property lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF2), lithium oxide (LiOx), etc.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used.
  • a material containing an electron transporting material containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a material containing magnesium (Mg) in Alq may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material has an excellent electron injecting property and electron transporting property because the organic compound receives electrons from the electron donor.
  • the organic compound is preferably a material excellent in transporting received electrons.
  • a material (metal complex, heteroaromatic compound, or the like) constituting the above-described electron transport layer is used. be able to.
  • the electron donor may be any material that exhibits an electron donating property with respect to the organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
  • Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • Cathode It is preferable to use a metal, an alloy, an electrically conductive compound, a mixture thereof, or the like having a low work function (specifically, 3.8 eV or less) for the cathode.
  • cathode materials include elements belonging to Group 1 or Group 2 of the periodic table of elements, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg) and calcium (Ca ), Alkaline earth metals such as strontium (Sr), and alloys containing these (for example, rare earth metals such as MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these.
  • a vacuum evaporation method or a sputtering method can be used.
  • coating method, the inkjet method, etc. can be used.
  • a cathode is formed using various conductive materials such as indium oxide-tin oxide containing Al, Ag, ITO, graphene, silicon, or silicon oxide regardless of the work function. can do. These conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.
  • an insulating layer made of an insulating thin film layer may be inserted between the pair of electrodes.
  • the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and silicon oxide. Germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like. A mixture or laminate of these may be used.
  • the space layer is, for example, in the case of laminating a fluorescent light emitting layer and a phosphorescent light emitting layer, for the purpose of adjusting the carrier balance so as not to diffuse excitons generated in the phosphorescent light emitting layer into the fluorescent light emitting layer.
  • This is a layer provided between the fluorescent light emitting layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer may be provided in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer.
  • the triplet barrier layer has a function of preventing excitons generated in the light emitting layer from diffusing into surrounding layers and confining the excitons in the light emitting layer.
  • Each layer of the organic EL element can be formed by a conventionally known vapor deposition method, coating method, or the like.
  • the film thickness of each layer is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if it is too thick, a high driving voltage is required and the efficiency is lowered, so it is usually 5 nm to 10 ⁇ m. 10 nm to 0.2 ⁇ m is more preferable.
  • the organic EL element can be used for display devices such as an organic EL panel module, display devices such as a television, a mobile phone, and a personal computer, and electronic equipment such as a light emitting device for lighting and a vehicle lamp.
  • display devices such as an organic EL panel module
  • display devices such as a television, a mobile phone, and a personal computer
  • electronic equipment such as a light emitting device for lighting and a vehicle lamp.
  • Synthesis Example 2 (Production of aromatic amine derivative H2) The reaction was conducted in the same manner as in Synthesis Example 1 except that 2.3 g of 4-bromobiphenyl was used instead of 2-bromobiphenyl, to obtain 2.8 g of white crystals.
  • the following aromatic amine derivative H2 was identified by analysis of FD-MS. (Yield 40%)
  • Synthesis Example 3 (Production of aromatic amine derivative H3)
  • the reaction was conducted in the same manner except that 3.1 g of 2-bromo-1,1 ′: 4 ′, 1 ′′ -terphenyl was used instead of 2-bromobiphenyl. Of white crystals were obtained.
  • the following aromatic amine derivative H3 was identified by analysis of FD-MS. (Yield 30%)
  • Synthesis Example 4 (Production of aromatic amine derivative H4) A reaction was conducted in the same manner as in Synthesis Example 1 except that 3.1 g of 4-bromo-1,1 ′: 4 ′, 1 ′′ -terphenyl was used instead of 2-bromobiphenyl. Of white crystals were obtained. The following aromatic amine derivative H4 was identified by analysis of FD-MS. (Yield 42%)
  • Synthesis Example 5 (Production of aromatic amine derivative H5) A reaction was conducted in the same manner as in Synthesis Example 1 except that 2.7 g of 2-bromo-9,9-dimethylfluorene was used instead of 2-bromobiphenyl. As a result, 3.4 g of white crystals were obtained. The following aromatic amine derivative H5 was identified by analysis of FD-MS. (Yield 46%)
  • Synthesis Example 6 (Production of aromatic amine derivative H6) A reaction was conducted in the same manner as in Synthesis Example 1 except that 4.0 g of 2-bromo-9,9-diphenylfluorene was used instead of 2-bromobiphenyl. As a result, 3.3 g of white crystals were obtained. The following aromatic amine derivative H6 was identified by analysis of FD-MS. (Yield 38%)
  • Synthesis Example 7 (Production of aromatic amine derivative H7) The reaction was conducted in the same manner as in Synthesis Example 1 except that 4.0 g of 2-bromo-9,9-spirobifluorene was used instead of 2-bromobiphenyl, to obtain 3.5 g of white crystals.
  • the following aromatic amine derivative H7 was identified by analysis of FD-MS. (Yield 40%)
  • Synthesis Example 8 (Production of aromatic amine derivative H8) A reaction was conducted in the same manner as in Synthesis Example 1 except that 3.2 g of the intermediate 1-1 was used instead of 2-bromobiphenyl. As a result, 3.6 g of white crystals were obtained. The following aromatic amine derivative H8 was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 9 (Production of aromatic amine derivative H9) The reaction was conducted in the same manner as in Synthesis Example 1 except that 3.2 g of intermediate 1-2 was used instead of 2-bromobiphenyl, to obtain 3.4 g of white crystals.
  • the following aromatic amine derivative H9 was identified by analysis of FD-MS. (Yield 42%)
  • Synthesis Example 10 (Production of aromatic amine derivative H10) The reaction was conducted in the same manner as in Synthesis Example 1 except that 3.4 g of the intermediate 1-3 was used instead of 2-bromobiphenyl, to obtain 3.7 g of white crystals.
  • the following aromatic amine derivative H10 was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 11 (Production of aromatic amine derivative H11) A reaction was conducted in the same manner as in Synthesis Example 1 except that 3.4 g of intermediate 1-4 was used instead of 2-bromobiphenyl, to obtain 3.3 g of white crystals. The following aromatic amine derivative H11 was identified by analysis of FD-MS. (Yield 40%)
  • Synthesis Example 12 (Production of aromatic amine derivative H12) A reaction was conducted in the same manner as in Synthesis Example 1 except that 3.2 g of 9- (4-bromophenyl) carbazole was used instead of 2-bromobiphenyl. As a result, 3.6 g of white crystals were obtained. The following aromatic amine derivative H12 was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 13 (Production of aromatic amine derivative H13) The reaction was conducted in the same manner as in Synthesis Example 1 except that 4.0 g of intermediate 1-5 was used instead of 2-bromobiphenyl, to obtain 4.4 g of white crystals. The following aromatic amine derivative H13 was identified by analysis of FD-MS. (Yield 50%)
  • Synthesis Example 14 (Production of aromatic amine derivative H14) The reaction was conducted in the same manner as in Synthesis Example 1 except that 4.0 g of intermediate 1-6 was used instead of 2-bromobiphenyl, to obtain 4.2 g of white crystals. The following aromatic amine derivative H14 was identified by analysis of FD-MS. (Yield 48%)
  • Synthesis Example 15 (Production of aromatic amine derivative H15) The reaction was conducted in the same manner as in Synthesis Example 1 except that 4.0 g of intermediate 1-7 was used instead of 2-bromobiphenyl, to obtain 4.1 g of white crystals. The following aromatic amine derivative H15 was identified by analysis of FD-MS. (Yield 47%)
  • Synthesis Example 16 (Production of aromatic amine derivative H16) A reaction was conducted in the same manner as in Synthesis Example 1 except that 4.0 g of 9- (4-bromophenyl) -9-phenylfluorene was used instead of 2-bromobiphenyl to obtain 3.2 g of white crystals. It was. The following aromatic amine derivative H16 was identified by FD-MS analysis. (Yield 37%)
  • Synthesis Example 17 (Production of aromatic amine derivative H17) A reaction was conducted in the same manner as in Synthesis Example 1 except that 3.2 g of 2- (4-bromophenyl) -5-phenylthiophene was used instead of 2-bromobiphenyl to obtain 3.5 g of white crystals. It was. The following aromatic amine derivative H17 was identified by analysis of FD-MS. (Yield 44%)
  • Synthesis Example 19 (Production of aromatic amine derivative H19) A reaction was conducted in the same manner as in Synthesis Example 18 except that 2.3 g of 4-bromobiphenyl was used instead of 2-bromobiphenyl, to obtain 3.2 g of white crystals. The following aromatic amine derivative H19 was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 20 (Production of aromatic amine derivative H20) In Synthesis Example 18, the reaction was performed in the same manner except that 3.1 g of 4-bromo-1,1 ′: 4 ′, 1 ′′ -terphenyl was used instead of 2-bromobiphenyl. Of white crystals were obtained. The following aromatic amine derivative H20 was identified by analysis of FD-MS. (Yield 40%)
  • Synthesis Example 21 (Production of aromatic amine derivative H21) A reaction was conducted in the same manner as in Synthesis Example 18 except that 2.7 g of 2-bromo-9,9-dimethylfluorene was used instead of 2-bromobiphenyl, to obtain 3.0 g of white crystals.
  • the following aromatic amine derivative H21 was identified by analysis of FD-MS. (Yield 40%)
  • Synthesis Example 22 (Production of aromatic amine derivative H22) A reaction was conducted in the same manner as in Synthesis Example 18 except that 4.0 g of 2-bromo-9,9-diphenylfluorene was used instead of 2-bromobiphenyl. As a result, 3.8 g of white crystals were obtained. The following aromatic amine derivative H22 was identified by analysis of FD-MS. (Yield 43%)
  • Synthesis Example 23 (Production of aromatic amine derivative H23) A reaction was conducted in the same manner as in Synthesis Example 18 except that 4.0 g of 2-bromo-9,9-spirobifluorene was used instead of 2-bromobiphenyl, whereby 3.5 g of white crystals were obtained. The following aromatic amine derivative H23 was identified by analysis of FD-MS. (Yield 40%)
  • Synthesis Example 24 (Production of aromatic amine derivative H24) A reaction was conducted in the same manner as in Synthesis Example 18 except that 4.0 g of intermediate 1-7 was used instead of 2-bromobiphenyl, to obtain 3.9 g of white crystals. The following aromatic amine derivative H24 was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 26 (Production of aromatic amine derivative H26) A reaction was conducted in the same manner as in Synthesis Example 25 except that 2.3 g of 4-bromobiphenyl was used instead of 2-bromobiphenyl, to obtain 3.5 g of white crystals. The following aromatic amine derivative H26 was identified by analysis of FD-MS. (Yield 50%)
  • Synthesis Example 27 (Production of aromatic amine derivative H27) In Synthesis Example 25, a reaction was performed in the same manner except that 3.1 g of 4-bromo-1,1 ′: 4 ′, 1 ′′ -terphenyl was used instead of 2-bromobiphenyl. Of white crystals were obtained. The following aromatic amine derivative H27 was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 28 (Production of aromatic amine derivative H28) A reaction was conducted in the same manner as in Synthesis Example 25 except that 2.7 g of 2-bromo-9,9-dimethylfluorene was used instead of 2-bromobiphenyl. As a result, 3.4 g of white crystals were obtained. The following aromatic amine derivative H28 was identified by analysis of FD-MS. (Yield 45%)
  • Synthesis Example 29 (Production of aromatic amine derivative H29) A reaction was conducted in the same manner as in Synthesis Example 25 except that 4.0 g of 2-bromo-9,9-diphenylfluorene was used instead of 2-bromobiphenyl. As a result, 4.1 g of white crystals were obtained. The following aromatic amine derivative H29 was identified by analysis of FD-MS. (Yield 47%)
  • Synthesis Example 30 (Production of aromatic amine derivative H30) A reaction was conducted in the same manner as in Synthesis Example 25 except that 4.0 g of 2-bromo-9,9-spirobifluorene was used instead of 2-bromobiphenyl, to obtain 3.5 g of white crystals.
  • the following aromatic amine derivative H30 was identified by analysis of FD-MS. (Yield 40%)
  • Synthesis Example 31 (Production of aromatic amine derivative H31) A reaction was conducted in the same manner as in Synthesis Example 25 except that 4.0 g of intermediate 1-7 was used instead of 2-bromobiphenyl, to obtain 3.3 g of white crystals. The following aromatic amine derivative H31 was identified by analysis of FD-MS. (Yield 38%)
  • Synthesis Example 33 (Production of aromatic amine derivative H33) A reaction was conducted in the same manner as in Synthesis Example 32 except that 2.3 g of 4-bromobiphenyl was used instead of 2-bromobiphenyl, to obtain 1.4 g of white crystals. The following aromatic amine derivative H33 was identified by analysis of FD-MS. (Yield 20%)
  • Example 1-1 (Production of Organic EL Device) A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and further UV (Ultraviolet) ozone cleaned for 30 minutes. A glass substrate with a transparent electrode line after cleaning is attached to a substrate holder of a vacuum deposition apparatus, and first, the following electron injecting compound A is deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed, A film A having a thickness of 5 nm was formed.
  • ITO transparent electrode line manufactured by Geomatic
  • the aromatic amine derivative H1 obtained in Synthesis Example 1 was deposited as a first hole transport material to form a first hole transport layer having a thickness of 80 nm.
  • the following aromatic amine derivative Y1 was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • the following host compound BH and dopant compound BD were co-evaporated with a thickness of 25 nm to form a light emitting layer.
  • the concentration of the dopant compound BD in the light emitting layer was 4% by mass.
  • the following compound ET1 was deposited to a thickness of 10 nm
  • the following compound ET2 was deposited to a thickness of 15 nm
  • LiF was deposited to a thickness of 1 nm on this light emitting layer to form an electron transport / injection layer.
  • metal Al was vapor-deposited with a thickness of 80 nm to form a cathode, and an organic EL device was manufactured.
  • Examples 1-2 to 1-34 Each organic of Examples 1-2 to 1-34 is the same as Example 1-1 except that the aromatic amine derivatives H2 to H34 obtained in Synthesis Examples 2 to 34 were used as the first hole transport material. An EL element was produced.
  • Comparative Examples 1-1 and 1-2 Each organic EL was prepared in the same manner as in Example 1-1 except that the following comparative compound 1 (compound described in Patent Document 1) or comparative compound 2 (compound described in Patent Document 3) was used as the first hole transport material. An element was produced.
  • the organic EL element produced as described above is caused to emit light by direct current drive, and the luminance (L) and current density are measured. From the measurement results, the external quantum efficiency at a current density of 10 mA / cm 2 ( EQE) and drive voltage (V) were obtained. Further, a 90% life at a current density of 50 mA / cm 2 was determined. Here, the 90% life means the time until the luminance is attenuated to 90% of the initial luminance in constant current driving. The results are shown in Table 1.
  • Example 2-1 Preparation of organic EL device
  • a 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode line manufactured by Geomatic
  • a glass substrate with a transparent electrode line after cleaning is attached to a substrate holder of a vacuum deposition apparatus, and the electron injecting compound A is first deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed, A film A having a thickness of 5 nm was formed.
  • the following aromatic amine derivative X1 was deposited as a first hole transport material to form a first hole transport layer having a thickness of 80 nm.
  • the aromatic amine derivative H1 obtained in Synthesis Example 1 was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • a host compound BH and a dopant compound BD were co-evaporated with a thickness of 25 nm to form a light emitting layer.
  • the concentration of the dopant compound BD in the light emitting layer was 4% by mass.
  • the compound ET1 was deposited to a thickness of 10 nm, then the compound ET2 was deposited to a thickness of 15 nm, and LiF was deposited to a thickness of 1 nm to form an electron transport / injection layer. Furthermore, metal Al was vapor-deposited with a thickness of 80 nm to form a cathode, and an organic EL device was manufactured.
  • Examples 2-2 to 2-10 Each organic EL device was produced in the same manner as in Example 2-1, except that the aromatic amine derivative shown in Table 2 was used as the second hole transport material.
  • Comparative Examples 2-1 and 2-2 Each organic EL device was fabricated in the same manner as in Example 2-1, except that the comparative compound 1 or 2 was used as the second hole transport material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

式(1)で表される化合物(式(1)において、R1~R4、a~d、L0~L2、及びArは明細書において定義したとおりである。)は、低電圧駆動が可能な長寿命有機エレクトロルミネッセンス素子を実現することができる材料である。

Description

化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
 本発明は、化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器に関する。
 一般に有機エレクトロルミネッセンス素子(有機EL素子)は陽極、陰極、及び陽極と陰極に挟まれた1以上の層を含む有機薄膜層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。従って、電子又は正孔を効率よく発光領域に輸送し、電子と正孔との再結合を容易にする化合物の開発は高効率有機EL素子を得る上で重要である。
 特許文献1は、9,9’-スピロビフルオレン、9,9-ジメチルフルオレン、及びフェナントレンが同一の窒素原子に直接結合したアミン化合物を記載している。特許文献1のアミン化合物は正孔輸送材料として適していると記載されているが、前記アミン化合物を含む有機EL素子の性能は記載されていない。
 特許文献2は、9,9’-スピロビフルオレン、3個のフェニル基で置換されたトリフェニレン、及びベンゼン、ナフタレン、9,9-ジメチルフルオレン、フェナントレンなどから選ばれるアレーンが同一の窒素原子に直接結合したアミン化合物を記載している。特許文献2のアミン化合物は発光層又は正孔輸送層に使用されることが記載されているが、前記アミン化合物を含む有機EL素子の性能は記載されていない。
 特許文献3は、置換もしくは無置換のトリフェニレン、9,9-ジメチルフルオレン、及びビフェニル又はターフェニルが同一の窒素原子に結合したアミン化合物を記載している。実施例で作製された有機EL素子では、これらのアミン化合物は正孔輸送層に含まれている。
 特許文献4は、ビフェニル、9,9-ジフェニルフルオレン、及びフェニル基で置換されたトリフェニレンが同一の窒素原子に結合したアミン化合物を記載している。特許文献4のアミン化合物は正孔輸送層などに使用されることが記載されているが、前記アミン化合物を含む有機EL素子の性能は記載されていない。
 特許文献1~4に記載のアミン化合物は、有機EL素子性能、特に駆動電圧と寿命に関してさらなる改善が必要であった。
特開2013-544757号公報 特開2010-132638号公報 特開2014-509306号公報 韓国20130078749A号公報
 本発明は、前記の課題を解決するためになされたもので、低電圧駆動が可能な長寿命有機EL素子及びこれを実現することができる有機EL素子用材料を提供すること目的とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記式(1)で表される化合物を用いることにより、低電圧駆動が可能で長寿命の有機EL素子が得られることを見出した。
 すなわち、一態様において、本発明は式(1)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000015

〔式中、
 R1~R4は、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~10のアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~10のアリールオキシ基、又はシアノ基を表す。
 aは0~3の整数であり、b、c及びdは、それぞれ独立に、0~4の整数を表す。(R)、(R)、(R)、及び(R)は、それぞれ、R1、R2、R又はRが存在しないことを意味する。a、b、c又はdが2以上の整数を表す場合、2又は3個のR1、2~4個のR2、2~4個のR、及び2~4個のRはそれぞれ同一でも異なっていてもよく、隣接する2つのR1、隣接する2つのR2、隣接する2つのR3、及び隣接する2つのR4はそれぞれ互いに結合して、環構造を形成してもよい。
 L0~L2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基を表す。
 Arは、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基を表す。
 前記「置換もしくは無置換」というときの任意の置換基は、炭素数1~20のアルキル基;環形成炭素数3~50のシクロアルキル基;環形成炭素数6~10のアリール基;環形成炭素数6~10のアリール基を有する炭素数7~30のアラルキル基;炭素数1~20のアルコキシ基;環形成炭素数6~10のアリールオキシ基;炭素数1~20のアルキル基及び環形成炭素数6~10のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;炭素数1~20のハロアルキル基;炭素数1~20のハロアルコキシ基;ハロゲン原子;シアノ基;及び、ニトロ基からなる群より選ばれる少なくとも1つの基である。〕
 他の態様において、本発明は化合物(1)を含む有機エレクトロルミネッセンス素子用材料を提供する。
 さらに他の態様において、本発明は陰極、陽極、及び該陰極と該陽極の間に配置された有機薄膜層を有する有機エレクトロルミネッセンス素子であって、該有機薄膜層は1又は複数の層を含み、該有機薄膜層は発光層を含み、該有機薄膜層の少なくとも1層が化合物(1)を含む有機エレクトロルミネッセンス素子を提供する。
 さらに他の態様において、本発明は、前記有機エレクトロルミネッセンス素子を備える電子機器を提供する。
 前記化合物(1)を用いて作製した有機EL素子は低電圧駆動が可能で長寿命である。
本発明の一態様に係る有機EL素子の概略構成を示す図である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表すものであり、置換されている場合の置換基の炭素数は含めない。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表すものであり、置換されている場合の置換基の原子数は含めない。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換ZZ基」とは、ZZ基の水素原子が置換基で置換されていないことを意味する。
 本明細書において、「水素原子」とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、「環形成炭素数」とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素には含まない。以下で記される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数に含めない。
 本明細書において、「環形成原子数」とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば環を構成する原子の結合手を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は環形成原子数は6であり、キナゾリン環は環形成原子数が10であり、フラン環の環形成原子数は5である。ピリジン環やキナゾリン環の環形成炭素原子にそれぞれ結合している水素原子や置換基を構成する原子は、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロビフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
 本発明の一態様に係る化合物は式(1)で表される(以下、「化合物(1)」と称することもある)。
Figure JPOXMLDOC01-appb-C000016
 化合物(1)は好ましくは下記式(1-1)~(1-4)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000017
 前記式(1-1)は好ましくは記式(1-1a)又は(1-1b)で表される。
Figure JPOXMLDOC01-appb-C000018
 前記式(1-2)は好ましくは記式(1-2a)又は(1-2b)で表される。
Figure JPOXMLDOC01-appb-C000019
 前記式(1-3)は好ましくは記式(1-3a)又は(1-3b)で表される。
Figure JPOXMLDOC01-appb-C000020
 前記式(1-4)は好ましくは記式(1-4a)又は(1-4b)で表される。
Figure JPOXMLDOC01-appb-C000021
 R1~R4は、それぞれ独立に、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルキル基、置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のフルオロアルキル基、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルコキシ基、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリールオキシ基、又はシアノ基を表す。
 R1~R4は、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~10のアリール基、及びハロゲン原子から選ばれることが好ましい。
 前記置換もしくは無置換の炭素数1~20アルキル基において、該アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基(異性体を含む)、ヘキシル基(異性体を含む)、ヘプチル基(異性体を含む)、オクチル基(異性体を含む)、ノニル基(異性体を含む)、デシル基(異性体を含む)、ウンデシル基(異性体を含む)、及びドデシル基(異性体を含む)等が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、及びペンチル基(異性体を含む)が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、及びt-ブチル基がより好ましく、メチル基及びt-ブチル基がさらに好ましい。
 前記置換もしくは無置換の環炭素数6~10のアリール基において、該アリール基としては、フェニル基及びナフチル基が挙げられ、フェニル基が好ましい。
 前記ハロゲン原子はフッ素原子、塩素原子、臭素原子及びヨウ素原子であり、フッ素原子が好ましい。
 前記置換もしくは無置換の炭素数1~20のフルオロアルキル基において、該フルオロアルキル基としては、例えば、上記の炭素数1~20のアルキル基の少なくとも1個、好ましくは1~7個水素原子、又は全ての水素原子をフッ素原子で置換して得られる基が挙げられ、ヘプタフルオロプロピル基(異性体を含む)、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、トリフルオロメチル基が好ましく、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、トリフルオロメチル基がより好ましく、トリフルオロメチル基がさらに好ましい。
 前記置換もしくは無置換の炭素数1~20のアルコキシ基は-OR11で表され、R11は上記の置換もしくは無置換の炭素数1~20のアルキル基を表す。該アルコキシ基としては、t-ブトキシ基、プロポキシ基(異性体を含む)、エトキシ基、メトキシ基が好ましくエトキシ基、メトキシ基がより好ましく、メトキシ基がさらに好ましい。
 前記置換もしくは無置換の炭素数1~20のフルオロアルコキシ基は-OR12で表され、R12は上記の置換もしくは無置換の炭素数1~20のフルオロアルキル基を表す。該フルオロアルコキシ基としては、ヘプタフルオロプロポキシ基(異性体を含む)、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、トリフルオロメトキシ基が好ましく、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、トリフルオロメトキシ基がより好ましく、トリフルオロメトキシ基がさらに好ましい。
 前記置換もしくは無置換の環形成炭素数6~10のアリールオキシ基は-OR13で表され、R13は上記の置換もしくは無置換の環炭素数6~10のアリール基を表す。該アリール基は、フェニル基又はナフチル基であることが好ましく、フェニル基であることがより好ましい。
 aは0~3の整数、好ましくは0~2の整数、より好ましくは0又は1である。b、c及びdは、それぞれ独立に、0~4の整数、好ましくは0~2の整数、より好ましくは0又は1である。本発明の一態様においてはa~dのすべてが0であることが好ましく、他の態様においてはb、c及びdから選ばれる1~3個が1であることが好ましい。
 a~dのそれぞれが0である場合、すなわち、(R)、(R)、(R)、及び(R)は、それぞれ、R1、R2、R又はRが存在しないこと、すなわち、R1、R2、R又はRで置換されていないことを意味する。
 a、b、c又はdが2以上の整数を表す場合、2又は3個のR1、2~4個のR2、2~4個のR、及び2~4個のRはそれぞれ同一でも異なっていてもよく、隣接する2つのR1、隣接する2つのR2、隣接する2つのR3、及び隣接する2つのR4は、それぞれ、互いに結合して環構造を形成してもよいし、環構造を形成しなくてもよい。環構造は、芳香族炭化水素環、及び窒素原子、酸素原子、硫黄原子などの環形成ヘテロ原子を有する芳香族複素環が好ましい。
 Arは、置換もしくは無置換の環形成炭素数6~50、好ましくは6~24、より好ましくは6~12のアリール基、又は置換もしくは無置換の環形成原子数5~50、好ましくは5~24、より好ましくは5~18のヘテロアリール基を表す。
 Arの置換もしくは無置換の環形成炭素数6~50のアリール基において、該アリール基としては、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ビフェニレニル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、ベンゾフェナントリル基、トリフェニレニル基、フェナレニル基、フルオレニル基、ペンタセニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、及びペリレニル基等が挙げられ、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、及びフルオレニル基が好ましい。
 Arの置換もしくは無置換の環形成原子数5~50のヘテロアリール基において、該ヘテロアリール基は1~5個、好ましくは1~3個、より好ましくは1~2個の環形成ヘテロ原子、例えば、窒素原子、硫黄原子及び酸素原子を含む。該ヘテロアリール基としては、例えば、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基(ベンゾチエニル基、以下同様)、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾチオフェニル基(ジベンゾチエニル基、以下同様)、ナフトベンゾチオフェニル基(ナフトベンゾチエニル基、以下同様)、カルバゾリル基(N-カルバゾリル基及びC-カルバゾリル基、以下同様)、ベンゾカルバゾリル基(ベンゾ-N-カルバゾリル基及びベンゾ-C-カルバゾリル基、以下同様)、
フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基が挙げられ、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、カルバゾリル基、及びベンゾカルバゾリル基が好ましく、チエニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、カルバゾリル基及びベンゾカルバゾリル基がより好ましい。
 本発明の好ましい態様において、Arは下記式(a)~(n)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000022
 式(a)~(n)において、*は前記式(1)中のL2との結合を表す。
 式(a)~(n)において、Rは、それぞれ独立に、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルキル基;置換もしくは無置換の環形成炭素数3~50、好ましくは3~6、より好ましくは5又は6のシクロアルキル基;置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリール基;置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリール基を有する置換もしくは無置換の炭素数7~30のアラルキル基;置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルコキシ基;置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリールオキシ基;置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルキル基及び置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のハロアルキル基;置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のハロアルコキシ基;ハロゲン原子;シアノ基;及び、ニトロ基からなる群より選ばれる基を表す。
 本発明の一態様において、式(a)~(n)、好ましくは式(k)~(n)の2つの隣接するRが互いに結合し、該2つの隣接するRが結合する環形成炭素原子と共にベンゼン環を形成してもよい。
 本発明の他の態様において、隣接する2つのRは互いに結合していなくてもよい。
 Rは、好ましくは、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~10のアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~10のアリールオキシ基、及びシアノ基から選ばれる。
 Rが表す置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環炭素数6~10のアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、及び置換もしくは無置換の環形成炭素数6~10のアリールオキシ基の詳細は、R1~R4に関して記載したとおりである。
 Rが表す置換もしくは無置換の環形成炭素数3~50のシクロアルキル基において、該シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基が挙げられ、シクロペンチル基、シクロヘキシル基が好ましい。
 Rが表す、置換もしくは無置換の環形成炭素数6~10のアリール基を有する置換もしくは無置換の炭素数7~30のアラルキル基は、R1~R4に関して上記した置換もしくは無置換の炭素数1~20のアルキル基の1個の水素原子をR1~R4に関して上記した置換もしくは無置換の環形成炭素数6~10のアリール基で置換して得られる基である。
 Rが表す、置換もしくは無置換の炭素数1~20のアルキル基及び置換もしくは無置換の環形成炭素数6~10のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基は、R1~R4に関して上記した置換もしくは無置換の炭素数1~20のアルキル基及びR1~R4に関して上記した置換もしくは無置換の環形成炭素数6~10のアリール基から選ばれる基で置換されたシリル基であり、例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、プロピルジメチルシリル基、イソプロピルジメチルシリル基、トリフェニルシリル基、フェニルジメチルシリル基、t-ブチルジフェニルシリル基、トリトリルシリル基が挙げられる。
 Rが表す置換もしくは無置換の炭素数1~20のハロアルキル基において、該ハロアルキル基は、R1~R4に関して上記した炭素数1~20のアルキル基の少なくとも1個、好ましくは1~7個水素原子、又は全ての水素原子をフッ素原子、塩素原子、臭素原子、及びヨウ素原子から選ばれるハロゲン原子、好ましくはフッ素原子で置換して得られる基であり、ヘプタフルオロプロピル基(異性体を含む)、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、トリフルオロメチル基が好ましく、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、トリフルオロメチル基がより好ましく、トリフルオロメチル基がさらに好ましい。
 Rが表す置換もしくは無置換の炭素数1~20のハロアルコキシ基は-OR14で表され、R14は上記の置換もしくは無置換の炭素数1~20のハロアルキル基、好ましくは炭素数1~20のフルオロアルキル基を表す。該ハロアルコキシ基としては、ヘプタフルオロプロポキシ基(異性体を含む)、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、トリフルオロメトキシ基が好ましく、ペンタフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、トリフルオロメトキシ基がより好ましく、トリフルオロメトキシ基がさらに好ましい。
 式(a)~(n)において、pはそれぞれ独立に0~5の整数、好ましくは0~3の整数、より好ましくは0又は1、さらに好ましくは0を表す。qはそれぞれ独立に0~4の整数、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0を表す。rはそれぞれ独立に0~3の整数、好ましくは0~2の整数、より好ましくは0又は1、さらに好ましくは0を表す。sは0又は1、好ましくは0を表す。
 p、q、又はrが2以上の整数を表す場合、2~5個、2~4個、又は2~3個のRはそれぞれ同一でも異なっていてもよく、隣接する2つのRは互いに結合して、環構造を形成してもよい。隣接する2つのRとこれらが結合している2つの環形成炭素原子が形成する環としては、芳香族炭化水素環、及び窒素原子、酸素原子、硫黄原子などの環形成ヘテロ原子を有する芳香族複素環が好ましい。
 p~sのいずれかが0である場合、(R)はRが存在しないこと、すなわち、Rで置換されていないことを意味する。本発明の一態様において、式(a)~(n)で表される基は、1又は2個のRを有することが好ましく、1個のRを有することがより好ましい。本発明の他の態様において、式(a)~(n)で表される基はRで置換されていないことが好ましい。
 式(f)において、R及びRは、それぞれ独立に、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルキル基、置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のフルオロアルキル基、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルコキシ基、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリールオキシ基、又はシアノ基を表す。R、R及びRから選ばれる2つが互いに結合して環構造を形成してもよい。
 R及びRは、好ましくは、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、及び置換もしくは無置換の環形成炭素数6~10のアリール基から選ばれる。
 R及びRが表す各基の詳細は、R1~R4に関して上記した各基と同様である。
 式(n)において、Rcは、水素原子、置換もしくは無置換の炭素数1~20、好ましくは1~5、より好ましくは1~4のアルキル基、又は置換もしくは無置換の環形成炭素数6~10、好ましくは6のアリール基を表す。
 Rcは、置換もしくは無置換の炭素数1~20のアルキル基又は置換もしくは無置換の環形成炭素数6~10のアリール基であることが好ましく、置換もしくは無置換の環形成炭素数6~10のアリール基であることがより好ましい。
 Rcが表す各基の詳細は、R1~R4に関して上記した各基と同様である。
 式(b)は、好ましくは、Rで置換されていてもよい2-、3-又は4-ビフェニリル基を表す。
 式(c)は、好ましくは、それぞれRで置換されていてもよい、2-、3-又は4-p-ターフェニリル基、2-、3-又は4-m-ターフェニリル基、又は2-、3-又は4-o-ターフェニリル基を表す。
 式(d)は、好ましくは、それぞれRで置換されていてもよい、2’-p-ターフェニリル基、2’-、4’-、又は5’-m-ターフェニリル基、又は4’-o-ターフェニリル基を表す。
 式(b)、(c)及び(d)は、好ましくは、下記式(b-1)、(b-2)、(c-1)、(c-2)、及び(d-1)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000023

〔式中、R、p、q、r及び*は前記と同様である。〕
 式(e)は、好ましくは、それぞれRで置換されていてもよい、1-ナフチル基又は2-ナフチル基を表す。
 式(f)において、R及びRは共にメチル基またはフェニル基であること、又は、R及びRの一方がメチル基、他方がフェニル基であることが好ましい。式(f)で表される基は、フルオレン環の1~4位、好ましくは2位又は4位で式(1)のL2と結合する。
 式(g)は好ましくは、Rで置換されていてもよい、4-(9-フェニルフルオレン-9-イル)フェニル基を表す。
 式(h)で表される基は、フルオレン環の1~4位、好ましくは2位又は4位で式(1)のL2と結合する。
 式(i)で表される基は、チオフェン環の2位で式(1)のL2と結合するのが好ましい。
 式(j)で表される基は、ベンゾチオフェン環の2位で式(1)のL2と結合するのが好ましい。
 式(l)で表される基は、ジベンゾフラン環の1~4位、好ましくは2位又は4位で式(1)のL2と結合する。
 式(m)で表される基は、ジベンゾチオフェン環の1~4位、好ましくは2位又は4位で式(1)のL2と結合する。
 式(n)において、Rは好ましくはフェニル基であり、式(n)で表される基は、カルバゾール環の1~4位、好ましくは3位で式(1)のL2と結合する。
 L0~L2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50、好ましくは6~24、より好ましくは6~12のアリーレン基、又は置換もしくは無置換の環形成原子数5~50、好ましくは5~24、より好ましくは5~18のヘテロアリーレン基を表す。
 前記置換もしくは無置換の環形成炭素数6~50のアリーレン基において、該アリーレン基は、Arに関して上記した環形成炭素数6~50のアリール基から1個の水素原子を除いて得られる基であり、前記置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基において、該ヘテロアリーレン基は、Arに関して上記した環形成原子数5~50のヘテロアリール基から1個の水素原子を除いて得られる基である。
 L0~L2は、それぞれ独立に、単結合又は置換もしくは無置換の環形成炭素数6~50アリーレン基であることが好ましい。該置換もしくは無置換の環形成炭素数6~50アリーレン基は下記式(ii)又は(iii)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 式中、Rとqは式(a)~(n)に関して定義したとおりである。
 L0が式(ii)又は(iii)で表される場合、*と**の一方はスピロビフルオレン構造との結合を表し、他方は窒素原子との結合を表し、
 Lが式(ii)又は(iii)で表される場合、*と**の一方はトリフェニレンとの結合を表し、他方は窒素原子との結合を表し、
 Lが式(ii)又は(iii)で表される場合、*と**の一方はArとの結合を表し、他方は窒素原子との結合を表す。
 式(ii)及び(iii)は好ましくは下記式で表される。
Figure JPOXMLDOC01-appb-C000025
 本発明の一態様において、L0~L2が単結合であり、Arが前記式(a)~(h)のいずれかで表されるアリール基である化合物(1)が好ましい。
 本発明の他の態様において、L0及びLが単結合であり、Lが置換もしくは無置換の環形成炭素数6~50アリーレン基又は置換もしくは無置換の環形成原子数5~50ヘテロアリーレン基、好ましくは置換もしくは無置換の環形成炭素数6~50アリーレン基、より好ましくは前記式(ii)又は(iii)で表されるアリーレン基であり、Arが前記式(i)~(n)で表されるヘテロアリール基である化合物(1)が好ましい。
 Lは、9,9’-スピロビフルオレン環の2~4位に結合することが好ましく、2位又は4位に結合することがより好ましい。
 Lは、トリフェニレン環の2位に結合することが好ましい。
 本明細書において「置換もしくは無置換」というときの任意の置換基は、炭素数1~20、好ましくは1~5、より好ましくは1~4のアルキル基;環形成炭素数3~50、好ましくは3~6、より好ましくは5又は6のシクロアルキル基;環形成炭素数6~10、好ましくは6のアリール基;環形成炭素数6~10のアリール基を有する炭素数7~30のアラルキル基;炭素数1~20のアルコキシ基;環形成炭素数6~10、好ましくは6のアリールオキシ基;炭素数1~20のアルキル基及び環形成炭素数6~10のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;炭素数1~20のハロアルキル基;炭素数1~20のハロアルコキシ基;ハロゲン原子;シアノ基;及び、ニトロ基からなる群より選ばれる少なくとも1つの基である。前記任意の置換基の詳細は、Rその他の基に関して記載した各置換基と同様である。
 化合物(1)の具体例を以下に示すが、以下の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
有機EL素子
 次に、本発明の一態様の有機EL素子について説明する。
 有機EL素子は、陰極と陽極の間に1以上の層を含む有機薄膜層を有する。この有機薄膜層は発光層を含み、有機薄膜層の少なくとも一層が前記式(1)で表される化合物(化合物(1))を含む。
 前記化合物(1)が含まれる有機薄膜層の例としては、陽極と発光層との間に設けられる陽極側有機薄膜層(正孔輸送層、正孔注入層等)、発光層、スペース層、障壁層等が挙げられるが、これらに限定されるものではない。例えば、蛍光発光ユニットの発光層におけるホスト材料やドーパント材料、正孔注入層材料、正孔輸送層材料として用いることができる。また、燐光発光ユニットの発光層におけるホスト材料、正孔注入層材料、正孔輸送層材料として用いることができる。
 本発明の一態様に係る有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、蛍光発光型の素子であることが好ましい。ここで、「発光ユニット」とは、1以上の層を含む有機薄膜層を含み、そのうちの少なくとも一層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位をいう。
 例えば、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。シンプル型発光ユニットの代表的な層構成を以下に示す。
(a)(正孔注入層/)正孔輸送層/蛍光発光層(/電子輸送層)
(b)(正孔注入層/)正孔輸送層/第一燐光蛍光発光層/第二燐蛍光光発光層(/電子輸送層)
(c)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)(正孔注入層/)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)(正孔注入層/)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
(g)(正孔注入層/)正孔輸送層/電子障壁層/蛍光発光層(/電子輸送層)
(h)(正孔注入層/)正孔輸送層/蛍光発光層/正孔障壁層(/電子輸送層)
(i)(正孔注入層/)正孔輸送層/蛍光発光層/トリプレット障壁層(/電子輸送層)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光ユニット(d)において、(正孔注入層/)正孔輸送層/第一燐光発光層(赤色発光)/第二燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子障壁層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットから選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 図1に、前記有機EL素子の一例の概略構成を示す。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット10とを有する。発光ユニット10は、少なくとも一つの発光層5を有する。発光層5と陽極3との間に正孔注入/輸送層6(陽極側有機薄膜層)等、発光層5と陰極4との間に電子注入/輸送層7(陰極側有機薄膜層)等を形成してもよい。また、発光層5の陽極3側に電子障壁層(図示せず)を、発光層5の陰極4側に正孔障壁層(図示せず)を、それぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成確率をさらに高めることができる。
 なお、本発明において、蛍光ドーパント(蛍光発光材料)と組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料を意味し、蛍光発光層を形成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。
基板
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどの板を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
陽極
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステンおよび酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、または前記金属の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~10wt%の酸化亜鉛を加えたターゲットを、酸化タングステンおよび酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔注入が容易である材料を用いて形成されるため、電極材料として一般的に使用される材料(例えば、金属、合金、電気伝導性化合物、およびこれらの混合物、元素周期表の第1族または第2族に属する元素)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
正孔注入層
 正孔注入層は、正孔注入性の高い材料(正孔注入性材料)を含む層である。前記化合物(1)を単独又は下記の材料と組み合わせて正孔注入層に用いてもよい。
 正孔注入性材料としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も正孔注入層材料として挙げられる。
 高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
 さらに、下記式(K)で表されるヘキサアザトリフェニレン(HAT)化合物などのアクセプター材料を化合物(1)と組み合わせて用いることも好ましい。
Figure JPOXMLDOC01-appb-C000106
(上記式中、R21~R26は互いに同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH、カルボキシル基、又は-COOR27(R27は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。また、R21及びR22、R23及びR24、及びR25及びR26において、隣接する2つの基が互いに結合して-CO-O-CO-で示される基を形成してもよい。)
 R27としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
正孔輸送層
 正孔輸送層は、正孔輸送性の高い材料(正孔輸送性材料)を含む層である。前記化合物(1)を単独又は下記の化合物と組み合わせて正孔輸送層に用いてもよい。
 正孔輸送性材料としては、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。芳香族アミン化合物としては、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)が挙げられる。上記化合物は、10-6cm/Vs以上の正孔移動度を有する。
 正孔輸送層には、4,4’-ジ(9-カルバゾリル)ビフェニル(略称:CBP)、9-[4-(9-カルバゾリル)フェニル]-10-フェニルアントラセン(略称:CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)等のカルバゾール誘導体や、2-t-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラセン(略称:DPAnth)等のアントラセン誘導体を用いてもよい。ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子輸送性よりも正孔輸送性の方が高い化合物であれば、上記以外の化合物を用いてもよい。なお、正孔輸送性の高い化合物を含む層は、単層でもよく、上記化合物を含む2以上の層からなる積層でもよい。例えば、正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造にしてもよい。この場合、前記化合物(1)は第1正孔輸送層と第2正孔輸送層のいずれに含まれていてもよい。
発光層のドーパント材料
 発光層は、発光性の高い材料(ドーパント材料)を含む層であり、種々の材料を用いることができる。例えば、蛍光発光材料や燐光発光材料をドーパント材料として用いることができる。蛍光発光材料は一重項励起状態から発光する化合物であり、燐光発光材料は三重項励起状態から発光する化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)などが挙げられる。
 発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)などが挙げられる。
 発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)などが挙げられる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)2(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。
 発光層に用いることができる緑色系の燐光発光材料として、イリジウム錯体等が使用される。トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)2(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)2(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)2(acac))などが挙げられる。
 発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)2(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)2(acac))、(アセチルアセトナート)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)2(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)2(acac))、(アセチルアセトナート)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 また、トリス(アセチルアセトナート)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)3(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)3(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光発光材料として用いることができる。
発光層のホスト材料
 発光層としては、上述したドーパント材料を他の材料(ホスト材料)に分散させた構成としてもよい。ホスト材料としては、各種のものを用いることができ、ドーパント材料よりも最低空軌道準位(LUMO準位)が高く、最高占有軌道準位(HOMO準位)が低い材料を用いることが好ましい。
 ホスト材料としては、例えば
(1)アルミニウム錯体、ベリリウム錯体、又は亜鉛錯体等の金属錯体、
(2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、又はフェナントロリン誘導体等の複素環化合物、
(3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、又はクリセン誘導体等の縮合芳香族化合物、
(4)トリアリールアミン誘導体又は縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
 例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体;
 2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)などの複素環化合物;
 9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3’’-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセンなどの縮合芳香族化合物;及び
 N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物を用いることができる。ホスト材料は複数種用いてもよい。
電子輸送層
 電子輸送層は電子輸送性の高い材料(電子輸送性材料)を含む層である。電子輸送層には、例えば、
(1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、
(2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、
(3)高分子化合物を使用することができる。
 金属錯体としては、例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)が挙げられる。
 複素芳香族化合物としては、例えば、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)が挙げられる。
 高分子化合物としては、例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)が挙げられる。
 上記材料は、主に10-6cm/Vs以上の電子移動度を有する材料である。なお、正孔輸送性よりも電子輸送性の高い材料であれば、上記以外の材料を電子輸送層に用いてもよい。また、電子輸送層は、単層のものだけでなく、上記材料からなる層が二層以上積層したものとしてもよい。
電子注入層
 電子注入層は、電子注入性の高い材料を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、リチウム酸化物(LiOx)等のアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する材料にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率良く行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、有機化合物が電子供与体から電子を受け取るため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、受け取った電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す材料であればよい。具体的には、アルカリ金属、アルカリ土類金属及び希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
陰極
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
絶縁層
 有機EL素子は、超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層からなる絶縁層を挿入してもよい。
 絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。なお、これらの混合物や積層物を用いてもよい。
スペース層
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
障壁層
 発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層などの障壁層を設けてもいい。電子障壁層とは発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔障壁層とは発光層から電子輸送層へ正孔が漏れることを防ぐ層である。トリプレット障壁層は発光層で生成した励起子が周辺の層へ拡散することを防止し、励起子を発光層内に閉じ込める機能を有する。
 前記有機EL素子の各層は従来公知の蒸着法、塗布法等により形成することができる。例えば、真空蒸着法、分子線蒸着法(MBE法)などの蒸着法、あるいは、層を形成する化合物の溶液を用いた、ディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
 各層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い駆動電圧が必要となり効率が悪くなるため、通常5nm~10μmであり、10nm~0.2μmがより好ましい。
 前記有機EL素子は、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、パーソナルコンピュータ等の表示装置、及び、照明、車両用灯具の発光装置等の電子機器に使用できる。
 以下、実施例を用いて本発明の態様をさらに詳細に説明するが、本発明はそれら実施例に限定されるものではない。
中間体合成例1-1(中間体1-1の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼン28.3g(100.0mmol)、ジベンゾフラン-4-ボロン酸22.3g(105.0mmol)、Pd[PPh] 2.31g(2.00mmol)にトルエン150ml、ジメトキシエタン150ml、2M NaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、26.2gの白色固体を得た。FD-MS分析(電界脱離質量分析)により、下記中間体1-1と同定した。(収率81%)
Figure JPOXMLDOC01-appb-C000107
中間体合成例1-2(中間体1-2の合成)
 中間体合成例1-1において、ジベンゾフラン-4-ボロン酸の代わりにジベンゾフラン-2-ボロン酸を22.3g用いた以外は同様に反応を行ったところ、27.4gの白色固体を得た。FD-MSの分析により、下記中間体1-2と同定した。(収率85%)
Figure JPOXMLDOC01-appb-C000108
中間体合成例1-3(中間体1-3の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼン28.3g(100.0mmol)、ジベンゾチオフェン-4-ボロン酸23.9g(105.0mmol)、Pd[PPh] 2.31g(2.00mmol)にトルエン150ml、ジメトキシエタン150ml、2M NaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、27.1gの白色固体を得た。FD-MSの分析により、下記中間体1-3と同定した。(収率80%)
Figure JPOXMLDOC01-appb-C000109
中間体合成例1-4(中間体1-4の合成)
中間体合成例1-3において、ジベンゾチオフェン-4-ボロン酸の代わりにジベンゾチオフェン-2-ボロン酸を23.9g用いた以外は同様に反応を行ったところ、27.2gの白色固体を得た。FD-MSの分析により、下記中間体1-4と同定した。(収率80%)
Figure JPOXMLDOC01-appb-C000110
中間体合成例1-5(中間体1-5の合成)
 アルゴン雰囲気下、4-ヨードブロモベンゼン28.3g(100.0mmol)、4-(9H-カルバゾール-9-イル)フェニルボロン酸30.1g(105.0mmol)、Pd[PPh] 2.31g(2.00mmol)にトルエン150ml、ジメトキシエタン150ml、2M NaCO水溶液150ml(300.0mmol)を加え、10時間加熱還流攪拌した。
反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、29.9gの白色固体を得た。FD-MS分析(電界脱離質量分析)により、下記中間体1-5と同定した。(収率75%)
Figure JPOXMLDOC01-appb-C000111
中間体合成例1-6(中間体1-6の合成)
 中間体合成例1-5において、4-(9H-カルバゾール-9-イル)フェニルボロン酸の代わりに3-(9H-カルバゾール-9-イル)フェニルボロン酸を30.1g用いた以外は同様に反応を行ったところ、27.2gの白色固体を得た。FD-MSの分析により、下記中間体1-6と同定した。(収率68%)
Figure JPOXMLDOC01-appb-C000112
中間体合成例1-7(中間体1-7の合成)
 中間体合成例1-5において、4-(9H-カルバゾール-9-イル)フェニルボロン酸の代わりに9-フェニルカルバゾール-3-ボロン酸を30.1g用いた以外は同様に反応を行ったところ、31.5gの白色固体を得た。FD-MSの分析により、下記中間体1-7と同定した。(収率79%)
Figure JPOXMLDOC01-appb-C000113
中間体合成例2-1(中間体2-1の合成)
 アルゴン雰囲気下、2-アミノトリフェニレン12.2g(50.0mmol)、2-ブロモ-9,9'-スピロビフルオレン19.8g(50.0mmol)、t-ブトキシナトリウム9.6g(100.0mmol)に脱水トルエン250mlを加え、撹拌した。酢酸パラジウム225mg(1.0mmol)、トリ-t-ブチルホスフィン202mg(1.0mmol)を加え、80℃にて8時間反応した。
 冷却後、反応混合物をセライト/シリカゲルを通して濾過し、濾液を減圧下で濃縮した。得られた残渣をトルエンで再結晶し、それを濾取した後、乾燥し、18.1gの白色固体を得た。FD-MSの分析により、下記中間体2-1と同定した。(収率65%)
Figure JPOXMLDOC01-appb-C000114
中間体合成例2-2(中間体2-2の合成)
 中間体合成例2-1において、2-ブロモ-9,9'-スピロビフルオレンの代わりに4-ブロモ-9,9'-スピロビフルオレンを19.8g用いた以外は同様に反応を行ったところ、16.7gの白色結晶を得た。FD-MSの分析により、下記中間体2-2と同定した。(収率60%)
Figure JPOXMLDOC01-appb-C000115
中間体合成例2-3(中間体2-3の合成)
 中間体合成例2-1において、2-ブロモ-9,9'-スピロビフルオレンの代わりに3-ブロモ-9,9'-スピロビフルオレンを19.8g用いた以外は同様に反応を行ったところ、19.5gの白色結晶を得た。FD-MSの分析により、下記中間体2-3と同定した。(収率70%)
Figure JPOXMLDOC01-appb-C000116
中間体合成例2-4(中間体2-4の合成)
 中間体合成例2-1において、2-ブロモ-9,9'-スピロビフルオレンの代わりに1-ブロモ-9,9'-スピロビフルオレンを19.8g用いた以外は同様に反応を行ったところ、9.8gの白色結晶を得た。FD-MSの分析により、下記中間体2-4と同定した。(収率35%)
Figure JPOXMLDOC01-appb-C000117
中間体合成例2-5(中間体2-5の合成)
 中間体合成例2-1において、2-アミノトリフェニレンの代わりに1-アミノトリフェニレンを12.2g用いた以外は同様に反応を行ったところ、11.2gの白色結晶を得た。FD-MSの分析により、下記中間体2-5と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000118
合成実施例1(芳香族アミン誘導体H1の製造)
 アルゴン雰囲気下、2-ブロモビフェニル2.3g(10.0mmol)、中間体2-1 6.5g(10.0mmol)、Pd(dba)3 0.14g(0.15mmol)、P(tBu)HBF4 0.087g(0.3mmol)、t-ブトキシナトリウム1.9g(20.0mmol)に、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.5gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H1と同定した。(収率35%)
Figure JPOXMLDOC01-appb-C000119
合成実施例2(芳香族アミン誘導体H2の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに4-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、2.8gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H2と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000120
合成実施例3(芳香族アミン誘導体H3の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに2-ブロモ-1,1':4',1''-ターフェニルを3.1g用いた以外は同様に反応を行ったところ、2.4gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H3と同定した。(収率30%)
Figure JPOXMLDOC01-appb-C000121
合成実施例4(芳香族アミン誘導体H4の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに4-ブロモ-1,1':4',1''-ターフェニルを3.1g用いた以外は同様に反応を行ったところ、3.3gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H4と同定した。(収率42%)
Figure JPOXMLDOC01-appb-C000122
合成実施例5(芳香族アミン誘導体H5の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-ジメチルフルオレンを2.7g用いた以外は同様に反応を行ったところ、3.4gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H5と同定した。(収率46%)
Figure JPOXMLDOC01-appb-C000123
合成実施例6(芳香族アミン誘導体H6の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-ジフェニルフルオレンを4.0g用いた以外は同様に反応を行ったところ、3.3gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H6と同定した。(収率38%)
Figure JPOXMLDOC01-appb-C000124
合成実施例7(芳香族アミン誘導体H7の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-スピロビフルオレンを4.0g用いた以外は同様に反応を行ったところ、3.5gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H7と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000125
合成実施例8(芳香族アミン誘導体H8の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに中間体1-1を3.2g用いた以外は同様に反応を行ったところ、3.6gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H8と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000126
合成実施例9(芳香族アミン誘導体H9の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに中間体1-2を3.2g用いた以外は同様に反応を行ったところ、3.4gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H9と同定した。(収率42%)
Figure JPOXMLDOC01-appb-C000127
合成実施例10(芳香族アミン誘導体H10の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに中間体1-3を3.4g用いた以外は同様に反応を行ったところ、3.7gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H10と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000128
合成実施例11(芳香族アミン誘導体H11の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに中間体1-4を3.4g用いた以外は同様に反応を行ったところ、3.3gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H11と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000129
合成実施例12(芳香族アミン誘導体H12の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに9-(4-ブロモフェニル)カルバゾールを3.2g用いた以外は同様に反応を行ったところ、3.6gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H12と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000130
合成実施例13(芳香族アミン誘導体H13の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに中間体1-5を4.0g用いた以外は同様に反応を行ったところ、4.4gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H13と同定した。(収率50%)
Figure JPOXMLDOC01-appb-C000131
合成実施例14(芳香族アミン誘導体H14の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに中間体1-6を4.0g用いた以外は同様に反応を行ったところ、4.2gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H14と同定した。(収率48%)
Figure JPOXMLDOC01-appb-C000132
合成実施例15(芳香族アミン誘導体H15の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに中間体1-7を4.0g用いた以外は同様に反応を行ったところ、4.1gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H15と同定した。(収率47%)
Figure JPOXMLDOC01-appb-C000133
合成実施例16(芳香族アミン誘導体H16の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに9-(4-ブロモフェニル)-9-フェニルフルオレンを4.0g用いた以外は同様に反応を行ったところ、3.2gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H16と同定した。(収率37%)
Figure JPOXMLDOC01-appb-C000134
合成実施例17(芳香族アミン誘導体H17の製造)
 合成実施例1において、2-ブロモビフェニルの代わりに2-(4-ブロモフェニル)-5-フェニルチオフェンを3.2g用いた以外は同様に反応を行ったところ、3.5gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H17と同定した。(収率44%)
Figure JPOXMLDOC01-appb-C000135
合成実施例18(芳香族アミン誘導体H18の製造)
 アルゴン雰囲気下、中間体2-2 5.6g(10.0mmol)、2-ブロモビフェニル 2.3g(10.0mmol)、Pd(dba)3 0.14g(0.15mmol)、P(tBu)HBF4 0.087g(0.3mmol)、t-ブトキシナトリウム1.9g(20.0mmol)に、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.3gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H18と同定した。(収率33%)
Figure JPOXMLDOC01-appb-C000136
合成実施例19(芳香族アミン誘導体H19の製造)
 合成実施例18において、2-ブロモビフェニルの代わりに4-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、3.2gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H19と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000137
合成実施例20(芳香族アミン誘導体H20の製造)
 合成実施例18において、2-ブロモビフェニルの代わりに4-ブロモ-1,1':4',1''-ターフェニルを3.1g用いた以外は同様に反応を行ったところ、3.1gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H20と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000138
合成実施例21(芳香族アミン誘導体H21の製造)
 合成実施例18において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-ジメチルフルオレンを2.7g用いた以外は同様に反応を行ったところ、3.0gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H21と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000139
合成実施例22(芳香族アミン誘導体H22の製造)
 合成実施例18において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-ジフェニルフルオレンを4.0g用いた以外は同様に反応を行ったところ、3.8gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H22と同定した。(収率43%)
Figure JPOXMLDOC01-appb-C000140
合成実施例23(芳香族アミン誘導体H23の製造)
 合成実施例18において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-スピロビフルオレンを4.0g用いた以外は同様に反応を行ったところ、3.5gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H23と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000141
合成実施例24(芳香族アミン誘導体H24の製造)
 合成実施例18において、2-ブロモビフェニルの代わりに中間体1-7を4.0g用いた以外は同様に反応を行ったところ、3.9gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H24と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000142
合成実施例25(芳香族アミン誘導体H25の製造)
 アルゴン雰囲気下、中間体2-3 5.6g(10.0mmol)、2-ブロモビフェニル 2.3g(10.0mmol)、Pd(dba)3 0.14g(0.15mmol)、P(tBu)HBF4 0.087g(0.3mmol)、t-ブトキシナトリウム1.9g(20.0mmol)に、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、2.4gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H25と同定した。(収率34%)
Figure JPOXMLDOC01-appb-C000143
合成実施例26(芳香族アミン誘導体H26の製造)
 合成実施例25において、2-ブロモビフェニルの代わりに4-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、3.5gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H26と同定した。(収率50%)
Figure JPOXMLDOC01-appb-C000144
合成実施例27(芳香族アミン誘導体H27の製造)
 合成実施例25において、2-ブロモビフェニルの代わりに4-ブロモ-1,1':4',1''-ターフェニルを3.1g用いた以外は同様に反応を行ったところ、3.5gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H27と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000145
合成実施例28(芳香族アミン誘導体H28の製造)
 合成実施例25において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-ジメチルフルオレンを2.7g用いた以外は同様に反応を行ったところ、3.4gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H28と同定した。(収率45%)
Figure JPOXMLDOC01-appb-C000146
合成実施例29(芳香族アミン誘導体H29の製造)
 合成実施例25において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-ジフェニルフルオレンを4.0g用いた以外は同様に反応を行ったところ、4.1gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H29と同定した。(収率47%)
Figure JPOXMLDOC01-appb-C000147
合成実施例30(芳香族アミン誘導体H30の製造)
 合成実施例25において、2-ブロモビフェニルの代わりに2-ブロモ-9,9-スピロビフルオレンを4.0g用いた以外は同様に反応を行ったところ、3.5gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H30と同定した。(収率40%)
Figure JPOXMLDOC01-appb-C000148
合成実施例31(芳香族アミン誘導体H31の製造)
 合成実施例25において、2-ブロモビフェニルの代わりに中間体1-7を4.0g用いた以外は同様に反応を行ったところ、3.3gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H31と同定した。(収率38%)
Figure JPOXMLDOC01-appb-C000149
合成実施例32(芳香族アミン誘導体H32の製造)
 アルゴン雰囲気下、中間体2-4 5.6g(10.0mmol)、2-ブロモビフェニル 2.3g(10.0mmol)、Pd(dba)3 0.14g(0.15mmol)、P(tBu)HBF4 0.087g(0.3mmol)、t-ブトキシナトリウム1.9g(20.0mmol)に、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、1.1gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H32と同定した。(収率15%)
Figure JPOXMLDOC01-appb-C000150
合成実施例33(芳香族アミン誘導体H33の製造)
 合成実施例32において、2-ブロモビフェニルの代わりに4-ブロモビフェニルを2.3g用いた以外は同様に反応を行ったところ、1.4gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H33と同定した。(収率20%)
Figure JPOXMLDOC01-appb-C000151
合成実施例34(芳香族アミン誘導体H34の製造)
 アルゴン雰囲気下、中間体2-5 5.6g(10.0mmol)、4-ブロモビフェニル 2.3g(10.0mmol)、Pd(dba)3 0.14g(0.15mmol)、P(tBu)HBF4 0.087g(0.3mmol)、t-ブトキシナトリウム1.9g(20.0mmol)に、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト/シリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、1.8gの白色結晶を得た。FD-MSの分析により、下記芳香族アミン誘導体H34と同定した。(収率25%)
Figure JPOXMLDOC01-appb-C000152
実施例1-1(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして下記電子注入性化合物Aを蒸着し、膜厚5nmの膜Aを成膜した。
 この膜A上に、第1正孔輸送材料としてとして合成実施例1で得た芳香族アミン誘導体H1を蒸着し、膜厚80nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として下記芳香族アミン誘導体Y1を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 この正孔輸送層上に、下記ホスト化合物BHとドーパント化合物BDとを厚さ25nmで共蒸着し、発光層を成膜した。発光層中のドーパント化合物BDの濃度は4質量%であった。
 続いて、この発光層上に、下記化合物ET1を厚さ10nm、続いて下記化合物ET2を厚さ15nm、及びLiFを厚さ1nmで蒸着し、電子輸送/注入層を成膜した。さらに、金属Alを厚さ80nmで蒸着して陰極を形成し、有機EL素子を製造した。
実施例1-2~1-34
 第1正孔輸送材料として、合成実施例2~34で得た芳香族アミン誘導体H2~H34を用いた以外は実施例1-1と同様にして実施例1-2~1-34の各有機EL素子を作製した。
比較例1-1及び1-2
 第1正孔輸送材料として下記比較化合物1(特許文献1に記載の化合物)又は比較化合物2(特許文献3に記載の化合物)を用いた以外は実施例1-1と同様にして各有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000154
有機EL素子の発光性能評価
 以上のようにして作製した有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、測定結果から電流密度10mA/cmにおける外部量子効率(EQE)、駆動電圧(V)を求めた。さらに電流密度50mA/cmにおける90%寿命を求めた。ここで、90%寿命とは、定電流駆動時において、輝度が初期輝度の90%に減衰するまでの時間をいう。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000155
 表1の結果から、本発明の式(1)に包含される化合物(H1)~(H34)を用いることにより、高水準の発光効率を維持しながら、低電圧で駆動でき、且つ、長寿命の有機EL素子が得られることがわかる。
実施例2-1(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして上記電子注入性化合物Aを蒸着し、膜厚5nmの膜Aを成膜した。
 この膜A上に、第1正孔輸送材料として下記芳香族アミン誘導体X1を蒸着し、膜厚80nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として合成実施例1で得た芳香族アミン誘導体H1を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 この正孔輸送層上に、ホスト化合物BHとドーパント化合物BDとを厚さ25nmで共蒸着し、発光層を成膜した。発光層中のドーパント化合物BDの濃度は4質量%であった。
 続いて、この発光層上に、化合物ET1を厚さ10nm、続いて化合物ET2を厚さ15nm、及びLiFを厚さ1nmで蒸着し、電子輸送/注入層を成膜した。さらに、金属Alを厚さ80nmで蒸着して陰極を形成し、有機EL素子を製造した。
Figure JPOXMLDOC01-appb-C000156
実施例2-2~2-10
 第2正孔輸送材料として表2に記載の芳香族アミン誘導体を用いた以外は実施例2-1と同様にして各有機EL素子を作製した。
比較例2-1及び2-2
 第2正孔輸送材料として上記比較化合物1又は2を用いた以外は実施例2-1と同様にして各有機EL素子を作製した。
有機EL素子の発光性能評価
 以上のようにして作製した有機EL素子について、上記と同様にして、電流密度10mA/cmにおける外部量子効率(EQE)、駆動電圧(V)、及び電流密度50mA/cmにおける90%寿命を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000157
 表2の結果から、式(1)に包含される芳香族アミン誘導体を用いることにより、高水準の発光効率を維持しながら、低電圧で駆動でき、且つ、長寿命の有機EL素子が得られることがわかる。
  1 有機EL素子
  2 基板
  3 陽極
  4 陰極
  5 発光層
  6 陽極側有機薄膜層
  7 陰極側有機薄膜層
 10 発光ユニット

Claims (23)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001

    〔式中、
     R1~R4は、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~10のアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~10のアリールオキシ基、又はシアノ基を表す。
     aは0~3の整数であり、b、c及びdは、それぞれ独立に、0~4の整数を表す。(R)、(R)、(R)、及び(R)は、それぞれ、R1、R2、R又はRが存在しないことを意味する。a、b、c又はdが2以上の整数を表す場合、2又は3個のR1、2~4個のR2、2~4個のR、及び2~4個のRはそれぞれ同一でも異なっていてもよく、隣接する2つのR1、隣接する2つのR2、隣接する2つのR3、及び隣接する2つのR4はそれぞれ互いに結合して、環構造を形成してもよい。
     L0~L2は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基を表す。
     Arは、置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基を表す。
     前記「置換もしくは無置換」というときの任意の置換基は、炭素数1~20のアルキル基;環形成炭素数3~50のシクロアルキル基;環形成炭素数6~10のアリール基;環形成炭素数6~10のアリール基を有する炭素数7~30のアラルキル基;炭素数1~20のアルコキシ基;環形成炭素数6~10のアリールオキシ基;炭素数1~20のアルキル基及び環形成炭素数6~10のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基;炭素数1~20のハロアルキル基;炭素数1~20のハロアルコキシ基;ハロゲン原子;シアノ基;及び、ニトロ基からなる群より選ばれる少なくとも1つの基である。〕
  2.  下記式(1-1)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  3.  下記式(1-2)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  4.  下記式(1-3)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  5.  下記式(1-4)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  6.  下記式(1-1a)又は(1-1b)で表される請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  7.  下記式(1-2a)又は(1-2b)で表される請求項3に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  8.  下記式(1-3a)又は(1-3b)で表される請求項4に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  9.  下記式(1-4a)又は(1-4b)で表される請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009

    〔式中、R1~R4、a~d、L0~L2、及びArは式(1)で定義したとおりである。〕
  10.  Arが表す置換もしくは無置換の環形成炭素数6~50のアリール基において、該アリール基は、フェニル基、ビフェニリル基、ターフェニリル基、ビフェニレニル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、ベンゾフェナントリル基、トリフェニレニル基、フェナレニル基、フルオレニル基、ペンタセニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、及びペリレニル基からなる群より選ばれる請求項1~9のいずれか1項に記載の化合物。
  11.  Arが表す置換もしくは無置換の形成原子数5~50のヘテロアリール基において、該ヘテロアリール基は、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、N-カルバゾリル基、ベンゾ-N-カルバゾリル基、C-カルバゾリル基、ベンゾ-C-カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基からなる群より選ばれる請求項1~9のいずれか1項に記載の化合物。
  12.  Arが下記式(a)~(n)のいずれかで表される請求項1~11のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000010

    〔式(a)~(n)において、
     Rは、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、置換もしくは無置換の環形成炭素数6~10のアリール基、置換もしくは無置換の環形成炭素数6~10のアリール基を有する置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~10のアリールオキシ基、置換もしくは無置換の炭素数1~20のアルキル基及び置換もしくは無置換の環形成炭素数6~10のアリール基から選ばれる置換基を有するモノ置換、ジ置換又はトリ置換シリル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、ハロゲン原子、シアノ基、又はニトロ基を表す。
     式(a)~(n)のそれぞれにおいて、隣接する2つのRは互いに結合して、該2つのRが結合する環形成炭素原子と共にベンゼン環を形成してもよい。
     pはそれぞれ独立に0~5の整数、qはそれぞれ独立に0~4の整数、rはそれぞれ独立に0~3の整数、sは0又は1を表す。(R)はRが存在しないことを意味する。p、q、又はrが2以上の整数を表す場合、2~5個、2~4個、又は2~3個のRはそれぞれ同一でも異なっていてもよく、隣接する2つのRは互いに結合して、環構造を形成してもよい。
     式(f)において、R及びRは、それぞれ独立に、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の環形成炭素数6~10のアリール基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の環形成炭素数6~10のアリールオキシ基、又はシアノ基を表す。R、R及びRから選ばれる2つが互いに結合して、環構造を形成してもよい。
     式(n)において、Rcは、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の環形成炭素数6~10のアリール基を表す。
     *は、前記式(1)中のL2との結合を表す。〕
  13.  L0~L2が表す置換もしくは無置換の環形成炭素数6~50のアリーレン基において、該アリーレン基は、フェニル基、ビフェニリル基、ターフェニリル基、ビフェニレニル基、ナフチル基、アセナフチレニル基、アントリル基、ベンゾアントリル基、アセアントリル基、フェナントリル基、トリフェニレニル基、ベンゾフェナントリル基、フェナレニル基、フルオレニル基、ペンタセニル基、ピセニル基、ペンタフェニル基、ピレニル基、クリセニル基、ベンゾクリセニル基、s-インダセニル基、as-インダセニル基、フルオランテニル基、及びペリレニル基から1個の水素原子を除いて得られる2価の基からなる群より選ばれる請求項1~12のいずれか1項に記載の化合物。
  14.  L0~L2が表す置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基において、該ヘテロアリーレン基は、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、インダゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、N-カルバゾリル基、C-カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基から1個の水素原子を除いて得られる2価の基からなる群より選ばれる請求項1~12のいずれか1項に記載の化合物。
  15.  L0~L2が、それぞれ独立に、単結合又は下記式(ii)及び(iii)のいずれかで表されるアリーレン基である請求項1~13のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011

    〔式中、Rとqは式(a)~(n)に関して定義したとおりであり、L0が式(ii)又は(iii)で表される場合、*と**の一方はスピロビフルオレン構造との結合を表し、他方は窒素原子との結合を表し、Lが式(ii)又は(iii)で表される場合、*と**の一方はトリフェニレンとの結合を表し、他方は窒素原子との結合を表し、Lが式(ii)又は(iii)で表される場合、*と**の一方はArとの結合を表し、他方は窒素原子との結合を表す。〕
  16.  L0~Lが単結合であり、Arが下記式(a)~(h)のいずれかで表される請求項1~15のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000012

    〔式中、R、R、R、p、q、r及び*は前記と同様である。〕
  17.  Arが下記式(b-1)、(b-2)、(c-1)、(c-2)、及び(d-1)のいずれかで表される請求項1~16のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000013

    〔式中、R、p、q、r及び*は前記と同様である。〕
  18.  L0及びLが単結合であり、Lが置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基を表し、Arが下記式(i)~(n)のいずれかで表される請求項1~14のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000014

    〔式中、R、R、q、r、s及び*は前記と同様である。〕
  19.  請求項1~18のいずれか1項に記載の化合物を含む有機エレクトロルミネッセンス素子用材料。
  20.  陰極、陽極、及び該陰極と該陽極の間に配置された有機薄膜層を有する有機エレクトロルミネッセンス素子であって、該有機薄膜層が1又は複数の層を含み、該有機薄膜層が発光層を含み、該有機薄膜層の少なくとも1層が請求項1~18のいずれか1項に記載の化合物を含む有機エレクトロルミネッセンス素子。
  21.  陽極と発光層の間に少なくとも1層からなる陽極側有機薄膜層を含み、該陽極側有機薄膜層の少なくとも1層が前記化合物を含む請求項20に記載の有機エレクトロルミネッセンス素子。
  22.  前記陽極側有機薄膜層が陽極側の正孔注入層と発光層側の正孔輸送層を含み、該正孔注入層と該正孔輸送層の少なくとも一方が前記化合物を含む請求項21に記載の有機エレクトロルミネッセンス素子。
  23.  請求項20~22のいずれか1項に記載の有機エレクトロルミネッセンス素子を備える電子機器。
     
PCT/JP2016/066975 2015-06-08 2016-06-07 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器 WO2016199784A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680002211.6A CN106660940B (zh) 2015-06-08 2016-06-07 化合物、有机电致发光元件用材料、有机电致发光元件、及电子设备
US15/502,572 US10243148B2 (en) 2015-06-08 2016-06-07 Aromatic amine compound, and organic electroluminescent elements including the compound
KR1020177003632A KR102629838B1 (ko) 2015-06-08 2016-06-07 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015116176A JP6454226B2 (ja) 2015-06-08 2015-06-08 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP2015-116176 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016199784A1 true WO2016199784A1 (ja) 2016-12-15

Family

ID=57503826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066975 WO2016199784A1 (ja) 2015-06-08 2016-06-07 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Country Status (5)

Country Link
US (1) US10243148B2 (ja)
JP (1) JP6454226B2 (ja)
KR (1) KR102629838B1 (ja)
CN (1) CN106660940B (ja)
WO (1) WO2016199784A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106866499A (zh) * 2016-12-26 2017-06-20 广东阿格蕾雅光电材料有限公司 有机空穴传输材料
WO2017102063A1 (en) * 2015-12-16 2017-06-22 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3330249A4 (en) * 2015-09-04 2018-08-01 LG Chem, Ltd. Amine-based compound and organic light emitting device comprising same
WO2018169260A1 (ko) * 2017-03-16 2018-09-20 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019083122A1 (ko) * 2017-10-24 2019-05-02 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020111251A1 (ja) 2018-11-30 2020-06-04 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780605B1 (ko) 2014-09-19 2017-09-21 이데미쓰 고산 가부시키가이샤 신규의 화합물
KR102010893B1 (ko) 2016-09-23 2019-08-14 주식회사 엘지화학 아민계 화합물 및 이를 포함하는 유기 발광 소자
TW201920070A (zh) * 2017-06-28 2019-06-01 德商麥克專利有限公司 用於電子裝置之材料
WO2019027189A1 (ko) * 2017-08-02 2019-02-07 주식회사 엘지화학 유기 전계 발광 소자
WO2019027040A1 (ja) * 2017-08-03 2019-02-07 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
CN109694328B (zh) * 2017-10-20 2022-03-29 江苏三月科技股份有限公司 一种三芳香胺类化合物、其制备方法及其在有机电致发光器件中的应用
US11744145B2 (en) * 2018-11-05 2023-08-29 Lg Display Co., Ltd. Organic compound and organic electroluminescent device comprising the same
CN109232382B (zh) * 2018-11-15 2021-12-28 长春海谱润斯科技股份有限公司 一种咔唑衍生物及其有机电致发光器件
KR102469105B1 (ko) * 2019-07-22 2022-11-18 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
CN111116561B (zh) * 2019-12-03 2022-06-17 北京绿人科技有限责任公司 一种含稠环结构的化合物及其应用和一种有机电致发光器件
US11917899B2 (en) 2020-03-05 2024-02-27 Samsung Electronics Co., Ltd. Arylamine-fluorene alternating copolymer, electroluminescence device material, and electroluminescence device using the polymer
CN112876464A (zh) * 2021-02-08 2021-06-01 北京燕化集联光电技术有限公司 一种杂环结构的有机材料及其应用
CN114957188A (zh) * 2021-02-26 2022-08-30 阜阳欣奕华材料科技有限公司 化合物与有机电致发光器件以及中间体化合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100031A (ko) * 2011-03-02 2012-09-12 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
US20140138632A1 (en) * 2012-11-19 2014-05-22 Samsung Display Co., Ltd. Amine-based compound and organic light- emitting device including the same
KR20140109058A (ko) * 2013-03-05 2014-09-15 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015012618A1 (en) * 2013-07-25 2015-01-29 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
US20150155491A1 (en) * 2012-06-06 2015-06-04 Merck Patent Gmbh Phenanthrene compounds for organic electronic devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288617B2 (en) * 2001-03-24 2007-10-30 Merck Patent Gmbh Conjugated polymers containing spirobifluorene units and fluorene units, and the use thereof
ES2394073T3 (es) 2004-03-26 2013-01-16 Panasonic Corporation Elemento orgánico emisor de luz
CN101142275B (zh) * 2005-03-14 2012-07-11 西巴特殊化学品控股有限公司 新型聚合物
RU2011113646A (ru) * 2008-09-09 2012-10-20 Мерк Патент ГмбХ (DE) Органический материал и электрофотографическое устройство
KR20100041043A (ko) 2008-10-13 2010-04-22 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고 있는 유기 발광 소자
EP2462203B1 (en) * 2009-08-04 2016-03-02 Merck Patent GmbH Electronic devices comprising multi cyclic hydrocarbons
DE102010045405A1 (de) 2010-09-15 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
WO2012091428A2 (ko) 2010-12-29 2012-07-05 주식회사 엘지화학 새로운 화합물 및 이를 이용한 유기 발광 소자
KR101497136B1 (ko) 2011-12-30 2015-03-02 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR102357467B1 (ko) * 2014-07-22 2022-02-04 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN104557440A (zh) * 2015-02-05 2015-04-29 江西冠能光电材料有限公司 一种取代苯并菲衍生物类有机发光二极管材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100031A (ko) * 2011-03-02 2012-09-12 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
US20150155491A1 (en) * 2012-06-06 2015-06-04 Merck Patent Gmbh Phenanthrene compounds for organic electronic devices
US20140138632A1 (en) * 2012-11-19 2014-05-22 Samsung Display Co., Ltd. Amine-based compound and organic light- emitting device including the same
KR20140109058A (ko) * 2013-03-05 2014-09-15 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015012618A1 (en) * 2013-07-25 2015-01-29 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3330249A4 (en) * 2015-09-04 2018-08-01 LG Chem, Ltd. Amine-based compound and organic light emitting device comprising same
US20180248119A1 (en) * 2015-09-04 2018-08-30 Lg Chem, Ltd. Amine-based compound and organic light emitting device comprising same
US10991886B2 (en) 2015-09-04 2021-04-27 Lg Chem, Ltd. Amine-based compound and organic light emitting device comprising same
WO2017102063A1 (en) * 2015-12-16 2017-06-22 Merck Patent Gmbh Materials for organic electroluminescent devices
CN106866499A (zh) * 2016-12-26 2017-06-20 广东阿格蕾雅光电材料有限公司 有机空穴传输材料
WO2018120975A1 (zh) * 2016-12-26 2018-07-05 广东阿格蕾雅光电材料有限公司 有机空穴传输材料
CN106866499B (zh) * 2016-12-26 2020-01-10 广东阿格蕾雅光电材料有限公司 有机空穴传输材料
WO2018169260A1 (ko) * 2017-03-16 2018-09-20 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019083122A1 (ko) * 2017-10-24 2019-05-02 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020111251A1 (ja) 2018-11-30 2020-06-04 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器

Also Published As

Publication number Publication date
JP6454226B2 (ja) 2019-01-16
CN106660940B (zh) 2021-08-17
CN106660940A (zh) 2017-05-10
KR20180015604A (ko) 2018-02-13
US10243148B2 (en) 2019-03-26
JP2017001979A (ja) 2017-01-05
US20170229649A1 (en) 2017-08-10
KR102629838B1 (ko) 2024-01-25

Similar Documents

Publication Publication Date Title
JP6454226B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP6879559B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP7155249B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2018164265A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JPWO2019027040A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2018164201A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP6696091B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2017022729A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2019216411A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2017022727A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2015115532A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2020096001A1 (ja) 化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2018108939A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR102259465B1 (ko) 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
CN114555572A (zh) 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
WO2016204151A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2018108941A (ja) 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
WO2016056640A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2022181072A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2020050217A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
JP2019199442A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
WO2022210818A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022210821A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023026864A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
JP2022158684A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003632

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807491

Country of ref document: EP

Kind code of ref document: A1