WO2016199710A1 - ベルト式無段変速機における可変速プーリの支持装置 - Google Patents

ベルト式無段変速機における可変速プーリの支持装置 Download PDF

Info

Publication number
WO2016199710A1
WO2016199710A1 PCT/JP2016/066729 JP2016066729W WO2016199710A1 WO 2016199710 A1 WO2016199710 A1 WO 2016199710A1 JP 2016066729 W JP2016066729 W JP 2016066729W WO 2016199710 A1 WO2016199710 A1 WO 2016199710A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulley
screw
shaft
ball
variable speed
Prior art date
Application number
PCT/JP2016/066729
Other languages
English (en)
French (fr)
Inventor
辰徳 清水
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016199710A1 publication Critical patent/WO2016199710A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Definitions

  • This invention relates to a support device for a variable speed pulley in a belt type continuously variable transmission.
  • a V-belt is provided between a driving-side variable speed pulley and a driven-side variable speed pulley as described in Patent Document 1 and Patent Document 2 below.
  • a V-belt continuously variable transmission is known that continuously changes the pulley groove widths of the drive-side variable speed pulley and the driven-side variable speed pulley so as to change the gear ratio steplessly.
  • the movable sheave is disposed opposite to the fixed sheave provided on the pulley shaft, and the movable sheave is used as the pulley shaft.
  • the pulley groove width is controlled by slidably supporting the pulley shaft and preventing the pulley shaft from rotating with respect to the pulley shaft, and moving the movable sheave in the axial direction by a ball screw.
  • the ball screw is one in which a large number of balls can be circulated between a screw groove formed on the outer periphery of the screw shaft and a screw groove formed on the inner periphery of the nut.
  • the screw shaft is cylindrical, the cylindrical screw shaft is fixed to the casing of the transmission, the nut is rotatably connected to the movable sheave, rotational torque is applied to the nut, and the movable sheave together with the nut is connected to the pulley shaft. It is made to move in the axial direction.
  • Patent Document 2 a nut in a ball screw is fixed to a casing, a cylindrical screw shaft is rotatably connected to a movable sheave, rotational torque is applied to the screw shaft, and the movable sheave is attached together with the screw shaft. It is made to move in the axial direction of the pulley shaft.
  • any of the belt-type continuously variable transmissions described in Patent Documents 1 and 2 described above includes a pair of track rings with a movable-side component that is rotationally driven and moves in the axial direction among a nut and a screw shaft of a ball screw. Since it is rotatably connected to the movable sheave by the rolling bearing having, it is necessary to secure the strength by increasing the thickness of the rotational connecting portion of the movable side part consisting of a nut or screw shaft with respect to the movable sheave.
  • An object of the present invention is to provide a support device for a variable speed pulley capable of reducing the size and weight of a belt type continuously variable transmission and facilitating assembly.
  • a fixed sheave provided on a pulley shaft, and a movable sheave that is slidably fitted to the pulley shaft and that is prevented from rotating and disposed opposite the fixed sheave.
  • a screw mechanism that moves the movable sheave in the axial direction along the pulley shaft, wherein the screw mechanism includes a cylindrical screw shaft and a nut that is screw-engaged with the screw shaft.
  • the bearing element includes a ball, and the boss portion of the movable sheave It had adopted a radially outer surface and said forming a guiding raceway groove rolling the ball in at least one of the inner surface of the movable part configuration.
  • the bearing element that rotatably supports the movable side component and the movable sheave in the screw mechanism is a ball, and the ball is rolled and guided to at least one of the outer diameter surface of the movable sheave and the inner diameter surface of the movable side component.
  • the number of parts is reduced, and the belt type continuously variable transmission can be reduced in size, weight, and ease of assembly.
  • a bearing element that rotatably supports the shaft end portion of the pulley shaft is incorporated inside the fixed-side component, the bearing element is a ball, and the above-described inner diameter surface of the fixed-side component and the outer diameter surface of the pulley shaft are It is preferable to form a raceway groove for rolling and guiding the ball.
  • the surface shape of the raceway groove for ball guidance should be a surface shape that makes angular contact with the ball.
  • the load capacity of the axial load can be increased.
  • raceway surface should be hardened to have a surface hardness of HRC56-64. By hardening the raceway surface, the strength can be increased and the durability can be improved.
  • the screw mechanism may be composed of a ball screw in which a ball is incorporated between a screw groove formed on the outer diameter surface of the screw shaft and a screw groove formed on the inner diameter surface of the nut. May consist of a sliding screw which is a trapezoidal screw.
  • the ball screw can smoothly convert the rotational motion into a linear motion as compared with the sliding screw, and can obtain a large axial load with a small rotational torque. For this reason, it is preferable to employ a ball screw.
  • the bearing element that rotatably connects the movable side component in the screw mechanism and the movable sheave of the variable speed pulley is a ball, and the inner diameter surface of the movable side component and the outer diameter surface of the movable sheave
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a variable speed pulley support device in a belt type continuously variable transmission according to the present invention; Sectional drawing which expands and shows a part of FIG. Sectional drawing which expands and shows a part of ball screw shown in FIG. Sectional view showing another example of screw mechanism Sectional view showing another example of ball screw
  • a V-belt type continuously variable transmission 20 is incorporated in a casing 10 as a pulley support target.
  • the V-belt type continuously variable transmission 20 includes a drive-side variable speed pulley P 1 , a driven-side variable speed pulley P 2, and a V-belt 21 spanned between the pulleys P 1 and P 2. .
  • the drive-side variable speed pulley P 1 has a fixed sheave 22 and a movable sheave 23 arranged to face the fixed sheave 22, and the fixed sheave 22 and the movable sheave 23 are As shown in FIG. 2, tapered surfaces 22a and 23a are provided on the opposing surface, and a pulley groove G having a V-shaped cross section is provided between the tapered surfaces 22a and 23a.
  • the fixed sheave 22 is integrated with the pulley shaft 24.
  • the fixed sheave 22 is integrally provided on the pulley shaft 24 at the time of integration, but the fixed sheave 22 may be fitted to the pulley shaft 24 and keyed or pinned. Further, the rotation may be prevented by fitting by spline or serration, and fixed in the axial direction by attaching a retaining ring.
  • the movable sheave 23 has a boss portion 23b on the back side of the surface facing the fixed sheave 22, and the boss portion 23b is slidably fitted to the pulley shaft 24 and is prevented from rotating. At the time of rotation prevention, the sliding key 25 is fixed to the pulley shaft 24. On the other hand, a key groove 26 extending in the axial direction is formed on the inner surface of the boss portion 23b, and the sliding key 25 is slidably fitted in the key groove 26. is doing.
  • the movable sheave 23 is slidable with respect to the pulley shaft 24 by replacing the boss 23b of the movable sheave 23 with the pulley shaft 24 by spline or serration instead of the anti-rotation by the sliding key 25 as described above. And it is good also as a detent.
  • the movable sheave 23 in the drive side variable speed pulley P 1 is moved in the axial direction by the screw mechanism 30.
  • the screw mechanism 30 incorporates a large number of balls 35 between the screw groove 32 formed on the outer diameter surface of the cylindrical screw shaft 31 and the screw groove 34 formed on the inner diameter surface of the nut 33.
  • the ball 35 is composed of a ball screw, and can circulate along the circulation path (not shown) formed in the nut 33.
  • a nut 33 in the ball screw 30 is a ball as a bearing element incorporated into one end of the nut 33 by being press-fitted and fixed to a nut fitting hole 11 formed in the casing 10.
  • One end of the pulley shaft 24 is rotatably supported via 36.
  • a bearing ring 37 When supporting the pulley shaft 24, a bearing ring 37 is attached to the shaft end portion of the pulley shaft 24, and a raceway groove 38 formed on the outer diameter surface of the bearing ring 37 and a raceway groove formed on one end inner diameter surface of the nut 33.
  • the above-mentioned ball 36 is incorporated between 39.
  • the bearing ring 37 is fitted into a small diameter shaft portion 27 provided at the shaft end portion of the pulley shaft 24, and a nut 29 is screw-engaged with a screw shaft 28 provided at the end portion of the small diameter shaft portion 27.
  • a screw shaft 28 provided at the end portion of the small diameter shaft portion 27.
  • the raceway grooves 38 and 39 are provided on the outer diameter surface of the bearing ring 37 and the inner diameter surface of the nut 33, respectively, and the ball 36 as a bearing element is assembled between the raceway grooves 38 and 39, so that the pulley shaft 24 is mounted.
  • the bearing portion that rotatably supports the pulley shaft 24 is supported by the support. Can be reduced in size and weight.
  • the pulley shaft 24 When the pulley shaft 24 is rotatably supported by the rolling bearing, it is necessary to fix the rolling bearing by attaching a retaining ring.
  • the raceway grooves 38 and 39 are formed in the bearing ring 37 and the nut 33 to form the ball 36.
  • the retaining ring can be made unnecessary, and the assembly of the bearing portion can be facilitated by reducing the number of parts.
  • the raceway grooves 38 and 39 are in angular contact with the ball 36.
  • the angular contact can increase the load capacity of the axial load.
  • each of the raceway surfaces in the raceway grooves 38 and 39 is quenched to have a surface hardness of HRC56-64.
  • the cylindrical screw shaft 31 in the ball screw 30 is connected to the movable sheave 23 via a ball 40 as a bearing element incorporated therein so as to be rotatable relative to the movable sheave 23.
  • a raceway groove 41 is provided on the inner diameter surface of the other end of the screw shaft 31, and a raceway groove 42 is also provided on the outer diameter surface of the boss portion 23 b of the movable sheave 23.
  • a ball 40 is incorporated.
  • each of the raceway grooves 41 and 42 is in angular contact with the ball 40. Further, for the purpose of preventing the occurrence of deformation and damage and improving the durability, like the above-described raceway grooves 38 and 39, each of the raceway surfaces in the raceway grooves 41 and 42 is quenched to increase the surface hardness. HRC56-64.
  • a transmission gear 43 is fitted on the outer periphery of the end of the screw shaft 31.
  • the transmission gear 43 is prevented from rotating with respect to the screw shaft 31 and is fixed in the axial direction by a flange 44 formed at the end of the screw shaft 31 and a retaining ring 45 attached to the end of the screw shaft 31. .
  • the transmission gear 43 is meshed with the drive gear 46.
  • the drive gear 46 is rotated by a motor (not shown). By transmitting the rotation of the drive gear 46 to the transmission gear 43, the screw shaft 31 rotates together with the transmission gear 43.
  • each of the transmission gear 43 and the drive gear 46 is a spur gear.
  • the transmission gear 43 meshes with an input gear 51 formed of a spur gear provided on one end portion of the transmission shaft 50 incorporated between the drive-side variable speed pulley P 1 and the driven-side transmission pulley P 2 .
  • the rotation is transmitted to the transmission shaft 50, and the rotation of the transmission shaft 50 is output from an output gear 52 provided at the other end.
  • the both ends of the transmission shaft 50 are rotatably supported by rolling bearings 53 supported by the casing 10.
  • the driven-side variable speed pulley P ⁇ b > 2 includes a fixed sheave 22 and a movable sheave 23 disposed so as to face the fixed sheave 22, similarly to the drive-side variable speed pulley P ⁇ b > 1 described above.
  • the fixed sheave 22 and the movable sheave 23 are different from the drive side variable speed pulley P 1 in that the fixed sheave 22 and the movable sheave 23 of the drive side variable speed pulley P 1 are disposed opposite to the left and right with respect to the fixed sheave 22 and the movable sheave 23.
  • the movable sheave 23 is rotatably and slidably supported by a pulley shaft 24 provided on the fixed sheave 22.
  • the movable sheave 23 is moved by the ball screw 30, the support structure in which the nut 33 forming the ball screw 30 is supported by the casing 10, and the other end portion of the pulley shaft 24 on the ball screw 30 side is rotatable by the casing 10.
  • support structure for supporting for also the same as the variable speed pulley P 1 on the drive side for the, the same components will not be described are denoted by the same reference numerals.
  • a bearing element composed of a race ring 54 and a ball 55 is incorporated in a bearing fitting hole 12 formed in the casing 10, while being fitted to one end portion of the pulley shaft 24.
  • a raceway groove 57 is provided on the outer diameter surface of the bearing ring 56, and the ball 55 is rotatably incorporated in the raceway groove 57 to rotatably support one end of the pulley shaft 24.
  • Transmission gear 43 which is supported by the screw shaft 31 of the ball screw 30 meshes with the output gear 52 provided on the transmission shaft 50, the drive-side variable speed pulley P 1 of the movable sheave 23 and the driven variable speed pulley P 2
  • the movable sheave 23 is designed to rotate in conjunction.
  • the V-belt type continuously variable transmission shown in the embodiment has the above-described structure.
  • the drive gear 46 shown in FIG. 1 When the drive gear 46 shown in FIG. 1 is driven, the rotation of the drive gear 46 is transmitted to the transmission gear 43, and the drive-side variable speed pulley P The screw shaft 31 in one ball screw 30 rotates.
  • the rotation of the screw shaft 31 of the drive-side variable speed pulley P 1 is transmitted from the transmission gear 43 to the input gear 51 engaged therewith, and the transmission shaft 50 rotates.
  • the rotation of the transmission shaft 50 is driven by the output gear 52. to be transmitted to the transmission gear 43 side variable speed pulley P 2, the screw shaft 31 of the ball screw 30 in the driven side variable speed pulley P 2 are rotated.
  • the screw shaft 31 in the driven side variable speed pulley P 2 is also screw-engaged with the fixed nut 33 via the ball 35 in the same manner as the screw shaft 31 of the drive side variable speed pulley P 1 .
  • the screw shaft 31 moves in the axial direction while rotating, and the movable sheave 23 that is rotatably connected to the screw shaft 31 moves in the axial direction along the pulley shaft 24, and between the opposed portions to the fixed sheave 22.
  • the width of the formed pulley groove changes.
  • the pulley P 2 pulley groove width varies in opposite directions. That is, the pulley groove width of the drive-side variable speed pulley P 1 of the pulley groove width widens when driven variable speed pulley P 2 is narrowed, conversely, the pulley groove width of the drive-side variable speed pulley P 1 is narrowed when the driven side pulley groove width of the variable speed pulley P 2 is widened. The speed ratio from the drive side variable speed pulley P 1 to the driven side variable speed pulley P 2 is changed by a change in the pulley groove width.
  • a ball bearing is incorporated between the bearing rings and supported in a freely rotating manner, the radial dimension at the rotating joint can be reduced, and the variable speed is less restricted by the layout.
  • a support structure for the pulleys P 1 and P 2 can be obtained.
  • the pair of race rings of the rolling bearing can be made unnecessary, and at the same time, the attachment of the retaining ring for fixing the rolling bearing in the axial direction can be made unnecessary. Fuel consumption can be reduced and assembly can be facilitated.
  • the ball screw 30 is employed as the screw mechanism for moving the movable sheave 23 in the axial direction along the pulley shaft 24.
  • the screw mechanism is not limited to the ball screw 30.
  • a sliding screw in which trapezoidal screws 60 and 61 are formed on the outer diameter surface of the cylindrical screw shaft 31 and the inner diameter surface of the nut 33 may be used.
  • the nut 33 of the ball screw 30 is fixed to the casing 10 and the cylindrical screw shaft 31 is rotatably connected to the boss portion 23b of the movable sheave 23.
  • One end of the screw shaft 31 is press-fitted and fixed to the screw shaft fitting hole 13 formed in the casing 10, and the other end of the nut 33 is fitted into the boss portion 23 b of the movable sheave 23.
  • a raceway groove 62 is provided on the inner diameter surface of the end portion, and a ball 40 as a bearing element is incorporated between the raceway groove 62 and a raceway groove 42 formed on the outer diameter surface of the boss portion 23b of the movable sheave 23 to move the nut 33.
  • the sheave 23 may be rotatably connected.
  • a transmission gear 43 is attached to the outer diameter surface of the other end of the nut 33, and the transmission gear 43 rotates when the transmission ratio is changed. Transmit torque.
  • a raceway groove 63 is formed on the inner diameter surface of one end portion of the cylindrical screw shaft 31, and a ball is interposed between the raceway groove 63 and the raceway groove 38 on the outer diameter surface of the bearing ring 37 attached to the shaft end portion of the pulley shaft 24. 36 is incorporated, and the shaft end portion of the pulley shaft 24 is rotatably supported.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Transmission Devices (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

プーリ軸(24)に設けられた固定シーブ(22)に可動シーブ(23)を対向配置し、その可動シーブ(23)をプーリ軸(24)に沿って軸方向に移動させるボールねじ(30)のナット(33)をケーシング(10)に固定し、そのナット(33)にねじ係合する筒状のねじ軸(31)を軸受要素を介して可動シーブ(23)に回転自在に連結する。軸受要素をボール(40)とし、ねじ軸(31)の内径面および可動シーブ(23)のボス部(23b)の外径面に軌道溝(41、42)を形成し、その軌道溝(41、42)間に上記ボール(40)を組み込んでねじ軸(31)を可動シーブ(23)に回転自在に連結する。

Description

ベルト式無段変速機における可変速プーリの支持装置
 この発明は、ベルト式無段変速機における可変速プーリの支持装置に関する。
 自動車エンジンの回転を変速して出力する無段変速機として、下記の特許文献1や特許文献2に記載されているように、駆動側の可変速プーリと従動側の可変速プーリ間にVベルトをかけ渡し、駆動側可変速プーリと従動側可変速プーリのプーリ溝幅を互いに逆方向に変化させて変速比を無段階に可変するVベルト式無段変速機が従来から知られている。
 ここで、下記特許文献1に記載されたVベルト式無段変速機の可変速プーリにおいては、プーリ軸に設けられた固定シーブに対して可動シーブを対向配置し、その可動シーブをプーリ軸に沿ってスライド自在に支持し、かつ、プーリ軸に対して回り止めし、上記可動シーブをボールねじにより軸方向に移動させてプーリ溝幅を制御している。
 また、下記特許文献2に記載されたVベルト式無段変速機の可変速プーリにおいても特許文献1と同様に、ボールねじにより可動シーブを軸方向に移動させてプーリ溝幅を制御している。
 ここで、ボールねじは、ねじ軸の外周に形成されたねじ溝とナットの内周に形成されたねじ溝間に多数のボールを循環可能に組込んだものであり、上記特許文献1では、ねじ軸を筒状とし、その筒状ねじ軸を変速機のケーシングに固定し、ナットを可動シーブに回動自在に連結し、そのナットに回転トルクを付与して、ナットと共に可動シーブをプーリ軸の軸方向に移動させるようにしている。
 一方、特許文献2においては、ボールねじにおけるナットをケーシングに固定し、筒状ねじ軸を可動シーブに回動自在に連結し、そのねじ軸に回転トルクを付与して、ねじ軸と共に可動シーブをプーリ軸の軸方向に移動させるようにしている。
特開2005-226662号公報 特開2003-156116号公報
 ところで、上記特許文献1および2に記載されたいずれのベルト式無段変速機も、ボールねじのナットとねじ軸の内、回転駆動されて軸方向に移動する可動側部品を一対の軌道輪を有する転がり軸受でもって可動シーブに回転自在に連結しているため、ナットまたはねじ軸からなる可動側部品の可動シーブに対する回転連結部を厚肉にして強度を確保する必要が生じ、Vベルト式無段変速機の重量が重くなって燃料消費が悪くなり、また、可動側部品の可動シーブに対する回転連結部での径方向寸法が大きなって、レイアウトに制約を受けることが多いという不都合がある。
 さらに、転がり軸受を軸方向に固定する止め輪等の固定部品の取り付けを必要とするため、部品点数が多くなって、ケーシング内へのVベルト式無段変速機の組み付けに手間がかかるという不都合もある。
 この発明の課題は、ベルト式無段変速機の小型、軽量化と、組み付けの容易化を図ることができる可変速プーリの支持装置を提供することである。
 上記の課題を解決するため、この発明においては、プーリ軸に設けられた固定シーブと、前記プーリ軸にスライド自在に嵌合され、かつ、回り止めされて前記固定シーブに対向配置された可動シーブと、その可動シーブを前記プーリ軸に沿って軸方向に移動させるねじ機構とからなり、前記ねじ機構が筒状のねじ軸と、そのねじ軸にねじ係合されたナットを備え、前記ねじ軸とナットのうちの一方がプーリ支持対象に固定される固定側部品とされ、他方が回転トルクの負荷により軸方向に移動する可動側部品とされ、前記可動側部品がその内部に組み込まれる軸受要素を介して前記可動シーブに回転自在に連結されたベルト式無段変速機における可変速プーリの支持装置において、前記軸受要素が、ボールを有し、前記可動シーブのボス部の外径面と前記可動側部品の内径面の少なくとも一方に前記ボールを転がり案内する軌道溝を形成した構成を採用したのである。
 上記のように、ねじ機構における可動側部品と可動シーブを回転自在に支持する軸受要素をボールとし、上記可動シーブの外径面と上記可動側部品の内径面の少なくとも一方に上記ボールを転がり案内する軌道溝を形成することによってボール案内用の軌道輪や、その軌道輪を軸方向に固定する止め輪を不要とすることができる。
 その結果、部品点数が少なくなってベルト式無段変速機の小型、軽量化と組み付けの容易化を図ることができる。
 ここで、固定側部品の内側にプーリ軸の軸端部を回転自在に支持する軸受要素を組込み、その軸受要素をボールとし、上記固定側部品の内径面と上記プーリ軸の外径面に上記ボールを転がり案内する軌道溝を形成するのがよい。
 上記構成を採用すると、プーリ軸を回転自在に支持する軸受部での小型、軽量化を図ることができ、ベルト式無段変速機のさらなる小型、軽量化と組み付けの容易化を図ることができる。
 ボール案内用の軌道溝の面形状は、ボールとアンギュラコンタクトする面形状とするのがよい。軌道溝をアンギュラコンタクトする面形状とすると、アキシャル荷重の負荷容量を大きくすることができる。
 また、軌道面を焼入れ処理して表面硬さをHRC56~64とするのがよい。軌道面を焼入れ処理することによって強度を高め、耐久性の向上を図ることができる。
 ここで、ねじ機構は、ねじ軸の外径面に形成されたねじ溝とナットの内径面に形成されたねじ溝間にボールを組み込んだボールねじからなるものであってもよく、あるいは、ねじが台形ねじとされた滑りねじからなるものであってもよい。
 ボールねじは、滑りねじに比べて回転運動を直線運動に円滑に変換することができ、小さな回転トルクで大きな軸方向荷重を得ることができる。このため、ボールねじを採用するのが好ましい。
 この発明においては、上記のように、ねじ機構における可動側部品と可変速プーリの可動シーブを回転自在に連結する軸受要素をボールとし、上記可動側部品の内径面と上記可動シーブの外径面の少なくとも一方に上記ボールを転がり案内する軌道溝を設けたことによって先行技術文献に記載されたボール案内用の軌道輪や、その軌道輪を軸方向に固定する止め輪を不要とすることができ、部品点数が少なくなってベルト式無段変速機の小型、軽量化と組み付けの容易化を図ることができる。
この発明に係るベルト式無段変速機における可変速プーリの支持装置の実施の形態を示す縦断面図 図1の一部分を拡大して示す断面図 図2に示されるボールねじの一部を拡大して示す断面図 ねじ機構の他の例を示す断面図 ボールねじの他の例を示す断面図
 以下、この発明の実施の形態を図面に基づいて説明する。図1に示すように、プーリ支持対象としてのケーシング10内にはVベルト式無段変速機20が組み込まれている。Vベルト式無段変速機20は、駆動側の可変速プーリPと、従動側の可変速プーリPと、その両プーリP、P間に掛け渡されたVベルト21とからなる。
 図1および図2に示すように、駆動側の可変速プーリPは、固定シーブ22と、その固定シーブ22に対向配置された可動シーブ23を有し、その固定シーブ22と可動シーブ23の対向面には、図2に示すように、テーパ面22a、23aが設けられ、そのテーパ面22a、23a間に断面V字形のプーリ溝Gが設けられている。
 固定シーブ22は、プーリ軸24に一体化されている。一体化に際し、ここでは、プーリ軸24に固定シーブ22を一体的に設けているが、プーリ軸24に固定シーブ22を嵌合してキー止めし、あるいは、ピン止めしてもよい。また、スプラインやセレーションによる嵌合として回り止めし、止め輪の取り付けにより軸方向に固定してもよい。
 可動シーブ23は、固定シーブ22に対する対向面の背面側にボス部23bを有し、そのボス部23bがプーリ軸24にスライド自在に嵌合され、かつ、回り止めされている。回り止めに際し、プーリ軸24に滑りキー25を固定し、一方、ボス部23bの内径面には軸方向に延びるキー溝26を形成し、そのキー溝26に滑りキー25をスライド自在に嵌合している。
 上記のような滑りキー25による回り止めに代えて、プーリ軸24に可動シーブ23のボス部23bをスプラインによる嵌合あるいはセレーションによる嵌合として、プーリ軸24に対し、可動シーブ23をスライド自在とし、かつ、回り止めとしてもよい。
 駆動側可変速プーリPにおける可動シーブ23は、ねじ機構30によって軸方向に移動される。図3に示すように、ねじ機構30は、筒状ねじ軸31の外径面に形成されたねじ溝32とナット33の内径面に形成されたねじ溝34間に多数のボール35を組み込んだボールねじからなり、上記多数のボール35はナット33に形成された図示省略の循環路に沿って循環可能とされている。
 図2に示すように、ボールねじ30におけるナット33はケーシング10に形成されたナット嵌合孔11に一端部が圧入されて固定され、そのナット33の一端部内に組み込まれた軸受要素としてのボール36を介してプーリ軸24の一方の端部が回転自在に支持されている。
 プーリ軸24の支持に際し、プーリ軸24の軸端部に軸受リング37を取り付け、その軸受リング37の外径面に形成された軌道溝38とナット33の一端部内径面に形成された軌道溝39間に上記のボール36を組み込んでいる。
 ここで、軸受リング37はプーリ軸24の軸端部に設けられた小径軸部27に嵌合され、その小径軸部27の端部に設けられたねじ軸28にナット29をねじ係合し、そのナット29の締め付けにより軸受リング37を小径軸部27の付け根に設けられた端面に押し付けて固定している。
 上記のように、軸受リング37の外径面とナット33の内径面のそれぞれに軌道溝38、39を設け、その軌道溝38、39間に軸受要素としてのボール36を組み込んでプーリ軸24を回転自在に支持することにより、一対の軌道輪間にボールを組み込んだ転がり軸受を用いてプーリ軸24を回転自在に支持する場合に比較して、プーリ軸24を回転自在に支持する軸受部での小型、軽量化を図ることができる。
 また、転がり軸受によってプーリ軸24を回転自在に支持する場合は、止め輪の取り付けによって転がり軸受を固定する必要があるが、軸受リング37やナット33に軌道溝38、39を形成してボール36を組み込むことにより上記止め輪を不要とすることができ、部品点数の低減によって軸受部の組み付けの容易化を図ることができる。
 なお、図2においては、ボール36に対して軌道溝38、39をアンギュラコンタクトさせるようにしている。そのアンギュラコンタクトによって、アキシャル荷重の負荷容量の増大化を図ることができる。また、変形や損傷の発生を防止して耐久性の向上を図る目的から、軌道溝38、39における軌道面のそれぞれを焼入れ処理されて表面硬さをHRC56~64としている。
 一方、ボールねじ30における筒状ねじ軸31は、その内部に組み込まれた軸受要素としてのボール40を介して可動シーブ23に対して相対回転可能に連結されている。その回転可能な連結に際し、ねじ軸31の他端部内径面に軌道溝41を設け、可動シーブ23のボス部23bにおける外径面にも軌道溝42を設け、その軌道溝41、42間にボール40を組み込んでいる。
 また、アキシャル荷重の負荷容量の増大化を図るため、ボール40に対して軌道溝41、42のそれぞれをアンギュラコンタクトさせるようにしている。また、変形や損傷の発生を防止して耐久性の向上を図る目的から、前述の軌道溝38、39と同様に、軌道溝41、42における軌道面のそれぞれを焼入れ処理して表面硬さをHRC56~64としている。
 図1に示すように、ねじ軸31の端部外周には変速ギヤ43が嵌合されている。変速ギヤ43はねじ軸31に対して回り止めされ、そのねじ軸31の端部に形成されたフランジ44と、ねじ軸31の端部に取り付けられた止め輪45によって軸方向に固定されている。
 変速ギヤ43は駆動ギヤ46と噛合している。駆動ギヤ46は図示省略したモータによって回転駆動される。その駆動ギヤ46の回転を変速ギヤ43に伝達することにより、変速ギヤ43と共にねじ軸31が回転する。
 このとき、ねじ軸31はボール35を介して固定されたナット33とねじ係合しているため、ねじ軸31が回転しつつ軸方向に移動すると共に、変速ギヤ43は駆動ギヤ46に噛合する状態を保持してねじ軸31と軸方向に共に移動する。変速ギヤ43の軸方向への移動を可能とするため、その変速ギヤ43および駆動ギヤ46のそれぞれを平歯車としている。
 変速ギヤ43は駆動側可変速プーリPと従動側変速プーリP間に組み込まれた変速軸50の一端部上に設けられた平歯車からなる入力ギヤ51と噛合して、ねじ軸31の回転を変速軸50に伝達しており、その変速軸50の回転は他端部に設けられた出力ギヤ52から出力される。
 上記変速軸50においては、両端部がケーシング10に支持された転がり軸受53によって回転自在に支持されている。
 図1に示すように、従動側の可変速プーリPは、前述の駆動側可変速プーリPと同様に、固定シーブ22と、その固定シーブ22に対向配置された可動シーブ23からなる。これらの固定シーブ22および可動シーブ23は駆動側可変速プーリPの固定シーブ22および可動シーブ23に対して左右逆の配置とされている点で駆動側可変速プーリPと相違しており、上記固定シーブ22に設けられたプーリ軸24で可動シーブ23を回転自在に、かつ、スライド自在に支持している。その可動シーブ23の支持構造については、駆動側の可変速プーリPの可動シーブ23と同一とされている。このため、同一部品には同一の符号を付して説明を省略する。
 また、可動シーブ23をボールねじ30で移動させる点、そのボールねじ30を形成するナット33をケーシング10で支持する支持構造、プーリ軸24のボールねじ30側の他端部をケーシング10で回転自在に支持する支持構造についても駆動側の可変速プーリPと同一であるため、同一部品には同一の符号を付して説明を省略する。
 ここで、プーリ軸24の一端部においては、ケーシング10に形成された軸受嵌合孔12内に軌道輪54およびボール55からなる軸受要素を組込み、一方、プーリ軸24の一端部に嵌合された軸受リング56の外径面に軌道溝57を設け、その軌道溝57に上記ボール55を転動自在に組み込んでプーリ軸24の一端部を回転自在に支持している。
 ボールねじ30のねじ軸31に支持された変速ギヤ43は変速軸50に設けられた出力ギヤ52に噛合して、駆動側可変速プーリP1の可動シーブ23と従動側可変速プーリPの可動シーブ23は連動回転するようになっている。
 実施の形態で示すVベルト式無段変速機は上記の構造からなり、図1に示す駆動ギヤ46を駆動すると、その駆動ギヤ46の回転は変速ギヤ43に伝達され、駆動側可変速プーリPのボールねじ30におけるねじ軸31が回転する。
 このとき、ねじ軸31は固定されたナット33に対してボール35を介してねじ係合しているため、ねじ軸31は回転しつつ軸方向に移動し、そのねじ軸31に回転自在に連結された可動シーブ23がプーリ軸24に沿って軸方向に移動し、固定シーブ22との対向部間に形成されたプーリ溝の溝幅が変化する。
 また、駆動側可変速プーリPのねじ軸31の回転は変速ギヤ43からこれに噛合する入力ギヤ51に伝達されて変速軸50が回転し、その変速軸50の回転は出力ギヤ52から従動側可変速プーリPの変速ギヤ43に伝達されるため、従動側可変速プーリPにおけるボールねじ30のねじ軸31が回転する。
 このとき、従動側可変速プーリPにおけるねじ軸31も駆動側可変速プーリPのねじ軸31と同様に、固定されたナット33に対してボール35を介してねじ係合しているため、ねじ軸31は回転しつつ軸方向に移動し、そのねじ軸31に回転自在に連結された可動シーブ23がプーリ軸24に沿って軸方向に移動し、固定シーブ22との対向部間に形成されたプーリ溝の溝幅が変化する。
 この場合、駆動側可変速プーリPと従動側可変速プーリPとは固定シーブ22と可動シーブ23が左右逆の配置とされているため、駆動側可変速プーリPと従動側可変速プーリPとはプーリ溝幅が互いに逆方向に変化する。すなわち、駆動側可変速プーリPのプーリ溝幅が広くなると従動側可変速プーリPのプーリ溝幅が狭くなり、逆に、駆動側可変速プーリPのプーリ溝幅が狭くなると従動側可変速プーリPのプーリ溝幅が広くなる。そのプーリ溝幅の変化によって駆動側可変速プーリPから従動側可変速プーリPへの変速比が変化する。
 実施の形態で示すように、ボールねじ30における筒状ねじ軸31の端部内径面および可変速プーリP1、における可動シーブ23のボス部23bの外径面のそれぞれに軌道溝41、42を設け、その軌道溝41、42間に軸受要素としてのボール40を組み込んで、可動シーブ23とねじ軸31とを回転自在に連結することにより、可動シーブ23とねじ軸31とを一対の軌道輪間にボールを組み込んだ転がり軸受で回転自在に支持する場合に比較して、回転連結部での径方向寸法の縮径化を図ることができ、レイアウトに制約を受けることの少ない可変速プーリP1、の支持構造を得ることができる。
 また、上記のように、転がり軸受の一対の軌道輪を不要とし得ると同時に、転がり軸受を軸方向に固定する止め輪の取付けも不要とすることができるため、軽量化を図ることができ、燃料消費を軽減し、組み付けの容易化を図ることができる。
 図1および図2においては、可動シーブ23をプーリ軸24に沿って軸方向に移動させるねじ機構としてボールねじ30を採用したが、ねじ機構はボールねじ30に限定されるものではない。例えば、図4に示すように、筒状ねじ軸31の外径面およびナット33の内径面のそれぞれに台形ねじ60、61を形成した滑りねじであってもよい。
 また、図1および図2においては、ボールねじ30のナット33をケーシング10に固定し、筒状ねじ軸31を可動シーブ23のボス部23bに回転自在に連結したが、図5に示すように、ねじ軸31の一端部をケーシング10に形成されたねじ軸嵌合孔13に圧入して固定し、ナット33の他端部を可動シーブ23のボス部23bに嵌め合せ、そのナット33の他端部内径面に軌道溝62を設け、その軌道溝62と可動シーブ23のボス部23bの外径面に形成された軌道溝42間に軸受要素としてのボール40を組み込んで、ナット33を可動シーブ23に回転自在に連結してもよい。
 図5に示すように、ナット33を可動シーブ23に回転自在に連結する場合は、ナット33の他端部外径面に変速ギヤ43を取り付け、変速比の変更に際し、その変速ギヤ43に回転トルクを伝達する。
 また、筒状ねじ軸31の一端部内径面に軌道溝63を形成し、その軌道溝63とプーリ軸24の軸端部に取り付けられた軸受リング37の外径面の軌道溝38間にボール36を組み込んで、プーリ軸24の軸端部を回転自在に支持する。
10 ケーシング(プーリ支持対象)
22 固定シーブ
23 可動シーブ
23b ボス部
24 プーリ軸
30 ボールねじ(ねじ機構)
31 ねじ軸
32、34 ねじ溝
33 ナット
35、36、40 ボール
38、39 軌道溝
41、42 軌道溝
60、61 台形ねじ

Claims (6)

  1.  プーリ軸(24)に設けられた固定シーブ(22)と、前記プーリ軸(24)にスライド自在に嵌合され、かつ、回り止めされて前記固定シーブ(22)に対向配置された可動シーブ(23)と、その可動シーブ(23)を前記プーリ軸(24)に沿って軸方向に移動させるねじ機構(30)とからなり、前記ねじ機構(30)が筒状のねじ軸(31)と、そのねじ軸(31)にねじ係合されたナット(33)を備え、前記ねじ軸(31)とナット(33)のうちの一方がプーリ支持対象(10)に固定される固定側部品とされ、他方が回転トルクの負荷により軸方向に移動する可動側部品とされ、前記可動側部品がその内部に組み込まれる軸受要素を介して前記可動シーブ(23)に回転自在に連結されたベルト式無段変速機における可変速プーリの支持装置において、
     前記軸受要素が、ボール(40)を有し、前記可動シーブ(23)のボス部(23b)の外径面と前記可動側部品の内径面の少なくとも一方に前記ボール(40)を転がり案内する軌道溝(41、42)を形成したことを特徴とするベルト式無段変速機における可変速プーリの支持装置。
  2.  前記固定側部品の内側に前記プーリ軸(24)の軸端部を回転自在に支持する軸受要素を組込み、その軸受要素がボール(36)を有し、前記固定側部品の内径面と前記プーリ軸(24)の外径面に前記ボール(36)を転がり案内する軌道溝(38、39)を形成した請求項1に記載のベルト式無段変速機における可変速プーリの支持装置。
  3.  前記軌道溝(41、42)が、前記ボール(40)とアンギュラコンタクトする軌道面を有してなる請求項1又は2に記載のベルト式無段変速機における可変速プーリの支持装置。
  4.  前記軌道面を焼入れ処理して表面硬さをHRC56~64とした請求項3に記載のベルト式無段変速機における可変速プーリの支持装置。
  5.  前記ねじ機構(30)が、ねじ軸(31)の外径面に形成されたねじ溝(32)とナット(33)の内径面に形成されたねじ溝(34)間にボール(35)を組み込んだボールねじからなる請求項1乃至4のいずれか1項に記載のベルト式無段変速機における可変速プーリの支持装置。
  6.  前記ねじ機構(30)が、ねじが台形ねじ(60、61)とされた滑りねじからなる請求項1乃至4のいずれか1項に記載のベルト式無段変速機における可変速プーリの支持装置。
PCT/JP2016/066729 2015-06-08 2016-06-06 ベルト式無段変速機における可変速プーリの支持装置 WO2016199710A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015115793A JP2017002958A (ja) 2015-06-08 2015-06-08 ベルト式無段変速機における可変速プーリの支持装置
JP2015-115793 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016199710A1 true WO2016199710A1 (ja) 2016-12-15

Family

ID=57503529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066729 WO2016199710A1 (ja) 2015-06-08 2016-06-06 ベルト式無段変速機における可変速プーリの支持装置

Country Status (2)

Country Link
JP (1) JP2017002958A (ja)
WO (1) WO2016199710A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180339A (ja) * 1988-12-30 1990-07-13 Aisin Aw Co Ltd ベルト式無段変速装置
JP2003139208A (ja) * 2001-10-31 2003-05-14 Nsk Ltd 無段変速機用プーリ幅調節装置
JP2003156116A (ja) * 2001-11-19 2003-05-30 Ntn Corp ボールねじ、およびそれを備えたベルト式無段変速装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180339A (ja) * 1988-12-30 1990-07-13 Aisin Aw Co Ltd ベルト式無段変速装置
JP2003139208A (ja) * 2001-10-31 2003-05-14 Nsk Ltd 無段変速機用プーリ幅調節装置
JP2003156116A (ja) * 2001-11-19 2003-05-30 Ntn Corp ボールねじ、およびそれを備えたベルト式無段変速装置

Also Published As

Publication number Publication date
JP2017002958A (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6035732B2 (ja) 転がり軸受
US20040248678A1 (en) Continuously variable transmission with axially movable pulley hub units
US7004860B2 (en) Belt type infinite variable-speed drive
EP3354932B1 (en) Ball screw
US20160047457A1 (en) Shaft supporting structure of belt-driven continuously variable transmission
WO2016199710A1 (ja) ベルト式無段変速機における可変速プーリの支持装置
JP6279755B2 (ja) 無段変速機
EP1908994B1 (en) Belt type continuously variable transmission
WO2014115384A1 (ja) ベルト式無段変速機
JP2018165527A (ja) ベルト式無段変速機の可変速プーリ支持装置
JP2018165526A (ja) ベルト式無段変速機の可変速プーリ支持装置
EP3176467A1 (en) Actuator for continuously variable transmission, and continuously variable transmission
JP4812690B2 (ja) 自動車用の無段変速機
KR20170125158A (ko) 볼 스크류 지지구조
RU2295077C1 (ru) Передача с гибким тяговым органом
JP2015007462A (ja) Vベルト式無段変速機
JP4045737B2 (ja) ボールねじ装置および無段変速機
JP2001116095A (ja) 送り装置およびこれを用いる無段変速機
JP2014181772A (ja) 電動リニアアクチュエータ
JP2008309241A (ja) 無段変速機
JP4939040B2 (ja) ベルト式無段変速装置
JP2018165529A (ja) ベルト式無段変速機の可変速プーリ支持装置
JP3997759B2 (ja) 無段変速機用プーリ幅調節装置
KR20170125156A (ko) 볼 스크류 지지구조
JP2006138447A (ja) 転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807417

Country of ref document: EP

Kind code of ref document: A1