WO2016199686A1 - 超硬合金および被覆超硬合金 - Google Patents

超硬合金および被覆超硬合金 Download PDF

Info

Publication number
WO2016199686A1
WO2016199686A1 PCT/JP2016/066509 JP2016066509W WO2016199686A1 WO 2016199686 A1 WO2016199686 A1 WO 2016199686A1 JP 2016066509 W JP2016066509 W JP 2016066509W WO 2016199686 A1 WO2016199686 A1 WO 2016199686A1
Authority
WO
WIPO (PCT)
Prior art keywords
cemented carbide
mass
carbide
region
sur
Prior art date
Application number
PCT/JP2016/066509
Other languages
English (en)
French (fr)
Inventor
伸哉 大理
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to EP16807393.0A priority Critical patent/EP3309267B1/en
Priority to CN201680032819.3A priority patent/CN107614719B/zh
Priority to JP2016562038A priority patent/JP6090685B1/ja
Priority to US15/579,901 priority patent/US10066277B2/en
Publication of WO2016199686A1 publication Critical patent/WO2016199686A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/36Multi-layered

Definitions

  • the present invention relates to a cemented carbide and a coated cemented carbide.
  • Patent Document 1 in a cemented carbide, the high-temperature strength of the cemented carbide is improved by controlling the ratio of the average particle diameter of a carbonate containing Zr and a double carbide containing Zr and W. A method has been proposed.
  • the cemented carbide described in Patent Document 1 has a problem that the dispersion state of the carbonate containing Zr is not controlled, so that the fracture resistance is insufficient, and as a result, the tool life is short.
  • the present invention has been made in order to solve the above-described problems, and is a cemented carbide and a coated cemented carbide containing a Zr carbonate, and has a chipping resistant cemented carbide and a coated cemented carbide.
  • the purpose is to provide.
  • the present inventor conducted various studies on cemented carbide and coated cemented carbide. As a result, the present inventor has clarified that by devising the structure of the cemented carbide, it is possible to obtain a cemented carbide having fracture resistance despite containing Zr carbonate. It came to be completed.
  • the gist of the present invention is as follows.
  • a cemented carbide comprising a hard phase mainly composed of tungsten carbide and a binder phase mainly composed of at least one element selected from the group consisting of Co, Ni and Fe, and the cemented carbide
  • the hard phase contains 75% by mass to 95% by mass of the hard phase and 5% by mass to 25% by mass of the binder phase.
  • Zr sur is the average content (volume%) of the Zr carbonate in the surface region in the range from the surface of the cemented carbide to a depth of 500 ⁇ m, and the Zr in the inner region inside the surface region.
  • the cemented carbide when the average content of the carbonate (volume%) was Zr in, Zr sur / Zr in is 0.25 or more 0.80 or less, the cemented carbide.
  • the content of the Zr carbonate is 0.05% by mass or more and 3% by mass relative to the entire inner region.
  • the cemented carbide according to (1) which is 5% by mass or less.
  • the binder phase contains Co as a main component, and Co average content (mass%) in a region ranging from the surface of the cemented carbide to a depth of 5 ⁇ m is Co sur , the surface of the cemented carbide Co sur / Co in is 0.60 or more and 0.90 or less, where Co in is the average content (mass%) of Co in the inner region from the position at a depth of 5 ⁇ m to (1) Or the cemented carbide of (2).
  • the hard phase further includes carbide, nitride or carbonitride of at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr and Mo. The cemented carbide according to any one of (1) to (3).
  • a coated cemented carbide comprising: a coating layer comprising a compound of at least one metal element selected from the group consisting of Si and at least one nonmetallic element selected from the group consisting of C, N, O, and B .
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the present embodiment described below.
  • the present invention can be variously modified without departing from the gist thereof.
  • the cemented carbide of this embodiment is a cemented carbide containing a hard phase mainly composed of tungsten carbide (WC) and a binder phase.
  • the ratio of the hard phase to the entire inner region (100% by mass) in the inner region from the position of a depth of 500 ⁇ m from the surface of the cemented carbide is 75% by mass or more and 95% by mass or less.
  • the ratio of the binder phase to the entire inner region (100% by mass) in the inner region from the position of a depth of 500 ⁇ m from the surface of the cemented carbide is 5% by mass or more and 25% by mass or less. It is preferred to occupy the remainder of the phase.
  • the hard phase ratio is 75% by mass or more
  • the wear resistance of the cemented carbide is excellent
  • the hard phase ratio is 95% by mass or less.
  • the fracture resistance of the cemented carbide is improved and the amount of the remaining binder phase is relatively increased, so that the sinterability of the raw material during the production of the cemented carbide is increased.
  • the ratio of the hard phase is 86% by mass or more and 95% by mass or less and the ratio of the binder phase is the balance.
  • the hard phase in the cemented carbide of the present embodiment contains tungsten carbide as a main component, and further contains Zr carbonate.
  • the “main component” indicates that when the entire hard phase is taken as 100% by mass, it contains more than 50% by mass.
  • the content of tungsten carbide in the hard phase is preferably 70% by mass or more and more preferably 85% by mass or more when the entire hard phase is 100% by mass.
  • the hard phase in the cemented carbide of the present embodiment is at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr and Mo in addition to tungsten carbide and Zr carbonate.
  • the metal element is more preferably at least one metal element selected from the group consisting of Ti, Ta and Cr, and more preferably a carbide.
  • the hard phase in the cemented carbide of the present embodiment improves the high-temperature strength by containing Zr carbonate. Therefore, a tool made of such a cemented carbide has excellent fracture resistance in processing difficult-to-cut materials with low thermal conductivity.
  • the average content (volume%) of Zr carbonate in the surface region in the range from the surface of the cemented carbide to 500 ⁇ m in depth is Zr sur , and 500 ⁇ m from the surface of the cemented carbide.
  • Zr sur / Zr in 0.
  • Zr sur / Zr in is more preferably 0.50 or more and 0.80 or less, and further preferably 0.60 or more and 0.80 or less.
  • the content of Zr carbonate is 0.05% by mass or more with respect to the entire inner region.
  • the high-temperature strength tends to be further improved, and if it is 3.5% by mass or less, the Zr carbonate is prevented from starting to break, and the fracture resistance is easily improved. Therefore, the content of the Zr carbonate is preferably 0.05% by mass or more and 3.5% by mass or less, and preferably 0.10% by mass or more and 3.0% by mass or less with respect to the entire inner region. It is more preferable that it is 0.10% by mass or more and 2.0% by mass or less.
  • the binder phase in the cemented carbide of the present embodiment includes a binder phase mainly composed of at least one element selected from the group consisting of Co, Ni, and Fe.
  • the “main component” indicates that the content is larger than 50% by mass when the entire binder phase is 100% by mass.
  • the content of the element in the binder phase is preferably 75% by mass or more and more preferably 90% by mass or more when the total binder phase is 100% by mass.
  • the binder phase in the cemented carbide of the present embodiment contains Co as a main component, it is preferable because the sinterability and the toughness of the cemented carbide are improved, and the fracture resistance of the tool is further improved.
  • the average Co content (mass%) in the region in the range from the cemented carbide surface to the depth of 5 ⁇ m is Co sur , from the position of the depth of 5 ⁇ m from the cemented carbide surface.
  • Co sur / Co in is 0.60 or more and 0.90 or less when used as a cutting tool material, This is preferable because the amount of chip welding is further reduced.
  • Co sur / Co in is 0.60 or more, the toughness is increased, and as a result, the fracture resistance is improved. On the other hand, if Co sur / Co in is 0.90 or less, the amount of chip welding tends to decrease, and as a result, the fracture resistance is improved.
  • the ratio of the hard phase and the binder phase and the composition of the hard phase and the binder phase in the inner region from the position of the depth of 500 ⁇ m from the surface of the cemented carbide of the present embodiment are obtained as follows.
  • the cross-sectional structure inside 500 ⁇ m deep from the surface of the cemented carbide is observed with a scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDS).
  • SEM scanning electron microscope
  • EDS energy dispersive X-ray spectrometer
  • the presence of the Zr carbonate in the cemented carbide of the present embodiment can be confirmed as follows, and the content thereof can be determined.
  • the cemented carbide is polished in the direction perpendicular to the surface, the cross-sectional structure that appears is observed with SEM, and the presence of Zr carbonate can be confirmed using EDS attached to SEM.
  • the content can be calculated
  • the hard phase and binder phase composition of the cemented carbide is measured by EDS. From the result, the ratio of the hard phase and the binder phase of the cemented carbide can be obtained.
  • Zr sur / Zr in first, the cross-sectional structure of the cemented carbide magnified 2,000 times to 5,000 times using a SEM is observed with a reflected electron image. Using EDS attached to the SEM, it is possible to specify that the white region is tungsten carbide, the dark gray region is a binder phase, and the black region is Zr carbonate.
  • region to 500 micrometers in the depth direction from the surface of a cemented carbide is taken using SEM.
  • the content (volume%) of Zr carbonate in the region from the surface of the cemented carbide to a depth of 500 ⁇ m can be obtained from the photograph of the obtained cross-sectional structure using commercially available image analysis software.
  • the content (volume%) of Zr carbonate in at least three regions from the surface to a depth of 500 ⁇ m is determined, and the average value is defined as the average content Zr sur .
  • the content (volume%) of the Zr carbonate in at least 5 locations in the depth direction from the surface to more than 500 ⁇ m was obtained, and the average value of the obtained values was determined as the average content Zr.
  • Zr sur / Zr in is obtained.
  • Co sur / Co in in the cemented carbide of the present embodiment can be obtained as follows.
  • the cemented carbide is polished in a direction perpendicular to the surface thereof, the cross-sectional structure that appears is observed with an SEM, and Co sur / Co in can be obtained using an EDS attached to the SEM. More specifically, in the cemented carbide, the Co content in 10 regions from the surface to a depth of 5 ⁇ m is measured, and the average value is defined as the average content Co sur . Further, in the cemented carbide, the ten, than the position of 500 ⁇ m from the surface by measuring the Co content in the interior, and the average value and the average content Co in, obtaining the Co sur / Co in.
  • the coated cemented carbide of this embodiment includes the above cemented carbide and a coating layer formed on the surface of the cemented carbide. Such a coated cemented carbide has further improved wear resistance.
  • the coating layer according to this embodiment may be a single layer or a laminate of two or more layers.
  • the average thickness of the entire coating layer according to this embodiment is 1.0 ⁇ m or more, the wear resistance is improved, and when it is 10 ⁇ m or less, the fracture resistance is improved.
  • the average thickness of the entire coating layer is preferably 1.0 ⁇ m or more and 10 ⁇ m or less, more preferably 1.5 ⁇ m or more and 8.0 ⁇ m or less, and 2.5 ⁇ m or more and 6.0 ⁇ m or less. Further preferred.
  • the covering layer according to the present embodiment is not particularly limited as long as it is used as a covering layer of a covering tool.
  • the coating layer includes at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, and Si, and C, N, O, and B.
  • a compound layer composed of at least one nonmetallic element selected from the group consisting of is preferable because the wear resistance is improved.
  • the coating layer is composed of at least one metal element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, and Si and an N element. A layer is more preferable.
  • each layer constituting the coating layer according to this embodiment and the thickness of the entire coating layer should be measured from the cross-sectional structure of the coated cemented carbide using an optical microscope, SEM, transmission electron microscope (TEM), or the like. Can do.
  • the average thickness of each layer and the average thickness of the entire coating layer in the coated cemented carbide of the present embodiment are measured by measuring the thickness of each layer and the thickness of the entire coating layer from three or more cross sections. It can be obtained by calculating an average value.
  • composition of each layer constituting the coating layer in the coated cemented carbide of the present embodiment is based on the cross-sectional structure of the coated cemented carbide of the present embodiment using EDS, a wavelength dispersive X-ray analyzer (WDS), or the like. It can be determined by measurement.
  • the coating layer according to this embodiment may be formed by chemical vapor deposition or physical vapor deposition. Among these, it is preferable to form the coating layer by physical vapor deposition.
  • the physical vapor deposition method include an arc ion plating method, an ion plating method, a sputtering method, and an ion mixing method. Among them, the arc ion plating method is preferable because it is more excellent in adhesion between the cemented carbide and the coating layer.
  • the manufacturing method of the cemented carbide alloy of this embodiment or a coated cemented carbide alloy is not restrict
  • the manufacturing method of the cemented carbide or coated cemented carbide according to the present embodiment includes the following steps (A) to (K).
  • metal powder 5.0 mass% selected from the group consisting of Co, Ni and Fe having an average particle size of 0.5 ⁇ m to 3.0 ⁇ m ⁇ 25.0 mass%
  • Process (I) Sintering process in which the molded body that has undergone the process (H) is sintered at a temperature of 1400 ° C. to 1600 ° C. for 30 minutes to 120 minutes in an inert gas atmosphere of 50 Pa to 1330 Pa.
  • the average particle diameter of the raw material powder used in the step (A) and the step (B) is measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in the American Society for Testing and Materials (ASTM) standard B330. It is a thing.
  • Steps (A) to (K) have the following significance.
  • oxygen is diffused on the surface of the Zr carbide by oxidizing the powder of the Zr carbide under predetermined conditions.
  • oxygen is not diffused to the inside of the Zr carbide, so it is expressed as Zr carbide for convenience.
  • zirconium oxide is generated.
  • step (B) tungsten carbide powder, at least one metal powder selected from the group consisting of Co, Ni and Fe, Zr carbide powder which has undergone the above step (A), and optionally Ti, Zr
  • the composition of the cemented carbide is specified by using at least one carbide, nitride or carbonitride powder selected from the group consisting of H, V, Nb, Ta, Cr and Mo in a predetermined blending ratio. Can be adjusted within the range.
  • step (C) the average particle size of the hard phase can be adjusted.
  • step (C) a mixture in which the raw material powder prepared in step (B) is uniformly mixed can be obtained.
  • step (D) a dry mixture obtained by evaporating the solvent can be obtained by heating and drying the mixture.
  • step (E) paraffin wax is added to the dry mixture and formed into a predetermined tool shape. By adding paraffin, moldability is improved.
  • the obtained molded body is sintered in the following sintering step (step (I)).
  • step (F) the temperature of the molded body is increased in a vacuum of 70 Pa or less. This promotes degassing before and immediately after the appearance of the liquid phase in the molded body, and improves the sinterability in the following sintering step (step (I)). Further, in the process of increasing the temperature, oxygen diffused on the surface of the Zr carbide diffuses into the Zr carbide, whereby a Zr carbonate can be obtained.
  • step (G) the compact is held at a temperature of 1200 ° C. to 1400 ° C. in a carbon monoxide atmosphere.
  • oxygen and carbon monoxide in the oxide of Co, Ni or Fe in the surface region of the compact react to reduce the oxygen concentration in the surface region.
  • Zr carbonate is dissolved in Co, Ni or Fe, and oxygen is supplied in the surface region, and the concentration of Zr in Co, Ni or Fe is also increased.
  • Zr diffuses into the inner region, and the concentration of Zr carbonate in the surface region and the inner region can be controlled. It should be noted that Zr carbonate precipitates during cooling in the later-described step (K).
  • step (H) the compact is heated to a temperature of 1400 ° C. to 1600 ° C. in an inert gas atmosphere.
  • step (I) the compact is sintered at a temperature of 1400 ° C. to 1600 ° C. in an inert gas atmosphere. Thereby, a molded object becomes densified and the mechanical strength of a molded object increases.
  • Zr carbonate dissolved in Co, Ni or Fe in the step (I) diffuses and precipitates in the inner region, Zr sur / Zr in can be controlled.
  • by evaporating Co, Ni or Fe in the vicinity of the surface of the compact the concentration of Co, Ni or Fe in the vicinity of the surface is reduced.
  • the molded body is rapidly cooled at a rate of 5 to 30 ° C./min from a temperature of 1400 ° C. to 1600 ° C. to a temperature of 1200 ° C. in an inert gas atmosphere of 100 kPa to 500 kPa.
  • Co sur / Co in can be controlled by combining the conditions of step (I) and step (J).
  • step (K) the compact is cooled from a temperature of 1200 ° C. to room temperature in an inert gas atmosphere at atmospheric pressure to obtain a cemented carbide. Thereby, it can prevent that a cemented carbide alloy oxidizes.
  • cemented carbide obtained through steps (A) to (K) may be subjected to grinding or honing of the cutting edge.
  • the manufacturing method of the coated cemented carbide of this embodiment is not particularly limited as long as the configuration of the coated cemented carbide can be achieved.
  • the cemented carbide of this embodiment processed into a tool shape is accommodated in a reaction vessel of a physical vapor deposition apparatus, and the reaction vessel is evacuated until the pressure becomes a vacuum of 1 ⁇ 10 ⁇ 2 Pa or less. After evacuation, the cemented carbide is heated by a heater in the reaction vessel until the temperature reaches 200 to 800 ° C. After heating, Ar gas is introduced into the reaction vessel, and the pressure in the reaction vessel is set to 0.5 to 5.0 Pa.
  • a bias voltage of ⁇ 200 to ⁇ 1000 V is applied to the cemented carbide, and a current of 5 to 20 A is passed through the tungsten filament in the reaction vessel to The surface of the alloy is subjected to ion bombardment treatment with Ar gas. After ion bombardment treatment is performed on the surface of the cemented carbide, the inside of the reaction vessel is evacuated until the pressure becomes 1 ⁇ 10 ⁇ 2 Pa or less.
  • the cemented carbide is heated until the temperature reaches 200 ° C. to 600 ° C. Thereafter, a reaction gas such as nitrogen gas is introduced into the reaction vessel, and the pressure in the reaction vessel is adjusted to 0.5 to 5.0 Pa. Then, a bias voltage of ⁇ 10 to ⁇ 150 V is applied to the cemented carbide, a metal evaporation source corresponding to the metal component of the coating layer is evaporated by arc discharge of 80 to 150 A, and the coating layer is formed on the surface of the cemented carbide. Form. In this way, a coated cemented carbide is obtained.
  • a reaction gas such as nitrogen gas
  • the cemented carbide and the coated cemented carbide of the present embodiment have excellent machining performance particularly in the machining of difficult-to-cut materials, they can be suitably used as constituent materials for tools.
  • the cemented carbide and the coated cemented carbide of the present embodiment are used as, for example, a constituent material of a cutting tool, the cemented carbide and the coated cemented carbide have excellent performance particularly for cutting difficult-to-cut materials.
  • the cemented carbide and the coated cemented carbide of the present embodiment are used as a material for a tool (for example, a cutting tool) for machining a difficult-to-cut material having a low thermal conductivity, the cemented carbide and the coated cemented carbide are used. Is particularly useful because it has excellent high temperature strength and fracture resistance.
  • Example 1 Manufacture of cemented carbide
  • tungsten carbide powder having an average particle diameter of 1.5 ⁇ m commercially available tungsten carbide powder having an average particle diameter of 1.5 ⁇ m, Zr carbide (hereinafter referred to as “ZrC”) having an average particle diameter of 3.0 ⁇ m, average particle diameter of 3.0 ⁇ m TiC powder, TaC powder having an average particle size of 3.0 ⁇ m, Cr 3 C 2 powder having an average particle size of 3.0 ⁇ m, and Co powder having an average particle size of 1.5 ⁇ m were prepared.
  • the average particle diameter of the raw material powder is measured by the Fisher method (Fisher Sub-Sieve Sizer (FSSS)) described in American Society for Testing and Materials (ASTM) standard B330.
  • FSSS Field-Sieve Sizer
  • Inventive products 1 to 17 and comparative products 2, 3, 5, 6, 8, 9, 11, and 13 were stored in a furnace that can be controlled in an oxygen atmosphere after the prepared ZrC powder was vacuumed at 70 Pa or less.
  • the temperature was raised from room temperature to 500 ° C. After the furnace temperature reached 500 ° C., oxygen was introduced into the furnace until the furnace pressure reached 0.5 kPa.
  • ZrC was oxidized in an oxidizing atmosphere with a furnace pressure of 0.5 kPa. As a result, ZrC powder in which oxygen diffused on the surface was obtained.
  • the prepared raw material powder was weighed so as to have the composition shown in Table 1 below, and the weighed raw material powder was placed in a stainless steel pot together with an acetone solvent and a cemented carbide ball, and mixed in a wet ball mill for 5 to 40 hours. Grinding was performed. At this time, the inventive products 1 to 17 and the comparative products 2, 3, 5, 6, 8, 9, 11, and 13 used ZrC powder that had undergone an oxidation treatment step. For the comparative product 12, ZrC powder that was not oxidized was used. After mixing and pulverization by a wet ball mill, 1.5% by mass of paraffin wax is added to the dry mixture obtained by evaporating the acetone solvent, and the shape after sintering is an ISO standard insert shape CNMG120408. The mixture was press-molded at a pressure of 196 MPa to obtain a molded body of the mixture.
  • ZrC * “ZrC * ” in the “Composition composition” column means ZrC in which oxygen has diffused on the surface because it has undergone an oxidation process (however, oxygen has not diffused into the interior of ZrC) .
  • the molded body of the mixture was housed in a sintering furnace, and then heated from room temperature to a temperature increase temperature T1 (° C.) described in Table 2 (a) below in a vacuum of 70 Pa or less. After the furnace temperature reached the temperature rise temperature T1 (° C.), carbon monoxide gas was introduced into the sintering furnace until the furnace pressure reached the furnace pressure P1 (Pa) shown in Table 2 (b). . The temperature T1 and the furnace pressure P1 were maintained for 60 minutes in a carbon monoxide atmosphere. Thereafter, the carbon monoxide gas is exhausted, and argon gas is introduced into the furnace until the furnace pressure reaches the furnace pressure P2 (Pa) described in Table 2 (c). Replaced with gas.
  • the temperature in the furnace was raised to the sintering temperature T2 (° C.) shown in Table 2 (d), and the temperature was maintained at that temperature T2 (° C.) for 60 minutes. Thereby, the compact was sintered.
  • argon gas is introduced into the furnace and pressurized until the furnace pressure reaches the furnace pressure P3 (kPa) shown in Table 2 (e), and the sintering temperature is T2 (° C.) to 1200 ° C. It cooled at the cooling rate R (degreeC / min) described in Table 2 (f).
  • a cemented carbide was obtained by sintering the compact of the mixture as described above.
  • the obtained cemented carbide blade was subjected to a honing treatment by a wet brush honing machine.
  • a metal evaporation source was installed in the reaction vessel of the arc ion plating apparatus.
  • the cemented carbide produced as described above was attached to a holder in the reaction vessel of the arc ion plating apparatus.
  • the pressure in the reaction vessel was evacuated to 1 ⁇ 10 ⁇ 2 Pa or less.
  • the cemented carbide was heated to 500 ° C. with an in-furnace heater. After the temperature of the cemented carbide reached 500 ° C., Ar gas was introduced into the reaction vessel until the pressure in the reaction vessel reached 5 Pa.
  • a bias voltage of ⁇ 1000 V was applied to the cemented carbide in the reaction vessel, and the surface of the cemented carbide was subjected to Ar ion bombardment treatment.
  • the ion bombardment conditions were as follows. Atmosphere in reaction vessel: Ar atmosphere Pressure in reaction vessel: 5 Pa
  • the Ar gas was discharged, and the pressure in the reaction vessel was evacuated to 1 ⁇ 10 ⁇ 2 Pa or less. Then, N 2 gas was introduced into the reaction vessel, the reaction vessel was replaced by a nitrogen atmosphere at a pressure of 3 Pa.
  • the cemented carbide was heated to 600 ° C. with a furnace heater. After heating the cemented carbide, a bias voltage of ⁇ 50 V was applied to the cemented carbide and the metal evaporation source was evaporated by 150 A arc discharge. Thereby, the coating layer was formed on the surface of the cemented carbide. After forming the coating layer, the sample was cooled. After the sample temperature became 100 ° C. or less, the sample was taken out from the reaction vessel.
  • the obtained sample (a cutting tool made of a coated cemented carbide) was mirror-polished in a direction perpendicular to the surface thereof. From the edge of the surface facing the metal evaporation source, a surface (hereinafter referred to as “mirror polished surface”) that appeared by the mirror polishing was observed in the vicinity of a position of 50 ⁇ m toward the center of the surface. An optical microscope and an FE-SEM were used for the observation of the mirror polished surface. From the observed image of the mirror-polished surface, the thickness of the coating layer was measured at three locations. The average value of the measured thickness of the coating layer was calculated. The composition of the coating layer was measured using EDS attached to FE-SEM and WDS attached to FE-SEM. The composition of the coating layer of all samples was (Ti 0.5 Al 0.5 ) N. Moreover, the average thickness of the whole coating layer of all the samples was 3.0 micrometers.
  • the obtained sample was mirror-polished in a direction perpendicular to the surface.
  • Each composition of the hard phase and the binder phase of the cemented carbide in the coated cemented carbide was measured by EDS. From the results, the ratio of the hard phase and the binder phase of the cemented carbide was determined. The results are shown in Table 3.
  • the coated cemented carbide was polished in a direction perpendicular to the surface.
  • SEM with EDS it was specified that the white region was tungsten carbide, the dark gray region was a binder phase, and the black region was Zr carbonate.
  • region to the depth of 500 micrometers from the surface of the cemented carbide (interface between the coating layer and the cemented carbide in the coated cemented carbide) was taken using SEM.
  • the cutting test was a test for evaluating the fracture resistance at the cutting boundary.
  • the conditions of the cutting test are shown below, and the results are shown in Table 5.
  • Example 2 A coating layer was formed on the surface of the cemented carbide produced under the same conditions as the inventive products 1 to 17 of Example 1 using an arc ion plating apparatus. Specifically, first, a metal evaporation source was installed in the reaction vessel of the arc ion plating apparatus. The composition of the metal evaporation source corresponds to the composition of the coating layer shown in Table 6. Invention products 18 to 34 were obtained by forming a coating layer having the thickness shown in Table 6 on the surface of a cemented carbide produced in the same manner as invention products 1 to 17. The coating layer was formed under the same conditions as in Example 1 except that the composition and average thickness were as shown in Table 6. The inventive products 18 to 34 were subjected to the same cutting test as in Example 1. The results are shown in Table 7.
  • the cemented carbide and the coated cemented carbide of the present invention contain not only high-temperature strength but also excellent fracture resistance by containing Zr carbonate. Therefore, since it can be suitably used as a cutting tool, particularly in the processing of difficult-to-cut materials, the industrial utility value is high in that respect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Zrの炭酸化物を含む超硬合金及び被覆超硬合金であって、耐欠損性を有する超硬合金を提供する。本発明の超硬合金は、炭化タングステンを主成分とする硬質相と、Co、NiおよびFeからなる群から選ばれる少なくとも1種の元素を主成分とする結合相とを含む超硬合金であり、超硬合金の表面から500μmの深さの位置よりも内部の領域において、硬質相75質量%以上95質量%以下と、結合相5質量%以上25質量%以下とを含み、硬質相は、Zrの炭酸化物を含み、超硬合金の表面から500μmの深さまでの範囲の表面領域におけるZrの炭酸化物の平均含有量(体積%)をZrsur、表面領域よりも内部の内部領域におけるZrの炭酸化物の平均含有量(体積%)をZrinとしたとき、Zrsur/Zrinは、0.25以上0.80以下である。

Description

超硬合金および被覆超硬合金
 本発明は超硬合金および被覆超硬合金に関するものである。
 航空機部品等に使用されるチタン合金、発電機用のタービンブレードに使用されるニッケル基耐熱合金やコバルト基耐熱合金等のような難削材を、切削加工により加工する機会が増えている。ニッケル基耐熱合金やコバルト基耐熱合金等の熱伝導率が低い難削材の切削加工においては、切削温度が高くなりやすい。そのような高温の加工においては、切削工具の刃先の強度が低下することにより、欠損が生じるため、これまでの一般鋼の加工よりも工具寿命が極端に短くなる。そこで、難削材の切削においても切削工具の長寿命を達成するために、切削工具の高温強度を高めることが要求されている。
 例えば、特許文献1には、超硬合金において、Zrを含む炭酸化物と、ZrとWとを含む複炭化物との平均粒子径の比を制御することにより、超硬合金の高温強度を改善する方法が提案されている。
特開2009-74121号公報
 しかしながら、上記特許文献1に記載の超硬合金では、Zrを含む炭酸化物の分散状態が制御されていないため、耐欠損性が不十分であり、その結果、工具寿命が短いという問題がある。
 本発明は、上記の問題を解決するためになされたものであり、Zrの炭酸化物を含む超硬合金及び被覆超硬合金であって、耐欠損性を有する超硬合金及び被覆超硬合金を提供することを目的とする。
 本発明者は、超硬合金および被覆超硬合金について種々の検討を行った。その結果、本発明者は、超硬合金の組織を工夫することにより、Zrの炭酸化物を含むにもかかわらず、耐欠損性を有する超硬合金を得ることができることを明らかにし、本発明を完成するに至った。
 すなわち、本発明の要旨は以下の通りである。
(1)炭化タングステンを主成分とする硬質相と、Co、NiおよびFeからなる群から選ばれる少なくとも1種の元素を主成分とする結合相とを含む超硬合金であり、前記超硬合金の表面から500μmの深さの位置よりも内部の領域において、硬質相75質量%以上95質量%以下と、結合相5質量%以上25質量%以下とを含み、前記硬質相は、Zrの炭酸化物を含み、前記超硬合金の表面から500μmの深さまでの範囲の表面領域における前記Zrの炭酸化物の平均含有量(体積%)をZrsur、前記表面領域よりも内部の内部領域における前記Zrの炭酸化物の平均含有量(体積%)をZrinとしたとき、Zrsur/Zrinは、0.25以上0.80以下である、超硬合金。
(2)前記超硬合金の表面から500μmの深さの位置よりも内部の領域において、前記Zrの炭酸化物の含有量は、前記内部の領域の全体に対して、0.05質量%以上3.5質量%以下である、(1)の超硬合金。
(3)前記結合相は、Coを主成分として含み、前記超硬合金の表面から5μmの深さまでの範囲の領域におけるCoの平均含有量(質量%)をCosur、前記超硬合金の表面から5μmの深さの位置よりも内部の領域におけるCoの平均含有量(質量%)をCoinとしたとき、Cosur/Coinは、0.60以上0.90以下である、(1)または(2)の超硬合金。
(4)前記硬質相は、Ti、Zr、Hf、V、Nb、Ta、CrおよびMoからなる群より選ばれる少なくとも1種の金属元素の炭化物、窒化物または炭窒化物をさらに含む、(1)~(3)のいずれかの超硬合金。
(5)(1)~(4)のいずれかの超硬合金と、前記超硬合金の表面に形成された、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiからなる群より選ばれる少なくとも1種の金属元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の非金属元素との化合物からなる被覆層と、を含む被覆超硬合金。
(6)前記被覆層が、単層または2層以上の積層である、(5)の被覆超硬合金。
(7)前記被覆層全体の平均厚さが1.0μm以上10μm以下である、(5)または(6)の被覆超硬合金。
 本発明によると、Zrの炭酸化物を含む超硬合金及び被覆超硬合金であって、耐欠損性を有する超硬合金および被覆超硬合金を提供することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
 本実施形態の超硬合金は、炭化タングステン(WC)を主成分とする硬質相と、結合相とを含む超硬合金である。超硬合金の表面から500μmの深さの位置よりも内部の領域において、上記内部の領域全体(100質量%)に対する硬質相の割合は、75質量%以上95質量%以下である。一方、超硬合金の表面から500μmの深さの位置よりも内部の領域において、上記内部の領域全体(100質量%)に対する結合相の割合は、5質量%以上25質量%以下であり、硬質相の残部を占めることが好ましい。
 本実施形態の超硬合金の上記領域において、硬質相の割合が75質量%以上であると、超硬合金の耐摩耗性が優れたものとなり、硬質相の割合が95質量%以下であると、超硬合金の耐欠損性が向上すると共に、相対的に残部の結合相量が多くなるため、超硬合金の製造の際の原料の焼結性が高くなる。その中でも、同様の観点から、硬質相の割合が86質量%以上95質量%以下であって、結合相の割合が残部であると、より好ましい。
 本実施形態の超硬合金における硬質相は、炭化タングステンを主成分として含み、さらにZrの炭酸化物を含む。ここで、「主成分」とは、硬質相全体を100質量%としたとき、50質量%を超えて多く含むことを指す。硬質相における炭化タングステンの含有量は、硬質相全体を100質量%としたとき、70質量%以上であると好ましく、85質量%以上であるとより好ましい。本実施形態の超硬合金における硬質相は、炭化タングステンおよびZrの炭酸化物以外に、Ti、Zr、Hf、V、Nb、Ta、CrおよびMoからなる群より選択される少なくとも1種の金属元素の炭化物、窒化物または炭窒化物をさらに含むと、耐摩耗性および耐塑性変形性が向上する傾向にあるため、好ましい。同様の観点から、上記金属元素は、Ti、TaおよびCrからなる群より選択される少なくとも1種の金属元素であるとより好ましく、炭化物であるとより好ましい。
 本実施形態の超硬合金における硬質相は、Zrの炭酸化物を含むことにより、その高温強度が向上する。そのため、このような超硬合金を材料とする工具は、熱伝導率が低い難削材の加工において、耐欠損性に優れる。本実施形態の超硬合金は、その超硬合金の表面から500μmの深さまでの範囲の表面領域におけるZrの炭酸化物の平均含有量(体積%)をZrsur、その超硬合金の表面から500μmの深さの位置よりも内部の領域(すなわち、表面領域よりも内部の内部領域)におけるZrの炭酸化物の平均含有量(質量%)をZrinとしたとき、Zrsur/Zrinが0.25以上0.80以下であると、耐欠損性が向上する。Zrsur/Zrinが0.25以上であると、耐欠損性が向上する一方、Zrsur/Zrinが0.80以下であると、巣孔の増加を抑制するため、やはり耐欠損性が向上する。同様の観点から、Zrsur/Zrinが0.50以上0.80以下であるとより好ましく、0.60以上0.80以下であると更に好ましい。
 本実施形態の超硬合金の表面から500μmの深さの位置よりも内部の領域において、Zrの炭酸化物の含有量は、上記内部の領域の全体に対して、0.05質量%以上であると、高温強度がさらに向上する傾向を示し、3.5質量%以下であると、Zrの炭酸化物が破壊の起点となるのを抑制し、耐欠損性が向上しやすくなる。そのため、Zrの炭酸化物の含有量は、上記内部の領域の全体に対して、0.05質量%以上3.5質量%以下であると好ましく、0.10質量%以上3.0質量%以下であるとより好ましく、0.10質量%以上2.0質量%以下であると更に好ましい。
 本実施形態の超硬合金における結合相は、Co、NiおよびFeからなる群より選ばれる少なくとも1種の元素を主成分とする結合相を含む。ここで、「主成分」とは、結合相全体を100質量%としたとき、50質量%を超えて多く含むことを指す。結合相における上記元素の含有量は、結合相全体を100質量%としたとき、75質量%以上であると好ましく、90質量%以上であるとより好ましい。
 本実施形態の超硬合金における結合相は、Coを主成分として含むと、焼結性および超硬合金の靱性が向上することにより、工具の耐欠損性に更に優れるので好ましい。本実施形態の超硬合金において、超硬合金の表面から5μmの深さまでの範囲の領域におけるCoの平均含有量(質量%)をCosur、超硬合金の表面から5μmの深さの位置よりも内部の領域におけるCoの平均含有量(質量%)をCoinとしたとき、Cosur/Coinは、0.60以上0.90以下であると、切削工具の材料として用いた場合に、切りくずの溶着量が一層減少するため、好ましい。Cosur/Coinが、0.60以上であると、靭性が高くなり、その結果、耐欠損性が向上する。一方、Cosur/Coinが、0.90以下であると、切りくずの溶着量が減少する傾向があり、その結果、耐欠損性が向上する。
 本実施形態の超硬合金の表面から500μmの深さの位置よりも内部の領域における硬質相および結合相の割合、硬質相および結合相の各組成は、以下のようにして求める。超硬合金の表面から深さ方向に500μmよりも内部の断面組織を、エネルギー分散型X線分光器(EDS)付き走査電子顕微鏡(SEM)にて観察し、EDSにより超硬合金の硬質相および結合相の各組成を測定する。その結果から、超硬合金の硬質相および結合相の割合を求めることができる。
 なお、本実施形態の超硬合金におけるZrの炭酸化物は、以下のようにしてその存在を確認することができ、また、その含有量を求めることができる。超硬合金をその表面に対して直交する方向に研磨し、それにより現れた断面組織をSEMにて観察し、SEMに付属するEDSを用いて、Zrの炭酸化物の存在を確認することができ、また、その含有量を求めることができる。より具体的には、まず、超硬合金の表面から500μmの深さの位置よりも内部の領域におけるZrの炭酸化物の含有量については、超硬合金の表面から深さ方向に500μmよりも内部の断面組織を、エネルギー分散型X線分光器(EDS)付き走査電子顕微鏡(SEM)にて観察し、EDSにより超硬合金の硬質相および結合相の各組成を測定する。その結果から、超硬合金の硬質相および結合相の割合を求めることができる。また、Zrsur/Zrinについては、まず、SEMを用いて2,000倍~5,000倍に拡大した超硬合金の断面組織を反射電子像で観察する。SEMに付属しているEDSを用いると、白色領域は炭化タングステンであり、濃灰色領域は結合相であり、黒色領域はZrの炭酸化物であることを特定することができる。その後、SEMを用いて超硬合金の表面から深さ方向に500μmまでの領域における断面組織の写真を撮影する。得られた断面組織の写真から市販の画像解析ソフトを用いて、超硬合金の表面から500μmの深さまでの領域におけるZrの炭酸化物の含有量(体積%)を求めることができる。その超硬合金において、少なくとも3箇所の、表面から500μmの深さまでの領域におけるZrの炭酸化物の含有量(体積%)を求め、その平均値を平均含有量Zrsurとする。次に、超硬合金において、少なくとも5箇所の、表面から深さ方向に500μmよりも内部におけるZrの炭酸化物の含有量(体積%)を求め、得られた値の平均値を平均含有量Zrinとし、Zrsur/Zrinを求める。
 本実施形態の超硬合金におけるCosur/Coinは、以下のようにして求めることができる。超硬合金をその表面に対して直交する方向に研磨し、それにより現れた断面組織をSEMにて観察し、SEMに付属するEDSを用いて、Cosur/Coinを求めることができる。より具体的には、超硬合金において、10箇所の、表面から5μmの深さまでの領域におけるCo含有量を測定し、その平均値を平均含有量Cosurとする。また、超硬合金において、10箇所の、表面から500μmの位置よりも内部におけるCo含有量を測定し、その平均値を平均含有量Coinとし、Cosur/Coinを求める。
 本実施形態の被覆超硬合金は、上記の超硬合金とその超硬合金の表面に形成された被覆層とを含む。かかる被覆超硬合金は、耐摩耗性を更に向上させたものである。本実施形態に係る被覆層は、単層であってもよく、2層以上の積層であってもよい。本実施形態に係る被覆層全体の平均厚さは、1.0μm以上であると耐摩耗性が向上し、10μm以下であると耐欠損性が向上する。そのような観点から、被覆層全体の平均厚さは1.0μm以上10μm以下であると好ましく、1.5μm以上8.0μm以下であるとより好ましく、2.5μm以上6.0μm以下であると更に好ましい。
 本実施形態に係る被覆層は、被覆工具の被覆層として使用されるものであれば特に限定されない。その中でも、被覆層が、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiからなる群より選択される少なくとも1種の金属元素と、C、N、OおよびBからなる群より選択される少なくとも1種の非金属元素とからなる化合物層であると、耐摩耗性が向上するため、好ましい。同様の観点から、被覆層が、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiからなる群より選択される少なくとも1種の金属元素とN元素とからなる化合物層であるとより好ましい。
 本実施形態に係る被覆層を構成する各層の厚さおよび被覆層全体の厚さは、被覆超硬合金の断面組織から光学顕微鏡、SEM、透過型電子顕微鏡(TEM)などを用いて測定することができる。なお、本実施形態の被覆超硬合金における各層の平均厚さおよび被覆層全体の平均厚さは、3箇所以上の断面から、各層の厚さおよび被覆層全体の厚さを測定して、その平均値を計算することで求めることができる。
 また、本実施形態の被覆超硬合金における被覆層を構成する各層の組成は、本実施形態の被覆超硬合金の断面組織から、EDSや波長分散型X線分析装置(WDS)などを用いた測定により決定することができる。
 本実施形態に係る被覆層は、化学蒸着法によって形成してもよく、物理蒸着法によって形成してもよい。その中でも、被覆層を物理蒸着法によって形成するのが好ましい。物理蒸着法としては、例えば、アークイオンプレーティング法、イオンプレーティング法、スパッタ法およびイオンミキシング法が挙げられる。その中でも、アークイオンプレーティング法は、超硬合金と被覆層との密着性により優れるので好ましい。
 次に、本実施形態の超硬合金又は被覆超硬合金の製造方法について、具体例を用いて説明する。なお、本実施形態の超硬合金又は被覆超硬合金の製造方法は、当該超硬合金の構成を達成し得る限り特に制限されるものではない。
 例えば、本実施形態の超硬合金又は被覆超硬合金の製造方法は、以下の工程(A)~(K)を含む。
 工程(A):平均粒径0.5~5.0μmのZrの炭化物粉末を0.02kPa~2.0kPaの酸素雰囲気にて、400℃~700℃の温度に保持して5分~60分加熱し、Zrの炭化物の周囲に酸素を吸着させる工程。
 工程(B):平均粒径0.5μm~5.0μmの炭化タングステン粉末67.0質量%~95.0質量%と、上記工程(A)を経た平均粒径0.5μm~5.0μmのZrの炭化物粉末0.05質量%~4.0質量%と、平均粒径0.5μm~3.0μmのCo、NiおよびFeからなる群より選ばれる少なくとも1種の金属粉末5.0質量%~25.0質量%と、任意に、平均粒径0.5μm~5.0μmのTi、Zr、Hf、V、Nb、Ta、CrおよびMoからなる群から選ばれる少なくとも1種の炭化物、窒化物または炭窒化物の粉末0質量%~5.0質量%とを配合(ただし、これらの合計は100質量%である)して配合粉末を得る工程。
 工程(C):工程(B)において用意した配合粉末を溶媒とともに湿式ボールミルにより10時間~40時間混合して混合物を得る混合工程。
 工程(D):工程(C)において得られた混合物を、100℃以下で加熱および乾燥しながら溶媒を蒸発させて乾燥混合物を得る工程。
 工程(E):工程(D)において得られた乾燥混合物に1.5質量%のパラフィンワックスを添加し、所定の工具の形状に成形して成形体を得る成形工程。
 工程(F):工程(E)において得られた成形体を、70Pa以下の真空条件下にて、1200℃~1400℃の温度まで昇温する第1昇温工程。
 工程(G):工程(F)を経た成形体を、50Pa~1330Paの一酸化炭素雰囲気下にて、1200℃~1400℃の温度に保持して30分~120分加熱する保持工程。
 工程(H):工程(G)を経た成形体を、50Pa~1330Paの不活性ガス雰囲気下にて、1400℃~1600℃の温度まで昇温する第2昇温工程。
 工程(I):工程(H)を経た成形体を、50Pa~1330Paの不活性ガス雰囲気下にて、1400℃~1600℃の温度に保持して30分~120分焼結する焼結工程。
 工程(J):工程(I)を経た成形体を、100kPa~500kPaの不活性ガス雰囲気下にて、1400℃~1600℃の温度から1200℃の温度まで、50℃~100℃/分の速度で冷却する第1次冷却工程。
 工程(K):工程(J)を経た成形体を、大気圧の不活性ガス雰囲気下にて、1200℃の温度から常温まで冷却する第2次冷却工程。
 なお、工程(A)および工程(B)において使用される原料粉末の平均粒径は、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定されたものである。
 工程(A)~(K)は、以下の意義を有する。
 工程(A)では、Zrの炭化物の粉末を所定の条件で酸化処理することにより、Zrの炭化物の表面に酸素が拡散する。工程(A)を経た段階では、Zrの炭化物の内部まで酸素が拡散していないため、便宜上、Zrの炭化物と表記する。なお、所定の条件よりも温度または圧力が高くなると、酸化ジルコニウムが生成される。
 工程(B)において、炭化タングステン粉末と、Co、NiおよびFeからなる群より選ばれる少なくとも1種の金属粉末と、上記工程(A)を経たZrの炭化物の粉末と、任意に、Ti、Zr、Hf、V、Nb、Ta、CrおよびMoからなる群から選ばれる少なくとも1種の炭化物、窒化物または炭窒化物の粉末とを所定の配合割合で用いることにより、超硬合金の組成を特定の範囲に調整することができる。
 工程(C)では、硬質相の平均粒径を調整することができる。また、工程(C)では、工程(B)で用意した原料粉末を均一に混合した混合物を得ることができる。
 工程(D)では、混合物を加熱および乾燥することにより、溶媒を蒸発させた乾燥混合物を得ることができる。
 工程(E)では、乾燥混合物にパラフィンワックスを添加し、所定の工具の形状に成形する。パラフィンを添加することにより、成形性が向上する。得られた成形体を、以下の焼結工程(工程(I))で焼結する。
 工程(F)では、成形体を、70Pa以下の真空で昇温する。これにより、成形体における液相出現前および液相出現直後での脱ガスを促進するとともに、以下の焼結工程(工程(I))における焼結性を向上させる。また、昇温している過程で、Zrの炭化物の表面に拡散している酸素が、Zrの炭化物の内部に拡散することにより、Zrの炭酸化物を得ることができる。
 工程(G)では、成形体を、一酸化炭素雰囲気下、1200℃~1400℃の温度に保持する。これにより、成形体の表面領域におけるCo、NiまたはFeの酸化物における酸素と一酸化炭素とが反応し、表面領域におけるその中の酸素濃度が減少する。この反応により、Zrの炭酸化物がCo、NiまたはFe中に溶解し、表面領域において酸素を供給するとともに、Co、NiまたはFe中のZrの濃度も増加する。その結果、Zrが内部領域に拡散し、表面領域と内部領域のZrの炭酸化物の濃度を制御することができる。なお、後述の工程(K)の冷却時にZrの炭酸化物が析出する。
 工程(H)では、成形体を、不活性ガス雰囲気下で1400℃~1600℃の温度まで昇温する。
 工程(I)では、成形体を、不活性ガス雰囲気下で1400℃~1600℃の温度で焼結する。これにより、成形体は緻密化し、成形体の機械的強度が高まる。また、工程(I)でCo、NiまたはFe中に溶解したZrの炭酸化物が内部領域に拡散し、析出するので、Zrsur/Zrinを制御することができる。さらに、成形体の表面近傍におけるCo、NiまたはFeを蒸発させることにより、表面近傍のCo、NiまたはFeの濃度が減少する。
 工程(J)では、成形体を、100kPa~500kPaの不活性ガス雰囲気下で、1400℃~1600℃の温度から1200℃の温度まで、5~30℃/minの速度にて急冷する。これにより、成形体の内部から表面近傍にCo、NiまたはFeが浸み出すのを抑制することができる。工程(I)と工程(J)の条件を組み合わせることにより、Cosur/Coinを制御することができる。
 工程(K)では、成形体を、大気圧の不活性ガス雰囲気下で、1200℃の温度から常温まで冷却して超硬合金を得る。これにより、超硬合金が酸化するのを防ぐことができる。
 工程(A)から工程(K)を経て得られた超硬合金に対して、必要に応じて、研削加工や刃先のホーニング加工を施してもよい。
 次に、本実施形態の被覆超硬合金の製造方法について、具体例を用いて説明する。なお、本実施形態の被覆超硬合金の製造方法は、当該被覆超硬合金の構成を達成し得る限り特に制限されるものではない。
 工具形状に加工した本実施形態の超硬合金を物理蒸着装置の反応容器内に収容し、反応容器内をその圧力が1×10-2Pa以下の真空になるまで真空引きする。真空引きした後、反応容器内のヒーターにより超硬合金をその温度が200~800℃になるまで加熱する。加熱後、反応容器内にArガスを導入して、反応容器内の圧力を0.5~5.0Paとする。圧力0.5~5.0PaのArガス雰囲気下にて、超硬合金に-200~-1000Vのバイアス電圧を印加し、反応容器内のタングステンフィラメントに5~20Aの電流を流して、超硬合金の表面にArガスによるイオンボンバードメント処理を施す。超硬合金の表面にイオンボンバードメント処理を施した後、反応容器内をその圧力が1×10-2Pa以下の真空になるまで真空引きする。
 次いで、超硬合金をその温度が200℃~600℃になるまで加熱する。その後、窒素ガスなどの反応ガスを反応容器内に導入し、反応容器内の圧力を0.5~5.0Paに調整する。そして、超硬合金に-10~-150Vのバイアス電圧を印加し、被覆層の金属成分に応じた金属蒸発源を80~150Aのアーク放電により蒸発させて、超硬合金の表面に被覆層を形成する。こうして、被覆超硬合金を得る。
 本実施形態の超硬合金および被覆超硬合金は、特に難削材の加工において、優れた加工性能を有するものであるため、工具の構成材料として好適に用いることができる。本実施形態の超硬合金および被覆超硬合金を、例えば切削工具の構成材料として用いた場合、特に難削材の切削加工に対し優れた性能を有する。また、熱伝導率が低い難削材を加工するための工具(例えば切削工具)の材料として本実施形態の超硬合金および被覆超硬合金を用いた場合、その超硬合金および被覆超硬合金は、優れた高温強度および耐欠損性を有するので、特に有用である。
(実施例1)
[超硬合金の製造]
 原料粉末として、市販されている、平均粒径1.5μmの炭化タングステン粉末、平均粒径3.0μmのZrの炭化物(以下、「ZrC」と表記する。)の粉末、平均粒径3.0μmのTiC粉末、平均粒径3.0μmのTaC粉末、平均粒径3.0μmのCr粉末および平均粒径1.5μmのCo粉末を用意した。なお、原料粉末の平均粒径は、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定されたものである。
 発明品1~17、並びに、比較品2、3、5、6、8、9、11および13については、用意したZrC粉末を酸素雰囲気に制御できる炉に収容した後、70Pa以下の真空にて室温から500℃まで昇温した。炉内温度が500℃に達した後、炉内圧力が0.5kPaになるまで炉内に酸素を導入した。炉内圧力が0.5kPaの酸化雰囲気下にて、ZrCを酸化処理した。これにより、表面に酸素が拡散したZrCの粉末を得た。
 用意した原料粉末を下記表1の配合組成になるように秤量して、秤量した原料粉末をアセトン溶媒と超硬合金製ボールと共にステンレス製ポットに収容し、湿式ボールミルで5~40時間の混合および粉砕を行った。このとき、発明品1~17、並びに、比較品2、3、5、6、8、9、11および13については、酸化処理の工程を経たZrC粉末を用いた。比較品12については、酸化処理していないZrC粉末を用いた。湿式ボールミルによる混合・粉砕後、アセトン溶媒を蒸発して得られた乾燥混合物に、パラフィンワックスを1.5質量%添加し、焼結後の形状がISO規格インサート形状CNMG120408になる金型を用いて、圧力196MPaでプレス成形して、混合物の成形体を得た。
Figure JPOXMLDOC01-appb-T000001
*「配合組成」の欄における「ZrC」とは、酸化処理の工程を経ているため、表面に酸素が拡散しているZrCを意味する(ただし、ZrCの内部まで酸素は拡散していない)。
 混合物の成形体を焼結炉内に収容した後、70Pa以下の真空にて室温から下記表2(a)に記載の昇温温度T1(℃)まで昇温した。炉内温度が昇温温度T1(℃)になった後、炉内圧力が表2(b)に記載の炉内圧力P1(Pa)になるまで一酸化炭素ガスを焼結炉内に導入した。それらの温度T1及び炉内圧力P1の一酸化炭素雰囲気下にて、60分間保持した。その後、一酸化炭素ガスを排気して、炉内圧力が表2(c)に記載の炉内圧力P2(Pa)になるまでアルゴンガスを炉内に導入することで、一酸化炭素ガスをアルゴンガスにより置換した。アルゴンガス雰囲気に置換した後、表2(d)に記載の焼結温度T2(℃)まで炉内を昇温し、その温度T2(℃)にて60分間保持した。これにより、成形体を焼結した。焼結後、炉内圧力が表2(e)に記載の炉内圧力P3(kPa)になるまでアルゴンガスを炉内に導入して加圧し、焼結温度がT2(℃)から1200℃まで表2(f)に記載の冷却速度R(℃/min)で冷却した。
Figure JPOXMLDOC01-appb-T000002
 上記のようにして混合物の成形体を焼結することにより、超硬合金が得られた。湿式ブラシホーニング機により、得られた超硬合金の刃先にホーニング処理を施した。
[被覆層の形成]
 アークイオンプレーティング装置の反応容器内に、金属蒸発源を設置した。金属蒸発源の組成は、Ti:Al=50:50(原子比)であった。上記のようにして作製した超硬合金を、アークイオンプレーティング装置の反応容器内のホルダーに取り付けた。反応容器内の圧力を、1×10-2Pa以下の真空にした。炉内ヒーターにより、超硬合金を500℃に加熱した。超硬合金の温度が500℃になった後、反応容器内の圧力が5Paになるまで、反応容器内にArガスを導入した。反応容器内の超硬合金に-1000Vのバイアス電圧を印加して、超硬合金の表面にArイオンボンバードメント処理を施した。イオンボンバードメント条件は、以下の通りにした。
 反応容器内の雰囲気:Ar雰囲気
 反応容器内の圧力 :5Pa
 Arイオンボンバードメント処理後、Arガスを排出して反応容器内の圧力を1×10-2Pa以下の真空にした。その後、反応容器内にNガスを導入して、反応容器内を圧力3Paの窒素雰囲気にした。次に、炉内ヒーターにより、超硬合金を600℃に加熱した。超硬合金を加熱した後、超硬合金に-50Vのバイアス電圧を印加するとともに、150Aのアーク放電によって金属蒸発源を蒸発させた。これにより、超硬合金の表面に被覆層を形成した。被覆層を形成した後、試料を冷却した。試料温度が100℃以下になった後、反応容器内から試料を取り出した。
 得られた試料(被覆超硬合金からなる切削工具)を、その表面に対して直交する方向に鏡面研磨した。
 金属蒸発源に対向する面の刃先から、当該面の中心部に向かって50μmの位置の近傍において、上記鏡面研磨により現れた面(以下、「鏡面研磨面」という。)を観察した。鏡面研磨面の観察には、光学顕微鏡およびFE-SEMを用いた。観察された鏡面研磨面の画像から、被覆層の厚さを3箇所で測定した。測定された被覆層の厚さの平均値を算出した。被覆層の組成を、FE-SEM付属のEDS、および、FE-SEM付属のWDSを用いて測定した。全ての試料の被覆層の組成は、(Ti0.5Al0.5)Nであった。また、全ての試料の被覆層全体の平均厚さは、3.0μmであった。
 得られた試料を、表面に対して直交する方向に鏡面研磨した。
 その鏡面研磨面について、超硬合金の表面(被覆超硬合金における被覆層と超硬合金との界面)から深さ方向に500μmよりも内部の断面(鏡面研磨面)組織を、EDS付きSEMにて観察した。
 EDSにより被覆超硬合金における超硬合金の硬質相および結合相の各組成を測定した。その結果から、超硬合金の硬質相および結合相の割合を求めた。その結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 被覆超硬合金をその表面に対して直交する方向に研磨した。EDS付きSEMにて3,000倍に拡大した被覆超硬合金の断面(研磨により現れた面)組織を反射電子像で観察した。EDS付きSEMにて、白色領域は炭化タングステンであり、濃灰色領域は結合相であり、黒色領域はZrの炭酸化物であることを特定した。その後、SEMを用いて超硬合金の表面(被覆超硬合金における被覆層と超硬合金との界面)から500μmの深さまでの領域における断面組織の写真を撮影した。得られた断面組織の写真から市販の画像解析ソフトを用いて、超硬合金の表面(被覆超硬合金における被覆層と超硬合金との界面)から500μmの深さまでの領域におけるZrの炭酸化物の含有量(体積%)を求めた。同様の方法にて、少なくとも3箇所の、超硬合金の表面(被覆超硬合金における被覆層と超硬合金との界面)から500μmの深さまでの領域におけるZrの炭酸化物の含有量(体積%)を求め、その平均値をZrsurとした。次に、少なくとも5箇所の、超硬合金の表面(被覆超硬合金における被覆層と超硬合金との界面)から500μmの深さの位置よりも内部におけるZrの炭酸化物の含有量(体積%)をそれぞれ求め、得られた値の平均値をZrinとした。その結果から、Zrsur/Zrinを求めた。その結果を、表4に示す。
 引き続き、超硬合金の表面に対して直交する方向に研磨して現れた断面組織をEDS付きSEMにて観察した。超硬合金の表面(被覆超硬合金における被覆層と超硬合金との界面)から5μmの深さまでの領域における10箇所のCo含有量(質量%)を測定し、その平均値をCosurとした。また、超硬合金の表面(被覆超硬合金における被覆層と超硬合金との界面)から5μmの深さの位置よりも内部の領域における任意の10箇所のCo含有量(質量%)を測定し、その平均値をCoinとした。その結果から、Cosur/Coinを求めた。その結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 得られた試料を用いて、切削試験を行った。切削試験は切込み境界部における耐欠損性を評価する試験である。切削試験の条件を下記に、結果を表5に示す。
[切削試験]
 加工形態:旋削、
 工具形状:CNMG120408、
 被削材:インコネル718(インコネル:登録商標)、
 被削材形状:400mm×Φ120mm(形状:丸棒)、
 切削速度:30m/min、
 送り:0.10mm/rev、
 切り込み:1.0mm、
 クーラント:使用、
 評価項目:試料が欠損に至るまでの加工時間を測定した。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果より、発明品の加工時間は、いずれの試料も11.3分以上であり、比較品よりも加工時間が長く、耐欠損性に優れることが分かる。
(実施例2)
 実施例1の発明品1~17と同じ条件で作製した超硬合金の表面にアークイオンプレーティング装置を用いて被覆層を形成した。具体的には、まず、アークイオンプレーティング装置の反応容器内に、金属蒸発源を設置した。金属蒸発源の組成は、表6に示す被覆層の組成に対応するものとした。発明品1~17と同様に作製した超硬合金の表面に、表6に示す厚さの被覆層を形成したものを発明品18~34とした。被覆層は、組成及び平均厚さを表6に示すようにした以外は、実施例1の条件と同じ条件で形成した。発明品18~34について、実施例1と同じ切削試験を行った。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果より、発明品18~34の加工時間は、いずれの試料も11.5分以上であり、比較品よりも加工時間が長く、耐欠損性に優れることが分かる。
 本発明の超硬合金および被覆超硬合金は、Zrの炭酸化物を含むことにより高温強度が向上するだけでなく、耐欠損性にも優れる。そのため、特に難削材の加工において、切削工具として好適に利用することができるので、その点において産業上の利用価値が高い。
 

Claims (7)

  1.  炭化タングステンを主成分とする硬質相と、Co、NiおよびFeからなる群から選ばれる少なくとも1種の元素を主成分とする結合相とを含む超硬合金であり、
     前記超硬合金の表面から500μmの深さの位置よりも内部の領域において、前記硬質相75質量%以上95質量%以下と、前記結合相5質量%以上25質量%以下とを含み、
     前記硬質相は、Zrの炭酸化物を含み、
     前記超硬合金の表面から500μmの深さまでの範囲の表面領域における前記Zrの炭酸化物の平均含有量(体積%)をZrsur、前記表面領域よりも内部の内部領域における前記Zrの炭酸化物の平均含有量(体積%)をZrinとしたとき、Zrsur/Zrinは、0.25以上0.80以下である、超硬合金。
  2.  前記超硬合金の表面から500μmの深さの位置よりも内部の領域において、前記Zrの炭酸化物の含有量は、前記内部の領域の全体に対して、0.05質量%以上3.5質量%以下である、請求項1に記載の超硬合金。
  3.  前記結合相は、Coを主成分として含み、
     前記超硬合金の表面から5μmの深さまでの範囲の領域におけるCoの平均含有量(質量%)をCosur、前記超硬合金の表面から5μmの深さの位置よりも内部の領域におけるCoの平均含有量(質量%)をCoinとしたとき、Cosur/Coinは、0.60以上0.90以下である、請求項1または2に記載の超硬合金。
  4.  前記硬質相は、Ti、Zr、Hf、V、Nb、Ta、CrおよびMoからなる群より選ばれる少なくとも1種の金属元素の炭化物、窒化物または炭窒化物をさらに含む、請求項1~3のいずれか1項に記載の超硬合金。
  5.  請求項1~4のいずれか1項に記載の超硬合金と、前記超硬合金の表面に形成された、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiからなる群より選ばれる少なくとも1種の金属元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の非金属元素との化合物からなる被覆層と、を含む被覆超硬合金。
  6.  前記被覆層が、単層または2層以上の積層である、請求項5に記載の被覆超硬合金。
  7.  前記被覆層全体の平均厚さが1.0μm以上10μm以下である、請求項5または6に記載の被覆超硬合金。
PCT/JP2016/066509 2015-06-12 2016-06-02 超硬合金および被覆超硬合金 WO2016199686A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16807393.0A EP3309267B1 (en) 2015-06-12 2016-06-02 Cemented carbide and coated cemented carbide
CN201680032819.3A CN107614719B (zh) 2015-06-12 2016-06-02 硬质合金和被覆硬质合金
JP2016562038A JP6090685B1 (ja) 2015-06-12 2016-06-02 超硬合金および被覆超硬合金
US15/579,901 US10066277B2 (en) 2015-06-12 2016-06-02 Cemented carbide and coated cemented carbide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015118847 2015-06-12
JP2015-118847 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016199686A1 true WO2016199686A1 (ja) 2016-12-15

Family

ID=57503982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066509 WO2016199686A1 (ja) 2015-06-12 2016-06-02 超硬合金および被覆超硬合金

Country Status (5)

Country Link
US (1) US10066277B2 (ja)
EP (1) EP3309267B1 (ja)
JP (1) JP6090685B1 (ja)
CN (1) CN107614719B (ja)
WO (1) WO2016199686A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004954B (zh) * 2018-03-29 2022-06-28 京瓷株式会社 硬质合金和使用它的涂层刀具、切削刀具
JP7392714B2 (ja) * 2019-10-25 2023-12-06 住友電気工業株式会社 超硬合金及びそれを基材として含む切削工具
EP4074853A4 (en) * 2020-04-15 2023-09-20 Sumitomo Electric Hardmetal Corp. SINTERED CARBIDE AND CUTTING TOOL CONTAINING THE SAME

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118123A (ja) * 1994-10-25 1996-05-14 Mitsubishi Materials Corp 高強度炭化タングステン基超硬合金製ミニチュアドリル
JPH11335769A (ja) * 1998-05-20 1999-12-07 Sumitomo Electric Ind Ltd 超硬合金、その製造方法および超硬工具
JP2009074121A (ja) * 2007-09-19 2009-04-09 Hitachi Tool Engineering Ltd Wc基超硬合金

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773802B2 (ja) * 1987-07-10 1995-08-09 住友電気工業株式会社 被覆超硬合金工具
JPH0726173B2 (ja) * 1991-02-13 1995-03-22 東芝タンガロイ株式会社 高靭性サーメット及びその製造方法
EP0727509B1 (en) * 1995-02-17 2001-12-12 Seco Tools Ab Multilayered alumina coated cemented carbide body
EP0913489B1 (en) * 1996-12-16 2009-03-18 Sumitomo Electric Industries, Limited Cemented carbide, process for the production thereof, and cemented carbide tools
JP2000042806A (ja) * 1998-07-31 2000-02-15 Toshiba Tungaloy Co Ltd 切削工具用積層被覆体
DE10342364A1 (de) * 2003-09-12 2005-04-14 Kennametal Widia Gmbh & Co.Kg Hartmetall-oder Cermetkörper und Verfahren zu seiner Herstellung
JP2006291299A (ja) * 2005-04-12 2006-10-26 Tungaloy Corp 超硬合金および被覆超硬合金ならびにそれらの製造方法
JPWO2011002008A1 (ja) * 2009-06-30 2012-12-13 株式会社タンガロイ サーメットおよび被覆サーメット
WO2011055813A1 (ja) * 2009-11-06 2011-05-12 株式会社タンガロイ 被覆工具
WO2013042790A1 (ja) * 2011-09-22 2013-03-28 株式会社タンガロイ 被覆切削工具
WO2015141757A1 (ja) * 2014-03-19 2015-09-24 株式会社タンガロイ サーメット工具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08118123A (ja) * 1994-10-25 1996-05-14 Mitsubishi Materials Corp 高強度炭化タングステン基超硬合金製ミニチュアドリル
JPH11335769A (ja) * 1998-05-20 1999-12-07 Sumitomo Electric Ind Ltd 超硬合金、その製造方法および超硬工具
JP2009074121A (ja) * 2007-09-19 2009-04-09 Hitachi Tool Engineering Ltd Wc基超硬合金

Also Published As

Publication number Publication date
US20180179615A1 (en) 2018-06-28
EP3309267B1 (en) 2020-05-06
EP3309267A1 (en) 2018-04-18
EP3309267A4 (en) 2019-03-13
US10066277B2 (en) 2018-09-04
JPWO2016199686A1 (ja) 2017-06-22
JP6090685B1 (ja) 2017-03-08
CN107614719A (zh) 2018-01-19
CN107614719B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
KR20120023179A (ko) 서멧 및 피복 서멧
JP6193207B2 (ja) セラミック部材および切削工具
US10961609B2 (en) Cemented carbide, cutting tool containing the same, and method of manufacturing cemented carbide
JPWO2019087481A1 (ja) 焼結体、及び、それを含む切削工具
CN110168121B (zh) 硬质合金和切削工具
US11401587B2 (en) Cemented carbide, cutting tool containing the same, and method of manufacturing cemented carbide
US8765272B2 (en) Cermet and coated cermet
WO2015178484A1 (ja) 超硬合金および被覆超硬合金
JP6090685B1 (ja) 超硬合金および被覆超硬合金
JP2012143862A (ja) 高温下での耐塑性変形性に優れる切削工具用wc基超硬合金および被覆切削工具ならびにこれらの製造方法
JP7170964B2 (ja) 超硬合金及び被覆超硬合金
JP6098882B2 (ja) 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具
JP7170965B2 (ja) 超硬合金及び被覆超硬合金
CN105693253B (zh) 耐缺损性优异的立方晶氮化硼烧结体切削工具
JP7064659B1 (ja) 立方晶窒化硼素焼結体、およびそれを含む切削工具
WO2022025292A1 (ja) 立方晶窒化硼素焼結体、およびそれを含む切削工具
JP2008214757A (ja) 硬質被膜およびそれを用いた硬質被膜部材
EP3505275B1 (en) Cemented carbide and coated cemented carbide
JP2024092850A (ja) 被覆超硬合金
JP5053961B2 (ja) スパッタリングターゲット
JP5111259B2 (ja) 表面被覆部材
JP2024092736A (ja) 被覆超硬合金
WO2017199752A1 (ja) 工具
JP2020020047A (ja) サーメットおよび切削工具
JPWO2019116614A1 (ja) 超硬合金及び切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016562038

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807393

Country of ref document: EP