WO2016199550A1 - 吸着材及び当該吸着材を用いた抗体精製装置 - Google Patents

吸着材及び当該吸着材を用いた抗体精製装置 Download PDF

Info

Publication number
WO2016199550A1
WO2016199550A1 PCT/JP2016/064646 JP2016064646W WO2016199550A1 WO 2016199550 A1 WO2016199550 A1 WO 2016199550A1 JP 2016064646 W JP2016064646 W JP 2016064646W WO 2016199550 A1 WO2016199550 A1 WO 2016199550A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
antibody
adsorbent
site
molecule
Prior art date
Application number
PCT/JP2016/064646
Other languages
English (en)
French (fr)
Inventor
譲 島崎
優史 丸山
博史 吉田
啓介 渋谷
俊郎 斎藤
憲孝 内田
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2016199550A1 publication Critical patent/WO2016199550A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to an adsorbent having an ability to adsorb antibodies and an antibody purification apparatus using the adsorbent.
  • the antigen-antibody reaction is a binding reaction based on a specific interaction between an antigen and an antibody.
  • an antibody binds to an antigen
  • the antibody binds by strictly recognizing the three-dimensional structure of a part of the antigen (epitope).
  • the part on the antibody side that binds to the epitope is called a paratope.
  • a stable bond is formed between the epitope and the paratope by interactions such as hydrogen bonding, electrostatic force, van der Waals force, and hydrophobic bond.
  • Immunoassay using antibody antigen reaction is used for diagnosis of various diseases including cancer. That is, a substance (biomarker) related to a predetermined disease is used as an antigen, and various diseases are diagnosed by quantitatively measuring the antigen.
  • a biomarker is labeled with a labeled antibody that specifically interacts with the biomarker, and a signal from the labeled antibody is detected to quantify the concentration of the biomarker.
  • antibodies are not limited to immunoassays, and are themselves used as drugs (antibody drugs).
  • An antibody drug means an antibody against a substance causing a disease, which is administered into the body to eliminate the substance and prevent or treat the disease.
  • antibodies are often used in biochemical studies such as Western blotting, immunoprecipitation and ELISA.
  • antibodies widely used can be obtained by purifying from the serum of animals immunized with antigen, mouse ascites, hybridoma cells and the like.
  • the antibody is purified by roughly four steps, a clarification step, a recovery step, an intermediate purification step, and a final purification step, in the same manner as general proteins. That is, antibody-producing cells are cultured, and the antibody secreted into the culture medium is separated from proteins other than antibodies, cells, and other solids, and then purified by methods such as filtration and chromatography. That is, when an antibody is produced, a technique for extracting the antibody from a state in which impurities such as components contained in cells and culture solution coexist is required.
  • Patent Document 1 discloses that a temperature-responsive polyamino acid bound with protein A is used when purifying an antibody from impurities. That is, Patent Document 1 discloses that an antibody to be purified is bound to a temperature-responsive polyamino acid having protein A, the three-dimensional structure of the temperature-responsive polyamino acid is changed by temperature change, and the antibody is separated from the temperature-responsive polyamino acid. Techniques for making them disclosed are disclosed.
  • the present invention aims to provide an adsorbent capable of selectively separating and recovering a target antibody, and an antibody purification apparatus using the adsorbent.
  • the present invention that has achieved the above-described object includes the following.
  • thermoresponsive molecule is a compound having a phase transition temperature in the range of 0 ° C. or more and 60 ° C. or less.
  • the temperature-responsive site is a monomer such as acrylamide derivatives, methacrylic acid derivatives such as methacrylic acid esters, acrylic acid derivatives such as acrylic acid esters, vinyl alcohol derivatives, lysine derivatives, glutamic acid derivatives, aspartic acid derivatives, lactic acid
  • the adsorbent according to (1) comprising at least one selected from the group consisting of diol derivatives, caprolactams, caprolactones, sugars, and siloxanes.
  • An adsorbent capturing unit that captures the adsorbent according to any one of (1) to (6), and a temperature adjusting device that adjusts the adsorbent captured by the adsorbent capturing unit to a predetermined temperature.
  • An antibody purification apparatus provided.
  • An adsorption site having an epitope corresponding to a paratope in an antibody to be purified, a temperature response site having a temperature-responsive molecule that undergoes a phase transition due to a temperature change, and a carrier that supports the adsorption site and the temperature response site A step of contacting an adsorbent provided with a solution containing an antibody to be purified; a step of washing the adsorbent; and raising the temperature of the solution to insolubilize the temperature-responsive molecule, thereby
  • a method for purifying an antibody comprising: a step of separating an antibody adsorbed on the surface; and a step of collecting the separated antibody.
  • an adsorbent capable of selectively separating and recovering the target antibody, and an antibody purification apparatus using the adsorbent.
  • (A) shows the step of binding the temperature-responsive molecule to the carrier, and (b) shows the step of binding the functional molecule to the temperature-responsive molecule.
  • (A) is a state before the antibody is adsorbed on the adsorbent,
  • (b) is a state where the antibody is adsorbed on the adsorbent, and (c) is a state where the antibody is desorbed from the adsorbent where the phase transition has occurred.
  • FIG. 1 is a diagram schematically showing the structure and operation of an adsorbent according to an embodiment of the present invention.
  • A is the state before the antibody is adsorbed on the adsorbent
  • (b) is the state where the antibody is adsorbed on the adsorbent
  • (c) is the state where the phase transition has occurred in the adsorbent
  • (d) is A state where an antibody is detached from an adsorbent in which a phase transition has occurred is shown.
  • the adsorbent 1 includes an adsorption site 10, a temperature response site 20, and a carrier 30. Further, in the adsorbent 1 according to the present embodiment, the adsorption site 10 is coupled to the temperature response site 20.
  • the adsorption site 10 in the adsorbent 1 has an epitope.
  • An epitope means a site on the antigen side that binds to an antibody in a specific interaction between an antigen and an antibody (antigen-antibody reaction). In the antigen-antibody reaction, the site on the antibody side that binds to the antigen is called a paratope.
  • the adsorbent 1 is used for purification of the antibody L to be purified contained in the liquid to be treated.
  • the adsorbent 1 separates and purifies the antibody L from a solution (sometimes referred to as a liquid to be treated) containing the antibody L to be purified together with other impurities.
  • a solution sometimes referred to as a liquid to be treated
  • the antibody L in the liquid to be treated acts between the paratope in the antibody and the epitope in the adsorption site 10 as shown in FIG. Adsorb by specific interaction.
  • the impurities contained in the liquid to be treated have a relatively low affinity for the adsorption site 10 and are not adsorbed or weakly adsorbed, so that the antibody L is removed by washing treatment. Is done.
  • the adsorbent 1 has a function of desorbing the antibody L by a phase transition accompanying a temperature rise of the temperature-responsive molecule (temperature-responsive part 20). For this reason, when the temperature of the adsorbent 1 is increased, the temperature response portion 20 changes to a three-dimensional structure in an agglomerated state as shown in FIG. As a result, the affinity between the adsorption site 10 and the antibody L is reduced, and the antibody L adsorbed on the adsorption site 10 is desorbed (see FIG. 1 (d)). In the adsorbent 1 according to the present embodiment, separation and purification of the antibody L to be purified contained in the liquid to be treated is thus achieved.
  • the adsorbent 1 actually has a structure in which a large number of adsorption sites 10 and temperature response sites 20 are indicated on the carrier 30, and a large number of antibodies can be separated by a single treatment.
  • the epitope constituting the adsorption site 10 is not particularly limited as long as it is a molecule that specifically interacts with the paratope of the antibody to be purified.
  • the epitope constituting the adsorption site 10 when the whole antigen molecule, that is, the antibody L detects a biomarker, the whole biomarker molecule can be used as the adsorption site 10.
  • the adsorption site 10 is preferably a partial fragment of an antigen molecule containing an epitope.
  • the adsorption site 10 is adsorbed to the adsorption site 10 by the phase transition of the temperature-responsive molecule as compared with the case where the adsorption site 10 is the whole antigen molecule.
  • the antibody L can be desorbed more easily, and as a result, the recovery efficiency of the antibody L can be greatly increased.
  • an artificially synthesized protein molecule (including the epitope) may be used as the adsorption site 10.
  • the artificially synthesized protein molecule has a lower molecular weight than the actual antigen molecule, so that the antibody L adsorbed on the adsorption site 10 can be more easily desorbed. As a result, the recovery efficiency of the antibody L can be improved. Can greatly increase.
  • the adsorption site 10 is bonded to the side chain of the temperature response site 20, but may be bonded to the end of the temperature response site 20, or the side chain and the end of the temperature response site 20. May be bonded to.
  • part 10 may be couple
  • the adsorption site 10 may be bonded to the temperature response site 20 via a linker (spacer).
  • the linker is preferably a molecule that does not irreversibly adsorb antibodies.
  • the temperature responsive portion 20 is composed of a temperature responsive molecule that undergoes a phase transition due to a temperature change.
  • the temperature-responsive molecule indicates a lower critical solution temperature (Lower Critical Solution Temperature; LCST). That is, the temperature-responsive molecule exists in the liquid to be treated in a low temperature range lower than the lower critical solution temperature (solubilization), and phase-separates into an insoluble state at a higher temperature range lower than the lower critical solution temperature. Exist (insolubilized). For this reason, the temperature-responsive part 20 undergoes a phase transition with the lower critical solution temperature as a boundary and causes a remarkable change in the three-dimensional structure, thereby changing the affinity between the adsorption part 10 and the antibody L bound to the adsorption part 10.
  • the temperature response site 20 has an action of desorbing the antibody L adsorbed on the adsorption site 10 by a phase transition accompanying a temperature rise.
  • phase transition temperature the lower critical solution temperature indicated by the temperature responsive molecule
  • phase transition temperature the phase
  • the affinity between the adsorption site 10 and the antibody L adsorbed on the adsorption site 10 is lower than that at the time of adsorption, and the antibody L is desorbed from the adsorbent 1.
  • the temperature responsive molecule constituting the temperature responsive portion 20 is not particularly limited, and a temperature responsive polymer exhibiting a lower critical solution temperature can be used.
  • the temperature-responsive polymer is composed of, as monomers, acrylamide derivatives, methacrylic acid derivatives such as methacrylic acid esters, acrylic acid derivatives such as acrylic acid esters, vinyl alcohol derivatives, and ⁇ -polylysine derivatives such as N-modified ⁇ -polylysine derivatives.
  • the temperature-responsive molecule may be a polymer of any of these monomers or a copolymer of a combination of these monomers.
  • the copolymer may be any of random type, block type and graft type.
  • the temperature-responsive polymer is not limited to a linear polymer, and may be a branched polymer, a dendrimer, a gel, a crosslinked gel, or the like.
  • Examples of the acrylamide derivative include N-isopropylacrylamide, N-diisopropylacrylamide, N-ethylacrylamide, N-diethylacrylamide, N-methylacrylamide, N-dimethylacrylamide and the like.
  • Examples of the methacrylic acid derivative include butyl methacrylate, propyl methacrylate, ethyl methacrylate, methyl methacrylate and the like.
  • Examples of the acrylic acid derivative include butyl acrylate, propyl acrylate, ethyl acrylate, and methyl acrylate.
  • vinyl alcohol derivative vinyl alcohol methyl ether etc. are mentioned, for example.
  • Examples of the ⁇ -polylysine derivative include lysine valeric acid amide, lysine butyric acid amide, lysine propionic acid amide, N-hydroxypentyllysine, and N-hydroxybutyllysine.
  • Examples of the ⁇ -glutamic acid derivative include glutamic acid hydroxyhexylamide, glutamic acid hydroxypentylamide, glutamic acid hydroxybutylamide, and glutamic acid hydroxypropylamide.
  • Examples of the ⁇ -aspartic acid derivative include aspartic acid hydroxyhexylamide, aspartic acid hydroxypentylamide, aspartic acid hydroxybutylamide, and aspartic acid hydroxypropylamide.
  • Examples of the diol derivative include polyethylene glycol and polypropylene glycol.
  • a temperature responsive low molecule exhibiting the lower critical solution temperature can be used in addition to the temperature responsive polymer exhibiting the lower critical solution temperature.
  • the temperature-responsive low molecule for example, spiropyran, azobenzene, diarylethene, derivatives thereof, liquid crystal molecules, and the like that exhibit temperature responsiveness as well as photoresponsiveness can be used.
  • the temperature-responsive molecule used for the temperature-responsive site 20 it is preferable to use a molecule whose phase transition temperature is in the range of 0 ° C to 60 ° C, and a molecule in the range of 0 ° C to 40 ° C. It is more preferable to use molecules having a temperature range of 10 ° C. or higher and 40 ° C. or lower.
  • the phase transition temperature of the temperature responsive portion 20 is within such a temperature range, the antibody L can be adsorbed and desorbed under mild temperature conditions, so that the deterioration of the antibody L can be avoided. .
  • the phase transition temperature of the temperature response region 20 is affected by the solvent, contaminants, pH, etc.
  • the molecular design should be such that the temperature response region 20 undergoes a phase transition under pH conditions of pH 6-8. Is preferred.
  • Such molecular design of the temperature responsive portion 20 can be performed by introducing various functional groups into the temperature responsive molecule. For example, the balance between hydrophilic group and hydrophobic group, introduction of charge interaction, etc. Can be realized.
  • the temperature response part 20 is fixed to the carrier 30.
  • the temperature response site 20 is bonded to the carrier 30 via a side chain, but may be bonded to the carrier 30 via a terminal, or may be bonded to the carrier 30 via a side chain and a terminal. You may do it.
  • a single temperature response site 20 may be bonded to a single carrier 30, or a plurality of temperature response sites 20 may be bonded.
  • the temperature responsive portion 20 may be bonded to the carrier 30 via a linker (spacer).
  • the carrier 30 is not particularly limited, but preferably has high chemical and physical stability in the liquid to be treated, and plays a role of providing the adsorbent 1 with mechanical strength, shapeability, handleability, and the like. Yes.
  • the carrier 30 can have an appropriate shape, and may be porous or non-porous. Specific examples of the shape of the carrier 30 include a plate shape, a bead shape, a fiber shape such as a nonwoven fabric and a woven fabric, a film shape, a monolith shape, and a hollow fiber shape.
  • the material of the carrier 30 may be either an organic material or an inorganic material, or a composite material using these materials in combination.
  • polysaccharides such as agarose, sepharose, cellulose, polystyrene, polyalkyl methacrylate, polyglycidyl methacrylate, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, polysiloxane, polyfluorinated ethylene, polyethylene, polypropylene, polyethylene terephthalate.
  • Synthetic resins such as polytrimethylene terephthalate, polyvinyl chloride, polyvinyl acetate, polycarbonate, PA6, PA66, PA11, PA12, carbon materials such as graphite, carbon fiber, carbon nanotube, fullerene, silica, alumina, titania, Oxides such as zirconia and iron oxide, carbonates such as calcium carbonate, phosphates such as hydroxyapatite and aluminum phosphate, borosilicate glass, etc.
  • Silicates such as oxalate, silicate, diatomaceous earth, sulfates such as aluminum sulfate and calcium sulfate, inorganic compounds such as silicon carbide and silicon nitride, ferrite, permalloy, chromium steel, iron-aluminum alloy, gold, silver, Metal materials such as platinum, palladium, and rhodium can be used.
  • preferred materials are agarose, sepharose, cellulose, polystyrene, silica, and magnetic iron oxide or ferrite from the viewpoints of stability, manufacturability, and the like.
  • the carrier 30 it is particularly preferable to use magnetic beads.
  • the carrier 30 may have an appropriate reactive group such as a carboxy group, an amino group, or a hydroxy group on the surface, which forms a covalent bond with the temperature responsive site 20.
  • the carrier 30 may be surface-modified with molecules other than the adsorption site 10 and the temperature response site 20. For example, blocking that prevents non-specific adsorption of the target substance, surface modification that controls the orientation of the temperature response site 20, surface modification that modifies the dispersibility or adsorption of the carrier 30, and the like are performed. Also good.
  • the adsorbent 1 according to the present embodiment can be manufactured using a conventionally known appropriate reaction.
  • the functional molecule constituting the adsorption site 10, the temperature responsive molecule constituting the temperature responsive site 20, the carrier 30 having a reactive group, etc. can be prepared using a known polymer reaction or the like, It can be obtained by using an activated surface treatment technique or by utilizing a separation / purification technique for natural products and biochemical products.
  • Each bond of the functional molecule constituting the adsorption site 10, the temperature responsive molecule constituting the temperature response site 20, and the carrier 30 having a reactive group is, for example, the functional molecule constituting the adsorption site 10 and the temperature response.
  • a method of binding the temperature-responsive molecule constituting the site 20 and then binding to the carrier 30; and the functionality of constituting the adsorption site 10 after binding the temperature-responsive molecule constituting the temperature-responsive site 20 to the carrier 30 A method of binding a molecule to a temperature-responsive molecule constituting the temperature-responsive site 20, and a method of binding the functional molecule constituting the adsorption site 10 and the temperature-responsive molecule constituting the temperature-responsive site 20 together with the carrier 30 Etc. can be taken.
  • FIG. 2 is a diagram illustrating an example of a method for manufacturing the adsorbent 1 according to the embodiment of the present invention.
  • (A) shows a step of binding a temperature-responsive molecule to the carrier 30, and
  • (b) shows a step of binding the adsorption site 10 containing an epitope to the temperature-responsive molecule.
  • the temperature responsive molecule constituting the temperature responsive portion 20 is bound to the carrier 30, and then the adsorption portion 10 is bound to the temperature responsive molecule constituting the temperature responsive portion 20.
  • a carrier having a carboxy terminus is used as the carrier 30, and glutaraldehyde is used as a linker between the adsorption site 10 and the temperature response site 20.
  • the carrier 30 is activated by reacting the carboxy terminus of the carrier 30 with carbodiimide hydrochloride (EDC ⁇ HCl). Let This reaction may be performed, for example, at pH 5.8 and 37 ° C. for about 2 hours. Subsequently, after removing unreacted substances and by-products, the activated carrier 30 is reacted with the temperature response site 20. This reaction may be performed, for example, at pH 5.8 and 37 ° C. for about 2 hours. Through such a reaction, the temperature-responsive molecule 20 and the carrier 30 can be bound via the nucleophilic amino group of the temperature-responsive site 20 (see the right figure in FIG.
  • EDC ⁇ HCl carbodiimide hydrochloride
  • the temperature-responsive molecule is bound to the carrier 30 under mild conditions such as a temperature condition of about 4 ° C. to 40 ° C. and a pH condition of about pH 4 to about 7 or less. It is also possible to make it.
  • the amino group of lysine (Lys) in the temperature-responsive site 20 and glutaraldehyde are activated as shown in FIG.
  • This reaction may be performed, for example, at pH 9.0 and 37 ° C. for about 2 hours.
  • unreacted substances are removed with pure water, and then glutaraldehyde bound to the temperature response site 20 is reacted with the amino group of lysine (Lys) at the adsorption site 10.
  • This reaction may be performed at, for example, pH 7.4 and 37 ° C. for about 2 hours.
  • the temperature-responsive molecule 20 and the adsorption site 10 can be bound via glutaraldehyde.
  • the reaction can be allowed to proceed even when the temperature condition is from room temperature to about 37 ° C., the pH condition is in the range of about pH 6 to 9, and even more neutral.
  • the adsorbent 1 can be produced under mild conditions of temperature and pH, so that denaturation of the temperature-responsive molecule 20 and the adsorption site 10 can be avoided, and the adsorbent 1 Performance can be easily secured, and generation of acid and alkali waste liquids can be reduced.
  • FIG. 2 cross-linking by glutaraldehyde is schematically shown. However, since cross-linking by multimers of glutaraldehyde can be formed in an actual reaction, steric hindrance and interaction between molecules are partially eliminated. As a result, it may be easy to ensure a certain level of performance for the adsorbent.
  • FIG. 3 is a diagram schematically showing the structure and operation of the adsorbent according to another embodiment of the present invention.
  • (A) is the state before the antibody is adsorbed on the adsorbent
  • (b) is the state where the antibody is adsorbed on the adsorbent
  • (c) is the result of the phase transition occurring in the adsorbent, so that the antibody is adsorbed from the adsorbent. Indicates the detached state.
  • the adsorbent 1 of the embodiment shown in FIG. 3 has a configuration in which an adsorption site 10 and a temperature response site 20 are combined on a carrier 30.
  • the surface treatment introduction of a reactive group or the like
  • it may be bonded to the carrier 30 via a linker (spacer).
  • the temperature response part 20 has an action of desorbing the antibody L adsorbed on the adsorption part 10 by a phase transition accompanying a temperature rise.
  • phase transition temperature the lower critical solution temperature indicated by the temperature responsive molecule
  • phase transition temperature the phase
  • the affinity between the adsorption site 10 and the antibody L adsorbed on the adsorption site 10 is lower than that at the time of adsorption, and the antibody L is desorbed from the adsorbent 1.
  • the antibody purification apparatus is an apparatus for separating and purifying an antibody from a solution containing the antibody to be purified and impurities using the adsorbent 1 described above. That is, the antibody purification apparatus includes an adsorbent capturing unit that captures the adsorbent 1 described above, and a temperature adjusting device that adjusts the adsorbent 1 captured by the adsorbent capturing unit to a predetermined temperature.
  • the temperature adjusting device starts from a lower temperature range lower than the lower critical solution temperature (phase transition temperature) and lower than the lower critical solution temperature (phase transition temperature) while the adsorbent 1 is captured by the adsorbent capturing section.
  • the temperature rises to a high temperature range.
  • the adsorbent 1 when the carrier 30 in the adsorbent 1 is a magnetic bead, the adsorbent 1 can be magnetically captured by the adsorbent capturing portion having the magnetic material.
  • an antibody purification apparatus having a liquid feeding unit 505, an injection port 514, a flow path 504, a magnet unit 516, and a temperature adjustment unit 517 can be mentioned.
  • the magnet unit 516 is an adsorbent capturing unit having the above-described magnetic material, and captures the adsorbent 1 supplied to the flow path 504.
  • the magnet unit 516 is disposed at a position facing the flow path 504 through the support base 503.
  • the magnet unit 516 is preferably configured to be able to turn on / off the magnetic force with respect to the flow path 504.
  • an apparatus including an electromagnet and an apparatus that controls energization of the electromagnet can be used.
  • an apparatus including a paramagnetic body and a driving device that controls the paramagnetic body so as to be able to come into contact with and separate from the support base 503 can be used.
  • the magnet unit 516 can apply a magnetic force to the flow path 504 at a desired timing, and can capture the adsorbent 1.
  • a solution containing the antibody to be purified and impurities, and a dispersion in which the adsorbent 1 (using magnetic beads as the carrier 30) is dispersed are used as a liquid feeding unit 505. And mixed through the inlet 514. Thereby, a specific interaction between the paratope in the antibody to be purified and the epitope of the adsorption site 10 is formed.
  • the adsorbent 1 is captured on the flow path wall of the support base 503 using the magnet unit 516.
  • a solvent is passed through the flow path 504 to wash away unadsorbed antibodies and contaminants from the flow path 504 (B / F separation).
  • the magnet unit 516 is separated from the flow path 504 to redisperse the adsorbent 1.
  • the temperature adjustment unit 517 raises the temperature in the flow path 504 from a low temperature range lower than the lower critical solution temperature (phase transition temperature) to a higher temperature range higher than the lower critical solution temperature (phase transition temperature). To do. Thereby, the antibody to be purified adsorbed on the adsorbent 1 can be separated. Thereafter, in the antibody purification apparatus, the adsorbent is again immobilized on the channel wall using the magnet unit 516 and the solvent is passed through the channel 504, whereby the purified antibody can be recovered.
  • the adsorbents according to Examples 1 to 3 were manufactured as the adsorbents according to the examples of the present invention. Thereafter, one type of antibody was separated and purified from an antibody mixed solution in which two types of antibodies having different paratopes were dissolved, and the selection characteristics of the adsorbent were evaluated.
  • the antibody mixed solution was prepared by dissolving an anti-PSA (prostate specific antigen) antibody and an anti-tPA (tissue plasminogen activator) antibody in a phosphate buffer solution.
  • an antibody that was biotinylated was used in response to a request for a method for evaluating sorting characteristics.
  • PSA and tPA are typical biomarkers.
  • an ⁇ -polylysine derivative represented by the following chemical formula was used as the temperature response portion 20.
  • X is an n-butoxycarbonyl group (-nBuCO), and the copolymerization form is arbitrary.
  • the lower critical solution temperature of this ⁇ -polylysine derivative is 28 ° C.
  • the carrier 30 a polystyrene microplate having a carboxy terminus was used.
  • the temperature response site 20 was covalently bonded to the carrier 30, and then the adsorption site 10 was covalently bonded to the temperature response site 20 to produce an adsorbent.
  • Example 1 In Example 1, an adsorbent was manufactured using a tPA molecule that is one of typical biomarkers as a molecule having an adsorption site 10. The tPA molecule has an epitope that interacts specifically with the paratope of an anti-tPA antibody.
  • the molecular weight of tPA molecule is known to be 63 kDa.
  • an adsorbent was manufactured using PSA molecules, which is one of typical biomarkers, as a molecule having the adsorption site 10.
  • the PSA molecule has an epitope that interacts specifically with the paratope of an anti-PSA antibody.
  • the molecular weight of a PSA molecule is 33 kDa.
  • an adsorbent was produced using PSA-cleaved molecules as molecules having the adsorption site 10.
  • the PSA cleavage molecule is obtained by mixing endoprotease Glu-C (Roche), which is an enzyme that cleaves a protein, and PSA molecule in a phosphate buffer solution at a ratio of 20: 1 and reacting at 37 ° C. for 1 day.
  • the obtained cleavage molecules were prepared by size separation chromatography.
  • the PSA cleavage molecule has an epitope that specifically interacts with the paratope of the anti-PSA antibody.
  • the molecular weight of the PSA cleavage molecule used in this example was found to be 5 kDa from size separation chromatography measurement.
  • BSA bovine serum albumin
  • Peroxidase decomposes hydrogen peroxide to produce hydroxide radicals, which oxidize and color TMB. Therefore, the adsorption amount of the anti-PSA antibody can be evaluated by evaluating the color state of TMB. In this example, the presence or absence of an anti-PSA antibody was evaluated by evaluating the presence or absence of coloration of oxidized TMB, and the presence or absence of an epitope in the cleaved molecule was confirmed.
  • Comparative Example 1 In Comparative Example 1, an adsorbent was produced using protein A molecules as the molecules having the adsorption site 10. Protein A molecules are known to adsorb antibodies regardless of the type of paratope in the antibody.
  • aqueous solution of BSA bovine serum albumin
  • carrier 30 polystyrene microplate
  • an antibody mixed solution pH 7.4 prepared by mixing an anti-PSA (prostate specific antigen) antibody and an anti-tPA (tissue plasminogen activator) antibody was added and allowed to stand at 4 ° C. for 30 minutes. The antibody was adsorbed on the adsorbent.
  • each well of the adsorbent carrier 30 (polystyrene microplate) was washed with a PBS solution (pH 7.4) to remove unadsorbed antibodies.
  • anti-tPA antibody solution (10 ng / ml)
  • mixed solution of anti-tPA antibody and anti-PSA antibody concentration of each component: 10 ng / ml
  • anti-PSA antibody solution 10 ng / ml
  • the adsorbent of Example 1 adsorbs anti-tPA antibody and does not adsorb anti-PSA antibody.
  • the reason for this is considered that the adsorption site of the adsorbent of Example 1 is a tPA molecule having an epitope that specifically interacts with the paratope of the anti-tPA antibody.
  • the adsorbents of Example 2 and Example 3 adsorb anti-PSA antibodies and do not adsorb anti-tPA antibodies.
  • the adsorption sites of the adsorbents of Example 2 and Example 3 are PSA molecules having an epitope that specifically interacts with the paratope of the anti-PSA antibody.
  • the adsorbent of Comparative Example 1 adsorbs both the anti-tPA antibody and the anti-PSA antibody. This may be because the protein A molecule does not have an epitope that specifically interacts with the paratope of the antibody and cannot be identified for each antibody. As mentioned above, it turned out that the adsorbent of a present Example adsorb
  • the adsorbent of this example can separate and purify an antibody having high specific adsorptivity with a biomarker.
  • the antibody purification apparatus shown in FIG. 4 was produced, and the antibody purification (using details of the antibody purification apparatus) and an adsorbent (details will be described later) using a magnetic bead carrier as a carrier 30 is described below. Examples 4 to 6) were carried out.
  • a mixed solution of anti-tPA antibody and anti-PSA antibody concentration of each component: 500 ng / ml
  • Example 4 In Example 4, an adsorbent using tPA molecule, which is one of typical biomarkers, was used as the molecule having the adsorption site 10. The tPA molecule has an epitope that interacts specifically with the paratope of an anti-tPA antibody. The molecular weight of tPA molecule is known to be 63 kDa.
  • Example 5 In Example 5, an adsorbent using PSA molecules, which is one of typical biomarkers, was used as the molecule having the adsorption site 10. The PSA molecule has an epitope that interacts specifically with the paratope of an anti-PSA antibody.
  • Example 6 an adsorbent using a PSA cleavage molecule was used as the molecule having the adsorption site 10.
  • the PSA cleavage molecule is obtained by mixing endoprotease Glu-C (Roche), which is an enzyme that cleaves a protein, and PSA molecule in a phosphate buffer solution at a ratio of 20: 1 and reacting at 37 ° C. for 1 day.
  • the obtained cleavage molecules were prepared by size separation chromatography.
  • the PSA cleavage molecule has an epitope that specifically interacts with the paratope of the anti-PSA antibody.
  • the molecular weight of the PSA cleavage molecule used in this example was found to be 5 kDa from size separation chromatography measurement.
  • Example 4 a solution containing only the anti-tPA antibody was obtained. The reason is considered that the adsorption site of the adsorbent of Example 4 is a tPA molecule having an epitope that specifically interacts with the paratope of the anti-tPA antibody.
  • examples 5 and 6 solutions containing only anti-PSA antibodies were obtained. The reason is considered that the adsorption sites of the adsorbents of Examples 5 and 6 are PSA molecules having an epitope that specifically interacts with the paratope of the anti-PSA antibody.
  • biomarkers and antibodies with high specific adsorptivity can be separated and purified by using the antibody purification apparatus produced in this example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

複数の抗体群のなかから所定のパラトープを有する抗体を選択的に分離・精製する。 精製対象の抗体におけるパラトープに対応するエピトープを有する吸着部位と、温度変化によって相転移する温度応答性分子を有する温度応答部位と、前記吸着部位及び前記温度応答部位を支持する担体とを備える。

Description

吸着材及び当該吸着材を用いた抗体精製装置
 本発明は、抗体に対する吸着能を有する吸着材及び当該吸着材を用いた抗体精製装置に関する。
 抗原抗体反応とは、抗原と抗体との特異的相互作用による結合反応である。抗体が抗原と結合する際、抗体は抗原の一部分(エピトープ)の立体構造を厳密に認識して結合する。エピトープと結合する抗体側の部分をパラトープという。エピトープとパラトープの間は、水素結合、静電気力、ファンデルワールス力及び疎水結合等の相互作用により安定的な結合が形成される。
 抗体抗原反応を利用した免疫分析法は、がんを含む各種疾患の診断等に利用されている。すなわち、所定の疾患に関連する物質(バイオマーカ)を抗原とし、これを定量的に測定することで各種疾患の診断等を行っている。この免疫分析法では、バイオマーカと特異的に相互作用する標識抗体でバイオマーカを標識し、標識抗体からの信号を検出してバイオマーカの濃度を定量する。特に、初期がん等の診断においては、免疫分析法により極微量のバイオマーカを高感度に定量する技術の開発が進められている。
 また、抗体は、免疫分析法に限らず、それ自体医薬として利用されている(抗体医薬)。抗体医薬とは、病気の原因となっている物質に対する抗体であって、体内に投与されることで当該物質を排除し、疾患の予防や治療を行う抗体を意味する。さらに、抗体は、ウェスタンブロッティング、免疫沈降及びELISA等の生物化学の研究においてもよく利用されている。
 以上のように幅広く利用されている抗体は、抗原を免疫した動物の血清や、マウス腹水、ハイブリドーマ細胞等から精製して得られる。抗体は、一般的なタンパク質と同様に、清澄化工程、回収工程、中間精製工程及び最終精製工程という、大別して4つの工程により精製される。すなわち、抗体産生細胞を培養し、培養液に分泌された抗体を、抗体以外のタンパク質、細胞及びその他の固形物から分離し、その後、濾過やクロマトグラフィ等の方法により精製される。すなわち、抗体を製造する場合、細胞や培養液に含まれる成分等の夾雑物が共存する状態から抗体を抽出する技術が必要となる。
 一般的に、狭雑物中から抗体を抽出する一般的な技術として、プロテインAやプロテインGをリガンドとして固定化した表面上で抗体を吸着し、pH調整により抗体の脱着を制御し、狭雑物中から抗体を抽出する技術が知られている。また、特許文献1には、夾雑物から抗体を精製する際に、プロテインAを結合した温度応答性ポリアミノ酸を利用することが開示されている。すなわち、特許文献1には、プロテインAを有する温度応答性ポリアミノ酸に精製対象の抗体を結合させ、温度変化により温度応答性ポリアミノ酸の立体構造を変化させ、抗体を温度応答性ポリアミノ酸から分離させる技術が開示されている。
特開2014-219245号公報
 しかしながら、特許文献1に開示された技術では、抗体と抗体以外の夾雑物とを分離して、抗体を回収することが可能であるものの、複数の抗体群のなかから所定のパラトープを有する抗体を選択的に回収することはできないといった問題があった。そこで、本発明は、このような実情に鑑み、目的とする抗体を選択的に分離・回収することができる吸着材と、当該吸着材を用いた抗体精製装置を提供することを目的とする。
 上述した目的を達成した本発明は以下を包含する。
 (1)精製対象の抗体におけるパラトープに対応するエピトープを有する吸着部位と、温度変化によって相転移する温度応答性分子を有する温度応答部位と、前記吸着部位及び前記温度応答部位を支持する担体とを備える吸着材。
 (2)前記温度応答性分子は、相転移温度が0℃以上60℃以下の範囲にある化合物であることを特徴とする(1)記載の吸着材。
 (3)前記吸着部位は、精製対象の抗体が結合する抗原のエピトープを含む部分断片でることを特徴とする(1)記載の吸着材。
 (4)前記温度応答部位が、単量体として、アクリルアミド誘導体、メタクリル酸エステル等のメタクリル酸誘導体、アクリル酸エステル等のアクリル酸誘導体、ビニルアルコール誘導体、リジン誘導体、グルタミン酸誘導体、アスパラギン酸誘導体、乳酸、ジオール誘導体、カプロラクタム類、カプロラクトン類、糖類、シロキサン類からなる群より選択される少なくとも1種を含むことを特徴とする(1)記載の吸着材。
 (5)前記吸着部位は、前記温度応答性分子に結合されていることを特徴とする(1)記載の吸着材。
 (6)前記吸着部位は前記担体に結合されていることを特徴とする(1)記載の吸着材。
 (7)前記(1)乃至(6)いずれか記載の吸着材を捕捉する吸着材捕捉部と、前記吸着材捕捉部に捕捉された前記吸着材を所定の温度に調節する温度調節装置とを備える抗体精製装置。
 (8)前記吸着材における担体が磁性ビーズであり、前記吸着材捕捉部は磁性材料を備えることを特徴とする(7)記載の抗体精製装置。
 (9)精製対象の抗体におけるパラトープに対応するエピトープを有する吸着部位と、温度変化によって相転移する温度応答性分子を有する温度応答部位と、前記吸着部位及び前記温度応答部位を支持する担体とを備える吸着材と、精製対象の抗体を含む溶液とを接触させる工程と、前記吸着材を洗浄する工程と、溶液の温度を昇温して前記温度応答性分子を不溶化させることで、前記吸着部位に吸着した抗体を分離する工程と、分離した抗体を回収する工程とを含む抗体の精製方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-119029号の開示内容を包含する。
 本発明によれば、目的とする抗体を選択的に分離・回収することができる吸着材と、当該吸着材を用いた抗体精製装置を提供できる。
本発明に係る吸着材の一実施形態であり、当該吸着材の構造と作用とを模式的に示す図である。(a)は吸着材に抗体が吸着する前の状態、(b)は吸着材に抗体が吸着した状態、(c)は吸着材に相転移が生じた状態、(d)は相転移が生じた吸着材から抗体が脱離した状態を示す。 本発明に係る吸着材の製造方法の一例を示す図である。(a)は温度応答性分子を担体に結合させる工程、(b)は機能性分子を温度応答性分子に結合させる工程を示す。 本発明に係る吸着材の他の実施形態であり、当該吸着材の構造と作用とを模式的に示す図である。(a)は吸着材に抗体が吸着する前の状態、(b)は吸着材に抗体が吸着した状態、(c)は相転移が生じた吸着材から抗体が脱離した状態を示す。 本発明に係る抗体精製装置の一実施形態を模式的に示す図である。
 以下、図面を参照して本発明を詳細に説明する。なお、以下の各図において共通する構成については、同一の符号を付し、重複した説明を省略する。
 図1は、本発明の実施形態に係る吸着材の構造と作用とを模式的に示す図である。(a)は、吸着材に抗体が吸着する前の状態、(b)は、吸着材に抗体が吸着した状態、(c)は、吸着材に相転移が生じた状態、(d)は、相転移が生じた吸着材から抗体が脱離した状態を示す。
 図1(a)に示すように、本実施形態に係る吸着材1は、吸着部位10と、温度応答部位20と、担体30とを備えている。また、本実施形態に係る吸着材1では、吸着部位10が温度応答部位20に結合されている。
 特に、吸着材1において吸着部位10は、エピトープを有している。エピトープとは、抗原と抗体との特異的相互作用(抗原抗体反応)において、抗体と結合する抗原側の部位を意味する。また、抗原抗体反応において、抗原と結合する抗体側の部位をパラトープと呼ぶ。
 吸着材1は、被処理液に含まれている精製対象の抗体Lの精製に用いられるものである。特に、吸着材1は、精製対象の抗体Lが他の夾雑物等と共に含まれている溶液(被処理液と称する場合もある)から当該抗体Lを分離・精製するものである。先ず、吸着材1と被処理液とを接触させると、図1(b)に示すように、被処理液中の抗体Lは、抗体中のパラトープと吸着部位10中のエピトープとの間に働く特異的相互作用によって吸着する。なお、このとき被処理液に含まれている夾雑物等は、吸着部位10に対する親和性が相対的に低く、吸着しないか吸着力が弱い状態にあるため、洗浄処理によって抗体Lを残して除去される。
 本実施形態に係る吸着材1は、抗体Lを温度応答性分子(温度応答部位20)の昇温に伴う相転移によって脱離する作用を有している。そのため、吸着材1を温度上昇させると、温度応答部位20は、図1(c)に示すように、相転移して凝集状態の立体構造に変化する。その結果、吸着部位10と抗体Lとの親和性が低下し、吸着部位10に吸着していた抗体Lは脱離することになる(図1(d)参照)。本実施形態に係る吸着材1では、このようにして、被処理液に含まれている精製対象の抗体Lの分離精製が実現される。なお、吸着材1は、実際には、担体30上に多数の吸着部位10と温度応答部位20とが指示された構造を有し、一回の処理で多数の抗体を分離することができる。
 吸着部位10を構成するエピトープとしては、精製対象の抗体のパラトープと特異的相互作用する分子であれば特に制限はない。吸着部位10を構成するエピトープの例として、抗原分子全体、すなわち抗体Lがバイオマーカを検出するものである場合、当該バイオマーカ分子全体を吸着部位10とすることができる。
 また、吸着部位10は、エピトープを含む抗原分子の部分断片とすることが好ましい。吸着部位10を抗原分子の部分断片(エピトープを含む)とした場合には、吸着部位10を抗原分子全体とした場合と比較して、温度応答性分子の相転移によって、吸着部位10に吸着した抗体Lがより容易に脱離でき、その結果、抗体Lの回収効率を大幅に高めることができる。
 なお、抗原分子におけるエピトープの分子配列が既知の場合には、人為的に合成されたタンパク分子(エピトープを含む)を吸着部位10としてもよい。この場合、人為的に合成されたタンパク質分子は、実際の抗原分子より低分子量とすることで、吸着部位10に吸着した抗体Lがより容易に脱離でき、その結果、抗体Lの回収効率を大幅に高めることができる。
 なお、図1においては、吸着部位10は、温度応答部位20の側鎖に結合しているが、温度応答部位20の末端に結合していてもよいし、温度応答部位20の側鎖及び末端に結合していてもよい。また、吸着部位10は、単一の温度応答部位20や担体30に対して、単数が結合していてもよいし、複数が結合していてもよい。また、吸着部位10は、温度応答部位20との間にリンカー(スペーサー)を介して結合していてもよい。リンカーは、抗体を不可逆的に吸着しない分子であることが好ましい。
 温度応答部位20は、温度変化によって相転移する温度応答性分子からなる。温度応答性分子は、下限臨界溶液温度(Lower Critical Solution Temperature;LCST)を示す。すなわち、温度応答性分子は、下限臨界溶液温度よりも低い低温域では被処理液中に溶解して存在し(可溶化)、下限臨界溶液温度よりも高い高温域では不溶性の状態に相分離して存在する(不溶化)。そのため、温度応答部位20は、下限臨界溶液温度を境界として相転移し、立体構造の顕著な変化を生じることで、吸着部位10と吸着部位10に結合している抗体Lとの親和性を可変させる。
 温度応答部位20は、吸着部位10に吸着している抗体Lを、昇温に伴う相転移によって脱離させる作用を有している。温度応答部位20が、温度応答性分子が示す下限臨界溶液温度(相転移温度)よりも低い低温域から、下限臨界溶液温度(相転移温度)よりも高い高温域に昇温されると、相転移による立体構造の変化に伴って、吸着部位10と吸着部位10に吸着している抗体Lとの親和性が吸着時よりも低下し、吸着材1から抗体Lが脱離することになる。
 温度応答部位20を構成する温度応答性分子としては、特に限定することなく、下限臨界溶液温度を示す温度応答性高分子を用いることができる。温度応答性高分子は、単量体として、アクリルアミド誘導体、メタクリル酸エステル等のメタクリル酸誘導体、アクリル酸エステル等のアクリル酸誘導体、ビニルアルコール誘導体、N-修飾ε-ポリリジン誘導体等のε-ポリリジン誘導体(リジン誘導体)、γ-グルタミン酸アミド等のγ-グルタミン酸誘導体(グルタミン酸誘導体)、δ-アスパラギン酸アミド誘導体等のδ-アスパラギン酸誘導体(アスパラギン酸誘導体)、乳酸、ジオール誘導体、カプロラクタム類、カプロラクトン類、糖類、シロキサン類等を含むことができる。温度応答性分子は、これらの単量体のいずれかによる重合体であっても、これらの単量体の組み合わせによる共重合体であってもよい。また、共重合体としては、ランダム型、ブロック型及びグラフト型のいずれであってもよい。なお、温度応答性高分子は、直鎖状高分子に限られず、分岐状高分子、デンドリマー、ゲル、架橋ゲル等であってもよい。
 アクリルアミド誘導体としては、例えば、N-イソプロピルアクリルアミド、N-ジイソプロピルアクリルアミド、N-エチルアクリルアミド、N-ジエチルアクリルアミド、N-メチルアクリルアミド、N-ジメチルアクリルアミド等が挙げられる。また、メタクリル酸誘導体としては、例えば、メタクリル酸ブチル、メタクリル酸プロピル、メタクリル酸エチル、メタクリル酸メチル等が挙げられる。また、アクリル酸誘導体としては、例えば、アクリル酸ブチル、アクリル酸プロピル、アクリル酸エチル、アクリル酸メチル等が挙げられる。また、ビニルアルコール誘導体としては、例えば、ビニルアルコールメチルエーテル等が挙げられる。また、ε-ポリリジン誘導体としては、例えば、リジン吉草酸アミド、リジン酪酸アミド、リジンプロピオン酸アミド、N-ヒドロキシペンチルリジン、N-ヒドロキシブチルリジン等が挙げられる。また、γ-グルタミン酸誘導体としては、例えば、グルタミン酸ヒドロキシヘキシルアミド、グルタミン酸ヒドロキシペンチルアミド、グルタミン酸ヒドロキシブチルアミド、グルタミン酸ヒドロキシプロピルアミド等が挙げられる。また、δ-アスパラギン酸誘導体としては、例えば、アスパラギン酸ヒドロキシヘキシルアミド、アスパラギン酸ヒドロキシペンチルアミド、アスパラギン酸ヒドロキシブチルアミド、アスパラギン酸ヒドロキシプロピルアミド等が挙げられる。また、ジオール誘導体としては、例えば、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
 温度応答部位20を構成する温度応答性分子としては、下限臨界溶液温度を示す温度応答性高分子以外にも、下限臨界溶液温度を示す温度応答性低分子を用いることもできる。温度応答性低分子としては、例えば、光応答性と共に温度応答性を示す、スピロピラン、アゾベンゼン、ジアリールエテン、これらの誘導体、液晶分子等を用いることができる。
 温度応答部位20に使用する温度応答性分子としては、その相転移温度が0℃以上60℃以下の範囲である分子を使用することが好ましく、0℃以上40℃以下の範囲である分子を使用することがより好ましく、10℃以上40℃以下の範囲である分子を使用することがさらに好ましい。温度応答部位20の相転移温度がこのような温度範囲にあると、抗体Lの吸着や脱離を温和な温度条件の下で行うことができるため、抗体Lの劣化を避けることが可能である。温度応答部位20の相転移温度は、被処理液の溶媒、夾雑物、pH等の影響を受けるが、温度応答部位20が、pH6以上8以下のpH条件で相転移するように分子設計することが好ましい。このような温度応答部位20の分子設計は、温度応答性分子に各種官能基を導入することによって行うことができ、例えば、親水性基と疎水性基とのバランスや、電荷相互作用の導入等に拠り実現することができる。
 温度応答部位20は、担体30に固定されている。図1においては、温度応答部位20は、側鎖を介して担体30と結合しているが、末端を介して担体30と結合していてもよし、側鎖と末端を介して担体30と結合しても良い。また、温度応答部位20は、単一の担体30に対して、単数が結合していてもよいし、複数が結合していてもよい。また、温度応答部位20は、担体30との間にリンカー(スペーサー)を介して結合していてもよい。
 担体30は、特に限定されないが、被処理液中において化学的及び物理的に高い安定性を有することが好ましく、吸着材1に機械的強度、賦形性、取扱い性等を付与する役割を果たしている。
 担体30は、適宜の形状とすることが可能であり、多孔質及び非多孔質のいずれとしてもよい。担体30の形状としては、具体的には、例えば、板状、ビーズ状、不織布や織物等の繊維状、膜状、モノリス状、中空糸状等が挙げられる。
 担体30の材質は、有機材料及び無機材料のいずれであってもよく、これらを併用した複合材料であってもよい。具体的には、例えば、アガロース、セファロース、セルロース等の多糖類や、ポリスチレン、ポリアルキルメタクリレート、ポリグリシジルメタクリレート、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリシロキサン、ポリフッ化エチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリカーボネート、PA6、PA66、PA11、PA12等の合成樹脂や、グラファイト、炭素繊維、カーボンナノチューブ、フラーレン等の炭素材料や、シリカ、アルミナ、チタニア、ジルコニア、酸化鉄等の酸化物、炭酸カルシウム等の炭酸塩、ハイドロキシアパタイト、リン酸アルミニウム等のリン酸塩、ホウケイ酸ガラス等のホウ酸塩、シリケート、珪藻土等のケイ酸塩、硫酸アルミニウム、硫酸カルシウム等の硫酸塩、炭化珪素、窒化珪素等の無機化合物や、フェライト、パーマロイ、クロム鋼、鉄-アルミ合金、金、銀、白金、パラジウム、ロジウム等の金属材料等を用いることができる。これらの中でも好ましい材料は、安定性、製造容易性等の観点から、アガロース、セファロース、セルロース、ポリスチレン、シリカや、磁性を示す酸化鉄又はフェライトである。また、担体30としては、特に磁性ビーズを使用することが好ましい。
 担体30は、温度応答部位20と共有結合を形成する、カルボキシ基、アミノ基、ヒドロキシ基等の適宜の反応性基を表面に有していてもよい。また、担体30は、吸着部位10及び温度応答部位20以外の分子によって表面修飾されていてもよい。例えば、標的物質の非特異的な吸着を防止するブロッキングや、温度応答部位20の配向性を制御する表面修飾や、担体30の分散性又は吸着性を改質する表面修飾等が行われていてもよい。
 本実施形態に係る吸着材1は、従来知られている適宜の反応を利用して製造することができる。例えば、吸着部位10を構成する機能性分子、温度応答部位20を構成する温度応答性分子、反応性基を有する担体30等は、公知の高分子反応等を用いて調製したり、担体表面を活性化する表面処理技術を用いたり、天然物や生化学的産物の分離精製技術を利用したりして得ることができる。また、吸着部位10を構成する機能性分子、温度応答部位20を構成する温度応答性分子、反応性基を有する担体30の各結合は、例えば、吸着部位10を構成する機能性分子と温度応答部位20を構成する温度応答性分子とを結合させた後に担体30と結合させる方法、温度応答部位20を構成する温度応答性分子を担体30に結合させた後に、吸着部位10を構成する機能性分子を、温度応答部位20を構成する温度応答性分子に結合させる方法、吸着部位10を構成する機能性分子と温度応答部位20を構成する温度応答性分子とを併せて担体30と結合させる方法等を採ることができる。
 図2は、本発明の実施形態に係る吸着材1の製造方法の一例を示す図である。(a)は、温度応答性分子を担体30に結合させる工程、(b)は、エピトープを含む吸着部位10を温度応答性分子に結合させる工程を示す。
 図2に示す吸着材1の製造方法は、温度応答部位20を構成する温度応答性分子を担体30に結合させた後に、吸着部位10を、温度応答部位20を構成する温度応答性分子に結合させる方法を例示したものである。この方法では、担体30としてはカルボキシ末端を有する担体を使用し、吸着部位10と温度応答部位20との間にリンカーとしてグルタルアルデヒドを使用している。
 温度応答性分子を担体30に結合させる工程では、図2(a)に示すように、はじめに、担体30のカルボキシ末端とカルボジイミド塩酸塩(EDC・HCl)とを反応させて、担体30を活性化させる。この反応は、例えば、pH5.8、37℃で2時間程度とすればよい。続いて、未反応物や副生成物を除去した後、活性化させた担体30と温度応答部位20とを反応させる。この反応は、例えば、pH5.8、37℃で2時間程度とすればよい。このような反応を経ることによって、温度応答部位20が有する求核性のアミノ基を介して、温度応答性分子20と担体30とを結合させることができる(図2(a)の右図参照)。このようなカルボジイミドを脱水縮合剤として用いる反応によると、温度条件は4℃以上40℃以下程度、pH条件はpH4以上7以下程度の範囲の温和な条件で、温度応答性分子を担体30に結合させることも可能である。
 吸着部位10を温度応答性分子に結合させる工程では、図2(b)に示すように、はじめに、温度応答部位20のリシン(Lys)のアミノ基とグルタルアルデヒドとを反応させて活性化させる。この反応は、例えば、pH9.0、37℃で2時間程度とすればよい。続いて、未反応物を純水で除去した後、温度応答部位20に結合したグルタルアルデヒドと吸着部位10のリシン(Lys)のアミノ基とを反応させる。この反応は、例えば、pH7.4、37℃で2時間程度とすればよい。このような反応を経ることによって、グルタルアルデヒドを介して、温度応答性分子20と吸着部位10とを結合させることができる。温度条件は常温から37℃程度まで、pH条件はpH6以上9以下程度の範囲であって更に中性寄りにおいても、反応を進行させることが可能である。
 このような製造方法によると、温度条件、pH条件が温和な条件で吸着材1を製造することが可能であるため、温度応答性分子20や吸着部位10の変性等が避けられ、吸着材1の性能を確保し易くすることができると共に、酸やアルカリの廃液の発生を低減することができる。また、図2においては、グルタルアルデヒドによる架橋を模式的に示しているが、実際の反応ではグルタルアルデヒドの多量体による架橋が形成され得るため、分子間の立体障害や相互作用が部分的に解消されることで、吸着材について一定以上の性能が確保し易くなる場合がある。
 ところで、本発明に係る吸着材1は、図1及び2に示した構成に限定されるものでは無く、例えば図3に示す構成であってもよい。すなわち、図3は、本発明の他の実施形態に係る吸着材の構造と作用とを模式的に示す図である。(a)は、吸着材に抗体が吸着する前の状態、(b)は、吸着材に抗体が吸着した状態、(c)は、吸着材に相転移が生じた結果、吸着材から抗体が脱離した状態を示す。
 図3に示す実施形態の吸着材1は、担体30上に吸着部位10と温度応答部位20とが結合した構成を有している。なお、担体30上に吸着部位10を結合させる際には、上述した温度応答部位20を担体30上に結合させる場合と同様に、担体30に対して表面処理(反応基の導入等)を行ってもよいし、担体30との間にリンカー(スペーサー)を介して結合していてもよい。
 図3に示す実施形態の吸着材1においても、温度応答部位20は、吸着部位10に吸着している抗体Lを、昇温に伴う相転移によって脱離させる作用を有している。温度応答部位20が、温度応答性分子が示す下限臨界溶液温度(相転移温度)よりも低い低温域から、下限臨界溶液温度(相転移温度)よりも高い高温域に昇温されると、相転移による立体構造の変化に伴って、吸着部位10と吸着部位10に吸着している抗体Lとの親和性が吸着時よりも低下し、吸着材1から抗体Lが脱離することになる。
 次に、本発明に係る抗体精製装置について説明する。本発明に係る抗体精製装置は、上述した吸着材1を用いて、精製対象の抗体及び夾雑物を含む溶液から当該抗体を分離・精製する装置である。すなわち、抗体精製装置は、上述した吸着材1を捕捉する吸着材捕捉部と、吸着材捕捉部に捕捉された吸着材1を所定の温度に調節する温度調節装置とを備える。抗体精製装置では、吸着材捕捉部に吸着材1を捕捉した状態で、温度調節装置が上記下限臨界溶液温度(相転移温度)よりも低い低温域から、下限臨界溶液温度(相転移温度)よりも高い高温域に昇温する。これにより、吸着材捕捉部に捕捉された吸着材1から抗体を分離することができる。
 特に、吸着材1における担体30を磁性ビーズとした場合、磁性材料を有する吸着材捕捉部により吸着材1を磁気的に捕捉することができる。この例としては、図4に示すように、送液ユニット505、注入口514、流路504、磁石ユニット516、温調ユニット517を有する抗体精製装置を挙げることができる。ここで、磁石ユニット516は、上述した磁性材料を有する吸着材捕捉部であり、流路504に供給された吸着材1を捕捉するものである。磁石ユニット516は、支持基体503を介して流路504と対向する位置に配設されている。特に、磁石ユニット516は、流路504に対して磁力をオン・オフ制御できる構成であることが好ましい。例えば、磁石ユニット516としては、電磁石及び当該電磁石に対する通電を制御する装置を含む装置を使用することができる。或いは、磁石ユニット516としては、常磁性体と当該常磁性体を支持基体503に対して接離可能に制御する駆動装置とを含む装置を使用することもできる。いずれの場合でも、磁石ユニット516は、所望のタイミングで磁力を流路504に対して加えることができ、吸着材1を捕捉することができる。
 以上のように構成された抗体精製装置では、精製対象の抗体と夾雑物とを含む溶液と、吸着材1(担体30として磁性ビーズを使用)を分散させた分散液とを、送液ユニット505と注入口514を経て混合する。これにより、精製対象の抗体におけるパラトープと吸着部位10のエピトープとの特異的相互作用を形成させる。次に、抗体精製装置では、磁石ユニット516を用いて吸着材1を支持基体503の流路壁に捕捉する。その後、抗体精製装置では、流路504に対して溶剤を通液し、未吸着の抗体及び夾雑物を流路504から洗い流す(B/F分離)。その後、磁石ユニット516を流路504から離して吸着材1を再分散させる。そして、抗体精製装置では、温調ユニット517により流路504内部を下限臨界溶液温度(相転移温度)よりも低い低温域から、下限臨界溶液温度(相転移温度)よりも高い高温域に昇温する。これにより、吸着材1に吸着した、精製対象の抗体を分離することができる。その後、抗体精製装置では、磁石ユニット516を用いて吸着剤を流路壁に再び固定化し、流路504に溶剤を通液することにより、精製された抗体を回収することができる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
 本発明の実施例に係る吸着材として、実施例1~実施例3に係る吸着材を製造した。その後、パラトープの異なる2種類の抗体が溶解した抗体混合溶液から、1種類の抗体の分離精製を行い、吸着材の選別特性を評価した。また、抗体混合溶液は、抗PSA(前立腺特異抗原)抗体と、抗tPA(組織プラスミノーゲンアクチベータ)抗体をリン酸緩衝溶液中に溶解して調製した。併せて、本実施例に係る吸着材の対照として、比較例1に係る吸着材を製造し、同様に評価を行った。なお、本実施例、比較例では選別特性の評価方法の要請からビオチン化されている抗体を用いた。また、PSA、tPAは、代表的なバイオマーカである。
 製造した実施例1~実施例3に係る吸着材、及び、比較例1に係る吸着材においては、温度応答部位20として、下記化学式に示すε-ポリリジン誘導体を使用した。なお、式中、Xは、n-ブトキシカルボニル基(-nBuCO)であり、共重合形式は任意である。また、このε-ポリリジン誘導体の下限臨界溶液温度は28℃である。また、担体30として、カルボキシ末端を有するポリスチレン製マイクロプレートを使用した。
Figure JPOXMLDOC01-appb-C000001
 本実施例では、担体30に温度応答部位20を共有結合し、その後、吸着部位10を温度応答部位20と共有結合して、吸着材を製造した。まず、カルボキシ末端を有するポリスチレン製マイクロプレートに水溶性カルボジイミド(WSC)の1重量パーセント水溶液(pH=5.8)を投入して、37 ℃で2時間放置し、表面をアミノ基に対して反応活性化した。リン酸緩衝液(pH=5.8)で表面を洗浄後、ε-ポリリジン誘導体水溶液(1重量パーセント、pH=7.4)を投入して、37℃で2時間放置し、ε-ポリリジン誘導体を表面に固定化した。その後、グルタルアルデヒド水溶液(1重量パーセント、pH=10)を投入して、表面をアミノ基に対して反応活性化した。その後、吸着部位10を有する分子の水溶液(0.01重量パーセント、pH=7.4)を投入し、37℃で2時間反応させ、吸着材を製造した。
<実施例1>
 実施例1では、吸着部位10を有する分子として代表的なバイオマーカのひとつであるtPA分子を用い、吸着材を製造した。tPA分子は抗tPA抗体のパラトープと特異的に相互作用するエピトープを有する。また、tPA分子の分子量は63kDaであることが知られている。
<実施例2>
 実施例2では、吸着部位10を有する分子として代表的なバイオマーカのひとつであるPSA分子を用い、吸着材を製造した。PSA分子は抗PSA抗体のパラトープと特異的に相互作用するエピトープを有する。また、PSA分子の分子量は33kDaであることが知られている。
<実施例3>
 実施例3では、吸着部位10を有する分子としてPSA切断分子を用い、吸着材を製造した。PSA切断分子は、タンパク質を切断する酵素であるエンドプロテアーゼGlu-C(Roche製)とPSA分子とをリン酸緩衝溶液中で20:1の比で混合し、37℃で1日反応させた後、得られた切断分子をサイズ分離クロマトグラフィにより分取して作成した。また、PSA切断分子が抗PSA抗体のパラトープと特異的に相互作用するエピトープを有することは、下記の方法で確認した。また、本実施例で用いたPSA切断分子の分子量はサイズ分離クロマトグラフィ測定から5kDaであることがわかった。
<切断分子中のエピトープ有無の確認方法>
 カルボキシ末端を有するポリスチレン製マイクロプレートに水溶性カルボジイミド(WSC)の1重量パーセント水溶液(pH=5.8)を投入して、37℃で2時間放置し、表面をアミノ基に対して反応活性化した。リン酸緩衝液(pH=5.8)で表面を洗浄後、分取した切断分子の水溶液を投入して、37℃で2時間放置し、分取した切断分子を表面に固定化した。後で投入する抗PSA抗体の非特異吸着を抑制するために、まずBSA(牛血清アルブミン)を表面に吸着し、その後、抗PSA抗体の水溶液を投入した。切断分子がエピトープを有する場合、抗PSA抗体は切断分子に特異的に吸着する。その後、ストレプトアビジン-ペルオキシダーゼ水溶液を投入し、アビジン-ビオチン間の特異的相互作用を用いて抗PSA抗体をペルオキシダーゼで修飾した。その後、TMB(3,3’,5,5’-TetraMethylBenzidine)と過酸化水素が溶解した水溶液を投入した。ペルオキシダーゼは過酸化水素を分解して水酸化物ラジカルを生成し、水酸化物ラジカルはTMBを酸化し呈色する。従って、TMBの呈色状態を評価することで抗PSA抗体の吸着量を評価することができる。本実施例では、酸化されたTMBの呈色有無を評価することで、抗PSA抗体の吸着有無を評価し、切断分子中のエピトープ有無を確認した。
<比較例1>
 比較例1では、吸着部位10を有する分子としてプロテインA分子を用い、吸着材を製造した。プロテインA分子は、抗体中のパラトープの種類に関係なく抗体を吸着することが知られている。
 次に、実施例1~実施例3に係る吸着材、比較例1に係る吸着材を用いて、抗体の分離精製を行った。はじめに、各吸着材の担体30(ポリスチレン製マイクロプレート)の複数(6個)のウェルに、抗体の非特異吸着を抑制するために、BSA(牛血清アルブミン)の水溶液を投入し、BSAを吸着させた。その後、抗PSA(前立腺特異抗原)抗体と、抗tPA(組織プラスミノーゲンアクチベータ)抗体を混合して調製した抗体混合溶液(pH7.4)を添加し、4℃で30分間にわたって静置させて、吸着材に抗体を吸着させた。
 続いて、吸着材の担体30(ポリスチレン製マイクロプレート)の各ウェルを、PBS溶液(pH7.4)で洗浄し、吸着していない抗体を除去した。
 そして、一部(3個)のウェルについては、4℃から37℃に昇温した後、1時間にわたって静置させて、吸着していた抗体を脱離させた。また、この間に、残部(3個)のウェルについては、昇温させること無く4℃で保管した。
 その後、抗体を脱離させた各ウェルと、残部の各ウェルとに対して、標識化されたストレプトアビジンを添加し、ELISA法によって吸着していた抗体量を定量した。ELISA法における測定値である吸光度は、抗体の吸着量に比例することが知られている。表1に、実施例1~実施例3に係る吸着材、及び、比較例1に係る吸着材における、抗体吸着量(吸光度)と、37℃に昇温することにより脱離した抗体の割合(%)を示す。なお、本実施例、比較例では、抗体溶液として、(1) 抗tPA抗体溶液(10 ng/ml)、(2)抗tPA抗体と抗PSA抗体との混合溶液(各成分の濃度:10 ng/ml)、及び(3) 抗PSA抗体溶液(10 ng/ml)を用いた。いずれの溶液もリン酸緩衝液を溶剤として調製した。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1の吸着材は、抗tPA抗体を吸着し、抗PSA抗体を吸着しないことがわかった。この理由として、実施例1の吸着材の吸着部位が、抗tPA抗体のパラトープと特異的に相互作用するエピトープを有するtPA分子であることが考えられる。また、実施例2、実施例3の吸着材は、抗PSA抗体を吸着し、抗tPA抗体を吸着しないことがわかった。この理由として、実施例2、実施例3の吸着材の吸着部位が、抗PSA抗体のパラトープと特異的に相互作用するエピトープを有するPSA分子であることが考えられる。一方、比較例1の吸着材は、抗tPA抗体、抗PSA抗体ともに吸着することがわかった。この理由として、プロテインA分子が抗体のパラトープと特異的に相互作用するエピトープを持たず、抗体毎の識別ができないことが考えられる。以上より、本実施例の吸着材は、バイオマーカとの特異吸着性の高い抗体を吸着することがわかった。
 一方、表1に示したように、実施例1~3の吸着材では、温度を37℃に昇温することにより10%以上の抗体の脱離が見られた。この理由として、吸着材の温度応答部位の下限臨界溶液温度(28℃)よりも高い高温域に昇温されると、相転移による立体構造の変化に伴って、吸着部位に吸着している抗体との親和性が吸着時よりも低下したためと考えられる。また、実施例2と実施例3との比較より、吸着部位の分子量が小さい吸着材がより多くの抗体(約1.5倍)を脱離することがわかった。この理由として、分子量の低下により、吸着部位中のエピトープの分子配列が不安定化し、抗体との吸着力が低下したことが考えられる。
 以上の結果より、本実施例の吸着材は、バイオマーカとの特異吸着性の高い抗体を分離精製できることがわかった。
 次に、本実施例では、図4に示した抗体精製装置を製造し、当該抗体精製装置と、磁性を有するビーズ担体を担体30とした吸着材(詳細は後述)とを用いて抗体精製(実施例4~6)を実施した。まず、吸着材の分散液(pH=7.4)と、抗tPA抗体と抗PSA抗体との混合溶液(各成分の濃度:500 ng/ml)とを、送液ユニット505と注入口514を経て混合し、流路504に流入した。その後、磁石ユニット516を用いて吸着材を流路壁に固定化し、リン酸緩衝液(pH=7.4)を通液して未吸着の抗体を流路504から洗い流した(B/F分離)。その後、磁石ユニット516を流路504から離して吸着材を再分散させ、温調ユニット517を用いて流路の温度を37℃とし、30分間放置した。その後、磁石ユニット516を用いて吸着剤を流路壁に固定化し、流路504に37℃のリン酸緩衝液(pH=7.4)を通液し、精製された抗体溶液を得た。
 実施例4~6で使用した吸着材は下記の通り作製した。まず、定法に従い、磁性を有するビーズ担体(NHS Mag Sepharose:GEヘルスケア社製)の表面に温度応答性部位20を固定化した。温度応答部位20として、上記化学式に示したε-ポリリジン誘導体を使用した(下限臨界溶液温度28℃)。その後、グルタルアルデヒド水溶液(1重量パーセント、pH=10)を投入して、表面をアミノ基に対して反応活性化した。その後、吸着部位10を有する分子の水溶液(0.1重量パーセント、pH=7.4)を投入し、37℃で2時間反応させ、吸着材を製造した。
<実施例4>
 実施例4では、吸着部位10を有する分子として、代表的なバイオマーカのひとつであるtPA分子を用いた吸着材を用いた。tPA分子は抗tPA抗体のパラトープと特異的に相互作用するエピトープを有する。また、tPA分子の分子量は63kDaであることが知られている。
<実施例5>
 実施例5では、吸着部位10を有する分子として、代表的なバイオマーカのひとつであるPSA分子を用いた吸着材を用いた。PSA分子は抗PSA抗体のパラトープと特異的に相互作用するエピトープを有する。また、PSA分子の分子量は33kDaであることが知られている。
<実施例6>
 実施例6では、吸着部位10を有する分子として、PSA切断分子を用いた吸着材を用いた。PSA切断分子は、タンパク質を切断する酵素であるエンドプロテアーゼGlu-C(Roche製)とPSA分子とをリン酸緩衝溶液中で20:1の比で混合し、37℃で1日反応させた後、得られた切断分子をサイズ分離クロマトグラフィにより分取して作成した。また、PSA切断分子が抗PSA抗体のパラトープと特異的に相互作用するエピトープを有することは、下記の方法で確認した。また、本実施例で用いたPSA切断分子の分子量はサイズ分離クロマトグラフィ測定から5kDaであることがわかった。
 そして、精製された抗体溶液の抗tPA抗体と抗PSA抗体の濃度をELISA法により定量した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示したように、実施例4では、抗tPA抗体のみを含む溶液が得られた。この理由として、実施例4の吸着材の吸着部位が、抗tPA抗体のパラトープと特異的に相互作用するエピトープを有するtPA分子であることが考えられる。一方、実施例5、6では、抗PSA抗体のみを含む溶液が得られた。この理由として、実施例5、実施例6の吸着材の吸着部位が、抗PSA抗体のパラトープと特異的に相互作用するエピトープを有するPSA分子であることが考えられる。
 以上より、本実施例で作製した抗体精製装置を用いることで、バイオマーカと特異吸着性の高い抗体を分離精製できることがわかった。
1…吸着材、10…吸着部位、20…温度応答部位、30…担体、502…流路形成部材、503…支持基体、504…流路、505…送液ユニット、514…注入口、516…磁石ユニット、517…温調ユニット
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (9)

  1. 精製対象の抗体におけるパラトープに対応するエピトープを有する吸着部位と、
    温度変化によって相転移する温度応答性分子を有する温度応答部位と、
    前記吸着部位及び前記温度応答部位を支持する担体と
    を備える吸着材。
  2. 前記温度応答性分子は、相転移温度が0℃以上60℃以下の範囲にある化合物であることを特徴とする請求項1記載の吸着材。
  3. 前記吸着部位は、精製対象の抗体が結合する抗原のエピトープを含む部分断片でることを特徴とする請求項1記載の吸着材。
  4. 前記温度応答部位が、単量体として、アクリルアミド誘導体、メタクリル酸エステル等のメタクリル酸誘導体、アクリル酸エステル等のアクリル酸誘導体、ビニルアルコール誘導体、リジン誘導体、グルタミン酸誘導体、アスパラギン酸誘導体、乳酸、ジオール誘導体、カプロラクタム類、カプロラクトン類、糖類、シロキサン類からなる群より選択される少なくとも1種を含むことを特徴とする請求項1記載の吸着材。
  5.  前記吸着部位は、前記温度応答性分子に結合されていることを特徴とする請求項1記載の吸着材。
  6.  前記吸着部位は、前記担体に結合されていることを特徴とする請求項1記載の吸着材。
  7.  請求項1乃至6いずれか一項記載の吸着材を捕捉する吸着材捕捉部と、
     前記吸着材捕捉部に捕捉された前記吸着材を所定の温度に調節する温度調節装置とを備える抗体精製装置。
  8.  前記吸着材における担体が磁性ビーズであり、前記吸着材捕捉部は磁性材料を備えることを特徴とする請求項7記載の抗体精製装置。
  9.  精製対象の抗体におけるパラトープに対応するエピトープを有する吸着部位と、温度変化によって相転移する温度応答性分子を有する温度応答部位と、前記吸着部位及び前記温度応答部位を支持する担体とを備える吸着材と、精製対象の抗体を含む溶液とを接触させる工程と、
     前記吸着材を洗浄する工程と、
     溶液の温度を昇温して前記温度応答性分子を不溶化させることで、前記吸着部位に吸着した抗体を分離する工程と、
     分離した抗体を回収する工程とを含む
     抗体の精製方法。
PCT/JP2016/064646 2015-06-12 2016-05-17 吸着材及び当該吸着材を用いた抗体精製装置 WO2016199550A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015119029A JP2018140937A (ja) 2015-06-12 2015-06-12 吸着材及び当該吸着材を用いた抗体精製装置
JP2015-119029 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016199550A1 true WO2016199550A1 (ja) 2016-12-15

Family

ID=57503958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064646 WO2016199550A1 (ja) 2015-06-12 2016-05-17 吸着材及び当該吸着材を用いた抗体精製装置

Country Status (2)

Country Link
JP (1) JP2018140937A (ja)
WO (1) WO2016199550A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219698A (ja) * 1999-01-28 2000-08-08 Jsr Corp 物質分離材料、物質分離システムおよび物質分離方法
JP2010062444A (ja) * 2008-09-05 2010-03-18 Chisso Corp 凍結乾燥可能な温度応答性磁性微粒子
WO2012121409A1 (ja) * 2011-03-10 2012-09-13 旭化成メディカル株式会社 温度応答性クロマトグラフィー担体による生理活性物質の精製方法
WO2012165356A1 (ja) * 2011-05-27 2012-12-06 国立大学法人九州大学 感温性ポリアミノ酸またはその塩
WO2014034644A1 (ja) * 2012-08-27 2014-03-06 旭化成メディカル株式会社 温度応答性クロマトグラフィーによる抗体の精製方法
JP2014219245A (ja) * 2013-05-07 2014-11-20 株式会社日立製作所 精製装置及び精製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219698A (ja) * 1999-01-28 2000-08-08 Jsr Corp 物質分離材料、物質分離システムおよび物質分離方法
JP2010062444A (ja) * 2008-09-05 2010-03-18 Chisso Corp 凍結乾燥可能な温度応答性磁性微粒子
WO2012121409A1 (ja) * 2011-03-10 2012-09-13 旭化成メディカル株式会社 温度応答性クロマトグラフィー担体による生理活性物質の精製方法
WO2012165356A1 (ja) * 2011-05-27 2012-12-06 国立大学法人九州大学 感温性ポリアミノ酸またはその塩
WO2014034644A1 (ja) * 2012-08-27 2014-03-06 旭化成メディカル株式会社 温度応答性クロマトグラフィーによる抗体の精製方法
JP2014219245A (ja) * 2013-05-07 2014-11-20 株式会社日立製作所 精製装置及び精製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEISUKE SHIBUYA ET AL.: "Development of Thermo- Responsive Affinity Ligands", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, JAPAN, vol. 67, 25 September 2015 (2015-09-25), pages 234 *
KONDO A ET AL.: "Development and application of thermo-sensitive immunomicrospheres for antibody purification.", BIOTECHNOL. BIOENG., vol. 44, no. 1, 1994, pages 1 - 6, XP055334022 *
KONDO A ET AL.: "Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification.", APPL. MICROBIOL. BIOTECHNOL., vol. 41, no. 1, 1994, pages 99 - 105, XP035168782 *

Also Published As

Publication number Publication date
JP2018140937A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
Safarik et al. Magnetic techniques for the isolation and purification of proteins and peptides
Xu et al. Polymer brush-modified magnetic nanoparticles for His-tagged protein purification
Sergeyeva et al. In situ formation of porous molecularly imprinted polymer membranes
JP4776615B2 (ja) 抗体精製
Jain et al. Protein purification with polymeric affinity membranes containing functionalized poly (acid) brushes
JP5530633B2 (ja) アフィニティークロマトグラフィーマトリックスおよびその作成および使用法。
JP4801598B2 (ja) 生理的イオン強度でタンパク質を吸着させるためのクロマトグラフィー材料
JP5903385B2 (ja) 抗体精製用のメンブラン及び関連方法
US9777075B2 (en) Diagnostic assay using particles with magnetic properties
WO2016143215A1 (ja) 吸着材、それを用いた分離精製装置及び分離精製方法
Salimi et al. Protein A and protein A/G coupled magnetic SiO2 microspheres for affinity purification of immunoglobulin G
JP2004053596A5 (ja)
CN103269761A (zh) 亲和色谱基质
JP6665184B2 (ja) 混床イオン交換吸着剤
WO2005114193A1 (ja) アフィニティー粒子及びアフィニティー分離方法
CN103269762A (zh) 亲和色谱基质
CN101279242A (zh) 用于抗体清除的血液净化吸附剂
US9534060B2 (en) Carrier for antibody purification, manufacturing method for same, and application for same
JP6773402B2 (ja) 磁性シリカ粒子を用いた対象物質の分離方法
Pichon Aptamer-based and immunosorbents
Bereli et al. Antibody purification by concanavalin A affinity chromatography
CN111902720A (zh) 基于非抗体高亲和力的样品制备、吸附剂、装置和方法
WO2016199550A1 (ja) 吸着材及び当該吸着材を用いた抗体精製装置
JP2010029845A (ja) 蛋白質精製用分離剤及び蛋白質精製方法
JP2011132140A (ja) 固定化タンパク質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807257

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP